1 /*-
2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3 *
4 * Copyright (c) 2013 Ian Lepore <[email protected]>
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 * SUCH DAMAGE.
27 *
28 */
29
30 #include <sys/cdefs.h>
31 __FBSDID("$FreeBSD$");
32
33 /*
34 * Driver for Freescale Fast Ethernet Controller, found on imx-series SoCs among
35 * others. Also works for the ENET Gigibit controller found on imx6 and imx28,
36 * but the driver doesn't currently use any of the ENET advanced features other
37 * than enabling gigabit.
38 *
39 * The interface name 'fec' is already taken by netgraph's Fast Etherchannel
40 * (netgraph/ng_fec.c), so we use 'ffec'.
41 *
42 * Requires an FDT entry with at least these properties:
43 * fec: ethernet@02188000 {
44 * compatible = "fsl,imxNN-fec";
45 * reg = <0x02188000 0x4000>;
46 * interrupts = <150 151>;
47 * phy-mode = "rgmii";
48 * phy-disable-preamble; // optional
49 * };
50 * The second interrupt number is for IEEE-1588, and is not currently used; it
51 * need not be present. phy-mode must be one of: "mii", "rmii", "rgmii".
52 * There is also an optional property, phy-disable-preamble, which if present
53 * will disable the preamble bits, cutting the size of each mdio transaction
54 * (and thus the busy-wait time) in half.
55 */
56
57 #include <sys/param.h>
58 #include <sys/systm.h>
59 #include <sys/bus.h>
60 #include <sys/endian.h>
61 #include <sys/kernel.h>
62 #include <sys/lock.h>
63 #include <sys/malloc.h>
64 #include <sys/mbuf.h>
65 #include <sys/module.h>
66 #include <sys/mutex.h>
67 #include <sys/rman.h>
68 #include <sys/socket.h>
69 #include <sys/sockio.h>
70 #include <sys/sysctl.h>
71
72 #include <machine/bus.h>
73
74 #include <net/bpf.h>
75 #include <net/if.h>
76 #include <net/ethernet.h>
77 #include <net/if_dl.h>
78 #include <net/if_media.h>
79 #include <net/if_types.h>
80 #include <net/if_var.h>
81 #include <net/if_vlan_var.h>
82
83 #include <dev/fdt/fdt_common.h>
84 #include <dev/ffec/if_ffecreg.h>
85 #include <dev/ofw/ofw_bus.h>
86 #include <dev/ofw/ofw_bus_subr.h>
87 #include <dev/mii/mii.h>
88 #include <dev/mii/miivar.h>
89 #include <dev/mii/mii_fdt.h>
90 #include "miibus_if.h"
91
92 /*
93 * There are small differences in the hardware on various SoCs. Not every SoC
94 * we support has its own FECTYPE; most work as GENERIC and only the ones that
95 * need different handling get their own entry. In addition to the types in
96 * this list, there are some flags below that can be ORed into the upper bits.
97 */
98 enum {
99 FECTYPE_NONE,
100 FECTYPE_GENERIC,
101 FECTYPE_IMX53,
102 FECTYPE_IMX6, /* imx6 and imx7 */
103 FECTYPE_MVF,
104 };
105
106 /*
107 * Flags that describe general differences between the FEC hardware in various
108 * SoCs. These are ORed into the FECTYPE enum values in the ofw_compat_data, so
109 * the low 8 bits are reserved for the type enum. In the softc, the type and
110 * flags are put into separate members, so that you don't need to mask the flags
111 * out of the type to compare it.
112 */
113 #define FECTYPE_MASK 0x000000ff
114 #define FECFLAG_GBE (1 << 8)
115 #define FECFLAG_AVB (1 << 9)
116 #define FECFLAG_RACC (1 << 10)
117
118 /*
119 * Table of supported FDT compat strings and their associated FECTYPE values.
120 */
121 static struct ofw_compat_data compat_data[] = {
122 {"fsl,imx51-fec", FECTYPE_GENERIC},
123 {"fsl,imx53-fec", FECTYPE_IMX53},
124 {"fsl,imx6q-fec", FECTYPE_IMX6 | FECFLAG_RACC | FECFLAG_GBE },
125 {"fsl,imx6ul-fec", FECTYPE_IMX6 | FECFLAG_RACC },
126 {"fsl,imx7d-fec", FECTYPE_IMX6 | FECFLAG_RACC | FECFLAG_GBE |
127 FECFLAG_AVB },
128 {"fsl,mvf600-fec", FECTYPE_MVF | FECFLAG_RACC },
129 {"fsl,mvf-fec", FECTYPE_MVF},
130 {NULL, FECTYPE_NONE},
131 };
132
133 /*
134 * Driver data and defines.
135 */
136 #define RX_DESC_COUNT 64
137 #define RX_DESC_SIZE (sizeof(struct ffec_hwdesc) * RX_DESC_COUNT)
138 #define TX_DESC_COUNT 64
139 #define TX_DESC_SIZE (sizeof(struct ffec_hwdesc) * TX_DESC_COUNT)
140
141 #define WATCHDOG_TIMEOUT_SECS 5
142
143 #define MAX_IRQ_COUNT 3
144
145 struct ffec_bufmap {
146 struct mbuf *mbuf;
147 bus_dmamap_t map;
148 };
149
150 struct ffec_softc {
151 device_t dev;
152 device_t miibus;
153 struct mii_data * mii_softc;
154 struct ifnet *ifp;
155 int if_flags;
156 struct mtx mtx;
157 struct resource *irq_res[MAX_IRQ_COUNT];
158 struct resource *mem_res;
159 void * intr_cookie[MAX_IRQ_COUNT];
160 struct callout ffec_callout;
161 mii_contype_t phy_conn_type;
162 uint32_t fecflags;
163 uint8_t fectype;
164 boolean_t link_is_up;
165 boolean_t is_attached;
166 boolean_t is_detaching;
167 int tx_watchdog_count;
168 int rxbuf_align;
169 int txbuf_align;
170
171 bus_dma_tag_t rxdesc_tag;
172 bus_dmamap_t rxdesc_map;
173 struct ffec_hwdesc *rxdesc_ring;
174 bus_addr_t rxdesc_ring_paddr;
175 bus_dma_tag_t rxbuf_tag;
176 struct ffec_bufmap rxbuf_map[RX_DESC_COUNT];
177 uint32_t rx_idx;
178
179 bus_dma_tag_t txdesc_tag;
180 bus_dmamap_t txdesc_map;
181 struct ffec_hwdesc *txdesc_ring;
182 bus_addr_t txdesc_ring_paddr;
183 bus_dma_tag_t txbuf_tag;
184 struct ffec_bufmap txbuf_map[TX_DESC_COUNT];
185 uint32_t tx_idx_head;
186 uint32_t tx_idx_tail;
187 int txcount;
188 };
189
190 static struct resource_spec irq_res_spec[MAX_IRQ_COUNT + 1] = {
191 { SYS_RES_IRQ, 0, RF_ACTIVE },
192 { SYS_RES_IRQ, 1, RF_ACTIVE | RF_OPTIONAL },
193 { SYS_RES_IRQ, 2, RF_ACTIVE | RF_OPTIONAL },
194 RESOURCE_SPEC_END
195 };
196
197 #define FFEC_LOCK(sc) mtx_lock(&(sc)->mtx)
198 #define FFEC_UNLOCK(sc) mtx_unlock(&(sc)->mtx)
199 #define FFEC_LOCK_INIT(sc) mtx_init(&(sc)->mtx, \
200 device_get_nameunit((sc)->dev), MTX_NETWORK_LOCK, MTX_DEF)
201 #define FFEC_LOCK_DESTROY(sc) mtx_destroy(&(sc)->mtx);
202 #define FFEC_ASSERT_LOCKED(sc) mtx_assert(&(sc)->mtx, MA_OWNED);
203 #define FFEC_ASSERT_UNLOCKED(sc) mtx_assert(&(sc)->mtx, MA_NOTOWNED);
204
205 static void ffec_init_locked(struct ffec_softc *sc);
206 static void ffec_stop_locked(struct ffec_softc *sc);
207 static void ffec_txstart_locked(struct ffec_softc *sc);
208 static void ffec_txfinish_locked(struct ffec_softc *sc);
209
210 static inline uint16_t
RD2(struct ffec_softc * sc,bus_size_t off)211 RD2(struct ffec_softc *sc, bus_size_t off)
212 {
213
214 return (bus_read_2(sc->mem_res, off));
215 }
216
217 static inline void
WR2(struct ffec_softc * sc,bus_size_t off,uint16_t val)218 WR2(struct ffec_softc *sc, bus_size_t off, uint16_t val)
219 {
220
221 bus_write_2(sc->mem_res, off, val);
222 }
223
224 static inline uint32_t
RD4(struct ffec_softc * sc,bus_size_t off)225 RD4(struct ffec_softc *sc, bus_size_t off)
226 {
227
228 return (bus_read_4(sc->mem_res, off));
229 }
230
231 static inline void
WR4(struct ffec_softc * sc,bus_size_t off,uint32_t val)232 WR4(struct ffec_softc *sc, bus_size_t off, uint32_t val)
233 {
234
235 bus_write_4(sc->mem_res, off, val);
236 }
237
238 static inline uint32_t
next_rxidx(struct ffec_softc * sc,uint32_t curidx)239 next_rxidx(struct ffec_softc *sc, uint32_t curidx)
240 {
241
242 return ((curidx == RX_DESC_COUNT - 1) ? 0 : curidx + 1);
243 }
244
245 static inline uint32_t
next_txidx(struct ffec_softc * sc,uint32_t curidx)246 next_txidx(struct ffec_softc *sc, uint32_t curidx)
247 {
248
249 return ((curidx == TX_DESC_COUNT - 1) ? 0 : curidx + 1);
250 }
251
252 static void
ffec_get1paddr(void * arg,bus_dma_segment_t * segs,int nsegs,int error)253 ffec_get1paddr(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
254 {
255
256 if (error != 0)
257 return;
258 *(bus_addr_t *)arg = segs[0].ds_addr;
259 }
260
261 static void
ffec_miigasket_setup(struct ffec_softc * sc)262 ffec_miigasket_setup(struct ffec_softc *sc)
263 {
264 uint32_t ifmode;
265
266 /*
267 * We only need the gasket for MII and RMII connections on certain SoCs.
268 */
269
270 switch (sc->fectype)
271 {
272 case FECTYPE_IMX53:
273 break;
274 default:
275 return;
276 }
277
278 switch (sc->phy_conn_type)
279 {
280 case MII_CONTYPE_MII:
281 ifmode = 0;
282 break;
283 case MII_CONTYPE_RMII:
284 ifmode = FEC_MIIGSK_CFGR_IF_MODE_RMII;
285 break;
286 default:
287 return;
288 }
289
290 /*
291 * Disable the gasket, configure for either MII or RMII, then enable.
292 */
293
294 WR2(sc, FEC_MIIGSK_ENR, 0);
295 while (RD2(sc, FEC_MIIGSK_ENR) & FEC_MIIGSK_ENR_READY)
296 continue;
297
298 WR2(sc, FEC_MIIGSK_CFGR, ifmode);
299
300 WR2(sc, FEC_MIIGSK_ENR, FEC_MIIGSK_ENR_EN);
301 while (!(RD2(sc, FEC_MIIGSK_ENR) & FEC_MIIGSK_ENR_READY))
302 continue;
303 }
304
305 static boolean_t
ffec_miibus_iowait(struct ffec_softc * sc)306 ffec_miibus_iowait(struct ffec_softc *sc)
307 {
308 uint32_t timeout;
309
310 for (timeout = 10000; timeout != 0; --timeout)
311 if (RD4(sc, FEC_IER_REG) & FEC_IER_MII)
312 return (true);
313
314 return (false);
315 }
316
317 static int
ffec_miibus_readreg(device_t dev,int phy,int reg)318 ffec_miibus_readreg(device_t dev, int phy, int reg)
319 {
320 struct ffec_softc *sc;
321 int val;
322
323 sc = device_get_softc(dev);
324
325 WR4(sc, FEC_IER_REG, FEC_IER_MII);
326
327 WR4(sc, FEC_MMFR_REG, FEC_MMFR_OP_READ |
328 FEC_MMFR_ST_VALUE | FEC_MMFR_TA_VALUE |
329 ((phy << FEC_MMFR_PA_SHIFT) & FEC_MMFR_PA_MASK) |
330 ((reg << FEC_MMFR_RA_SHIFT) & FEC_MMFR_RA_MASK));
331
332 if (!ffec_miibus_iowait(sc)) {
333 device_printf(dev, "timeout waiting for mii read\n");
334 return (-1); /* All-ones is a symptom of bad mdio. */
335 }
336
337 val = RD4(sc, FEC_MMFR_REG) & FEC_MMFR_DATA_MASK;
338
339 return (val);
340 }
341
342 static int
ffec_miibus_writereg(device_t dev,int phy,int reg,int val)343 ffec_miibus_writereg(device_t dev, int phy, int reg, int val)
344 {
345 struct ffec_softc *sc;
346
347 sc = device_get_softc(dev);
348
349 WR4(sc, FEC_IER_REG, FEC_IER_MII);
350
351 WR4(sc, FEC_MMFR_REG, FEC_MMFR_OP_WRITE |
352 FEC_MMFR_ST_VALUE | FEC_MMFR_TA_VALUE |
353 ((phy << FEC_MMFR_PA_SHIFT) & FEC_MMFR_PA_MASK) |
354 ((reg << FEC_MMFR_RA_SHIFT) & FEC_MMFR_RA_MASK) |
355 (val & FEC_MMFR_DATA_MASK));
356
357 if (!ffec_miibus_iowait(sc)) {
358 device_printf(dev, "timeout waiting for mii write\n");
359 return (-1);
360 }
361
362 return (0);
363 }
364
365 static void
ffec_miibus_statchg(device_t dev)366 ffec_miibus_statchg(device_t dev)
367 {
368 struct ffec_softc *sc;
369 struct mii_data *mii;
370 uint32_t ecr, rcr, tcr;
371
372 /*
373 * Called by the MII bus driver when the PHY establishes link to set the
374 * MAC interface registers.
375 */
376
377 sc = device_get_softc(dev);
378
379 FFEC_ASSERT_LOCKED(sc);
380
381 mii = sc->mii_softc;
382
383 if (mii->mii_media_status & IFM_ACTIVE)
384 sc->link_is_up = true;
385 else
386 sc->link_is_up = false;
387
388 ecr = RD4(sc, FEC_ECR_REG) & ~FEC_ECR_SPEED;
389 rcr = RD4(sc, FEC_RCR_REG) & ~(FEC_RCR_RMII_10T | FEC_RCR_RMII_MODE |
390 FEC_RCR_RGMII_EN | FEC_RCR_DRT | FEC_RCR_FCE);
391 tcr = RD4(sc, FEC_TCR_REG) & ~FEC_TCR_FDEN;
392
393 rcr |= FEC_RCR_MII_MODE; /* Must always be on even for R[G]MII. */
394 switch (sc->phy_conn_type) {
395 case MII_CONTYPE_RMII:
396 rcr |= FEC_RCR_RMII_MODE;
397 break;
398 case MII_CONTYPE_RGMII:
399 case MII_CONTYPE_RGMII_ID:
400 case MII_CONTYPE_RGMII_RXID:
401 case MII_CONTYPE_RGMII_TXID:
402 rcr |= FEC_RCR_RGMII_EN;
403 break;
404 default:
405 break;
406 }
407
408 switch (IFM_SUBTYPE(mii->mii_media_active)) {
409 case IFM_1000_T:
410 case IFM_1000_SX:
411 ecr |= FEC_ECR_SPEED;
412 break;
413 case IFM_100_TX:
414 /* Not-FEC_ECR_SPEED + not-FEC_RCR_RMII_10T means 100TX */
415 break;
416 case IFM_10_T:
417 rcr |= FEC_RCR_RMII_10T;
418 break;
419 case IFM_NONE:
420 sc->link_is_up = false;
421 return;
422 default:
423 sc->link_is_up = false;
424 device_printf(dev, "Unsupported media %u\n",
425 IFM_SUBTYPE(mii->mii_media_active));
426 return;
427 }
428
429 if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0)
430 tcr |= FEC_TCR_FDEN;
431 else
432 rcr |= FEC_RCR_DRT;
433
434 if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FLOW) != 0)
435 rcr |= FEC_RCR_FCE;
436
437 WR4(sc, FEC_RCR_REG, rcr);
438 WR4(sc, FEC_TCR_REG, tcr);
439 WR4(sc, FEC_ECR_REG, ecr);
440 }
441
442 static void
ffec_media_status(struct ifnet * ifp,struct ifmediareq * ifmr)443 ffec_media_status(struct ifnet * ifp, struct ifmediareq *ifmr)
444 {
445 struct ffec_softc *sc;
446 struct mii_data *mii;
447
448
449 sc = ifp->if_softc;
450 mii = sc->mii_softc;
451 FFEC_LOCK(sc);
452 mii_pollstat(mii);
453 ifmr->ifm_active = mii->mii_media_active;
454 ifmr->ifm_status = mii->mii_media_status;
455 FFEC_UNLOCK(sc);
456 }
457
458 static int
ffec_media_change_locked(struct ffec_softc * sc)459 ffec_media_change_locked(struct ffec_softc *sc)
460 {
461
462 return (mii_mediachg(sc->mii_softc));
463 }
464
465 static int
ffec_media_change(struct ifnet * ifp)466 ffec_media_change(struct ifnet * ifp)
467 {
468 struct ffec_softc *sc;
469 int error;
470
471 sc = ifp->if_softc;
472
473 FFEC_LOCK(sc);
474 error = ffec_media_change_locked(sc);
475 FFEC_UNLOCK(sc);
476 return (error);
477 }
478
ffec_clear_stats(struct ffec_softc * sc)479 static void ffec_clear_stats(struct ffec_softc *sc)
480 {
481 uint32_t mibc;
482
483 mibc = RD4(sc, FEC_MIBC_REG);
484
485 /*
486 * On newer hardware the statistic regs are cleared by toggling a bit in
487 * the mib control register. On older hardware the clear procedure is
488 * to disable statistics collection, zero the regs, then re-enable.
489 */
490 if (sc->fectype == FECTYPE_IMX6 || sc->fectype == FECTYPE_MVF) {
491 WR4(sc, FEC_MIBC_REG, mibc | FEC_MIBC_CLEAR);
492 WR4(sc, FEC_MIBC_REG, mibc & ~FEC_MIBC_CLEAR);
493 } else {
494 WR4(sc, FEC_MIBC_REG, mibc | FEC_MIBC_DIS);
495
496 WR4(sc, FEC_IEEE_R_DROP, 0);
497 WR4(sc, FEC_IEEE_R_MACERR, 0);
498 WR4(sc, FEC_RMON_R_CRC_ALIGN, 0);
499 WR4(sc, FEC_RMON_R_FRAG, 0);
500 WR4(sc, FEC_RMON_R_JAB, 0);
501 WR4(sc, FEC_RMON_R_MC_PKT, 0);
502 WR4(sc, FEC_RMON_R_OVERSIZE, 0);
503 WR4(sc, FEC_RMON_R_PACKETS, 0);
504 WR4(sc, FEC_RMON_R_UNDERSIZE, 0);
505 WR4(sc, FEC_RMON_T_COL, 0);
506 WR4(sc, FEC_RMON_T_CRC_ALIGN, 0);
507 WR4(sc, FEC_RMON_T_FRAG, 0);
508 WR4(sc, FEC_RMON_T_JAB, 0);
509 WR4(sc, FEC_RMON_T_MC_PKT, 0);
510 WR4(sc, FEC_RMON_T_OVERSIZE , 0);
511 WR4(sc, FEC_RMON_T_PACKETS, 0);
512 WR4(sc, FEC_RMON_T_UNDERSIZE, 0);
513
514 WR4(sc, FEC_MIBC_REG, mibc);
515 }
516 }
517
518 static void
ffec_harvest_stats(struct ffec_softc * sc)519 ffec_harvest_stats(struct ffec_softc *sc)
520 {
521 struct ifnet *ifp;
522
523 ifp = sc->ifp;
524
525 /*
526 * - FEC_IEEE_R_DROP is "dropped due to invalid start frame delimiter"
527 * so it's really just another type of input error.
528 * - FEC_IEEE_R_MACERR is "no receive fifo space"; count as input drops.
529 */
530 if_inc_counter(ifp, IFCOUNTER_IPACKETS, RD4(sc, FEC_RMON_R_PACKETS));
531 if_inc_counter(ifp, IFCOUNTER_IMCASTS, RD4(sc, FEC_RMON_R_MC_PKT));
532 if_inc_counter(ifp, IFCOUNTER_IERRORS,
533 RD4(sc, FEC_RMON_R_CRC_ALIGN) + RD4(sc, FEC_RMON_R_UNDERSIZE) +
534 RD4(sc, FEC_RMON_R_OVERSIZE) + RD4(sc, FEC_RMON_R_FRAG) +
535 RD4(sc, FEC_RMON_R_JAB) + RD4(sc, FEC_IEEE_R_DROP));
536
537 if_inc_counter(ifp, IFCOUNTER_IQDROPS, RD4(sc, FEC_IEEE_R_MACERR));
538
539 if_inc_counter(ifp, IFCOUNTER_OPACKETS, RD4(sc, FEC_RMON_T_PACKETS));
540 if_inc_counter(ifp, IFCOUNTER_OMCASTS, RD4(sc, FEC_RMON_T_MC_PKT));
541 if_inc_counter(ifp, IFCOUNTER_OERRORS,
542 RD4(sc, FEC_RMON_T_CRC_ALIGN) + RD4(sc, FEC_RMON_T_UNDERSIZE) +
543 RD4(sc, FEC_RMON_T_OVERSIZE) + RD4(sc, FEC_RMON_T_FRAG) +
544 RD4(sc, FEC_RMON_T_JAB));
545
546 if_inc_counter(ifp, IFCOUNTER_COLLISIONS, RD4(sc, FEC_RMON_T_COL));
547
548 ffec_clear_stats(sc);
549 }
550
551 static void
ffec_tick(void * arg)552 ffec_tick(void *arg)
553 {
554 struct ffec_softc *sc;
555 struct ifnet *ifp;
556 int link_was_up;
557
558 sc = arg;
559
560 FFEC_ASSERT_LOCKED(sc);
561
562 ifp = sc->ifp;
563
564 if (!(ifp->if_drv_flags & IFF_DRV_RUNNING))
565 return;
566
567 /*
568 * Typical tx watchdog. If this fires it indicates that we enqueued
569 * packets for output and never got a txdone interrupt for them. Maybe
570 * it's a missed interrupt somehow, just pretend we got one.
571 */
572 if (sc->tx_watchdog_count > 0) {
573 if (--sc->tx_watchdog_count == 0) {
574 ffec_txfinish_locked(sc);
575 }
576 }
577
578 /* Gather stats from hardware counters. */
579 ffec_harvest_stats(sc);
580
581 /* Check the media status. */
582 link_was_up = sc->link_is_up;
583 mii_tick(sc->mii_softc);
584 if (sc->link_is_up && !link_was_up)
585 ffec_txstart_locked(sc);
586
587 /* Schedule another check one second from now. */
588 callout_reset(&sc->ffec_callout, hz, ffec_tick, sc);
589 }
590
591 inline static uint32_t
ffec_setup_txdesc(struct ffec_softc * sc,int idx,bus_addr_t paddr,uint32_t len)592 ffec_setup_txdesc(struct ffec_softc *sc, int idx, bus_addr_t paddr,
593 uint32_t len)
594 {
595 uint32_t nidx;
596 uint32_t flags;
597
598 nidx = next_txidx(sc, idx);
599
600 /* Addr/len 0 means we're clearing the descriptor after xmit done. */
601 if (paddr == 0 || len == 0) {
602 flags = 0;
603 --sc->txcount;
604 } else {
605 flags = FEC_TXDESC_READY | FEC_TXDESC_L | FEC_TXDESC_TC;
606 ++sc->txcount;
607 }
608 if (nidx == 0)
609 flags |= FEC_TXDESC_WRAP;
610
611 /*
612 * The hardware requires 32-bit physical addresses. We set up the dma
613 * tag to indicate that, so the cast to uint32_t should never lose
614 * significant bits.
615 */
616 sc->txdesc_ring[idx].buf_paddr = (uint32_t)paddr;
617 sc->txdesc_ring[idx].flags_len = flags | len; /* Must be set last! */
618
619 return (nidx);
620 }
621
622 static int
ffec_setup_txbuf(struct ffec_softc * sc,int idx,struct mbuf ** mp)623 ffec_setup_txbuf(struct ffec_softc *sc, int idx, struct mbuf **mp)
624 {
625 struct mbuf * m;
626 int error, nsegs;
627 struct bus_dma_segment seg;
628
629 if ((m = m_defrag(*mp, M_NOWAIT)) == NULL)
630 return (ENOMEM);
631 *mp = m;
632
633 error = bus_dmamap_load_mbuf_sg(sc->txbuf_tag, sc->txbuf_map[idx].map,
634 m, &seg, &nsegs, 0);
635 if (error != 0) {
636 return (ENOMEM);
637 }
638 bus_dmamap_sync(sc->txbuf_tag, sc->txbuf_map[idx].map,
639 BUS_DMASYNC_PREWRITE);
640
641 sc->txbuf_map[idx].mbuf = m;
642 ffec_setup_txdesc(sc, idx, seg.ds_addr, seg.ds_len);
643
644 return (0);
645
646 }
647
648 static void
ffec_txstart_locked(struct ffec_softc * sc)649 ffec_txstart_locked(struct ffec_softc *sc)
650 {
651 struct ifnet *ifp;
652 struct mbuf *m;
653 int enqueued;
654
655 FFEC_ASSERT_LOCKED(sc);
656
657 if (!sc->link_is_up)
658 return;
659
660 ifp = sc->ifp;
661
662 if (ifp->if_drv_flags & IFF_DRV_OACTIVE)
663 return;
664
665 enqueued = 0;
666
667 for (;;) {
668 if (sc->txcount == (TX_DESC_COUNT-1)) {
669 ifp->if_drv_flags |= IFF_DRV_OACTIVE;
670 break;
671 }
672 IFQ_DRV_DEQUEUE(&ifp->if_snd, m);
673 if (m == NULL)
674 break;
675 if (ffec_setup_txbuf(sc, sc->tx_idx_head, &m) != 0) {
676 IFQ_DRV_PREPEND(&ifp->if_snd, m);
677 break;
678 }
679 BPF_MTAP(ifp, m);
680 sc->tx_idx_head = next_txidx(sc, sc->tx_idx_head);
681 ++enqueued;
682 }
683
684 if (enqueued != 0) {
685 bus_dmamap_sync(sc->txdesc_tag, sc->txdesc_map, BUS_DMASYNC_PREWRITE);
686 WR4(sc, FEC_TDAR_REG, FEC_TDAR_TDAR);
687 bus_dmamap_sync(sc->txdesc_tag, sc->txdesc_map, BUS_DMASYNC_POSTWRITE);
688 sc->tx_watchdog_count = WATCHDOG_TIMEOUT_SECS;
689 }
690 }
691
692 static void
ffec_txstart(struct ifnet * ifp)693 ffec_txstart(struct ifnet *ifp)
694 {
695 struct ffec_softc *sc = ifp->if_softc;
696
697 FFEC_LOCK(sc);
698 ffec_txstart_locked(sc);
699 FFEC_UNLOCK(sc);
700 }
701
702 static void
ffec_txfinish_locked(struct ffec_softc * sc)703 ffec_txfinish_locked(struct ffec_softc *sc)
704 {
705 struct ifnet *ifp;
706 struct ffec_hwdesc *desc;
707 struct ffec_bufmap *bmap;
708 boolean_t retired_buffer;
709
710 FFEC_ASSERT_LOCKED(sc);
711
712 /* XXX Can't set PRE|POST right now, but we need both. */
713 bus_dmamap_sync(sc->txdesc_tag, sc->txdesc_map, BUS_DMASYNC_PREREAD);
714 bus_dmamap_sync(sc->txdesc_tag, sc->txdesc_map, BUS_DMASYNC_POSTREAD);
715 ifp = sc->ifp;
716 retired_buffer = false;
717 while (sc->tx_idx_tail != sc->tx_idx_head) {
718 desc = &sc->txdesc_ring[sc->tx_idx_tail];
719 if (desc->flags_len & FEC_TXDESC_READY)
720 break;
721 retired_buffer = true;
722 bmap = &sc->txbuf_map[sc->tx_idx_tail];
723 bus_dmamap_sync(sc->txbuf_tag, bmap->map,
724 BUS_DMASYNC_POSTWRITE);
725 bus_dmamap_unload(sc->txbuf_tag, bmap->map);
726 m_freem(bmap->mbuf);
727 bmap->mbuf = NULL;
728 ffec_setup_txdesc(sc, sc->tx_idx_tail, 0, 0);
729 sc->tx_idx_tail = next_txidx(sc, sc->tx_idx_tail);
730 }
731
732 /*
733 * If we retired any buffers, there will be open tx slots available in
734 * the descriptor ring, go try to start some new output.
735 */
736 if (retired_buffer) {
737 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
738 ffec_txstart_locked(sc);
739 }
740
741 /* If there are no buffers outstanding, muzzle the watchdog. */
742 if (sc->tx_idx_tail == sc->tx_idx_head) {
743 sc->tx_watchdog_count = 0;
744 }
745 }
746
747 inline static uint32_t
ffec_setup_rxdesc(struct ffec_softc * sc,int idx,bus_addr_t paddr)748 ffec_setup_rxdesc(struct ffec_softc *sc, int idx, bus_addr_t paddr)
749 {
750 uint32_t nidx;
751
752 /*
753 * The hardware requires 32-bit physical addresses. We set up the dma
754 * tag to indicate that, so the cast to uint32_t should never lose
755 * significant bits.
756 */
757 nidx = next_rxidx(sc, idx);
758 sc->rxdesc_ring[idx].buf_paddr = (uint32_t)paddr;
759 sc->rxdesc_ring[idx].flags_len = FEC_RXDESC_EMPTY |
760 ((nidx == 0) ? FEC_RXDESC_WRAP : 0);
761
762 return (nidx);
763 }
764
765 static int
ffec_setup_rxbuf(struct ffec_softc * sc,int idx,struct mbuf * m)766 ffec_setup_rxbuf(struct ffec_softc *sc, int idx, struct mbuf * m)
767 {
768 int error, nsegs;
769 struct bus_dma_segment seg;
770
771 if (!(sc->fecflags & FECFLAG_RACC)) {
772 /*
773 * The RACC[SHIFT16] feature is not available. So, we need to
774 * leave at least ETHER_ALIGN bytes free at the beginning of the
775 * buffer to allow the data to be re-aligned after receiving it
776 * (by copying it backwards ETHER_ALIGN bytes in the same
777 * buffer). We also have to ensure that the beginning of the
778 * buffer is aligned to the hardware's requirements.
779 */
780 m_adj(m, roundup(ETHER_ALIGN, sc->rxbuf_align));
781 }
782
783 error = bus_dmamap_load_mbuf_sg(sc->rxbuf_tag, sc->rxbuf_map[idx].map,
784 m, &seg, &nsegs, 0);
785 if (error != 0) {
786 return (error);
787 }
788
789 bus_dmamap_sync(sc->rxbuf_tag, sc->rxbuf_map[idx].map,
790 BUS_DMASYNC_PREREAD);
791
792 sc->rxbuf_map[idx].mbuf = m;
793 ffec_setup_rxdesc(sc, idx, seg.ds_addr);
794
795 return (0);
796 }
797
798 static struct mbuf *
ffec_alloc_mbufcl(struct ffec_softc * sc)799 ffec_alloc_mbufcl(struct ffec_softc *sc)
800 {
801 struct mbuf *m;
802
803 m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
804 if (m != NULL)
805 m->m_pkthdr.len = m->m_len = m->m_ext.ext_size;
806
807 return (m);
808 }
809
810 static void
ffec_rxfinish_onebuf(struct ffec_softc * sc,int len)811 ffec_rxfinish_onebuf(struct ffec_softc *sc, int len)
812 {
813 struct mbuf *m, *newmbuf;
814 struct ffec_bufmap *bmap;
815 uint8_t *dst, *src;
816 int error;
817
818 /*
819 * First try to get a new mbuf to plug into this slot in the rx ring.
820 * If that fails, drop the current packet and recycle the current
821 * mbuf, which is still mapped and loaded.
822 */
823 if ((newmbuf = ffec_alloc_mbufcl(sc)) == NULL) {
824 if_inc_counter(sc->ifp, IFCOUNTER_IQDROPS, 1);
825 ffec_setup_rxdesc(sc, sc->rx_idx,
826 sc->rxdesc_ring[sc->rx_idx].buf_paddr);
827 return;
828 }
829
830 FFEC_UNLOCK(sc);
831
832 bmap = &sc->rxbuf_map[sc->rx_idx];
833 len -= ETHER_CRC_LEN;
834 bus_dmamap_sync(sc->rxbuf_tag, bmap->map, BUS_DMASYNC_POSTREAD);
835 bus_dmamap_unload(sc->rxbuf_tag, bmap->map);
836 m = bmap->mbuf;
837 bmap->mbuf = NULL;
838 m->m_len = len;
839 m->m_pkthdr.len = len;
840 m->m_pkthdr.rcvif = sc->ifp;
841
842 /*
843 * Align the protocol headers in the receive buffer on a 32-bit
844 * boundary. Newer hardware does the alignment for us. On hardware
845 * that doesn't support this feature, we have to copy-align the data.
846 *
847 * XXX for older hardware, could we speed this up by copying just the
848 * protocol headers into their own small mbuf then chaining the cluster
849 * to it? That way we'd only need to copy like 64 bytes or whatever the
850 * biggest header is, instead of the whole 1530ish-byte frame.
851 */
852 if (sc->fecflags & FECFLAG_RACC) {
853 m->m_data = mtod(m, uint8_t *) + 2;
854 } else {
855 src = mtod(m, uint8_t*);
856 dst = src - ETHER_ALIGN;
857 bcopy(src, dst, len);
858 m->m_data = dst;
859 }
860 sc->ifp->if_input(sc->ifp, m);
861
862 FFEC_LOCK(sc);
863
864 if ((error = ffec_setup_rxbuf(sc, sc->rx_idx, newmbuf)) != 0) {
865 device_printf(sc->dev, "ffec_setup_rxbuf error %d\n", error);
866 /* XXX Now what? We've got a hole in the rx ring. */
867 }
868
869 }
870
871 static void
ffec_rxfinish_locked(struct ffec_softc * sc)872 ffec_rxfinish_locked(struct ffec_softc *sc)
873 {
874 struct ffec_hwdesc *desc;
875 int len;
876 boolean_t produced_empty_buffer;
877
878 FFEC_ASSERT_LOCKED(sc);
879
880 /* XXX Can't set PRE|POST right now, but we need both. */
881 bus_dmamap_sync(sc->rxdesc_tag, sc->rxdesc_map, BUS_DMASYNC_PREREAD);
882 bus_dmamap_sync(sc->rxdesc_tag, sc->rxdesc_map, BUS_DMASYNC_POSTREAD);
883 produced_empty_buffer = false;
884 for (;;) {
885 desc = &sc->rxdesc_ring[sc->rx_idx];
886 if (desc->flags_len & FEC_RXDESC_EMPTY)
887 break;
888 produced_empty_buffer = true;
889 len = (desc->flags_len & FEC_RXDESC_LEN_MASK);
890 if (len < 64) {
891 /*
892 * Just recycle the descriptor and continue. .
893 */
894 ffec_setup_rxdesc(sc, sc->rx_idx,
895 sc->rxdesc_ring[sc->rx_idx].buf_paddr);
896 } else if ((desc->flags_len & FEC_RXDESC_L) == 0) {
897 /*
898 * The entire frame is not in this buffer. Impossible.
899 * Recycle the descriptor and continue.
900 *
901 * XXX what's the right way to handle this? Probably we
902 * should stop/init the hardware because this should
903 * just really never happen when we have buffers bigger
904 * than the maximum frame size.
905 */
906 device_printf(sc->dev,
907 "fec_rxfinish: received frame without LAST bit set");
908 ffec_setup_rxdesc(sc, sc->rx_idx,
909 sc->rxdesc_ring[sc->rx_idx].buf_paddr);
910 } else if (desc->flags_len & FEC_RXDESC_ERROR_BITS) {
911 /*
912 * Something went wrong with receiving the frame, we
913 * don't care what (the hardware has counted the error
914 * in the stats registers already), we just reuse the
915 * same mbuf, which is still dma-mapped, by resetting
916 * the rx descriptor.
917 */
918 ffec_setup_rxdesc(sc, sc->rx_idx,
919 sc->rxdesc_ring[sc->rx_idx].buf_paddr);
920 } else {
921 /*
922 * Normal case: a good frame all in one buffer.
923 */
924 ffec_rxfinish_onebuf(sc, len);
925 }
926 sc->rx_idx = next_rxidx(sc, sc->rx_idx);
927 }
928
929 if (produced_empty_buffer) {
930 bus_dmamap_sync(sc->rxdesc_tag, sc->rxdesc_map, BUS_DMASYNC_PREWRITE);
931 WR4(sc, FEC_RDAR_REG, FEC_RDAR_RDAR);
932 bus_dmamap_sync(sc->rxdesc_tag, sc->rxdesc_map, BUS_DMASYNC_POSTWRITE);
933 }
934 }
935
936 static void
ffec_get_hwaddr(struct ffec_softc * sc,uint8_t * hwaddr)937 ffec_get_hwaddr(struct ffec_softc *sc, uint8_t *hwaddr)
938 {
939 uint32_t palr, paur, rnd;
940
941 /*
942 * Try to recover a MAC address from the running hardware. If there's
943 * something non-zero there, assume the bootloader did the right thing
944 * and just use it.
945 *
946 * Otherwise, set the address to a convenient locally assigned address,
947 * 'bsd' + random 24 low-order bits. 'b' is 0x62, which has the locally
948 * assigned bit set, and the broadcast/multicast bit clear.
949 */
950 palr = RD4(sc, FEC_PALR_REG);
951 paur = RD4(sc, FEC_PAUR_REG) & FEC_PAUR_PADDR2_MASK;
952 if ((palr | paur) != 0) {
953 hwaddr[0] = palr >> 24;
954 hwaddr[1] = palr >> 16;
955 hwaddr[2] = palr >> 8;
956 hwaddr[3] = palr >> 0;
957 hwaddr[4] = paur >> 24;
958 hwaddr[5] = paur >> 16;
959 } else {
960 rnd = arc4random() & 0x00ffffff;
961 hwaddr[0] = 'b';
962 hwaddr[1] = 's';
963 hwaddr[2] = 'd';
964 hwaddr[3] = rnd >> 16;
965 hwaddr[4] = rnd >> 8;
966 hwaddr[5] = rnd >> 0;
967 }
968
969 if (bootverbose) {
970 device_printf(sc->dev,
971 "MAC address %02x:%02x:%02x:%02x:%02x:%02x:\n",
972 hwaddr[0], hwaddr[1], hwaddr[2],
973 hwaddr[3], hwaddr[4], hwaddr[5]);
974 }
975 }
976
977 static void
ffec_setup_rxfilter(struct ffec_softc * sc)978 ffec_setup_rxfilter(struct ffec_softc *sc)
979 {
980 struct ifnet *ifp;
981 struct ifmultiaddr *ifma;
982 uint8_t *eaddr;
983 uint32_t crc;
984 uint64_t ghash, ihash;
985
986 FFEC_ASSERT_LOCKED(sc);
987
988 ifp = sc->ifp;
989
990 /*
991 * Set the multicast (group) filter hash.
992 */
993 if ((ifp->if_flags & IFF_ALLMULTI))
994 ghash = 0xffffffffffffffffLLU;
995 else {
996 ghash = 0;
997 if_maddr_rlock(ifp);
998 CK_STAILQ_FOREACH(ifma, &sc->ifp->if_multiaddrs, ifma_link) {
999 if (ifma->ifma_addr->sa_family != AF_LINK)
1000 continue;
1001 /* 6 bits from MSB in LE CRC32 are used for hash. */
1002 crc = ether_crc32_le(LLADDR((struct sockaddr_dl *)
1003 ifma->ifma_addr), ETHER_ADDR_LEN);
1004 ghash |= 1LLU << (((uint8_t *)&crc)[3] >> 2);
1005 }
1006 if_maddr_runlock(ifp);
1007 }
1008 WR4(sc, FEC_GAUR_REG, (uint32_t)(ghash >> 32));
1009 WR4(sc, FEC_GALR_REG, (uint32_t)ghash);
1010
1011 /*
1012 * Set the individual address filter hash.
1013 *
1014 * XXX Is 0 the right value when promiscuous is off? This hw feature
1015 * seems to support the concept of MAC address aliases, does such a
1016 * thing even exist?
1017 */
1018 if ((ifp->if_flags & IFF_PROMISC))
1019 ihash = 0xffffffffffffffffLLU;
1020 else {
1021 ihash = 0;
1022 }
1023 WR4(sc, FEC_IAUR_REG, (uint32_t)(ihash >> 32));
1024 WR4(sc, FEC_IALR_REG, (uint32_t)ihash);
1025
1026 /*
1027 * Set the primary address.
1028 */
1029 eaddr = IF_LLADDR(ifp);
1030 WR4(sc, FEC_PALR_REG, (eaddr[0] << 24) | (eaddr[1] << 16) |
1031 (eaddr[2] << 8) | eaddr[3]);
1032 WR4(sc, FEC_PAUR_REG, (eaddr[4] << 24) | (eaddr[5] << 16));
1033 }
1034
1035 static void
ffec_stop_locked(struct ffec_softc * sc)1036 ffec_stop_locked(struct ffec_softc *sc)
1037 {
1038 struct ifnet *ifp;
1039 struct ffec_hwdesc *desc;
1040 struct ffec_bufmap *bmap;
1041 int idx;
1042
1043 FFEC_ASSERT_LOCKED(sc);
1044
1045 ifp = sc->ifp;
1046 ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
1047 sc->tx_watchdog_count = 0;
1048
1049 /*
1050 * Stop the hardware, mask all interrupts, and clear all current
1051 * interrupt status bits.
1052 */
1053 WR4(sc, FEC_ECR_REG, RD4(sc, FEC_ECR_REG) & ~FEC_ECR_ETHEREN);
1054 WR4(sc, FEC_IEM_REG, 0x00000000);
1055 WR4(sc, FEC_IER_REG, 0xffffffff);
1056
1057 /*
1058 * Stop the media-check callout. Do not use callout_drain() because
1059 * we're holding a mutex the callout acquires, and if it's currently
1060 * waiting to acquire it, we'd deadlock. If it is waiting now, the
1061 * ffec_tick() routine will return without doing anything when it sees
1062 * that IFF_DRV_RUNNING is not set, so avoiding callout_drain() is safe.
1063 */
1064 callout_stop(&sc->ffec_callout);
1065
1066 /*
1067 * Discard all untransmitted buffers. Each buffer is simply freed;
1068 * it's as if the bits were transmitted and then lost on the wire.
1069 *
1070 * XXX Is this right? Or should we use IFQ_DRV_PREPEND() to put them
1071 * back on the queue for when we get restarted later?
1072 */
1073 idx = sc->tx_idx_tail;
1074 while (idx != sc->tx_idx_head) {
1075 desc = &sc->txdesc_ring[idx];
1076 bmap = &sc->txbuf_map[idx];
1077 if (desc->buf_paddr != 0) {
1078 bus_dmamap_unload(sc->txbuf_tag, bmap->map);
1079 m_freem(bmap->mbuf);
1080 bmap->mbuf = NULL;
1081 ffec_setup_txdesc(sc, idx, 0, 0);
1082 }
1083 idx = next_txidx(sc, idx);
1084 }
1085
1086 /*
1087 * Discard all unprocessed receive buffers. This amounts to just
1088 * pretending that nothing ever got received into them. We reuse the
1089 * mbuf already mapped for each desc, simply turning the EMPTY flags
1090 * back on so they'll get reused when we start up again.
1091 */
1092 for (idx = 0; idx < RX_DESC_COUNT; ++idx) {
1093 desc = &sc->rxdesc_ring[idx];
1094 ffec_setup_rxdesc(sc, idx, desc->buf_paddr);
1095 }
1096 }
1097
1098 static void
ffec_init_locked(struct ffec_softc * sc)1099 ffec_init_locked(struct ffec_softc *sc)
1100 {
1101 struct ifnet *ifp = sc->ifp;
1102 uint32_t maxbuf, maxfl, regval;
1103
1104 FFEC_ASSERT_LOCKED(sc);
1105
1106 /*
1107 * The hardware has a limit of 0x7ff as the max frame length (see
1108 * comments for MRBR below), and we use mbuf clusters as receive
1109 * buffers, and we currently are designed to receive an entire frame
1110 * into a single buffer.
1111 *
1112 * We start with a MCLBYTES-sized cluster, but we have to offset into
1113 * the buffer by ETHER_ALIGN to make room for post-receive re-alignment,
1114 * and then that value has to be rounded up to the hardware's DMA
1115 * alignment requirements, so all in all our buffer is that much smaller
1116 * than MCLBYTES.
1117 *
1118 * The resulting value is used as the frame truncation length and the
1119 * max buffer receive buffer size for now. It'll become more complex
1120 * when we support jumbo frames and receiving fragments of them into
1121 * separate buffers.
1122 */
1123 maxbuf = MCLBYTES - roundup(ETHER_ALIGN, sc->rxbuf_align);
1124 maxfl = min(maxbuf, 0x7ff);
1125
1126 if (ifp->if_drv_flags & IFF_DRV_RUNNING)
1127 return;
1128
1129 /* Mask all interrupts and clear all current interrupt status bits. */
1130 WR4(sc, FEC_IEM_REG, 0x00000000);
1131 WR4(sc, FEC_IER_REG, 0xffffffff);
1132
1133 /*
1134 * Go set up palr/puar, galr/gaur, ialr/iaur.
1135 */
1136 ffec_setup_rxfilter(sc);
1137
1138 /*
1139 * TFWR - Transmit FIFO watermark register.
1140 *
1141 * Set the transmit fifo watermark register to "store and forward" mode
1142 * and also set a threshold of 128 bytes in the fifo before transmission
1143 * of a frame begins (to avoid dma underruns). Recent FEC hardware
1144 * supports STRFWD and when that bit is set, the watermark level in the
1145 * low bits is ignored. Older hardware doesn't have STRFWD, but writing
1146 * to that bit is innocuous, and the TWFR bits get used instead.
1147 */
1148 WR4(sc, FEC_TFWR_REG, FEC_TFWR_STRFWD | FEC_TFWR_TWFR_128BYTE);
1149
1150 /* RCR - Receive control register.
1151 *
1152 * Set max frame length + clean out anything left from u-boot.
1153 */
1154 WR4(sc, FEC_RCR_REG, (maxfl << FEC_RCR_MAX_FL_SHIFT));
1155
1156 /*
1157 * TCR - Transmit control register.
1158 *
1159 * Clean out anything left from u-boot. Any necessary values are set in
1160 * ffec_miibus_statchg() based on the media type.
1161 */
1162 WR4(sc, FEC_TCR_REG, 0);
1163
1164 /*
1165 * OPD - Opcode/pause duration.
1166 *
1167 * XXX These magic numbers come from u-boot.
1168 */
1169 WR4(sc, FEC_OPD_REG, 0x00010020);
1170
1171 /*
1172 * FRSR - Fifo receive start register.
1173 *
1174 * This register does not exist on imx6, it is present on earlier
1175 * hardware. The u-boot code sets this to a non-default value that's 32
1176 * bytes larger than the default, with no clue as to why. The default
1177 * value should work fine, so there's no code to init it here.
1178 */
1179
1180 /*
1181 * MRBR - Max RX buffer size.
1182 *
1183 * Note: For hardware prior to imx6 this value cannot exceed 0x07ff,
1184 * but the datasheet says no such thing for imx6. On the imx6, setting
1185 * this to 2K without setting EN1588 resulted in a crazy runaway
1186 * receive loop in the hardware, where every rx descriptor in the ring
1187 * had its EMPTY flag cleared, no completion or error flags set, and a
1188 * length of zero. I think maybe you can only exceed it when EN1588 is
1189 * set, like maybe that's what enables jumbo frames, because in general
1190 * the EN1588 flag seems to be the "enable new stuff" vs. "be legacy-
1191 * compatible" flag.
1192 */
1193 WR4(sc, FEC_MRBR_REG, maxfl << FEC_MRBR_R_BUF_SIZE_SHIFT);
1194
1195 /*
1196 * FTRL - Frame truncation length.
1197 *
1198 * Must be greater than or equal to the value set in FEC_RCR_MAXFL.
1199 */
1200 WR4(sc, FEC_FTRL_REG, maxfl);
1201
1202 /*
1203 * RDSR / TDSR descriptor ring pointers.
1204 *
1205 * When we turn on ECR_ETHEREN at the end, the hardware zeroes its
1206 * internal current descriptor index values for both rings, so we zero
1207 * our index values as well.
1208 */
1209 sc->rx_idx = 0;
1210 sc->tx_idx_head = sc->tx_idx_tail = 0;
1211 sc->txcount = 0;
1212 WR4(sc, FEC_RDSR_REG, sc->rxdesc_ring_paddr);
1213 WR4(sc, FEC_TDSR_REG, sc->txdesc_ring_paddr);
1214
1215 /*
1216 * EIM - interrupt mask register.
1217 *
1218 * We always enable the same set of interrupts while running; unlike
1219 * some drivers there's no need to change the mask on the fly depending
1220 * on what operations are in progress.
1221 */
1222 WR4(sc, FEC_IEM_REG, FEC_IER_TXF | FEC_IER_RXF | FEC_IER_EBERR);
1223
1224 /*
1225 * MIBC - MIB control (hardware stats); clear all statistics regs, then
1226 * enable collection of statistics.
1227 */
1228 regval = RD4(sc, FEC_MIBC_REG);
1229 WR4(sc, FEC_MIBC_REG, regval | FEC_MIBC_DIS);
1230 ffec_clear_stats(sc);
1231 WR4(sc, FEC_MIBC_REG, regval & ~FEC_MIBC_DIS);
1232
1233 if (sc->fecflags & FECFLAG_RACC) {
1234 /*
1235 * RACC - Receive Accelerator Function Configuration.
1236 */
1237 regval = RD4(sc, FEC_RACC_REG);
1238 WR4(sc, FEC_RACC_REG, regval | FEC_RACC_SHIFT16);
1239 }
1240
1241 /*
1242 * ECR - Ethernet control register.
1243 *
1244 * This must happen after all the other config registers are set. If
1245 * we're running on little-endian hardware, also set the flag for byte-
1246 * swapping descriptor ring entries. This flag doesn't exist on older
1247 * hardware, but it can be safely set -- the bit position it occupies
1248 * was unused.
1249 */
1250 regval = RD4(sc, FEC_ECR_REG);
1251 #if _BYTE_ORDER == _LITTLE_ENDIAN
1252 regval |= FEC_ECR_DBSWP;
1253 #endif
1254 regval |= FEC_ECR_ETHEREN;
1255 WR4(sc, FEC_ECR_REG, regval);
1256
1257 ifp->if_drv_flags |= IFF_DRV_RUNNING;
1258
1259 /*
1260 * Call mii_mediachg() which will call back into ffec_miibus_statchg() to
1261 * set up the remaining config registers based on the current media.
1262 */
1263 mii_mediachg(sc->mii_softc);
1264 callout_reset(&sc->ffec_callout, hz, ffec_tick, sc);
1265
1266 /*
1267 * Tell the hardware that receive buffers are available. They were made
1268 * available in ffec_attach() or ffec_stop().
1269 */
1270 WR4(sc, FEC_RDAR_REG, FEC_RDAR_RDAR);
1271 }
1272
1273 static void
ffec_init(void * if_softc)1274 ffec_init(void *if_softc)
1275 {
1276 struct ffec_softc *sc = if_softc;
1277
1278 FFEC_LOCK(sc);
1279 ffec_init_locked(sc);
1280 FFEC_UNLOCK(sc);
1281 }
1282
1283 static void
ffec_intr(void * arg)1284 ffec_intr(void *arg)
1285 {
1286 struct ffec_softc *sc;
1287 uint32_t ier;
1288
1289 sc = arg;
1290
1291 FFEC_LOCK(sc);
1292
1293 ier = RD4(sc, FEC_IER_REG);
1294
1295 if (ier & FEC_IER_TXF) {
1296 WR4(sc, FEC_IER_REG, FEC_IER_TXF);
1297 ffec_txfinish_locked(sc);
1298 }
1299
1300 if (ier & FEC_IER_RXF) {
1301 WR4(sc, FEC_IER_REG, FEC_IER_RXF);
1302 ffec_rxfinish_locked(sc);
1303 }
1304
1305 /*
1306 * We actually don't care about most errors, because the hardware copes
1307 * with them just fine, discarding the incoming bad frame, or forcing a
1308 * bad CRC onto an outgoing bad frame, and counting the errors in the
1309 * stats registers. The one that really matters is EBERR (DMA bus
1310 * error) because the hardware automatically clears ECR[ETHEREN] and we
1311 * have to restart it here. It should never happen.
1312 */
1313 if (ier & FEC_IER_EBERR) {
1314 WR4(sc, FEC_IER_REG, FEC_IER_EBERR);
1315 device_printf(sc->dev,
1316 "Ethernet DMA error, restarting controller.\n");
1317 ffec_stop_locked(sc);
1318 ffec_init_locked(sc);
1319 }
1320
1321 FFEC_UNLOCK(sc);
1322
1323 }
1324
1325 static int
ffec_ioctl(struct ifnet * ifp,u_long cmd,caddr_t data)1326 ffec_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
1327 {
1328 struct ffec_softc *sc;
1329 struct mii_data *mii;
1330 struct ifreq *ifr;
1331 int mask, error;
1332
1333 sc = ifp->if_softc;
1334 ifr = (struct ifreq *)data;
1335
1336 error = 0;
1337 switch (cmd) {
1338 case SIOCSIFFLAGS:
1339 FFEC_LOCK(sc);
1340 if (ifp->if_flags & IFF_UP) {
1341 if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
1342 if ((ifp->if_flags ^ sc->if_flags) &
1343 (IFF_PROMISC | IFF_ALLMULTI))
1344 ffec_setup_rxfilter(sc);
1345 } else {
1346 if (!sc->is_detaching)
1347 ffec_init_locked(sc);
1348 }
1349 } else {
1350 if (ifp->if_drv_flags & IFF_DRV_RUNNING)
1351 ffec_stop_locked(sc);
1352 }
1353 sc->if_flags = ifp->if_flags;
1354 FFEC_UNLOCK(sc);
1355 break;
1356
1357 case SIOCADDMULTI:
1358 case SIOCDELMULTI:
1359 if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
1360 FFEC_LOCK(sc);
1361 ffec_setup_rxfilter(sc);
1362 FFEC_UNLOCK(sc);
1363 }
1364 break;
1365
1366 case SIOCSIFMEDIA:
1367 case SIOCGIFMEDIA:
1368 mii = sc->mii_softc;
1369 error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, cmd);
1370 break;
1371
1372 case SIOCSIFCAP:
1373 mask = ifp->if_capenable ^ ifr->ifr_reqcap;
1374 if (mask & IFCAP_VLAN_MTU) {
1375 /* No work to do except acknowledge the change took. */
1376 ifp->if_capenable ^= IFCAP_VLAN_MTU;
1377 }
1378 break;
1379
1380 default:
1381 error = ether_ioctl(ifp, cmd, data);
1382 break;
1383 }
1384
1385 return (error);
1386 }
1387
1388 static int
ffec_detach(device_t dev)1389 ffec_detach(device_t dev)
1390 {
1391 struct ffec_softc *sc;
1392 bus_dmamap_t map;
1393 int idx, irq;
1394
1395 /*
1396 * NB: This function can be called internally to unwind a failure to
1397 * attach. Make sure a resource got allocated/created before destroying.
1398 */
1399
1400 sc = device_get_softc(dev);
1401
1402 if (sc->is_attached) {
1403 FFEC_LOCK(sc);
1404 sc->is_detaching = true;
1405 ffec_stop_locked(sc);
1406 FFEC_UNLOCK(sc);
1407 callout_drain(&sc->ffec_callout);
1408 ether_ifdetach(sc->ifp);
1409 }
1410
1411 /* XXX no miibus detach? */
1412
1413 /* Clean up RX DMA resources and free mbufs. */
1414 for (idx = 0; idx < RX_DESC_COUNT; ++idx) {
1415 if ((map = sc->rxbuf_map[idx].map) != NULL) {
1416 bus_dmamap_unload(sc->rxbuf_tag, map);
1417 bus_dmamap_destroy(sc->rxbuf_tag, map);
1418 m_freem(sc->rxbuf_map[idx].mbuf);
1419 }
1420 }
1421 if (sc->rxbuf_tag != NULL)
1422 bus_dma_tag_destroy(sc->rxbuf_tag);
1423 if (sc->rxdesc_map != NULL) {
1424 bus_dmamap_unload(sc->rxdesc_tag, sc->rxdesc_map);
1425 bus_dmamap_destroy(sc->rxdesc_tag, sc->rxdesc_map);
1426 }
1427 if (sc->rxdesc_tag != NULL)
1428 bus_dma_tag_destroy(sc->rxdesc_tag);
1429
1430 /* Clean up TX DMA resources. */
1431 for (idx = 0; idx < TX_DESC_COUNT; ++idx) {
1432 if ((map = sc->txbuf_map[idx].map) != NULL) {
1433 /* TX maps are already unloaded. */
1434 bus_dmamap_destroy(sc->txbuf_tag, map);
1435 }
1436 }
1437 if (sc->txbuf_tag != NULL)
1438 bus_dma_tag_destroy(sc->txbuf_tag);
1439 if (sc->txdesc_map != NULL) {
1440 bus_dmamap_unload(sc->txdesc_tag, sc->txdesc_map);
1441 bus_dmamap_destroy(sc->txdesc_tag, sc->txdesc_map);
1442 }
1443 if (sc->txdesc_tag != NULL)
1444 bus_dma_tag_destroy(sc->txdesc_tag);
1445
1446 /* Release bus resources. */
1447 for (irq = 0; irq < MAX_IRQ_COUNT; ++irq) {
1448 if (sc->intr_cookie[irq] != NULL) {
1449 bus_teardown_intr(dev, sc->irq_res[irq],
1450 sc->intr_cookie[irq]);
1451 }
1452 }
1453 bus_release_resources(dev, irq_res_spec, sc->irq_res);
1454
1455 if (sc->mem_res != NULL)
1456 bus_release_resource(dev, SYS_RES_MEMORY, 0, sc->mem_res);
1457
1458 FFEC_LOCK_DESTROY(sc);
1459 return (0);
1460 }
1461
1462 static int
ffec_attach(device_t dev)1463 ffec_attach(device_t dev)
1464 {
1465 struct ffec_softc *sc;
1466 struct ifnet *ifp = NULL;
1467 struct mbuf *m;
1468 void *dummy;
1469 uintptr_t typeflags;
1470 phandle_t ofw_node;
1471 uint32_t idx, mscr;
1472 int error, phynum, rid, irq;
1473 uint8_t eaddr[ETHER_ADDR_LEN];
1474
1475 sc = device_get_softc(dev);
1476 sc->dev = dev;
1477
1478 FFEC_LOCK_INIT(sc);
1479
1480 /*
1481 * There are differences in the implementation and features of the FEC
1482 * hardware on different SoCs, so figure out what type we are.
1483 */
1484 typeflags = ofw_bus_search_compatible(dev, compat_data)->ocd_data;
1485 sc->fectype = (uint8_t)(typeflags & FECTYPE_MASK);
1486 sc->fecflags = (uint32_t)(typeflags & ~FECTYPE_MASK);
1487
1488 if (sc->fecflags & FECFLAG_AVB) {
1489 sc->rxbuf_align = 64;
1490 sc->txbuf_align = 1;
1491 } else {
1492 sc->rxbuf_align = 16;
1493 sc->txbuf_align = 16;
1494 }
1495
1496 /*
1497 * We have to be told what kind of electrical connection exists between
1498 * the MAC and PHY or we can't operate correctly.
1499 */
1500 if ((ofw_node = ofw_bus_get_node(dev)) == -1) {
1501 device_printf(dev, "Impossible: Can't find ofw bus node\n");
1502 error = ENXIO;
1503 goto out;
1504 }
1505 sc->phy_conn_type = mii_fdt_get_contype(ofw_node);
1506 if (sc->phy_conn_type == MII_CONTYPE_UNKNOWN) {
1507 device_printf(sc->dev, "No valid 'phy-mode' "
1508 "property found in FDT data for device.\n");
1509 error = ENOATTR;
1510 goto out;
1511 }
1512
1513 callout_init_mtx(&sc->ffec_callout, &sc->mtx, 0);
1514
1515 /* Allocate bus resources for accessing the hardware. */
1516 rid = 0;
1517 sc->mem_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
1518 RF_ACTIVE);
1519 if (sc->mem_res == NULL) {
1520 device_printf(dev, "could not allocate memory resources.\n");
1521 error = ENOMEM;
1522 goto out;
1523 }
1524
1525 error = bus_alloc_resources(dev, irq_res_spec, sc->irq_res);
1526 if (error != 0) {
1527 device_printf(dev, "could not allocate interrupt resources\n");
1528 goto out;
1529 }
1530
1531 /*
1532 * Set up TX descriptor ring, descriptors, and dma maps.
1533 */
1534 error = bus_dma_tag_create(
1535 bus_get_dma_tag(dev), /* Parent tag. */
1536 FEC_DESC_RING_ALIGN, 0, /* alignment, boundary */
1537 BUS_SPACE_MAXADDR_32BIT, /* lowaddr */
1538 BUS_SPACE_MAXADDR, /* highaddr */
1539 NULL, NULL, /* filter, filterarg */
1540 TX_DESC_SIZE, 1, /* maxsize, nsegments */
1541 TX_DESC_SIZE, /* maxsegsize */
1542 0, /* flags */
1543 NULL, NULL, /* lockfunc, lockarg */
1544 &sc->txdesc_tag);
1545 if (error != 0) {
1546 device_printf(sc->dev,
1547 "could not create TX ring DMA tag.\n");
1548 goto out;
1549 }
1550
1551 error = bus_dmamem_alloc(sc->txdesc_tag, (void**)&sc->txdesc_ring,
1552 BUS_DMA_COHERENT | BUS_DMA_WAITOK | BUS_DMA_ZERO, &sc->txdesc_map);
1553 if (error != 0) {
1554 device_printf(sc->dev,
1555 "could not allocate TX descriptor ring.\n");
1556 goto out;
1557 }
1558
1559 error = bus_dmamap_load(sc->txdesc_tag, sc->txdesc_map, sc->txdesc_ring,
1560 TX_DESC_SIZE, ffec_get1paddr, &sc->txdesc_ring_paddr, 0);
1561 if (error != 0) {
1562 device_printf(sc->dev,
1563 "could not load TX descriptor ring map.\n");
1564 goto out;
1565 }
1566
1567 error = bus_dma_tag_create(
1568 bus_get_dma_tag(dev), /* Parent tag. */
1569 sc->txbuf_align, 0, /* alignment, boundary */
1570 BUS_SPACE_MAXADDR_32BIT, /* lowaddr */
1571 BUS_SPACE_MAXADDR, /* highaddr */
1572 NULL, NULL, /* filter, filterarg */
1573 MCLBYTES, 1, /* maxsize, nsegments */
1574 MCLBYTES, /* maxsegsize */
1575 0, /* flags */
1576 NULL, NULL, /* lockfunc, lockarg */
1577 &sc->txbuf_tag);
1578 if (error != 0) {
1579 device_printf(sc->dev,
1580 "could not create TX ring DMA tag.\n");
1581 goto out;
1582 }
1583
1584 for (idx = 0; idx < TX_DESC_COUNT; ++idx) {
1585 error = bus_dmamap_create(sc->txbuf_tag, 0,
1586 &sc->txbuf_map[idx].map);
1587 if (error != 0) {
1588 device_printf(sc->dev,
1589 "could not create TX buffer DMA map.\n");
1590 goto out;
1591 }
1592 ffec_setup_txdesc(sc, idx, 0, 0);
1593 }
1594
1595 /*
1596 * Set up RX descriptor ring, descriptors, dma maps, and mbufs.
1597 */
1598 error = bus_dma_tag_create(
1599 bus_get_dma_tag(dev), /* Parent tag. */
1600 FEC_DESC_RING_ALIGN, 0, /* alignment, boundary */
1601 BUS_SPACE_MAXADDR_32BIT, /* lowaddr */
1602 BUS_SPACE_MAXADDR, /* highaddr */
1603 NULL, NULL, /* filter, filterarg */
1604 RX_DESC_SIZE, 1, /* maxsize, nsegments */
1605 RX_DESC_SIZE, /* maxsegsize */
1606 0, /* flags */
1607 NULL, NULL, /* lockfunc, lockarg */
1608 &sc->rxdesc_tag);
1609 if (error != 0) {
1610 device_printf(sc->dev,
1611 "could not create RX ring DMA tag.\n");
1612 goto out;
1613 }
1614
1615 error = bus_dmamem_alloc(sc->rxdesc_tag, (void **)&sc->rxdesc_ring,
1616 BUS_DMA_COHERENT | BUS_DMA_WAITOK | BUS_DMA_ZERO, &sc->rxdesc_map);
1617 if (error != 0) {
1618 device_printf(sc->dev,
1619 "could not allocate RX descriptor ring.\n");
1620 goto out;
1621 }
1622
1623 error = bus_dmamap_load(sc->rxdesc_tag, sc->rxdesc_map, sc->rxdesc_ring,
1624 RX_DESC_SIZE, ffec_get1paddr, &sc->rxdesc_ring_paddr, 0);
1625 if (error != 0) {
1626 device_printf(sc->dev,
1627 "could not load RX descriptor ring map.\n");
1628 goto out;
1629 }
1630
1631 error = bus_dma_tag_create(
1632 bus_get_dma_tag(dev), /* Parent tag. */
1633 1, 0, /* alignment, boundary */
1634 BUS_SPACE_MAXADDR_32BIT, /* lowaddr */
1635 BUS_SPACE_MAXADDR, /* highaddr */
1636 NULL, NULL, /* filter, filterarg */
1637 MCLBYTES, 1, /* maxsize, nsegments */
1638 MCLBYTES, /* maxsegsize */
1639 0, /* flags */
1640 NULL, NULL, /* lockfunc, lockarg */
1641 &sc->rxbuf_tag);
1642 if (error != 0) {
1643 device_printf(sc->dev,
1644 "could not create RX buf DMA tag.\n");
1645 goto out;
1646 }
1647
1648 for (idx = 0; idx < RX_DESC_COUNT; ++idx) {
1649 error = bus_dmamap_create(sc->rxbuf_tag, 0,
1650 &sc->rxbuf_map[idx].map);
1651 if (error != 0) {
1652 device_printf(sc->dev,
1653 "could not create RX buffer DMA map.\n");
1654 goto out;
1655 }
1656 if ((m = ffec_alloc_mbufcl(sc)) == NULL) {
1657 device_printf(dev, "Could not alloc mbuf\n");
1658 error = ENOMEM;
1659 goto out;
1660 }
1661 if ((error = ffec_setup_rxbuf(sc, idx, m)) != 0) {
1662 device_printf(sc->dev,
1663 "could not create new RX buffer.\n");
1664 goto out;
1665 }
1666 }
1667
1668 /* Try to get the MAC address from the hardware before resetting it. */
1669 ffec_get_hwaddr(sc, eaddr);
1670
1671 /*
1672 * Reset the hardware. Disables all interrupts.
1673 *
1674 * When the FEC is connected to the AXI bus (indicated by AVB flag), a
1675 * MAC reset while a bus transaction is pending can hang the bus.
1676 * Instead of resetting, turn off the ENABLE bit, which allows the
1677 * hardware to complete any in-progress transfers (appending a bad CRC
1678 * to any partial packet) and release the AXI bus. This could probably
1679 * be done unconditionally for all hardware variants, but that hasn't
1680 * been tested.
1681 */
1682 if (sc->fecflags & FECFLAG_AVB)
1683 WR4(sc, FEC_ECR_REG, 0);
1684 else
1685 WR4(sc, FEC_ECR_REG, FEC_ECR_RESET);
1686
1687 /* Setup interrupt handler. */
1688 for (irq = 0; irq < MAX_IRQ_COUNT; ++irq) {
1689 if (sc->irq_res[irq] != NULL) {
1690 error = bus_setup_intr(dev, sc->irq_res[irq],
1691 INTR_TYPE_NET | INTR_MPSAFE, NULL, ffec_intr, sc,
1692 &sc->intr_cookie[irq]);
1693 if (error != 0) {
1694 device_printf(dev,
1695 "could not setup interrupt handler.\n");
1696 goto out;
1697 }
1698 }
1699 }
1700
1701 /*
1702 * Set up the PHY control register.
1703 *
1704 * Speed formula for ENET is md_clock = mac_clock / ((N + 1) * 2).
1705 * Speed formula for FEC is md_clock = mac_clock / (N * 2)
1706 *
1707 * XXX - Revisit this...
1708 *
1709 * For a Wandboard imx6 (ENET) I was originally using 4, but the uboot
1710 * code uses 10. Both values seem to work, but I suspect many modern
1711 * PHY parts can do mdio at speeds far above the standard 2.5 MHz.
1712 *
1713 * Different imx manuals use confusingly different terminology (things
1714 * like "system clock" and "internal module clock") with examples that
1715 * use frequencies that have nothing to do with ethernet, giving the
1716 * vague impression that maybe the clock in question is the periphclock
1717 * or something. In fact, on an imx53 development board (FEC),
1718 * measuring the mdio clock at the pin on the PHY and playing with
1719 * various divisors showed that the root speed was 66 MHz (clk_ipg_root
1720 * aka periphclock) and 13 was the right divisor.
1721 *
1722 * All in all, it seems likely that 13 is a safe divisor for now,
1723 * because if we really do need to base it on the peripheral clock
1724 * speed, then we need a platform-independant get-clock-freq API.
1725 */
1726 mscr = 13 << FEC_MSCR_MII_SPEED_SHIFT;
1727 if (OF_hasprop(ofw_node, "phy-disable-preamble")) {
1728 mscr |= FEC_MSCR_DIS_PRE;
1729 if (bootverbose)
1730 device_printf(dev, "PHY preamble disabled\n");
1731 }
1732 WR4(sc, FEC_MSCR_REG, mscr);
1733
1734 /* Set up the ethernet interface. */
1735 sc->ifp = ifp = if_alloc(IFT_ETHER);
1736
1737 ifp->if_softc = sc;
1738 if_initname(ifp, device_get_name(dev), device_get_unit(dev));
1739 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1740 ifp->if_capabilities = IFCAP_VLAN_MTU;
1741 ifp->if_capenable = ifp->if_capabilities;
1742 ifp->if_start = ffec_txstart;
1743 ifp->if_ioctl = ffec_ioctl;
1744 ifp->if_init = ffec_init;
1745 IFQ_SET_MAXLEN(&ifp->if_snd, TX_DESC_COUNT - 1);
1746 ifp->if_snd.ifq_drv_maxlen = TX_DESC_COUNT - 1;
1747 IFQ_SET_READY(&ifp->if_snd);
1748 ifp->if_hdrlen = sizeof(struct ether_vlan_header);
1749
1750 #if 0 /* XXX The hardware keeps stats we could use for these. */
1751 ifp->if_linkmib = &sc->mibdata;
1752 ifp->if_linkmiblen = sizeof(sc->mibdata);
1753 #endif
1754
1755 /* Set up the miigasket hardware (if any). */
1756 ffec_miigasket_setup(sc);
1757
1758 /* Attach the mii driver. */
1759 if (fdt_get_phyaddr(ofw_node, dev, &phynum, &dummy) != 0) {
1760 phynum = MII_PHY_ANY;
1761 }
1762 error = mii_attach(dev, &sc->miibus, ifp, ffec_media_change,
1763 ffec_media_status, BMSR_DEFCAPMASK, phynum, MII_OFFSET_ANY,
1764 (sc->fecflags & FECTYPE_MVF) ? MIIF_FORCEANEG : 0);
1765 if (error != 0) {
1766 device_printf(dev, "PHY attach failed\n");
1767 goto out;
1768 }
1769 sc->mii_softc = device_get_softc(sc->miibus);
1770
1771 /* All ready to run, attach the ethernet interface. */
1772 ether_ifattach(ifp, eaddr);
1773 sc->is_attached = true;
1774
1775 error = 0;
1776 out:
1777
1778 if (error != 0)
1779 ffec_detach(dev);
1780
1781 return (error);
1782 }
1783
1784 static int
ffec_probe(device_t dev)1785 ffec_probe(device_t dev)
1786 {
1787 uintptr_t fectype;
1788
1789 if (!ofw_bus_status_okay(dev))
1790 return (ENXIO);
1791
1792 fectype = ofw_bus_search_compatible(dev, compat_data)->ocd_data;
1793 if (fectype == FECTYPE_NONE)
1794 return (ENXIO);
1795
1796 device_set_desc(dev, (fectype & FECFLAG_GBE) ?
1797 "Freescale Gigabit Ethernet Controller" :
1798 "Freescale Fast Ethernet Controller");
1799
1800 return (BUS_PROBE_DEFAULT);
1801 }
1802
1803
1804 static device_method_t ffec_methods[] = {
1805 /* Device interface. */
1806 DEVMETHOD(device_probe, ffec_probe),
1807 DEVMETHOD(device_attach, ffec_attach),
1808 DEVMETHOD(device_detach, ffec_detach),
1809
1810 /*
1811 DEVMETHOD(device_shutdown, ffec_shutdown),
1812 DEVMETHOD(device_suspend, ffec_suspend),
1813 DEVMETHOD(device_resume, ffec_resume),
1814 */
1815
1816 /* MII interface. */
1817 DEVMETHOD(miibus_readreg, ffec_miibus_readreg),
1818 DEVMETHOD(miibus_writereg, ffec_miibus_writereg),
1819 DEVMETHOD(miibus_statchg, ffec_miibus_statchg),
1820
1821 DEVMETHOD_END
1822 };
1823
1824 static driver_t ffec_driver = {
1825 "ffec",
1826 ffec_methods,
1827 sizeof(struct ffec_softc)
1828 };
1829
1830 static devclass_t ffec_devclass;
1831
1832 DRIVER_MODULE(ffec, simplebus, ffec_driver, ffec_devclass, 0, 0);
1833 DRIVER_MODULE(miibus, ffec, miibus_driver, miibus_devclass, 0, 0);
1834
1835 MODULE_DEPEND(ffec, ether, 1, 1, 1);
1836 MODULE_DEPEND(ffec, miibus, 1, 1, 1);
1837