1 /*-
2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3 *
4 * Copyright (c) 2000, 2001 Michael Smith
5 * Copyright (c) 2000 BSDi
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 *
29 * $FreeBSD$
30 */
31
32 #include <sys/param.h>
33 #include <sys/systm.h>
34 #include <sys/malloc.h>
35 #include <sys/kernel.h>
36 #include <sys/bus.h>
37 #include <sys/conf.h>
38 #include <sys/ctype.h>
39 #include <sys/ioccom.h>
40 #include <sys/stat.h>
41
42 #include <machine/bus.h>
43 #include <machine/resource.h>
44 #include <sys/rman.h>
45
46 #include <cam/cam.h>
47 #include <cam/cam_ccb.h>
48 #include <cam/cam_periph.h>
49 #include <cam/cam_sim.h>
50 #include <cam/cam_xpt_sim.h>
51 #include <cam/scsi/scsi_all.h>
52 #include <cam/scsi/scsi_message.h>
53
54 #include <dev/pci/pcireg.h>
55 #include <dev/pci/pcivar.h>
56
57 #include <dev/mly/mlyreg.h>
58 #include <dev/mly/mlyio.h>
59 #include <dev/mly/mlyvar.h>
60 #include <dev/mly/mly_tables.h>
61
62 static int mly_probe(device_t dev);
63 static int mly_attach(device_t dev);
64 static int mly_pci_attach(struct mly_softc *sc);
65 static int mly_detach(device_t dev);
66 static int mly_shutdown(device_t dev);
67 static void mly_intr(void *arg);
68
69 static int mly_sg_map(struct mly_softc *sc);
70 static void mly_sg_map_helper(void *arg, bus_dma_segment_t *segs, int nseg, int error);
71 static int mly_mmbox_map(struct mly_softc *sc);
72 static void mly_mmbox_map_helper(void *arg, bus_dma_segment_t *segs, int nseg, int error);
73 static void mly_free(struct mly_softc *sc);
74
75 static int mly_get_controllerinfo(struct mly_softc *sc);
76 static void mly_scan_devices(struct mly_softc *sc);
77 static void mly_rescan_btl(struct mly_softc *sc, int bus, int target);
78 static void mly_complete_rescan(struct mly_command *mc);
79 static int mly_get_eventstatus(struct mly_softc *sc);
80 static int mly_enable_mmbox(struct mly_softc *sc);
81 static int mly_flush(struct mly_softc *sc);
82 static int mly_ioctl(struct mly_softc *sc, struct mly_command_ioctl *ioctl, void **data,
83 size_t datasize, u_int8_t *status, void *sense_buffer, size_t *sense_length);
84 static void mly_check_event(struct mly_softc *sc);
85 static void mly_fetch_event(struct mly_softc *sc);
86 static void mly_complete_event(struct mly_command *mc);
87 static void mly_process_event(struct mly_softc *sc, struct mly_event *me);
88 static void mly_periodic(void *data);
89
90 static int mly_immediate_command(struct mly_command *mc);
91 static int mly_start(struct mly_command *mc);
92 static void mly_done(struct mly_softc *sc);
93 static void mly_complete(struct mly_softc *sc);
94 static void mly_complete_handler(void *context, int pending);
95
96 static int mly_alloc_command(struct mly_softc *sc, struct mly_command **mcp);
97 static void mly_release_command(struct mly_command *mc);
98 static void mly_alloc_commands_map(void *arg, bus_dma_segment_t *segs, int nseg, int error);
99 static int mly_alloc_commands(struct mly_softc *sc);
100 static void mly_release_commands(struct mly_softc *sc);
101 static void mly_map_command(struct mly_command *mc);
102 static void mly_unmap_command(struct mly_command *mc);
103
104 static int mly_cam_attach(struct mly_softc *sc);
105 static void mly_cam_detach(struct mly_softc *sc);
106 static void mly_cam_rescan_btl(struct mly_softc *sc, int bus, int target);
107 static void mly_cam_action(struct cam_sim *sim, union ccb *ccb);
108 static int mly_cam_action_io(struct cam_sim *sim, struct ccb_scsiio *csio);
109 static void mly_cam_poll(struct cam_sim *sim);
110 static void mly_cam_complete(struct mly_command *mc);
111 static struct cam_periph *mly_find_periph(struct mly_softc *sc, int bus, int target);
112 static int mly_name_device(struct mly_softc *sc, int bus, int target);
113
114 static int mly_fwhandshake(struct mly_softc *sc);
115
116 static void mly_describe_controller(struct mly_softc *sc);
117 #ifdef MLY_DEBUG
118 static void mly_printstate(struct mly_softc *sc);
119 static void mly_print_command(struct mly_command *mc);
120 static void mly_print_packet(struct mly_command *mc);
121 static void mly_panic(struct mly_softc *sc, char *reason);
122 static void mly_timeout(void *arg);
123 #endif
124 void mly_print_controller(int controller);
125
126
127 static d_open_t mly_user_open;
128 static d_close_t mly_user_close;
129 static d_ioctl_t mly_user_ioctl;
130 static int mly_user_command(struct mly_softc *sc, struct mly_user_command *uc);
131 static int mly_user_health(struct mly_softc *sc, struct mly_user_health *uh);
132
133 #define MLY_CMD_TIMEOUT 20
134
135 static device_method_t mly_methods[] = {
136 /* Device interface */
137 DEVMETHOD(device_probe, mly_probe),
138 DEVMETHOD(device_attach, mly_attach),
139 DEVMETHOD(device_detach, mly_detach),
140 DEVMETHOD(device_shutdown, mly_shutdown),
141 { 0, 0 }
142 };
143
144 static driver_t mly_pci_driver = {
145 "mly",
146 mly_methods,
147 sizeof(struct mly_softc)
148 };
149
150 static devclass_t mly_devclass;
151 DRIVER_MODULE(mly, pci, mly_pci_driver, mly_devclass, 0, 0);
152 MODULE_DEPEND(mly, pci, 1, 1, 1);
153 MODULE_DEPEND(mly, cam, 1, 1, 1);
154
155 static struct cdevsw mly_cdevsw = {
156 .d_version = D_VERSION,
157 .d_open = mly_user_open,
158 .d_close = mly_user_close,
159 .d_ioctl = mly_user_ioctl,
160 .d_name = "mly",
161 };
162
163 /********************************************************************************
164 ********************************************************************************
165 Device Interface
166 ********************************************************************************
167 ********************************************************************************/
168
169 static struct mly_ident
170 {
171 u_int16_t vendor;
172 u_int16_t device;
173 u_int16_t subvendor;
174 u_int16_t subdevice;
175 int hwif;
176 char *desc;
177 } mly_identifiers[] = {
178 {0x1069, 0xba56, 0x1069, 0x0040, MLY_HWIF_STRONGARM, "Mylex eXtremeRAID 2000"},
179 {0x1069, 0xba56, 0x1069, 0x0030, MLY_HWIF_STRONGARM, "Mylex eXtremeRAID 3000"},
180 {0x1069, 0x0050, 0x1069, 0x0050, MLY_HWIF_I960RX, "Mylex AcceleRAID 352"},
181 {0x1069, 0x0050, 0x1069, 0x0052, MLY_HWIF_I960RX, "Mylex AcceleRAID 170"},
182 {0x1069, 0x0050, 0x1069, 0x0054, MLY_HWIF_I960RX, "Mylex AcceleRAID 160"},
183 {0, 0, 0, 0, 0, 0}
184 };
185
186 /********************************************************************************
187 * Compare the provided PCI device with the list we support.
188 */
189 static int
mly_probe(device_t dev)190 mly_probe(device_t dev)
191 {
192 struct mly_ident *m;
193
194 debug_called(1);
195
196 for (m = mly_identifiers; m->vendor != 0; m++) {
197 if ((m->vendor == pci_get_vendor(dev)) &&
198 (m->device == pci_get_device(dev)) &&
199 ((m->subvendor == 0) || ((m->subvendor == pci_get_subvendor(dev)) &&
200 (m->subdevice == pci_get_subdevice(dev))))) {
201
202 device_set_desc(dev, m->desc);
203 return(BUS_PROBE_DEFAULT); /* allow room to be overridden */
204 }
205 }
206 return(ENXIO);
207 }
208
209 /********************************************************************************
210 * Initialise the controller and softc
211 */
212 static int
mly_attach(device_t dev)213 mly_attach(device_t dev)
214 {
215 struct mly_softc *sc = device_get_softc(dev);
216 int error;
217
218 debug_called(1);
219
220 sc->mly_dev = dev;
221 mtx_init(&sc->mly_lock, "mly", NULL, MTX_DEF);
222 callout_init_mtx(&sc->mly_periodic, &sc->mly_lock, 0);
223
224 #ifdef MLY_DEBUG
225 callout_init_mtx(&sc->mly_timeout, &sc->mly_lock, 0);
226 if (device_get_unit(sc->mly_dev) == 0)
227 mly_softc0 = sc;
228 #endif
229
230 /*
231 * Do PCI-specific initialisation.
232 */
233 if ((error = mly_pci_attach(sc)) != 0)
234 goto out;
235
236 /*
237 * Initialise per-controller queues.
238 */
239 mly_initq_free(sc);
240 mly_initq_busy(sc);
241 mly_initq_complete(sc);
242
243 /*
244 * Initialise command-completion task.
245 */
246 TASK_INIT(&sc->mly_task_complete, 0, mly_complete_handler, sc);
247
248 /* disable interrupts before we start talking to the controller */
249 MLY_MASK_INTERRUPTS(sc);
250
251 /*
252 * Wait for the controller to come ready, handshake with the firmware if required.
253 * This is typically only necessary on platforms where the controller BIOS does not
254 * run.
255 */
256 if ((error = mly_fwhandshake(sc)))
257 goto out;
258
259 /*
260 * Allocate initial command buffers.
261 */
262 if ((error = mly_alloc_commands(sc)))
263 goto out;
264
265 /*
266 * Obtain controller feature information
267 */
268 MLY_LOCK(sc);
269 error = mly_get_controllerinfo(sc);
270 MLY_UNLOCK(sc);
271 if (error)
272 goto out;
273
274 /*
275 * Reallocate command buffers now we know how many we want.
276 */
277 mly_release_commands(sc);
278 if ((error = mly_alloc_commands(sc)))
279 goto out;
280
281 /*
282 * Get the current event counter for health purposes, populate the initial
283 * health status buffer.
284 */
285 MLY_LOCK(sc);
286 error = mly_get_eventstatus(sc);
287
288 /*
289 * Enable memory-mailbox mode.
290 */
291 if (error == 0)
292 error = mly_enable_mmbox(sc);
293 MLY_UNLOCK(sc);
294 if (error)
295 goto out;
296
297 /*
298 * Attach to CAM.
299 */
300 if ((error = mly_cam_attach(sc)))
301 goto out;
302
303 /*
304 * Print a little information about the controller
305 */
306 mly_describe_controller(sc);
307
308 /*
309 * Mark all attached devices for rescan.
310 */
311 MLY_LOCK(sc);
312 mly_scan_devices(sc);
313
314 /*
315 * Instigate the first status poll immediately. Rescan completions won't
316 * happen until interrupts are enabled, which should still be before
317 * the SCSI subsystem gets to us, courtesy of the "SCSI settling delay".
318 */
319 mly_periodic((void *)sc);
320 MLY_UNLOCK(sc);
321
322 /*
323 * Create the control device.
324 */
325 sc->mly_dev_t = make_dev(&mly_cdevsw, 0, UID_ROOT, GID_OPERATOR,
326 S_IRUSR | S_IWUSR, "mly%d", device_get_unit(sc->mly_dev));
327 sc->mly_dev_t->si_drv1 = sc;
328
329 /* enable interrupts now */
330 MLY_UNMASK_INTERRUPTS(sc);
331
332 #ifdef MLY_DEBUG
333 callout_reset(&sc->mly_timeout, MLY_CMD_TIMEOUT * hz, mly_timeout, sc);
334 #endif
335
336 out:
337 if (error != 0)
338 mly_free(sc);
339 return(error);
340 }
341
342 /********************************************************************************
343 * Perform PCI-specific initialisation.
344 */
345 static int
mly_pci_attach(struct mly_softc * sc)346 mly_pci_attach(struct mly_softc *sc)
347 {
348 int i, error;
349
350 debug_called(1);
351
352 /* assume failure is 'not configured' */
353 error = ENXIO;
354
355 /*
356 * Verify that the adapter is correctly set up in PCI space.
357 */
358 pci_enable_busmaster(sc->mly_dev);
359
360 /*
361 * Allocate the PCI register window.
362 */
363 sc->mly_regs_rid = PCIR_BAR(0); /* first base address register */
364 if ((sc->mly_regs_resource = bus_alloc_resource_any(sc->mly_dev,
365 SYS_RES_MEMORY, &sc->mly_regs_rid, RF_ACTIVE)) == NULL) {
366 mly_printf(sc, "can't allocate register window\n");
367 goto fail;
368 }
369
370 /*
371 * Allocate and connect our interrupt.
372 */
373 sc->mly_irq_rid = 0;
374 if ((sc->mly_irq = bus_alloc_resource_any(sc->mly_dev, SYS_RES_IRQ,
375 &sc->mly_irq_rid, RF_SHAREABLE | RF_ACTIVE)) == NULL) {
376 mly_printf(sc, "can't allocate interrupt\n");
377 goto fail;
378 }
379 if (bus_setup_intr(sc->mly_dev, sc->mly_irq, INTR_TYPE_CAM | INTR_ENTROPY | INTR_MPSAFE, NULL, mly_intr, sc, &sc->mly_intr)) {
380 mly_printf(sc, "can't set up interrupt\n");
381 goto fail;
382 }
383
384 /* assume failure is 'out of memory' */
385 error = ENOMEM;
386
387 /*
388 * Allocate the parent bus DMA tag appropriate for our PCI interface.
389 *
390 * Note that all of these controllers are 64-bit capable.
391 */
392 if (bus_dma_tag_create(bus_get_dma_tag(sc->mly_dev),/* PCI parent */
393 1, 0, /* alignment, boundary */
394 BUS_SPACE_MAXADDR_32BIT, /* lowaddr */
395 BUS_SPACE_MAXADDR, /* highaddr */
396 NULL, NULL, /* filter, filterarg */
397 BUS_SPACE_MAXSIZE_32BIT, /* maxsize */
398 BUS_SPACE_UNRESTRICTED, /* nsegments */
399 BUS_SPACE_MAXSIZE_32BIT, /* maxsegsize */
400 BUS_DMA_ALLOCNOW, /* flags */
401 NULL, /* lockfunc */
402 NULL, /* lockarg */
403 &sc->mly_parent_dmat)) {
404 mly_printf(sc, "can't allocate parent DMA tag\n");
405 goto fail;
406 }
407
408 /*
409 * Create DMA tag for mapping buffers into controller-addressable space.
410 */
411 if (bus_dma_tag_create(sc->mly_parent_dmat, /* parent */
412 1, 0, /* alignment, boundary */
413 BUS_SPACE_MAXADDR, /* lowaddr */
414 BUS_SPACE_MAXADDR, /* highaddr */
415 NULL, NULL, /* filter, filterarg */
416 DFLTPHYS, /* maxsize */
417 MLY_MAX_SGENTRIES, /* nsegments */
418 BUS_SPACE_MAXSIZE_32BIT, /* maxsegsize */
419 0, /* flags */
420 busdma_lock_mutex, /* lockfunc */
421 &sc->mly_lock, /* lockarg */
422 &sc->mly_buffer_dmat)) {
423 mly_printf(sc, "can't allocate buffer DMA tag\n");
424 goto fail;
425 }
426
427 /*
428 * Initialise the DMA tag for command packets.
429 */
430 if (bus_dma_tag_create(sc->mly_parent_dmat, /* parent */
431 1, 0, /* alignment, boundary */
432 BUS_SPACE_MAXADDR, /* lowaddr */
433 BUS_SPACE_MAXADDR, /* highaddr */
434 NULL, NULL, /* filter, filterarg */
435 sizeof(union mly_command_packet) * MLY_MAX_COMMANDS, 1, /* maxsize, nsegments */
436 BUS_SPACE_MAXSIZE_32BIT, /* maxsegsize */
437 BUS_DMA_ALLOCNOW, /* flags */
438 NULL, NULL, /* lockfunc, lockarg */
439 &sc->mly_packet_dmat)) {
440 mly_printf(sc, "can't allocate command packet DMA tag\n");
441 goto fail;
442 }
443
444 /*
445 * Detect the hardware interface version
446 */
447 for (i = 0; mly_identifiers[i].vendor != 0; i++) {
448 if ((mly_identifiers[i].vendor == pci_get_vendor(sc->mly_dev)) &&
449 (mly_identifiers[i].device == pci_get_device(sc->mly_dev))) {
450 sc->mly_hwif = mly_identifiers[i].hwif;
451 switch(sc->mly_hwif) {
452 case MLY_HWIF_I960RX:
453 debug(1, "set hardware up for i960RX");
454 sc->mly_doorbell_true = 0x00;
455 sc->mly_command_mailbox = MLY_I960RX_COMMAND_MAILBOX;
456 sc->mly_status_mailbox = MLY_I960RX_STATUS_MAILBOX;
457 sc->mly_idbr = MLY_I960RX_IDBR;
458 sc->mly_odbr = MLY_I960RX_ODBR;
459 sc->mly_error_status = MLY_I960RX_ERROR_STATUS;
460 sc->mly_interrupt_status = MLY_I960RX_INTERRUPT_STATUS;
461 sc->mly_interrupt_mask = MLY_I960RX_INTERRUPT_MASK;
462 break;
463 case MLY_HWIF_STRONGARM:
464 debug(1, "set hardware up for StrongARM");
465 sc->mly_doorbell_true = 0xff; /* doorbell 'true' is 0 */
466 sc->mly_command_mailbox = MLY_STRONGARM_COMMAND_MAILBOX;
467 sc->mly_status_mailbox = MLY_STRONGARM_STATUS_MAILBOX;
468 sc->mly_idbr = MLY_STRONGARM_IDBR;
469 sc->mly_odbr = MLY_STRONGARM_ODBR;
470 sc->mly_error_status = MLY_STRONGARM_ERROR_STATUS;
471 sc->mly_interrupt_status = MLY_STRONGARM_INTERRUPT_STATUS;
472 sc->mly_interrupt_mask = MLY_STRONGARM_INTERRUPT_MASK;
473 break;
474 }
475 break;
476 }
477 }
478
479 /*
480 * Create the scatter/gather mappings.
481 */
482 if ((error = mly_sg_map(sc)))
483 goto fail;
484
485 /*
486 * Allocate and map the memory mailbox
487 */
488 if ((error = mly_mmbox_map(sc)))
489 goto fail;
490
491 error = 0;
492
493 fail:
494 return(error);
495 }
496
497 /********************************************************************************
498 * Shut the controller down and detach all our resources.
499 */
500 static int
mly_detach(device_t dev)501 mly_detach(device_t dev)
502 {
503 int error;
504
505 if ((error = mly_shutdown(dev)) != 0)
506 return(error);
507
508 mly_free(device_get_softc(dev));
509 return(0);
510 }
511
512 /********************************************************************************
513 * Bring the controller to a state where it can be safely left alone.
514 *
515 * Note that it should not be necessary to wait for any outstanding commands,
516 * as they should be completed prior to calling here.
517 *
518 * XXX this applies for I/O, but not status polls; we should beware of
519 * the case where a status command is running while we detach.
520 */
521 static int
mly_shutdown(device_t dev)522 mly_shutdown(device_t dev)
523 {
524 struct mly_softc *sc = device_get_softc(dev);
525
526 debug_called(1);
527
528 MLY_LOCK(sc);
529 if (sc->mly_state & MLY_STATE_OPEN) {
530 MLY_UNLOCK(sc);
531 return(EBUSY);
532 }
533
534 /* kill the periodic event */
535 callout_stop(&sc->mly_periodic);
536 #ifdef MLY_DEBUG
537 callout_stop(&sc->mly_timeout);
538 #endif
539
540 /* flush controller */
541 mly_printf(sc, "flushing cache...");
542 printf("%s\n", mly_flush(sc) ? "failed" : "done");
543
544 MLY_MASK_INTERRUPTS(sc);
545 MLY_UNLOCK(sc);
546
547 return(0);
548 }
549
550 /*******************************************************************************
551 * Take an interrupt, or be poked by other code to look for interrupt-worthy
552 * status.
553 */
554 static void
mly_intr(void * arg)555 mly_intr(void *arg)
556 {
557 struct mly_softc *sc = (struct mly_softc *)arg;
558
559 debug_called(2);
560
561 MLY_LOCK(sc);
562 mly_done(sc);
563 MLY_UNLOCK(sc);
564 };
565
566 /********************************************************************************
567 ********************************************************************************
568 Bus-dependant Resource Management
569 ********************************************************************************
570 ********************************************************************************/
571
572 /********************************************************************************
573 * Allocate memory for the scatter/gather tables
574 */
575 static int
mly_sg_map(struct mly_softc * sc)576 mly_sg_map(struct mly_softc *sc)
577 {
578 size_t segsize;
579
580 debug_called(1);
581
582 /*
583 * Create a single tag describing a region large enough to hold all of
584 * the s/g lists we will need.
585 */
586 segsize = sizeof(struct mly_sg_entry) * MLY_MAX_COMMANDS *MLY_MAX_SGENTRIES;
587 if (bus_dma_tag_create(sc->mly_parent_dmat, /* parent */
588 1, 0, /* alignment,boundary */
589 BUS_SPACE_MAXADDR, /* lowaddr */
590 BUS_SPACE_MAXADDR, /* highaddr */
591 NULL, NULL, /* filter, filterarg */
592 segsize, 1, /* maxsize, nsegments */
593 BUS_SPACE_MAXSIZE_32BIT, /* maxsegsize */
594 BUS_DMA_ALLOCNOW, /* flags */
595 NULL, NULL, /* lockfunc, lockarg */
596 &sc->mly_sg_dmat)) {
597 mly_printf(sc, "can't allocate scatter/gather DMA tag\n");
598 return(ENOMEM);
599 }
600
601 /*
602 * Allocate enough s/g maps for all commands and permanently map them into
603 * controller-visible space.
604 *
605 * XXX this assumes we can get enough space for all the s/g maps in one
606 * contiguous slab.
607 */
608 if (bus_dmamem_alloc(sc->mly_sg_dmat, (void **)&sc->mly_sg_table,
609 BUS_DMA_NOWAIT, &sc->mly_sg_dmamap)) {
610 mly_printf(sc, "can't allocate s/g table\n");
611 return(ENOMEM);
612 }
613 if (bus_dmamap_load(sc->mly_sg_dmat, sc->mly_sg_dmamap, sc->mly_sg_table,
614 segsize, mly_sg_map_helper, sc, BUS_DMA_NOWAIT) != 0)
615 return (ENOMEM);
616 return(0);
617 }
618
619 /********************************************************************************
620 * Save the physical address of the base of the s/g table.
621 */
622 static void
mly_sg_map_helper(void * arg,bus_dma_segment_t * segs,int nseg,int error)623 mly_sg_map_helper(void *arg, bus_dma_segment_t *segs, int nseg, int error)
624 {
625 struct mly_softc *sc = (struct mly_softc *)arg;
626
627 debug_called(1);
628
629 /* save base of s/g table's address in bus space */
630 sc->mly_sg_busaddr = segs->ds_addr;
631 }
632
633 /********************************************************************************
634 * Allocate memory for the memory-mailbox interface
635 */
636 static int
mly_mmbox_map(struct mly_softc * sc)637 mly_mmbox_map(struct mly_softc *sc)
638 {
639
640 /*
641 * Create a DMA tag for a single contiguous region large enough for the
642 * memory mailbox structure.
643 */
644 if (bus_dma_tag_create(sc->mly_parent_dmat, /* parent */
645 1, 0, /* alignment,boundary */
646 BUS_SPACE_MAXADDR, /* lowaddr */
647 BUS_SPACE_MAXADDR, /* highaddr */
648 NULL, NULL, /* filter, filterarg */
649 sizeof(struct mly_mmbox), 1, /* maxsize, nsegments */
650 BUS_SPACE_MAXSIZE_32BIT, /* maxsegsize */
651 BUS_DMA_ALLOCNOW, /* flags */
652 NULL, NULL, /* lockfunc, lockarg */
653 &sc->mly_mmbox_dmat)) {
654 mly_printf(sc, "can't allocate memory mailbox DMA tag\n");
655 return(ENOMEM);
656 }
657
658 /*
659 * Allocate the buffer
660 */
661 if (bus_dmamem_alloc(sc->mly_mmbox_dmat, (void **)&sc->mly_mmbox, BUS_DMA_NOWAIT, &sc->mly_mmbox_dmamap)) {
662 mly_printf(sc, "can't allocate memory mailbox\n");
663 return(ENOMEM);
664 }
665 if (bus_dmamap_load(sc->mly_mmbox_dmat, sc->mly_mmbox_dmamap, sc->mly_mmbox,
666 sizeof(struct mly_mmbox), mly_mmbox_map_helper, sc,
667 BUS_DMA_NOWAIT) != 0)
668 return (ENOMEM);
669 bzero(sc->mly_mmbox, sizeof(*sc->mly_mmbox));
670 return(0);
671
672 }
673
674 /********************************************************************************
675 * Save the physical address of the memory mailbox
676 */
677 static void
mly_mmbox_map_helper(void * arg,bus_dma_segment_t * segs,int nseg,int error)678 mly_mmbox_map_helper(void *arg, bus_dma_segment_t *segs, int nseg, int error)
679 {
680 struct mly_softc *sc = (struct mly_softc *)arg;
681
682 debug_called(1);
683
684 sc->mly_mmbox_busaddr = segs->ds_addr;
685 }
686
687 /********************************************************************************
688 * Free all of the resources associated with (sc)
689 *
690 * Should not be called if the controller is active.
691 */
692 static void
mly_free(struct mly_softc * sc)693 mly_free(struct mly_softc *sc)
694 {
695
696 debug_called(1);
697
698 /* Remove the management device */
699 destroy_dev(sc->mly_dev_t);
700
701 if (sc->mly_intr)
702 bus_teardown_intr(sc->mly_dev, sc->mly_irq, sc->mly_intr);
703 callout_drain(&sc->mly_periodic);
704 #ifdef MLY_DEBUG
705 callout_drain(&sc->mly_timeout);
706 #endif
707
708 /* detach from CAM */
709 mly_cam_detach(sc);
710
711 /* release command memory */
712 mly_release_commands(sc);
713
714 /* throw away the controllerinfo structure */
715 if (sc->mly_controllerinfo != NULL)
716 free(sc->mly_controllerinfo, M_DEVBUF);
717
718 /* throw away the controllerparam structure */
719 if (sc->mly_controllerparam != NULL)
720 free(sc->mly_controllerparam, M_DEVBUF);
721
722 /* destroy data-transfer DMA tag */
723 if (sc->mly_buffer_dmat)
724 bus_dma_tag_destroy(sc->mly_buffer_dmat);
725
726 /* free and destroy DMA memory and tag for s/g lists */
727 if (sc->mly_sg_table) {
728 bus_dmamap_unload(sc->mly_sg_dmat, sc->mly_sg_dmamap);
729 bus_dmamem_free(sc->mly_sg_dmat, sc->mly_sg_table, sc->mly_sg_dmamap);
730 }
731 if (sc->mly_sg_dmat)
732 bus_dma_tag_destroy(sc->mly_sg_dmat);
733
734 /* free and destroy DMA memory and tag for memory mailbox */
735 if (sc->mly_mmbox) {
736 bus_dmamap_unload(sc->mly_mmbox_dmat, sc->mly_mmbox_dmamap);
737 bus_dmamem_free(sc->mly_mmbox_dmat, sc->mly_mmbox, sc->mly_mmbox_dmamap);
738 }
739 if (sc->mly_mmbox_dmat)
740 bus_dma_tag_destroy(sc->mly_mmbox_dmat);
741
742 /* disconnect the interrupt handler */
743 if (sc->mly_irq != NULL)
744 bus_release_resource(sc->mly_dev, SYS_RES_IRQ, sc->mly_irq_rid, sc->mly_irq);
745
746 /* destroy the parent DMA tag */
747 if (sc->mly_parent_dmat)
748 bus_dma_tag_destroy(sc->mly_parent_dmat);
749
750 /* release the register window mapping */
751 if (sc->mly_regs_resource != NULL)
752 bus_release_resource(sc->mly_dev, SYS_RES_MEMORY, sc->mly_regs_rid, sc->mly_regs_resource);
753
754 mtx_destroy(&sc->mly_lock);
755 }
756
757 /********************************************************************************
758 ********************************************************************************
759 Command Wrappers
760 ********************************************************************************
761 ********************************************************************************/
762
763 /********************************************************************************
764 * Fill in the mly_controllerinfo and mly_controllerparam fields in the softc.
765 */
766 static int
mly_get_controllerinfo(struct mly_softc * sc)767 mly_get_controllerinfo(struct mly_softc *sc)
768 {
769 struct mly_command_ioctl mci;
770 u_int8_t status;
771 int error;
772
773 debug_called(1);
774
775 if (sc->mly_controllerinfo != NULL)
776 free(sc->mly_controllerinfo, M_DEVBUF);
777
778 /* build the getcontrollerinfo ioctl and send it */
779 bzero(&mci, sizeof(mci));
780 sc->mly_controllerinfo = NULL;
781 mci.sub_ioctl = MDACIOCTL_GETCONTROLLERINFO;
782 if ((error = mly_ioctl(sc, &mci, (void **)&sc->mly_controllerinfo, sizeof(*sc->mly_controllerinfo),
783 &status, NULL, NULL)))
784 return(error);
785 if (status != 0)
786 return(EIO);
787
788 if (sc->mly_controllerparam != NULL)
789 free(sc->mly_controllerparam, M_DEVBUF);
790
791 /* build the getcontrollerparameter ioctl and send it */
792 bzero(&mci, sizeof(mci));
793 sc->mly_controllerparam = NULL;
794 mci.sub_ioctl = MDACIOCTL_GETCONTROLLERPARAMETER;
795 if ((error = mly_ioctl(sc, &mci, (void **)&sc->mly_controllerparam, sizeof(*sc->mly_controllerparam),
796 &status, NULL, NULL)))
797 return(error);
798 if (status != 0)
799 return(EIO);
800
801 return(0);
802 }
803
804 /********************************************************************************
805 * Schedule all possible devices for a rescan.
806 *
807 */
808 static void
mly_scan_devices(struct mly_softc * sc)809 mly_scan_devices(struct mly_softc *sc)
810 {
811 int bus, target;
812
813 debug_called(1);
814
815 /*
816 * Clear any previous BTL information.
817 */
818 bzero(&sc->mly_btl, sizeof(sc->mly_btl));
819
820 /*
821 * Mark all devices as requiring a rescan, and let the next
822 * periodic scan collect them.
823 */
824 for (bus = 0; bus < sc->mly_cam_channels; bus++)
825 if (MLY_BUS_IS_VALID(sc, bus))
826 for (target = 0; target < MLY_MAX_TARGETS; target++)
827 sc->mly_btl[bus][target].mb_flags = MLY_BTL_RESCAN;
828
829 }
830
831 /********************************************************************************
832 * Rescan a device, possibly as a consequence of getting an event which suggests
833 * that it may have changed.
834 *
835 * If we suffer resource starvation, we can abandon the rescan as we'll be
836 * retried.
837 */
838 static void
mly_rescan_btl(struct mly_softc * sc,int bus,int target)839 mly_rescan_btl(struct mly_softc *sc, int bus, int target)
840 {
841 struct mly_command *mc;
842 struct mly_command_ioctl *mci;
843
844 debug_called(1);
845
846 /* check that this bus is valid */
847 if (!MLY_BUS_IS_VALID(sc, bus))
848 return;
849
850 /* get a command */
851 if (mly_alloc_command(sc, &mc))
852 return;
853
854 /* set up the data buffer */
855 if ((mc->mc_data = malloc(sizeof(union mly_devinfo), M_DEVBUF, M_NOWAIT | M_ZERO)) == NULL) {
856 mly_release_command(mc);
857 return;
858 }
859 mc->mc_flags |= MLY_CMD_DATAIN;
860 mc->mc_complete = mly_complete_rescan;
861
862 /*
863 * Build the ioctl.
864 */
865 mci = (struct mly_command_ioctl *)&mc->mc_packet->ioctl;
866 mci->opcode = MDACMD_IOCTL;
867 mci->addr.phys.controller = 0;
868 mci->timeout.value = 30;
869 mci->timeout.scale = MLY_TIMEOUT_SECONDS;
870 if (MLY_BUS_IS_VIRTUAL(sc, bus)) {
871 mc->mc_length = mci->data_size = sizeof(struct mly_ioctl_getlogdevinfovalid);
872 mci->sub_ioctl = MDACIOCTL_GETLOGDEVINFOVALID;
873 mci->addr.log.logdev = MLY_LOGDEV_ID(sc, bus, target);
874 debug(1, "logical device %d", mci->addr.log.logdev);
875 } else {
876 mc->mc_length = mci->data_size = sizeof(struct mly_ioctl_getphysdevinfovalid);
877 mci->sub_ioctl = MDACIOCTL_GETPHYSDEVINFOVALID;
878 mci->addr.phys.lun = 0;
879 mci->addr.phys.target = target;
880 mci->addr.phys.channel = bus;
881 debug(1, "physical device %d:%d", mci->addr.phys.channel, mci->addr.phys.target);
882 }
883
884 /*
885 * Dispatch the command. If we successfully send the command, clear the rescan
886 * bit.
887 */
888 if (mly_start(mc) != 0) {
889 mly_release_command(mc);
890 } else {
891 sc->mly_btl[bus][target].mb_flags &= ~MLY_BTL_RESCAN; /* success */
892 }
893 }
894
895 /********************************************************************************
896 * Handle the completion of a rescan operation
897 */
898 static void
mly_complete_rescan(struct mly_command * mc)899 mly_complete_rescan(struct mly_command *mc)
900 {
901 struct mly_softc *sc = mc->mc_sc;
902 struct mly_ioctl_getlogdevinfovalid *ldi;
903 struct mly_ioctl_getphysdevinfovalid *pdi;
904 struct mly_command_ioctl *mci;
905 struct mly_btl btl, *btlp;
906 int bus, target, rescan;
907
908 debug_called(1);
909
910 /*
911 * Recover the bus and target from the command. We need these even in
912 * the case where we don't have a useful response.
913 */
914 mci = (struct mly_command_ioctl *)&mc->mc_packet->ioctl;
915 if (mci->sub_ioctl == MDACIOCTL_GETLOGDEVINFOVALID) {
916 bus = MLY_LOGDEV_BUS(sc, mci->addr.log.logdev);
917 target = MLY_LOGDEV_TARGET(sc, mci->addr.log.logdev);
918 } else {
919 bus = mci->addr.phys.channel;
920 target = mci->addr.phys.target;
921 }
922 /* XXX validate bus/target? */
923
924 /* the default result is 'no device' */
925 bzero(&btl, sizeof(btl));
926
927 /* if the rescan completed OK, we have possibly-new BTL data */
928 if (mc->mc_status == 0) {
929 if (mc->mc_length == sizeof(*ldi)) {
930 ldi = (struct mly_ioctl_getlogdevinfovalid *)mc->mc_data;
931 if ((MLY_LOGDEV_BUS(sc, ldi->logical_device_number) != bus) ||
932 (MLY_LOGDEV_TARGET(sc, ldi->logical_device_number) != target)) {
933 mly_printf(sc, "WARNING: BTL rescan for %d:%d returned data for %d:%d instead\n",
934 bus, target, MLY_LOGDEV_BUS(sc, ldi->logical_device_number),
935 MLY_LOGDEV_TARGET(sc, ldi->logical_device_number));
936 /* XXX what can we do about this? */
937 }
938 btl.mb_flags = MLY_BTL_LOGICAL;
939 btl.mb_type = ldi->raid_level;
940 btl.mb_state = ldi->state;
941 debug(1, "BTL rescan for %d returns %s, %s", ldi->logical_device_number,
942 mly_describe_code(mly_table_device_type, ldi->raid_level),
943 mly_describe_code(mly_table_device_state, ldi->state));
944 } else if (mc->mc_length == sizeof(*pdi)) {
945 pdi = (struct mly_ioctl_getphysdevinfovalid *)mc->mc_data;
946 if ((pdi->channel != bus) || (pdi->target != target)) {
947 mly_printf(sc, "WARNING: BTL rescan for %d:%d returned data for %d:%d instead\n",
948 bus, target, pdi->channel, pdi->target);
949 /* XXX what can we do about this? */
950 }
951 btl.mb_flags = MLY_BTL_PHYSICAL;
952 btl.mb_type = MLY_DEVICE_TYPE_PHYSICAL;
953 btl.mb_state = pdi->state;
954 btl.mb_speed = pdi->speed;
955 btl.mb_width = pdi->width;
956 if (pdi->state != MLY_DEVICE_STATE_UNCONFIGURED)
957 sc->mly_btl[bus][target].mb_flags |= MLY_BTL_PROTECTED;
958 debug(1, "BTL rescan for %d:%d returns %s", bus, target,
959 mly_describe_code(mly_table_device_state, pdi->state));
960 } else {
961 mly_printf(sc, "BTL rescan result invalid\n");
962 }
963 }
964
965 free(mc->mc_data, M_DEVBUF);
966 mly_release_command(mc);
967
968 /*
969 * Decide whether we need to rescan the device.
970 */
971 rescan = 0;
972
973 /* device type changes (usually between 'nothing' and 'something') */
974 btlp = &sc->mly_btl[bus][target];
975 if (btl.mb_flags != btlp->mb_flags) {
976 debug(1, "flags changed, rescanning");
977 rescan = 1;
978 }
979
980 /* XXX other reasons? */
981
982 /*
983 * Update BTL information.
984 */
985 *btlp = btl;
986
987 /*
988 * Perform CAM rescan if required.
989 */
990 if (rescan)
991 mly_cam_rescan_btl(sc, bus, target);
992 }
993
994 /********************************************************************************
995 * Get the current health status and set the 'next event' counter to suit.
996 */
997 static int
mly_get_eventstatus(struct mly_softc * sc)998 mly_get_eventstatus(struct mly_softc *sc)
999 {
1000 struct mly_command_ioctl mci;
1001 struct mly_health_status *mh;
1002 u_int8_t status;
1003 int error;
1004
1005 /* build the gethealthstatus ioctl and send it */
1006 bzero(&mci, sizeof(mci));
1007 mh = NULL;
1008 mci.sub_ioctl = MDACIOCTL_GETHEALTHSTATUS;
1009
1010 if ((error = mly_ioctl(sc, &mci, (void **)&mh, sizeof(*mh), &status, NULL, NULL)))
1011 return(error);
1012 if (status != 0)
1013 return(EIO);
1014
1015 /* get the event counter */
1016 sc->mly_event_change = mh->change_counter;
1017 sc->mly_event_waiting = mh->next_event;
1018 sc->mly_event_counter = mh->next_event;
1019
1020 /* save the health status into the memory mailbox */
1021 bcopy(mh, &sc->mly_mmbox->mmm_health.status, sizeof(*mh));
1022
1023 debug(1, "initial change counter %d, event counter %d", mh->change_counter, mh->next_event);
1024
1025 free(mh, M_DEVBUF);
1026 return(0);
1027 }
1028
1029 /********************************************************************************
1030 * Enable the memory mailbox mode.
1031 */
1032 static int
mly_enable_mmbox(struct mly_softc * sc)1033 mly_enable_mmbox(struct mly_softc *sc)
1034 {
1035 struct mly_command_ioctl mci;
1036 u_int8_t *sp, status;
1037 int error;
1038
1039 debug_called(1);
1040
1041 /* build the ioctl and send it */
1042 bzero(&mci, sizeof(mci));
1043 mci.sub_ioctl = MDACIOCTL_SETMEMORYMAILBOX;
1044 /* set buffer addresses */
1045 mci.param.setmemorymailbox.command_mailbox_physaddr =
1046 sc->mly_mmbox_busaddr + offsetof(struct mly_mmbox, mmm_command);
1047 mci.param.setmemorymailbox.status_mailbox_physaddr =
1048 sc->mly_mmbox_busaddr + offsetof(struct mly_mmbox, mmm_status);
1049 mci.param.setmemorymailbox.health_buffer_physaddr =
1050 sc->mly_mmbox_busaddr + offsetof(struct mly_mmbox, mmm_health);
1051
1052 /* set buffer sizes - abuse of data_size field is revolting */
1053 sp = (u_int8_t *)&mci.data_size;
1054 sp[0] = ((sizeof(union mly_command_packet) * MLY_MMBOX_COMMANDS) / 1024);
1055 sp[1] = (sizeof(union mly_status_packet) * MLY_MMBOX_STATUS) / 1024;
1056 mci.param.setmemorymailbox.health_buffer_size = sizeof(union mly_health_region) / 1024;
1057
1058 debug(1, "memory mailbox at %p (0x%llx/%d 0x%llx/%d 0x%llx/%d", sc->mly_mmbox,
1059 mci.param.setmemorymailbox.command_mailbox_physaddr, sp[0],
1060 mci.param.setmemorymailbox.status_mailbox_physaddr, sp[1],
1061 mci.param.setmemorymailbox.health_buffer_physaddr,
1062 mci.param.setmemorymailbox.health_buffer_size);
1063
1064 if ((error = mly_ioctl(sc, &mci, NULL, 0, &status, NULL, NULL)))
1065 return(error);
1066 if (status != 0)
1067 return(EIO);
1068 sc->mly_state |= MLY_STATE_MMBOX_ACTIVE;
1069 debug(1, "memory mailbox active");
1070 return(0);
1071 }
1072
1073 /********************************************************************************
1074 * Flush all pending I/O from the controller.
1075 */
1076 static int
mly_flush(struct mly_softc * sc)1077 mly_flush(struct mly_softc *sc)
1078 {
1079 struct mly_command_ioctl mci;
1080 u_int8_t status;
1081 int error;
1082
1083 debug_called(1);
1084
1085 /* build the ioctl */
1086 bzero(&mci, sizeof(mci));
1087 mci.sub_ioctl = MDACIOCTL_FLUSHDEVICEDATA;
1088 mci.param.deviceoperation.operation_device = MLY_OPDEVICE_PHYSICAL_CONTROLLER;
1089
1090 /* pass it off to the controller */
1091 if ((error = mly_ioctl(sc, &mci, NULL, 0, &status, NULL, NULL)))
1092 return(error);
1093
1094 return((status == 0) ? 0 : EIO);
1095 }
1096
1097 /********************************************************************************
1098 * Perform an ioctl command.
1099 *
1100 * If (data) is not NULL, the command requires data transfer. If (*data) is NULL
1101 * the command requires data transfer from the controller, and we will allocate
1102 * a buffer for it. If (*data) is not NULL, the command requires data transfer
1103 * to the controller.
1104 *
1105 * XXX passing in the whole ioctl structure is ugly. Better ideas?
1106 *
1107 * XXX we don't even try to handle the case where datasize > 4k. We should.
1108 */
1109 static int
mly_ioctl(struct mly_softc * sc,struct mly_command_ioctl * ioctl,void ** data,size_t datasize,u_int8_t * status,void * sense_buffer,size_t * sense_length)1110 mly_ioctl(struct mly_softc *sc, struct mly_command_ioctl *ioctl, void **data, size_t datasize,
1111 u_int8_t *status, void *sense_buffer, size_t *sense_length)
1112 {
1113 struct mly_command *mc;
1114 struct mly_command_ioctl *mci;
1115 int error;
1116
1117 debug_called(1);
1118 MLY_ASSERT_LOCKED(sc);
1119
1120 mc = NULL;
1121 if (mly_alloc_command(sc, &mc)) {
1122 error = ENOMEM;
1123 goto out;
1124 }
1125
1126 /* copy the ioctl structure, but save some important fields and then fixup */
1127 mci = &mc->mc_packet->ioctl;
1128 ioctl->sense_buffer_address = mci->sense_buffer_address;
1129 ioctl->maximum_sense_size = mci->maximum_sense_size;
1130 *mci = *ioctl;
1131 mci->opcode = MDACMD_IOCTL;
1132 mci->timeout.value = 30;
1133 mci->timeout.scale = MLY_TIMEOUT_SECONDS;
1134
1135 /* handle the data buffer */
1136 if (data != NULL) {
1137 if (*data == NULL) {
1138 /* allocate data buffer */
1139 if ((mc->mc_data = malloc(datasize, M_DEVBUF, M_NOWAIT)) == NULL) {
1140 error = ENOMEM;
1141 goto out;
1142 }
1143 mc->mc_flags |= MLY_CMD_DATAIN;
1144 } else {
1145 mc->mc_data = *data;
1146 mc->mc_flags |= MLY_CMD_DATAOUT;
1147 }
1148 mc->mc_length = datasize;
1149 mc->mc_packet->generic.data_size = datasize;
1150 }
1151
1152 /* run the command */
1153 if ((error = mly_immediate_command(mc)))
1154 goto out;
1155
1156 /* clean up and return any data */
1157 *status = mc->mc_status;
1158 if ((mc->mc_sense > 0) && (sense_buffer != NULL)) {
1159 bcopy(mc->mc_packet, sense_buffer, mc->mc_sense);
1160 *sense_length = mc->mc_sense;
1161 goto out;
1162 }
1163
1164 /* should we return a data pointer? */
1165 if ((data != NULL) && (*data == NULL))
1166 *data = mc->mc_data;
1167
1168 /* command completed OK */
1169 error = 0;
1170
1171 out:
1172 if (mc != NULL) {
1173 /* do we need to free a data buffer we allocated? */
1174 if (error && (mc->mc_data != NULL) && (*data == NULL))
1175 free(mc->mc_data, M_DEVBUF);
1176 mly_release_command(mc);
1177 }
1178 return(error);
1179 }
1180
1181 /********************************************************************************
1182 * Check for event(s) outstanding in the controller.
1183 */
1184 static void
mly_check_event(struct mly_softc * sc)1185 mly_check_event(struct mly_softc *sc)
1186 {
1187
1188 /*
1189 * The controller may have updated the health status information,
1190 * so check for it here. Note that the counters are all in host memory,
1191 * so this check is very cheap. Also note that we depend on checking on
1192 * completion
1193 */
1194 if (sc->mly_mmbox->mmm_health.status.change_counter != sc->mly_event_change) {
1195 sc->mly_event_change = sc->mly_mmbox->mmm_health.status.change_counter;
1196 debug(1, "event change %d, event status update, %d -> %d", sc->mly_event_change,
1197 sc->mly_event_waiting, sc->mly_mmbox->mmm_health.status.next_event);
1198 sc->mly_event_waiting = sc->mly_mmbox->mmm_health.status.next_event;
1199
1200 /* wake up anyone that might be interested in this */
1201 wakeup(&sc->mly_event_change);
1202 }
1203 if (sc->mly_event_counter != sc->mly_event_waiting)
1204 mly_fetch_event(sc);
1205 }
1206
1207 /********************************************************************************
1208 * Fetch one event from the controller.
1209 *
1210 * If we fail due to resource starvation, we'll be retried the next time a
1211 * command completes.
1212 */
1213 static void
mly_fetch_event(struct mly_softc * sc)1214 mly_fetch_event(struct mly_softc *sc)
1215 {
1216 struct mly_command *mc;
1217 struct mly_command_ioctl *mci;
1218 u_int32_t event;
1219
1220 debug_called(1);
1221
1222 /* get a command */
1223 if (mly_alloc_command(sc, &mc))
1224 return;
1225
1226 /* set up the data buffer */
1227 if ((mc->mc_data = malloc(sizeof(struct mly_event), M_DEVBUF, M_NOWAIT | M_ZERO)) == NULL) {
1228 mly_release_command(mc);
1229 return;
1230 }
1231 mc->mc_length = sizeof(struct mly_event);
1232 mc->mc_flags |= MLY_CMD_DATAIN;
1233 mc->mc_complete = mly_complete_event;
1234
1235 /*
1236 * Get an event number to fetch. It's possible that we've raced with another
1237 * context for the last event, in which case there will be no more events.
1238 */
1239 if (sc->mly_event_counter == sc->mly_event_waiting) {
1240 mly_release_command(mc);
1241 return;
1242 }
1243 event = sc->mly_event_counter++;
1244
1245 /*
1246 * Build the ioctl.
1247 *
1248 * At this point we are committed to sending this request, as it
1249 * will be the only one constructed for this particular event number.
1250 */
1251 mci = (struct mly_command_ioctl *)&mc->mc_packet->ioctl;
1252 mci->opcode = MDACMD_IOCTL;
1253 mci->data_size = sizeof(struct mly_event);
1254 mci->addr.phys.lun = (event >> 16) & 0xff;
1255 mci->addr.phys.target = (event >> 24) & 0xff;
1256 mci->addr.phys.channel = 0;
1257 mci->addr.phys.controller = 0;
1258 mci->timeout.value = 30;
1259 mci->timeout.scale = MLY_TIMEOUT_SECONDS;
1260 mci->sub_ioctl = MDACIOCTL_GETEVENT;
1261 mci->param.getevent.sequence_number_low = event & 0xffff;
1262
1263 debug(1, "fetch event %u", event);
1264
1265 /*
1266 * Submit the command.
1267 *
1268 * Note that failure of mly_start() will result in this event never being
1269 * fetched.
1270 */
1271 if (mly_start(mc) != 0) {
1272 mly_printf(sc, "couldn't fetch event %u\n", event);
1273 mly_release_command(mc);
1274 }
1275 }
1276
1277 /********************************************************************************
1278 * Handle the completion of an event poll.
1279 */
1280 static void
mly_complete_event(struct mly_command * mc)1281 mly_complete_event(struct mly_command *mc)
1282 {
1283 struct mly_softc *sc = mc->mc_sc;
1284 struct mly_event *me = (struct mly_event *)mc->mc_data;
1285
1286 debug_called(1);
1287
1288 /*
1289 * If the event was successfully fetched, process it.
1290 */
1291 if (mc->mc_status == SCSI_STATUS_OK) {
1292 mly_process_event(sc, me);
1293 free(me, M_DEVBUF);
1294 }
1295 mly_release_command(mc);
1296
1297 /*
1298 * Check for another event.
1299 */
1300 mly_check_event(sc);
1301 }
1302
1303 /********************************************************************************
1304 * Process a controller event.
1305 */
1306 static void
mly_process_event(struct mly_softc * sc,struct mly_event * me)1307 mly_process_event(struct mly_softc *sc, struct mly_event *me)
1308 {
1309 struct scsi_sense_data_fixed *ssd;
1310 char *fp, *tp;
1311 int bus, target, event, class, action;
1312
1313 ssd = (struct scsi_sense_data_fixed *)&me->sense[0];
1314
1315 /*
1316 * Errors can be reported using vendor-unique sense data. In this case, the
1317 * event code will be 0x1c (Request sense data present), the sense key will
1318 * be 0x09 (vendor specific), the MSB of the ASC will be set, and the
1319 * actual event code will be a 16-bit value comprised of the ASCQ (low byte)
1320 * and low seven bits of the ASC (low seven bits of the high byte).
1321 */
1322 if ((me->code == 0x1c) &&
1323 ((ssd->flags & SSD_KEY) == SSD_KEY_Vendor_Specific) &&
1324 (ssd->add_sense_code & 0x80)) {
1325 event = ((int)(ssd->add_sense_code & ~0x80) << 8) + ssd->add_sense_code_qual;
1326 } else {
1327 event = me->code;
1328 }
1329
1330 /* look up event, get codes */
1331 fp = mly_describe_code(mly_table_event, event);
1332
1333 debug(1, "Event %d code 0x%x", me->sequence_number, me->code);
1334
1335 /* quiet event? */
1336 class = fp[0];
1337 if (isupper(class) && bootverbose)
1338 class = tolower(class);
1339
1340 /* get action code, text string */
1341 action = fp[1];
1342 tp = &fp[2];
1343
1344 /*
1345 * Print some information about the event.
1346 *
1347 * This code uses a table derived from the corresponding portion of the Linux
1348 * driver, and thus the parser is very similar.
1349 */
1350 switch(class) {
1351 case 'p': /* error on physical device */
1352 mly_printf(sc, "physical device %d:%d %s\n", me->channel, me->target, tp);
1353 if (action == 'r')
1354 sc->mly_btl[me->channel][me->target].mb_flags |= MLY_BTL_RESCAN;
1355 break;
1356 case 'l': /* error on logical unit */
1357 case 'm': /* message about logical unit */
1358 bus = MLY_LOGDEV_BUS(sc, me->lun);
1359 target = MLY_LOGDEV_TARGET(sc, me->lun);
1360 mly_name_device(sc, bus, target);
1361 mly_printf(sc, "logical device %d (%s) %s\n", me->lun, sc->mly_btl[bus][target].mb_name, tp);
1362 if (action == 'r')
1363 sc->mly_btl[bus][target].mb_flags |= MLY_BTL_RESCAN;
1364 break;
1365 case 's': /* report of sense data */
1366 if (((ssd->flags & SSD_KEY) == SSD_KEY_NO_SENSE) ||
1367 (((ssd->flags & SSD_KEY) == SSD_KEY_NOT_READY) &&
1368 (ssd->add_sense_code == 0x04) &&
1369 ((ssd->add_sense_code_qual == 0x01) || (ssd->add_sense_code_qual == 0x02))))
1370 break; /* ignore NO_SENSE or NOT_READY in one case */
1371
1372 mly_printf(sc, "physical device %d:%d %s\n", me->channel, me->target, tp);
1373 mly_printf(sc, " sense key %d asc %02x ascq %02x\n",
1374 ssd->flags & SSD_KEY, ssd->add_sense_code, ssd->add_sense_code_qual);
1375 mly_printf(sc, " info %4D csi %4D\n", ssd->info, "", ssd->cmd_spec_info, "");
1376 if (action == 'r')
1377 sc->mly_btl[me->channel][me->target].mb_flags |= MLY_BTL_RESCAN;
1378 break;
1379 case 'e':
1380 mly_printf(sc, tp, me->target, me->lun);
1381 printf("\n");
1382 break;
1383 case 'c':
1384 mly_printf(sc, "controller %s\n", tp);
1385 break;
1386 case '?':
1387 mly_printf(sc, "%s - %d\n", tp, me->code);
1388 break;
1389 default: /* probably a 'noisy' event being ignored */
1390 break;
1391 }
1392 }
1393
1394 /********************************************************************************
1395 * Perform periodic activities.
1396 */
1397 static void
mly_periodic(void * data)1398 mly_periodic(void *data)
1399 {
1400 struct mly_softc *sc = (struct mly_softc *)data;
1401 int bus, target;
1402
1403 debug_called(2);
1404 MLY_ASSERT_LOCKED(sc);
1405
1406 /*
1407 * Scan devices.
1408 */
1409 for (bus = 0; bus < sc->mly_cam_channels; bus++) {
1410 if (MLY_BUS_IS_VALID(sc, bus)) {
1411 for (target = 0; target < MLY_MAX_TARGETS; target++) {
1412
1413 /* ignore the controller in this scan */
1414 if (target == sc->mly_controllerparam->initiator_id)
1415 continue;
1416
1417 /* perform device rescan? */
1418 if (sc->mly_btl[bus][target].mb_flags & MLY_BTL_RESCAN)
1419 mly_rescan_btl(sc, bus, target);
1420 }
1421 }
1422 }
1423
1424 /* check for controller events */
1425 mly_check_event(sc);
1426
1427 /* reschedule ourselves */
1428 callout_schedule(&sc->mly_periodic, MLY_PERIODIC_INTERVAL * hz);
1429 }
1430
1431 /********************************************************************************
1432 ********************************************************************************
1433 Command Processing
1434 ********************************************************************************
1435 ********************************************************************************/
1436
1437 /********************************************************************************
1438 * Run a command and wait for it to complete.
1439 *
1440 */
1441 static int
mly_immediate_command(struct mly_command * mc)1442 mly_immediate_command(struct mly_command *mc)
1443 {
1444 struct mly_softc *sc = mc->mc_sc;
1445 int error;
1446
1447 debug_called(1);
1448
1449 MLY_ASSERT_LOCKED(sc);
1450 if ((error = mly_start(mc))) {
1451 return(error);
1452 }
1453
1454 if (sc->mly_state & MLY_STATE_INTERRUPTS_ON) {
1455 /* sleep on the command */
1456 while(!(mc->mc_flags & MLY_CMD_COMPLETE)) {
1457 mtx_sleep(mc, &sc->mly_lock, PRIBIO, "mlywait", 0);
1458 }
1459 } else {
1460 /* spin and collect status while we do */
1461 while(!(mc->mc_flags & MLY_CMD_COMPLETE)) {
1462 mly_done(mc->mc_sc);
1463 }
1464 }
1465 return(0);
1466 }
1467
1468 /********************************************************************************
1469 * Deliver a command to the controller.
1470 *
1471 * XXX it would be good to just queue commands that we can't submit immediately
1472 * and send them later, but we probably want a wrapper for that so that
1473 * we don't hang on a failed submission for an immediate command.
1474 */
1475 static int
mly_start(struct mly_command * mc)1476 mly_start(struct mly_command *mc)
1477 {
1478 struct mly_softc *sc = mc->mc_sc;
1479 union mly_command_packet *pkt;
1480
1481 debug_called(2);
1482 MLY_ASSERT_LOCKED(sc);
1483
1484 /*
1485 * Set the command up for delivery to the controller.
1486 */
1487 mly_map_command(mc);
1488 mc->mc_packet->generic.command_id = mc->mc_slot;
1489
1490 #ifdef MLY_DEBUG
1491 mc->mc_timestamp = time_second;
1492 #endif
1493
1494 /*
1495 * Do we have to use the hardware mailbox?
1496 */
1497 if (!(sc->mly_state & MLY_STATE_MMBOX_ACTIVE)) {
1498 /*
1499 * Check to see if the controller is ready for us.
1500 */
1501 if (MLY_IDBR_TRUE(sc, MLY_HM_CMDSENT)) {
1502 return(EBUSY);
1503 }
1504 mc->mc_flags |= MLY_CMD_BUSY;
1505
1506 /*
1507 * It's ready, send the command.
1508 */
1509 MLY_SET_MBOX(sc, sc->mly_command_mailbox, &mc->mc_packetphys);
1510 MLY_SET_REG(sc, sc->mly_idbr, MLY_HM_CMDSENT);
1511
1512 } else { /* use memory-mailbox mode */
1513
1514 pkt = &sc->mly_mmbox->mmm_command[sc->mly_mmbox_command_index];
1515
1516 /* check to see if the next index is free yet */
1517 if (pkt->mmbox.flag != 0) {
1518 return(EBUSY);
1519 }
1520 mc->mc_flags |= MLY_CMD_BUSY;
1521
1522 /* copy in new command */
1523 bcopy(mc->mc_packet->mmbox.data, pkt->mmbox.data, sizeof(pkt->mmbox.data));
1524 /* barrier to ensure completion of previous write before we write the flag */
1525 bus_barrier(sc->mly_regs_resource, 0, 0, BUS_SPACE_BARRIER_WRITE);
1526 /* copy flag last */
1527 pkt->mmbox.flag = mc->mc_packet->mmbox.flag;
1528 /* barrier to ensure completion of previous write before we notify the controller */
1529 bus_barrier(sc->mly_regs_resource, 0, 0, BUS_SPACE_BARRIER_WRITE);
1530
1531 /* signal controller, update index */
1532 MLY_SET_REG(sc, sc->mly_idbr, MLY_AM_CMDSENT);
1533 sc->mly_mmbox_command_index = (sc->mly_mmbox_command_index + 1) % MLY_MMBOX_COMMANDS;
1534 }
1535
1536 mly_enqueue_busy(mc);
1537 return(0);
1538 }
1539
1540 /********************************************************************************
1541 * Pick up command status from the controller, schedule a completion event
1542 */
1543 static void
mly_done(struct mly_softc * sc)1544 mly_done(struct mly_softc *sc)
1545 {
1546 struct mly_command *mc;
1547 union mly_status_packet *sp;
1548 u_int16_t slot;
1549 int worked;
1550
1551 MLY_ASSERT_LOCKED(sc);
1552 worked = 0;
1553
1554 /* pick up hardware-mailbox commands */
1555 if (MLY_ODBR_TRUE(sc, MLY_HM_STSREADY)) {
1556 slot = MLY_GET_REG2(sc, sc->mly_status_mailbox);
1557 if (slot < MLY_SLOT_MAX) {
1558 mc = &sc->mly_command[slot - MLY_SLOT_START];
1559 mc->mc_status = MLY_GET_REG(sc, sc->mly_status_mailbox + 2);
1560 mc->mc_sense = MLY_GET_REG(sc, sc->mly_status_mailbox + 3);
1561 mc->mc_resid = MLY_GET_REG4(sc, sc->mly_status_mailbox + 4);
1562 mly_remove_busy(mc);
1563 mc->mc_flags &= ~MLY_CMD_BUSY;
1564 mly_enqueue_complete(mc);
1565 worked = 1;
1566 } else {
1567 /* slot 0xffff may mean "extremely bogus command" */
1568 mly_printf(sc, "got HM completion for illegal slot %u\n", slot);
1569 }
1570 /* unconditionally acknowledge status */
1571 MLY_SET_REG(sc, sc->mly_odbr, MLY_HM_STSREADY);
1572 MLY_SET_REG(sc, sc->mly_idbr, MLY_HM_STSACK);
1573 }
1574
1575 /* pick up memory-mailbox commands */
1576 if (MLY_ODBR_TRUE(sc, MLY_AM_STSREADY)) {
1577 for (;;) {
1578 sp = &sc->mly_mmbox->mmm_status[sc->mly_mmbox_status_index];
1579
1580 /* check for more status */
1581 if (sp->mmbox.flag == 0)
1582 break;
1583
1584 /* get slot number */
1585 slot = sp->status.command_id;
1586 if (slot < MLY_SLOT_MAX) {
1587 mc = &sc->mly_command[slot - MLY_SLOT_START];
1588 mc->mc_status = sp->status.status;
1589 mc->mc_sense = sp->status.sense_length;
1590 mc->mc_resid = sp->status.residue;
1591 mly_remove_busy(mc);
1592 mc->mc_flags &= ~MLY_CMD_BUSY;
1593 mly_enqueue_complete(mc);
1594 worked = 1;
1595 } else {
1596 /* slot 0xffff may mean "extremely bogus command" */
1597 mly_printf(sc, "got AM completion for illegal slot %u at %d\n",
1598 slot, sc->mly_mmbox_status_index);
1599 }
1600
1601 /* clear and move to next index */
1602 sp->mmbox.flag = 0;
1603 sc->mly_mmbox_status_index = (sc->mly_mmbox_status_index + 1) % MLY_MMBOX_STATUS;
1604 }
1605 /* acknowledge that we have collected status value(s) */
1606 MLY_SET_REG(sc, sc->mly_odbr, MLY_AM_STSREADY);
1607 }
1608
1609 if (worked) {
1610 if (sc->mly_state & MLY_STATE_INTERRUPTS_ON)
1611 taskqueue_enqueue(taskqueue_thread, &sc->mly_task_complete);
1612 else
1613 mly_complete(sc);
1614 }
1615 }
1616
1617 /********************************************************************************
1618 * Process completed commands
1619 */
1620 static void
mly_complete_handler(void * context,int pending)1621 mly_complete_handler(void *context, int pending)
1622 {
1623 struct mly_softc *sc = (struct mly_softc *)context;
1624
1625 MLY_LOCK(sc);
1626 mly_complete(sc);
1627 MLY_UNLOCK(sc);
1628 }
1629
1630 static void
mly_complete(struct mly_softc * sc)1631 mly_complete(struct mly_softc *sc)
1632 {
1633 struct mly_command *mc;
1634 void (* mc_complete)(struct mly_command *mc);
1635
1636 debug_called(2);
1637
1638 /*
1639 * Spin pulling commands off the completed queue and processing them.
1640 */
1641 while ((mc = mly_dequeue_complete(sc)) != NULL) {
1642
1643 /*
1644 * Free controller resources, mark command complete.
1645 *
1646 * Note that as soon as we mark the command complete, it may be freed
1647 * out from under us, so we need to save the mc_complete field in
1648 * order to later avoid dereferencing mc. (We would not expect to
1649 * have a polling/sleeping consumer with mc_complete != NULL).
1650 */
1651 mly_unmap_command(mc);
1652 mc_complete = mc->mc_complete;
1653 mc->mc_flags |= MLY_CMD_COMPLETE;
1654
1655 /*
1656 * Call completion handler or wake up sleeping consumer.
1657 */
1658 if (mc_complete != NULL) {
1659 mc_complete(mc);
1660 } else {
1661 wakeup(mc);
1662 }
1663 }
1664
1665 /*
1666 * XXX if we are deferring commands due to controller-busy status, we should
1667 * retry submitting them here.
1668 */
1669 }
1670
1671 /********************************************************************************
1672 ********************************************************************************
1673 Command Buffer Management
1674 ********************************************************************************
1675 ********************************************************************************/
1676
1677 /********************************************************************************
1678 * Allocate a command.
1679 */
1680 static int
mly_alloc_command(struct mly_softc * sc,struct mly_command ** mcp)1681 mly_alloc_command(struct mly_softc *sc, struct mly_command **mcp)
1682 {
1683 struct mly_command *mc;
1684
1685 debug_called(3);
1686
1687 if ((mc = mly_dequeue_free(sc)) == NULL)
1688 return(ENOMEM);
1689
1690 *mcp = mc;
1691 return(0);
1692 }
1693
1694 /********************************************************************************
1695 * Release a command back to the freelist.
1696 */
1697 static void
mly_release_command(struct mly_command * mc)1698 mly_release_command(struct mly_command *mc)
1699 {
1700 debug_called(3);
1701
1702 /*
1703 * Fill in parts of the command that may cause confusion if
1704 * a consumer doesn't when we are later allocated.
1705 */
1706 mc->mc_data = NULL;
1707 mc->mc_flags = 0;
1708 mc->mc_complete = NULL;
1709 mc->mc_private = NULL;
1710
1711 /*
1712 * By default, we set up to overwrite the command packet with
1713 * sense information.
1714 */
1715 mc->mc_packet->generic.sense_buffer_address = mc->mc_packetphys;
1716 mc->mc_packet->generic.maximum_sense_size = sizeof(union mly_command_packet);
1717
1718 mly_enqueue_free(mc);
1719 }
1720
1721 /********************************************************************************
1722 * Map helper for command allocation.
1723 */
1724 static void
mly_alloc_commands_map(void * arg,bus_dma_segment_t * segs,int nseg,int error)1725 mly_alloc_commands_map(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1726 {
1727 struct mly_softc *sc = (struct mly_softc *)arg;
1728
1729 debug_called(1);
1730
1731 sc->mly_packetphys = segs[0].ds_addr;
1732 }
1733
1734 /********************************************************************************
1735 * Allocate and initialise command and packet structures.
1736 *
1737 * If the controller supports fewer than MLY_MAX_COMMANDS commands, limit our
1738 * allocation to that number. If we don't yet know how many commands the
1739 * controller supports, allocate a very small set (suitable for initialisation
1740 * purposes only).
1741 */
1742 static int
mly_alloc_commands(struct mly_softc * sc)1743 mly_alloc_commands(struct mly_softc *sc)
1744 {
1745 struct mly_command *mc;
1746 int i, ncmd;
1747
1748 if (sc->mly_controllerinfo == NULL) {
1749 ncmd = 4;
1750 } else {
1751 ncmd = min(MLY_MAX_COMMANDS, sc->mly_controllerinfo->maximum_parallel_commands);
1752 }
1753
1754 /*
1755 * Allocate enough space for all the command packets in one chunk and
1756 * map them permanently into controller-visible space.
1757 */
1758 if (bus_dmamem_alloc(sc->mly_packet_dmat, (void **)&sc->mly_packet,
1759 BUS_DMA_NOWAIT, &sc->mly_packetmap)) {
1760 return(ENOMEM);
1761 }
1762 if (bus_dmamap_load(sc->mly_packet_dmat, sc->mly_packetmap, sc->mly_packet,
1763 ncmd * sizeof(union mly_command_packet),
1764 mly_alloc_commands_map, sc, BUS_DMA_NOWAIT) != 0)
1765 return (ENOMEM);
1766
1767 for (i = 0; i < ncmd; i++) {
1768 mc = &sc->mly_command[i];
1769 bzero(mc, sizeof(*mc));
1770 mc->mc_sc = sc;
1771 mc->mc_slot = MLY_SLOT_START + i;
1772 mc->mc_packet = sc->mly_packet + i;
1773 mc->mc_packetphys = sc->mly_packetphys + (i * sizeof(union mly_command_packet));
1774 if (!bus_dmamap_create(sc->mly_buffer_dmat, 0, &mc->mc_datamap))
1775 mly_release_command(mc);
1776 }
1777 return(0);
1778 }
1779
1780 /********************************************************************************
1781 * Free all the storage held by commands.
1782 *
1783 * Must be called with all commands on the free list.
1784 */
1785 static void
mly_release_commands(struct mly_softc * sc)1786 mly_release_commands(struct mly_softc *sc)
1787 {
1788 struct mly_command *mc;
1789
1790 /* throw away command buffer DMA maps */
1791 while (mly_alloc_command(sc, &mc) == 0)
1792 bus_dmamap_destroy(sc->mly_buffer_dmat, mc->mc_datamap);
1793
1794 /* release the packet storage */
1795 if (sc->mly_packet != NULL) {
1796 bus_dmamap_unload(sc->mly_packet_dmat, sc->mly_packetmap);
1797 bus_dmamem_free(sc->mly_packet_dmat, sc->mly_packet, sc->mly_packetmap);
1798 sc->mly_packet = NULL;
1799 }
1800 }
1801
1802
1803 /********************************************************************************
1804 * Command-mapping helper function - populate this command's s/g table
1805 * with the s/g entries for its data.
1806 */
1807 static void
mly_map_command_sg(void * arg,bus_dma_segment_t * segs,int nseg,int error)1808 mly_map_command_sg(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1809 {
1810 struct mly_command *mc = (struct mly_command *)arg;
1811 struct mly_softc *sc = mc->mc_sc;
1812 struct mly_command_generic *gen = &(mc->mc_packet->generic);
1813 struct mly_sg_entry *sg;
1814 int i, tabofs;
1815
1816 debug_called(2);
1817
1818 /* can we use the transfer structure directly? */
1819 if (nseg <= 2) {
1820 sg = &gen->transfer.direct.sg[0];
1821 gen->command_control.extended_sg_table = 0;
1822 } else {
1823 tabofs = ((mc->mc_slot - MLY_SLOT_START) * MLY_MAX_SGENTRIES);
1824 sg = sc->mly_sg_table + tabofs;
1825 gen->transfer.indirect.entries[0] = nseg;
1826 gen->transfer.indirect.table_physaddr[0] = sc->mly_sg_busaddr + (tabofs * sizeof(struct mly_sg_entry));
1827 gen->command_control.extended_sg_table = 1;
1828 }
1829
1830 /* copy the s/g table */
1831 for (i = 0; i < nseg; i++) {
1832 sg[i].physaddr = segs[i].ds_addr;
1833 sg[i].length = segs[i].ds_len;
1834 }
1835
1836 }
1837
1838 #if 0
1839 /********************************************************************************
1840 * Command-mapping helper function - save the cdb's physical address.
1841 *
1842 * We don't support 'large' SCSI commands at this time, so this is unused.
1843 */
1844 static void
1845 mly_map_command_cdb(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1846 {
1847 struct mly_command *mc = (struct mly_command *)arg;
1848
1849 debug_called(2);
1850
1851 /* XXX can we safely assume that a CDB will never cross a page boundary? */
1852 if ((segs[0].ds_addr % PAGE_SIZE) >
1853 ((segs[0].ds_addr + mc->mc_packet->scsi_large.cdb_length) % PAGE_SIZE))
1854 panic("cdb crosses page boundary");
1855
1856 /* fix up fields in the command packet */
1857 mc->mc_packet->scsi_large.cdb_physaddr = segs[0].ds_addr;
1858 }
1859 #endif
1860
1861 /********************************************************************************
1862 * Map a command into controller-visible space
1863 */
1864 static void
mly_map_command(struct mly_command * mc)1865 mly_map_command(struct mly_command *mc)
1866 {
1867 struct mly_softc *sc = mc->mc_sc;
1868
1869 debug_called(2);
1870
1871 /* don't map more than once */
1872 if (mc->mc_flags & MLY_CMD_MAPPED)
1873 return;
1874
1875 /* does the command have a data buffer? */
1876 if (mc->mc_data != NULL) {
1877 if (mc->mc_flags & MLY_CMD_CCB)
1878 bus_dmamap_load_ccb(sc->mly_buffer_dmat, mc->mc_datamap,
1879 mc->mc_data, mly_map_command_sg, mc, 0);
1880 else
1881 bus_dmamap_load(sc->mly_buffer_dmat, mc->mc_datamap,
1882 mc->mc_data, mc->mc_length,
1883 mly_map_command_sg, mc, 0);
1884 if (mc->mc_flags & MLY_CMD_DATAIN)
1885 bus_dmamap_sync(sc->mly_buffer_dmat, mc->mc_datamap, BUS_DMASYNC_PREREAD);
1886 if (mc->mc_flags & MLY_CMD_DATAOUT)
1887 bus_dmamap_sync(sc->mly_buffer_dmat, mc->mc_datamap, BUS_DMASYNC_PREWRITE);
1888 }
1889 mc->mc_flags |= MLY_CMD_MAPPED;
1890 }
1891
1892 /********************************************************************************
1893 * Unmap a command from controller-visible space
1894 */
1895 static void
mly_unmap_command(struct mly_command * mc)1896 mly_unmap_command(struct mly_command *mc)
1897 {
1898 struct mly_softc *sc = mc->mc_sc;
1899
1900 debug_called(2);
1901
1902 if (!(mc->mc_flags & MLY_CMD_MAPPED))
1903 return;
1904
1905 /* does the command have a data buffer? */
1906 if (mc->mc_data != NULL) {
1907 if (mc->mc_flags & MLY_CMD_DATAIN)
1908 bus_dmamap_sync(sc->mly_buffer_dmat, mc->mc_datamap, BUS_DMASYNC_POSTREAD);
1909 if (mc->mc_flags & MLY_CMD_DATAOUT)
1910 bus_dmamap_sync(sc->mly_buffer_dmat, mc->mc_datamap, BUS_DMASYNC_POSTWRITE);
1911
1912 bus_dmamap_unload(sc->mly_buffer_dmat, mc->mc_datamap);
1913 }
1914 mc->mc_flags &= ~MLY_CMD_MAPPED;
1915 }
1916
1917
1918 /********************************************************************************
1919 ********************************************************************************
1920 CAM interface
1921 ********************************************************************************
1922 ********************************************************************************/
1923
1924 /********************************************************************************
1925 * Attach the physical and virtual SCSI busses to CAM.
1926 *
1927 * Physical bus numbering starts from 0, virtual bus numbering from one greater
1928 * than the highest physical bus. Physical busses are only registered if
1929 * the kernel environment variable "hw.mly.register_physical_channels" is set.
1930 *
1931 * When we refer to a "bus", we are referring to the bus number registered with
1932 * the SIM, whereas a "channel" is a channel number given to the adapter. In order
1933 * to keep things simple, we map these 1:1, so "bus" and "channel" may be used
1934 * interchangeably.
1935 */
1936 static int
mly_cam_attach(struct mly_softc * sc)1937 mly_cam_attach(struct mly_softc *sc)
1938 {
1939 struct cam_devq *devq;
1940 int chn, i;
1941
1942 debug_called(1);
1943
1944 /*
1945 * Allocate a devq for all our channels combined.
1946 */
1947 if ((devq = cam_simq_alloc(sc->mly_controllerinfo->maximum_parallel_commands)) == NULL) {
1948 mly_printf(sc, "can't allocate CAM SIM queue\n");
1949 return(ENOMEM);
1950 }
1951
1952 /*
1953 * If physical channel registration has been requested, register these first.
1954 * Note that we enable tagged command queueing for physical channels.
1955 */
1956 if (testenv("hw.mly.register_physical_channels")) {
1957 chn = 0;
1958 for (i = 0; i < sc->mly_controllerinfo->physical_channels_present; i++, chn++) {
1959
1960 if ((sc->mly_cam_sim[chn] = cam_sim_alloc(mly_cam_action, mly_cam_poll, "mly", sc,
1961 device_get_unit(sc->mly_dev),
1962 &sc->mly_lock,
1963 sc->mly_controllerinfo->maximum_parallel_commands,
1964 1, devq)) == NULL) {
1965 return(ENOMEM);
1966 }
1967 MLY_LOCK(sc);
1968 if (xpt_bus_register(sc->mly_cam_sim[chn], sc->mly_dev, chn)) {
1969 MLY_UNLOCK(sc);
1970 mly_printf(sc, "CAM XPT phsyical channel registration failed\n");
1971 return(ENXIO);
1972 }
1973 MLY_UNLOCK(sc);
1974 debug(1, "registered physical channel %d", chn);
1975 }
1976 }
1977
1978 /*
1979 * Register our virtual channels, with bus numbers matching channel numbers.
1980 */
1981 chn = sc->mly_controllerinfo->physical_channels_present;
1982 for (i = 0; i < sc->mly_controllerinfo->virtual_channels_present; i++, chn++) {
1983 if ((sc->mly_cam_sim[chn] = cam_sim_alloc(mly_cam_action, mly_cam_poll, "mly", sc,
1984 device_get_unit(sc->mly_dev),
1985 &sc->mly_lock,
1986 sc->mly_controllerinfo->maximum_parallel_commands,
1987 0, devq)) == NULL) {
1988 return(ENOMEM);
1989 }
1990 MLY_LOCK(sc);
1991 if (xpt_bus_register(sc->mly_cam_sim[chn], sc->mly_dev, chn)) {
1992 MLY_UNLOCK(sc);
1993 mly_printf(sc, "CAM XPT virtual channel registration failed\n");
1994 return(ENXIO);
1995 }
1996 MLY_UNLOCK(sc);
1997 debug(1, "registered virtual channel %d", chn);
1998 }
1999
2000 /*
2001 * This is the total number of channels that (might have been) registered with
2002 * CAM. Some may not have been; check the mly_cam_sim array to be certain.
2003 */
2004 sc->mly_cam_channels = sc->mly_controllerinfo->physical_channels_present +
2005 sc->mly_controllerinfo->virtual_channels_present;
2006
2007 return(0);
2008 }
2009
2010 /********************************************************************************
2011 * Detach from CAM
2012 */
2013 static void
mly_cam_detach(struct mly_softc * sc)2014 mly_cam_detach(struct mly_softc *sc)
2015 {
2016 int i;
2017
2018 debug_called(1);
2019
2020 MLY_LOCK(sc);
2021 for (i = 0; i < sc->mly_cam_channels; i++) {
2022 if (sc->mly_cam_sim[i] != NULL) {
2023 xpt_bus_deregister(cam_sim_path(sc->mly_cam_sim[i]));
2024 cam_sim_free(sc->mly_cam_sim[i], 0);
2025 }
2026 }
2027 MLY_UNLOCK(sc);
2028 if (sc->mly_cam_devq != NULL)
2029 cam_simq_free(sc->mly_cam_devq);
2030 }
2031
2032 /************************************************************************
2033 * Rescan a device.
2034 */
2035 static void
mly_cam_rescan_btl(struct mly_softc * sc,int bus,int target)2036 mly_cam_rescan_btl(struct mly_softc *sc, int bus, int target)
2037 {
2038 union ccb *ccb;
2039
2040 debug_called(1);
2041
2042 if ((ccb = xpt_alloc_ccb()) == NULL) {
2043 mly_printf(sc, "rescan failed (can't allocate CCB)\n");
2044 return;
2045 }
2046 if (xpt_create_path(&ccb->ccb_h.path, NULL,
2047 cam_sim_path(sc->mly_cam_sim[bus]), target, 0) != CAM_REQ_CMP) {
2048 mly_printf(sc, "rescan failed (can't create path)\n");
2049 xpt_free_ccb(ccb);
2050 return;
2051 }
2052 debug(1, "rescan target %d:%d", bus, target);
2053 xpt_rescan(ccb);
2054 }
2055
2056 /********************************************************************************
2057 * Handle an action requested by CAM
2058 */
2059 static void
mly_cam_action(struct cam_sim * sim,union ccb * ccb)2060 mly_cam_action(struct cam_sim *sim, union ccb *ccb)
2061 {
2062 struct mly_softc *sc = cam_sim_softc(sim);
2063
2064 debug_called(2);
2065 MLY_ASSERT_LOCKED(sc);
2066
2067 switch (ccb->ccb_h.func_code) {
2068
2069 /* perform SCSI I/O */
2070 case XPT_SCSI_IO:
2071 if (!mly_cam_action_io(sim, (struct ccb_scsiio *)&ccb->csio))
2072 return;
2073 break;
2074
2075 /* perform geometry calculations */
2076 case XPT_CALC_GEOMETRY:
2077 {
2078 struct ccb_calc_geometry *ccg = &ccb->ccg;
2079 u_int32_t secs_per_cylinder;
2080
2081 debug(2, "XPT_CALC_GEOMETRY %d:%d:%d", cam_sim_bus(sim), ccb->ccb_h.target_id, ccb->ccb_h.target_lun);
2082
2083 if (sc->mly_controllerparam->bios_geometry == MLY_BIOSGEOM_8G) {
2084 ccg->heads = 255;
2085 ccg->secs_per_track = 63;
2086 } else { /* MLY_BIOSGEOM_2G */
2087 ccg->heads = 128;
2088 ccg->secs_per_track = 32;
2089 }
2090 secs_per_cylinder = ccg->heads * ccg->secs_per_track;
2091 ccg->cylinders = ccg->volume_size / secs_per_cylinder;
2092 ccb->ccb_h.status = CAM_REQ_CMP;
2093 break;
2094 }
2095
2096 /* handle path attribute inquiry */
2097 case XPT_PATH_INQ:
2098 {
2099 struct ccb_pathinq *cpi = &ccb->cpi;
2100
2101 debug(2, "XPT_PATH_INQ %d:%d:%d", cam_sim_bus(sim), ccb->ccb_h.target_id, ccb->ccb_h.target_lun);
2102
2103 cpi->version_num = 1;
2104 cpi->hba_inquiry = PI_TAG_ABLE; /* XXX extra flags for physical channels? */
2105 cpi->target_sprt = 0;
2106 cpi->hba_misc = 0;
2107 cpi->max_target = MLY_MAX_TARGETS - 1;
2108 cpi->max_lun = MLY_MAX_LUNS - 1;
2109 cpi->initiator_id = sc->mly_controllerparam->initiator_id;
2110 strlcpy(cpi->sim_vid, "FreeBSD", SIM_IDLEN);
2111 strlcpy(cpi->hba_vid, "Mylex", HBA_IDLEN);
2112 strlcpy(cpi->dev_name, cam_sim_name(sim), DEV_IDLEN);
2113 cpi->unit_number = cam_sim_unit(sim);
2114 cpi->bus_id = cam_sim_bus(sim);
2115 cpi->base_transfer_speed = 132 * 1024; /* XXX what to set this to? */
2116 cpi->transport = XPORT_SPI;
2117 cpi->transport_version = 2;
2118 cpi->protocol = PROTO_SCSI;
2119 cpi->protocol_version = SCSI_REV_2;
2120 ccb->ccb_h.status = CAM_REQ_CMP;
2121 break;
2122 }
2123
2124 case XPT_GET_TRAN_SETTINGS:
2125 {
2126 struct ccb_trans_settings *cts = &ccb->cts;
2127 int bus, target;
2128 struct ccb_trans_settings_scsi *scsi = &cts->proto_specific.scsi;
2129 struct ccb_trans_settings_spi *spi = &cts->xport_specific.spi;
2130
2131 cts->protocol = PROTO_SCSI;
2132 cts->protocol_version = SCSI_REV_2;
2133 cts->transport = XPORT_SPI;
2134 cts->transport_version = 2;
2135
2136 scsi->flags = 0;
2137 scsi->valid = 0;
2138 spi->flags = 0;
2139 spi->valid = 0;
2140
2141 bus = cam_sim_bus(sim);
2142 target = cts->ccb_h.target_id;
2143 debug(2, "XPT_GET_TRAN_SETTINGS %d:%d", bus, target);
2144 /* logical device? */
2145 if (sc->mly_btl[bus][target].mb_flags & MLY_BTL_LOGICAL) {
2146 /* nothing special for these */
2147 /* physical device? */
2148 } else if (sc->mly_btl[bus][target].mb_flags & MLY_BTL_PHYSICAL) {
2149 /* allow CAM to try tagged transactions */
2150 scsi->flags |= CTS_SCSI_FLAGS_TAG_ENB;
2151 scsi->valid |= CTS_SCSI_VALID_TQ;
2152
2153 /* convert speed (MHz) to usec */
2154 if (sc->mly_btl[bus][target].mb_speed == 0) {
2155 spi->sync_period = 1000000 / 5;
2156 } else {
2157 spi->sync_period = 1000000 / sc->mly_btl[bus][target].mb_speed;
2158 }
2159
2160 /* convert bus width to CAM internal encoding */
2161 switch (sc->mly_btl[bus][target].mb_width) {
2162 case 32:
2163 spi->bus_width = MSG_EXT_WDTR_BUS_32_BIT;
2164 break;
2165 case 16:
2166 spi->bus_width = MSG_EXT_WDTR_BUS_16_BIT;
2167 break;
2168 case 8:
2169 default:
2170 spi->bus_width = MSG_EXT_WDTR_BUS_8_BIT;
2171 break;
2172 }
2173 spi->valid |= CTS_SPI_VALID_SYNC_RATE | CTS_SPI_VALID_BUS_WIDTH;
2174
2175 /* not a device, bail out */
2176 } else {
2177 cts->ccb_h.status = CAM_REQ_CMP_ERR;
2178 break;
2179 }
2180
2181 /* disconnect always OK */
2182 spi->flags |= CTS_SPI_FLAGS_DISC_ENB;
2183 spi->valid |= CTS_SPI_VALID_DISC;
2184
2185 cts->ccb_h.status = CAM_REQ_CMP;
2186 break;
2187 }
2188
2189 default: /* we can't do this */
2190 debug(2, "unspported func_code = 0x%x", ccb->ccb_h.func_code);
2191 ccb->ccb_h.status = CAM_REQ_INVALID;
2192 break;
2193 }
2194
2195 xpt_done(ccb);
2196 }
2197
2198 /********************************************************************************
2199 * Handle an I/O operation requested by CAM
2200 */
2201 static int
mly_cam_action_io(struct cam_sim * sim,struct ccb_scsiio * csio)2202 mly_cam_action_io(struct cam_sim *sim, struct ccb_scsiio *csio)
2203 {
2204 struct mly_softc *sc = cam_sim_softc(sim);
2205 struct mly_command *mc;
2206 struct mly_command_scsi_small *ss;
2207 int bus, target;
2208 int error;
2209
2210 bus = cam_sim_bus(sim);
2211 target = csio->ccb_h.target_id;
2212
2213 debug(2, "XPT_SCSI_IO %d:%d:%d", bus, target, csio->ccb_h.target_lun);
2214
2215 /* validate bus number */
2216 if (!MLY_BUS_IS_VALID(sc, bus)) {
2217 debug(0, " invalid bus %d", bus);
2218 csio->ccb_h.status = CAM_REQ_CMP_ERR;
2219 }
2220
2221 /* check for I/O attempt to a protected device */
2222 if (sc->mly_btl[bus][target].mb_flags & MLY_BTL_PROTECTED) {
2223 debug(2, " device protected");
2224 csio->ccb_h.status = CAM_REQ_CMP_ERR;
2225 }
2226
2227 /* check for I/O attempt to nonexistent device */
2228 if (!(sc->mly_btl[bus][target].mb_flags & (MLY_BTL_LOGICAL | MLY_BTL_PHYSICAL))) {
2229 debug(2, " device %d:%d does not exist", bus, target);
2230 csio->ccb_h.status = CAM_REQ_CMP_ERR;
2231 }
2232
2233 /* XXX increase if/when we support large SCSI commands */
2234 if (csio->cdb_len > MLY_CMD_SCSI_SMALL_CDB) {
2235 debug(0, " command too large (%d > %d)", csio->cdb_len, MLY_CMD_SCSI_SMALL_CDB);
2236 csio->ccb_h.status = CAM_REQ_CMP_ERR;
2237 }
2238
2239 /* check that the CDB pointer is not to a physical address */
2240 if ((csio->ccb_h.flags & CAM_CDB_POINTER) && (csio->ccb_h.flags & CAM_CDB_PHYS)) {
2241 debug(0, " CDB pointer is to physical address");
2242 csio->ccb_h.status = CAM_REQ_CMP_ERR;
2243 }
2244
2245 /* abandon aborted ccbs or those that have failed validation */
2246 if ((csio->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_INPROG) {
2247 debug(2, "abandoning CCB due to abort/validation failure");
2248 return(EINVAL);
2249 }
2250
2251 /*
2252 * Get a command, or push the ccb back to CAM and freeze the queue.
2253 */
2254 if ((error = mly_alloc_command(sc, &mc))) {
2255 xpt_freeze_simq(sim, 1);
2256 csio->ccb_h.status |= CAM_REQUEUE_REQ;
2257 sc->mly_qfrzn_cnt++;
2258 return(error);
2259 }
2260
2261 /* build the command */
2262 mc->mc_data = csio;
2263 mc->mc_length = csio->dxfer_len;
2264 mc->mc_complete = mly_cam_complete;
2265 mc->mc_private = csio;
2266 mc->mc_flags |= MLY_CMD_CCB;
2267 /* XXX This code doesn't set the data direction in mc_flags. */
2268
2269 /* save the bus number in the ccb for later recovery XXX should be a better way */
2270 csio->ccb_h.sim_priv.entries[0].field = bus;
2271
2272 /* build the packet for the controller */
2273 ss = &mc->mc_packet->scsi_small;
2274 ss->opcode = MDACMD_SCSI;
2275 if (csio->ccb_h.flags & CAM_DIS_DISCONNECT)
2276 ss->command_control.disable_disconnect = 1;
2277 if ((csio->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_OUT)
2278 ss->command_control.data_direction = MLY_CCB_WRITE;
2279 ss->data_size = csio->dxfer_len;
2280 ss->addr.phys.lun = csio->ccb_h.target_lun;
2281 ss->addr.phys.target = csio->ccb_h.target_id;
2282 ss->addr.phys.channel = bus;
2283 if (csio->ccb_h.timeout < (60 * 1000)) {
2284 ss->timeout.value = csio->ccb_h.timeout / 1000;
2285 ss->timeout.scale = MLY_TIMEOUT_SECONDS;
2286 } else if (csio->ccb_h.timeout < (60 * 60 * 1000)) {
2287 ss->timeout.value = csio->ccb_h.timeout / (60 * 1000);
2288 ss->timeout.scale = MLY_TIMEOUT_MINUTES;
2289 } else {
2290 ss->timeout.value = csio->ccb_h.timeout / (60 * 60 * 1000); /* overflow? */
2291 ss->timeout.scale = MLY_TIMEOUT_HOURS;
2292 }
2293 ss->maximum_sense_size = csio->sense_len;
2294 ss->cdb_length = csio->cdb_len;
2295 if (csio->ccb_h.flags & CAM_CDB_POINTER) {
2296 bcopy(csio->cdb_io.cdb_ptr, ss->cdb, csio->cdb_len);
2297 } else {
2298 bcopy(csio->cdb_io.cdb_bytes, ss->cdb, csio->cdb_len);
2299 }
2300
2301 /* give the command to the controller */
2302 if ((error = mly_start(mc))) {
2303 xpt_freeze_simq(sim, 1);
2304 csio->ccb_h.status |= CAM_REQUEUE_REQ;
2305 sc->mly_qfrzn_cnt++;
2306 return(error);
2307 }
2308
2309 return(0);
2310 }
2311
2312 /********************************************************************************
2313 * Check for possibly-completed commands.
2314 */
2315 static void
mly_cam_poll(struct cam_sim * sim)2316 mly_cam_poll(struct cam_sim *sim)
2317 {
2318 struct mly_softc *sc = cam_sim_softc(sim);
2319
2320 debug_called(2);
2321
2322 mly_done(sc);
2323 }
2324
2325 /********************************************************************************
2326 * Handle completion of a command - pass results back through the CCB
2327 */
2328 static void
mly_cam_complete(struct mly_command * mc)2329 mly_cam_complete(struct mly_command *mc)
2330 {
2331 struct mly_softc *sc = mc->mc_sc;
2332 struct ccb_scsiio *csio = (struct ccb_scsiio *)mc->mc_private;
2333 struct scsi_inquiry_data *inq = (struct scsi_inquiry_data *)csio->data_ptr;
2334 struct mly_btl *btl;
2335 u_int8_t cmd;
2336 int bus, target;
2337
2338 debug_called(2);
2339
2340 csio->scsi_status = mc->mc_status;
2341 switch(mc->mc_status) {
2342 case SCSI_STATUS_OK:
2343 /*
2344 * In order to report logical device type and status, we overwrite
2345 * the result of the INQUIRY command to logical devices.
2346 */
2347 bus = csio->ccb_h.sim_priv.entries[0].field;
2348 target = csio->ccb_h.target_id;
2349 /* XXX validate bus/target? */
2350 if (sc->mly_btl[bus][target].mb_flags & MLY_BTL_LOGICAL) {
2351 if (csio->ccb_h.flags & CAM_CDB_POINTER) {
2352 cmd = *csio->cdb_io.cdb_ptr;
2353 } else {
2354 cmd = csio->cdb_io.cdb_bytes[0];
2355 }
2356 if (cmd == INQUIRY) {
2357 btl = &sc->mly_btl[bus][target];
2358 padstr(inq->vendor, mly_describe_code(mly_table_device_type, btl->mb_type), 8);
2359 padstr(inq->product, mly_describe_code(mly_table_device_state, btl->mb_state), 16);
2360 padstr(inq->revision, "", 4);
2361 }
2362 }
2363
2364 debug(2, "SCSI_STATUS_OK");
2365 csio->ccb_h.status = CAM_REQ_CMP;
2366 break;
2367
2368 case SCSI_STATUS_CHECK_COND:
2369 debug(1, "SCSI_STATUS_CHECK_COND sense %d resid %d", mc->mc_sense, mc->mc_resid);
2370 csio->ccb_h.status = CAM_SCSI_STATUS_ERROR;
2371 bzero(&csio->sense_data, SSD_FULL_SIZE);
2372 bcopy(mc->mc_packet, &csio->sense_data, mc->mc_sense);
2373 csio->sense_len = mc->mc_sense;
2374 csio->ccb_h.status |= CAM_AUTOSNS_VALID;
2375 csio->resid = mc->mc_resid; /* XXX this is a signed value... */
2376 break;
2377
2378 case SCSI_STATUS_BUSY:
2379 debug(1, "SCSI_STATUS_BUSY");
2380 csio->ccb_h.status = CAM_SCSI_BUSY;
2381 break;
2382
2383 default:
2384 debug(1, "unknown status 0x%x", csio->scsi_status);
2385 csio->ccb_h.status = CAM_REQ_CMP_ERR;
2386 break;
2387 }
2388
2389 if (sc->mly_qfrzn_cnt) {
2390 csio->ccb_h.status |= CAM_RELEASE_SIMQ;
2391 sc->mly_qfrzn_cnt--;
2392 }
2393
2394 xpt_done((union ccb *)csio);
2395 mly_release_command(mc);
2396 }
2397
2398 /********************************************************************************
2399 * Find a peripheral attahed at (bus),(target)
2400 */
2401 static struct cam_periph *
mly_find_periph(struct mly_softc * sc,int bus,int target)2402 mly_find_periph(struct mly_softc *sc, int bus, int target)
2403 {
2404 struct cam_periph *periph;
2405 struct cam_path *path;
2406 int status;
2407
2408 status = xpt_create_path(&path, NULL, cam_sim_path(sc->mly_cam_sim[bus]), target, 0);
2409 if (status == CAM_REQ_CMP) {
2410 periph = cam_periph_find(path, NULL);
2411 xpt_free_path(path);
2412 } else {
2413 periph = NULL;
2414 }
2415 return(periph);
2416 }
2417
2418 /********************************************************************************
2419 * Name the device at (bus)(target)
2420 */
2421 static int
mly_name_device(struct mly_softc * sc,int bus,int target)2422 mly_name_device(struct mly_softc *sc, int bus, int target)
2423 {
2424 struct cam_periph *periph;
2425
2426 if ((periph = mly_find_periph(sc, bus, target)) != NULL) {
2427 sprintf(sc->mly_btl[bus][target].mb_name, "%s%d", periph->periph_name, periph->unit_number);
2428 return(0);
2429 }
2430 sc->mly_btl[bus][target].mb_name[0] = 0;
2431 return(ENOENT);
2432 }
2433
2434 /********************************************************************************
2435 ********************************************************************************
2436 Hardware Control
2437 ********************************************************************************
2438 ********************************************************************************/
2439
2440 /********************************************************************************
2441 * Handshake with the firmware while the card is being initialised.
2442 */
2443 static int
mly_fwhandshake(struct mly_softc * sc)2444 mly_fwhandshake(struct mly_softc *sc)
2445 {
2446 u_int8_t error, param0, param1;
2447 int spinup = 0;
2448
2449 debug_called(1);
2450
2451 /* set HM_STSACK and let the firmware initialise */
2452 MLY_SET_REG(sc, sc->mly_idbr, MLY_HM_STSACK);
2453 DELAY(1000); /* too short? */
2454
2455 /* if HM_STSACK is still true, the controller is initialising */
2456 if (!MLY_IDBR_TRUE(sc, MLY_HM_STSACK))
2457 return(0);
2458 mly_printf(sc, "controller initialisation started\n");
2459
2460 /* spin waiting for initialisation to finish, or for a message to be delivered */
2461 while (MLY_IDBR_TRUE(sc, MLY_HM_STSACK)) {
2462 /* check for a message */
2463 if (MLY_ERROR_VALID(sc)) {
2464 error = MLY_GET_REG(sc, sc->mly_error_status) & ~MLY_MSG_EMPTY;
2465 param0 = MLY_GET_REG(sc, sc->mly_command_mailbox);
2466 param1 = MLY_GET_REG(sc, sc->mly_command_mailbox + 1);
2467
2468 switch(error) {
2469 case MLY_MSG_SPINUP:
2470 if (!spinup) {
2471 mly_printf(sc, "drive spinup in progress\n");
2472 spinup = 1; /* only print this once (should print drive being spun?) */
2473 }
2474 break;
2475 case MLY_MSG_RACE_RECOVERY_FAIL:
2476 mly_printf(sc, "mirror race recovery failed, one or more drives offline\n");
2477 break;
2478 case MLY_MSG_RACE_IN_PROGRESS:
2479 mly_printf(sc, "mirror race recovery in progress\n");
2480 break;
2481 case MLY_MSG_RACE_ON_CRITICAL:
2482 mly_printf(sc, "mirror race recovery on a critical drive\n");
2483 break;
2484 case MLY_MSG_PARITY_ERROR:
2485 mly_printf(sc, "FATAL MEMORY PARITY ERROR\n");
2486 return(ENXIO);
2487 default:
2488 mly_printf(sc, "unknown initialisation code 0x%x\n", error);
2489 }
2490 }
2491 }
2492 return(0);
2493 }
2494
2495 /********************************************************************************
2496 ********************************************************************************
2497 Debugging and Diagnostics
2498 ********************************************************************************
2499 ********************************************************************************/
2500
2501 /********************************************************************************
2502 * Print some information about the controller.
2503 */
2504 static void
mly_describe_controller(struct mly_softc * sc)2505 mly_describe_controller(struct mly_softc *sc)
2506 {
2507 struct mly_ioctl_getcontrollerinfo *mi = sc->mly_controllerinfo;
2508
2509 mly_printf(sc, "%16s, %d channel%s, firmware %d.%02d-%d-%02d (%02d%02d%02d%02d), %dMB RAM\n",
2510 mi->controller_name, mi->physical_channels_present, (mi->physical_channels_present) > 1 ? "s" : "",
2511 mi->fw_major, mi->fw_minor, mi->fw_turn, mi->fw_build, /* XXX turn encoding? */
2512 mi->fw_century, mi->fw_year, mi->fw_month, mi->fw_day,
2513 mi->memory_size);
2514
2515 if (bootverbose) {
2516 mly_printf(sc, "%s %s (%x), %dMHz %d-bit %.16s\n",
2517 mly_describe_code(mly_table_oemname, mi->oem_information),
2518 mly_describe_code(mly_table_controllertype, mi->controller_type), mi->controller_type,
2519 mi->interface_speed, mi->interface_width, mi->interface_name);
2520 mly_printf(sc, "%dMB %dMHz %d-bit %s%s%s, cache %dMB\n",
2521 mi->memory_size, mi->memory_speed, mi->memory_width,
2522 mly_describe_code(mly_table_memorytype, mi->memory_type),
2523 mi->memory_parity ? "+parity": "",mi->memory_ecc ? "+ECC": "",
2524 mi->cache_size);
2525 mly_printf(sc, "CPU: %s @ %dMHz\n",
2526 mly_describe_code(mly_table_cputype, mi->cpu[0].type), mi->cpu[0].speed);
2527 if (mi->l2cache_size != 0)
2528 mly_printf(sc, "%dKB L2 cache\n", mi->l2cache_size);
2529 if (mi->exmemory_size != 0)
2530 mly_printf(sc, "%dMB %dMHz %d-bit private %s%s%s\n",
2531 mi->exmemory_size, mi->exmemory_speed, mi->exmemory_width,
2532 mly_describe_code(mly_table_memorytype, mi->exmemory_type),
2533 mi->exmemory_parity ? "+parity": "",mi->exmemory_ecc ? "+ECC": "");
2534 mly_printf(sc, "battery backup %s\n", mi->bbu_present ? "present" : "not installed");
2535 mly_printf(sc, "maximum data transfer %d blocks, maximum sg entries/command %d\n",
2536 mi->maximum_block_count, mi->maximum_sg_entries);
2537 mly_printf(sc, "logical devices present/critical/offline %d/%d/%d\n",
2538 mi->logical_devices_present, mi->logical_devices_critical, mi->logical_devices_offline);
2539 mly_printf(sc, "physical devices present %d\n",
2540 mi->physical_devices_present);
2541 mly_printf(sc, "physical disks present/offline %d/%d\n",
2542 mi->physical_disks_present, mi->physical_disks_offline);
2543 mly_printf(sc, "%d physical channel%s, %d virtual channel%s of %d possible\n",
2544 mi->physical_channels_present, mi->physical_channels_present == 1 ? "" : "s",
2545 mi->virtual_channels_present, mi->virtual_channels_present == 1 ? "" : "s",
2546 mi->virtual_channels_possible);
2547 mly_printf(sc, "%d parallel commands supported\n", mi->maximum_parallel_commands);
2548 mly_printf(sc, "%dMB flash ROM, %d of %d maximum cycles\n",
2549 mi->flash_size, mi->flash_age, mi->flash_maximum_age);
2550 }
2551 }
2552
2553 #ifdef MLY_DEBUG
2554 /********************************************************************************
2555 * Print some controller state
2556 */
2557 static void
mly_printstate(struct mly_softc * sc)2558 mly_printstate(struct mly_softc *sc)
2559 {
2560 mly_printf(sc, "IDBR %02x ODBR %02x ERROR %02x (%x %x %x)\n",
2561 MLY_GET_REG(sc, sc->mly_idbr),
2562 MLY_GET_REG(sc, sc->mly_odbr),
2563 MLY_GET_REG(sc, sc->mly_error_status),
2564 sc->mly_idbr,
2565 sc->mly_odbr,
2566 sc->mly_error_status);
2567 mly_printf(sc, "IMASK %02x ISTATUS %02x\n",
2568 MLY_GET_REG(sc, sc->mly_interrupt_mask),
2569 MLY_GET_REG(sc, sc->mly_interrupt_status));
2570 mly_printf(sc, "COMMAND %02x %02x %02x %02x %02x %02x %02x %02x\n",
2571 MLY_GET_REG(sc, sc->mly_command_mailbox),
2572 MLY_GET_REG(sc, sc->mly_command_mailbox + 1),
2573 MLY_GET_REG(sc, sc->mly_command_mailbox + 2),
2574 MLY_GET_REG(sc, sc->mly_command_mailbox + 3),
2575 MLY_GET_REG(sc, sc->mly_command_mailbox + 4),
2576 MLY_GET_REG(sc, sc->mly_command_mailbox + 5),
2577 MLY_GET_REG(sc, sc->mly_command_mailbox + 6),
2578 MLY_GET_REG(sc, sc->mly_command_mailbox + 7));
2579 mly_printf(sc, "STATUS %02x %02x %02x %02x %02x %02x %02x %02x\n",
2580 MLY_GET_REG(sc, sc->mly_status_mailbox),
2581 MLY_GET_REG(sc, sc->mly_status_mailbox + 1),
2582 MLY_GET_REG(sc, sc->mly_status_mailbox + 2),
2583 MLY_GET_REG(sc, sc->mly_status_mailbox + 3),
2584 MLY_GET_REG(sc, sc->mly_status_mailbox + 4),
2585 MLY_GET_REG(sc, sc->mly_status_mailbox + 5),
2586 MLY_GET_REG(sc, sc->mly_status_mailbox + 6),
2587 MLY_GET_REG(sc, sc->mly_status_mailbox + 7));
2588 mly_printf(sc, " %04x %08x\n",
2589 MLY_GET_REG2(sc, sc->mly_status_mailbox),
2590 MLY_GET_REG4(sc, sc->mly_status_mailbox + 4));
2591 }
2592
2593 struct mly_softc *mly_softc0 = NULL;
2594 void
mly_printstate0(void)2595 mly_printstate0(void)
2596 {
2597 if (mly_softc0 != NULL)
2598 mly_printstate(mly_softc0);
2599 }
2600
2601 /********************************************************************************
2602 * Print a command
2603 */
2604 static void
mly_print_command(struct mly_command * mc)2605 mly_print_command(struct mly_command *mc)
2606 {
2607 struct mly_softc *sc = mc->mc_sc;
2608
2609 mly_printf(sc, "COMMAND @ %p\n", mc);
2610 mly_printf(sc, " slot %d\n", mc->mc_slot);
2611 mly_printf(sc, " status 0x%x\n", mc->mc_status);
2612 mly_printf(sc, " sense len %d\n", mc->mc_sense);
2613 mly_printf(sc, " resid %d\n", mc->mc_resid);
2614 mly_printf(sc, " packet %p/0x%llx\n", mc->mc_packet, mc->mc_packetphys);
2615 if (mc->mc_packet != NULL)
2616 mly_print_packet(mc);
2617 mly_printf(sc, " data %p/%d\n", mc->mc_data, mc->mc_length);
2618 mly_printf(sc, " flags %b\n", mc->mc_flags, "\20\1busy\2complete\3slotted\4mapped\5datain\6dataout\n");
2619 mly_printf(sc, " complete %p\n", mc->mc_complete);
2620 mly_printf(sc, " private %p\n", mc->mc_private);
2621 }
2622
2623 /********************************************************************************
2624 * Print a command packet
2625 */
2626 static void
mly_print_packet(struct mly_command * mc)2627 mly_print_packet(struct mly_command *mc)
2628 {
2629 struct mly_softc *sc = mc->mc_sc;
2630 struct mly_command_generic *ge = (struct mly_command_generic *)mc->mc_packet;
2631 struct mly_command_scsi_small *ss = (struct mly_command_scsi_small *)mc->mc_packet;
2632 struct mly_command_scsi_large *sl = (struct mly_command_scsi_large *)mc->mc_packet;
2633 struct mly_command_ioctl *io = (struct mly_command_ioctl *)mc->mc_packet;
2634 int transfer;
2635
2636 mly_printf(sc, " command_id %d\n", ge->command_id);
2637 mly_printf(sc, " opcode %d\n", ge->opcode);
2638 mly_printf(sc, " command_control fua %d dpo %d est %d dd %s nas %d ddis %d\n",
2639 ge->command_control.force_unit_access,
2640 ge->command_control.disable_page_out,
2641 ge->command_control.extended_sg_table,
2642 (ge->command_control.data_direction == MLY_CCB_WRITE) ? "WRITE" : "READ",
2643 ge->command_control.no_auto_sense,
2644 ge->command_control.disable_disconnect);
2645 mly_printf(sc, " data_size %d\n", ge->data_size);
2646 mly_printf(sc, " sense_buffer_address 0x%llx\n", ge->sense_buffer_address);
2647 mly_printf(sc, " lun %d\n", ge->addr.phys.lun);
2648 mly_printf(sc, " target %d\n", ge->addr.phys.target);
2649 mly_printf(sc, " channel %d\n", ge->addr.phys.channel);
2650 mly_printf(sc, " logical device %d\n", ge->addr.log.logdev);
2651 mly_printf(sc, " controller %d\n", ge->addr.phys.controller);
2652 mly_printf(sc, " timeout %d %s\n",
2653 ge->timeout.value,
2654 (ge->timeout.scale == MLY_TIMEOUT_SECONDS) ? "seconds" :
2655 ((ge->timeout.scale == MLY_TIMEOUT_MINUTES) ? "minutes" : "hours"));
2656 mly_printf(sc, " maximum_sense_size %d\n", ge->maximum_sense_size);
2657 switch(ge->opcode) {
2658 case MDACMD_SCSIPT:
2659 case MDACMD_SCSI:
2660 mly_printf(sc, " cdb length %d\n", ss->cdb_length);
2661 mly_printf(sc, " cdb %*D\n", ss->cdb_length, ss->cdb, " ");
2662 transfer = 1;
2663 break;
2664 case MDACMD_SCSILC:
2665 case MDACMD_SCSILCPT:
2666 mly_printf(sc, " cdb length %d\n", sl->cdb_length);
2667 mly_printf(sc, " cdb 0x%llx\n", sl->cdb_physaddr);
2668 transfer = 1;
2669 break;
2670 case MDACMD_IOCTL:
2671 mly_printf(sc, " sub_ioctl 0x%x\n", io->sub_ioctl);
2672 switch(io->sub_ioctl) {
2673 case MDACIOCTL_SETMEMORYMAILBOX:
2674 mly_printf(sc, " health_buffer_size %d\n",
2675 io->param.setmemorymailbox.health_buffer_size);
2676 mly_printf(sc, " health_buffer_phys 0x%llx\n",
2677 io->param.setmemorymailbox.health_buffer_physaddr);
2678 mly_printf(sc, " command_mailbox 0x%llx\n",
2679 io->param.setmemorymailbox.command_mailbox_physaddr);
2680 mly_printf(sc, " status_mailbox 0x%llx\n",
2681 io->param.setmemorymailbox.status_mailbox_physaddr);
2682 transfer = 0;
2683 break;
2684
2685 case MDACIOCTL_SETREALTIMECLOCK:
2686 case MDACIOCTL_GETHEALTHSTATUS:
2687 case MDACIOCTL_GETCONTROLLERINFO:
2688 case MDACIOCTL_GETLOGDEVINFOVALID:
2689 case MDACIOCTL_GETPHYSDEVINFOVALID:
2690 case MDACIOCTL_GETPHYSDEVSTATISTICS:
2691 case MDACIOCTL_GETLOGDEVSTATISTICS:
2692 case MDACIOCTL_GETCONTROLLERSTATISTICS:
2693 case MDACIOCTL_GETBDT_FOR_SYSDRIVE:
2694 case MDACIOCTL_CREATENEWCONF:
2695 case MDACIOCTL_ADDNEWCONF:
2696 case MDACIOCTL_GETDEVCONFINFO:
2697 case MDACIOCTL_GETFREESPACELIST:
2698 case MDACIOCTL_MORE:
2699 case MDACIOCTL_SETPHYSDEVPARAMETER:
2700 case MDACIOCTL_GETPHYSDEVPARAMETER:
2701 case MDACIOCTL_GETLOGDEVPARAMETER:
2702 case MDACIOCTL_SETLOGDEVPARAMETER:
2703 mly_printf(sc, " param %10D\n", io->param.data.param, " ");
2704 transfer = 1;
2705 break;
2706
2707 case MDACIOCTL_GETEVENT:
2708 mly_printf(sc, " event %d\n",
2709 io->param.getevent.sequence_number_low + ((u_int32_t)io->addr.log.logdev << 16));
2710 transfer = 1;
2711 break;
2712
2713 case MDACIOCTL_SETRAIDDEVSTATE:
2714 mly_printf(sc, " state %d\n", io->param.setraiddevstate.state);
2715 transfer = 0;
2716 break;
2717
2718 case MDACIOCTL_XLATEPHYSDEVTORAIDDEV:
2719 mly_printf(sc, " raid_device %d\n", io->param.xlatephysdevtoraiddev.raid_device);
2720 mly_printf(sc, " controller %d\n", io->param.xlatephysdevtoraiddev.controller);
2721 mly_printf(sc, " channel %d\n", io->param.xlatephysdevtoraiddev.channel);
2722 mly_printf(sc, " target %d\n", io->param.xlatephysdevtoraiddev.target);
2723 mly_printf(sc, " lun %d\n", io->param.xlatephysdevtoraiddev.lun);
2724 transfer = 0;
2725 break;
2726
2727 case MDACIOCTL_GETGROUPCONFINFO:
2728 mly_printf(sc, " group %d\n", io->param.getgroupconfinfo.group);
2729 transfer = 1;
2730 break;
2731
2732 case MDACIOCTL_GET_SUBSYSTEM_DATA:
2733 case MDACIOCTL_SET_SUBSYSTEM_DATA:
2734 case MDACIOCTL_STARTDISOCVERY:
2735 case MDACIOCTL_INITPHYSDEVSTART:
2736 case MDACIOCTL_INITPHYSDEVSTOP:
2737 case MDACIOCTL_INITRAIDDEVSTART:
2738 case MDACIOCTL_INITRAIDDEVSTOP:
2739 case MDACIOCTL_REBUILDRAIDDEVSTART:
2740 case MDACIOCTL_REBUILDRAIDDEVSTOP:
2741 case MDACIOCTL_MAKECONSISTENTDATASTART:
2742 case MDACIOCTL_MAKECONSISTENTDATASTOP:
2743 case MDACIOCTL_CONSISTENCYCHECKSTART:
2744 case MDACIOCTL_CONSISTENCYCHECKSTOP:
2745 case MDACIOCTL_RESETDEVICE:
2746 case MDACIOCTL_FLUSHDEVICEDATA:
2747 case MDACIOCTL_PAUSEDEVICE:
2748 case MDACIOCTL_UNPAUSEDEVICE:
2749 case MDACIOCTL_LOCATEDEVICE:
2750 case MDACIOCTL_SETMASTERSLAVEMODE:
2751 case MDACIOCTL_DELETERAIDDEV:
2752 case MDACIOCTL_REPLACEINTERNALDEV:
2753 case MDACIOCTL_CLEARCONF:
2754 case MDACIOCTL_GETCONTROLLERPARAMETER:
2755 case MDACIOCTL_SETCONTRLLERPARAMETER:
2756 case MDACIOCTL_CLEARCONFSUSPMODE:
2757 case MDACIOCTL_STOREIMAGE:
2758 case MDACIOCTL_READIMAGE:
2759 case MDACIOCTL_FLASHIMAGES:
2760 case MDACIOCTL_RENAMERAIDDEV:
2761 default: /* no idea what to print */
2762 transfer = 0;
2763 break;
2764 }
2765 break;
2766
2767 case MDACMD_IOCTLCHECK:
2768 case MDACMD_MEMCOPY:
2769 default:
2770 transfer = 0;
2771 break; /* print nothing */
2772 }
2773 if (transfer) {
2774 if (ge->command_control.extended_sg_table) {
2775 mly_printf(sc, " sg table 0x%llx/%d\n",
2776 ge->transfer.indirect.table_physaddr[0], ge->transfer.indirect.entries[0]);
2777 } else {
2778 mly_printf(sc, " 0000 0x%llx/%lld\n",
2779 ge->transfer.direct.sg[0].physaddr, ge->transfer.direct.sg[0].length);
2780 mly_printf(sc, " 0001 0x%llx/%lld\n",
2781 ge->transfer.direct.sg[1].physaddr, ge->transfer.direct.sg[1].length);
2782 }
2783 }
2784 }
2785
2786 /********************************************************************************
2787 * Panic in a slightly informative fashion
2788 */
2789 static void
mly_panic(struct mly_softc * sc,char * reason)2790 mly_panic(struct mly_softc *sc, char *reason)
2791 {
2792 mly_printstate(sc);
2793 panic(reason);
2794 }
2795
2796 /********************************************************************************
2797 * Print queue statistics, callable from DDB.
2798 */
2799 void
mly_print_controller(int controller)2800 mly_print_controller(int controller)
2801 {
2802 struct mly_softc *sc;
2803
2804 if ((sc = devclass_get_softc(devclass_find("mly"), controller)) == NULL) {
2805 printf("mly: controller %d invalid\n", controller);
2806 } else {
2807 device_printf(sc->mly_dev, "queue curr max\n");
2808 device_printf(sc->mly_dev, "free %04d/%04d\n",
2809 sc->mly_qstat[MLYQ_FREE].q_length, sc->mly_qstat[MLYQ_FREE].q_max);
2810 device_printf(sc->mly_dev, "busy %04d/%04d\n",
2811 sc->mly_qstat[MLYQ_BUSY].q_length, sc->mly_qstat[MLYQ_BUSY].q_max);
2812 device_printf(sc->mly_dev, "complete %04d/%04d\n",
2813 sc->mly_qstat[MLYQ_COMPLETE].q_length, sc->mly_qstat[MLYQ_COMPLETE].q_max);
2814 }
2815 }
2816 #endif
2817
2818
2819 /********************************************************************************
2820 ********************************************************************************
2821 Control device interface
2822 ********************************************************************************
2823 ********************************************************************************/
2824
2825 /********************************************************************************
2826 * Accept an open operation on the control device.
2827 */
2828 static int
mly_user_open(struct cdev * dev,int flags,int fmt,struct thread * td)2829 mly_user_open(struct cdev *dev, int flags, int fmt, struct thread *td)
2830 {
2831 struct mly_softc *sc = dev->si_drv1;
2832
2833 MLY_LOCK(sc);
2834 sc->mly_state |= MLY_STATE_OPEN;
2835 MLY_UNLOCK(sc);
2836 return(0);
2837 }
2838
2839 /********************************************************************************
2840 * Accept the last close on the control device.
2841 */
2842 static int
mly_user_close(struct cdev * dev,int flags,int fmt,struct thread * td)2843 mly_user_close(struct cdev *dev, int flags, int fmt, struct thread *td)
2844 {
2845 struct mly_softc *sc = dev->si_drv1;
2846
2847 MLY_LOCK(sc);
2848 sc->mly_state &= ~MLY_STATE_OPEN;
2849 MLY_UNLOCK(sc);
2850 return (0);
2851 }
2852
2853 /********************************************************************************
2854 * Handle controller-specific control operations.
2855 */
2856 static int
mly_user_ioctl(struct cdev * dev,u_long cmd,caddr_t addr,int32_t flag,struct thread * td)2857 mly_user_ioctl(struct cdev *dev, u_long cmd, caddr_t addr,
2858 int32_t flag, struct thread *td)
2859 {
2860 struct mly_softc *sc = (struct mly_softc *)dev->si_drv1;
2861 struct mly_user_command *uc = (struct mly_user_command *)addr;
2862 struct mly_user_health *uh = (struct mly_user_health *)addr;
2863
2864 switch(cmd) {
2865 case MLYIO_COMMAND:
2866 return(mly_user_command(sc, uc));
2867 case MLYIO_HEALTH:
2868 return(mly_user_health(sc, uh));
2869 default:
2870 return(ENOIOCTL);
2871 }
2872 }
2873
2874 /********************************************************************************
2875 * Execute a command passed in from userspace.
2876 *
2877 * The control structure contains the actual command for the controller, as well
2878 * as the user-space data pointer and data size, and an optional sense buffer
2879 * size/pointer. On completion, the data size is adjusted to the command
2880 * residual, and the sense buffer size to the size of the returned sense data.
2881 *
2882 */
2883 static int
mly_user_command(struct mly_softc * sc,struct mly_user_command * uc)2884 mly_user_command(struct mly_softc *sc, struct mly_user_command *uc)
2885 {
2886 struct mly_command *mc;
2887 int error;
2888
2889 /* allocate a command */
2890 MLY_LOCK(sc);
2891 if (mly_alloc_command(sc, &mc)) {
2892 MLY_UNLOCK(sc);
2893 return (ENOMEM); /* XXX Linux version will wait for a command */
2894 }
2895 MLY_UNLOCK(sc);
2896
2897 /* handle data size/direction */
2898 mc->mc_length = (uc->DataTransferLength >= 0) ? uc->DataTransferLength : -uc->DataTransferLength;
2899 if (mc->mc_length > 0) {
2900 if ((mc->mc_data = malloc(mc->mc_length, M_DEVBUF, M_NOWAIT)) == NULL) {
2901 error = ENOMEM;
2902 goto out;
2903 }
2904 }
2905 if (uc->DataTransferLength > 0) {
2906 mc->mc_flags |= MLY_CMD_DATAIN;
2907 bzero(mc->mc_data, mc->mc_length);
2908 }
2909 if (uc->DataTransferLength < 0) {
2910 mc->mc_flags |= MLY_CMD_DATAOUT;
2911 if ((error = copyin(uc->DataTransferBuffer, mc->mc_data, mc->mc_length)) != 0)
2912 goto out;
2913 }
2914
2915 /* copy the controller command */
2916 bcopy(&uc->CommandMailbox, mc->mc_packet, sizeof(uc->CommandMailbox));
2917
2918 /* clear command completion handler so that we get woken up */
2919 mc->mc_complete = NULL;
2920
2921 /* execute the command */
2922 MLY_LOCK(sc);
2923 if ((error = mly_start(mc)) != 0) {
2924 MLY_UNLOCK(sc);
2925 goto out;
2926 }
2927 while (!(mc->mc_flags & MLY_CMD_COMPLETE))
2928 mtx_sleep(mc, &sc->mly_lock, PRIBIO, "mlyioctl", 0);
2929 MLY_UNLOCK(sc);
2930
2931 /* return the data to userspace */
2932 if (uc->DataTransferLength > 0)
2933 if ((error = copyout(mc->mc_data, uc->DataTransferBuffer, mc->mc_length)) != 0)
2934 goto out;
2935
2936 /* return the sense buffer to userspace */
2937 if ((uc->RequestSenseLength > 0) && (mc->mc_sense > 0)) {
2938 if ((error = copyout(mc->mc_packet, uc->RequestSenseBuffer,
2939 min(uc->RequestSenseLength, mc->mc_sense))) != 0)
2940 goto out;
2941 }
2942
2943 /* return command results to userspace (caller will copy out) */
2944 uc->DataTransferLength = mc->mc_resid;
2945 uc->RequestSenseLength = min(uc->RequestSenseLength, mc->mc_sense);
2946 uc->CommandStatus = mc->mc_status;
2947 error = 0;
2948
2949 out:
2950 if (mc->mc_data != NULL)
2951 free(mc->mc_data, M_DEVBUF);
2952 MLY_LOCK(sc);
2953 mly_release_command(mc);
2954 MLY_UNLOCK(sc);
2955 return(error);
2956 }
2957
2958 /********************************************************************************
2959 * Return health status to userspace. If the health change index in the user
2960 * structure does not match that currently exported by the controller, we
2961 * return the current status immediately. Otherwise, we block until either
2962 * interrupted or new status is delivered.
2963 */
2964 static int
mly_user_health(struct mly_softc * sc,struct mly_user_health * uh)2965 mly_user_health(struct mly_softc *sc, struct mly_user_health *uh)
2966 {
2967 struct mly_health_status mh;
2968 int error;
2969
2970 /* fetch the current health status from userspace */
2971 if ((error = copyin(uh->HealthStatusBuffer, &mh, sizeof(mh))) != 0)
2972 return(error);
2973
2974 /* spin waiting for a status update */
2975 MLY_LOCK(sc);
2976 error = EWOULDBLOCK;
2977 while ((error != 0) && (sc->mly_event_change == mh.change_counter))
2978 error = mtx_sleep(&sc->mly_event_change, &sc->mly_lock, PRIBIO | PCATCH,
2979 "mlyhealth", 0);
2980 mh = sc->mly_mmbox->mmm_health.status;
2981 MLY_UNLOCK(sc);
2982
2983 /* copy the controller's health status buffer out */
2984 error = copyout(&mh, uh->HealthStatusBuffer, sizeof(mh));
2985 return(error);
2986 }
2987
2988 #ifdef MLY_DEBUG
2989 static void
mly_timeout(void * arg)2990 mly_timeout(void *arg)
2991 {
2992 struct mly_softc *sc;
2993 struct mly_command *mc;
2994 int deadline;
2995
2996 sc = arg;
2997 MLY_ASSERT_LOCKED(sc);
2998 deadline = time_second - MLY_CMD_TIMEOUT;
2999 TAILQ_FOREACH(mc, &sc->mly_busy, mc_link) {
3000 if ((mc->mc_timestamp < deadline)) {
3001 device_printf(sc->mly_dev,
3002 "COMMAND %p TIMEOUT AFTER %d SECONDS\n", mc,
3003 (int)(time_second - mc->mc_timestamp));
3004 }
3005 }
3006
3007 callout_reset(&sc->mly_timeout, MLY_CMD_TIMEOUT * hz, mly_timeout, sc);
3008 }
3009 #endif
3010