xref: /freebsd-12.1/sys/dev/mly/mly.c (revision 3b27d79c)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2000, 2001 Michael Smith
5  * Copyright (c) 2000 BSDi
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  *
29  *	$FreeBSD$
30  */
31 
32 #include <sys/param.h>
33 #include <sys/systm.h>
34 #include <sys/malloc.h>
35 #include <sys/kernel.h>
36 #include <sys/bus.h>
37 #include <sys/conf.h>
38 #include <sys/ctype.h>
39 #include <sys/ioccom.h>
40 #include <sys/stat.h>
41 
42 #include <machine/bus.h>
43 #include <machine/resource.h>
44 #include <sys/rman.h>
45 
46 #include <cam/cam.h>
47 #include <cam/cam_ccb.h>
48 #include <cam/cam_periph.h>
49 #include <cam/cam_sim.h>
50 #include <cam/cam_xpt_sim.h>
51 #include <cam/scsi/scsi_all.h>
52 #include <cam/scsi/scsi_message.h>
53 
54 #include <dev/pci/pcireg.h>
55 #include <dev/pci/pcivar.h>
56 
57 #include <dev/mly/mlyreg.h>
58 #include <dev/mly/mlyio.h>
59 #include <dev/mly/mlyvar.h>
60 #include <dev/mly/mly_tables.h>
61 
62 static int	mly_probe(device_t dev);
63 static int	mly_attach(device_t dev);
64 static int	mly_pci_attach(struct mly_softc *sc);
65 static int	mly_detach(device_t dev);
66 static int	mly_shutdown(device_t dev);
67 static void	mly_intr(void *arg);
68 
69 static int	mly_sg_map(struct mly_softc *sc);
70 static void	mly_sg_map_helper(void *arg, bus_dma_segment_t *segs, int nseg, int error);
71 static int	mly_mmbox_map(struct mly_softc *sc);
72 static void	mly_mmbox_map_helper(void *arg, bus_dma_segment_t *segs, int nseg, int error);
73 static void	mly_free(struct mly_softc *sc);
74 
75 static int	mly_get_controllerinfo(struct mly_softc *sc);
76 static void	mly_scan_devices(struct mly_softc *sc);
77 static void	mly_rescan_btl(struct mly_softc *sc, int bus, int target);
78 static void	mly_complete_rescan(struct mly_command *mc);
79 static int	mly_get_eventstatus(struct mly_softc *sc);
80 static int	mly_enable_mmbox(struct mly_softc *sc);
81 static int	mly_flush(struct mly_softc *sc);
82 static int	mly_ioctl(struct mly_softc *sc, struct mly_command_ioctl *ioctl, void **data,
83 			  size_t datasize, u_int8_t *status, void *sense_buffer, size_t *sense_length);
84 static void	mly_check_event(struct mly_softc *sc);
85 static void	mly_fetch_event(struct mly_softc *sc);
86 static void	mly_complete_event(struct mly_command *mc);
87 static void	mly_process_event(struct mly_softc *sc, struct mly_event *me);
88 static void	mly_periodic(void *data);
89 
90 static int	mly_immediate_command(struct mly_command *mc);
91 static int	mly_start(struct mly_command *mc);
92 static void	mly_done(struct mly_softc *sc);
93 static void	mly_complete(struct mly_softc *sc);
94 static void	mly_complete_handler(void *context, int pending);
95 
96 static int	mly_alloc_command(struct mly_softc *sc, struct mly_command **mcp);
97 static void	mly_release_command(struct mly_command *mc);
98 static void	mly_alloc_commands_map(void *arg, bus_dma_segment_t *segs, int nseg, int error);
99 static int	mly_alloc_commands(struct mly_softc *sc);
100 static void	mly_release_commands(struct mly_softc *sc);
101 static void	mly_map_command(struct mly_command *mc);
102 static void	mly_unmap_command(struct mly_command *mc);
103 
104 static int	mly_cam_attach(struct mly_softc *sc);
105 static void	mly_cam_detach(struct mly_softc *sc);
106 static void	mly_cam_rescan_btl(struct mly_softc *sc, int bus, int target);
107 static void	mly_cam_action(struct cam_sim *sim, union ccb *ccb);
108 static int	mly_cam_action_io(struct cam_sim *sim, struct ccb_scsiio *csio);
109 static void	mly_cam_poll(struct cam_sim *sim);
110 static void	mly_cam_complete(struct mly_command *mc);
111 static struct cam_periph *mly_find_periph(struct mly_softc *sc, int bus, int target);
112 static int	mly_name_device(struct mly_softc *sc, int bus, int target);
113 
114 static int	mly_fwhandshake(struct mly_softc *sc);
115 
116 static void	mly_describe_controller(struct mly_softc *sc);
117 #ifdef MLY_DEBUG
118 static void	mly_printstate(struct mly_softc *sc);
119 static void	mly_print_command(struct mly_command *mc);
120 static void	mly_print_packet(struct mly_command *mc);
121 static void	mly_panic(struct mly_softc *sc, char *reason);
122 static void	mly_timeout(void *arg);
123 #endif
124 void		mly_print_controller(int controller);
125 
126 
127 static d_open_t		mly_user_open;
128 static d_close_t	mly_user_close;
129 static d_ioctl_t	mly_user_ioctl;
130 static int	mly_user_command(struct mly_softc *sc, struct mly_user_command *uc);
131 static int	mly_user_health(struct mly_softc *sc, struct mly_user_health *uh);
132 
133 #define MLY_CMD_TIMEOUT		20
134 
135 static device_method_t mly_methods[] = {
136     /* Device interface */
137     DEVMETHOD(device_probe,	mly_probe),
138     DEVMETHOD(device_attach,	mly_attach),
139     DEVMETHOD(device_detach,	mly_detach),
140     DEVMETHOD(device_shutdown,	mly_shutdown),
141     { 0, 0 }
142 };
143 
144 static driver_t mly_pci_driver = {
145 	"mly",
146 	mly_methods,
147 	sizeof(struct mly_softc)
148 };
149 
150 static devclass_t	mly_devclass;
151 DRIVER_MODULE(mly, pci, mly_pci_driver, mly_devclass, 0, 0);
152 MODULE_DEPEND(mly, pci, 1, 1, 1);
153 MODULE_DEPEND(mly, cam, 1, 1, 1);
154 
155 static struct cdevsw mly_cdevsw = {
156 	.d_version =	D_VERSION,
157 	.d_open =	mly_user_open,
158 	.d_close =	mly_user_close,
159 	.d_ioctl =	mly_user_ioctl,
160 	.d_name =	"mly",
161 };
162 
163 /********************************************************************************
164  ********************************************************************************
165                                                                  Device Interface
166  ********************************************************************************
167  ********************************************************************************/
168 
169 static struct mly_ident
170 {
171     u_int16_t		vendor;
172     u_int16_t		device;
173     u_int16_t		subvendor;
174     u_int16_t		subdevice;
175     int			hwif;
176     char		*desc;
177 } mly_identifiers[] = {
178     {0x1069, 0xba56, 0x1069, 0x0040, MLY_HWIF_STRONGARM, "Mylex eXtremeRAID 2000"},
179     {0x1069, 0xba56, 0x1069, 0x0030, MLY_HWIF_STRONGARM, "Mylex eXtremeRAID 3000"},
180     {0x1069, 0x0050, 0x1069, 0x0050, MLY_HWIF_I960RX,    "Mylex AcceleRAID 352"},
181     {0x1069, 0x0050, 0x1069, 0x0052, MLY_HWIF_I960RX,    "Mylex AcceleRAID 170"},
182     {0x1069, 0x0050, 0x1069, 0x0054, MLY_HWIF_I960RX,    "Mylex AcceleRAID 160"},
183     {0, 0, 0, 0, 0, 0}
184 };
185 
186 /********************************************************************************
187  * Compare the provided PCI device with the list we support.
188  */
189 static int
mly_probe(device_t dev)190 mly_probe(device_t dev)
191 {
192     struct mly_ident	*m;
193 
194     debug_called(1);
195 
196     for (m = mly_identifiers; m->vendor != 0; m++) {
197 	if ((m->vendor == pci_get_vendor(dev)) &&
198 	    (m->device == pci_get_device(dev)) &&
199 	    ((m->subvendor == 0) || ((m->subvendor == pci_get_subvendor(dev)) &&
200 				     (m->subdevice == pci_get_subdevice(dev))))) {
201 
202 	    device_set_desc(dev, m->desc);
203 	    return(BUS_PROBE_DEFAULT);	/* allow room to be overridden */
204 	}
205     }
206     return(ENXIO);
207 }
208 
209 /********************************************************************************
210  * Initialise the controller and softc
211  */
212 static int
mly_attach(device_t dev)213 mly_attach(device_t dev)
214 {
215     struct mly_softc	*sc = device_get_softc(dev);
216     int			error;
217 
218     debug_called(1);
219 
220     sc->mly_dev = dev;
221     mtx_init(&sc->mly_lock, "mly", NULL, MTX_DEF);
222     callout_init_mtx(&sc->mly_periodic, &sc->mly_lock, 0);
223 
224 #ifdef MLY_DEBUG
225     callout_init_mtx(&sc->mly_timeout, &sc->mly_lock, 0);
226     if (device_get_unit(sc->mly_dev) == 0)
227 	mly_softc0 = sc;
228 #endif
229 
230     /*
231      * Do PCI-specific initialisation.
232      */
233     if ((error = mly_pci_attach(sc)) != 0)
234 	goto out;
235 
236     /*
237      * Initialise per-controller queues.
238      */
239     mly_initq_free(sc);
240     mly_initq_busy(sc);
241     mly_initq_complete(sc);
242 
243     /*
244      * Initialise command-completion task.
245      */
246     TASK_INIT(&sc->mly_task_complete, 0, mly_complete_handler, sc);
247 
248     /* disable interrupts before we start talking to the controller */
249     MLY_MASK_INTERRUPTS(sc);
250 
251     /*
252      * Wait for the controller to come ready, handshake with the firmware if required.
253      * This is typically only necessary on platforms where the controller BIOS does not
254      * run.
255      */
256     if ((error = mly_fwhandshake(sc)))
257 	goto out;
258 
259     /*
260      * Allocate initial command buffers.
261      */
262     if ((error = mly_alloc_commands(sc)))
263 	goto out;
264 
265     /*
266      * Obtain controller feature information
267      */
268     MLY_LOCK(sc);
269     error = mly_get_controllerinfo(sc);
270     MLY_UNLOCK(sc);
271     if (error)
272 	goto out;
273 
274     /*
275      * Reallocate command buffers now we know how many we want.
276      */
277     mly_release_commands(sc);
278     if ((error = mly_alloc_commands(sc)))
279 	goto out;
280 
281     /*
282      * Get the current event counter for health purposes, populate the initial
283      * health status buffer.
284      */
285     MLY_LOCK(sc);
286     error = mly_get_eventstatus(sc);
287 
288     /*
289      * Enable memory-mailbox mode.
290      */
291     if (error == 0)
292 	error = mly_enable_mmbox(sc);
293     MLY_UNLOCK(sc);
294     if (error)
295 	goto out;
296 
297     /*
298      * Attach to CAM.
299      */
300     if ((error = mly_cam_attach(sc)))
301 	goto out;
302 
303     /*
304      * Print a little information about the controller
305      */
306     mly_describe_controller(sc);
307 
308     /*
309      * Mark all attached devices for rescan.
310      */
311     MLY_LOCK(sc);
312     mly_scan_devices(sc);
313 
314     /*
315      * Instigate the first status poll immediately.  Rescan completions won't
316      * happen until interrupts are enabled, which should still be before
317      * the SCSI subsystem gets to us, courtesy of the "SCSI settling delay".
318      */
319     mly_periodic((void *)sc);
320     MLY_UNLOCK(sc);
321 
322     /*
323      * Create the control device.
324      */
325     sc->mly_dev_t = make_dev(&mly_cdevsw, 0, UID_ROOT, GID_OPERATOR,
326 			     S_IRUSR | S_IWUSR, "mly%d", device_get_unit(sc->mly_dev));
327     sc->mly_dev_t->si_drv1 = sc;
328 
329     /* enable interrupts now */
330     MLY_UNMASK_INTERRUPTS(sc);
331 
332 #ifdef MLY_DEBUG
333     callout_reset(&sc->mly_timeout, MLY_CMD_TIMEOUT * hz, mly_timeout, sc);
334 #endif
335 
336  out:
337     if (error != 0)
338 	mly_free(sc);
339     return(error);
340 }
341 
342 /********************************************************************************
343  * Perform PCI-specific initialisation.
344  */
345 static int
mly_pci_attach(struct mly_softc * sc)346 mly_pci_attach(struct mly_softc *sc)
347 {
348     int			i, error;
349 
350     debug_called(1);
351 
352     /* assume failure is 'not configured' */
353     error = ENXIO;
354 
355     /*
356      * Verify that the adapter is correctly set up in PCI space.
357      */
358     pci_enable_busmaster(sc->mly_dev);
359 
360     /*
361      * Allocate the PCI register window.
362      */
363     sc->mly_regs_rid = PCIR_BAR(0);	/* first base address register */
364     if ((sc->mly_regs_resource = bus_alloc_resource_any(sc->mly_dev,
365 	    SYS_RES_MEMORY, &sc->mly_regs_rid, RF_ACTIVE)) == NULL) {
366 	mly_printf(sc, "can't allocate register window\n");
367 	goto fail;
368     }
369 
370     /*
371      * Allocate and connect our interrupt.
372      */
373     sc->mly_irq_rid = 0;
374     if ((sc->mly_irq = bus_alloc_resource_any(sc->mly_dev, SYS_RES_IRQ,
375 		    &sc->mly_irq_rid, RF_SHAREABLE | RF_ACTIVE)) == NULL) {
376 	mly_printf(sc, "can't allocate interrupt\n");
377 	goto fail;
378     }
379     if (bus_setup_intr(sc->mly_dev, sc->mly_irq, INTR_TYPE_CAM | INTR_ENTROPY | INTR_MPSAFE, NULL, mly_intr, sc, &sc->mly_intr)) {
380 	mly_printf(sc, "can't set up interrupt\n");
381 	goto fail;
382     }
383 
384     /* assume failure is 'out of memory' */
385     error = ENOMEM;
386 
387     /*
388      * Allocate the parent bus DMA tag appropriate for our PCI interface.
389      *
390      * Note that all of these controllers are 64-bit capable.
391      */
392     if (bus_dma_tag_create(bus_get_dma_tag(sc->mly_dev),/* PCI parent */
393 			   1, 0, 			/* alignment, boundary */
394 			   BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
395 			   BUS_SPACE_MAXADDR, 		/* highaddr */
396 			   NULL, NULL, 			/* filter, filterarg */
397 			   BUS_SPACE_MAXSIZE_32BIT,	/* maxsize */
398 			   BUS_SPACE_UNRESTRICTED,	/* nsegments */
399 			   BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
400 			   BUS_DMA_ALLOCNOW,		/* flags */
401 			   NULL,			/* lockfunc */
402 			   NULL,			/* lockarg */
403 			   &sc->mly_parent_dmat)) {
404 	mly_printf(sc, "can't allocate parent DMA tag\n");
405 	goto fail;
406     }
407 
408     /*
409      * Create DMA tag for mapping buffers into controller-addressable space.
410      */
411     if (bus_dma_tag_create(sc->mly_parent_dmat, 	/* parent */
412 			   1, 0, 			/* alignment, boundary */
413 			   BUS_SPACE_MAXADDR,		/* lowaddr */
414 			   BUS_SPACE_MAXADDR, 		/* highaddr */
415 			   NULL, NULL, 			/* filter, filterarg */
416 			   DFLTPHYS,			/* maxsize */
417 			   MLY_MAX_SGENTRIES,		/* nsegments */
418 			   BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
419 			   0,				/* flags */
420 			   busdma_lock_mutex,		/* lockfunc */
421 			   &sc->mly_lock,		/* lockarg */
422 			   &sc->mly_buffer_dmat)) {
423 	mly_printf(sc, "can't allocate buffer DMA tag\n");
424 	goto fail;
425     }
426 
427     /*
428      * Initialise the DMA tag for command packets.
429      */
430     if (bus_dma_tag_create(sc->mly_parent_dmat,		/* parent */
431 			   1, 0, 			/* alignment, boundary */
432 			   BUS_SPACE_MAXADDR,		/* lowaddr */
433 			   BUS_SPACE_MAXADDR, 		/* highaddr */
434 			   NULL, NULL, 			/* filter, filterarg */
435 			   sizeof(union mly_command_packet) * MLY_MAX_COMMANDS, 1,	/* maxsize, nsegments */
436 			   BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
437 			   BUS_DMA_ALLOCNOW,		/* flags */
438 			   NULL, NULL,			/* lockfunc, lockarg */
439 			   &sc->mly_packet_dmat)) {
440 	mly_printf(sc, "can't allocate command packet DMA tag\n");
441 	goto fail;
442     }
443 
444     /*
445      * Detect the hardware interface version
446      */
447     for (i = 0; mly_identifiers[i].vendor != 0; i++) {
448 	if ((mly_identifiers[i].vendor == pci_get_vendor(sc->mly_dev)) &&
449 	    (mly_identifiers[i].device == pci_get_device(sc->mly_dev))) {
450 	    sc->mly_hwif = mly_identifiers[i].hwif;
451 	    switch(sc->mly_hwif) {
452 	    case MLY_HWIF_I960RX:
453 		debug(1, "set hardware up for i960RX");
454 		sc->mly_doorbell_true = 0x00;
455 		sc->mly_command_mailbox =  MLY_I960RX_COMMAND_MAILBOX;
456 		sc->mly_status_mailbox =   MLY_I960RX_STATUS_MAILBOX;
457 		sc->mly_idbr =             MLY_I960RX_IDBR;
458 		sc->mly_odbr =             MLY_I960RX_ODBR;
459 		sc->mly_error_status =     MLY_I960RX_ERROR_STATUS;
460 		sc->mly_interrupt_status = MLY_I960RX_INTERRUPT_STATUS;
461 		sc->mly_interrupt_mask =   MLY_I960RX_INTERRUPT_MASK;
462 		break;
463 	    case MLY_HWIF_STRONGARM:
464 		debug(1, "set hardware up for StrongARM");
465 		sc->mly_doorbell_true = 0xff;		/* doorbell 'true' is 0 */
466 		sc->mly_command_mailbox =  MLY_STRONGARM_COMMAND_MAILBOX;
467 		sc->mly_status_mailbox =   MLY_STRONGARM_STATUS_MAILBOX;
468 		sc->mly_idbr =             MLY_STRONGARM_IDBR;
469 		sc->mly_odbr =             MLY_STRONGARM_ODBR;
470 		sc->mly_error_status =     MLY_STRONGARM_ERROR_STATUS;
471 		sc->mly_interrupt_status = MLY_STRONGARM_INTERRUPT_STATUS;
472 		sc->mly_interrupt_mask =   MLY_STRONGARM_INTERRUPT_MASK;
473 		break;
474 	    }
475 	    break;
476 	}
477     }
478 
479     /*
480      * Create the scatter/gather mappings.
481      */
482     if ((error = mly_sg_map(sc)))
483 	goto fail;
484 
485     /*
486      * Allocate and map the memory mailbox
487      */
488     if ((error = mly_mmbox_map(sc)))
489 	goto fail;
490 
491     error = 0;
492 
493 fail:
494     return(error);
495 }
496 
497 /********************************************************************************
498  * Shut the controller down and detach all our resources.
499  */
500 static int
mly_detach(device_t dev)501 mly_detach(device_t dev)
502 {
503     int			error;
504 
505     if ((error = mly_shutdown(dev)) != 0)
506 	return(error);
507 
508     mly_free(device_get_softc(dev));
509     return(0);
510 }
511 
512 /********************************************************************************
513  * Bring the controller to a state where it can be safely left alone.
514  *
515  * Note that it should not be necessary to wait for any outstanding commands,
516  * as they should be completed prior to calling here.
517  *
518  * XXX this applies for I/O, but not status polls; we should beware of
519  *     the case where a status command is running while we detach.
520  */
521 static int
mly_shutdown(device_t dev)522 mly_shutdown(device_t dev)
523 {
524     struct mly_softc	*sc = device_get_softc(dev);
525 
526     debug_called(1);
527 
528     MLY_LOCK(sc);
529     if (sc->mly_state & MLY_STATE_OPEN) {
530 	MLY_UNLOCK(sc);
531 	return(EBUSY);
532     }
533 
534     /* kill the periodic event */
535     callout_stop(&sc->mly_periodic);
536 #ifdef MLY_DEBUG
537     callout_stop(&sc->mly_timeout);
538 #endif
539 
540     /* flush controller */
541     mly_printf(sc, "flushing cache...");
542     printf("%s\n", mly_flush(sc) ? "failed" : "done");
543 
544     MLY_MASK_INTERRUPTS(sc);
545     MLY_UNLOCK(sc);
546 
547     return(0);
548 }
549 
550 /*******************************************************************************
551  * Take an interrupt, or be poked by other code to look for interrupt-worthy
552  * status.
553  */
554 static void
mly_intr(void * arg)555 mly_intr(void *arg)
556 {
557     struct mly_softc	*sc = (struct mly_softc *)arg;
558 
559     debug_called(2);
560 
561     MLY_LOCK(sc);
562     mly_done(sc);
563     MLY_UNLOCK(sc);
564 };
565 
566 /********************************************************************************
567  ********************************************************************************
568                                                 Bus-dependant Resource Management
569  ********************************************************************************
570  ********************************************************************************/
571 
572 /********************************************************************************
573  * Allocate memory for the scatter/gather tables
574  */
575 static int
mly_sg_map(struct mly_softc * sc)576 mly_sg_map(struct mly_softc *sc)
577 {
578     size_t	segsize;
579 
580     debug_called(1);
581 
582     /*
583      * Create a single tag describing a region large enough to hold all of
584      * the s/g lists we will need.
585      */
586     segsize = sizeof(struct mly_sg_entry) * MLY_MAX_COMMANDS *MLY_MAX_SGENTRIES;
587     if (bus_dma_tag_create(sc->mly_parent_dmat,		/* parent */
588 			   1, 0, 			/* alignment,boundary */
589 			   BUS_SPACE_MAXADDR,		/* lowaddr */
590 			   BUS_SPACE_MAXADDR, 		/* highaddr */
591 			   NULL, NULL, 			/* filter, filterarg */
592 			   segsize, 1,			/* maxsize, nsegments */
593 			   BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
594 			   BUS_DMA_ALLOCNOW,		/* flags */
595 			   NULL, NULL,			/* lockfunc, lockarg */
596 			   &sc->mly_sg_dmat)) {
597 	mly_printf(sc, "can't allocate scatter/gather DMA tag\n");
598 	return(ENOMEM);
599     }
600 
601     /*
602      * Allocate enough s/g maps for all commands and permanently map them into
603      * controller-visible space.
604      *
605      * XXX this assumes we can get enough space for all the s/g maps in one
606      * contiguous slab.
607      */
608     if (bus_dmamem_alloc(sc->mly_sg_dmat, (void **)&sc->mly_sg_table,
609 			 BUS_DMA_NOWAIT, &sc->mly_sg_dmamap)) {
610 	mly_printf(sc, "can't allocate s/g table\n");
611 	return(ENOMEM);
612     }
613     if (bus_dmamap_load(sc->mly_sg_dmat, sc->mly_sg_dmamap, sc->mly_sg_table,
614 			segsize, mly_sg_map_helper, sc, BUS_DMA_NOWAIT) != 0)
615 	return (ENOMEM);
616     return(0);
617 }
618 
619 /********************************************************************************
620  * Save the physical address of the base of the s/g table.
621  */
622 static void
mly_sg_map_helper(void * arg,bus_dma_segment_t * segs,int nseg,int error)623 mly_sg_map_helper(void *arg, bus_dma_segment_t *segs, int nseg, int error)
624 {
625     struct mly_softc	*sc = (struct mly_softc *)arg;
626 
627     debug_called(1);
628 
629     /* save base of s/g table's address in bus space */
630     sc->mly_sg_busaddr = segs->ds_addr;
631 }
632 
633 /********************************************************************************
634  * Allocate memory for the memory-mailbox interface
635  */
636 static int
mly_mmbox_map(struct mly_softc * sc)637 mly_mmbox_map(struct mly_softc *sc)
638 {
639 
640     /*
641      * Create a DMA tag for a single contiguous region large enough for the
642      * memory mailbox structure.
643      */
644     if (bus_dma_tag_create(sc->mly_parent_dmat,		/* parent */
645 			   1, 0, 			/* alignment,boundary */
646 			   BUS_SPACE_MAXADDR,		/* lowaddr */
647 			   BUS_SPACE_MAXADDR, 		/* highaddr */
648 			   NULL, NULL, 			/* filter, filterarg */
649 			   sizeof(struct mly_mmbox), 1,	/* maxsize, nsegments */
650 			   BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
651 			   BUS_DMA_ALLOCNOW,		/* flags */
652 			   NULL, NULL,			/* lockfunc, lockarg */
653 			   &sc->mly_mmbox_dmat)) {
654 	mly_printf(sc, "can't allocate memory mailbox DMA tag\n");
655 	return(ENOMEM);
656     }
657 
658     /*
659      * Allocate the buffer
660      */
661     if (bus_dmamem_alloc(sc->mly_mmbox_dmat, (void **)&sc->mly_mmbox, BUS_DMA_NOWAIT, &sc->mly_mmbox_dmamap)) {
662 	mly_printf(sc, "can't allocate memory mailbox\n");
663 	return(ENOMEM);
664     }
665     if (bus_dmamap_load(sc->mly_mmbox_dmat, sc->mly_mmbox_dmamap, sc->mly_mmbox,
666 			sizeof(struct mly_mmbox), mly_mmbox_map_helper, sc,
667 			BUS_DMA_NOWAIT) != 0)
668 	return (ENOMEM);
669     bzero(sc->mly_mmbox, sizeof(*sc->mly_mmbox));
670     return(0);
671 
672 }
673 
674 /********************************************************************************
675  * Save the physical address of the memory mailbox
676  */
677 static void
mly_mmbox_map_helper(void * arg,bus_dma_segment_t * segs,int nseg,int error)678 mly_mmbox_map_helper(void *arg, bus_dma_segment_t *segs, int nseg, int error)
679 {
680     struct mly_softc	*sc = (struct mly_softc *)arg;
681 
682     debug_called(1);
683 
684     sc->mly_mmbox_busaddr = segs->ds_addr;
685 }
686 
687 /********************************************************************************
688  * Free all of the resources associated with (sc)
689  *
690  * Should not be called if the controller is active.
691  */
692 static void
mly_free(struct mly_softc * sc)693 mly_free(struct mly_softc *sc)
694 {
695 
696     debug_called(1);
697 
698     /* Remove the management device */
699     destroy_dev(sc->mly_dev_t);
700 
701     if (sc->mly_intr)
702 	bus_teardown_intr(sc->mly_dev, sc->mly_irq, sc->mly_intr);
703     callout_drain(&sc->mly_periodic);
704 #ifdef MLY_DEBUG
705     callout_drain(&sc->mly_timeout);
706 #endif
707 
708     /* detach from CAM */
709     mly_cam_detach(sc);
710 
711     /* release command memory */
712     mly_release_commands(sc);
713 
714     /* throw away the controllerinfo structure */
715     if (sc->mly_controllerinfo != NULL)
716 	free(sc->mly_controllerinfo, M_DEVBUF);
717 
718     /* throw away the controllerparam structure */
719     if (sc->mly_controllerparam != NULL)
720 	free(sc->mly_controllerparam, M_DEVBUF);
721 
722     /* destroy data-transfer DMA tag */
723     if (sc->mly_buffer_dmat)
724 	bus_dma_tag_destroy(sc->mly_buffer_dmat);
725 
726     /* free and destroy DMA memory and tag for s/g lists */
727     if (sc->mly_sg_table) {
728 	bus_dmamap_unload(sc->mly_sg_dmat, sc->mly_sg_dmamap);
729 	bus_dmamem_free(sc->mly_sg_dmat, sc->mly_sg_table, sc->mly_sg_dmamap);
730     }
731     if (sc->mly_sg_dmat)
732 	bus_dma_tag_destroy(sc->mly_sg_dmat);
733 
734     /* free and destroy DMA memory and tag for memory mailbox */
735     if (sc->mly_mmbox) {
736 	bus_dmamap_unload(sc->mly_mmbox_dmat, sc->mly_mmbox_dmamap);
737 	bus_dmamem_free(sc->mly_mmbox_dmat, sc->mly_mmbox, sc->mly_mmbox_dmamap);
738     }
739     if (sc->mly_mmbox_dmat)
740 	bus_dma_tag_destroy(sc->mly_mmbox_dmat);
741 
742     /* disconnect the interrupt handler */
743     if (sc->mly_irq != NULL)
744 	bus_release_resource(sc->mly_dev, SYS_RES_IRQ, sc->mly_irq_rid, sc->mly_irq);
745 
746     /* destroy the parent DMA tag */
747     if (sc->mly_parent_dmat)
748 	bus_dma_tag_destroy(sc->mly_parent_dmat);
749 
750     /* release the register window mapping */
751     if (sc->mly_regs_resource != NULL)
752 	bus_release_resource(sc->mly_dev, SYS_RES_MEMORY, sc->mly_regs_rid, sc->mly_regs_resource);
753 
754     mtx_destroy(&sc->mly_lock);
755 }
756 
757 /********************************************************************************
758  ********************************************************************************
759                                                                  Command Wrappers
760  ********************************************************************************
761  ********************************************************************************/
762 
763 /********************************************************************************
764  * Fill in the mly_controllerinfo and mly_controllerparam fields in the softc.
765  */
766 static int
mly_get_controllerinfo(struct mly_softc * sc)767 mly_get_controllerinfo(struct mly_softc *sc)
768 {
769     struct mly_command_ioctl	mci;
770     u_int8_t			status;
771     int				error;
772 
773     debug_called(1);
774 
775     if (sc->mly_controllerinfo != NULL)
776 	free(sc->mly_controllerinfo, M_DEVBUF);
777 
778     /* build the getcontrollerinfo ioctl and send it */
779     bzero(&mci, sizeof(mci));
780     sc->mly_controllerinfo = NULL;
781     mci.sub_ioctl = MDACIOCTL_GETCONTROLLERINFO;
782     if ((error = mly_ioctl(sc, &mci, (void **)&sc->mly_controllerinfo, sizeof(*sc->mly_controllerinfo),
783 			   &status, NULL, NULL)))
784 	return(error);
785     if (status != 0)
786 	return(EIO);
787 
788     if (sc->mly_controllerparam != NULL)
789 	free(sc->mly_controllerparam, M_DEVBUF);
790 
791     /* build the getcontrollerparameter ioctl and send it */
792     bzero(&mci, sizeof(mci));
793     sc->mly_controllerparam = NULL;
794     mci.sub_ioctl = MDACIOCTL_GETCONTROLLERPARAMETER;
795     if ((error = mly_ioctl(sc, &mci, (void **)&sc->mly_controllerparam, sizeof(*sc->mly_controllerparam),
796 			   &status, NULL, NULL)))
797 	return(error);
798     if (status != 0)
799 	return(EIO);
800 
801     return(0);
802 }
803 
804 /********************************************************************************
805  * Schedule all possible devices for a rescan.
806  *
807  */
808 static void
mly_scan_devices(struct mly_softc * sc)809 mly_scan_devices(struct mly_softc *sc)
810 {
811     int		bus, target;
812 
813     debug_called(1);
814 
815     /*
816      * Clear any previous BTL information.
817      */
818     bzero(&sc->mly_btl, sizeof(sc->mly_btl));
819 
820     /*
821      * Mark all devices as requiring a rescan, and let the next
822      * periodic scan collect them.
823      */
824     for (bus = 0; bus < sc->mly_cam_channels; bus++)
825 	if (MLY_BUS_IS_VALID(sc, bus))
826 	    for (target = 0; target < MLY_MAX_TARGETS; target++)
827 		sc->mly_btl[bus][target].mb_flags = MLY_BTL_RESCAN;
828 
829 }
830 
831 /********************************************************************************
832  * Rescan a device, possibly as a consequence of getting an event which suggests
833  * that it may have changed.
834  *
835  * If we suffer resource starvation, we can abandon the rescan as we'll be
836  * retried.
837  */
838 static void
mly_rescan_btl(struct mly_softc * sc,int bus,int target)839 mly_rescan_btl(struct mly_softc *sc, int bus, int target)
840 {
841     struct mly_command		*mc;
842     struct mly_command_ioctl	*mci;
843 
844     debug_called(1);
845 
846     /* check that this bus is valid */
847     if (!MLY_BUS_IS_VALID(sc, bus))
848 	return;
849 
850     /* get a command */
851     if (mly_alloc_command(sc, &mc))
852 	return;
853 
854     /* set up the data buffer */
855     if ((mc->mc_data = malloc(sizeof(union mly_devinfo), M_DEVBUF, M_NOWAIT | M_ZERO)) == NULL) {
856 	mly_release_command(mc);
857 	return;
858     }
859     mc->mc_flags |= MLY_CMD_DATAIN;
860     mc->mc_complete = mly_complete_rescan;
861 
862     /*
863      * Build the ioctl.
864      */
865     mci = (struct mly_command_ioctl *)&mc->mc_packet->ioctl;
866     mci->opcode = MDACMD_IOCTL;
867     mci->addr.phys.controller = 0;
868     mci->timeout.value = 30;
869     mci->timeout.scale = MLY_TIMEOUT_SECONDS;
870     if (MLY_BUS_IS_VIRTUAL(sc, bus)) {
871 	mc->mc_length = mci->data_size = sizeof(struct mly_ioctl_getlogdevinfovalid);
872 	mci->sub_ioctl = MDACIOCTL_GETLOGDEVINFOVALID;
873 	mci->addr.log.logdev = MLY_LOGDEV_ID(sc, bus, target);
874 	debug(1, "logical device %d", mci->addr.log.logdev);
875     } else {
876 	mc->mc_length = mci->data_size = sizeof(struct mly_ioctl_getphysdevinfovalid);
877 	mci->sub_ioctl = MDACIOCTL_GETPHYSDEVINFOVALID;
878 	mci->addr.phys.lun = 0;
879 	mci->addr.phys.target = target;
880 	mci->addr.phys.channel = bus;
881 	debug(1, "physical device %d:%d", mci->addr.phys.channel, mci->addr.phys.target);
882     }
883 
884     /*
885      * Dispatch the command.  If we successfully send the command, clear the rescan
886      * bit.
887      */
888     if (mly_start(mc) != 0) {
889 	mly_release_command(mc);
890     } else {
891 	sc->mly_btl[bus][target].mb_flags &= ~MLY_BTL_RESCAN;	/* success */
892     }
893 }
894 
895 /********************************************************************************
896  * Handle the completion of a rescan operation
897  */
898 static void
mly_complete_rescan(struct mly_command * mc)899 mly_complete_rescan(struct mly_command *mc)
900 {
901     struct mly_softc				*sc = mc->mc_sc;
902     struct mly_ioctl_getlogdevinfovalid		*ldi;
903     struct mly_ioctl_getphysdevinfovalid	*pdi;
904     struct mly_command_ioctl			*mci;
905     struct mly_btl				btl, *btlp;
906     int						bus, target, rescan;
907 
908     debug_called(1);
909 
910     /*
911      * Recover the bus and target from the command.  We need these even in
912      * the case where we don't have a useful response.
913      */
914     mci = (struct mly_command_ioctl *)&mc->mc_packet->ioctl;
915     if (mci->sub_ioctl == MDACIOCTL_GETLOGDEVINFOVALID) {
916 	bus = MLY_LOGDEV_BUS(sc, mci->addr.log.logdev);
917 	target = MLY_LOGDEV_TARGET(sc, mci->addr.log.logdev);
918     } else {
919 	bus = mci->addr.phys.channel;
920 	target = mci->addr.phys.target;
921     }
922     /* XXX validate bus/target? */
923 
924     /* the default result is 'no device' */
925     bzero(&btl, sizeof(btl));
926 
927     /* if the rescan completed OK, we have possibly-new BTL data */
928     if (mc->mc_status == 0) {
929 	if (mc->mc_length == sizeof(*ldi)) {
930 	    ldi = (struct mly_ioctl_getlogdevinfovalid *)mc->mc_data;
931 	    if ((MLY_LOGDEV_BUS(sc, ldi->logical_device_number) != bus) ||
932 		(MLY_LOGDEV_TARGET(sc, ldi->logical_device_number) != target)) {
933 		mly_printf(sc, "WARNING: BTL rescan for %d:%d returned data for %d:%d instead\n",
934 			   bus, target, MLY_LOGDEV_BUS(sc, ldi->logical_device_number),
935 			   MLY_LOGDEV_TARGET(sc, ldi->logical_device_number));
936 		/* XXX what can we do about this? */
937 	    }
938 	    btl.mb_flags = MLY_BTL_LOGICAL;
939 	    btl.mb_type = ldi->raid_level;
940 	    btl.mb_state = ldi->state;
941 	    debug(1, "BTL rescan for %d returns %s, %s", ldi->logical_device_number,
942 		  mly_describe_code(mly_table_device_type, ldi->raid_level),
943 		  mly_describe_code(mly_table_device_state, ldi->state));
944 	} else if (mc->mc_length == sizeof(*pdi)) {
945 	    pdi = (struct mly_ioctl_getphysdevinfovalid *)mc->mc_data;
946 	    if ((pdi->channel != bus) || (pdi->target != target)) {
947 		mly_printf(sc, "WARNING: BTL rescan for %d:%d returned data for %d:%d instead\n",
948 			   bus, target, pdi->channel, pdi->target);
949 		/* XXX what can we do about this? */
950 	    }
951 	    btl.mb_flags = MLY_BTL_PHYSICAL;
952 	    btl.mb_type = MLY_DEVICE_TYPE_PHYSICAL;
953 	    btl.mb_state = pdi->state;
954 	    btl.mb_speed = pdi->speed;
955 	    btl.mb_width = pdi->width;
956 	    if (pdi->state != MLY_DEVICE_STATE_UNCONFIGURED)
957 		sc->mly_btl[bus][target].mb_flags |= MLY_BTL_PROTECTED;
958 	    debug(1, "BTL rescan for %d:%d returns %s", bus, target,
959 		  mly_describe_code(mly_table_device_state, pdi->state));
960 	} else {
961 	    mly_printf(sc, "BTL rescan result invalid\n");
962 	}
963     }
964 
965     free(mc->mc_data, M_DEVBUF);
966     mly_release_command(mc);
967 
968     /*
969      * Decide whether we need to rescan the device.
970      */
971     rescan = 0;
972 
973     /* device type changes (usually between 'nothing' and 'something') */
974     btlp = &sc->mly_btl[bus][target];
975     if (btl.mb_flags != btlp->mb_flags) {
976 	debug(1, "flags changed, rescanning");
977 	rescan = 1;
978     }
979 
980     /* XXX other reasons? */
981 
982     /*
983      * Update BTL information.
984      */
985     *btlp = btl;
986 
987     /*
988      * Perform CAM rescan if required.
989      */
990     if (rescan)
991 	mly_cam_rescan_btl(sc, bus, target);
992 }
993 
994 /********************************************************************************
995  * Get the current health status and set the 'next event' counter to suit.
996  */
997 static int
mly_get_eventstatus(struct mly_softc * sc)998 mly_get_eventstatus(struct mly_softc *sc)
999 {
1000     struct mly_command_ioctl	mci;
1001     struct mly_health_status	*mh;
1002     u_int8_t			status;
1003     int				error;
1004 
1005     /* build the gethealthstatus ioctl and send it */
1006     bzero(&mci, sizeof(mci));
1007     mh = NULL;
1008     mci.sub_ioctl = MDACIOCTL_GETHEALTHSTATUS;
1009 
1010     if ((error = mly_ioctl(sc, &mci, (void **)&mh, sizeof(*mh), &status, NULL, NULL)))
1011 	return(error);
1012     if (status != 0)
1013 	return(EIO);
1014 
1015     /* get the event counter */
1016     sc->mly_event_change = mh->change_counter;
1017     sc->mly_event_waiting = mh->next_event;
1018     sc->mly_event_counter = mh->next_event;
1019 
1020     /* save the health status into the memory mailbox */
1021     bcopy(mh, &sc->mly_mmbox->mmm_health.status, sizeof(*mh));
1022 
1023     debug(1, "initial change counter %d, event counter %d", mh->change_counter, mh->next_event);
1024 
1025     free(mh, M_DEVBUF);
1026     return(0);
1027 }
1028 
1029 /********************************************************************************
1030  * Enable the memory mailbox mode.
1031  */
1032 static int
mly_enable_mmbox(struct mly_softc * sc)1033 mly_enable_mmbox(struct mly_softc *sc)
1034 {
1035     struct mly_command_ioctl	mci;
1036     u_int8_t			*sp, status;
1037     int				error;
1038 
1039     debug_called(1);
1040 
1041     /* build the ioctl and send it */
1042     bzero(&mci, sizeof(mci));
1043     mci.sub_ioctl = MDACIOCTL_SETMEMORYMAILBOX;
1044     /* set buffer addresses */
1045     mci.param.setmemorymailbox.command_mailbox_physaddr =
1046 	sc->mly_mmbox_busaddr + offsetof(struct mly_mmbox, mmm_command);
1047     mci.param.setmemorymailbox.status_mailbox_physaddr =
1048 	sc->mly_mmbox_busaddr + offsetof(struct mly_mmbox, mmm_status);
1049     mci.param.setmemorymailbox.health_buffer_physaddr =
1050 	sc->mly_mmbox_busaddr + offsetof(struct mly_mmbox, mmm_health);
1051 
1052     /* set buffer sizes - abuse of data_size field is revolting */
1053     sp = (u_int8_t *)&mci.data_size;
1054     sp[0] = ((sizeof(union mly_command_packet) * MLY_MMBOX_COMMANDS) / 1024);
1055     sp[1] = (sizeof(union mly_status_packet) * MLY_MMBOX_STATUS) / 1024;
1056     mci.param.setmemorymailbox.health_buffer_size = sizeof(union mly_health_region) / 1024;
1057 
1058     debug(1, "memory mailbox at %p (0x%llx/%d 0x%llx/%d 0x%llx/%d", sc->mly_mmbox,
1059 	  mci.param.setmemorymailbox.command_mailbox_physaddr, sp[0],
1060 	  mci.param.setmemorymailbox.status_mailbox_physaddr, sp[1],
1061 	  mci.param.setmemorymailbox.health_buffer_physaddr,
1062 	  mci.param.setmemorymailbox.health_buffer_size);
1063 
1064     if ((error = mly_ioctl(sc, &mci, NULL, 0, &status, NULL, NULL)))
1065 	return(error);
1066     if (status != 0)
1067 	return(EIO);
1068     sc->mly_state |= MLY_STATE_MMBOX_ACTIVE;
1069     debug(1, "memory mailbox active");
1070     return(0);
1071 }
1072 
1073 /********************************************************************************
1074  * Flush all pending I/O from the controller.
1075  */
1076 static int
mly_flush(struct mly_softc * sc)1077 mly_flush(struct mly_softc *sc)
1078 {
1079     struct mly_command_ioctl	mci;
1080     u_int8_t			status;
1081     int				error;
1082 
1083     debug_called(1);
1084 
1085     /* build the ioctl */
1086     bzero(&mci, sizeof(mci));
1087     mci.sub_ioctl = MDACIOCTL_FLUSHDEVICEDATA;
1088     mci.param.deviceoperation.operation_device = MLY_OPDEVICE_PHYSICAL_CONTROLLER;
1089 
1090     /* pass it off to the controller */
1091     if ((error = mly_ioctl(sc, &mci, NULL, 0, &status, NULL, NULL)))
1092 	return(error);
1093 
1094     return((status == 0) ? 0 : EIO);
1095 }
1096 
1097 /********************************************************************************
1098  * Perform an ioctl command.
1099  *
1100  * If (data) is not NULL, the command requires data transfer.  If (*data) is NULL
1101  * the command requires data transfer from the controller, and we will allocate
1102  * a buffer for it.  If (*data) is not NULL, the command requires data transfer
1103  * to the controller.
1104  *
1105  * XXX passing in the whole ioctl structure is ugly.  Better ideas?
1106  *
1107  * XXX we don't even try to handle the case where datasize > 4k.  We should.
1108  */
1109 static int
mly_ioctl(struct mly_softc * sc,struct mly_command_ioctl * ioctl,void ** data,size_t datasize,u_int8_t * status,void * sense_buffer,size_t * sense_length)1110 mly_ioctl(struct mly_softc *sc, struct mly_command_ioctl *ioctl, void **data, size_t datasize,
1111 	  u_int8_t *status, void *sense_buffer, size_t *sense_length)
1112 {
1113     struct mly_command		*mc;
1114     struct mly_command_ioctl	*mci;
1115     int				error;
1116 
1117     debug_called(1);
1118     MLY_ASSERT_LOCKED(sc);
1119 
1120     mc = NULL;
1121     if (mly_alloc_command(sc, &mc)) {
1122 	error = ENOMEM;
1123 	goto out;
1124     }
1125 
1126     /* copy the ioctl structure, but save some important fields and then fixup */
1127     mci = &mc->mc_packet->ioctl;
1128     ioctl->sense_buffer_address = mci->sense_buffer_address;
1129     ioctl->maximum_sense_size = mci->maximum_sense_size;
1130     *mci = *ioctl;
1131     mci->opcode = MDACMD_IOCTL;
1132     mci->timeout.value = 30;
1133     mci->timeout.scale = MLY_TIMEOUT_SECONDS;
1134 
1135     /* handle the data buffer */
1136     if (data != NULL) {
1137 	if (*data == NULL) {
1138 	    /* allocate data buffer */
1139 	    if ((mc->mc_data = malloc(datasize, M_DEVBUF, M_NOWAIT)) == NULL) {
1140 		error = ENOMEM;
1141 		goto out;
1142 	    }
1143 	    mc->mc_flags |= MLY_CMD_DATAIN;
1144 	} else {
1145 	    mc->mc_data = *data;
1146 	    mc->mc_flags |= MLY_CMD_DATAOUT;
1147 	}
1148 	mc->mc_length = datasize;
1149 	mc->mc_packet->generic.data_size = datasize;
1150     }
1151 
1152     /* run the command */
1153     if ((error = mly_immediate_command(mc)))
1154 	goto out;
1155 
1156     /* clean up and return any data */
1157     *status = mc->mc_status;
1158     if ((mc->mc_sense > 0) && (sense_buffer != NULL)) {
1159 	bcopy(mc->mc_packet, sense_buffer, mc->mc_sense);
1160 	*sense_length = mc->mc_sense;
1161 	goto out;
1162     }
1163 
1164     /* should we return a data pointer? */
1165     if ((data != NULL) && (*data == NULL))
1166 	*data = mc->mc_data;
1167 
1168     /* command completed OK */
1169     error = 0;
1170 
1171 out:
1172     if (mc != NULL) {
1173 	/* do we need to free a data buffer we allocated? */
1174 	if (error && (mc->mc_data != NULL) && (*data == NULL))
1175 	    free(mc->mc_data, M_DEVBUF);
1176 	mly_release_command(mc);
1177     }
1178     return(error);
1179 }
1180 
1181 /********************************************************************************
1182  * Check for event(s) outstanding in the controller.
1183  */
1184 static void
mly_check_event(struct mly_softc * sc)1185 mly_check_event(struct mly_softc *sc)
1186 {
1187 
1188     /*
1189      * The controller may have updated the health status information,
1190      * so check for it here.  Note that the counters are all in host memory,
1191      * so this check is very cheap.  Also note that we depend on checking on
1192      * completion
1193      */
1194     if (sc->mly_mmbox->mmm_health.status.change_counter != sc->mly_event_change) {
1195 	sc->mly_event_change = sc->mly_mmbox->mmm_health.status.change_counter;
1196 	debug(1, "event change %d, event status update, %d -> %d", sc->mly_event_change,
1197 	      sc->mly_event_waiting, sc->mly_mmbox->mmm_health.status.next_event);
1198 	sc->mly_event_waiting = sc->mly_mmbox->mmm_health.status.next_event;
1199 
1200 	/* wake up anyone that might be interested in this */
1201 	wakeup(&sc->mly_event_change);
1202     }
1203     if (sc->mly_event_counter != sc->mly_event_waiting)
1204     mly_fetch_event(sc);
1205 }
1206 
1207 /********************************************************************************
1208  * Fetch one event from the controller.
1209  *
1210  * If we fail due to resource starvation, we'll be retried the next time a
1211  * command completes.
1212  */
1213 static void
mly_fetch_event(struct mly_softc * sc)1214 mly_fetch_event(struct mly_softc *sc)
1215 {
1216     struct mly_command		*mc;
1217     struct mly_command_ioctl	*mci;
1218     u_int32_t			event;
1219 
1220     debug_called(1);
1221 
1222     /* get a command */
1223     if (mly_alloc_command(sc, &mc))
1224 	return;
1225 
1226     /* set up the data buffer */
1227     if ((mc->mc_data = malloc(sizeof(struct mly_event), M_DEVBUF, M_NOWAIT | M_ZERO)) == NULL) {
1228 	mly_release_command(mc);
1229 	return;
1230     }
1231     mc->mc_length = sizeof(struct mly_event);
1232     mc->mc_flags |= MLY_CMD_DATAIN;
1233     mc->mc_complete = mly_complete_event;
1234 
1235     /*
1236      * Get an event number to fetch.  It's possible that we've raced with another
1237      * context for the last event, in which case there will be no more events.
1238      */
1239     if (sc->mly_event_counter == sc->mly_event_waiting) {
1240 	mly_release_command(mc);
1241 	return;
1242     }
1243     event = sc->mly_event_counter++;
1244 
1245     /*
1246      * Build the ioctl.
1247      *
1248      * At this point we are committed to sending this request, as it
1249      * will be the only one constructed for this particular event number.
1250      */
1251     mci = (struct mly_command_ioctl *)&mc->mc_packet->ioctl;
1252     mci->opcode = MDACMD_IOCTL;
1253     mci->data_size = sizeof(struct mly_event);
1254     mci->addr.phys.lun = (event >> 16) & 0xff;
1255     mci->addr.phys.target = (event >> 24) & 0xff;
1256     mci->addr.phys.channel = 0;
1257     mci->addr.phys.controller = 0;
1258     mci->timeout.value = 30;
1259     mci->timeout.scale = MLY_TIMEOUT_SECONDS;
1260     mci->sub_ioctl = MDACIOCTL_GETEVENT;
1261     mci->param.getevent.sequence_number_low = event & 0xffff;
1262 
1263     debug(1, "fetch event %u", event);
1264 
1265     /*
1266      * Submit the command.
1267      *
1268      * Note that failure of mly_start() will result in this event never being
1269      * fetched.
1270      */
1271     if (mly_start(mc) != 0) {
1272 	mly_printf(sc, "couldn't fetch event %u\n", event);
1273 	mly_release_command(mc);
1274     }
1275 }
1276 
1277 /********************************************************************************
1278  * Handle the completion of an event poll.
1279  */
1280 static void
mly_complete_event(struct mly_command * mc)1281 mly_complete_event(struct mly_command *mc)
1282 {
1283     struct mly_softc	*sc = mc->mc_sc;
1284     struct mly_event	*me = (struct mly_event *)mc->mc_data;
1285 
1286     debug_called(1);
1287 
1288     /*
1289      * If the event was successfully fetched, process it.
1290      */
1291     if (mc->mc_status == SCSI_STATUS_OK) {
1292 	mly_process_event(sc, me);
1293 	free(me, M_DEVBUF);
1294     }
1295     mly_release_command(mc);
1296 
1297     /*
1298      * Check for another event.
1299      */
1300     mly_check_event(sc);
1301 }
1302 
1303 /********************************************************************************
1304  * Process a controller event.
1305  */
1306 static void
mly_process_event(struct mly_softc * sc,struct mly_event * me)1307 mly_process_event(struct mly_softc *sc, struct mly_event *me)
1308 {
1309     struct scsi_sense_data_fixed *ssd;
1310     char			 *fp, *tp;
1311     int				 bus, target, event, class, action;
1312 
1313     ssd = (struct scsi_sense_data_fixed *)&me->sense[0];
1314 
1315     /*
1316      * Errors can be reported using vendor-unique sense data.  In this case, the
1317      * event code will be 0x1c (Request sense data present), the sense key will
1318      * be 0x09 (vendor specific), the MSB of the ASC will be set, and the
1319      * actual event code will be a 16-bit value comprised of the ASCQ (low byte)
1320      * and low seven bits of the ASC (low seven bits of the high byte).
1321      */
1322     if ((me->code == 0x1c) &&
1323 	((ssd->flags & SSD_KEY) == SSD_KEY_Vendor_Specific) &&
1324 	(ssd->add_sense_code & 0x80)) {
1325 	event = ((int)(ssd->add_sense_code & ~0x80) << 8) + ssd->add_sense_code_qual;
1326     } else {
1327 	event = me->code;
1328     }
1329 
1330     /* look up event, get codes */
1331     fp = mly_describe_code(mly_table_event, event);
1332 
1333     debug(1, "Event %d  code 0x%x", me->sequence_number, me->code);
1334 
1335     /* quiet event? */
1336     class = fp[0];
1337     if (isupper(class) && bootverbose)
1338 	class = tolower(class);
1339 
1340     /* get action code, text string */
1341     action = fp[1];
1342     tp = &fp[2];
1343 
1344     /*
1345      * Print some information about the event.
1346      *
1347      * This code uses a table derived from the corresponding portion of the Linux
1348      * driver, and thus the parser is very similar.
1349      */
1350     switch(class) {
1351     case 'p':		/* error on physical device */
1352 	mly_printf(sc, "physical device %d:%d %s\n", me->channel, me->target, tp);
1353 	if (action == 'r')
1354 	    sc->mly_btl[me->channel][me->target].mb_flags |= MLY_BTL_RESCAN;
1355 	break;
1356     case 'l':		/* error on logical unit */
1357     case 'm':		/* message about logical unit */
1358 	bus = MLY_LOGDEV_BUS(sc, me->lun);
1359 	target = MLY_LOGDEV_TARGET(sc, me->lun);
1360 	mly_name_device(sc, bus, target);
1361 	mly_printf(sc, "logical device %d (%s) %s\n", me->lun, sc->mly_btl[bus][target].mb_name, tp);
1362 	if (action == 'r')
1363 	    sc->mly_btl[bus][target].mb_flags |= MLY_BTL_RESCAN;
1364 	break;
1365     case 's':		/* report of sense data */
1366 	if (((ssd->flags & SSD_KEY) == SSD_KEY_NO_SENSE) ||
1367 	    (((ssd->flags & SSD_KEY) == SSD_KEY_NOT_READY) &&
1368 	     (ssd->add_sense_code == 0x04) &&
1369 	     ((ssd->add_sense_code_qual == 0x01) || (ssd->add_sense_code_qual == 0x02))))
1370 	    break;	/* ignore NO_SENSE or NOT_READY in one case */
1371 
1372 	mly_printf(sc, "physical device %d:%d %s\n", me->channel, me->target, tp);
1373 	mly_printf(sc, "  sense key %d  asc %02x  ascq %02x\n",
1374 		      ssd->flags & SSD_KEY, ssd->add_sense_code, ssd->add_sense_code_qual);
1375 	mly_printf(sc, "  info %4D  csi %4D\n", ssd->info, "", ssd->cmd_spec_info, "");
1376 	if (action == 'r')
1377 	    sc->mly_btl[me->channel][me->target].mb_flags |= MLY_BTL_RESCAN;
1378 	break;
1379     case 'e':
1380 	mly_printf(sc, tp, me->target, me->lun);
1381 	printf("\n");
1382 	break;
1383     case 'c':
1384 	mly_printf(sc, "controller %s\n", tp);
1385 	break;
1386     case '?':
1387 	mly_printf(sc, "%s - %d\n", tp, me->code);
1388 	break;
1389     default:	/* probably a 'noisy' event being ignored */
1390 	break;
1391     }
1392 }
1393 
1394 /********************************************************************************
1395  * Perform periodic activities.
1396  */
1397 static void
mly_periodic(void * data)1398 mly_periodic(void *data)
1399 {
1400     struct mly_softc	*sc = (struct mly_softc *)data;
1401     int			bus, target;
1402 
1403     debug_called(2);
1404     MLY_ASSERT_LOCKED(sc);
1405 
1406     /*
1407      * Scan devices.
1408      */
1409     for (bus = 0; bus < sc->mly_cam_channels; bus++) {
1410 	if (MLY_BUS_IS_VALID(sc, bus)) {
1411 	    for (target = 0; target < MLY_MAX_TARGETS; target++) {
1412 
1413 		/* ignore the controller in this scan */
1414 		if (target == sc->mly_controllerparam->initiator_id)
1415 		    continue;
1416 
1417 		/* perform device rescan? */
1418 		if (sc->mly_btl[bus][target].mb_flags & MLY_BTL_RESCAN)
1419 		    mly_rescan_btl(sc, bus, target);
1420 	    }
1421 	}
1422     }
1423 
1424     /* check for controller events */
1425     mly_check_event(sc);
1426 
1427     /* reschedule ourselves */
1428     callout_schedule(&sc->mly_periodic, MLY_PERIODIC_INTERVAL * hz);
1429 }
1430 
1431 /********************************************************************************
1432  ********************************************************************************
1433                                                                Command Processing
1434  ********************************************************************************
1435  ********************************************************************************/
1436 
1437 /********************************************************************************
1438  * Run a command and wait for it to complete.
1439  *
1440  */
1441 static int
mly_immediate_command(struct mly_command * mc)1442 mly_immediate_command(struct mly_command *mc)
1443 {
1444     struct mly_softc	*sc = mc->mc_sc;
1445     int			error;
1446 
1447     debug_called(1);
1448 
1449     MLY_ASSERT_LOCKED(sc);
1450     if ((error = mly_start(mc))) {
1451 	return(error);
1452     }
1453 
1454     if (sc->mly_state & MLY_STATE_INTERRUPTS_ON) {
1455 	/* sleep on the command */
1456 	while(!(mc->mc_flags & MLY_CMD_COMPLETE)) {
1457 	    mtx_sleep(mc, &sc->mly_lock, PRIBIO, "mlywait", 0);
1458 	}
1459     } else {
1460 	/* spin and collect status while we do */
1461 	while(!(mc->mc_flags & MLY_CMD_COMPLETE)) {
1462 	    mly_done(mc->mc_sc);
1463 	}
1464     }
1465     return(0);
1466 }
1467 
1468 /********************************************************************************
1469  * Deliver a command to the controller.
1470  *
1471  * XXX it would be good to just queue commands that we can't submit immediately
1472  *     and send them later, but we probably want a wrapper for that so that
1473  *     we don't hang on a failed submission for an immediate command.
1474  */
1475 static int
mly_start(struct mly_command * mc)1476 mly_start(struct mly_command *mc)
1477 {
1478     struct mly_softc		*sc = mc->mc_sc;
1479     union mly_command_packet	*pkt;
1480 
1481     debug_called(2);
1482     MLY_ASSERT_LOCKED(sc);
1483 
1484     /*
1485      * Set the command up for delivery to the controller.
1486      */
1487     mly_map_command(mc);
1488     mc->mc_packet->generic.command_id = mc->mc_slot;
1489 
1490 #ifdef MLY_DEBUG
1491     mc->mc_timestamp = time_second;
1492 #endif
1493 
1494     /*
1495      * Do we have to use the hardware mailbox?
1496      */
1497     if (!(sc->mly_state & MLY_STATE_MMBOX_ACTIVE)) {
1498 	/*
1499 	 * Check to see if the controller is ready for us.
1500 	 */
1501 	if (MLY_IDBR_TRUE(sc, MLY_HM_CMDSENT)) {
1502 	    return(EBUSY);
1503 	}
1504 	mc->mc_flags |= MLY_CMD_BUSY;
1505 
1506 	/*
1507 	 * It's ready, send the command.
1508 	 */
1509 	MLY_SET_MBOX(sc, sc->mly_command_mailbox, &mc->mc_packetphys);
1510 	MLY_SET_REG(sc, sc->mly_idbr, MLY_HM_CMDSENT);
1511 
1512     } else {	/* use memory-mailbox mode */
1513 
1514 	pkt = &sc->mly_mmbox->mmm_command[sc->mly_mmbox_command_index];
1515 
1516 	/* check to see if the next index is free yet */
1517 	if (pkt->mmbox.flag != 0) {
1518 	    return(EBUSY);
1519 	}
1520 	mc->mc_flags |= MLY_CMD_BUSY;
1521 
1522 	/* copy in new command */
1523 	bcopy(mc->mc_packet->mmbox.data, pkt->mmbox.data, sizeof(pkt->mmbox.data));
1524 	/* barrier to ensure completion of previous write before we write the flag */
1525 	bus_barrier(sc->mly_regs_resource, 0, 0, BUS_SPACE_BARRIER_WRITE);
1526 	/* copy flag last */
1527 	pkt->mmbox.flag = mc->mc_packet->mmbox.flag;
1528 	/* barrier to ensure completion of previous write before we notify the controller */
1529 	bus_barrier(sc->mly_regs_resource, 0, 0, BUS_SPACE_BARRIER_WRITE);
1530 
1531 	/* signal controller, update index */
1532 	MLY_SET_REG(sc, sc->mly_idbr, MLY_AM_CMDSENT);
1533 	sc->mly_mmbox_command_index = (sc->mly_mmbox_command_index + 1) % MLY_MMBOX_COMMANDS;
1534     }
1535 
1536     mly_enqueue_busy(mc);
1537     return(0);
1538 }
1539 
1540 /********************************************************************************
1541  * Pick up command status from the controller, schedule a completion event
1542  */
1543 static void
mly_done(struct mly_softc * sc)1544 mly_done(struct mly_softc *sc)
1545 {
1546     struct mly_command		*mc;
1547     union mly_status_packet	*sp;
1548     u_int16_t			slot;
1549     int				worked;
1550 
1551     MLY_ASSERT_LOCKED(sc);
1552     worked = 0;
1553 
1554     /* pick up hardware-mailbox commands */
1555     if (MLY_ODBR_TRUE(sc, MLY_HM_STSREADY)) {
1556 	slot = MLY_GET_REG2(sc, sc->mly_status_mailbox);
1557 	if (slot < MLY_SLOT_MAX) {
1558 	    mc = &sc->mly_command[slot - MLY_SLOT_START];
1559 	    mc->mc_status = MLY_GET_REG(sc, sc->mly_status_mailbox + 2);
1560 	    mc->mc_sense = MLY_GET_REG(sc, sc->mly_status_mailbox + 3);
1561 	    mc->mc_resid = MLY_GET_REG4(sc, sc->mly_status_mailbox + 4);
1562 	    mly_remove_busy(mc);
1563 	    mc->mc_flags &= ~MLY_CMD_BUSY;
1564 	    mly_enqueue_complete(mc);
1565 	    worked = 1;
1566 	} else {
1567 	    /* slot 0xffff may mean "extremely bogus command" */
1568 	    mly_printf(sc, "got HM completion for illegal slot %u\n", slot);
1569 	}
1570 	/* unconditionally acknowledge status */
1571 	MLY_SET_REG(sc, sc->mly_odbr, MLY_HM_STSREADY);
1572 	MLY_SET_REG(sc, sc->mly_idbr, MLY_HM_STSACK);
1573     }
1574 
1575     /* pick up memory-mailbox commands */
1576     if (MLY_ODBR_TRUE(sc, MLY_AM_STSREADY)) {
1577 	for (;;) {
1578 	    sp = &sc->mly_mmbox->mmm_status[sc->mly_mmbox_status_index];
1579 
1580 	    /* check for more status */
1581 	    if (sp->mmbox.flag == 0)
1582 		break;
1583 
1584 	    /* get slot number */
1585 	    slot = sp->status.command_id;
1586 	    if (slot < MLY_SLOT_MAX) {
1587 		mc = &sc->mly_command[slot - MLY_SLOT_START];
1588 		mc->mc_status = sp->status.status;
1589 		mc->mc_sense = sp->status.sense_length;
1590 		mc->mc_resid = sp->status.residue;
1591 		mly_remove_busy(mc);
1592 		mc->mc_flags &= ~MLY_CMD_BUSY;
1593 		mly_enqueue_complete(mc);
1594 		worked = 1;
1595 	    } else {
1596 		/* slot 0xffff may mean "extremely bogus command" */
1597 		mly_printf(sc, "got AM completion for illegal slot %u at %d\n",
1598 			   slot, sc->mly_mmbox_status_index);
1599 	    }
1600 
1601 	    /* clear and move to next index */
1602 	    sp->mmbox.flag = 0;
1603 	    sc->mly_mmbox_status_index = (sc->mly_mmbox_status_index + 1) % MLY_MMBOX_STATUS;
1604 	}
1605 	/* acknowledge that we have collected status value(s) */
1606 	MLY_SET_REG(sc, sc->mly_odbr, MLY_AM_STSREADY);
1607     }
1608 
1609     if (worked) {
1610 	if (sc->mly_state & MLY_STATE_INTERRUPTS_ON)
1611 	    taskqueue_enqueue(taskqueue_thread, &sc->mly_task_complete);
1612 	else
1613 	    mly_complete(sc);
1614     }
1615 }
1616 
1617 /********************************************************************************
1618  * Process completed commands
1619  */
1620 static void
mly_complete_handler(void * context,int pending)1621 mly_complete_handler(void *context, int pending)
1622 {
1623     struct mly_softc	*sc = (struct mly_softc *)context;
1624 
1625     MLY_LOCK(sc);
1626     mly_complete(sc);
1627     MLY_UNLOCK(sc);
1628 }
1629 
1630 static void
mly_complete(struct mly_softc * sc)1631 mly_complete(struct mly_softc *sc)
1632 {
1633     struct mly_command	*mc;
1634     void	        (* mc_complete)(struct mly_command *mc);
1635 
1636     debug_called(2);
1637 
1638     /*
1639      * Spin pulling commands off the completed queue and processing them.
1640      */
1641     while ((mc = mly_dequeue_complete(sc)) != NULL) {
1642 
1643 	/*
1644 	 * Free controller resources, mark command complete.
1645 	 *
1646 	 * Note that as soon as we mark the command complete, it may be freed
1647 	 * out from under us, so we need to save the mc_complete field in
1648 	 * order to later avoid dereferencing mc.  (We would not expect to
1649 	 * have a polling/sleeping consumer with mc_complete != NULL).
1650 	 */
1651 	mly_unmap_command(mc);
1652 	mc_complete = mc->mc_complete;
1653 	mc->mc_flags |= MLY_CMD_COMPLETE;
1654 
1655 	/*
1656 	 * Call completion handler or wake up sleeping consumer.
1657 	 */
1658 	if (mc_complete != NULL) {
1659 	    mc_complete(mc);
1660 	} else {
1661 	    wakeup(mc);
1662 	}
1663     }
1664 
1665     /*
1666      * XXX if we are deferring commands due to controller-busy status, we should
1667      *     retry submitting them here.
1668      */
1669 }
1670 
1671 /********************************************************************************
1672  ********************************************************************************
1673                                                         Command Buffer Management
1674  ********************************************************************************
1675  ********************************************************************************/
1676 
1677 /********************************************************************************
1678  * Allocate a command.
1679  */
1680 static int
mly_alloc_command(struct mly_softc * sc,struct mly_command ** mcp)1681 mly_alloc_command(struct mly_softc *sc, struct mly_command **mcp)
1682 {
1683     struct mly_command	*mc;
1684 
1685     debug_called(3);
1686 
1687     if ((mc = mly_dequeue_free(sc)) == NULL)
1688 	return(ENOMEM);
1689 
1690     *mcp = mc;
1691     return(0);
1692 }
1693 
1694 /********************************************************************************
1695  * Release a command back to the freelist.
1696  */
1697 static void
mly_release_command(struct mly_command * mc)1698 mly_release_command(struct mly_command *mc)
1699 {
1700     debug_called(3);
1701 
1702     /*
1703      * Fill in parts of the command that may cause confusion if
1704      * a consumer doesn't when we are later allocated.
1705      */
1706     mc->mc_data = NULL;
1707     mc->mc_flags = 0;
1708     mc->mc_complete = NULL;
1709     mc->mc_private = NULL;
1710 
1711     /*
1712      * By default, we set up to overwrite the command packet with
1713      * sense information.
1714      */
1715     mc->mc_packet->generic.sense_buffer_address = mc->mc_packetphys;
1716     mc->mc_packet->generic.maximum_sense_size = sizeof(union mly_command_packet);
1717 
1718     mly_enqueue_free(mc);
1719 }
1720 
1721 /********************************************************************************
1722  * Map helper for command allocation.
1723  */
1724 static void
mly_alloc_commands_map(void * arg,bus_dma_segment_t * segs,int nseg,int error)1725 mly_alloc_commands_map(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1726 {
1727     struct mly_softc	*sc = (struct mly_softc *)arg;
1728 
1729     debug_called(1);
1730 
1731     sc->mly_packetphys = segs[0].ds_addr;
1732 }
1733 
1734 /********************************************************************************
1735  * Allocate and initialise command and packet structures.
1736  *
1737  * If the controller supports fewer than MLY_MAX_COMMANDS commands, limit our
1738  * allocation to that number.  If we don't yet know how many commands the
1739  * controller supports, allocate a very small set (suitable for initialisation
1740  * purposes only).
1741  */
1742 static int
mly_alloc_commands(struct mly_softc * sc)1743 mly_alloc_commands(struct mly_softc *sc)
1744 {
1745     struct mly_command		*mc;
1746     int				i, ncmd;
1747 
1748     if (sc->mly_controllerinfo == NULL) {
1749 	ncmd = 4;
1750     } else {
1751 	ncmd = min(MLY_MAX_COMMANDS, sc->mly_controllerinfo->maximum_parallel_commands);
1752     }
1753 
1754     /*
1755      * Allocate enough space for all the command packets in one chunk and
1756      * map them permanently into controller-visible space.
1757      */
1758     if (bus_dmamem_alloc(sc->mly_packet_dmat, (void **)&sc->mly_packet,
1759 			 BUS_DMA_NOWAIT, &sc->mly_packetmap)) {
1760 	return(ENOMEM);
1761     }
1762     if (bus_dmamap_load(sc->mly_packet_dmat, sc->mly_packetmap, sc->mly_packet,
1763 			ncmd * sizeof(union mly_command_packet),
1764 			mly_alloc_commands_map, sc, BUS_DMA_NOWAIT) != 0)
1765 	return (ENOMEM);
1766 
1767     for (i = 0; i < ncmd; i++) {
1768 	mc = &sc->mly_command[i];
1769 	bzero(mc, sizeof(*mc));
1770 	mc->mc_sc = sc;
1771 	mc->mc_slot = MLY_SLOT_START + i;
1772 	mc->mc_packet = sc->mly_packet + i;
1773 	mc->mc_packetphys = sc->mly_packetphys + (i * sizeof(union mly_command_packet));
1774 	if (!bus_dmamap_create(sc->mly_buffer_dmat, 0, &mc->mc_datamap))
1775 	    mly_release_command(mc);
1776     }
1777     return(0);
1778 }
1779 
1780 /********************************************************************************
1781  * Free all the storage held by commands.
1782  *
1783  * Must be called with all commands on the free list.
1784  */
1785 static void
mly_release_commands(struct mly_softc * sc)1786 mly_release_commands(struct mly_softc *sc)
1787 {
1788     struct mly_command	*mc;
1789 
1790     /* throw away command buffer DMA maps */
1791     while (mly_alloc_command(sc, &mc) == 0)
1792 	bus_dmamap_destroy(sc->mly_buffer_dmat, mc->mc_datamap);
1793 
1794     /* release the packet storage */
1795     if (sc->mly_packet != NULL) {
1796 	bus_dmamap_unload(sc->mly_packet_dmat, sc->mly_packetmap);
1797 	bus_dmamem_free(sc->mly_packet_dmat, sc->mly_packet, sc->mly_packetmap);
1798 	sc->mly_packet = NULL;
1799     }
1800 }
1801 
1802 
1803 /********************************************************************************
1804  * Command-mapping helper function - populate this command's s/g table
1805  * with the s/g entries for its data.
1806  */
1807 static void
mly_map_command_sg(void * arg,bus_dma_segment_t * segs,int nseg,int error)1808 mly_map_command_sg(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1809 {
1810     struct mly_command		*mc = (struct mly_command *)arg;
1811     struct mly_softc		*sc = mc->mc_sc;
1812     struct mly_command_generic	*gen = &(mc->mc_packet->generic);
1813     struct mly_sg_entry		*sg;
1814     int				i, tabofs;
1815 
1816     debug_called(2);
1817 
1818     /* can we use the transfer structure directly? */
1819     if (nseg <= 2) {
1820 	sg = &gen->transfer.direct.sg[0];
1821 	gen->command_control.extended_sg_table = 0;
1822     } else {
1823 	tabofs = ((mc->mc_slot - MLY_SLOT_START) * MLY_MAX_SGENTRIES);
1824 	sg = sc->mly_sg_table + tabofs;
1825 	gen->transfer.indirect.entries[0] = nseg;
1826 	gen->transfer.indirect.table_physaddr[0] = sc->mly_sg_busaddr + (tabofs * sizeof(struct mly_sg_entry));
1827 	gen->command_control.extended_sg_table = 1;
1828     }
1829 
1830     /* copy the s/g table */
1831     for (i = 0; i < nseg; i++) {
1832 	sg[i].physaddr = segs[i].ds_addr;
1833 	sg[i].length = segs[i].ds_len;
1834     }
1835 
1836 }
1837 
1838 #if 0
1839 /********************************************************************************
1840  * Command-mapping helper function - save the cdb's physical address.
1841  *
1842  * We don't support 'large' SCSI commands at this time, so this is unused.
1843  */
1844 static void
1845 mly_map_command_cdb(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1846 {
1847     struct mly_command			*mc = (struct mly_command *)arg;
1848 
1849     debug_called(2);
1850 
1851     /* XXX can we safely assume that a CDB will never cross a page boundary? */
1852     if ((segs[0].ds_addr % PAGE_SIZE) >
1853 	((segs[0].ds_addr + mc->mc_packet->scsi_large.cdb_length) % PAGE_SIZE))
1854 	panic("cdb crosses page boundary");
1855 
1856     /* fix up fields in the command packet */
1857     mc->mc_packet->scsi_large.cdb_physaddr = segs[0].ds_addr;
1858 }
1859 #endif
1860 
1861 /********************************************************************************
1862  * Map a command into controller-visible space
1863  */
1864 static void
mly_map_command(struct mly_command * mc)1865 mly_map_command(struct mly_command *mc)
1866 {
1867     struct mly_softc	*sc = mc->mc_sc;
1868 
1869     debug_called(2);
1870 
1871     /* don't map more than once */
1872     if (mc->mc_flags & MLY_CMD_MAPPED)
1873 	return;
1874 
1875     /* does the command have a data buffer? */
1876     if (mc->mc_data != NULL) {
1877 	if (mc->mc_flags & MLY_CMD_CCB)
1878 		bus_dmamap_load_ccb(sc->mly_buffer_dmat, mc->mc_datamap,
1879 				mc->mc_data, mly_map_command_sg, mc, 0);
1880 	else
1881 		bus_dmamap_load(sc->mly_buffer_dmat, mc->mc_datamap,
1882 				mc->mc_data, mc->mc_length,
1883 				mly_map_command_sg, mc, 0);
1884 	if (mc->mc_flags & MLY_CMD_DATAIN)
1885 	    bus_dmamap_sync(sc->mly_buffer_dmat, mc->mc_datamap, BUS_DMASYNC_PREREAD);
1886 	if (mc->mc_flags & MLY_CMD_DATAOUT)
1887 	    bus_dmamap_sync(sc->mly_buffer_dmat, mc->mc_datamap, BUS_DMASYNC_PREWRITE);
1888     }
1889     mc->mc_flags |= MLY_CMD_MAPPED;
1890 }
1891 
1892 /********************************************************************************
1893  * Unmap a command from controller-visible space
1894  */
1895 static void
mly_unmap_command(struct mly_command * mc)1896 mly_unmap_command(struct mly_command *mc)
1897 {
1898     struct mly_softc	*sc = mc->mc_sc;
1899 
1900     debug_called(2);
1901 
1902     if (!(mc->mc_flags & MLY_CMD_MAPPED))
1903 	return;
1904 
1905     /* does the command have a data buffer? */
1906     if (mc->mc_data != NULL) {
1907 	if (mc->mc_flags & MLY_CMD_DATAIN)
1908 	    bus_dmamap_sync(sc->mly_buffer_dmat, mc->mc_datamap, BUS_DMASYNC_POSTREAD);
1909 	if (mc->mc_flags & MLY_CMD_DATAOUT)
1910 	    bus_dmamap_sync(sc->mly_buffer_dmat, mc->mc_datamap, BUS_DMASYNC_POSTWRITE);
1911 
1912 	bus_dmamap_unload(sc->mly_buffer_dmat, mc->mc_datamap);
1913     }
1914     mc->mc_flags &= ~MLY_CMD_MAPPED;
1915 }
1916 
1917 
1918 /********************************************************************************
1919  ********************************************************************************
1920                                                                     CAM interface
1921  ********************************************************************************
1922  ********************************************************************************/
1923 
1924 /********************************************************************************
1925  * Attach the physical and virtual SCSI busses to CAM.
1926  *
1927  * Physical bus numbering starts from 0, virtual bus numbering from one greater
1928  * than the highest physical bus.  Physical busses are only registered if
1929  * the kernel environment variable "hw.mly.register_physical_channels" is set.
1930  *
1931  * When we refer to a "bus", we are referring to the bus number registered with
1932  * the SIM, whereas a "channel" is a channel number given to the adapter.  In order
1933  * to keep things simple, we map these 1:1, so "bus" and "channel" may be used
1934  * interchangeably.
1935  */
1936 static int
mly_cam_attach(struct mly_softc * sc)1937 mly_cam_attach(struct mly_softc *sc)
1938 {
1939     struct cam_devq	*devq;
1940     int			chn, i;
1941 
1942     debug_called(1);
1943 
1944     /*
1945      * Allocate a devq for all our channels combined.
1946      */
1947     if ((devq = cam_simq_alloc(sc->mly_controllerinfo->maximum_parallel_commands)) == NULL) {
1948 	mly_printf(sc, "can't allocate CAM SIM queue\n");
1949 	return(ENOMEM);
1950     }
1951 
1952     /*
1953      * If physical channel registration has been requested, register these first.
1954      * Note that we enable tagged command queueing for physical channels.
1955      */
1956     if (testenv("hw.mly.register_physical_channels")) {
1957 	chn = 0;
1958 	for (i = 0; i < sc->mly_controllerinfo->physical_channels_present; i++, chn++) {
1959 
1960 	    if ((sc->mly_cam_sim[chn] = cam_sim_alloc(mly_cam_action, mly_cam_poll, "mly", sc,
1961 						      device_get_unit(sc->mly_dev),
1962 						      &sc->mly_lock,
1963 						      sc->mly_controllerinfo->maximum_parallel_commands,
1964 						      1, devq)) == NULL) {
1965 		return(ENOMEM);
1966 	    }
1967 	    MLY_LOCK(sc);
1968 	    if (xpt_bus_register(sc->mly_cam_sim[chn], sc->mly_dev, chn)) {
1969 		MLY_UNLOCK(sc);
1970 		mly_printf(sc, "CAM XPT phsyical channel registration failed\n");
1971 		return(ENXIO);
1972 	    }
1973 	    MLY_UNLOCK(sc);
1974 	    debug(1, "registered physical channel %d", chn);
1975 	}
1976     }
1977 
1978     /*
1979      * Register our virtual channels, with bus numbers matching channel numbers.
1980      */
1981     chn = sc->mly_controllerinfo->physical_channels_present;
1982     for (i = 0; i < sc->mly_controllerinfo->virtual_channels_present; i++, chn++) {
1983 	if ((sc->mly_cam_sim[chn] = cam_sim_alloc(mly_cam_action, mly_cam_poll, "mly", sc,
1984 						  device_get_unit(sc->mly_dev),
1985 						  &sc->mly_lock,
1986 						  sc->mly_controllerinfo->maximum_parallel_commands,
1987 						  0, devq)) == NULL) {
1988 	    return(ENOMEM);
1989 	}
1990 	MLY_LOCK(sc);
1991 	if (xpt_bus_register(sc->mly_cam_sim[chn], sc->mly_dev, chn)) {
1992 	    MLY_UNLOCK(sc);
1993 	    mly_printf(sc, "CAM XPT virtual channel registration failed\n");
1994 	    return(ENXIO);
1995 	}
1996 	MLY_UNLOCK(sc);
1997 	debug(1, "registered virtual channel %d", chn);
1998     }
1999 
2000     /*
2001      * This is the total number of channels that (might have been) registered with
2002      * CAM.  Some may not have been; check the mly_cam_sim array to be certain.
2003      */
2004     sc->mly_cam_channels = sc->mly_controllerinfo->physical_channels_present +
2005 	sc->mly_controllerinfo->virtual_channels_present;
2006 
2007     return(0);
2008 }
2009 
2010 /********************************************************************************
2011  * Detach from CAM
2012  */
2013 static void
mly_cam_detach(struct mly_softc * sc)2014 mly_cam_detach(struct mly_softc *sc)
2015 {
2016     int		i;
2017 
2018     debug_called(1);
2019 
2020     MLY_LOCK(sc);
2021     for (i = 0; i < sc->mly_cam_channels; i++) {
2022 	if (sc->mly_cam_sim[i] != NULL) {
2023 	    xpt_bus_deregister(cam_sim_path(sc->mly_cam_sim[i]));
2024 	    cam_sim_free(sc->mly_cam_sim[i], 0);
2025 	}
2026     }
2027     MLY_UNLOCK(sc);
2028     if (sc->mly_cam_devq != NULL)
2029 	cam_simq_free(sc->mly_cam_devq);
2030 }
2031 
2032 /************************************************************************
2033  * Rescan a device.
2034  */
2035 static void
mly_cam_rescan_btl(struct mly_softc * sc,int bus,int target)2036 mly_cam_rescan_btl(struct mly_softc *sc, int bus, int target)
2037 {
2038     union ccb	*ccb;
2039 
2040     debug_called(1);
2041 
2042     if ((ccb = xpt_alloc_ccb()) == NULL) {
2043 	mly_printf(sc, "rescan failed (can't allocate CCB)\n");
2044 	return;
2045     }
2046     if (xpt_create_path(&ccb->ccb_h.path, NULL,
2047 	    cam_sim_path(sc->mly_cam_sim[bus]), target, 0) != CAM_REQ_CMP) {
2048 	mly_printf(sc, "rescan failed (can't create path)\n");
2049 	xpt_free_ccb(ccb);
2050 	return;
2051     }
2052     debug(1, "rescan target %d:%d", bus, target);
2053     xpt_rescan(ccb);
2054 }
2055 
2056 /********************************************************************************
2057  * Handle an action requested by CAM
2058  */
2059 static void
mly_cam_action(struct cam_sim * sim,union ccb * ccb)2060 mly_cam_action(struct cam_sim *sim, union ccb *ccb)
2061 {
2062     struct mly_softc	*sc = cam_sim_softc(sim);
2063 
2064     debug_called(2);
2065     MLY_ASSERT_LOCKED(sc);
2066 
2067     switch (ccb->ccb_h.func_code) {
2068 
2069 	/* perform SCSI I/O */
2070     case XPT_SCSI_IO:
2071 	if (!mly_cam_action_io(sim, (struct ccb_scsiio *)&ccb->csio))
2072 	    return;
2073 	break;
2074 
2075 	/* perform geometry calculations */
2076     case XPT_CALC_GEOMETRY:
2077     {
2078 	struct ccb_calc_geometry	*ccg = &ccb->ccg;
2079         u_int32_t			secs_per_cylinder;
2080 
2081 	debug(2, "XPT_CALC_GEOMETRY %d:%d:%d", cam_sim_bus(sim), ccb->ccb_h.target_id, ccb->ccb_h.target_lun);
2082 
2083 	if (sc->mly_controllerparam->bios_geometry == MLY_BIOSGEOM_8G) {
2084 	    ccg->heads = 255;
2085             ccg->secs_per_track = 63;
2086 	} else {				/* MLY_BIOSGEOM_2G */
2087 	    ccg->heads = 128;
2088             ccg->secs_per_track = 32;
2089 	}
2090 	secs_per_cylinder = ccg->heads * ccg->secs_per_track;
2091         ccg->cylinders = ccg->volume_size / secs_per_cylinder;
2092         ccb->ccb_h.status = CAM_REQ_CMP;
2093         break;
2094     }
2095 
2096 	/* handle path attribute inquiry */
2097     case XPT_PATH_INQ:
2098     {
2099 	struct ccb_pathinq	*cpi = &ccb->cpi;
2100 
2101 	debug(2, "XPT_PATH_INQ %d:%d:%d", cam_sim_bus(sim), ccb->ccb_h.target_id, ccb->ccb_h.target_lun);
2102 
2103 	cpi->version_num = 1;
2104 	cpi->hba_inquiry = PI_TAG_ABLE;		/* XXX extra flags for physical channels? */
2105 	cpi->target_sprt = 0;
2106 	cpi->hba_misc = 0;
2107 	cpi->max_target = MLY_MAX_TARGETS - 1;
2108 	cpi->max_lun = MLY_MAX_LUNS - 1;
2109 	cpi->initiator_id = sc->mly_controllerparam->initiator_id;
2110 	strlcpy(cpi->sim_vid, "FreeBSD", SIM_IDLEN);
2111 	strlcpy(cpi->hba_vid, "Mylex", HBA_IDLEN);
2112 	strlcpy(cpi->dev_name, cam_sim_name(sim), DEV_IDLEN);
2113 	cpi->unit_number = cam_sim_unit(sim);
2114 	cpi->bus_id = cam_sim_bus(sim);
2115 	cpi->base_transfer_speed = 132 * 1024;	/* XXX what to set this to? */
2116 	cpi->transport = XPORT_SPI;
2117 	cpi->transport_version = 2;
2118 	cpi->protocol = PROTO_SCSI;
2119 	cpi->protocol_version = SCSI_REV_2;
2120 	ccb->ccb_h.status = CAM_REQ_CMP;
2121 	break;
2122     }
2123 
2124     case XPT_GET_TRAN_SETTINGS:
2125     {
2126 	struct ccb_trans_settings	*cts = &ccb->cts;
2127 	int				bus, target;
2128 	struct ccb_trans_settings_scsi *scsi = &cts->proto_specific.scsi;
2129 	struct ccb_trans_settings_spi *spi = &cts->xport_specific.spi;
2130 
2131 	cts->protocol = PROTO_SCSI;
2132 	cts->protocol_version = SCSI_REV_2;
2133 	cts->transport = XPORT_SPI;
2134 	cts->transport_version = 2;
2135 
2136 	scsi->flags = 0;
2137 	scsi->valid = 0;
2138 	spi->flags = 0;
2139 	spi->valid = 0;
2140 
2141 	bus = cam_sim_bus(sim);
2142 	target = cts->ccb_h.target_id;
2143 	debug(2, "XPT_GET_TRAN_SETTINGS %d:%d", bus, target);
2144 	/* logical device? */
2145 	if (sc->mly_btl[bus][target].mb_flags & MLY_BTL_LOGICAL) {
2146 	    /* nothing special for these */
2147 	/* physical device? */
2148 	} else if (sc->mly_btl[bus][target].mb_flags & MLY_BTL_PHYSICAL) {
2149 	    /* allow CAM to try tagged transactions */
2150 	    scsi->flags |= CTS_SCSI_FLAGS_TAG_ENB;
2151 	    scsi->valid |= CTS_SCSI_VALID_TQ;
2152 
2153 	    /* convert speed (MHz) to usec */
2154 	    if (sc->mly_btl[bus][target].mb_speed == 0) {
2155 		spi->sync_period = 1000000 / 5;
2156 	    } else {
2157 		spi->sync_period = 1000000 / sc->mly_btl[bus][target].mb_speed;
2158 	    }
2159 
2160 	    /* convert bus width to CAM internal encoding */
2161 	    switch (sc->mly_btl[bus][target].mb_width) {
2162 	    case 32:
2163 		spi->bus_width = MSG_EXT_WDTR_BUS_32_BIT;
2164 		break;
2165 	    case 16:
2166 		spi->bus_width = MSG_EXT_WDTR_BUS_16_BIT;
2167 		break;
2168 	    case 8:
2169 	    default:
2170 		spi->bus_width = MSG_EXT_WDTR_BUS_8_BIT;
2171 		break;
2172 	    }
2173 	    spi->valid |= CTS_SPI_VALID_SYNC_RATE | CTS_SPI_VALID_BUS_WIDTH;
2174 
2175 	    /* not a device, bail out */
2176 	} else {
2177 	    cts->ccb_h.status = CAM_REQ_CMP_ERR;
2178 	    break;
2179 	}
2180 
2181 	/* disconnect always OK */
2182 	spi->flags |= CTS_SPI_FLAGS_DISC_ENB;
2183 	spi->valid |= CTS_SPI_VALID_DISC;
2184 
2185 	cts->ccb_h.status = CAM_REQ_CMP;
2186 	break;
2187     }
2188 
2189     default:		/* we can't do this */
2190 	debug(2, "unspported func_code = 0x%x", ccb->ccb_h.func_code);
2191 	ccb->ccb_h.status = CAM_REQ_INVALID;
2192 	break;
2193     }
2194 
2195     xpt_done(ccb);
2196 }
2197 
2198 /********************************************************************************
2199  * Handle an I/O operation requested by CAM
2200  */
2201 static int
mly_cam_action_io(struct cam_sim * sim,struct ccb_scsiio * csio)2202 mly_cam_action_io(struct cam_sim *sim, struct ccb_scsiio *csio)
2203 {
2204     struct mly_softc			*sc = cam_sim_softc(sim);
2205     struct mly_command			*mc;
2206     struct mly_command_scsi_small	*ss;
2207     int					bus, target;
2208     int					error;
2209 
2210     bus = cam_sim_bus(sim);
2211     target = csio->ccb_h.target_id;
2212 
2213     debug(2, "XPT_SCSI_IO %d:%d:%d", bus, target, csio->ccb_h.target_lun);
2214 
2215     /* validate bus number */
2216     if (!MLY_BUS_IS_VALID(sc, bus)) {
2217 	debug(0, " invalid bus %d", bus);
2218 	csio->ccb_h.status = CAM_REQ_CMP_ERR;
2219     }
2220 
2221     /*  check for I/O attempt to a protected device */
2222     if (sc->mly_btl[bus][target].mb_flags & MLY_BTL_PROTECTED) {
2223 	debug(2, "  device protected");
2224 	csio->ccb_h.status = CAM_REQ_CMP_ERR;
2225     }
2226 
2227     /* check for I/O attempt to nonexistent device */
2228     if (!(sc->mly_btl[bus][target].mb_flags & (MLY_BTL_LOGICAL | MLY_BTL_PHYSICAL))) {
2229 	debug(2, "  device %d:%d does not exist", bus, target);
2230 	csio->ccb_h.status = CAM_REQ_CMP_ERR;
2231     }
2232 
2233     /* XXX increase if/when we support large SCSI commands */
2234     if (csio->cdb_len > MLY_CMD_SCSI_SMALL_CDB) {
2235 	debug(0, "  command too large (%d > %d)", csio->cdb_len, MLY_CMD_SCSI_SMALL_CDB);
2236 	csio->ccb_h.status = CAM_REQ_CMP_ERR;
2237     }
2238 
2239     /* check that the CDB pointer is not to a physical address */
2240     if ((csio->ccb_h.flags & CAM_CDB_POINTER) && (csio->ccb_h.flags & CAM_CDB_PHYS)) {
2241 	debug(0, "  CDB pointer is to physical address");
2242 	csio->ccb_h.status = CAM_REQ_CMP_ERR;
2243     }
2244 
2245     /* abandon aborted ccbs or those that have failed validation */
2246     if ((csio->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_INPROG) {
2247 	debug(2, "abandoning CCB due to abort/validation failure");
2248 	return(EINVAL);
2249     }
2250 
2251     /*
2252      * Get a command, or push the ccb back to CAM and freeze the queue.
2253      */
2254     if ((error = mly_alloc_command(sc, &mc))) {
2255 	xpt_freeze_simq(sim, 1);
2256 	csio->ccb_h.status |= CAM_REQUEUE_REQ;
2257 	sc->mly_qfrzn_cnt++;
2258 	return(error);
2259     }
2260 
2261     /* build the command */
2262     mc->mc_data = csio;
2263     mc->mc_length = csio->dxfer_len;
2264     mc->mc_complete = mly_cam_complete;
2265     mc->mc_private = csio;
2266     mc->mc_flags |= MLY_CMD_CCB;
2267     /* XXX This code doesn't set the data direction in mc_flags. */
2268 
2269     /* save the bus number in the ccb for later recovery XXX should be a better way */
2270      csio->ccb_h.sim_priv.entries[0].field = bus;
2271 
2272     /* build the packet for the controller */
2273     ss = &mc->mc_packet->scsi_small;
2274     ss->opcode = MDACMD_SCSI;
2275     if (csio->ccb_h.flags & CAM_DIS_DISCONNECT)
2276 	ss->command_control.disable_disconnect = 1;
2277     if ((csio->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_OUT)
2278 	ss->command_control.data_direction = MLY_CCB_WRITE;
2279     ss->data_size = csio->dxfer_len;
2280     ss->addr.phys.lun = csio->ccb_h.target_lun;
2281     ss->addr.phys.target = csio->ccb_h.target_id;
2282     ss->addr.phys.channel = bus;
2283     if (csio->ccb_h.timeout < (60 * 1000)) {
2284 	ss->timeout.value = csio->ccb_h.timeout / 1000;
2285 	ss->timeout.scale = MLY_TIMEOUT_SECONDS;
2286     } else if (csio->ccb_h.timeout < (60 * 60 * 1000)) {
2287 	ss->timeout.value = csio->ccb_h.timeout / (60 * 1000);
2288 	ss->timeout.scale = MLY_TIMEOUT_MINUTES;
2289     } else {
2290 	ss->timeout.value = csio->ccb_h.timeout / (60 * 60 * 1000);	/* overflow? */
2291 	ss->timeout.scale = MLY_TIMEOUT_HOURS;
2292     }
2293     ss->maximum_sense_size = csio->sense_len;
2294     ss->cdb_length = csio->cdb_len;
2295     if (csio->ccb_h.flags & CAM_CDB_POINTER) {
2296 	bcopy(csio->cdb_io.cdb_ptr, ss->cdb, csio->cdb_len);
2297     } else {
2298 	bcopy(csio->cdb_io.cdb_bytes, ss->cdb, csio->cdb_len);
2299     }
2300 
2301     /* give the command to the controller */
2302     if ((error = mly_start(mc))) {
2303 	xpt_freeze_simq(sim, 1);
2304 	csio->ccb_h.status |= CAM_REQUEUE_REQ;
2305 	sc->mly_qfrzn_cnt++;
2306 	return(error);
2307     }
2308 
2309     return(0);
2310 }
2311 
2312 /********************************************************************************
2313  * Check for possibly-completed commands.
2314  */
2315 static void
mly_cam_poll(struct cam_sim * sim)2316 mly_cam_poll(struct cam_sim *sim)
2317 {
2318     struct mly_softc	*sc = cam_sim_softc(sim);
2319 
2320     debug_called(2);
2321 
2322     mly_done(sc);
2323 }
2324 
2325 /********************************************************************************
2326  * Handle completion of a command - pass results back through the CCB
2327  */
2328 static void
mly_cam_complete(struct mly_command * mc)2329 mly_cam_complete(struct mly_command *mc)
2330 {
2331     struct mly_softc		*sc = mc->mc_sc;
2332     struct ccb_scsiio		*csio = (struct ccb_scsiio *)mc->mc_private;
2333     struct scsi_inquiry_data	*inq = (struct scsi_inquiry_data *)csio->data_ptr;
2334     struct mly_btl		*btl;
2335     u_int8_t			cmd;
2336     int				bus, target;
2337 
2338     debug_called(2);
2339 
2340     csio->scsi_status = mc->mc_status;
2341     switch(mc->mc_status) {
2342     case SCSI_STATUS_OK:
2343 	/*
2344 	 * In order to report logical device type and status, we overwrite
2345 	 * the result of the INQUIRY command to logical devices.
2346 	 */
2347 	bus = csio->ccb_h.sim_priv.entries[0].field;
2348 	target = csio->ccb_h.target_id;
2349 	/* XXX validate bus/target? */
2350 	if (sc->mly_btl[bus][target].mb_flags & MLY_BTL_LOGICAL) {
2351 	    if (csio->ccb_h.flags & CAM_CDB_POINTER) {
2352 		cmd = *csio->cdb_io.cdb_ptr;
2353 	    } else {
2354 		cmd = csio->cdb_io.cdb_bytes[0];
2355 	    }
2356 	    if (cmd == INQUIRY) {
2357 		btl = &sc->mly_btl[bus][target];
2358 		padstr(inq->vendor, mly_describe_code(mly_table_device_type, btl->mb_type), 8);
2359 		padstr(inq->product, mly_describe_code(mly_table_device_state, btl->mb_state), 16);
2360 		padstr(inq->revision, "", 4);
2361 	    }
2362 	}
2363 
2364 	debug(2, "SCSI_STATUS_OK");
2365 	csio->ccb_h.status = CAM_REQ_CMP;
2366 	break;
2367 
2368     case SCSI_STATUS_CHECK_COND:
2369 	debug(1, "SCSI_STATUS_CHECK_COND  sense %d  resid %d", mc->mc_sense, mc->mc_resid);
2370 	csio->ccb_h.status = CAM_SCSI_STATUS_ERROR;
2371 	bzero(&csio->sense_data, SSD_FULL_SIZE);
2372 	bcopy(mc->mc_packet, &csio->sense_data, mc->mc_sense);
2373 	csio->sense_len = mc->mc_sense;
2374 	csio->ccb_h.status |= CAM_AUTOSNS_VALID;
2375 	csio->resid = mc->mc_resid;	/* XXX this is a signed value... */
2376 	break;
2377 
2378     case SCSI_STATUS_BUSY:
2379 	debug(1, "SCSI_STATUS_BUSY");
2380 	csio->ccb_h.status = CAM_SCSI_BUSY;
2381 	break;
2382 
2383     default:
2384 	debug(1, "unknown status 0x%x", csio->scsi_status);
2385 	csio->ccb_h.status = CAM_REQ_CMP_ERR;
2386 	break;
2387     }
2388 
2389     if (sc->mly_qfrzn_cnt) {
2390 	csio->ccb_h.status |= CAM_RELEASE_SIMQ;
2391 	sc->mly_qfrzn_cnt--;
2392     }
2393 
2394     xpt_done((union ccb *)csio);
2395     mly_release_command(mc);
2396 }
2397 
2398 /********************************************************************************
2399  * Find a peripheral attahed at (bus),(target)
2400  */
2401 static struct cam_periph *
mly_find_periph(struct mly_softc * sc,int bus,int target)2402 mly_find_periph(struct mly_softc *sc, int bus, int target)
2403 {
2404     struct cam_periph	*periph;
2405     struct cam_path	*path;
2406     int			status;
2407 
2408     status = xpt_create_path(&path, NULL, cam_sim_path(sc->mly_cam_sim[bus]), target, 0);
2409     if (status == CAM_REQ_CMP) {
2410 	periph = cam_periph_find(path, NULL);
2411 	xpt_free_path(path);
2412     } else {
2413 	periph = NULL;
2414     }
2415     return(periph);
2416 }
2417 
2418 /********************************************************************************
2419  * Name the device at (bus)(target)
2420  */
2421 static int
mly_name_device(struct mly_softc * sc,int bus,int target)2422 mly_name_device(struct mly_softc *sc, int bus, int target)
2423 {
2424     struct cam_periph	*periph;
2425 
2426     if ((periph = mly_find_periph(sc, bus, target)) != NULL) {
2427 	sprintf(sc->mly_btl[bus][target].mb_name, "%s%d", periph->periph_name, periph->unit_number);
2428 	return(0);
2429     }
2430     sc->mly_btl[bus][target].mb_name[0] = 0;
2431     return(ENOENT);
2432 }
2433 
2434 /********************************************************************************
2435  ********************************************************************************
2436                                                                  Hardware Control
2437  ********************************************************************************
2438  ********************************************************************************/
2439 
2440 /********************************************************************************
2441  * Handshake with the firmware while the card is being initialised.
2442  */
2443 static int
mly_fwhandshake(struct mly_softc * sc)2444 mly_fwhandshake(struct mly_softc *sc)
2445 {
2446     u_int8_t	error, param0, param1;
2447     int		spinup = 0;
2448 
2449     debug_called(1);
2450 
2451     /* set HM_STSACK and let the firmware initialise */
2452     MLY_SET_REG(sc, sc->mly_idbr, MLY_HM_STSACK);
2453     DELAY(1000);	/* too short? */
2454 
2455     /* if HM_STSACK is still true, the controller is initialising */
2456     if (!MLY_IDBR_TRUE(sc, MLY_HM_STSACK))
2457 	return(0);
2458     mly_printf(sc, "controller initialisation started\n");
2459 
2460     /* spin waiting for initialisation to finish, or for a message to be delivered */
2461     while (MLY_IDBR_TRUE(sc, MLY_HM_STSACK)) {
2462 	/* check for a message */
2463 	if (MLY_ERROR_VALID(sc)) {
2464 	    error = MLY_GET_REG(sc, sc->mly_error_status) & ~MLY_MSG_EMPTY;
2465 	    param0 = MLY_GET_REG(sc, sc->mly_command_mailbox);
2466 	    param1 = MLY_GET_REG(sc, sc->mly_command_mailbox + 1);
2467 
2468 	    switch(error) {
2469 	    case MLY_MSG_SPINUP:
2470 		if (!spinup) {
2471 		    mly_printf(sc, "drive spinup in progress\n");
2472 		    spinup = 1;			/* only print this once (should print drive being spun?) */
2473 		}
2474 		break;
2475 	    case MLY_MSG_RACE_RECOVERY_FAIL:
2476 		mly_printf(sc, "mirror race recovery failed, one or more drives offline\n");
2477 		break;
2478 	    case MLY_MSG_RACE_IN_PROGRESS:
2479 		mly_printf(sc, "mirror race recovery in progress\n");
2480 		break;
2481 	    case MLY_MSG_RACE_ON_CRITICAL:
2482 		mly_printf(sc, "mirror race recovery on a critical drive\n");
2483 		break;
2484 	    case MLY_MSG_PARITY_ERROR:
2485 		mly_printf(sc, "FATAL MEMORY PARITY ERROR\n");
2486 		return(ENXIO);
2487 	    default:
2488 		mly_printf(sc, "unknown initialisation code 0x%x\n", error);
2489 	    }
2490 	}
2491     }
2492     return(0);
2493 }
2494 
2495 /********************************************************************************
2496  ********************************************************************************
2497                                                         Debugging and Diagnostics
2498  ********************************************************************************
2499  ********************************************************************************/
2500 
2501 /********************************************************************************
2502  * Print some information about the controller.
2503  */
2504 static void
mly_describe_controller(struct mly_softc * sc)2505 mly_describe_controller(struct mly_softc *sc)
2506 {
2507     struct mly_ioctl_getcontrollerinfo	*mi = sc->mly_controllerinfo;
2508 
2509     mly_printf(sc, "%16s, %d channel%s, firmware %d.%02d-%d-%02d (%02d%02d%02d%02d), %dMB RAM\n",
2510 	       mi->controller_name, mi->physical_channels_present, (mi->physical_channels_present) > 1 ? "s" : "",
2511 	       mi->fw_major, mi->fw_minor, mi->fw_turn, mi->fw_build,	/* XXX turn encoding? */
2512 	       mi->fw_century, mi->fw_year, mi->fw_month, mi->fw_day,
2513 	       mi->memory_size);
2514 
2515     if (bootverbose) {
2516 	mly_printf(sc, "%s %s (%x), %dMHz %d-bit %.16s\n",
2517 		   mly_describe_code(mly_table_oemname, mi->oem_information),
2518 		   mly_describe_code(mly_table_controllertype, mi->controller_type), mi->controller_type,
2519 		   mi->interface_speed, mi->interface_width, mi->interface_name);
2520 	mly_printf(sc, "%dMB %dMHz %d-bit %s%s%s, cache %dMB\n",
2521 		   mi->memory_size, mi->memory_speed, mi->memory_width,
2522 		   mly_describe_code(mly_table_memorytype, mi->memory_type),
2523 		   mi->memory_parity ? "+parity": "",mi->memory_ecc ? "+ECC": "",
2524 		   mi->cache_size);
2525 	mly_printf(sc, "CPU: %s @ %dMHz\n",
2526 		   mly_describe_code(mly_table_cputype, mi->cpu[0].type), mi->cpu[0].speed);
2527 	if (mi->l2cache_size != 0)
2528 	    mly_printf(sc, "%dKB L2 cache\n", mi->l2cache_size);
2529 	if (mi->exmemory_size != 0)
2530 	    mly_printf(sc, "%dMB %dMHz %d-bit private %s%s%s\n",
2531 		       mi->exmemory_size, mi->exmemory_speed, mi->exmemory_width,
2532 		       mly_describe_code(mly_table_memorytype, mi->exmemory_type),
2533 		       mi->exmemory_parity ? "+parity": "",mi->exmemory_ecc ? "+ECC": "");
2534 	mly_printf(sc, "battery backup %s\n", mi->bbu_present ? "present" : "not installed");
2535 	mly_printf(sc, "maximum data transfer %d blocks, maximum sg entries/command %d\n",
2536 		   mi->maximum_block_count, mi->maximum_sg_entries);
2537 	mly_printf(sc, "logical devices present/critical/offline %d/%d/%d\n",
2538 		   mi->logical_devices_present, mi->logical_devices_critical, mi->logical_devices_offline);
2539 	mly_printf(sc, "physical devices present %d\n",
2540 		   mi->physical_devices_present);
2541 	mly_printf(sc, "physical disks present/offline %d/%d\n",
2542 		   mi->physical_disks_present, mi->physical_disks_offline);
2543 	mly_printf(sc, "%d physical channel%s, %d virtual channel%s of %d possible\n",
2544 		   mi->physical_channels_present, mi->physical_channels_present == 1 ? "" : "s",
2545 		   mi->virtual_channels_present, mi->virtual_channels_present == 1 ? "" : "s",
2546 		   mi->virtual_channels_possible);
2547 	mly_printf(sc, "%d parallel commands supported\n", mi->maximum_parallel_commands);
2548 	mly_printf(sc, "%dMB flash ROM, %d of %d maximum cycles\n",
2549 		   mi->flash_size, mi->flash_age, mi->flash_maximum_age);
2550     }
2551 }
2552 
2553 #ifdef MLY_DEBUG
2554 /********************************************************************************
2555  * Print some controller state
2556  */
2557 static void
mly_printstate(struct mly_softc * sc)2558 mly_printstate(struct mly_softc *sc)
2559 {
2560     mly_printf(sc, "IDBR %02x  ODBR %02x  ERROR %02x  (%x %x %x)\n",
2561 		  MLY_GET_REG(sc, sc->mly_idbr),
2562 		  MLY_GET_REG(sc, sc->mly_odbr),
2563 		  MLY_GET_REG(sc, sc->mly_error_status),
2564 		  sc->mly_idbr,
2565 		  sc->mly_odbr,
2566 		  sc->mly_error_status);
2567     mly_printf(sc, "IMASK %02x  ISTATUS %02x\n",
2568 		  MLY_GET_REG(sc, sc->mly_interrupt_mask),
2569 		  MLY_GET_REG(sc, sc->mly_interrupt_status));
2570     mly_printf(sc, "COMMAND %02x %02x %02x %02x %02x %02x %02x %02x\n",
2571 		  MLY_GET_REG(sc, sc->mly_command_mailbox),
2572 		  MLY_GET_REG(sc, sc->mly_command_mailbox + 1),
2573 		  MLY_GET_REG(sc, sc->mly_command_mailbox + 2),
2574 		  MLY_GET_REG(sc, sc->mly_command_mailbox + 3),
2575 		  MLY_GET_REG(sc, sc->mly_command_mailbox + 4),
2576 		  MLY_GET_REG(sc, sc->mly_command_mailbox + 5),
2577 		  MLY_GET_REG(sc, sc->mly_command_mailbox + 6),
2578 		  MLY_GET_REG(sc, sc->mly_command_mailbox + 7));
2579     mly_printf(sc, "STATUS  %02x %02x %02x %02x %02x %02x %02x %02x\n",
2580 		  MLY_GET_REG(sc, sc->mly_status_mailbox),
2581 		  MLY_GET_REG(sc, sc->mly_status_mailbox + 1),
2582 		  MLY_GET_REG(sc, sc->mly_status_mailbox + 2),
2583 		  MLY_GET_REG(sc, sc->mly_status_mailbox + 3),
2584 		  MLY_GET_REG(sc, sc->mly_status_mailbox + 4),
2585 		  MLY_GET_REG(sc, sc->mly_status_mailbox + 5),
2586 		  MLY_GET_REG(sc, sc->mly_status_mailbox + 6),
2587 		  MLY_GET_REG(sc, sc->mly_status_mailbox + 7));
2588     mly_printf(sc, "        %04x        %08x\n",
2589 		  MLY_GET_REG2(sc, sc->mly_status_mailbox),
2590 		  MLY_GET_REG4(sc, sc->mly_status_mailbox + 4));
2591 }
2592 
2593 struct mly_softc	*mly_softc0 = NULL;
2594 void
mly_printstate0(void)2595 mly_printstate0(void)
2596 {
2597     if (mly_softc0 != NULL)
2598 	mly_printstate(mly_softc0);
2599 }
2600 
2601 /********************************************************************************
2602  * Print a command
2603  */
2604 static void
mly_print_command(struct mly_command * mc)2605 mly_print_command(struct mly_command *mc)
2606 {
2607     struct mly_softc	*sc = mc->mc_sc;
2608 
2609     mly_printf(sc, "COMMAND @ %p\n", mc);
2610     mly_printf(sc, "  slot      %d\n", mc->mc_slot);
2611     mly_printf(sc, "  status    0x%x\n", mc->mc_status);
2612     mly_printf(sc, "  sense len %d\n", mc->mc_sense);
2613     mly_printf(sc, "  resid     %d\n", mc->mc_resid);
2614     mly_printf(sc, "  packet    %p/0x%llx\n", mc->mc_packet, mc->mc_packetphys);
2615     if (mc->mc_packet != NULL)
2616 	mly_print_packet(mc);
2617     mly_printf(sc, "  data      %p/%d\n", mc->mc_data, mc->mc_length);
2618     mly_printf(sc, "  flags     %b\n", mc->mc_flags, "\20\1busy\2complete\3slotted\4mapped\5datain\6dataout\n");
2619     mly_printf(sc, "  complete  %p\n", mc->mc_complete);
2620     mly_printf(sc, "  private   %p\n", mc->mc_private);
2621 }
2622 
2623 /********************************************************************************
2624  * Print a command packet
2625  */
2626 static void
mly_print_packet(struct mly_command * mc)2627 mly_print_packet(struct mly_command *mc)
2628 {
2629     struct mly_softc			*sc = mc->mc_sc;
2630     struct mly_command_generic		*ge = (struct mly_command_generic *)mc->mc_packet;
2631     struct mly_command_scsi_small	*ss = (struct mly_command_scsi_small *)mc->mc_packet;
2632     struct mly_command_scsi_large	*sl = (struct mly_command_scsi_large *)mc->mc_packet;
2633     struct mly_command_ioctl		*io = (struct mly_command_ioctl *)mc->mc_packet;
2634     int					transfer;
2635 
2636     mly_printf(sc, "   command_id           %d\n", ge->command_id);
2637     mly_printf(sc, "   opcode               %d\n", ge->opcode);
2638     mly_printf(sc, "   command_control      fua %d  dpo %d  est %d  dd %s  nas %d ddis %d\n",
2639 		  ge->command_control.force_unit_access,
2640 		  ge->command_control.disable_page_out,
2641 		  ge->command_control.extended_sg_table,
2642 		  (ge->command_control.data_direction == MLY_CCB_WRITE) ? "WRITE" : "READ",
2643 		  ge->command_control.no_auto_sense,
2644 		  ge->command_control.disable_disconnect);
2645     mly_printf(sc, "   data_size            %d\n", ge->data_size);
2646     mly_printf(sc, "   sense_buffer_address 0x%llx\n", ge->sense_buffer_address);
2647     mly_printf(sc, "   lun                  %d\n", ge->addr.phys.lun);
2648     mly_printf(sc, "   target               %d\n", ge->addr.phys.target);
2649     mly_printf(sc, "   channel              %d\n", ge->addr.phys.channel);
2650     mly_printf(sc, "   logical device       %d\n", ge->addr.log.logdev);
2651     mly_printf(sc, "   controller           %d\n", ge->addr.phys.controller);
2652     mly_printf(sc, "   timeout              %d %s\n",
2653 		  ge->timeout.value,
2654 		  (ge->timeout.scale == MLY_TIMEOUT_SECONDS) ? "seconds" :
2655 		  ((ge->timeout.scale == MLY_TIMEOUT_MINUTES) ? "minutes" : "hours"));
2656     mly_printf(sc, "   maximum_sense_size   %d\n", ge->maximum_sense_size);
2657     switch(ge->opcode) {
2658     case MDACMD_SCSIPT:
2659     case MDACMD_SCSI:
2660 	mly_printf(sc, "   cdb length           %d\n", ss->cdb_length);
2661 	mly_printf(sc, "   cdb                  %*D\n", ss->cdb_length, ss->cdb, " ");
2662 	transfer = 1;
2663 	break;
2664     case MDACMD_SCSILC:
2665     case MDACMD_SCSILCPT:
2666 	mly_printf(sc, "   cdb length           %d\n", sl->cdb_length);
2667 	mly_printf(sc, "   cdb                  0x%llx\n", sl->cdb_physaddr);
2668 	transfer = 1;
2669 	break;
2670     case MDACMD_IOCTL:
2671 	mly_printf(sc, "   sub_ioctl            0x%x\n", io->sub_ioctl);
2672 	switch(io->sub_ioctl) {
2673 	case MDACIOCTL_SETMEMORYMAILBOX:
2674 	    mly_printf(sc, "   health_buffer_size   %d\n",
2675 			  io->param.setmemorymailbox.health_buffer_size);
2676 	    mly_printf(sc, "   health_buffer_phys   0x%llx\n",
2677 			  io->param.setmemorymailbox.health_buffer_physaddr);
2678 	    mly_printf(sc, "   command_mailbox      0x%llx\n",
2679 			  io->param.setmemorymailbox.command_mailbox_physaddr);
2680 	    mly_printf(sc, "   status_mailbox       0x%llx\n",
2681 			  io->param.setmemorymailbox.status_mailbox_physaddr);
2682 	    transfer = 0;
2683 	    break;
2684 
2685 	case MDACIOCTL_SETREALTIMECLOCK:
2686 	case MDACIOCTL_GETHEALTHSTATUS:
2687 	case MDACIOCTL_GETCONTROLLERINFO:
2688 	case MDACIOCTL_GETLOGDEVINFOVALID:
2689 	case MDACIOCTL_GETPHYSDEVINFOVALID:
2690 	case MDACIOCTL_GETPHYSDEVSTATISTICS:
2691 	case MDACIOCTL_GETLOGDEVSTATISTICS:
2692 	case MDACIOCTL_GETCONTROLLERSTATISTICS:
2693 	case MDACIOCTL_GETBDT_FOR_SYSDRIVE:
2694 	case MDACIOCTL_CREATENEWCONF:
2695 	case MDACIOCTL_ADDNEWCONF:
2696 	case MDACIOCTL_GETDEVCONFINFO:
2697 	case MDACIOCTL_GETFREESPACELIST:
2698 	case MDACIOCTL_MORE:
2699 	case MDACIOCTL_SETPHYSDEVPARAMETER:
2700 	case MDACIOCTL_GETPHYSDEVPARAMETER:
2701 	case MDACIOCTL_GETLOGDEVPARAMETER:
2702 	case MDACIOCTL_SETLOGDEVPARAMETER:
2703 	    mly_printf(sc, "   param                %10D\n", io->param.data.param, " ");
2704 	    transfer = 1;
2705 	    break;
2706 
2707 	case MDACIOCTL_GETEVENT:
2708 	    mly_printf(sc, "   event                %d\n",
2709 		       io->param.getevent.sequence_number_low + ((u_int32_t)io->addr.log.logdev << 16));
2710 	    transfer = 1;
2711 	    break;
2712 
2713 	case MDACIOCTL_SETRAIDDEVSTATE:
2714 	    mly_printf(sc, "   state                %d\n", io->param.setraiddevstate.state);
2715 	    transfer = 0;
2716 	    break;
2717 
2718 	case MDACIOCTL_XLATEPHYSDEVTORAIDDEV:
2719 	    mly_printf(sc, "   raid_device          %d\n", io->param.xlatephysdevtoraiddev.raid_device);
2720 	    mly_printf(sc, "   controller           %d\n", io->param.xlatephysdevtoraiddev.controller);
2721 	    mly_printf(sc, "   channel              %d\n", io->param.xlatephysdevtoraiddev.channel);
2722 	    mly_printf(sc, "   target               %d\n", io->param.xlatephysdevtoraiddev.target);
2723 	    mly_printf(sc, "   lun                  %d\n", io->param.xlatephysdevtoraiddev.lun);
2724 	    transfer = 0;
2725 	    break;
2726 
2727 	case MDACIOCTL_GETGROUPCONFINFO:
2728 	    mly_printf(sc, "   group                %d\n", io->param.getgroupconfinfo.group);
2729 	    transfer = 1;
2730 	    break;
2731 
2732 	case MDACIOCTL_GET_SUBSYSTEM_DATA:
2733 	case MDACIOCTL_SET_SUBSYSTEM_DATA:
2734 	case MDACIOCTL_STARTDISOCVERY:
2735 	case MDACIOCTL_INITPHYSDEVSTART:
2736 	case MDACIOCTL_INITPHYSDEVSTOP:
2737 	case MDACIOCTL_INITRAIDDEVSTART:
2738 	case MDACIOCTL_INITRAIDDEVSTOP:
2739 	case MDACIOCTL_REBUILDRAIDDEVSTART:
2740 	case MDACIOCTL_REBUILDRAIDDEVSTOP:
2741 	case MDACIOCTL_MAKECONSISTENTDATASTART:
2742 	case MDACIOCTL_MAKECONSISTENTDATASTOP:
2743 	case MDACIOCTL_CONSISTENCYCHECKSTART:
2744 	case MDACIOCTL_CONSISTENCYCHECKSTOP:
2745 	case MDACIOCTL_RESETDEVICE:
2746 	case MDACIOCTL_FLUSHDEVICEDATA:
2747 	case MDACIOCTL_PAUSEDEVICE:
2748 	case MDACIOCTL_UNPAUSEDEVICE:
2749 	case MDACIOCTL_LOCATEDEVICE:
2750 	case MDACIOCTL_SETMASTERSLAVEMODE:
2751 	case MDACIOCTL_DELETERAIDDEV:
2752 	case MDACIOCTL_REPLACEINTERNALDEV:
2753 	case MDACIOCTL_CLEARCONF:
2754 	case MDACIOCTL_GETCONTROLLERPARAMETER:
2755 	case MDACIOCTL_SETCONTRLLERPARAMETER:
2756 	case MDACIOCTL_CLEARCONFSUSPMODE:
2757 	case MDACIOCTL_STOREIMAGE:
2758 	case MDACIOCTL_READIMAGE:
2759 	case MDACIOCTL_FLASHIMAGES:
2760 	case MDACIOCTL_RENAMERAIDDEV:
2761 	default:			/* no idea what to print */
2762 	    transfer = 0;
2763 	    break;
2764 	}
2765 	break;
2766 
2767     case MDACMD_IOCTLCHECK:
2768     case MDACMD_MEMCOPY:
2769     default:
2770 	transfer = 0;
2771 	break;	/* print nothing */
2772     }
2773     if (transfer) {
2774 	if (ge->command_control.extended_sg_table) {
2775 	    mly_printf(sc, "   sg table             0x%llx/%d\n",
2776 			  ge->transfer.indirect.table_physaddr[0], ge->transfer.indirect.entries[0]);
2777 	} else {
2778 	    mly_printf(sc, "   0000                 0x%llx/%lld\n",
2779 			  ge->transfer.direct.sg[0].physaddr, ge->transfer.direct.sg[0].length);
2780 	    mly_printf(sc, "   0001                 0x%llx/%lld\n",
2781 			  ge->transfer.direct.sg[1].physaddr, ge->transfer.direct.sg[1].length);
2782 	}
2783     }
2784 }
2785 
2786 /********************************************************************************
2787  * Panic in a slightly informative fashion
2788  */
2789 static void
mly_panic(struct mly_softc * sc,char * reason)2790 mly_panic(struct mly_softc *sc, char *reason)
2791 {
2792     mly_printstate(sc);
2793     panic(reason);
2794 }
2795 
2796 /********************************************************************************
2797  * Print queue statistics, callable from DDB.
2798  */
2799 void
mly_print_controller(int controller)2800 mly_print_controller(int controller)
2801 {
2802     struct mly_softc	*sc;
2803 
2804     if ((sc = devclass_get_softc(devclass_find("mly"), controller)) == NULL) {
2805 	printf("mly: controller %d invalid\n", controller);
2806     } else {
2807 	device_printf(sc->mly_dev, "queue    curr max\n");
2808 	device_printf(sc->mly_dev, "free     %04d/%04d\n",
2809 		      sc->mly_qstat[MLYQ_FREE].q_length, sc->mly_qstat[MLYQ_FREE].q_max);
2810 	device_printf(sc->mly_dev, "busy     %04d/%04d\n",
2811 		      sc->mly_qstat[MLYQ_BUSY].q_length, sc->mly_qstat[MLYQ_BUSY].q_max);
2812 	device_printf(sc->mly_dev, "complete %04d/%04d\n",
2813 		      sc->mly_qstat[MLYQ_COMPLETE].q_length, sc->mly_qstat[MLYQ_COMPLETE].q_max);
2814     }
2815 }
2816 #endif
2817 
2818 
2819 /********************************************************************************
2820  ********************************************************************************
2821                                                          Control device interface
2822  ********************************************************************************
2823  ********************************************************************************/
2824 
2825 /********************************************************************************
2826  * Accept an open operation on the control device.
2827  */
2828 static int
mly_user_open(struct cdev * dev,int flags,int fmt,struct thread * td)2829 mly_user_open(struct cdev *dev, int flags, int fmt, struct thread *td)
2830 {
2831     struct mly_softc	*sc = dev->si_drv1;
2832 
2833     MLY_LOCK(sc);
2834     sc->mly_state |= MLY_STATE_OPEN;
2835     MLY_UNLOCK(sc);
2836     return(0);
2837 }
2838 
2839 /********************************************************************************
2840  * Accept the last close on the control device.
2841  */
2842 static int
mly_user_close(struct cdev * dev,int flags,int fmt,struct thread * td)2843 mly_user_close(struct cdev *dev, int flags, int fmt, struct thread *td)
2844 {
2845     struct mly_softc	*sc = dev->si_drv1;
2846 
2847     MLY_LOCK(sc);
2848     sc->mly_state &= ~MLY_STATE_OPEN;
2849     MLY_UNLOCK(sc);
2850     return (0);
2851 }
2852 
2853 /********************************************************************************
2854  * Handle controller-specific control operations.
2855  */
2856 static int
mly_user_ioctl(struct cdev * dev,u_long cmd,caddr_t addr,int32_t flag,struct thread * td)2857 mly_user_ioctl(struct cdev *dev, u_long cmd, caddr_t addr,
2858 				int32_t flag, struct thread *td)
2859 {
2860     struct mly_softc		*sc = (struct mly_softc *)dev->si_drv1;
2861     struct mly_user_command	*uc = (struct mly_user_command *)addr;
2862     struct mly_user_health	*uh = (struct mly_user_health *)addr;
2863 
2864     switch(cmd) {
2865     case MLYIO_COMMAND:
2866 	return(mly_user_command(sc, uc));
2867     case MLYIO_HEALTH:
2868 	return(mly_user_health(sc, uh));
2869     default:
2870 	return(ENOIOCTL);
2871     }
2872 }
2873 
2874 /********************************************************************************
2875  * Execute a command passed in from userspace.
2876  *
2877  * The control structure contains the actual command for the controller, as well
2878  * as the user-space data pointer and data size, and an optional sense buffer
2879  * size/pointer.  On completion, the data size is adjusted to the command
2880  * residual, and the sense buffer size to the size of the returned sense data.
2881  *
2882  */
2883 static int
mly_user_command(struct mly_softc * sc,struct mly_user_command * uc)2884 mly_user_command(struct mly_softc *sc, struct mly_user_command *uc)
2885 {
2886     struct mly_command	*mc;
2887     int			error;
2888 
2889     /* allocate a command */
2890     MLY_LOCK(sc);
2891     if (mly_alloc_command(sc, &mc)) {
2892 	MLY_UNLOCK(sc);
2893 	return (ENOMEM);	/* XXX Linux version will wait for a command */
2894     }
2895     MLY_UNLOCK(sc);
2896 
2897     /* handle data size/direction */
2898     mc->mc_length = (uc->DataTransferLength >= 0) ? uc->DataTransferLength : -uc->DataTransferLength;
2899     if (mc->mc_length > 0) {
2900 	if ((mc->mc_data = malloc(mc->mc_length, M_DEVBUF, M_NOWAIT)) == NULL) {
2901 	    error = ENOMEM;
2902 	    goto out;
2903 	}
2904     }
2905     if (uc->DataTransferLength > 0) {
2906 	mc->mc_flags |= MLY_CMD_DATAIN;
2907 	bzero(mc->mc_data, mc->mc_length);
2908     }
2909     if (uc->DataTransferLength < 0) {
2910 	mc->mc_flags |= MLY_CMD_DATAOUT;
2911 	if ((error = copyin(uc->DataTransferBuffer, mc->mc_data, mc->mc_length)) != 0)
2912 	    goto out;
2913     }
2914 
2915     /* copy the controller command */
2916     bcopy(&uc->CommandMailbox, mc->mc_packet, sizeof(uc->CommandMailbox));
2917 
2918     /* clear command completion handler so that we get woken up */
2919     mc->mc_complete = NULL;
2920 
2921     /* execute the command */
2922     MLY_LOCK(sc);
2923     if ((error = mly_start(mc)) != 0) {
2924 	MLY_UNLOCK(sc);
2925 	goto out;
2926     }
2927     while (!(mc->mc_flags & MLY_CMD_COMPLETE))
2928 	mtx_sleep(mc, &sc->mly_lock, PRIBIO, "mlyioctl", 0);
2929     MLY_UNLOCK(sc);
2930 
2931     /* return the data to userspace */
2932     if (uc->DataTransferLength > 0)
2933 	if ((error = copyout(mc->mc_data, uc->DataTransferBuffer, mc->mc_length)) != 0)
2934 	    goto out;
2935 
2936     /* return the sense buffer to userspace */
2937     if ((uc->RequestSenseLength > 0) && (mc->mc_sense > 0)) {
2938 	if ((error = copyout(mc->mc_packet, uc->RequestSenseBuffer,
2939 			     min(uc->RequestSenseLength, mc->mc_sense))) != 0)
2940 	    goto out;
2941     }
2942 
2943     /* return command results to userspace (caller will copy out) */
2944     uc->DataTransferLength = mc->mc_resid;
2945     uc->RequestSenseLength = min(uc->RequestSenseLength, mc->mc_sense);
2946     uc->CommandStatus = mc->mc_status;
2947     error = 0;
2948 
2949  out:
2950     if (mc->mc_data != NULL)
2951 	free(mc->mc_data, M_DEVBUF);
2952     MLY_LOCK(sc);
2953     mly_release_command(mc);
2954     MLY_UNLOCK(sc);
2955     return(error);
2956 }
2957 
2958 /********************************************************************************
2959  * Return health status to userspace.  If the health change index in the user
2960  * structure does not match that currently exported by the controller, we
2961  * return the current status immediately.  Otherwise, we block until either
2962  * interrupted or new status is delivered.
2963  */
2964 static int
mly_user_health(struct mly_softc * sc,struct mly_user_health * uh)2965 mly_user_health(struct mly_softc *sc, struct mly_user_health *uh)
2966 {
2967     struct mly_health_status		mh;
2968     int					error;
2969 
2970     /* fetch the current health status from userspace */
2971     if ((error = copyin(uh->HealthStatusBuffer, &mh, sizeof(mh))) != 0)
2972 	return(error);
2973 
2974     /* spin waiting for a status update */
2975     MLY_LOCK(sc);
2976     error = EWOULDBLOCK;
2977     while ((error != 0) && (sc->mly_event_change == mh.change_counter))
2978 	error = mtx_sleep(&sc->mly_event_change, &sc->mly_lock, PRIBIO | PCATCH,
2979 	    "mlyhealth", 0);
2980     mh = sc->mly_mmbox->mmm_health.status;
2981     MLY_UNLOCK(sc);
2982 
2983     /* copy the controller's health status buffer out */
2984     error = copyout(&mh, uh->HealthStatusBuffer, sizeof(mh));
2985     return(error);
2986 }
2987 
2988 #ifdef MLY_DEBUG
2989 static void
mly_timeout(void * arg)2990 mly_timeout(void *arg)
2991 {
2992 	struct mly_softc *sc;
2993 	struct mly_command *mc;
2994 	int deadline;
2995 
2996 	sc = arg;
2997 	MLY_ASSERT_LOCKED(sc);
2998 	deadline = time_second - MLY_CMD_TIMEOUT;
2999 	TAILQ_FOREACH(mc, &sc->mly_busy, mc_link) {
3000 		if ((mc->mc_timestamp < deadline)) {
3001 			device_printf(sc->mly_dev,
3002 			    "COMMAND %p TIMEOUT AFTER %d SECONDS\n", mc,
3003 			    (int)(time_second - mc->mc_timestamp));
3004 		}
3005 	}
3006 
3007 	callout_reset(&sc->mly_timeout, MLY_CMD_TIMEOUT * hz, mly_timeout, sc);
3008 }
3009 #endif
3010