1 /*-
2 * Copyright (c) 2008 Yahoo!, Inc.
3 * All rights reserved.
4 * Written by: John Baldwin <[email protected]>
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in the
13 * documentation and/or other materials provided with the distribution.
14 * 3. Neither the name of the author nor the names of any co-contributors
15 * may be used to endorse or promote products derived from this software
16 * without specific prior written permission.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
19 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
22 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
26 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28 * SUCH DAMAGE.
29 *
30 * Broadcom Inc. (LSI) MPT-Fusion Host Adapter FreeBSD userland interface
31 */
32 /*-
33 * Copyright (c) 2011-2015 LSI Corp.
34 * Copyright (c) 2013-2016 Avago Technologies
35 * Copyright 2000-2020 Broadcom Inc.
36 * All rights reserved.
37 *
38 * Redistribution and use in source and binary forms, with or without
39 * modification, are permitted provided that the following conditions
40 * are met:
41 * 1. Redistributions of source code must retain the above copyright
42 * notice, this list of conditions and the following disclaimer.
43 * 2. Redistributions in binary form must reproduce the above copyright
44 * notice, this list of conditions and the following disclaimer in the
45 * documentation and/or other materials provided with the distribution.
46 *
47 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
48 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
49 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
50 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
51 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
52 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
53 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
54 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
55 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
56 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
57 * SUCH DAMAGE.
58 *
59 * Broadcom Inc. (LSI) MPT-Fusion Host Adapter FreeBSD
60 *
61 * $FreeBSD$
62 */
63
64 #include <sys/cdefs.h>
65 __FBSDID("$FreeBSD$");
66
67 /* TODO Move headers to mprvar */
68 #include <sys/types.h>
69 #include <sys/param.h>
70 #include <sys/systm.h>
71 #include <sys/kernel.h>
72 #include <sys/selinfo.h>
73 #include <sys/module.h>
74 #include <sys/bus.h>
75 #include <sys/conf.h>
76 #include <sys/bio.h>
77 #include <sys/malloc.h>
78 #include <sys/uio.h>
79 #include <sys/sysctl.h>
80 #include <sys/ioccom.h>
81 #include <sys/endian.h>
82 #include <sys/queue.h>
83 #include <sys/kthread.h>
84 #include <sys/taskqueue.h>
85 #include <sys/proc.h>
86 #include <sys/sysent.h>
87
88 #include <machine/bus.h>
89 #include <machine/resource.h>
90 #include <sys/rman.h>
91
92 #include <cam/cam.h>
93 #include <cam/cam_ccb.h>
94
95 #include <dev/mpr/mpi/mpi2_type.h>
96 #include <dev/mpr/mpi/mpi2.h>
97 #include <dev/mpr/mpi/mpi2_ioc.h>
98 #include <dev/mpr/mpi/mpi2_cnfg.h>
99 #include <dev/mpr/mpi/mpi2_init.h>
100 #include <dev/mpr/mpi/mpi2_tool.h>
101 #include <dev/mpr/mpi/mpi2_pci.h>
102 #include <dev/mpr/mpr_ioctl.h>
103 #include <dev/mpr/mprvar.h>
104 #include <dev/mpr/mpr_table.h>
105 #include <dev/mpr/mpr_sas.h>
106 #include <dev/pci/pcivar.h>
107 #include <dev/pci/pcireg.h>
108
109 static d_open_t mpr_open;
110 static d_close_t mpr_close;
111 static d_ioctl_t mpr_ioctl_devsw;
112
113 static struct cdevsw mpr_cdevsw = {
114 .d_version = D_VERSION,
115 .d_flags = 0,
116 .d_open = mpr_open,
117 .d_close = mpr_close,
118 .d_ioctl = mpr_ioctl_devsw,
119 .d_name = "mpr",
120 };
121
122 typedef int (mpr_user_f)(struct mpr_command *, struct mpr_usr_command *);
123 static mpr_user_f mpi_pre_ioc_facts;
124 static mpr_user_f mpi_pre_port_facts;
125 static mpr_user_f mpi_pre_fw_download;
126 static mpr_user_f mpi_pre_fw_upload;
127 static mpr_user_f mpi_pre_sata_passthrough;
128 static mpr_user_f mpi_pre_smp_passthrough;
129 static mpr_user_f mpi_pre_config;
130 static mpr_user_f mpi_pre_sas_io_unit_control;
131
132 static int mpr_user_read_cfg_header(struct mpr_softc *,
133 struct mpr_cfg_page_req *);
134 static int mpr_user_read_cfg_page(struct mpr_softc *,
135 struct mpr_cfg_page_req *, void *);
136 static int mpr_user_read_extcfg_header(struct mpr_softc *,
137 struct mpr_ext_cfg_page_req *);
138 static int mpr_user_read_extcfg_page(struct mpr_softc *,
139 struct mpr_ext_cfg_page_req *, void *);
140 static int mpr_user_write_cfg_page(struct mpr_softc *,
141 struct mpr_cfg_page_req *, void *);
142 static int mpr_user_setup_request(struct mpr_command *,
143 struct mpr_usr_command *);
144 static int mpr_user_command(struct mpr_softc *, struct mpr_usr_command *);
145
146 static int mpr_user_pass_thru(struct mpr_softc *sc, mpr_pass_thru_t *data);
147 static void mpr_user_get_adapter_data(struct mpr_softc *sc,
148 mpr_adapter_data_t *data);
149 static void mpr_user_read_pci_info(struct mpr_softc *sc, mpr_pci_info_t *data);
150 static uint8_t mpr_get_fw_diag_buffer_number(struct mpr_softc *sc,
151 uint32_t unique_id);
152 static int mpr_post_fw_diag_buffer(struct mpr_softc *sc,
153 mpr_fw_diagnostic_buffer_t *pBuffer, uint32_t *return_code);
154 static int mpr_release_fw_diag_buffer(struct mpr_softc *sc,
155 mpr_fw_diagnostic_buffer_t *pBuffer, uint32_t *return_code,
156 uint32_t diag_type);
157 static int mpr_diag_register(struct mpr_softc *sc,
158 mpr_fw_diag_register_t *diag_register, uint32_t *return_code);
159 static int mpr_diag_unregister(struct mpr_softc *sc,
160 mpr_fw_diag_unregister_t *diag_unregister, uint32_t *return_code);
161 static int mpr_diag_query(struct mpr_softc *sc, mpr_fw_diag_query_t *diag_query,
162 uint32_t *return_code);
163 static int mpr_diag_read_buffer(struct mpr_softc *sc,
164 mpr_diag_read_buffer_t *diag_read_buffer, uint8_t *ioctl_buf,
165 uint32_t *return_code);
166 static int mpr_diag_release(struct mpr_softc *sc,
167 mpr_fw_diag_release_t *diag_release, uint32_t *return_code);
168 static int mpr_do_diag_action(struct mpr_softc *sc, uint32_t action,
169 uint8_t *diag_action, uint32_t length, uint32_t *return_code);
170 static int mpr_user_diag_action(struct mpr_softc *sc, mpr_diag_action_t *data);
171 static void mpr_user_event_query(struct mpr_softc *sc, mpr_event_query_t *data);
172 static void mpr_user_event_enable(struct mpr_softc *sc,
173 mpr_event_enable_t *data);
174 static int mpr_user_event_report(struct mpr_softc *sc,
175 mpr_event_report_t *data);
176 static int mpr_user_reg_access(struct mpr_softc *sc, mpr_reg_access_t *data);
177 static int mpr_user_btdh(struct mpr_softc *sc, mpr_btdh_mapping_t *data);
178
179 static MALLOC_DEFINE(M_MPRUSER, "mpr_user", "Buffers for mpr(4) ioctls");
180
181 /* Macros from compat/freebsd32/freebsd32.h */
182 #define PTRIN(v) (void *)(uintptr_t)(v)
183 #define PTROUT(v) (uint32_t)(uintptr_t)(v)
184
185 #define CP(src,dst,fld) do { (dst).fld = (src).fld; } while (0)
186 #define PTRIN_CP(src,dst,fld) \
187 do { (dst).fld = PTRIN((src).fld); } while (0)
188 #define PTROUT_CP(src,dst,fld) \
189 do { (dst).fld = PTROUT((src).fld); } while (0)
190
191 /*
192 * MPI functions that support IEEE SGLs for SAS3.
193 */
194 static uint8_t ieee_sgl_func_list[] = {
195 MPI2_FUNCTION_SCSI_IO_REQUEST,
196 MPI2_FUNCTION_RAID_SCSI_IO_PASSTHROUGH,
197 MPI2_FUNCTION_SMP_PASSTHROUGH,
198 MPI2_FUNCTION_SATA_PASSTHROUGH,
199 MPI2_FUNCTION_FW_UPLOAD,
200 MPI2_FUNCTION_FW_DOWNLOAD,
201 MPI2_FUNCTION_TARGET_ASSIST,
202 MPI2_FUNCTION_TARGET_STATUS_SEND,
203 MPI2_FUNCTION_TOOLBOX
204 };
205
206 int
mpr_attach_user(struct mpr_softc * sc)207 mpr_attach_user(struct mpr_softc *sc)
208 {
209 int unit;
210
211 unit = device_get_unit(sc->mpr_dev);
212 sc->mpr_cdev = make_dev(&mpr_cdevsw, unit, UID_ROOT, GID_OPERATOR, 0640,
213 "mpr%d", unit);
214
215 if (sc->mpr_cdev == NULL)
216 return (ENOMEM);
217
218 sc->mpr_cdev->si_drv1 = sc;
219 return (0);
220 }
221
222 void
mpr_detach_user(struct mpr_softc * sc)223 mpr_detach_user(struct mpr_softc *sc)
224 {
225
226 /* XXX: do a purge of pending requests? */
227 if (sc->mpr_cdev != NULL)
228 destroy_dev(sc->mpr_cdev);
229 }
230
231 static int
mpr_open(struct cdev * dev,int flags,int fmt,struct thread * td)232 mpr_open(struct cdev *dev, int flags, int fmt, struct thread *td)
233 {
234
235 return (0);
236 }
237
238 static int
mpr_close(struct cdev * dev,int flags,int fmt,struct thread * td)239 mpr_close(struct cdev *dev, int flags, int fmt, struct thread *td)
240 {
241
242 return (0);
243 }
244
245 static int
mpr_user_read_cfg_header(struct mpr_softc * sc,struct mpr_cfg_page_req * page_req)246 mpr_user_read_cfg_header(struct mpr_softc *sc,
247 struct mpr_cfg_page_req *page_req)
248 {
249 MPI2_CONFIG_PAGE_HEADER *hdr;
250 struct mpr_config_params params;
251 int error;
252
253 hdr = ¶ms.hdr.Struct;
254 params.action = MPI2_CONFIG_ACTION_PAGE_HEADER;
255 params.page_address = le32toh(page_req->page_address);
256 hdr->PageVersion = 0;
257 hdr->PageLength = 0;
258 hdr->PageNumber = page_req->header.PageNumber;
259 hdr->PageType = page_req->header.PageType;
260 params.buffer = NULL;
261 params.length = 0;
262 params.callback = NULL;
263
264 if ((error = mpr_read_config_page(sc, ¶ms)) != 0) {
265 /*
266 * Leave the request. Without resetting the chip, it's
267 * still owned by it and we'll just get into trouble
268 * freeing it now. Mark it as abandoned so that if it
269 * shows up later it can be freed.
270 */
271 mpr_printf(sc, "read_cfg_header timed out\n");
272 return (ETIMEDOUT);
273 }
274
275 page_req->ioc_status = htole16(params.status);
276 if ((page_req->ioc_status & MPI2_IOCSTATUS_MASK) ==
277 MPI2_IOCSTATUS_SUCCESS) {
278 bcopy(hdr, &page_req->header, sizeof(page_req->header));
279 }
280
281 return (0);
282 }
283
284 static int
mpr_user_read_cfg_page(struct mpr_softc * sc,struct mpr_cfg_page_req * page_req,void * buf)285 mpr_user_read_cfg_page(struct mpr_softc *sc, struct mpr_cfg_page_req *page_req,
286 void *buf)
287 {
288 MPI2_CONFIG_PAGE_HEADER *reqhdr, *hdr;
289 struct mpr_config_params params;
290 int error;
291
292 reqhdr = buf;
293 hdr = ¶ms.hdr.Struct;
294 hdr->PageVersion = reqhdr->PageVersion;
295 hdr->PageLength = reqhdr->PageLength;
296 hdr->PageNumber = reqhdr->PageNumber;
297 hdr->PageType = reqhdr->PageType & MPI2_CONFIG_PAGETYPE_MASK;
298 params.action = MPI2_CONFIG_ACTION_PAGE_READ_CURRENT;
299 params.page_address = le32toh(page_req->page_address);
300 params.buffer = buf;
301 params.length = le32toh(page_req->len);
302 params.callback = NULL;
303
304 if ((error = mpr_read_config_page(sc, ¶ms)) != 0) {
305 mpr_printf(sc, "mpr_user_read_cfg_page timed out\n");
306 return (ETIMEDOUT);
307 }
308
309 page_req->ioc_status = htole16(params.status);
310 return (0);
311 }
312
313 static int
mpr_user_read_extcfg_header(struct mpr_softc * sc,struct mpr_ext_cfg_page_req * ext_page_req)314 mpr_user_read_extcfg_header(struct mpr_softc *sc,
315 struct mpr_ext_cfg_page_req *ext_page_req)
316 {
317 MPI2_CONFIG_EXTENDED_PAGE_HEADER *hdr;
318 struct mpr_config_params params;
319 int error;
320
321 hdr = ¶ms.hdr.Ext;
322 params.action = MPI2_CONFIG_ACTION_PAGE_HEADER;
323 hdr->PageVersion = ext_page_req->header.PageVersion;
324 hdr->PageType = MPI2_CONFIG_PAGETYPE_EXTENDED;
325 hdr->ExtPageLength = 0;
326 hdr->PageNumber = ext_page_req->header.PageNumber;
327 hdr->ExtPageType = ext_page_req->header.ExtPageType;
328 params.page_address = le32toh(ext_page_req->page_address);
329 params.buffer = NULL;
330 params.length = 0;
331 params.callback = NULL;
332
333 if ((error = mpr_read_config_page(sc, ¶ms)) != 0) {
334 /*
335 * Leave the request. Without resetting the chip, it's
336 * still owned by it and we'll just get into trouble
337 * freeing it now. Mark it as abandoned so that if it
338 * shows up later it can be freed.
339 */
340 mpr_printf(sc, "mpr_user_read_extcfg_header timed out\n");
341 return (ETIMEDOUT);
342 }
343
344 ext_page_req->ioc_status = htole16(params.status);
345 if ((ext_page_req->ioc_status & MPI2_IOCSTATUS_MASK) ==
346 MPI2_IOCSTATUS_SUCCESS) {
347 ext_page_req->header.PageVersion = hdr->PageVersion;
348 ext_page_req->header.PageNumber = hdr->PageNumber;
349 ext_page_req->header.PageType = hdr->PageType;
350 ext_page_req->header.ExtPageLength = hdr->ExtPageLength;
351 ext_page_req->header.ExtPageType = hdr->ExtPageType;
352 }
353
354 return (0);
355 }
356
357 static int
mpr_user_read_extcfg_page(struct mpr_softc * sc,struct mpr_ext_cfg_page_req * ext_page_req,void * buf)358 mpr_user_read_extcfg_page(struct mpr_softc *sc,
359 struct mpr_ext_cfg_page_req *ext_page_req, void *buf)
360 {
361 MPI2_CONFIG_EXTENDED_PAGE_HEADER *reqhdr, *hdr;
362 struct mpr_config_params params;
363 int error;
364
365 reqhdr = buf;
366 hdr = ¶ms.hdr.Ext;
367 params.action = MPI2_CONFIG_ACTION_PAGE_READ_CURRENT;
368 params.page_address = le32toh(ext_page_req->page_address);
369 hdr->PageVersion = reqhdr->PageVersion;
370 hdr->PageType = MPI2_CONFIG_PAGETYPE_EXTENDED;
371 hdr->PageNumber = reqhdr->PageNumber;
372 hdr->ExtPageType = reqhdr->ExtPageType;
373 hdr->ExtPageLength = reqhdr->ExtPageLength;
374 params.buffer = buf;
375 params.length = le32toh(ext_page_req->len);
376 params.callback = NULL;
377
378 if ((error = mpr_read_config_page(sc, ¶ms)) != 0) {
379 mpr_printf(sc, "mpr_user_read_extcfg_page timed out\n");
380 return (ETIMEDOUT);
381 }
382
383 ext_page_req->ioc_status = htole16(params.status);
384 return (0);
385 }
386
387 static int
mpr_user_write_cfg_page(struct mpr_softc * sc,struct mpr_cfg_page_req * page_req,void * buf)388 mpr_user_write_cfg_page(struct mpr_softc *sc,
389 struct mpr_cfg_page_req *page_req, void *buf)
390 {
391 MPI2_CONFIG_PAGE_HEADER *reqhdr, *hdr;
392 struct mpr_config_params params;
393 u_int hdr_attr;
394 int error;
395
396 reqhdr = buf;
397 hdr = ¶ms.hdr.Struct;
398 hdr_attr = reqhdr->PageType & MPI2_CONFIG_PAGEATTR_MASK;
399 if (hdr_attr != MPI2_CONFIG_PAGEATTR_CHANGEABLE &&
400 hdr_attr != MPI2_CONFIG_PAGEATTR_PERSISTENT) {
401 mpr_printf(sc, "page type 0x%x not changeable\n",
402 reqhdr->PageType & MPI2_CONFIG_PAGETYPE_MASK);
403 return (EINVAL);
404 }
405
406 /*
407 * There isn't any point in restoring stripped out attributes
408 * if you then mask them going down to issue the request.
409 */
410
411 hdr->PageVersion = reqhdr->PageVersion;
412 hdr->PageLength = reqhdr->PageLength;
413 hdr->PageNumber = reqhdr->PageNumber;
414 hdr->PageType = reqhdr->PageType;
415 params.action = MPI2_CONFIG_ACTION_PAGE_WRITE_CURRENT;
416 params.page_address = le32toh(page_req->page_address);
417 params.buffer = buf;
418 params.length = le32toh(page_req->len);
419 params.callback = NULL;
420
421 if ((error = mpr_write_config_page(sc, ¶ms)) != 0) {
422 mpr_printf(sc, "mpr_write_cfg_page timed out\n");
423 return (ETIMEDOUT);
424 }
425
426 page_req->ioc_status = htole16(params.status);
427 return (0);
428 }
429
430 void
mpr_init_sge(struct mpr_command * cm,void * req,void * sge)431 mpr_init_sge(struct mpr_command *cm, void *req, void *sge)
432 {
433 int off, space;
434
435 space = (int)cm->cm_sc->reqframesz;
436 off = (uintptr_t)sge - (uintptr_t)req;
437
438 KASSERT(off < space, ("bad pointers %p %p, off %d, space %d",
439 req, sge, off, space));
440
441 cm->cm_sge = sge;
442 cm->cm_sglsize = space - off;
443 }
444
445 /*
446 * Prepare the mpr_command for an IOC_FACTS request.
447 */
448 static int
mpi_pre_ioc_facts(struct mpr_command * cm,struct mpr_usr_command * cmd)449 mpi_pre_ioc_facts(struct mpr_command *cm, struct mpr_usr_command *cmd)
450 {
451 MPI2_IOC_FACTS_REQUEST *req = (void *)cm->cm_req;
452 MPI2_IOC_FACTS_REPLY *rpl;
453
454 if (cmd->req_len != sizeof *req)
455 return (EINVAL);
456 if (cmd->rpl_len != sizeof *rpl)
457 return (EINVAL);
458
459 cm->cm_sge = NULL;
460 cm->cm_sglsize = 0;
461 return (0);
462 }
463
464 /*
465 * Prepare the mpr_command for a PORT_FACTS request.
466 */
467 static int
mpi_pre_port_facts(struct mpr_command * cm,struct mpr_usr_command * cmd)468 mpi_pre_port_facts(struct mpr_command *cm, struct mpr_usr_command *cmd)
469 {
470 MPI2_PORT_FACTS_REQUEST *req = (void *)cm->cm_req;
471 MPI2_PORT_FACTS_REPLY *rpl;
472
473 if (cmd->req_len != sizeof *req)
474 return (EINVAL);
475 if (cmd->rpl_len != sizeof *rpl)
476 return (EINVAL);
477
478 cm->cm_sge = NULL;
479 cm->cm_sglsize = 0;
480 return (0);
481 }
482
483 /*
484 * Prepare the mpr_command for a FW_DOWNLOAD request.
485 */
486 static int
mpi_pre_fw_download(struct mpr_command * cm,struct mpr_usr_command * cmd)487 mpi_pre_fw_download(struct mpr_command *cm, struct mpr_usr_command *cmd)
488 {
489 MPI25_FW_DOWNLOAD_REQUEST *req = (void *)cm->cm_req;
490 MPI2_FW_DOWNLOAD_REPLY *rpl;
491 int error;
492
493 if (cmd->req_len != sizeof *req)
494 return (EINVAL);
495 if (cmd->rpl_len != sizeof *rpl)
496 return (EINVAL);
497
498 if (cmd->len == 0)
499 return (EINVAL);
500
501 error = copyin(cmd->buf, cm->cm_data, cmd->len);
502 if (error != 0)
503 return (error);
504
505 mpr_init_sge(cm, req, &req->SGL);
506
507 /*
508 * For now, the F/W image must be provided in a single request.
509 */
510 if ((req->MsgFlags & MPI2_FW_DOWNLOAD_MSGFLGS_LAST_SEGMENT) == 0)
511 return (EINVAL);
512 if (req->TotalImageSize != cmd->len)
513 return (EINVAL);
514
515 req->ImageOffset = 0;
516 req->ImageSize = cmd->len;
517
518 cm->cm_flags |= MPR_CM_FLAGS_DATAOUT;
519
520 return (mpr_push_ieee_sge(cm, &req->SGL, 0));
521 }
522
523 /*
524 * Prepare the mpr_command for a FW_UPLOAD request.
525 */
526 static int
mpi_pre_fw_upload(struct mpr_command * cm,struct mpr_usr_command * cmd)527 mpi_pre_fw_upload(struct mpr_command *cm, struct mpr_usr_command *cmd)
528 {
529 MPI25_FW_UPLOAD_REQUEST *req = (void *)cm->cm_req;
530 MPI2_FW_UPLOAD_REPLY *rpl;
531
532 if (cmd->req_len != sizeof *req)
533 return (EINVAL);
534 if (cmd->rpl_len != sizeof *rpl)
535 return (EINVAL);
536
537 mpr_init_sge(cm, req, &req->SGL);
538 if (cmd->len == 0) {
539 /* Perhaps just asking what the size of the fw is? */
540 return (0);
541 }
542
543 req->ImageOffset = 0;
544 req->ImageSize = cmd->len;
545
546 cm->cm_flags |= MPR_CM_FLAGS_DATAIN;
547
548 return (mpr_push_ieee_sge(cm, &req->SGL, 0));
549 }
550
551 /*
552 * Prepare the mpr_command for a SATA_PASSTHROUGH request.
553 */
554 static int
mpi_pre_sata_passthrough(struct mpr_command * cm,struct mpr_usr_command * cmd)555 mpi_pre_sata_passthrough(struct mpr_command *cm, struct mpr_usr_command *cmd)
556 {
557 MPI2_SATA_PASSTHROUGH_REQUEST *req = (void *)cm->cm_req;
558 MPI2_SATA_PASSTHROUGH_REPLY *rpl;
559
560 if (cmd->req_len != sizeof *req)
561 return (EINVAL);
562 if (cmd->rpl_len != sizeof *rpl)
563 return (EINVAL);
564
565 mpr_init_sge(cm, req, &req->SGL);
566 return (0);
567 }
568
569 /*
570 * Prepare the mpr_command for a SMP_PASSTHROUGH request.
571 */
572 static int
mpi_pre_smp_passthrough(struct mpr_command * cm,struct mpr_usr_command * cmd)573 mpi_pre_smp_passthrough(struct mpr_command *cm, struct mpr_usr_command *cmd)
574 {
575 MPI2_SMP_PASSTHROUGH_REQUEST *req = (void *)cm->cm_req;
576 MPI2_SMP_PASSTHROUGH_REPLY *rpl;
577
578 if (cmd->req_len != sizeof *req)
579 return (EINVAL);
580 if (cmd->rpl_len != sizeof *rpl)
581 return (EINVAL);
582
583 mpr_init_sge(cm, req, &req->SGL);
584 return (0);
585 }
586
587 /*
588 * Prepare the mpr_command for a CONFIG request.
589 */
590 static int
mpi_pre_config(struct mpr_command * cm,struct mpr_usr_command * cmd)591 mpi_pre_config(struct mpr_command *cm, struct mpr_usr_command *cmd)
592 {
593 MPI2_CONFIG_REQUEST *req = (void *)cm->cm_req;
594 MPI2_CONFIG_REPLY *rpl;
595
596 if (cmd->req_len != sizeof *req)
597 return (EINVAL);
598 if (cmd->rpl_len != sizeof *rpl)
599 return (EINVAL);
600
601 mpr_init_sge(cm, req, &req->PageBufferSGE);
602 return (0);
603 }
604
605 /*
606 * Prepare the mpr_command for a SAS_IO_UNIT_CONTROL request.
607 */
608 static int
mpi_pre_sas_io_unit_control(struct mpr_command * cm,struct mpr_usr_command * cmd)609 mpi_pre_sas_io_unit_control(struct mpr_command *cm,
610 struct mpr_usr_command *cmd)
611 {
612
613 cm->cm_sge = NULL;
614 cm->cm_sglsize = 0;
615 return (0);
616 }
617
618 /*
619 * A set of functions to prepare an mpr_command for the various
620 * supported requests.
621 */
622 struct mpr_user_func {
623 U8 Function;
624 mpr_user_f *f_pre;
625 } mpr_user_func_list[] = {
626 { MPI2_FUNCTION_IOC_FACTS, mpi_pre_ioc_facts },
627 { MPI2_FUNCTION_PORT_FACTS, mpi_pre_port_facts },
628 { MPI2_FUNCTION_FW_DOWNLOAD, mpi_pre_fw_download },
629 { MPI2_FUNCTION_FW_UPLOAD, mpi_pre_fw_upload },
630 { MPI2_FUNCTION_SATA_PASSTHROUGH, mpi_pre_sata_passthrough },
631 { MPI2_FUNCTION_SMP_PASSTHROUGH, mpi_pre_smp_passthrough},
632 { MPI2_FUNCTION_CONFIG, mpi_pre_config},
633 { MPI2_FUNCTION_SAS_IO_UNIT_CONTROL, mpi_pre_sas_io_unit_control },
634 { 0xFF, NULL } /* list end */
635 };
636
637 static int
mpr_user_setup_request(struct mpr_command * cm,struct mpr_usr_command * cmd)638 mpr_user_setup_request(struct mpr_command *cm, struct mpr_usr_command *cmd)
639 {
640 MPI2_REQUEST_HEADER *hdr = (MPI2_REQUEST_HEADER *)cm->cm_req;
641 struct mpr_user_func *f;
642
643 for (f = mpr_user_func_list; f->f_pre != NULL; f++) {
644 if (hdr->Function == f->Function)
645 return (f->f_pre(cm, cmd));
646 }
647 return (EINVAL);
648 }
649
650 static int
mpr_user_command(struct mpr_softc * sc,struct mpr_usr_command * cmd)651 mpr_user_command(struct mpr_softc *sc, struct mpr_usr_command *cmd)
652 {
653 MPI2_REQUEST_HEADER *hdr;
654 MPI2_DEFAULT_REPLY *rpl = NULL;
655 void *buf = NULL;
656 struct mpr_command *cm = NULL;
657 int err = 0;
658 int sz;
659
660 mpr_lock(sc);
661 cm = mpr_alloc_command(sc);
662
663 if (cm == NULL) {
664 mpr_printf(sc, "%s: no mpr requests\n", __func__);
665 err = ENOMEM;
666 goto RetFree;
667 }
668 mpr_unlock(sc);
669
670 hdr = (MPI2_REQUEST_HEADER *)cm->cm_req;
671
672 mpr_dprint(sc, MPR_USER, "%s: req %p %d rpl %p %d\n", __func__,
673 cmd->req, cmd->req_len, cmd->rpl, cmd->rpl_len);
674
675 if (cmd->req_len > (int)sc->reqframesz) {
676 err = EINVAL;
677 goto RetFreeUnlocked;
678 }
679 err = copyin(cmd->req, hdr, cmd->req_len);
680 if (err != 0)
681 goto RetFreeUnlocked;
682
683 mpr_dprint(sc, MPR_USER, "%s: Function %02X MsgFlags %02X\n", __func__,
684 hdr->Function, hdr->MsgFlags);
685
686 if (cmd->len > 0) {
687 buf = malloc(cmd->len, M_MPRUSER, M_WAITOK|M_ZERO);
688 cm->cm_data = buf;
689 cm->cm_length = cmd->len;
690 } else {
691 cm->cm_data = NULL;
692 cm->cm_length = 0;
693 }
694
695 cm->cm_flags = MPR_CM_FLAGS_SGE_SIMPLE;
696 cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE;
697
698 err = mpr_user_setup_request(cm, cmd);
699 if (err == EINVAL) {
700 mpr_printf(sc, "%s: unsupported parameter or unsupported "
701 "function in request (function = 0x%X)\n", __func__,
702 hdr->Function);
703 }
704 if (err != 0)
705 goto RetFreeUnlocked;
706
707 mpr_lock(sc);
708 err = mpr_wait_command(sc, &cm, 30, CAN_SLEEP);
709
710 if (err || (cm == NULL)) {
711 mpr_printf(sc, "%s: invalid request: error %d\n",
712 __func__, err);
713 goto RetFree;
714 }
715
716 if (cm != NULL)
717 rpl = (MPI2_DEFAULT_REPLY *)cm->cm_reply;
718 if (rpl != NULL)
719 sz = rpl->MsgLength * 4;
720 else
721 sz = 0;
722
723 if (sz > cmd->rpl_len) {
724 mpr_printf(sc, "%s: user reply buffer (%d) smaller than "
725 "returned buffer (%d)\n", __func__, cmd->rpl_len, sz);
726 sz = cmd->rpl_len;
727 }
728
729 mpr_unlock(sc);
730 copyout(rpl, cmd->rpl, sz);
731 if (buf != NULL)
732 copyout(buf, cmd->buf, cmd->len);
733 mpr_dprint(sc, MPR_USER, "%s: reply size %d\n", __func__, sz);
734
735 RetFreeUnlocked:
736 mpr_lock(sc);
737 RetFree:
738 if (cm != NULL)
739 mpr_free_command(sc, cm);
740 mpr_unlock(sc);
741 if (buf != NULL)
742 free(buf, M_MPRUSER);
743 return (err);
744 }
745
746 static int
mpr_user_pass_thru(struct mpr_softc * sc,mpr_pass_thru_t * data)747 mpr_user_pass_thru(struct mpr_softc *sc, mpr_pass_thru_t *data)
748 {
749 MPI2_REQUEST_HEADER *hdr, tmphdr;
750 MPI2_DEFAULT_REPLY *rpl;
751 Mpi26NVMeEncapsulatedErrorReply_t *nvme_error_reply = NULL;
752 Mpi26NVMeEncapsulatedRequest_t *nvme_encap_request = NULL;
753 struct mpr_command *cm = NULL;
754 int i, err = 0, dir = 0, sz;
755 uint8_t tool, function = 0;
756 u_int sense_len;
757 struct mprsas_target *targ = NULL;
758
759 /*
760 * Only allow one passthru command at a time. Use the MPR_FLAGS_BUSY
761 * bit to denote that a passthru is being processed.
762 */
763 mpr_lock(sc);
764 if (sc->mpr_flags & MPR_FLAGS_BUSY) {
765 mpr_dprint(sc, MPR_USER, "%s: Only one passthru command "
766 "allowed at a single time.", __func__);
767 mpr_unlock(sc);
768 return (EBUSY);
769 }
770 sc->mpr_flags |= MPR_FLAGS_BUSY;
771 mpr_unlock(sc);
772
773 /*
774 * Do some validation on data direction. Valid cases are:
775 * 1) DataSize is 0 and direction is NONE
776 * 2) DataSize is non-zero and one of:
777 * a) direction is READ or
778 * b) direction is WRITE or
779 * c) direction is BOTH and DataOutSize is non-zero
780 * If valid and the direction is BOTH, change the direction to READ.
781 * if valid and the direction is not BOTH, make sure DataOutSize is 0.
782 */
783 if (((data->DataSize == 0) &&
784 (data->DataDirection == MPR_PASS_THRU_DIRECTION_NONE)) ||
785 ((data->DataSize != 0) &&
786 ((data->DataDirection == MPR_PASS_THRU_DIRECTION_READ) ||
787 (data->DataDirection == MPR_PASS_THRU_DIRECTION_WRITE) ||
788 ((data->DataDirection == MPR_PASS_THRU_DIRECTION_BOTH) &&
789 (data->DataOutSize != 0))))) {
790 if (data->DataDirection == MPR_PASS_THRU_DIRECTION_BOTH)
791 data->DataDirection = MPR_PASS_THRU_DIRECTION_READ;
792 else
793 data->DataOutSize = 0;
794 } else {
795 err = EINVAL;
796 goto RetFreeUnlocked;
797 }
798
799 mpr_dprint(sc, MPR_USER, "%s: req 0x%jx %d rpl 0x%jx %d "
800 "data in 0x%jx %d data out 0x%jx %d data dir %d\n", __func__,
801 data->PtrRequest, data->RequestSize, data->PtrReply,
802 data->ReplySize, data->PtrData, data->DataSize,
803 data->PtrDataOut, data->DataOutSize, data->DataDirection);
804
805 /*
806 * copy in the header so we know what we're dealing with before we
807 * commit to allocating a command for it.
808 */
809 err = copyin(PTRIN(data->PtrRequest), &tmphdr, data->RequestSize);
810 if (err != 0)
811 goto RetFreeUnlocked;
812
813 if (data->RequestSize > (int)sc->reqframesz) {
814 err = EINVAL;
815 goto RetFreeUnlocked;
816 }
817
818 function = tmphdr.Function;
819 mpr_dprint(sc, MPR_USER, "%s: Function %02X MsgFlags %02X\n", __func__,
820 function, tmphdr.MsgFlags);
821
822 /*
823 * Handle a passthru TM request.
824 */
825 if (function == MPI2_FUNCTION_SCSI_TASK_MGMT) {
826 MPI2_SCSI_TASK_MANAGE_REQUEST *task;
827
828 mpr_lock(sc);
829 cm = mprsas_alloc_tm(sc);
830 if (cm == NULL) {
831 err = EINVAL;
832 goto Ret;
833 }
834
835 /* Copy the header in. Only a small fixup is needed. */
836 task = (MPI2_SCSI_TASK_MANAGE_REQUEST *)cm->cm_req;
837 bcopy(&tmphdr, task, data->RequestSize);
838 task->TaskMID = cm->cm_desc.Default.SMID;
839
840 cm->cm_data = NULL;
841 cm->cm_complete = NULL;
842 cm->cm_complete_data = NULL;
843
844 targ = mprsas_find_target_by_handle(sc->sassc, 0,
845 task->DevHandle);
846 if (targ == NULL) {
847 mpr_dprint(sc, MPR_INFO,
848 "%s %d : invalid handle for requested TM 0x%x \n",
849 __func__, __LINE__, task->DevHandle);
850 err = 1;
851 } else {
852 mprsas_prepare_for_tm(sc, cm, targ, CAM_LUN_WILDCARD);
853 err = mpr_wait_command(sc, &cm, 30, CAN_SLEEP);
854 }
855
856 if (err != 0) {
857 err = EIO;
858 mpr_dprint(sc, MPR_FAULT, "%s: task management failed",
859 __func__);
860 }
861 /*
862 * Copy the reply data and sense data to user space.
863 */
864 if ((cm != NULL) && (cm->cm_reply != NULL)) {
865 rpl = (MPI2_DEFAULT_REPLY *)cm->cm_reply;
866 sz = rpl->MsgLength * 4;
867
868 if (sz > data->ReplySize) {
869 mpr_printf(sc, "%s: user reply buffer (%d) "
870 "smaller than returned buffer (%d)\n",
871 __func__, data->ReplySize, sz);
872 }
873 mpr_unlock(sc);
874 copyout(cm->cm_reply, PTRIN(data->PtrReply),
875 data->ReplySize);
876 mpr_lock(sc);
877 }
878 mprsas_free_tm(sc, cm);
879 goto Ret;
880 }
881
882 mpr_lock(sc);
883 cm = mpr_alloc_command(sc);
884
885 if (cm == NULL) {
886 mpr_printf(sc, "%s: no mpr requests\n", __func__);
887 err = ENOMEM;
888 goto Ret;
889 }
890 mpr_unlock(sc);
891
892 hdr = (MPI2_REQUEST_HEADER *)cm->cm_req;
893 bcopy(&tmphdr, hdr, data->RequestSize);
894
895 /*
896 * Do some checking to make sure the IOCTL request contains a valid
897 * request. Then set the SGL info.
898 */
899 mpr_init_sge(cm, hdr, (void *)((uint8_t *)hdr + data->RequestSize));
900
901 /*
902 * Set up for read, write or both. From check above, DataOutSize will
903 * be 0 if direction is READ or WRITE, but it will have some non-zero
904 * value if the direction is BOTH. So, just use the biggest size to get
905 * the cm_data buffer size. If direction is BOTH, 2 SGLs need to be set
906 * up; the first is for the request and the second will contain the
907 * response data. cm_out_len needs to be set here and this will be used
908 * when the SGLs are set up.
909 */
910 cm->cm_data = NULL;
911 cm->cm_length = MAX(data->DataSize, data->DataOutSize);
912 cm->cm_out_len = data->DataOutSize;
913 cm->cm_flags = 0;
914 if (cm->cm_length != 0) {
915 cm->cm_data = malloc(cm->cm_length, M_MPRUSER, M_WAITOK |
916 M_ZERO);
917 cm->cm_flags = MPR_CM_FLAGS_DATAIN;
918 if (data->DataOutSize) {
919 cm->cm_flags |= MPR_CM_FLAGS_DATAOUT;
920 err = copyin(PTRIN(data->PtrDataOut),
921 cm->cm_data, data->DataOutSize);
922 } else if (data->DataDirection ==
923 MPR_PASS_THRU_DIRECTION_WRITE) {
924 cm->cm_flags = MPR_CM_FLAGS_DATAOUT;
925 err = copyin(PTRIN(data->PtrData),
926 cm->cm_data, data->DataSize);
927 }
928 if (err != 0)
929 mpr_dprint(sc, MPR_FAULT, "%s: failed to copy IOCTL "
930 "data from user space\n", __func__);
931 }
932 /*
933 * Set this flag only if processing a command that does not need an
934 * IEEE SGL. The CLI Tool within the Toolbox uses IEEE SGLs, so clear
935 * the flag only for that tool if processing a Toolbox function.
936 */
937 cm->cm_flags |= MPR_CM_FLAGS_SGE_SIMPLE;
938 for (i = 0; i < sizeof (ieee_sgl_func_list); i++) {
939 if (function == ieee_sgl_func_list[i]) {
940 if (function == MPI2_FUNCTION_TOOLBOX)
941 {
942 tool = (uint8_t)hdr->FunctionDependent1;
943 if (tool != MPI2_TOOLBOX_DIAGNOSTIC_CLI_TOOL)
944 break;
945 }
946 cm->cm_flags &= ~MPR_CM_FLAGS_SGE_SIMPLE;
947 break;
948 }
949 }
950 cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE;
951
952 if (function == MPI2_FUNCTION_NVME_ENCAPSULATED) {
953 nvme_encap_request =
954 (Mpi26NVMeEncapsulatedRequest_t *)cm->cm_req;
955 cm->cm_desc.Default.RequestFlags =
956 MPI26_REQ_DESCRIPT_FLAGS_PCIE_ENCAPSULATED;
957
958 /*
959 * Get the Physical Address of the sense buffer.
960 * Save the user's Error Response buffer address and use that
961 * field to hold the sense buffer address.
962 * Clear the internal sense buffer, which will potentially hold
963 * the Completion Queue Entry on return, or 0 if no Entry.
964 * Build the PRPs and set direction bits.
965 * Send the request.
966 */
967 cm->nvme_error_response =
968 (uint64_t *)(uintptr_t)(((uint64_t)nvme_encap_request->
969 ErrorResponseBaseAddress.High << 32) |
970 (uint64_t)nvme_encap_request->
971 ErrorResponseBaseAddress.Low);
972 nvme_encap_request->ErrorResponseBaseAddress.High =
973 htole32((uint32_t)((uint64_t)cm->cm_sense_busaddr >> 32));
974 nvme_encap_request->ErrorResponseBaseAddress.Low =
975 htole32(cm->cm_sense_busaddr);
976 memset(cm->cm_sense, 0, NVME_ERROR_RESPONSE_SIZE);
977 mpr_build_nvme_prp(sc, cm, nvme_encap_request, cm->cm_data,
978 data->DataSize, data->DataOutSize);
979 }
980
981 /*
982 * Set up Sense buffer and SGL offset for IO passthru. SCSI IO request
983 * uses SCSI IO or Fast Path SCSI IO descriptor.
984 */
985 if ((function == MPI2_FUNCTION_SCSI_IO_REQUEST) ||
986 (function == MPI2_FUNCTION_RAID_SCSI_IO_PASSTHROUGH)) {
987 MPI2_SCSI_IO_REQUEST *scsi_io_req;
988
989 scsi_io_req = (MPI2_SCSI_IO_REQUEST *)hdr;
990 /*
991 * Put SGE for data and data_out buffer at the end of
992 * scsi_io_request message header (64 bytes in total).
993 * Following above SGEs, the residual space will be used by
994 * sense data.
995 */
996 scsi_io_req->SenseBufferLength = (uint8_t)(data->RequestSize -
997 64);
998 scsi_io_req->SenseBufferLowAddress =
999 htole32(cm->cm_sense_busaddr);
1000
1001 /*
1002 * Set SGLOffset0 value. This is the number of dwords that SGL
1003 * is offset from the beginning of MPI2_SCSI_IO_REQUEST struct.
1004 */
1005 scsi_io_req->SGLOffset0 = 24;
1006
1007 /*
1008 * Setup descriptor info. RAID passthrough must use the
1009 * default request descriptor which is already set, so if this
1010 * is a SCSI IO request, change the descriptor to SCSI IO or
1011 * Fast Path SCSI IO. Also, if this is a SCSI IO request,
1012 * handle the reply in the mprsas_scsio_complete function.
1013 */
1014 if (function == MPI2_FUNCTION_SCSI_IO_REQUEST) {
1015 targ = mprsas_find_target_by_handle(sc->sassc, 0,
1016 scsi_io_req->DevHandle);
1017
1018 if (!targ) {
1019 printf("No Target found for handle %d\n",
1020 scsi_io_req->DevHandle);
1021 err = EINVAL;
1022 goto RetFreeUnlocked;
1023 }
1024
1025 if (targ->scsi_req_desc_type ==
1026 MPI25_REQ_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO) {
1027 cm->cm_desc.FastPathSCSIIO.RequestFlags =
1028 MPI25_REQ_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO;
1029 if (!sc->atomic_desc_capable) {
1030 cm->cm_desc.FastPathSCSIIO.DevHandle =
1031 scsi_io_req->DevHandle;
1032 }
1033 scsi_io_req->IoFlags |=
1034 MPI25_SCSIIO_IOFLAGS_FAST_PATH;
1035 } else {
1036 cm->cm_desc.SCSIIO.RequestFlags =
1037 MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO;
1038 if (!sc->atomic_desc_capable) {
1039 cm->cm_desc.SCSIIO.DevHandle =
1040 scsi_io_req->DevHandle;
1041 }
1042 }
1043
1044 /*
1045 * Make sure the DevHandle is not 0 because this is a
1046 * likely error.
1047 */
1048 if (scsi_io_req->DevHandle == 0) {
1049 err = EINVAL;
1050 goto RetFreeUnlocked;
1051 }
1052 }
1053 }
1054
1055 mpr_lock(sc);
1056
1057 err = mpr_wait_command(sc, &cm, 30, CAN_SLEEP);
1058
1059 if (err || (cm == NULL)) {
1060 mpr_printf(sc, "%s: invalid request: error %d\n", __func__,
1061 err);
1062 goto RetFree;
1063 }
1064
1065 /*
1066 * Sync the DMA data, if any. Then copy the data to user space.
1067 */
1068 if (cm->cm_data != NULL) {
1069 if (cm->cm_flags & MPR_CM_FLAGS_DATAIN)
1070 dir = BUS_DMASYNC_POSTREAD;
1071 else if (cm->cm_flags & MPR_CM_FLAGS_DATAOUT)
1072 dir = BUS_DMASYNC_POSTWRITE;
1073 bus_dmamap_sync(sc->buffer_dmat, cm->cm_dmamap, dir);
1074 bus_dmamap_unload(sc->buffer_dmat, cm->cm_dmamap);
1075
1076 if (cm->cm_flags & MPR_CM_FLAGS_DATAIN) {
1077 mpr_unlock(sc);
1078 err = copyout(cm->cm_data,
1079 PTRIN(data->PtrData), data->DataSize);
1080 mpr_lock(sc);
1081 if (err != 0)
1082 mpr_dprint(sc, MPR_FAULT, "%s: failed to copy "
1083 "IOCTL data to user space\n", __func__);
1084 }
1085 }
1086
1087 /*
1088 * Copy the reply data and sense data to user space.
1089 */
1090 if (cm->cm_reply != NULL) {
1091 rpl = (MPI2_DEFAULT_REPLY *)cm->cm_reply;
1092 sz = rpl->MsgLength * 4;
1093
1094 if (sz > data->ReplySize) {
1095 mpr_printf(sc, "%s: user reply buffer (%d) smaller "
1096 "than returned buffer (%d)\n", __func__,
1097 data->ReplySize, sz);
1098 }
1099 mpr_unlock(sc);
1100 copyout(cm->cm_reply, PTRIN(data->PtrReply), data->ReplySize);
1101 mpr_lock(sc);
1102
1103 if ((function == MPI2_FUNCTION_SCSI_IO_REQUEST) ||
1104 (function == MPI2_FUNCTION_RAID_SCSI_IO_PASSTHROUGH)) {
1105 if (((MPI2_SCSI_IO_REPLY *)rpl)->SCSIState &
1106 MPI2_SCSI_STATE_AUTOSENSE_VALID) {
1107 sense_len =
1108 MIN((le32toh(((MPI2_SCSI_IO_REPLY *)rpl)->
1109 SenseCount)), sizeof(struct
1110 scsi_sense_data));
1111 mpr_unlock(sc);
1112 copyout(cm->cm_sense, (PTRIN(data->PtrReply +
1113 sizeof(MPI2_SCSI_IO_REPLY))), sense_len);
1114 mpr_lock(sc);
1115 }
1116 }
1117
1118 /*
1119 * Copy out the NVMe Error Reponse to user. The Error Response
1120 * buffer is given by the user, but a sense buffer is used to
1121 * get that data from the IOC. The user's
1122 * ErrorResponseBaseAddress is saved in the
1123 * 'nvme_error_response' field before the command because that
1124 * field is set to a sense buffer. When the command is
1125 * complete, the Error Response data from the IOC is copied to
1126 * that user address after it is checked for validity.
1127 * Also note that 'sense' buffers are not defined for
1128 * NVMe commands. Sense terminalogy is only used here so that
1129 * the same IOCTL structure and sense buffers can be used for
1130 * NVMe.
1131 */
1132 if (function == MPI2_FUNCTION_NVME_ENCAPSULATED) {
1133 if (cm->nvme_error_response == NULL) {
1134 mpr_dprint(sc, MPR_INFO, "NVMe Error Response "
1135 "buffer is NULL. Response data will not be "
1136 "returned.\n");
1137 mpr_unlock(sc);
1138 goto RetFreeUnlocked;
1139 }
1140
1141 nvme_error_reply =
1142 (Mpi26NVMeEncapsulatedErrorReply_t *)cm->cm_reply;
1143 sz = MIN(le32toh(nvme_error_reply->ErrorResponseCount),
1144 NVME_ERROR_RESPONSE_SIZE);
1145 mpr_unlock(sc);
1146 copyout(cm->cm_sense,
1147 (PTRIN(data->PtrReply +
1148 sizeof(MPI2_SCSI_IO_REPLY))), sz);
1149 mpr_lock(sc);
1150 }
1151 }
1152 mpr_unlock(sc);
1153
1154 RetFreeUnlocked:
1155 mpr_lock(sc);
1156
1157 RetFree:
1158 if (cm != NULL) {
1159 if (cm->cm_data)
1160 free(cm->cm_data, M_MPRUSER);
1161 mpr_free_command(sc, cm);
1162 }
1163 Ret:
1164 sc->mpr_flags &= ~MPR_FLAGS_BUSY;
1165 mpr_unlock(sc);
1166
1167 return (err);
1168 }
1169
1170 static void
mpr_user_get_adapter_data(struct mpr_softc * sc,mpr_adapter_data_t * data)1171 mpr_user_get_adapter_data(struct mpr_softc *sc, mpr_adapter_data_t *data)
1172 {
1173 Mpi2ConfigReply_t mpi_reply;
1174 Mpi2BiosPage3_t config_page;
1175
1176 /*
1177 * Use the PCI interface functions to get the Bus, Device, and Function
1178 * information.
1179 */
1180 data->PciInformation.u.bits.BusNumber = pci_get_bus(sc->mpr_dev);
1181 data->PciInformation.u.bits.DeviceNumber = pci_get_slot(sc->mpr_dev);
1182 data->PciInformation.u.bits.FunctionNumber =
1183 pci_get_function(sc->mpr_dev);
1184
1185 /*
1186 * Get the FW version that should already be saved in IOC Facts.
1187 */
1188 data->MpiFirmwareVersion = sc->facts->FWVersion.Word;
1189
1190 /*
1191 * General device info.
1192 */
1193 if (sc->mpr_flags & MPR_FLAGS_GEN35_IOC)
1194 data->AdapterType = MPRIOCTL_ADAPTER_TYPE_SAS35;
1195 else
1196 data->AdapterType = MPRIOCTL_ADAPTER_TYPE_SAS3;
1197 data->PCIDeviceHwId = pci_get_device(sc->mpr_dev);
1198 data->PCIDeviceHwRev = pci_read_config(sc->mpr_dev, PCIR_REVID, 1);
1199 data->SubSystemId = pci_get_subdevice(sc->mpr_dev);
1200 data->SubsystemVendorId = pci_get_subvendor(sc->mpr_dev);
1201
1202 /*
1203 * Get the driver version.
1204 */
1205 strcpy((char *)&data->DriverVersion[0], MPR_DRIVER_VERSION);
1206
1207 /*
1208 * Need to get BIOS Config Page 3 for the BIOS Version.
1209 */
1210 data->BiosVersion = 0;
1211 mpr_lock(sc);
1212 if (mpr_config_get_bios_pg3(sc, &mpi_reply, &config_page))
1213 printf("%s: Error while retrieving BIOS Version\n", __func__);
1214 else
1215 data->BiosVersion = config_page.BiosVersion;
1216 mpr_unlock(sc);
1217 }
1218
1219 static void
mpr_user_read_pci_info(struct mpr_softc * sc,mpr_pci_info_t * data)1220 mpr_user_read_pci_info(struct mpr_softc *sc, mpr_pci_info_t *data)
1221 {
1222 int i;
1223
1224 /*
1225 * Use the PCI interface functions to get the Bus, Device, and Function
1226 * information.
1227 */
1228 data->BusNumber = pci_get_bus(sc->mpr_dev);
1229 data->DeviceNumber = pci_get_slot(sc->mpr_dev);
1230 data->FunctionNumber = pci_get_function(sc->mpr_dev);
1231
1232 /*
1233 * Now get the interrupt vector and the pci header. The vector can
1234 * only be 0 right now. The header is the first 256 bytes of config
1235 * space.
1236 */
1237 data->InterruptVector = 0;
1238 for (i = 0; i < sizeof (data->PciHeader); i++) {
1239 data->PciHeader[i] = pci_read_config(sc->mpr_dev, i, 1);
1240 }
1241 }
1242
1243 static uint8_t
mpr_get_fw_diag_buffer_number(struct mpr_softc * sc,uint32_t unique_id)1244 mpr_get_fw_diag_buffer_number(struct mpr_softc *sc, uint32_t unique_id)
1245 {
1246 uint8_t index;
1247
1248 for (index = 0; index < MPI2_DIAG_BUF_TYPE_COUNT; index++) {
1249 if (sc->fw_diag_buffer_list[index].unique_id == unique_id) {
1250 return (index);
1251 }
1252 }
1253
1254 return (MPR_FW_DIAGNOSTIC_UID_NOT_FOUND);
1255 }
1256
1257 static int
mpr_post_fw_diag_buffer(struct mpr_softc * sc,mpr_fw_diagnostic_buffer_t * pBuffer,uint32_t * return_code)1258 mpr_post_fw_diag_buffer(struct mpr_softc *sc,
1259 mpr_fw_diagnostic_buffer_t *pBuffer, uint32_t *return_code)
1260 {
1261 MPI2_DIAG_BUFFER_POST_REQUEST *req;
1262 MPI2_DIAG_BUFFER_POST_REPLY *reply;
1263 struct mpr_command *cm = NULL;
1264 int i, status;
1265
1266 /*
1267 * If buffer is not enabled, just leave.
1268 */
1269 *return_code = MPR_FW_DIAG_ERROR_POST_FAILED;
1270 if (!pBuffer->enabled) {
1271 return (MPR_DIAG_FAILURE);
1272 }
1273
1274 /*
1275 * Clear some flags initially.
1276 */
1277 pBuffer->force_release = FALSE;
1278 pBuffer->valid_data = FALSE;
1279 pBuffer->owned_by_firmware = FALSE;
1280
1281 /*
1282 * Get a command.
1283 */
1284 cm = mpr_alloc_command(sc);
1285 if (cm == NULL) {
1286 mpr_printf(sc, "%s: no mpr requests\n", __func__);
1287 return (MPR_DIAG_FAILURE);
1288 }
1289
1290 /*
1291 * Build the request for releasing the FW Diag Buffer and send it.
1292 */
1293 req = (MPI2_DIAG_BUFFER_POST_REQUEST *)cm->cm_req;
1294 req->Function = MPI2_FUNCTION_DIAG_BUFFER_POST;
1295 req->BufferType = pBuffer->buffer_type;
1296 req->ExtendedType = pBuffer->extended_type;
1297 req->BufferLength = pBuffer->size;
1298 for (i = 0; i < (sizeof(req->ProductSpecific) / 4); i++)
1299 req->ProductSpecific[i] = pBuffer->product_specific[i];
1300 mpr_from_u64(sc->fw_diag_busaddr, &req->BufferAddress);
1301 cm->cm_data = NULL;
1302 cm->cm_length = 0;
1303 cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE;
1304 cm->cm_complete_data = NULL;
1305
1306 /*
1307 * Send command synchronously.
1308 */
1309 status = mpr_wait_command(sc, &cm, 30, CAN_SLEEP);
1310 if (status || (cm == NULL)) {
1311 mpr_printf(sc, "%s: invalid request: error %d\n", __func__,
1312 status);
1313 status = MPR_DIAG_FAILURE;
1314 goto done;
1315 }
1316
1317 /*
1318 * Process POST reply.
1319 */
1320 reply = (MPI2_DIAG_BUFFER_POST_REPLY *)cm->cm_reply;
1321 if (reply == NULL) {
1322 mpr_printf(sc, "%s: reply is NULL, probably due to "
1323 "reinitialization", __func__);
1324 status = MPR_DIAG_FAILURE;
1325 goto done;
1326 }
1327
1328 if ((le16toh(reply->IOCStatus) & MPI2_IOCSTATUS_MASK) !=
1329 MPI2_IOCSTATUS_SUCCESS) {
1330 status = MPR_DIAG_FAILURE;
1331 mpr_dprint(sc, MPR_FAULT, "%s: post of FW Diag Buffer failed "
1332 "with IOCStatus = 0x%x, IOCLogInfo = 0x%x and "
1333 "TransferLength = 0x%x\n", __func__,
1334 le16toh(reply->IOCStatus), le32toh(reply->IOCLogInfo),
1335 le32toh(reply->TransferLength));
1336 goto done;
1337 }
1338
1339 /*
1340 * Post was successful.
1341 */
1342 pBuffer->valid_data = TRUE;
1343 pBuffer->owned_by_firmware = TRUE;
1344 *return_code = MPR_FW_DIAG_ERROR_SUCCESS;
1345 status = MPR_DIAG_SUCCESS;
1346
1347 done:
1348 if (cm != NULL)
1349 mpr_free_command(sc, cm);
1350 return (status);
1351 }
1352
1353 static int
mpr_release_fw_diag_buffer(struct mpr_softc * sc,mpr_fw_diagnostic_buffer_t * pBuffer,uint32_t * return_code,uint32_t diag_type)1354 mpr_release_fw_diag_buffer(struct mpr_softc *sc,
1355 mpr_fw_diagnostic_buffer_t *pBuffer, uint32_t *return_code,
1356 uint32_t diag_type)
1357 {
1358 MPI2_DIAG_RELEASE_REQUEST *req;
1359 MPI2_DIAG_RELEASE_REPLY *reply;
1360 struct mpr_command *cm = NULL;
1361 int status;
1362
1363 /*
1364 * If buffer is not enabled, just leave.
1365 */
1366 *return_code = MPR_FW_DIAG_ERROR_RELEASE_FAILED;
1367 if (!pBuffer->enabled) {
1368 mpr_dprint(sc, MPR_USER, "%s: This buffer type is not "
1369 "supported by the IOC", __func__);
1370 return (MPR_DIAG_FAILURE);
1371 }
1372
1373 /*
1374 * Clear some flags initially.
1375 */
1376 pBuffer->force_release = FALSE;
1377 pBuffer->valid_data = FALSE;
1378 pBuffer->owned_by_firmware = FALSE;
1379
1380 /*
1381 * Get a command.
1382 */
1383 cm = mpr_alloc_command(sc);
1384 if (cm == NULL) {
1385 mpr_printf(sc, "%s: no mpr requests\n", __func__);
1386 return (MPR_DIAG_FAILURE);
1387 }
1388
1389 /*
1390 * Build the request for releasing the FW Diag Buffer and send it.
1391 */
1392 req = (MPI2_DIAG_RELEASE_REQUEST *)cm->cm_req;
1393 req->Function = MPI2_FUNCTION_DIAG_RELEASE;
1394 req->BufferType = pBuffer->buffer_type;
1395 cm->cm_data = NULL;
1396 cm->cm_length = 0;
1397 cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE;
1398 cm->cm_complete_data = NULL;
1399
1400 /*
1401 * Send command synchronously.
1402 */
1403 status = mpr_wait_command(sc, &cm, 30, CAN_SLEEP);
1404 if (status || (cm == NULL)) {
1405 mpr_printf(sc, "%s: invalid request: error %d\n", __func__,
1406 status);
1407 status = MPR_DIAG_FAILURE;
1408 goto done;
1409 }
1410
1411 /*
1412 * Process RELEASE reply.
1413 */
1414 reply = (MPI2_DIAG_RELEASE_REPLY *)cm->cm_reply;
1415 if (reply == NULL) {
1416 mpr_printf(sc, "%s: reply is NULL, probably due to "
1417 "reinitialization", __func__);
1418 status = MPR_DIAG_FAILURE;
1419 goto done;
1420 }
1421 if (((le16toh(reply->IOCStatus) & MPI2_IOCSTATUS_MASK) !=
1422 MPI2_IOCSTATUS_SUCCESS) || pBuffer->owned_by_firmware) {
1423 status = MPR_DIAG_FAILURE;
1424 mpr_dprint(sc, MPR_FAULT, "%s: release of FW Diag Buffer "
1425 "failed with IOCStatus = 0x%x and IOCLogInfo = 0x%x\n",
1426 __func__, le16toh(reply->IOCStatus),
1427 le32toh(reply->IOCLogInfo));
1428 goto done;
1429 }
1430
1431 /*
1432 * Release was successful.
1433 */
1434 *return_code = MPR_FW_DIAG_ERROR_SUCCESS;
1435 status = MPR_DIAG_SUCCESS;
1436
1437 /*
1438 * If this was for an UNREGISTER diag type command, clear the unique ID.
1439 */
1440 if (diag_type == MPR_FW_DIAG_TYPE_UNREGISTER) {
1441 pBuffer->unique_id = MPR_FW_DIAG_INVALID_UID;
1442 }
1443
1444 done:
1445 if (cm != NULL)
1446 mpr_free_command(sc, cm);
1447
1448 return (status);
1449 }
1450
1451 static int
mpr_diag_register(struct mpr_softc * sc,mpr_fw_diag_register_t * diag_register,uint32_t * return_code)1452 mpr_diag_register(struct mpr_softc *sc, mpr_fw_diag_register_t *diag_register,
1453 uint32_t *return_code)
1454 {
1455 mpr_fw_diagnostic_buffer_t *pBuffer;
1456 struct mpr_busdma_context *ctx;
1457 uint8_t extended_type, buffer_type, i;
1458 uint32_t buffer_size;
1459 uint32_t unique_id;
1460 int status;
1461 int error;
1462
1463 extended_type = diag_register->ExtendedType;
1464 buffer_type = diag_register->BufferType;
1465 buffer_size = diag_register->RequestedBufferSize;
1466 unique_id = diag_register->UniqueId;
1467 ctx = NULL;
1468 error = 0;
1469
1470 /*
1471 * Check for valid buffer type
1472 */
1473 if (buffer_type >= MPI2_DIAG_BUF_TYPE_COUNT) {
1474 *return_code = MPR_FW_DIAG_ERROR_INVALID_PARAMETER;
1475 return (MPR_DIAG_FAILURE);
1476 }
1477
1478 /*
1479 * Get the current buffer and look up the unique ID. The unique ID
1480 * should not be found. If it is, the ID is already in use.
1481 */
1482 i = mpr_get_fw_diag_buffer_number(sc, unique_id);
1483 pBuffer = &sc->fw_diag_buffer_list[buffer_type];
1484 if (i != MPR_FW_DIAGNOSTIC_UID_NOT_FOUND) {
1485 *return_code = MPR_FW_DIAG_ERROR_INVALID_UID;
1486 return (MPR_DIAG_FAILURE);
1487 }
1488
1489 /*
1490 * The buffer's unique ID should not be registered yet, and the given
1491 * unique ID cannot be 0.
1492 */
1493 if ((pBuffer->unique_id != MPR_FW_DIAG_INVALID_UID) ||
1494 (unique_id == MPR_FW_DIAG_INVALID_UID)) {
1495 *return_code = MPR_FW_DIAG_ERROR_INVALID_UID;
1496 return (MPR_DIAG_FAILURE);
1497 }
1498
1499 /*
1500 * If this buffer is already posted as immediate, just change owner.
1501 */
1502 if (pBuffer->immediate && pBuffer->owned_by_firmware &&
1503 (pBuffer->unique_id == MPR_FW_DIAG_INVALID_UID)) {
1504 pBuffer->immediate = FALSE;
1505 pBuffer->unique_id = unique_id;
1506 return (MPR_DIAG_SUCCESS);
1507 }
1508
1509 /*
1510 * Post a new buffer after checking if it's enabled. The DMA buffer
1511 * that is allocated will be contiguous (nsegments = 1).
1512 */
1513 if (!pBuffer->enabled) {
1514 *return_code = MPR_FW_DIAG_ERROR_NO_BUFFER;
1515 return (MPR_DIAG_FAILURE);
1516 }
1517 if (bus_dma_tag_create( sc->mpr_parent_dmat, /* parent */
1518 1, 0, /* algnmnt, boundary */
1519 BUS_SPACE_MAXADDR_32BIT,/* lowaddr */
1520 BUS_SPACE_MAXADDR, /* highaddr */
1521 NULL, NULL, /* filter, filterarg */
1522 buffer_size, /* maxsize */
1523 1, /* nsegments */
1524 buffer_size, /* maxsegsize */
1525 0, /* flags */
1526 NULL, NULL, /* lockfunc, lockarg */
1527 &sc->fw_diag_dmat)) {
1528 mpr_dprint(sc, MPR_ERROR,
1529 "Cannot allocate FW diag buffer DMA tag\n");
1530 *return_code = MPR_FW_DIAG_ERROR_NO_BUFFER;
1531 status = MPR_DIAG_FAILURE;
1532 goto bailout;
1533 }
1534 if (bus_dmamem_alloc(sc->fw_diag_dmat, (void **)&sc->fw_diag_buffer,
1535 BUS_DMA_NOWAIT, &sc->fw_diag_map)) {
1536 mpr_dprint(sc, MPR_ERROR,
1537 "Cannot allocate FW diag buffer memory\n");
1538 *return_code = MPR_FW_DIAG_ERROR_NO_BUFFER;
1539 status = MPR_DIAG_FAILURE;
1540 goto bailout;
1541 }
1542 bzero(sc->fw_diag_buffer, buffer_size);
1543
1544 ctx = malloc(sizeof(*ctx), M_MPR, M_WAITOK | M_ZERO);
1545 if (ctx == NULL) {
1546 device_printf(sc->mpr_dev, "%s: context malloc failed\n",
1547 __func__);
1548 *return_code = MPR_FW_DIAG_ERROR_NO_BUFFER;
1549 status = MPR_DIAG_FAILURE;
1550 goto bailout;
1551 }
1552 ctx->addr = &sc->fw_diag_busaddr;
1553 ctx->buffer_dmat = sc->fw_diag_dmat;
1554 ctx->buffer_dmamap = sc->fw_diag_map;
1555 ctx->softc = sc;
1556 error = bus_dmamap_load(sc->fw_diag_dmat, sc->fw_diag_map,
1557 sc->fw_diag_buffer, buffer_size, mpr_memaddr_wait_cb,
1558 ctx, 0);
1559 if (error == EINPROGRESS) {
1560
1561 /* XXX KDM */
1562 device_printf(sc->mpr_dev, "%s: Deferred bus_dmamap_load\n",
1563 __func__);
1564 /*
1565 * Wait for the load to complete. If we're interrupted,
1566 * bail out.
1567 */
1568 mpr_lock(sc);
1569 if (ctx->completed == 0) {
1570 error = msleep(ctx, &sc->mpr_mtx, PCATCH, "mprwait", 0);
1571 if (error != 0) {
1572 /*
1573 * We got an error from msleep(9). This is
1574 * most likely due to a signal. Tell
1575 * mpr_memaddr_wait_cb() that we've abandoned
1576 * the context, so it needs to clean up when
1577 * it is called.
1578 */
1579 ctx->abandoned = 1;
1580
1581 /* The callback will free this memory */
1582 ctx = NULL;
1583 mpr_unlock(sc);
1584
1585 device_printf(sc->mpr_dev, "Cannot "
1586 "bus_dmamap_load FW diag buffer, error = "
1587 "%d returned from msleep\n", error);
1588 *return_code = MPR_FW_DIAG_ERROR_NO_BUFFER;
1589 status = MPR_DIAG_FAILURE;
1590 goto bailout;
1591 }
1592 }
1593 mpr_unlock(sc);
1594 }
1595
1596 if ((error != 0) || (ctx->error != 0)) {
1597 device_printf(sc->mpr_dev, "Cannot bus_dmamap_load FW diag "
1598 "buffer, %serror = %d\n", error ? "" : "callback ",
1599 error ? error : ctx->error);
1600 *return_code = MPR_FW_DIAG_ERROR_NO_BUFFER;
1601 status = MPR_DIAG_FAILURE;
1602 goto bailout;
1603 }
1604
1605 bus_dmamap_sync(sc->fw_diag_dmat, sc->fw_diag_map, BUS_DMASYNC_PREREAD);
1606
1607 pBuffer->size = buffer_size;
1608
1609 /*
1610 * Copy the given info to the diag buffer and post the buffer.
1611 */
1612 pBuffer->buffer_type = buffer_type;
1613 pBuffer->immediate = FALSE;
1614 if (buffer_type == MPI2_DIAG_BUF_TYPE_TRACE) {
1615 for (i = 0; i < (sizeof (pBuffer->product_specific) / 4);
1616 i++) {
1617 pBuffer->product_specific[i] =
1618 diag_register->ProductSpecific[i];
1619 }
1620 }
1621 pBuffer->extended_type = extended_type;
1622 pBuffer->unique_id = unique_id;
1623 status = mpr_post_fw_diag_buffer(sc, pBuffer, return_code);
1624
1625 bailout:
1626
1627 /*
1628 * In case there was a failure, free the DMA buffer.
1629 */
1630 if (status == MPR_DIAG_FAILURE) {
1631 if (sc->fw_diag_busaddr != 0) {
1632 bus_dmamap_unload(sc->fw_diag_dmat, sc->fw_diag_map);
1633 sc->fw_diag_busaddr = 0;
1634 }
1635 if (sc->fw_diag_buffer != NULL) {
1636 bus_dmamem_free(sc->fw_diag_dmat, sc->fw_diag_buffer,
1637 sc->fw_diag_map);
1638 sc->fw_diag_buffer = NULL;
1639 }
1640 if (sc->fw_diag_dmat != NULL) {
1641 bus_dma_tag_destroy(sc->fw_diag_dmat);
1642 sc->fw_diag_dmat = NULL;
1643 }
1644 }
1645
1646 if (ctx != NULL)
1647 free(ctx, M_MPR);
1648
1649 return (status);
1650 }
1651
1652 static int
mpr_diag_unregister(struct mpr_softc * sc,mpr_fw_diag_unregister_t * diag_unregister,uint32_t * return_code)1653 mpr_diag_unregister(struct mpr_softc *sc,
1654 mpr_fw_diag_unregister_t *diag_unregister, uint32_t *return_code)
1655 {
1656 mpr_fw_diagnostic_buffer_t *pBuffer;
1657 uint8_t i;
1658 uint32_t unique_id;
1659 int status;
1660
1661 unique_id = diag_unregister->UniqueId;
1662
1663 /*
1664 * Get the current buffer and look up the unique ID. The unique ID
1665 * should be there.
1666 */
1667 i = mpr_get_fw_diag_buffer_number(sc, unique_id);
1668 if (i == MPR_FW_DIAGNOSTIC_UID_NOT_FOUND) {
1669 *return_code = MPR_FW_DIAG_ERROR_INVALID_UID;
1670 return (MPR_DIAG_FAILURE);
1671 }
1672
1673 pBuffer = &sc->fw_diag_buffer_list[i];
1674
1675 /*
1676 * Try to release the buffer from FW before freeing it. If release
1677 * fails, don't free the DMA buffer in case FW tries to access it
1678 * later. If buffer is not owned by firmware, can't release it.
1679 */
1680 if (!pBuffer->owned_by_firmware) {
1681 status = MPR_DIAG_SUCCESS;
1682 } else {
1683 status = mpr_release_fw_diag_buffer(sc, pBuffer, return_code,
1684 MPR_FW_DIAG_TYPE_UNREGISTER);
1685 }
1686
1687 /*
1688 * At this point, return the current status no matter what happens with
1689 * the DMA buffer.
1690 */
1691 pBuffer->unique_id = MPR_FW_DIAG_INVALID_UID;
1692 if (status == MPR_DIAG_SUCCESS) {
1693 if (sc->fw_diag_busaddr != 0) {
1694 bus_dmamap_unload(sc->fw_diag_dmat, sc->fw_diag_map);
1695 sc->fw_diag_busaddr = 0;
1696 }
1697 if (sc->fw_diag_buffer != NULL) {
1698 bus_dmamem_free(sc->fw_diag_dmat, sc->fw_diag_buffer,
1699 sc->fw_diag_map);
1700 sc->fw_diag_buffer = NULL;
1701 }
1702 if (sc->fw_diag_dmat != NULL) {
1703 bus_dma_tag_destroy(sc->fw_diag_dmat);
1704 sc->fw_diag_dmat = NULL;
1705 }
1706 }
1707
1708 return (status);
1709 }
1710
1711 static int
mpr_diag_query(struct mpr_softc * sc,mpr_fw_diag_query_t * diag_query,uint32_t * return_code)1712 mpr_diag_query(struct mpr_softc *sc, mpr_fw_diag_query_t *diag_query,
1713 uint32_t *return_code)
1714 {
1715 mpr_fw_diagnostic_buffer_t *pBuffer;
1716 uint8_t i;
1717 uint32_t unique_id;
1718
1719 unique_id = diag_query->UniqueId;
1720
1721 /*
1722 * If ID is valid, query on ID.
1723 * If ID is invalid, query on buffer type.
1724 */
1725 if (unique_id == MPR_FW_DIAG_INVALID_UID) {
1726 i = diag_query->BufferType;
1727 if (i >= MPI2_DIAG_BUF_TYPE_COUNT) {
1728 *return_code = MPR_FW_DIAG_ERROR_INVALID_UID;
1729 return (MPR_DIAG_FAILURE);
1730 }
1731 } else {
1732 i = mpr_get_fw_diag_buffer_number(sc, unique_id);
1733 if (i == MPR_FW_DIAGNOSTIC_UID_NOT_FOUND) {
1734 *return_code = MPR_FW_DIAG_ERROR_INVALID_UID;
1735 return (MPR_DIAG_FAILURE);
1736 }
1737 }
1738
1739 /*
1740 * Fill query structure with the diag buffer info.
1741 */
1742 pBuffer = &sc->fw_diag_buffer_list[i];
1743 diag_query->BufferType = pBuffer->buffer_type;
1744 diag_query->ExtendedType = pBuffer->extended_type;
1745 if (diag_query->BufferType == MPI2_DIAG_BUF_TYPE_TRACE) {
1746 for (i = 0; i < (sizeof(diag_query->ProductSpecific) / 4);
1747 i++) {
1748 diag_query->ProductSpecific[i] =
1749 pBuffer->product_specific[i];
1750 }
1751 }
1752 diag_query->TotalBufferSize = pBuffer->size;
1753 diag_query->DriverAddedBufferSize = 0;
1754 diag_query->UniqueId = pBuffer->unique_id;
1755 diag_query->ApplicationFlags = 0;
1756 diag_query->DiagnosticFlags = 0;
1757
1758 /*
1759 * Set/Clear application flags
1760 */
1761 if (pBuffer->immediate) {
1762 diag_query->ApplicationFlags &= ~MPR_FW_DIAG_FLAG_APP_OWNED;
1763 } else {
1764 diag_query->ApplicationFlags |= MPR_FW_DIAG_FLAG_APP_OWNED;
1765 }
1766 if (pBuffer->valid_data || pBuffer->owned_by_firmware) {
1767 diag_query->ApplicationFlags |= MPR_FW_DIAG_FLAG_BUFFER_VALID;
1768 } else {
1769 diag_query->ApplicationFlags &= ~MPR_FW_DIAG_FLAG_BUFFER_VALID;
1770 }
1771 if (pBuffer->owned_by_firmware) {
1772 diag_query->ApplicationFlags |=
1773 MPR_FW_DIAG_FLAG_FW_BUFFER_ACCESS;
1774 } else {
1775 diag_query->ApplicationFlags &=
1776 ~MPR_FW_DIAG_FLAG_FW_BUFFER_ACCESS;
1777 }
1778
1779 return (MPR_DIAG_SUCCESS);
1780 }
1781
1782 static int
mpr_diag_read_buffer(struct mpr_softc * sc,mpr_diag_read_buffer_t * diag_read_buffer,uint8_t * ioctl_buf,uint32_t * return_code)1783 mpr_diag_read_buffer(struct mpr_softc *sc,
1784 mpr_diag_read_buffer_t *diag_read_buffer, uint8_t *ioctl_buf,
1785 uint32_t *return_code)
1786 {
1787 mpr_fw_diagnostic_buffer_t *pBuffer;
1788 uint8_t i, *pData;
1789 uint32_t unique_id;
1790 int status;
1791
1792 unique_id = diag_read_buffer->UniqueId;
1793
1794 /*
1795 * Get the current buffer and look up the unique ID. The unique ID
1796 * should be there.
1797 */
1798 i = mpr_get_fw_diag_buffer_number(sc, unique_id);
1799 if (i == MPR_FW_DIAGNOSTIC_UID_NOT_FOUND) {
1800 *return_code = MPR_FW_DIAG_ERROR_INVALID_UID;
1801 return (MPR_DIAG_FAILURE);
1802 }
1803
1804 pBuffer = &sc->fw_diag_buffer_list[i];
1805
1806 /*
1807 * Make sure requested read is within limits
1808 */
1809 if (diag_read_buffer->StartingOffset + diag_read_buffer->BytesToRead >
1810 pBuffer->size) {
1811 *return_code = MPR_FW_DIAG_ERROR_INVALID_PARAMETER;
1812 return (MPR_DIAG_FAILURE);
1813 }
1814
1815 /* Sync the DMA map before we copy to userland. */
1816 bus_dmamap_sync(sc->fw_diag_dmat, sc->fw_diag_map,
1817 BUS_DMASYNC_POSTREAD);
1818
1819 /*
1820 * Copy the requested data from DMA to the diag_read_buffer. The DMA
1821 * buffer that was allocated is one contiguous buffer.
1822 */
1823 pData = (uint8_t *)(sc->fw_diag_buffer +
1824 diag_read_buffer->StartingOffset);
1825 if (copyout(pData, ioctl_buf, diag_read_buffer->BytesToRead) != 0)
1826 return (MPR_DIAG_FAILURE);
1827 diag_read_buffer->Status = 0;
1828
1829 /*
1830 * Set or clear the Force Release flag.
1831 */
1832 if (pBuffer->force_release) {
1833 diag_read_buffer->Flags |= MPR_FW_DIAG_FLAG_FORCE_RELEASE;
1834 } else {
1835 diag_read_buffer->Flags &= ~MPR_FW_DIAG_FLAG_FORCE_RELEASE;
1836 }
1837
1838 /*
1839 * If buffer is to be reregistered, make sure it's not already owned by
1840 * firmware first.
1841 */
1842 status = MPR_DIAG_SUCCESS;
1843 if (!pBuffer->owned_by_firmware) {
1844 if (diag_read_buffer->Flags & MPR_FW_DIAG_FLAG_REREGISTER) {
1845 status = mpr_post_fw_diag_buffer(sc, pBuffer,
1846 return_code);
1847 }
1848 }
1849
1850 return (status);
1851 }
1852
1853 static int
mpr_diag_release(struct mpr_softc * sc,mpr_fw_diag_release_t * diag_release,uint32_t * return_code)1854 mpr_diag_release(struct mpr_softc *sc, mpr_fw_diag_release_t *diag_release,
1855 uint32_t *return_code)
1856 {
1857 mpr_fw_diagnostic_buffer_t *pBuffer;
1858 uint8_t i;
1859 uint32_t unique_id;
1860 int status;
1861
1862 unique_id = diag_release->UniqueId;
1863
1864 /*
1865 * Get the current buffer and look up the unique ID. The unique ID
1866 * should be there.
1867 */
1868 i = mpr_get_fw_diag_buffer_number(sc, unique_id);
1869 if (i == MPR_FW_DIAGNOSTIC_UID_NOT_FOUND) {
1870 *return_code = MPR_FW_DIAG_ERROR_INVALID_UID;
1871 return (MPR_DIAG_FAILURE);
1872 }
1873
1874 pBuffer = &sc->fw_diag_buffer_list[i];
1875
1876 /*
1877 * If buffer is not owned by firmware, it's already been released.
1878 */
1879 if (!pBuffer->owned_by_firmware) {
1880 *return_code = MPR_FW_DIAG_ERROR_ALREADY_RELEASED;
1881 return (MPR_DIAG_FAILURE);
1882 }
1883
1884 /*
1885 * Release the buffer.
1886 */
1887 status = mpr_release_fw_diag_buffer(sc, pBuffer, return_code,
1888 MPR_FW_DIAG_TYPE_RELEASE);
1889 return (status);
1890 }
1891
1892 static int
mpr_do_diag_action(struct mpr_softc * sc,uint32_t action,uint8_t * diag_action,uint32_t length,uint32_t * return_code)1893 mpr_do_diag_action(struct mpr_softc *sc, uint32_t action, uint8_t *diag_action,
1894 uint32_t length, uint32_t *return_code)
1895 {
1896 mpr_fw_diag_register_t diag_register;
1897 mpr_fw_diag_unregister_t diag_unregister;
1898 mpr_fw_diag_query_t diag_query;
1899 mpr_diag_read_buffer_t diag_read_buffer;
1900 mpr_fw_diag_release_t diag_release;
1901 int status = MPR_DIAG_SUCCESS;
1902 uint32_t original_return_code;
1903
1904 original_return_code = *return_code;
1905 *return_code = MPR_FW_DIAG_ERROR_SUCCESS;
1906
1907 switch (action) {
1908 case MPR_FW_DIAG_TYPE_REGISTER:
1909 if (!length) {
1910 *return_code =
1911 MPR_FW_DIAG_ERROR_INVALID_PARAMETER;
1912 status = MPR_DIAG_FAILURE;
1913 break;
1914 }
1915 if (copyin(diag_action, &diag_register,
1916 sizeof(diag_register)) != 0)
1917 return (MPR_DIAG_FAILURE);
1918 status = mpr_diag_register(sc, &diag_register,
1919 return_code);
1920 break;
1921
1922 case MPR_FW_DIAG_TYPE_UNREGISTER:
1923 if (length < sizeof(diag_unregister)) {
1924 *return_code =
1925 MPR_FW_DIAG_ERROR_INVALID_PARAMETER;
1926 status = MPR_DIAG_FAILURE;
1927 break;
1928 }
1929 if (copyin(diag_action, &diag_unregister,
1930 sizeof(diag_unregister)) != 0)
1931 return (MPR_DIAG_FAILURE);
1932 status = mpr_diag_unregister(sc, &diag_unregister,
1933 return_code);
1934 break;
1935
1936 case MPR_FW_DIAG_TYPE_QUERY:
1937 if (length < sizeof (diag_query)) {
1938 *return_code =
1939 MPR_FW_DIAG_ERROR_INVALID_PARAMETER;
1940 status = MPR_DIAG_FAILURE;
1941 break;
1942 }
1943 if (copyin(diag_action, &diag_query, sizeof(diag_query))
1944 != 0)
1945 return (MPR_DIAG_FAILURE);
1946 status = mpr_diag_query(sc, &diag_query, return_code);
1947 if (status == MPR_DIAG_SUCCESS)
1948 if (copyout(&diag_query, diag_action,
1949 sizeof (diag_query)) != 0)
1950 return (MPR_DIAG_FAILURE);
1951 break;
1952
1953 case MPR_FW_DIAG_TYPE_READ_BUFFER:
1954 if (copyin(diag_action, &diag_read_buffer,
1955 sizeof(diag_read_buffer)) != 0)
1956 return (MPR_DIAG_FAILURE);
1957 if (length < diag_read_buffer.BytesToRead) {
1958 *return_code =
1959 MPR_FW_DIAG_ERROR_INVALID_PARAMETER;
1960 status = MPR_DIAG_FAILURE;
1961 break;
1962 }
1963 status = mpr_diag_read_buffer(sc, &diag_read_buffer,
1964 PTRIN(diag_read_buffer.PtrDataBuffer),
1965 return_code);
1966 if (status == MPR_DIAG_SUCCESS) {
1967 if (copyout(&diag_read_buffer, diag_action,
1968 sizeof(diag_read_buffer) -
1969 sizeof(diag_read_buffer.PtrDataBuffer)) !=
1970 0)
1971 return (MPR_DIAG_FAILURE);
1972 }
1973 break;
1974
1975 case MPR_FW_DIAG_TYPE_RELEASE:
1976 if (length < sizeof(diag_release)) {
1977 *return_code =
1978 MPR_FW_DIAG_ERROR_INVALID_PARAMETER;
1979 status = MPR_DIAG_FAILURE;
1980 break;
1981 }
1982 if (copyin(diag_action, &diag_release,
1983 sizeof(diag_release)) != 0)
1984 return (MPR_DIAG_FAILURE);
1985 status = mpr_diag_release(sc, &diag_release,
1986 return_code);
1987 break;
1988
1989 default:
1990 *return_code = MPR_FW_DIAG_ERROR_INVALID_PARAMETER;
1991 status = MPR_DIAG_FAILURE;
1992 break;
1993 }
1994
1995 if ((status == MPR_DIAG_FAILURE) &&
1996 (original_return_code == MPR_FW_DIAG_NEW) &&
1997 (*return_code != MPR_FW_DIAG_ERROR_SUCCESS))
1998 status = MPR_DIAG_SUCCESS;
1999
2000 return (status);
2001 }
2002
2003 static int
mpr_user_diag_action(struct mpr_softc * sc,mpr_diag_action_t * data)2004 mpr_user_diag_action(struct mpr_softc *sc, mpr_diag_action_t *data)
2005 {
2006 int status;
2007
2008 /*
2009 * Only allow one diag action at one time.
2010 */
2011 if (sc->mpr_flags & MPR_FLAGS_BUSY) {
2012 mpr_dprint(sc, MPR_USER, "%s: Only one FW diag command "
2013 "allowed at a single time.", __func__);
2014 return (EBUSY);
2015 }
2016 sc->mpr_flags |= MPR_FLAGS_BUSY;
2017
2018 /*
2019 * Send diag action request
2020 */
2021 if (data->Action == MPR_FW_DIAG_TYPE_REGISTER ||
2022 data->Action == MPR_FW_DIAG_TYPE_UNREGISTER ||
2023 data->Action == MPR_FW_DIAG_TYPE_QUERY ||
2024 data->Action == MPR_FW_DIAG_TYPE_READ_BUFFER ||
2025 data->Action == MPR_FW_DIAG_TYPE_RELEASE) {
2026 status = mpr_do_diag_action(sc, data->Action,
2027 PTRIN(data->PtrDiagAction), data->Length,
2028 &data->ReturnCode);
2029 } else
2030 status = EINVAL;
2031
2032 sc->mpr_flags &= ~MPR_FLAGS_BUSY;
2033 return (status);
2034 }
2035
2036 /*
2037 * Copy the event recording mask and the event queue size out. For
2038 * clarification, the event recording mask (events_to_record) is not the same
2039 * thing as the event mask (event_mask). events_to_record has a bit set for
2040 * every event type that is to be recorded by the driver, and event_mask has a
2041 * bit cleared for every event that is allowed into the driver from the IOC.
2042 * They really have nothing to do with each other.
2043 */
2044 static void
mpr_user_event_query(struct mpr_softc * sc,mpr_event_query_t * data)2045 mpr_user_event_query(struct mpr_softc *sc, mpr_event_query_t *data)
2046 {
2047 uint8_t i;
2048
2049 mpr_lock(sc);
2050 data->Entries = MPR_EVENT_QUEUE_SIZE;
2051
2052 for (i = 0; i < 4; i++) {
2053 data->Types[i] = sc->events_to_record[i];
2054 }
2055 mpr_unlock(sc);
2056 }
2057
2058 /*
2059 * Set the driver's event mask according to what's been given. See
2060 * mpr_user_event_query for explanation of the event recording mask and the IOC
2061 * event mask. It's the app's responsibility to enable event logging by setting
2062 * the bits in events_to_record. Initially, no events will be logged.
2063 */
2064 static void
mpr_user_event_enable(struct mpr_softc * sc,mpr_event_enable_t * data)2065 mpr_user_event_enable(struct mpr_softc *sc, mpr_event_enable_t *data)
2066 {
2067 uint8_t i;
2068
2069 mpr_lock(sc);
2070 for (i = 0; i < 4; i++) {
2071 sc->events_to_record[i] = data->Types[i];
2072 }
2073 mpr_unlock(sc);
2074 }
2075
2076 /*
2077 * Copy out the events that have been recorded, up to the max events allowed.
2078 */
2079 static int
mpr_user_event_report(struct mpr_softc * sc,mpr_event_report_t * data)2080 mpr_user_event_report(struct mpr_softc *sc, mpr_event_report_t *data)
2081 {
2082 int status = 0;
2083 uint32_t size;
2084
2085 mpr_lock(sc);
2086 size = data->Size;
2087 if ((size >= sizeof(sc->recorded_events)) && (status == 0)) {
2088 mpr_unlock(sc);
2089 if (copyout((void *)sc->recorded_events,
2090 PTRIN(data->PtrEvents), size) != 0)
2091 status = EFAULT;
2092 mpr_lock(sc);
2093 } else {
2094 /*
2095 * data->Size value is not large enough to copy event data.
2096 */
2097 status = EFAULT;
2098 }
2099
2100 /*
2101 * Change size value to match the number of bytes that were copied.
2102 */
2103 if (status == 0)
2104 data->Size = sizeof(sc->recorded_events);
2105 mpr_unlock(sc);
2106
2107 return (status);
2108 }
2109
2110 /*
2111 * Record events into the driver from the IOC if they are not masked.
2112 */
2113 void
mprsas_record_event(struct mpr_softc * sc,MPI2_EVENT_NOTIFICATION_REPLY * event_reply)2114 mprsas_record_event(struct mpr_softc *sc,
2115 MPI2_EVENT_NOTIFICATION_REPLY *event_reply)
2116 {
2117 uint32_t event;
2118 int i, j;
2119 uint16_t event_data_len;
2120 boolean_t sendAEN = FALSE;
2121
2122 event = event_reply->Event;
2123
2124 /*
2125 * Generate a system event to let anyone who cares know that a
2126 * LOG_ENTRY_ADDED event has occurred. This is sent no matter what the
2127 * event mask is set to.
2128 */
2129 if (event == MPI2_EVENT_LOG_ENTRY_ADDED) {
2130 sendAEN = TRUE;
2131 }
2132
2133 /*
2134 * Record the event only if its corresponding bit is set in
2135 * events_to_record. event_index is the index into recorded_events and
2136 * event_number is the overall number of an event being recorded since
2137 * start-of-day. event_index will roll over; event_number will never
2138 * roll over.
2139 */
2140 i = (uint8_t)(event / 32);
2141 j = (uint8_t)(event % 32);
2142 if ((i < 4) && ((1 << j) & sc->events_to_record[i])) {
2143 i = sc->event_index;
2144 sc->recorded_events[i].Type = event;
2145 sc->recorded_events[i].Number = ++sc->event_number;
2146 bzero(sc->recorded_events[i].Data, MPR_MAX_EVENT_DATA_LENGTH *
2147 4);
2148 event_data_len = event_reply->EventDataLength;
2149
2150 if (event_data_len > 0) {
2151 /*
2152 * Limit data to size in m_event entry
2153 */
2154 if (event_data_len > MPR_MAX_EVENT_DATA_LENGTH) {
2155 event_data_len = MPR_MAX_EVENT_DATA_LENGTH;
2156 }
2157 for (j = 0; j < event_data_len; j++) {
2158 sc->recorded_events[i].Data[j] =
2159 event_reply->EventData[j];
2160 }
2161
2162 /*
2163 * check for index wrap-around
2164 */
2165 if (++i == MPR_EVENT_QUEUE_SIZE) {
2166 i = 0;
2167 }
2168 sc->event_index = (uint8_t)i;
2169
2170 /*
2171 * Set flag to send the event.
2172 */
2173 sendAEN = TRUE;
2174 }
2175 }
2176
2177 /*
2178 * Generate a system event if flag is set to let anyone who cares know
2179 * that an event has occurred.
2180 */
2181 if (sendAEN) {
2182 //SLM-how to send a system event (see kqueue, kevent)
2183 // (void) ddi_log_sysevent(mpt->m_dip, DDI_VENDOR_LSI, "MPT_SAS",
2184 // "SAS", NULL, NULL, DDI_NOSLEEP);
2185 }
2186 }
2187
2188 static int
mpr_user_reg_access(struct mpr_softc * sc,mpr_reg_access_t * data)2189 mpr_user_reg_access(struct mpr_softc *sc, mpr_reg_access_t *data)
2190 {
2191 int status = 0;
2192
2193 switch (data->Command) {
2194 /*
2195 * IO access is not supported.
2196 */
2197 case REG_IO_READ:
2198 case REG_IO_WRITE:
2199 mpr_dprint(sc, MPR_USER, "IO access is not supported. "
2200 "Use memory access.");
2201 status = EINVAL;
2202 break;
2203
2204 case REG_MEM_READ:
2205 data->RegData = mpr_regread(sc, data->RegOffset);
2206 break;
2207
2208 case REG_MEM_WRITE:
2209 mpr_regwrite(sc, data->RegOffset, data->RegData);
2210 break;
2211
2212 default:
2213 status = EINVAL;
2214 break;
2215 }
2216
2217 return (status);
2218 }
2219
2220 static int
mpr_user_btdh(struct mpr_softc * sc,mpr_btdh_mapping_t * data)2221 mpr_user_btdh(struct mpr_softc *sc, mpr_btdh_mapping_t *data)
2222 {
2223 uint8_t bt2dh = FALSE;
2224 uint8_t dh2bt = FALSE;
2225 uint16_t dev_handle, bus, target;
2226
2227 bus = data->Bus;
2228 target = data->TargetID;
2229 dev_handle = data->DevHandle;
2230
2231 /*
2232 * When DevHandle is 0xFFFF and Bus/Target are not 0xFFFF, use Bus/
2233 * Target to get DevHandle. When Bus/Target are 0xFFFF and DevHandle is
2234 * not 0xFFFF, use DevHandle to get Bus/Target. Anything else is
2235 * invalid.
2236 */
2237 if ((bus == 0xFFFF) && (target == 0xFFFF) && (dev_handle != 0xFFFF))
2238 dh2bt = TRUE;
2239 if ((dev_handle == 0xFFFF) && (bus != 0xFFFF) && (target != 0xFFFF))
2240 bt2dh = TRUE;
2241 if (!dh2bt && !bt2dh)
2242 return (EINVAL);
2243
2244 /*
2245 * Only handle bus of 0. Make sure target is within range.
2246 */
2247 if (bt2dh) {
2248 if (bus != 0)
2249 return (EINVAL);
2250
2251 if (target > sc->max_devices) {
2252 mpr_dprint(sc, MPR_XINFO, "Target ID is out of range "
2253 "for Bus/Target to DevHandle mapping.");
2254 return (EINVAL);
2255 }
2256 dev_handle = sc->mapping_table[target].dev_handle;
2257 if (dev_handle)
2258 data->DevHandle = dev_handle;
2259 } else {
2260 bus = 0;
2261 target = mpr_mapping_get_tid_from_handle(sc, dev_handle);
2262 data->Bus = bus;
2263 data->TargetID = target;
2264 }
2265
2266 return (0);
2267 }
2268
2269 static int
mpr_ioctl(struct cdev * dev,u_long cmd,void * arg,int flag,struct thread * td)2270 mpr_ioctl(struct cdev *dev, u_long cmd, void *arg, int flag,
2271 struct thread *td)
2272 {
2273 struct mpr_softc *sc;
2274 struct mpr_cfg_page_req *page_req;
2275 struct mpr_ext_cfg_page_req *ext_page_req;
2276 void *mpr_page;
2277 int error, msleep_ret;
2278
2279 mpr_page = NULL;
2280 sc = dev->si_drv1;
2281 page_req = (void *)arg;
2282 ext_page_req = (void *)arg;
2283
2284 switch (cmd) {
2285 case MPRIO_READ_CFG_HEADER:
2286 mpr_lock(sc);
2287 error = mpr_user_read_cfg_header(sc, page_req);
2288 mpr_unlock(sc);
2289 break;
2290 case MPRIO_READ_CFG_PAGE:
2291 mpr_page = malloc(page_req->len, M_MPRUSER, M_WAITOK | M_ZERO);
2292 error = copyin(page_req->buf, mpr_page,
2293 sizeof(MPI2_CONFIG_PAGE_HEADER));
2294 if (error)
2295 break;
2296 mpr_lock(sc);
2297 error = mpr_user_read_cfg_page(sc, page_req, mpr_page);
2298 mpr_unlock(sc);
2299 if (error)
2300 break;
2301 error = copyout(mpr_page, page_req->buf, page_req->len);
2302 break;
2303 case MPRIO_READ_EXT_CFG_HEADER:
2304 mpr_lock(sc);
2305 error = mpr_user_read_extcfg_header(sc, ext_page_req);
2306 mpr_unlock(sc);
2307 break;
2308 case MPRIO_READ_EXT_CFG_PAGE:
2309 mpr_page = malloc(ext_page_req->len, M_MPRUSER,
2310 M_WAITOK | M_ZERO);
2311 error = copyin(ext_page_req->buf, mpr_page,
2312 sizeof(MPI2_CONFIG_EXTENDED_PAGE_HEADER));
2313 if (error)
2314 break;
2315 mpr_lock(sc);
2316 error = mpr_user_read_extcfg_page(sc, ext_page_req, mpr_page);
2317 mpr_unlock(sc);
2318 if (error)
2319 break;
2320 error = copyout(mpr_page, ext_page_req->buf, ext_page_req->len);
2321 break;
2322 case MPRIO_WRITE_CFG_PAGE:
2323 mpr_page = malloc(page_req->len, M_MPRUSER, M_WAITOK|M_ZERO);
2324 error = copyin(page_req->buf, mpr_page, page_req->len);
2325 if (error)
2326 break;
2327 mpr_lock(sc);
2328 error = mpr_user_write_cfg_page(sc, page_req, mpr_page);
2329 mpr_unlock(sc);
2330 break;
2331 case MPRIO_MPR_COMMAND:
2332 error = mpr_user_command(sc, (struct mpr_usr_command *)arg);
2333 break;
2334 case MPTIOCTL_PASS_THRU:
2335 /*
2336 * The user has requested to pass through a command to be
2337 * executed by the MPT firmware. Call our routine which does
2338 * this. Only allow one passthru IOCTL at one time.
2339 */
2340 error = mpr_user_pass_thru(sc, (mpr_pass_thru_t *)arg);
2341 break;
2342 case MPTIOCTL_GET_ADAPTER_DATA:
2343 /*
2344 * The user has requested to read adapter data. Call our
2345 * routine which does this.
2346 */
2347 error = 0;
2348 mpr_user_get_adapter_data(sc, (mpr_adapter_data_t *)arg);
2349 break;
2350 case MPTIOCTL_GET_PCI_INFO:
2351 /*
2352 * The user has requested to read pci info. Call
2353 * our routine which does this.
2354 */
2355 mpr_lock(sc);
2356 error = 0;
2357 mpr_user_read_pci_info(sc, (mpr_pci_info_t *)arg);
2358 mpr_unlock(sc);
2359 break;
2360 case MPTIOCTL_RESET_ADAPTER:
2361 mpr_lock(sc);
2362 sc->port_enable_complete = 0;
2363 uint32_t reinit_start = time_uptime;
2364 error = mpr_reinit(sc);
2365 /* Sleep for 300 second. */
2366 msleep_ret = msleep(&sc->port_enable_complete, &sc->mpr_mtx,
2367 PRIBIO, "mpr_porten", 300 * hz);
2368 mpr_unlock(sc);
2369 if (msleep_ret)
2370 printf("Port Enable did not complete after Diag "
2371 "Reset msleep error %d.\n", msleep_ret);
2372 else
2373 mpr_dprint(sc, MPR_USER, "Hard Reset with Port Enable "
2374 "completed in %d seconds.\n",
2375 (uint32_t)(time_uptime - reinit_start));
2376 break;
2377 case MPTIOCTL_DIAG_ACTION:
2378 /*
2379 * The user has done a diag buffer action. Call our routine
2380 * which does this. Only allow one diag action at one time.
2381 */
2382 mpr_lock(sc);
2383 error = mpr_user_diag_action(sc, (mpr_diag_action_t *)arg);
2384 mpr_unlock(sc);
2385 break;
2386 case MPTIOCTL_EVENT_QUERY:
2387 /*
2388 * The user has done an event query. Call our routine which does
2389 * this.
2390 */
2391 error = 0;
2392 mpr_user_event_query(sc, (mpr_event_query_t *)arg);
2393 break;
2394 case MPTIOCTL_EVENT_ENABLE:
2395 /*
2396 * The user has done an event enable. Call our routine which
2397 * does this.
2398 */
2399 error = 0;
2400 mpr_user_event_enable(sc, (mpr_event_enable_t *)arg);
2401 break;
2402 case MPTIOCTL_EVENT_REPORT:
2403 /*
2404 * The user has done an event report. Call our routine which
2405 * does this.
2406 */
2407 error = mpr_user_event_report(sc, (mpr_event_report_t *)arg);
2408 break;
2409 case MPTIOCTL_REG_ACCESS:
2410 /*
2411 * The user has requested register access. Call our routine
2412 * which does this.
2413 */
2414 mpr_lock(sc);
2415 error = mpr_user_reg_access(sc, (mpr_reg_access_t *)arg);
2416 mpr_unlock(sc);
2417 break;
2418 case MPTIOCTL_BTDH_MAPPING:
2419 /*
2420 * The user has requested to translate a bus/target to a
2421 * DevHandle or a DevHandle to a bus/target. Call our routine
2422 * which does this.
2423 */
2424 error = mpr_user_btdh(sc, (mpr_btdh_mapping_t *)arg);
2425 break;
2426 default:
2427 error = ENOIOCTL;
2428 break;
2429 }
2430
2431 if (mpr_page != NULL)
2432 free(mpr_page, M_MPRUSER);
2433
2434 return (error);
2435 }
2436
2437 #ifdef COMPAT_FREEBSD32
2438
2439 struct mpr_cfg_page_req32 {
2440 MPI2_CONFIG_PAGE_HEADER header;
2441 uint32_t page_address;
2442 uint32_t buf;
2443 int len;
2444 uint16_t ioc_status;
2445 };
2446
2447 struct mpr_ext_cfg_page_req32 {
2448 MPI2_CONFIG_EXTENDED_PAGE_HEADER header;
2449 uint32_t page_address;
2450 uint32_t buf;
2451 int len;
2452 uint16_t ioc_status;
2453 };
2454
2455 struct mpr_raid_action32 {
2456 uint8_t action;
2457 uint8_t volume_bus;
2458 uint8_t volume_id;
2459 uint8_t phys_disk_num;
2460 uint32_t action_data_word;
2461 uint32_t buf;
2462 int len;
2463 uint32_t volume_status;
2464 uint32_t action_data[4];
2465 uint16_t action_status;
2466 uint16_t ioc_status;
2467 uint8_t write;
2468 };
2469
2470 struct mpr_usr_command32 {
2471 uint32_t req;
2472 uint32_t req_len;
2473 uint32_t rpl;
2474 uint32_t rpl_len;
2475 uint32_t buf;
2476 int len;
2477 uint32_t flags;
2478 };
2479
2480 #define MPRIO_READ_CFG_HEADER32 _IOWR('M', 200, struct mpr_cfg_page_req32)
2481 #define MPRIO_READ_CFG_PAGE32 _IOWR('M', 201, struct mpr_cfg_page_req32)
2482 #define MPRIO_READ_EXT_CFG_HEADER32 _IOWR('M', 202, struct mpr_ext_cfg_page_req32)
2483 #define MPRIO_READ_EXT_CFG_PAGE32 _IOWR('M', 203, struct mpr_ext_cfg_page_req32)
2484 #define MPRIO_WRITE_CFG_PAGE32 _IOWR('M', 204, struct mpr_cfg_page_req32)
2485 #define MPRIO_RAID_ACTION32 _IOWR('M', 205, struct mpr_raid_action32)
2486 #define MPRIO_MPR_COMMAND32 _IOWR('M', 210, struct mpr_usr_command32)
2487
2488 static int
mpr_ioctl32(struct cdev * dev,u_long cmd32,void * _arg,int flag,struct thread * td)2489 mpr_ioctl32(struct cdev *dev, u_long cmd32, void *_arg, int flag,
2490 struct thread *td)
2491 {
2492 struct mpr_cfg_page_req32 *page32 = _arg;
2493 struct mpr_ext_cfg_page_req32 *ext32 = _arg;
2494 struct mpr_raid_action32 *raid32 = _arg;
2495 struct mpr_usr_command32 *user32 = _arg;
2496 union {
2497 struct mpr_cfg_page_req page;
2498 struct mpr_ext_cfg_page_req ext;
2499 struct mpr_raid_action raid;
2500 struct mpr_usr_command user;
2501 } arg;
2502 u_long cmd;
2503 int error;
2504
2505 switch (cmd32) {
2506 case MPRIO_READ_CFG_HEADER32:
2507 case MPRIO_READ_CFG_PAGE32:
2508 case MPRIO_WRITE_CFG_PAGE32:
2509 if (cmd32 == MPRIO_READ_CFG_HEADER32)
2510 cmd = MPRIO_READ_CFG_HEADER;
2511 else if (cmd32 == MPRIO_READ_CFG_PAGE32)
2512 cmd = MPRIO_READ_CFG_PAGE;
2513 else
2514 cmd = MPRIO_WRITE_CFG_PAGE;
2515 CP(*page32, arg.page, header);
2516 CP(*page32, arg.page, page_address);
2517 PTRIN_CP(*page32, arg.page, buf);
2518 CP(*page32, arg.page, len);
2519 CP(*page32, arg.page, ioc_status);
2520 break;
2521
2522 case MPRIO_READ_EXT_CFG_HEADER32:
2523 case MPRIO_READ_EXT_CFG_PAGE32:
2524 if (cmd32 == MPRIO_READ_EXT_CFG_HEADER32)
2525 cmd = MPRIO_READ_EXT_CFG_HEADER;
2526 else
2527 cmd = MPRIO_READ_EXT_CFG_PAGE;
2528 CP(*ext32, arg.ext, header);
2529 CP(*ext32, arg.ext, page_address);
2530 PTRIN_CP(*ext32, arg.ext, buf);
2531 CP(*ext32, arg.ext, len);
2532 CP(*ext32, arg.ext, ioc_status);
2533 break;
2534
2535 case MPRIO_RAID_ACTION32:
2536 cmd = MPRIO_RAID_ACTION;
2537 CP(*raid32, arg.raid, action);
2538 CP(*raid32, arg.raid, volume_bus);
2539 CP(*raid32, arg.raid, volume_id);
2540 CP(*raid32, arg.raid, phys_disk_num);
2541 CP(*raid32, arg.raid, action_data_word);
2542 PTRIN_CP(*raid32, arg.raid, buf);
2543 CP(*raid32, arg.raid, len);
2544 CP(*raid32, arg.raid, volume_status);
2545 bcopy(raid32->action_data, arg.raid.action_data,
2546 sizeof arg.raid.action_data);
2547 CP(*raid32, arg.raid, ioc_status);
2548 CP(*raid32, arg.raid, write);
2549 break;
2550
2551 case MPRIO_MPR_COMMAND32:
2552 cmd = MPRIO_MPR_COMMAND;
2553 PTRIN_CP(*user32, arg.user, req);
2554 CP(*user32, arg.user, req_len);
2555 PTRIN_CP(*user32, arg.user, rpl);
2556 CP(*user32, arg.user, rpl_len);
2557 PTRIN_CP(*user32, arg.user, buf);
2558 CP(*user32, arg.user, len);
2559 CP(*user32, arg.user, flags);
2560 break;
2561 default:
2562 return (ENOIOCTL);
2563 }
2564
2565 error = mpr_ioctl(dev, cmd, &arg, flag, td);
2566 if (error == 0 && (cmd32 & IOC_OUT) != 0) {
2567 switch (cmd32) {
2568 case MPRIO_READ_CFG_HEADER32:
2569 case MPRIO_READ_CFG_PAGE32:
2570 case MPRIO_WRITE_CFG_PAGE32:
2571 CP(arg.page, *page32, header);
2572 CP(arg.page, *page32, page_address);
2573 PTROUT_CP(arg.page, *page32, buf);
2574 CP(arg.page, *page32, len);
2575 CP(arg.page, *page32, ioc_status);
2576 break;
2577
2578 case MPRIO_READ_EXT_CFG_HEADER32:
2579 case MPRIO_READ_EXT_CFG_PAGE32:
2580 CP(arg.ext, *ext32, header);
2581 CP(arg.ext, *ext32, page_address);
2582 PTROUT_CP(arg.ext, *ext32, buf);
2583 CP(arg.ext, *ext32, len);
2584 CP(arg.ext, *ext32, ioc_status);
2585 break;
2586
2587 case MPRIO_RAID_ACTION32:
2588 CP(arg.raid, *raid32, action);
2589 CP(arg.raid, *raid32, volume_bus);
2590 CP(arg.raid, *raid32, volume_id);
2591 CP(arg.raid, *raid32, phys_disk_num);
2592 CP(arg.raid, *raid32, action_data_word);
2593 PTROUT_CP(arg.raid, *raid32, buf);
2594 CP(arg.raid, *raid32, len);
2595 CP(arg.raid, *raid32, volume_status);
2596 bcopy(arg.raid.action_data, raid32->action_data,
2597 sizeof arg.raid.action_data);
2598 CP(arg.raid, *raid32, ioc_status);
2599 CP(arg.raid, *raid32, write);
2600 break;
2601
2602 case MPRIO_MPR_COMMAND32:
2603 PTROUT_CP(arg.user, *user32, req);
2604 CP(arg.user, *user32, req_len);
2605 PTROUT_CP(arg.user, *user32, rpl);
2606 CP(arg.user, *user32, rpl_len);
2607 PTROUT_CP(arg.user, *user32, buf);
2608 CP(arg.user, *user32, len);
2609 CP(arg.user, *user32, flags);
2610 break;
2611 }
2612 }
2613
2614 return (error);
2615 }
2616 #endif /* COMPAT_FREEBSD32 */
2617
2618 static int
mpr_ioctl_devsw(struct cdev * dev,u_long com,caddr_t arg,int flag,struct thread * td)2619 mpr_ioctl_devsw(struct cdev *dev, u_long com, caddr_t arg, int flag,
2620 struct thread *td)
2621 {
2622 #ifdef COMPAT_FREEBSD32
2623 if (SV_CURPROC_FLAG(SV_ILP32))
2624 return (mpr_ioctl32(dev, com, arg, flag, td));
2625 #endif
2626 return (mpr_ioctl(dev, com, arg, flag, td));
2627 }
2628