1 /*-
2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3 *
4 * Copyright (c) 2008 Stanislav Sedov <[email protected]>.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
17 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
18 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
19 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
20 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
21 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
22 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
23 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
25 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26 *
27 * Driver for Attansic Technology Corp. L2 FastEthernet adapter.
28 *
29 * This driver is heavily based on age(4) Attansic L1 driver by Pyun YongHyeon.
30 */
31
32 #include <sys/cdefs.h>
33 __FBSDID("$FreeBSD$");
34
35 #include <sys/param.h>
36 #include <sys/systm.h>
37 #include <sys/bus.h>
38 #include <sys/endian.h>
39 #include <sys/kernel.h>
40 #include <sys/lock.h>
41 #include <sys/malloc.h>
42 #include <sys/mbuf.h>
43 #include <sys/mutex.h>
44 #include <sys/rman.h>
45 #include <sys/module.h>
46 #include <sys/queue.h>
47 #include <sys/socket.h>
48 #include <sys/sockio.h>
49 #include <sys/sysctl.h>
50 #include <sys/taskqueue.h>
51
52 #include <net/bpf.h>
53 #include <net/if.h>
54 #include <net/if_var.h>
55 #include <net/if_arp.h>
56 #include <net/ethernet.h>
57 #include <net/if_dl.h>
58 #include <net/if_media.h>
59 #include <net/if_types.h>
60 #include <net/if_vlan_var.h>
61
62 #include <netinet/in.h>
63 #include <netinet/in_systm.h>
64 #include <netinet/ip.h>
65 #include <netinet/tcp.h>
66
67 #include <dev/mii/mii.h>
68 #include <dev/mii/miivar.h>
69 #include <dev/pci/pcireg.h>
70 #include <dev/pci/pcivar.h>
71
72 #include <machine/bus.h>
73
74 #include "miibus_if.h"
75
76 #include "if_aereg.h"
77 #include "if_aevar.h"
78
79 /*
80 * Devices supported by this driver.
81 */
82 static struct ae_dev {
83 uint16_t vendorid;
84 uint16_t deviceid;
85 const char *name;
86 } ae_devs[] = {
87 { VENDORID_ATTANSIC, DEVICEID_ATTANSIC_L2,
88 "Attansic Technology Corp, L2 FastEthernet" },
89 };
90 #define AE_DEVS_COUNT nitems(ae_devs)
91
92 static struct resource_spec ae_res_spec_mem[] = {
93 { SYS_RES_MEMORY, PCIR_BAR(0), RF_ACTIVE },
94 { -1, 0, 0 }
95 };
96 static struct resource_spec ae_res_spec_irq[] = {
97 { SYS_RES_IRQ, 0, RF_ACTIVE | RF_SHAREABLE },
98 { -1, 0, 0 }
99 };
100 static struct resource_spec ae_res_spec_msi[] = {
101 { SYS_RES_IRQ, 1, RF_ACTIVE },
102 { -1, 0, 0 }
103 };
104
105 static int ae_probe(device_t dev);
106 static int ae_attach(device_t dev);
107 static void ae_pcie_init(ae_softc_t *sc);
108 static void ae_phy_reset(ae_softc_t *sc);
109 static void ae_phy_init(ae_softc_t *sc);
110 static int ae_reset(ae_softc_t *sc);
111 static void ae_init(void *arg);
112 static int ae_init_locked(ae_softc_t *sc);
113 static int ae_detach(device_t dev);
114 static int ae_miibus_readreg(device_t dev, int phy, int reg);
115 static int ae_miibus_writereg(device_t dev, int phy, int reg, int val);
116 static void ae_miibus_statchg(device_t dev);
117 static void ae_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr);
118 static int ae_mediachange(struct ifnet *ifp);
119 static void ae_retrieve_address(ae_softc_t *sc);
120 static void ae_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nsegs,
121 int error);
122 static int ae_alloc_rings(ae_softc_t *sc);
123 static void ae_dma_free(ae_softc_t *sc);
124 static int ae_shutdown(device_t dev);
125 static int ae_suspend(device_t dev);
126 static void ae_powersave_disable(ae_softc_t *sc);
127 static void ae_powersave_enable(ae_softc_t *sc);
128 static int ae_resume(device_t dev);
129 static unsigned int ae_tx_avail_size(ae_softc_t *sc);
130 static int ae_encap(ae_softc_t *sc, struct mbuf **m_head);
131 static void ae_start(struct ifnet *ifp);
132 static void ae_start_locked(struct ifnet *ifp);
133 static void ae_link_task(void *arg, int pending);
134 static void ae_stop_rxmac(ae_softc_t *sc);
135 static void ae_stop_txmac(ae_softc_t *sc);
136 static void ae_mac_config(ae_softc_t *sc);
137 static int ae_intr(void *arg);
138 static void ae_int_task(void *arg, int pending);
139 static void ae_tx_intr(ae_softc_t *sc);
140 static void ae_rxeof(ae_softc_t *sc, ae_rxd_t *rxd);
141 static void ae_rx_intr(ae_softc_t *sc);
142 static void ae_watchdog(ae_softc_t *sc);
143 static void ae_tick(void *arg);
144 static void ae_rxfilter(ae_softc_t *sc);
145 static void ae_rxvlan(ae_softc_t *sc);
146 static int ae_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data);
147 static void ae_stop(ae_softc_t *sc);
148 static int ae_check_eeprom_present(ae_softc_t *sc, int *vpdc);
149 static int ae_vpd_read_word(ae_softc_t *sc, int reg, uint32_t *word);
150 static int ae_get_vpd_eaddr(ae_softc_t *sc, uint32_t *eaddr);
151 static int ae_get_reg_eaddr(ae_softc_t *sc, uint32_t *eaddr);
152 static void ae_update_stats_rx(uint16_t flags, ae_stats_t *stats);
153 static void ae_update_stats_tx(uint16_t flags, ae_stats_t *stats);
154 static void ae_init_tunables(ae_softc_t *sc);
155
156 static device_method_t ae_methods[] = {
157 /* Device interface. */
158 DEVMETHOD(device_probe, ae_probe),
159 DEVMETHOD(device_attach, ae_attach),
160 DEVMETHOD(device_detach, ae_detach),
161 DEVMETHOD(device_shutdown, ae_shutdown),
162 DEVMETHOD(device_suspend, ae_suspend),
163 DEVMETHOD(device_resume, ae_resume),
164
165 /* MII interface. */
166 DEVMETHOD(miibus_readreg, ae_miibus_readreg),
167 DEVMETHOD(miibus_writereg, ae_miibus_writereg),
168 DEVMETHOD(miibus_statchg, ae_miibus_statchg),
169
170 { NULL, NULL }
171 };
172 static driver_t ae_driver = {
173 "ae",
174 ae_methods,
175 sizeof(ae_softc_t)
176 };
177 static devclass_t ae_devclass;
178
179 DRIVER_MODULE(ae, pci, ae_driver, ae_devclass, 0, 0);
180 MODULE_PNP_INFO("U16:vendor;U16:device;D:#", pci, ae, ae_devs,
181 nitems(ae_devs));
182 DRIVER_MODULE(miibus, ae, miibus_driver, miibus_devclass, 0, 0);
183 MODULE_DEPEND(ae, pci, 1, 1, 1);
184 MODULE_DEPEND(ae, ether, 1, 1, 1);
185 MODULE_DEPEND(ae, miibus, 1, 1, 1);
186
187 /*
188 * Tunables.
189 */
190 static int msi_disable = 0;
191 TUNABLE_INT("hw.ae.msi_disable", &msi_disable);
192
193 #define AE_READ_4(sc, reg) \
194 bus_read_4((sc)->mem[0], (reg))
195 #define AE_READ_2(sc, reg) \
196 bus_read_2((sc)->mem[0], (reg))
197 #define AE_READ_1(sc, reg) \
198 bus_read_1((sc)->mem[0], (reg))
199 #define AE_WRITE_4(sc, reg, val) \
200 bus_write_4((sc)->mem[0], (reg), (val))
201 #define AE_WRITE_2(sc, reg, val) \
202 bus_write_2((sc)->mem[0], (reg), (val))
203 #define AE_WRITE_1(sc, reg, val) \
204 bus_write_1((sc)->mem[0], (reg), (val))
205 #define AE_PHY_READ(sc, reg) \
206 ae_miibus_readreg(sc->dev, 0, reg)
207 #define AE_PHY_WRITE(sc, reg, val) \
208 ae_miibus_writereg(sc->dev, 0, reg, val)
209 #define AE_CHECK_EADDR_VALID(eaddr) \
210 ((eaddr[0] == 0 && eaddr[1] == 0) || \
211 (eaddr[0] == 0xffffffff && eaddr[1] == 0xffff))
212 #define AE_RXD_VLAN(vtag) \
213 (((vtag) >> 4) | (((vtag) & 0x07) << 13) | (((vtag) & 0x08) << 9))
214 #define AE_TXD_VLAN(vtag) \
215 (((vtag) << 4) | (((vtag) >> 13) & 0x07) | (((vtag) >> 9) & 0x08))
216
217 static int
ae_probe(device_t dev)218 ae_probe(device_t dev)
219 {
220 uint16_t deviceid, vendorid;
221 int i;
222
223 vendorid = pci_get_vendor(dev);
224 deviceid = pci_get_device(dev);
225
226 /*
227 * Search through the list of supported devs for matching one.
228 */
229 for (i = 0; i < AE_DEVS_COUNT; i++) {
230 if (vendorid == ae_devs[i].vendorid &&
231 deviceid == ae_devs[i].deviceid) {
232 device_set_desc(dev, ae_devs[i].name);
233 return (BUS_PROBE_DEFAULT);
234 }
235 }
236 return (ENXIO);
237 }
238
239 static int
ae_attach(device_t dev)240 ae_attach(device_t dev)
241 {
242 ae_softc_t *sc;
243 struct ifnet *ifp;
244 uint8_t chiprev;
245 uint32_t pcirev;
246 int nmsi, pmc;
247 int error;
248
249 sc = device_get_softc(dev); /* Automatically allocated and zeroed
250 on attach. */
251 KASSERT(sc != NULL, ("[ae, %d]: sc is NULL", __LINE__));
252 sc->dev = dev;
253
254 /*
255 * Initialize mutexes and tasks.
256 */
257 mtx_init(&sc->mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK, MTX_DEF);
258 callout_init_mtx(&sc->tick_ch, &sc->mtx, 0);
259 TASK_INIT(&sc->int_task, 0, ae_int_task, sc);
260 TASK_INIT(&sc->link_task, 0, ae_link_task, sc);
261
262 pci_enable_busmaster(dev); /* Enable bus mastering. */
263
264 sc->spec_mem = ae_res_spec_mem;
265
266 /*
267 * Allocate memory-mapped registers.
268 */
269 error = bus_alloc_resources(dev, sc->spec_mem, sc->mem);
270 if (error != 0) {
271 device_printf(dev, "could not allocate memory resources.\n");
272 sc->spec_mem = NULL;
273 goto fail;
274 }
275
276 /*
277 * Retrieve PCI and chip revisions.
278 */
279 pcirev = pci_get_revid(dev);
280 chiprev = (AE_READ_4(sc, AE_MASTER_REG) >> AE_MASTER_REVNUM_SHIFT) &
281 AE_MASTER_REVNUM_MASK;
282 if (bootverbose) {
283 device_printf(dev, "pci device revision: %#04x\n", pcirev);
284 device_printf(dev, "chip id: %#02x\n", chiprev);
285 }
286 nmsi = pci_msi_count(dev);
287 if (bootverbose)
288 device_printf(dev, "MSI count: %d.\n", nmsi);
289
290 /*
291 * Allocate interrupt resources.
292 */
293 if (msi_disable == 0 && nmsi == 1) {
294 error = pci_alloc_msi(dev, &nmsi);
295 if (error == 0) {
296 device_printf(dev, "Using MSI messages.\n");
297 sc->spec_irq = ae_res_spec_msi;
298 error = bus_alloc_resources(dev, sc->spec_irq, sc->irq);
299 if (error != 0) {
300 device_printf(dev, "MSI allocation failed.\n");
301 sc->spec_irq = NULL;
302 pci_release_msi(dev);
303 } else {
304 sc->flags |= AE_FLAG_MSI;
305 }
306 }
307 }
308 if (sc->spec_irq == NULL) {
309 sc->spec_irq = ae_res_spec_irq;
310 error = bus_alloc_resources(dev, sc->spec_irq, sc->irq);
311 if (error != 0) {
312 device_printf(dev, "could not allocate IRQ resources.\n");
313 sc->spec_irq = NULL;
314 goto fail;
315 }
316 }
317
318 ae_init_tunables(sc);
319
320 ae_phy_reset(sc); /* Reset PHY. */
321 error = ae_reset(sc); /* Reset the controller itself. */
322 if (error != 0)
323 goto fail;
324
325 ae_pcie_init(sc);
326
327 ae_retrieve_address(sc); /* Load MAC address. */
328
329 error = ae_alloc_rings(sc); /* Allocate ring buffers. */
330 if (error != 0)
331 goto fail;
332
333 ifp = sc->ifp = if_alloc(IFT_ETHER);
334 if (ifp == NULL) {
335 device_printf(dev, "could not allocate ifnet structure.\n");
336 error = ENXIO;
337 goto fail;
338 }
339
340 ifp->if_softc = sc;
341 if_initname(ifp, device_get_name(dev), device_get_unit(dev));
342 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
343 ifp->if_ioctl = ae_ioctl;
344 ifp->if_start = ae_start;
345 ifp->if_init = ae_init;
346 ifp->if_capabilities = IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING;
347 ifp->if_hwassist = 0;
348 ifp->if_snd.ifq_drv_maxlen = ifqmaxlen;
349 IFQ_SET_MAXLEN(&ifp->if_snd, ifp->if_snd.ifq_drv_maxlen);
350 IFQ_SET_READY(&ifp->if_snd);
351 if (pci_find_cap(dev, PCIY_PMG, &pmc) == 0) {
352 ifp->if_capabilities |= IFCAP_WOL_MAGIC;
353 sc->flags |= AE_FLAG_PMG;
354 }
355 ifp->if_capenable = ifp->if_capabilities;
356
357 /*
358 * Configure and attach MII bus.
359 */
360 error = mii_attach(dev, &sc->miibus, ifp, ae_mediachange,
361 ae_mediastatus, BMSR_DEFCAPMASK, AE_PHYADDR_DEFAULT,
362 MII_OFFSET_ANY, 0);
363 if (error != 0) {
364 device_printf(dev, "attaching PHYs failed\n");
365 goto fail;
366 }
367
368 ether_ifattach(ifp, sc->eaddr);
369 /* Tell the upper layer(s) we support long frames. */
370 ifp->if_hdrlen = sizeof(struct ether_vlan_header);
371
372 /*
373 * Create and run all helper tasks.
374 */
375 sc->tq = taskqueue_create_fast("ae_taskq", M_WAITOK,
376 taskqueue_thread_enqueue, &sc->tq);
377 if (sc->tq == NULL) {
378 device_printf(dev, "could not create taskqueue.\n");
379 ether_ifdetach(ifp);
380 error = ENXIO;
381 goto fail;
382 }
383 taskqueue_start_threads(&sc->tq, 1, PI_NET, "%s taskq",
384 device_get_nameunit(sc->dev));
385
386 /*
387 * Configure interrupt handlers.
388 */
389 error = bus_setup_intr(dev, sc->irq[0], INTR_TYPE_NET | INTR_MPSAFE,
390 ae_intr, NULL, sc, &sc->intrhand);
391 if (error != 0) {
392 device_printf(dev, "could not set up interrupt handler.\n");
393 taskqueue_free(sc->tq);
394 sc->tq = NULL;
395 ether_ifdetach(ifp);
396 goto fail;
397 }
398
399 fail:
400 if (error != 0)
401 ae_detach(dev);
402
403 return (error);
404 }
405
406 #define AE_SYSCTL(stx, parent, name, desc, ptr) \
407 SYSCTL_ADD_UINT(ctx, parent, OID_AUTO, name, CTLFLAG_RD, ptr, 0, desc)
408
409 static void
ae_init_tunables(ae_softc_t * sc)410 ae_init_tunables(ae_softc_t *sc)
411 {
412 struct sysctl_ctx_list *ctx;
413 struct sysctl_oid *root, *stats, *stats_rx, *stats_tx;
414 struct ae_stats *ae_stats;
415
416 KASSERT(sc != NULL, ("[ae, %d]: sc is NULL", __LINE__));
417 ae_stats = &sc->stats;
418
419 ctx = device_get_sysctl_ctx(sc->dev);
420 root = device_get_sysctl_tree(sc->dev);
421 stats = SYSCTL_ADD_NODE(ctx, SYSCTL_CHILDREN(root), OID_AUTO, "stats",
422 CTLFLAG_RD, NULL, "ae statistics");
423
424 /*
425 * Receiver statistcics.
426 */
427 stats_rx = SYSCTL_ADD_NODE(ctx, SYSCTL_CHILDREN(stats), OID_AUTO, "rx",
428 CTLFLAG_RD, NULL, "Rx MAC statistics");
429 AE_SYSCTL(ctx, SYSCTL_CHILDREN(stats_rx), "bcast",
430 "broadcast frames", &ae_stats->rx_bcast);
431 AE_SYSCTL(ctx, SYSCTL_CHILDREN(stats_rx), "mcast",
432 "multicast frames", &ae_stats->rx_mcast);
433 AE_SYSCTL(ctx, SYSCTL_CHILDREN(stats_rx), "pause",
434 "PAUSE frames", &ae_stats->rx_pause);
435 AE_SYSCTL(ctx, SYSCTL_CHILDREN(stats_rx), "control",
436 "control frames", &ae_stats->rx_ctrl);
437 AE_SYSCTL(ctx, SYSCTL_CHILDREN(stats_rx), "crc_errors",
438 "frames with CRC errors", &ae_stats->rx_crcerr);
439 AE_SYSCTL(ctx, SYSCTL_CHILDREN(stats_rx), "code_errors",
440 "frames with invalid opcode", &ae_stats->rx_codeerr);
441 AE_SYSCTL(ctx, SYSCTL_CHILDREN(stats_rx), "runt",
442 "runt frames", &ae_stats->rx_runt);
443 AE_SYSCTL(ctx, SYSCTL_CHILDREN(stats_rx), "frag",
444 "fragmented frames", &ae_stats->rx_frag);
445 AE_SYSCTL(ctx, SYSCTL_CHILDREN(stats_rx), "align_errors",
446 "frames with alignment errors", &ae_stats->rx_align);
447 AE_SYSCTL(ctx, SYSCTL_CHILDREN(stats_rx), "truncated",
448 "frames truncated due to Rx FIFO inderrun", &ae_stats->rx_trunc);
449
450 /*
451 * Receiver statistcics.
452 */
453 stats_tx = SYSCTL_ADD_NODE(ctx, SYSCTL_CHILDREN(stats), OID_AUTO, "tx",
454 CTLFLAG_RD, NULL, "Tx MAC statistics");
455 AE_SYSCTL(ctx, SYSCTL_CHILDREN(stats_tx), "bcast",
456 "broadcast frames", &ae_stats->tx_bcast);
457 AE_SYSCTL(ctx, SYSCTL_CHILDREN(stats_tx), "mcast",
458 "multicast frames", &ae_stats->tx_mcast);
459 AE_SYSCTL(ctx, SYSCTL_CHILDREN(stats_tx), "pause",
460 "PAUSE frames", &ae_stats->tx_pause);
461 AE_SYSCTL(ctx, SYSCTL_CHILDREN(stats_tx), "control",
462 "control frames", &ae_stats->tx_ctrl);
463 AE_SYSCTL(ctx, SYSCTL_CHILDREN(stats_tx), "defers",
464 "deferrals occuried", &ae_stats->tx_defer);
465 AE_SYSCTL(ctx, SYSCTL_CHILDREN(stats_tx), "exc_defers",
466 "excessive deferrals occuried", &ae_stats->tx_excdefer);
467 AE_SYSCTL(ctx, SYSCTL_CHILDREN(stats_tx), "singlecols",
468 "single collisions occuried", &ae_stats->tx_singlecol);
469 AE_SYSCTL(ctx, SYSCTL_CHILDREN(stats_tx), "multicols",
470 "multiple collisions occuried", &ae_stats->tx_multicol);
471 AE_SYSCTL(ctx, SYSCTL_CHILDREN(stats_tx), "latecols",
472 "late collisions occuried", &ae_stats->tx_latecol);
473 AE_SYSCTL(ctx, SYSCTL_CHILDREN(stats_tx), "aborts",
474 "transmit aborts due collisions", &ae_stats->tx_abortcol);
475 AE_SYSCTL(ctx, SYSCTL_CHILDREN(stats_tx), "underruns",
476 "Tx FIFO underruns", &ae_stats->tx_underrun);
477 }
478
479 static void
ae_pcie_init(ae_softc_t * sc)480 ae_pcie_init(ae_softc_t *sc)
481 {
482
483 AE_WRITE_4(sc, AE_PCIE_LTSSM_TESTMODE_REG, AE_PCIE_LTSSM_TESTMODE_DEFAULT);
484 AE_WRITE_4(sc, AE_PCIE_DLL_TX_CTRL_REG, AE_PCIE_DLL_TX_CTRL_DEFAULT);
485 }
486
487 static void
ae_phy_reset(ae_softc_t * sc)488 ae_phy_reset(ae_softc_t *sc)
489 {
490
491 AE_WRITE_4(sc, AE_PHY_ENABLE_REG, AE_PHY_ENABLE);
492 DELAY(1000); /* XXX: pause(9) ? */
493 }
494
495 static int
ae_reset(ae_softc_t * sc)496 ae_reset(ae_softc_t *sc)
497 {
498 int i;
499
500 /*
501 * Issue a soft reset.
502 */
503 AE_WRITE_4(sc, AE_MASTER_REG, AE_MASTER_SOFT_RESET);
504 bus_barrier(sc->mem[0], AE_MASTER_REG, 4,
505 BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
506
507 /*
508 * Wait for reset to complete.
509 */
510 for (i = 0; i < AE_RESET_TIMEOUT; i++) {
511 if ((AE_READ_4(sc, AE_MASTER_REG) & AE_MASTER_SOFT_RESET) == 0)
512 break;
513 DELAY(10);
514 }
515 if (i == AE_RESET_TIMEOUT) {
516 device_printf(sc->dev, "reset timeout.\n");
517 return (ENXIO);
518 }
519
520 /*
521 * Wait for everything to enter idle state.
522 */
523 for (i = 0; i < AE_IDLE_TIMEOUT; i++) {
524 if (AE_READ_4(sc, AE_IDLE_REG) == 0)
525 break;
526 DELAY(100);
527 }
528 if (i == AE_IDLE_TIMEOUT) {
529 device_printf(sc->dev, "could not enter idle state.\n");
530 return (ENXIO);
531 }
532 return (0);
533 }
534
535 static void
ae_init(void * arg)536 ae_init(void *arg)
537 {
538 ae_softc_t *sc;
539
540 sc = (ae_softc_t *)arg;
541 AE_LOCK(sc);
542 ae_init_locked(sc);
543 AE_UNLOCK(sc);
544 }
545
546 static void
ae_phy_init(ae_softc_t * sc)547 ae_phy_init(ae_softc_t *sc)
548 {
549
550 /*
551 * Enable link status change interrupt.
552 * XXX magic numbers.
553 */
554 #ifdef notyet
555 AE_PHY_WRITE(sc, 18, 0xc00);
556 #endif
557 }
558
559 static int
ae_init_locked(ae_softc_t * sc)560 ae_init_locked(ae_softc_t *sc)
561 {
562 struct ifnet *ifp;
563 struct mii_data *mii;
564 uint8_t eaddr[ETHER_ADDR_LEN];
565 uint32_t val;
566 bus_addr_t addr;
567
568 AE_LOCK_ASSERT(sc);
569
570 ifp = sc->ifp;
571 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
572 return (0);
573 mii = device_get_softc(sc->miibus);
574
575 ae_stop(sc);
576 ae_reset(sc);
577 ae_pcie_init(sc); /* Initialize PCIE stuff. */
578 ae_phy_init(sc);
579 ae_powersave_disable(sc);
580
581 /*
582 * Clear and disable interrupts.
583 */
584 AE_WRITE_4(sc, AE_ISR_REG, 0xffffffff);
585
586 /*
587 * Set the MAC address.
588 */
589 bcopy(IF_LLADDR(ifp), eaddr, ETHER_ADDR_LEN);
590 val = eaddr[2] << 24 | eaddr[3] << 16 | eaddr[4] << 8 | eaddr[5];
591 AE_WRITE_4(sc, AE_EADDR0_REG, val);
592 val = eaddr[0] << 8 | eaddr[1];
593 AE_WRITE_4(sc, AE_EADDR1_REG, val);
594
595 bzero(sc->rxd_base_dma, AE_RXD_COUNT_DEFAULT * 1536 + AE_RXD_PADDING);
596 bzero(sc->txd_base, AE_TXD_BUFSIZE_DEFAULT);
597 bzero(sc->txs_base, AE_TXS_COUNT_DEFAULT * 4);
598 /*
599 * Set ring buffers base addresses.
600 */
601 addr = sc->dma_rxd_busaddr;
602 AE_WRITE_4(sc, AE_DESC_ADDR_HI_REG, BUS_ADDR_HI(addr));
603 AE_WRITE_4(sc, AE_RXD_ADDR_LO_REG, BUS_ADDR_LO(addr));
604 addr = sc->dma_txd_busaddr;
605 AE_WRITE_4(sc, AE_TXD_ADDR_LO_REG, BUS_ADDR_LO(addr));
606 addr = sc->dma_txs_busaddr;
607 AE_WRITE_4(sc, AE_TXS_ADDR_LO_REG, BUS_ADDR_LO(addr));
608
609 /*
610 * Configure ring buffers sizes.
611 */
612 AE_WRITE_2(sc, AE_RXD_COUNT_REG, AE_RXD_COUNT_DEFAULT);
613 AE_WRITE_2(sc, AE_TXD_BUFSIZE_REG, AE_TXD_BUFSIZE_DEFAULT / 4);
614 AE_WRITE_2(sc, AE_TXS_COUNT_REG, AE_TXS_COUNT_DEFAULT);
615
616 /*
617 * Configure interframe gap parameters.
618 */
619 val = ((AE_IFG_TXIPG_DEFAULT << AE_IFG_TXIPG_SHIFT) &
620 AE_IFG_TXIPG_MASK) |
621 ((AE_IFG_RXIPG_DEFAULT << AE_IFG_RXIPG_SHIFT) &
622 AE_IFG_RXIPG_MASK) |
623 ((AE_IFG_IPGR1_DEFAULT << AE_IFG_IPGR1_SHIFT) &
624 AE_IFG_IPGR1_MASK) |
625 ((AE_IFG_IPGR2_DEFAULT << AE_IFG_IPGR2_SHIFT) &
626 AE_IFG_IPGR2_MASK);
627 AE_WRITE_4(sc, AE_IFG_REG, val);
628
629 /*
630 * Configure half-duplex operation.
631 */
632 val = ((AE_HDPX_LCOL_DEFAULT << AE_HDPX_LCOL_SHIFT) &
633 AE_HDPX_LCOL_MASK) |
634 ((AE_HDPX_RETRY_DEFAULT << AE_HDPX_RETRY_SHIFT) &
635 AE_HDPX_RETRY_MASK) |
636 ((AE_HDPX_ABEBT_DEFAULT << AE_HDPX_ABEBT_SHIFT) &
637 AE_HDPX_ABEBT_MASK) |
638 ((AE_HDPX_JAMIPG_DEFAULT << AE_HDPX_JAMIPG_SHIFT) &
639 AE_HDPX_JAMIPG_MASK) | AE_HDPX_EXC_EN;
640 AE_WRITE_4(sc, AE_HDPX_REG, val);
641
642 /*
643 * Configure interrupt moderate timer.
644 */
645 AE_WRITE_2(sc, AE_IMT_REG, AE_IMT_DEFAULT);
646 val = AE_READ_4(sc, AE_MASTER_REG);
647 val |= AE_MASTER_IMT_EN;
648 AE_WRITE_4(sc, AE_MASTER_REG, val);
649
650 /*
651 * Configure interrupt clearing timer.
652 */
653 AE_WRITE_2(sc, AE_ICT_REG, AE_ICT_DEFAULT);
654
655 /*
656 * Configure MTU.
657 */
658 val = ifp->if_mtu + ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN +
659 ETHER_CRC_LEN;
660 AE_WRITE_2(sc, AE_MTU_REG, val);
661
662 /*
663 * Configure cut-through threshold.
664 */
665 AE_WRITE_4(sc, AE_CUT_THRESH_REG, AE_CUT_THRESH_DEFAULT);
666
667 /*
668 * Configure flow control.
669 */
670 AE_WRITE_2(sc, AE_FLOW_THRESH_HI_REG, (AE_RXD_COUNT_DEFAULT / 8) * 7);
671 AE_WRITE_2(sc, AE_FLOW_THRESH_LO_REG, (AE_RXD_COUNT_MIN / 8) >
672 (AE_RXD_COUNT_DEFAULT / 12) ? (AE_RXD_COUNT_MIN / 8) :
673 (AE_RXD_COUNT_DEFAULT / 12));
674
675 /*
676 * Init mailboxes.
677 */
678 sc->txd_cur = sc->rxd_cur = 0;
679 sc->txs_ack = sc->txd_ack = 0;
680 sc->rxd_cur = 0;
681 AE_WRITE_2(sc, AE_MB_TXD_IDX_REG, sc->txd_cur);
682 AE_WRITE_2(sc, AE_MB_RXD_IDX_REG, sc->rxd_cur);
683
684 sc->tx_inproc = 0; /* Number of packets the chip processes now. */
685 sc->flags |= AE_FLAG_TXAVAIL; /* Free Tx's available. */
686
687 /*
688 * Enable DMA.
689 */
690 AE_WRITE_1(sc, AE_DMAREAD_REG, AE_DMAREAD_EN);
691 AE_WRITE_1(sc, AE_DMAWRITE_REG, AE_DMAWRITE_EN);
692
693 /*
694 * Check if everything is OK.
695 */
696 val = AE_READ_4(sc, AE_ISR_REG);
697 if ((val & AE_ISR_PHY_LINKDOWN) != 0) {
698 device_printf(sc->dev, "Initialization failed.\n");
699 return (ENXIO);
700 }
701
702 /*
703 * Clear interrupt status.
704 */
705 AE_WRITE_4(sc, AE_ISR_REG, 0x3fffffff);
706 AE_WRITE_4(sc, AE_ISR_REG, 0x0);
707
708 /*
709 * Enable interrupts.
710 */
711 val = AE_READ_4(sc, AE_MASTER_REG);
712 AE_WRITE_4(sc, AE_MASTER_REG, val | AE_MASTER_MANUAL_INT);
713 AE_WRITE_4(sc, AE_IMR_REG, AE_IMR_DEFAULT);
714
715 /*
716 * Disable WOL.
717 */
718 AE_WRITE_4(sc, AE_WOL_REG, 0);
719
720 /*
721 * Configure MAC.
722 */
723 val = AE_MAC_TX_CRC_EN | AE_MAC_TX_AUTOPAD |
724 AE_MAC_FULL_DUPLEX | AE_MAC_CLK_PHY |
725 AE_MAC_TX_FLOW_EN | AE_MAC_RX_FLOW_EN |
726 ((AE_HALFBUF_DEFAULT << AE_HALFBUF_SHIFT) & AE_HALFBUF_MASK) |
727 ((AE_MAC_PREAMBLE_DEFAULT << AE_MAC_PREAMBLE_SHIFT) &
728 AE_MAC_PREAMBLE_MASK);
729 AE_WRITE_4(sc, AE_MAC_REG, val);
730
731 /*
732 * Configure Rx MAC.
733 */
734 ae_rxfilter(sc);
735 ae_rxvlan(sc);
736
737 /*
738 * Enable Tx/Rx.
739 */
740 val = AE_READ_4(sc, AE_MAC_REG);
741 AE_WRITE_4(sc, AE_MAC_REG, val | AE_MAC_TX_EN | AE_MAC_RX_EN);
742
743 sc->flags &= ~AE_FLAG_LINK;
744 mii_mediachg(mii); /* Switch to the current media. */
745
746 callout_reset(&sc->tick_ch, hz, ae_tick, sc);
747
748 ifp->if_drv_flags |= IFF_DRV_RUNNING;
749 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
750
751 #ifdef AE_DEBUG
752 device_printf(sc->dev, "Initialization complete.\n");
753 #endif
754
755 return (0);
756 }
757
758 static int
ae_detach(device_t dev)759 ae_detach(device_t dev)
760 {
761 struct ae_softc *sc;
762 struct ifnet *ifp;
763
764 sc = device_get_softc(dev);
765 KASSERT(sc != NULL, ("[ae: %d]: sc is NULL", __LINE__));
766 ifp = sc->ifp;
767 if (device_is_attached(dev)) {
768 AE_LOCK(sc);
769 sc->flags |= AE_FLAG_DETACH;
770 ae_stop(sc);
771 AE_UNLOCK(sc);
772 callout_drain(&sc->tick_ch);
773 taskqueue_drain(sc->tq, &sc->int_task);
774 taskqueue_drain(taskqueue_swi, &sc->link_task);
775 ether_ifdetach(ifp);
776 }
777 if (sc->tq != NULL) {
778 taskqueue_drain(sc->tq, &sc->int_task);
779 taskqueue_free(sc->tq);
780 sc->tq = NULL;
781 }
782 if (sc->miibus != NULL) {
783 device_delete_child(dev, sc->miibus);
784 sc->miibus = NULL;
785 }
786 bus_generic_detach(sc->dev);
787 ae_dma_free(sc);
788 if (sc->intrhand != NULL) {
789 bus_teardown_intr(dev, sc->irq[0], sc->intrhand);
790 sc->intrhand = NULL;
791 }
792 if (ifp != NULL) {
793 if_free(ifp);
794 sc->ifp = NULL;
795 }
796 if (sc->spec_irq != NULL)
797 bus_release_resources(dev, sc->spec_irq, sc->irq);
798 if (sc->spec_mem != NULL)
799 bus_release_resources(dev, sc->spec_mem, sc->mem);
800 if ((sc->flags & AE_FLAG_MSI) != 0)
801 pci_release_msi(dev);
802 mtx_destroy(&sc->mtx);
803
804 return (0);
805 }
806
807 static int
ae_miibus_readreg(device_t dev,int phy,int reg)808 ae_miibus_readreg(device_t dev, int phy, int reg)
809 {
810 ae_softc_t *sc;
811 uint32_t val;
812 int i;
813
814 sc = device_get_softc(dev);
815 KASSERT(sc != NULL, ("[ae, %d]: sc is NULL", __LINE__));
816
817 /*
818 * Locking is done in upper layers.
819 */
820
821 val = ((reg << AE_MDIO_REGADDR_SHIFT) & AE_MDIO_REGADDR_MASK) |
822 AE_MDIO_START | AE_MDIO_READ | AE_MDIO_SUP_PREAMBLE |
823 ((AE_MDIO_CLK_25_4 << AE_MDIO_CLK_SHIFT) & AE_MDIO_CLK_MASK);
824 AE_WRITE_4(sc, AE_MDIO_REG, val);
825
826 /*
827 * Wait for operation to complete.
828 */
829 for (i = 0; i < AE_MDIO_TIMEOUT; i++) {
830 DELAY(2);
831 val = AE_READ_4(sc, AE_MDIO_REG);
832 if ((val & (AE_MDIO_START | AE_MDIO_BUSY)) == 0)
833 break;
834 }
835 if (i == AE_MDIO_TIMEOUT) {
836 device_printf(sc->dev, "phy read timeout: %d.\n", reg);
837 return (0);
838 }
839 return ((val << AE_MDIO_DATA_SHIFT) & AE_MDIO_DATA_MASK);
840 }
841
842 static int
ae_miibus_writereg(device_t dev,int phy,int reg,int val)843 ae_miibus_writereg(device_t dev, int phy, int reg, int val)
844 {
845 ae_softc_t *sc;
846 uint32_t aereg;
847 int i;
848
849 sc = device_get_softc(dev);
850 KASSERT(sc != NULL, ("[ae, %d]: sc is NULL", __LINE__));
851
852 /*
853 * Locking is done in upper layers.
854 */
855
856 aereg = ((reg << AE_MDIO_REGADDR_SHIFT) & AE_MDIO_REGADDR_MASK) |
857 AE_MDIO_START | AE_MDIO_SUP_PREAMBLE |
858 ((AE_MDIO_CLK_25_4 << AE_MDIO_CLK_SHIFT) & AE_MDIO_CLK_MASK) |
859 ((val << AE_MDIO_DATA_SHIFT) & AE_MDIO_DATA_MASK);
860 AE_WRITE_4(sc, AE_MDIO_REG, aereg);
861
862 /*
863 * Wait for operation to complete.
864 */
865 for (i = 0; i < AE_MDIO_TIMEOUT; i++) {
866 DELAY(2);
867 aereg = AE_READ_4(sc, AE_MDIO_REG);
868 if ((aereg & (AE_MDIO_START | AE_MDIO_BUSY)) == 0)
869 break;
870 }
871 if (i == AE_MDIO_TIMEOUT) {
872 device_printf(sc->dev, "phy write timeout: %d.\n", reg);
873 }
874 return (0);
875 }
876
877 static void
ae_miibus_statchg(device_t dev)878 ae_miibus_statchg(device_t dev)
879 {
880 ae_softc_t *sc;
881
882 sc = device_get_softc(dev);
883 taskqueue_enqueue(taskqueue_swi, &sc->link_task);
884 }
885
886 static void
ae_mediastatus(struct ifnet * ifp,struct ifmediareq * ifmr)887 ae_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
888 {
889 ae_softc_t *sc;
890 struct mii_data *mii;
891
892 sc = ifp->if_softc;
893 KASSERT(sc != NULL, ("[ae, %d]: sc is NULL", __LINE__));
894
895 AE_LOCK(sc);
896 mii = device_get_softc(sc->miibus);
897 mii_pollstat(mii);
898 ifmr->ifm_status = mii->mii_media_status;
899 ifmr->ifm_active = mii->mii_media_active;
900 AE_UNLOCK(sc);
901 }
902
903 static int
ae_mediachange(struct ifnet * ifp)904 ae_mediachange(struct ifnet *ifp)
905 {
906 ae_softc_t *sc;
907 struct mii_data *mii;
908 struct mii_softc *mii_sc;
909 int error;
910
911 /* XXX: check IFF_UP ?? */
912 sc = ifp->if_softc;
913 KASSERT(sc != NULL, ("[ae, %d]: sc is NULL", __LINE__));
914 AE_LOCK(sc);
915 mii = device_get_softc(sc->miibus);
916 LIST_FOREACH(mii_sc, &mii->mii_phys, mii_list)
917 PHY_RESET(mii_sc);
918 error = mii_mediachg(mii);
919 AE_UNLOCK(sc);
920
921 return (error);
922 }
923
924 static int
ae_check_eeprom_present(ae_softc_t * sc,int * vpdc)925 ae_check_eeprom_present(ae_softc_t *sc, int *vpdc)
926 {
927 int error;
928 uint32_t val;
929
930 KASSERT(vpdc != NULL, ("[ae, %d]: vpdc is NULL!\n", __LINE__));
931
932 /*
933 * Not sure why, but Linux does this.
934 */
935 val = AE_READ_4(sc, AE_SPICTL_REG);
936 if ((val & AE_SPICTL_VPD_EN) != 0) {
937 val &= ~AE_SPICTL_VPD_EN;
938 AE_WRITE_4(sc, AE_SPICTL_REG, val);
939 }
940 error = pci_find_cap(sc->dev, PCIY_VPD, vpdc);
941 return (error);
942 }
943
944 static int
ae_vpd_read_word(ae_softc_t * sc,int reg,uint32_t * word)945 ae_vpd_read_word(ae_softc_t *sc, int reg, uint32_t *word)
946 {
947 uint32_t val;
948 int i;
949
950 AE_WRITE_4(sc, AE_VPD_DATA_REG, 0); /* Clear register value. */
951
952 /*
953 * VPD registers start at offset 0x100. Read them.
954 */
955 val = 0x100 + reg * 4;
956 AE_WRITE_4(sc, AE_VPD_CAP_REG, (val << AE_VPD_CAP_ADDR_SHIFT) &
957 AE_VPD_CAP_ADDR_MASK);
958 for (i = 0; i < AE_VPD_TIMEOUT; i++) {
959 DELAY(2000);
960 val = AE_READ_4(sc, AE_VPD_CAP_REG);
961 if ((val & AE_VPD_CAP_DONE) != 0)
962 break;
963 }
964 if (i == AE_VPD_TIMEOUT) {
965 device_printf(sc->dev, "timeout reading VPD register %d.\n",
966 reg);
967 return (ETIMEDOUT);
968 }
969 *word = AE_READ_4(sc, AE_VPD_DATA_REG);
970 return (0);
971 }
972
973 static int
ae_get_vpd_eaddr(ae_softc_t * sc,uint32_t * eaddr)974 ae_get_vpd_eaddr(ae_softc_t *sc, uint32_t *eaddr)
975 {
976 uint32_t word, reg, val;
977 int error;
978 int found;
979 int vpdc;
980 int i;
981
982 KASSERT(sc != NULL, ("[ae, %d]: sc is NULL", __LINE__));
983 KASSERT(eaddr != NULL, ("[ae, %d]: eaddr is NULL", __LINE__));
984
985 /*
986 * Check for EEPROM.
987 */
988 error = ae_check_eeprom_present(sc, &vpdc);
989 if (error != 0)
990 return (error);
991
992 /*
993 * Read the VPD configuration space.
994 * Each register is prefixed with signature,
995 * so we can check if it is valid.
996 */
997 for (i = 0, found = 0; i < AE_VPD_NREGS; i++) {
998 error = ae_vpd_read_word(sc, i, &word);
999 if (error != 0)
1000 break;
1001
1002 /*
1003 * Check signature.
1004 */
1005 if ((word & AE_VPD_SIG_MASK) != AE_VPD_SIG)
1006 break;
1007 reg = word >> AE_VPD_REG_SHIFT;
1008 i++; /* Move to the next word. */
1009
1010 if (reg != AE_EADDR0_REG && reg != AE_EADDR1_REG)
1011 continue;
1012
1013 error = ae_vpd_read_word(sc, i, &val);
1014 if (error != 0)
1015 break;
1016 if (reg == AE_EADDR0_REG)
1017 eaddr[0] = val;
1018 else
1019 eaddr[1] = val;
1020 found++;
1021 }
1022
1023 if (found < 2)
1024 return (ENOENT);
1025
1026 eaddr[1] &= 0xffff; /* Only last 2 bytes are used. */
1027 if (AE_CHECK_EADDR_VALID(eaddr) != 0) {
1028 if (bootverbose)
1029 device_printf(sc->dev,
1030 "VPD ethernet address registers are invalid.\n");
1031 return (EINVAL);
1032 }
1033 return (0);
1034 }
1035
1036 static int
ae_get_reg_eaddr(ae_softc_t * sc,uint32_t * eaddr)1037 ae_get_reg_eaddr(ae_softc_t *sc, uint32_t *eaddr)
1038 {
1039
1040 /*
1041 * BIOS is supposed to set this.
1042 */
1043 eaddr[0] = AE_READ_4(sc, AE_EADDR0_REG);
1044 eaddr[1] = AE_READ_4(sc, AE_EADDR1_REG);
1045 eaddr[1] &= 0xffff; /* Only last 2 bytes are used. */
1046
1047 if (AE_CHECK_EADDR_VALID(eaddr) != 0) {
1048 if (bootverbose)
1049 device_printf(sc->dev,
1050 "Ethernet address registers are invalid.\n");
1051 return (EINVAL);
1052 }
1053 return (0);
1054 }
1055
1056 static void
ae_retrieve_address(ae_softc_t * sc)1057 ae_retrieve_address(ae_softc_t *sc)
1058 {
1059 uint32_t eaddr[2] = {0, 0};
1060 int error;
1061
1062 /*
1063 *Check for EEPROM.
1064 */
1065 error = ae_get_vpd_eaddr(sc, eaddr);
1066 if (error != 0)
1067 error = ae_get_reg_eaddr(sc, eaddr);
1068 if (error != 0) {
1069 if (bootverbose)
1070 device_printf(sc->dev,
1071 "Generating random ethernet address.\n");
1072 eaddr[0] = arc4random();
1073
1074 /*
1075 * Set OUI to ASUSTek COMPUTER INC.
1076 */
1077 sc->eaddr[0] = 0x02; /* U/L bit set. */
1078 sc->eaddr[1] = 0x1f;
1079 sc->eaddr[2] = 0xc6;
1080 sc->eaddr[3] = (eaddr[0] >> 16) & 0xff;
1081 sc->eaddr[4] = (eaddr[0] >> 8) & 0xff;
1082 sc->eaddr[5] = (eaddr[0] >> 0) & 0xff;
1083 } else {
1084 sc->eaddr[0] = (eaddr[1] >> 8) & 0xff;
1085 sc->eaddr[1] = (eaddr[1] >> 0) & 0xff;
1086 sc->eaddr[2] = (eaddr[0] >> 24) & 0xff;
1087 sc->eaddr[3] = (eaddr[0] >> 16) & 0xff;
1088 sc->eaddr[4] = (eaddr[0] >> 8) & 0xff;
1089 sc->eaddr[5] = (eaddr[0] >> 0) & 0xff;
1090 }
1091 }
1092
1093 static void
ae_dmamap_cb(void * arg,bus_dma_segment_t * segs,int nsegs,int error)1094 ae_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
1095 {
1096 bus_addr_t *addr = arg;
1097
1098 if (error != 0)
1099 return;
1100 KASSERT(nsegs == 1, ("[ae, %d]: %d segments instead of 1!", __LINE__,
1101 nsegs));
1102 *addr = segs[0].ds_addr;
1103 }
1104
1105 static int
ae_alloc_rings(ae_softc_t * sc)1106 ae_alloc_rings(ae_softc_t *sc)
1107 {
1108 bus_addr_t busaddr;
1109 int error;
1110
1111 /*
1112 * Create parent DMA tag.
1113 */
1114 error = bus_dma_tag_create(bus_get_dma_tag(sc->dev),
1115 1, 0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR,
1116 NULL, NULL, BUS_SPACE_MAXSIZE_32BIT, 0,
1117 BUS_SPACE_MAXSIZE_32BIT, 0, NULL, NULL,
1118 &sc->dma_parent_tag);
1119 if (error != 0) {
1120 device_printf(sc->dev, "could not creare parent DMA tag.\n");
1121 return (error);
1122 }
1123
1124 /*
1125 * Create DMA tag for TxD.
1126 */
1127 error = bus_dma_tag_create(sc->dma_parent_tag,
1128 8, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
1129 NULL, NULL, AE_TXD_BUFSIZE_DEFAULT, 1,
1130 AE_TXD_BUFSIZE_DEFAULT, 0, NULL, NULL,
1131 &sc->dma_txd_tag);
1132 if (error != 0) {
1133 device_printf(sc->dev, "could not creare TxD DMA tag.\n");
1134 return (error);
1135 }
1136
1137 /*
1138 * Create DMA tag for TxS.
1139 */
1140 error = bus_dma_tag_create(sc->dma_parent_tag,
1141 8, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
1142 NULL, NULL, AE_TXS_COUNT_DEFAULT * 4, 1,
1143 AE_TXS_COUNT_DEFAULT * 4, 0, NULL, NULL,
1144 &sc->dma_txs_tag);
1145 if (error != 0) {
1146 device_printf(sc->dev, "could not creare TxS DMA tag.\n");
1147 return (error);
1148 }
1149
1150 /*
1151 * Create DMA tag for RxD.
1152 */
1153 error = bus_dma_tag_create(sc->dma_parent_tag,
1154 128, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
1155 NULL, NULL, AE_RXD_COUNT_DEFAULT * 1536 + AE_RXD_PADDING, 1,
1156 AE_RXD_COUNT_DEFAULT * 1536 + AE_RXD_PADDING, 0, NULL, NULL,
1157 &sc->dma_rxd_tag);
1158 if (error != 0) {
1159 device_printf(sc->dev, "could not creare TxS DMA tag.\n");
1160 return (error);
1161 }
1162
1163 /*
1164 * Allocate TxD DMA memory.
1165 */
1166 error = bus_dmamem_alloc(sc->dma_txd_tag, (void **)&sc->txd_base,
1167 BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1168 &sc->dma_txd_map);
1169 if (error != 0) {
1170 device_printf(sc->dev,
1171 "could not allocate DMA memory for TxD ring.\n");
1172 return (error);
1173 }
1174 error = bus_dmamap_load(sc->dma_txd_tag, sc->dma_txd_map, sc->txd_base,
1175 AE_TXD_BUFSIZE_DEFAULT, ae_dmamap_cb, &busaddr, BUS_DMA_NOWAIT);
1176 if (error != 0 || busaddr == 0) {
1177 device_printf(sc->dev,
1178 "could not load DMA map for TxD ring.\n");
1179 return (error);
1180 }
1181 sc->dma_txd_busaddr = busaddr;
1182
1183 /*
1184 * Allocate TxS DMA memory.
1185 */
1186 error = bus_dmamem_alloc(sc->dma_txs_tag, (void **)&sc->txs_base,
1187 BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1188 &sc->dma_txs_map);
1189 if (error != 0) {
1190 device_printf(sc->dev,
1191 "could not allocate DMA memory for TxS ring.\n");
1192 return (error);
1193 }
1194 error = bus_dmamap_load(sc->dma_txs_tag, sc->dma_txs_map, sc->txs_base,
1195 AE_TXS_COUNT_DEFAULT * 4, ae_dmamap_cb, &busaddr, BUS_DMA_NOWAIT);
1196 if (error != 0 || busaddr == 0) {
1197 device_printf(sc->dev,
1198 "could not load DMA map for TxS ring.\n");
1199 return (error);
1200 }
1201 sc->dma_txs_busaddr = busaddr;
1202
1203 /*
1204 * Allocate RxD DMA memory.
1205 */
1206 error = bus_dmamem_alloc(sc->dma_rxd_tag, (void **)&sc->rxd_base_dma,
1207 BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1208 &sc->dma_rxd_map);
1209 if (error != 0) {
1210 device_printf(sc->dev,
1211 "could not allocate DMA memory for RxD ring.\n");
1212 return (error);
1213 }
1214 error = bus_dmamap_load(sc->dma_rxd_tag, sc->dma_rxd_map,
1215 sc->rxd_base_dma, AE_RXD_COUNT_DEFAULT * 1536 + AE_RXD_PADDING,
1216 ae_dmamap_cb, &busaddr, BUS_DMA_NOWAIT);
1217 if (error != 0 || busaddr == 0) {
1218 device_printf(sc->dev,
1219 "could not load DMA map for RxD ring.\n");
1220 return (error);
1221 }
1222 sc->dma_rxd_busaddr = busaddr + AE_RXD_PADDING;
1223 sc->rxd_base = (ae_rxd_t *)(sc->rxd_base_dma + AE_RXD_PADDING);
1224
1225 return (0);
1226 }
1227
1228 static void
ae_dma_free(ae_softc_t * sc)1229 ae_dma_free(ae_softc_t *sc)
1230 {
1231
1232 if (sc->dma_txd_tag != NULL) {
1233 if (sc->dma_txd_busaddr != 0)
1234 bus_dmamap_unload(sc->dma_txd_tag, sc->dma_txd_map);
1235 if (sc->txd_base != NULL)
1236 bus_dmamem_free(sc->dma_txd_tag, sc->txd_base,
1237 sc->dma_txd_map);
1238 bus_dma_tag_destroy(sc->dma_txd_tag);
1239 sc->dma_txd_tag = NULL;
1240 sc->txd_base = NULL;
1241 sc->dma_txd_busaddr = 0;
1242 }
1243 if (sc->dma_txs_tag != NULL) {
1244 if (sc->dma_txs_busaddr != 0)
1245 bus_dmamap_unload(sc->dma_txs_tag, sc->dma_txs_map);
1246 if (sc->txs_base != NULL)
1247 bus_dmamem_free(sc->dma_txs_tag, sc->txs_base,
1248 sc->dma_txs_map);
1249 bus_dma_tag_destroy(sc->dma_txs_tag);
1250 sc->dma_txs_tag = NULL;
1251 sc->txs_base = NULL;
1252 sc->dma_txs_busaddr = 0;
1253 }
1254 if (sc->dma_rxd_tag != NULL) {
1255 if (sc->dma_rxd_busaddr != 0)
1256 bus_dmamap_unload(sc->dma_rxd_tag, sc->dma_rxd_map);
1257 if (sc->rxd_base_dma != NULL)
1258 bus_dmamem_free(sc->dma_rxd_tag, sc->rxd_base_dma,
1259 sc->dma_rxd_map);
1260 bus_dma_tag_destroy(sc->dma_rxd_tag);
1261 sc->dma_rxd_tag = NULL;
1262 sc->rxd_base_dma = NULL;
1263 sc->dma_rxd_busaddr = 0;
1264 }
1265 if (sc->dma_parent_tag != NULL) {
1266 bus_dma_tag_destroy(sc->dma_parent_tag);
1267 sc->dma_parent_tag = NULL;
1268 }
1269 }
1270
1271 static int
ae_shutdown(device_t dev)1272 ae_shutdown(device_t dev)
1273 {
1274 ae_softc_t *sc;
1275 int error;
1276
1277 sc = device_get_softc(dev);
1278 KASSERT(sc != NULL, ("[ae: %d]: sc is NULL", __LINE__));
1279
1280 error = ae_suspend(dev);
1281 AE_LOCK(sc);
1282 ae_powersave_enable(sc);
1283 AE_UNLOCK(sc);
1284 return (error);
1285 }
1286
1287 static void
ae_powersave_disable(ae_softc_t * sc)1288 ae_powersave_disable(ae_softc_t *sc)
1289 {
1290 uint32_t val;
1291
1292 AE_LOCK_ASSERT(sc);
1293
1294 AE_PHY_WRITE(sc, AE_PHY_DBG_ADDR, 0);
1295 val = AE_PHY_READ(sc, AE_PHY_DBG_DATA);
1296 if (val & AE_PHY_DBG_POWERSAVE) {
1297 val &= ~AE_PHY_DBG_POWERSAVE;
1298 AE_PHY_WRITE(sc, AE_PHY_DBG_DATA, val);
1299 DELAY(1000);
1300 }
1301 }
1302
1303 static void
ae_powersave_enable(ae_softc_t * sc)1304 ae_powersave_enable(ae_softc_t *sc)
1305 {
1306 uint32_t val;
1307
1308 AE_LOCK_ASSERT(sc);
1309
1310 /*
1311 * XXX magic numbers.
1312 */
1313 AE_PHY_WRITE(sc, AE_PHY_DBG_ADDR, 0);
1314 val = AE_PHY_READ(sc, AE_PHY_DBG_DATA);
1315 AE_PHY_WRITE(sc, AE_PHY_DBG_ADDR, val | 0x1000);
1316 AE_PHY_WRITE(sc, AE_PHY_DBG_ADDR, 2);
1317 AE_PHY_WRITE(sc, AE_PHY_DBG_DATA, 0x3000);
1318 AE_PHY_WRITE(sc, AE_PHY_DBG_ADDR, 3);
1319 AE_PHY_WRITE(sc, AE_PHY_DBG_DATA, 0);
1320 }
1321
1322 static void
ae_pm_init(ae_softc_t * sc)1323 ae_pm_init(ae_softc_t *sc)
1324 {
1325 struct ifnet *ifp;
1326 uint32_t val;
1327 uint16_t pmstat;
1328 struct mii_data *mii;
1329 int pmc;
1330
1331 AE_LOCK_ASSERT(sc);
1332
1333 ifp = sc->ifp;
1334 if ((sc->flags & AE_FLAG_PMG) == 0) {
1335 /* Disable WOL entirely. */
1336 AE_WRITE_4(sc, AE_WOL_REG, 0);
1337 return;
1338 }
1339
1340 /*
1341 * Configure WOL if enabled.
1342 */
1343 if ((ifp->if_capenable & IFCAP_WOL) != 0) {
1344 mii = device_get_softc(sc->miibus);
1345 mii_pollstat(mii);
1346 if ((mii->mii_media_status & IFM_AVALID) != 0 &&
1347 (mii->mii_media_status & IFM_ACTIVE) != 0) {
1348 AE_WRITE_4(sc, AE_WOL_REG, AE_WOL_MAGIC | \
1349 AE_WOL_MAGIC_PME);
1350
1351 /*
1352 * Configure MAC.
1353 */
1354 val = AE_MAC_RX_EN | AE_MAC_CLK_PHY | \
1355 AE_MAC_TX_CRC_EN | AE_MAC_TX_AUTOPAD | \
1356 ((AE_HALFBUF_DEFAULT << AE_HALFBUF_SHIFT) & \
1357 AE_HALFBUF_MASK) | \
1358 ((AE_MAC_PREAMBLE_DEFAULT << \
1359 AE_MAC_PREAMBLE_SHIFT) & AE_MAC_PREAMBLE_MASK) | \
1360 AE_MAC_BCAST_EN | AE_MAC_MCAST_EN;
1361 if ((IFM_OPTIONS(mii->mii_media_active) & \
1362 IFM_FDX) != 0)
1363 val |= AE_MAC_FULL_DUPLEX;
1364 AE_WRITE_4(sc, AE_MAC_REG, val);
1365
1366 } else { /* No link. */
1367 AE_WRITE_4(sc, AE_WOL_REG, AE_WOL_LNKCHG | \
1368 AE_WOL_LNKCHG_PME);
1369 AE_WRITE_4(sc, AE_MAC_REG, 0);
1370 }
1371 } else {
1372 ae_powersave_enable(sc);
1373 }
1374
1375 /*
1376 * PCIE hacks. Magic numbers.
1377 */
1378 val = AE_READ_4(sc, AE_PCIE_PHYMISC_REG);
1379 val |= AE_PCIE_PHYMISC_FORCE_RCV_DET;
1380 AE_WRITE_4(sc, AE_PCIE_PHYMISC_REG, val);
1381 val = AE_READ_4(sc, AE_PCIE_DLL_TX_CTRL_REG);
1382 val |= AE_PCIE_DLL_TX_CTRL_SEL_NOR_CLK;
1383 AE_WRITE_4(sc, AE_PCIE_DLL_TX_CTRL_REG, val);
1384
1385 /*
1386 * Configure PME.
1387 */
1388 if (pci_find_cap(sc->dev, PCIY_PMG, &pmc) == 0) {
1389 pmstat = pci_read_config(sc->dev, pmc + PCIR_POWER_STATUS, 2);
1390 pmstat &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE);
1391 if ((ifp->if_capenable & IFCAP_WOL) != 0)
1392 pmstat |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
1393 pci_write_config(sc->dev, pmc + PCIR_POWER_STATUS, pmstat, 2);
1394 }
1395 }
1396
1397 static int
ae_suspend(device_t dev)1398 ae_suspend(device_t dev)
1399 {
1400 ae_softc_t *sc;
1401
1402 sc = device_get_softc(dev);
1403
1404 AE_LOCK(sc);
1405 ae_stop(sc);
1406 ae_pm_init(sc);
1407 AE_UNLOCK(sc);
1408
1409 return (0);
1410 }
1411
1412 static int
ae_resume(device_t dev)1413 ae_resume(device_t dev)
1414 {
1415 ae_softc_t *sc;
1416
1417 sc = device_get_softc(dev);
1418 KASSERT(sc != NULL, ("[ae, %d]: sc is NULL", __LINE__));
1419
1420 AE_LOCK(sc);
1421 AE_READ_4(sc, AE_WOL_REG); /* Clear WOL status. */
1422 if ((sc->ifp->if_flags & IFF_UP) != 0)
1423 ae_init_locked(sc);
1424 AE_UNLOCK(sc);
1425
1426 return (0);
1427 }
1428
1429 static unsigned int
ae_tx_avail_size(ae_softc_t * sc)1430 ae_tx_avail_size(ae_softc_t *sc)
1431 {
1432 unsigned int avail;
1433
1434 if (sc->txd_cur >= sc->txd_ack)
1435 avail = AE_TXD_BUFSIZE_DEFAULT - (sc->txd_cur - sc->txd_ack);
1436 else
1437 avail = sc->txd_ack - sc->txd_cur;
1438
1439 return (avail);
1440 }
1441
1442 static int
ae_encap(ae_softc_t * sc,struct mbuf ** m_head)1443 ae_encap(ae_softc_t *sc, struct mbuf **m_head)
1444 {
1445 struct mbuf *m0;
1446 ae_txd_t *hdr;
1447 unsigned int to_end;
1448 uint16_t len;
1449
1450 AE_LOCK_ASSERT(sc);
1451
1452 m0 = *m_head;
1453 len = m0->m_pkthdr.len;
1454
1455 if ((sc->flags & AE_FLAG_TXAVAIL) == 0 ||
1456 len + sizeof(ae_txd_t) + 3 > ae_tx_avail_size(sc)) {
1457 #ifdef AE_DEBUG
1458 if_printf(sc->ifp, "No free Tx available.\n");
1459 #endif
1460 return ENOBUFS;
1461 }
1462
1463 hdr = (ae_txd_t *)(sc->txd_base + sc->txd_cur);
1464 bzero(hdr, sizeof(*hdr));
1465 /* Skip header size. */
1466 sc->txd_cur = (sc->txd_cur + sizeof(ae_txd_t)) % AE_TXD_BUFSIZE_DEFAULT;
1467 /* Space available to the end of the ring */
1468 to_end = AE_TXD_BUFSIZE_DEFAULT - sc->txd_cur;
1469 if (to_end >= len) {
1470 m_copydata(m0, 0, len, (caddr_t)(sc->txd_base + sc->txd_cur));
1471 } else {
1472 m_copydata(m0, 0, to_end, (caddr_t)(sc->txd_base +
1473 sc->txd_cur));
1474 m_copydata(m0, to_end, len - to_end, (caddr_t)sc->txd_base);
1475 }
1476
1477 /*
1478 * Set TxD flags and parameters.
1479 */
1480 if ((m0->m_flags & M_VLANTAG) != 0) {
1481 hdr->vlan = htole16(AE_TXD_VLAN(m0->m_pkthdr.ether_vtag));
1482 hdr->len = htole16(len | AE_TXD_INSERT_VTAG);
1483 } else {
1484 hdr->len = htole16(len);
1485 }
1486
1487 /*
1488 * Set current TxD position and round up to a 4-byte boundary.
1489 */
1490 sc->txd_cur = ((sc->txd_cur + len + 3) & ~3) % AE_TXD_BUFSIZE_DEFAULT;
1491 if (sc->txd_cur == sc->txd_ack)
1492 sc->flags &= ~AE_FLAG_TXAVAIL;
1493 #ifdef AE_DEBUG
1494 if_printf(sc->ifp, "New txd_cur = %d.\n", sc->txd_cur);
1495 #endif
1496
1497 /*
1498 * Update TxS position and check if there are empty TxS available.
1499 */
1500 sc->txs_base[sc->txs_cur].flags &= ~htole16(AE_TXS_UPDATE);
1501 sc->txs_cur = (sc->txs_cur + 1) % AE_TXS_COUNT_DEFAULT;
1502 if (sc->txs_cur == sc->txs_ack)
1503 sc->flags &= ~AE_FLAG_TXAVAIL;
1504
1505 /*
1506 * Synchronize DMA memory.
1507 */
1508 bus_dmamap_sync(sc->dma_txd_tag, sc->dma_txd_map, BUS_DMASYNC_PREREAD |
1509 BUS_DMASYNC_PREWRITE);
1510 bus_dmamap_sync(sc->dma_txs_tag, sc->dma_txs_map,
1511 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1512
1513 return (0);
1514 }
1515
1516 static void
ae_start(struct ifnet * ifp)1517 ae_start(struct ifnet *ifp)
1518 {
1519 ae_softc_t *sc;
1520
1521 sc = ifp->if_softc;
1522 AE_LOCK(sc);
1523 ae_start_locked(ifp);
1524 AE_UNLOCK(sc);
1525 }
1526
1527 static void
ae_start_locked(struct ifnet * ifp)1528 ae_start_locked(struct ifnet *ifp)
1529 {
1530 ae_softc_t *sc;
1531 unsigned int count;
1532 struct mbuf *m0;
1533 int error;
1534
1535 sc = ifp->if_softc;
1536 KASSERT(sc != NULL, ("[ae, %d]: sc is NULL", __LINE__));
1537 AE_LOCK_ASSERT(sc);
1538
1539 #ifdef AE_DEBUG
1540 if_printf(ifp, "Start called.\n");
1541 #endif
1542
1543 if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
1544 IFF_DRV_RUNNING || (sc->flags & AE_FLAG_LINK) == 0)
1545 return;
1546
1547 count = 0;
1548 while (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)) {
1549 IFQ_DRV_DEQUEUE(&ifp->if_snd, m0);
1550 if (m0 == NULL)
1551 break; /* Nothing to do. */
1552
1553 error = ae_encap(sc, &m0);
1554 if (error != 0) {
1555 if (m0 != NULL) {
1556 IFQ_DRV_PREPEND(&ifp->if_snd, m0);
1557 ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1558 #ifdef AE_DEBUG
1559 if_printf(ifp, "Setting OACTIVE.\n");
1560 #endif
1561 }
1562 break;
1563 }
1564 count++;
1565 sc->tx_inproc++;
1566
1567 /* Bounce a copy of the frame to BPF. */
1568 ETHER_BPF_MTAP(ifp, m0);
1569
1570 m_freem(m0);
1571 }
1572
1573 if (count > 0) { /* Something was dequeued. */
1574 AE_WRITE_2(sc, AE_MB_TXD_IDX_REG, sc->txd_cur / 4);
1575 sc->wd_timer = AE_TX_TIMEOUT; /* Load watchdog. */
1576 #ifdef AE_DEBUG
1577 if_printf(ifp, "%d packets dequeued.\n", count);
1578 if_printf(ifp, "Tx pos now is %d.\n", sc->txd_cur);
1579 #endif
1580 }
1581 }
1582
1583 static void
ae_link_task(void * arg,int pending)1584 ae_link_task(void *arg, int pending)
1585 {
1586 ae_softc_t *sc;
1587 struct mii_data *mii;
1588 struct ifnet *ifp;
1589 uint32_t val;
1590
1591 sc = (ae_softc_t *)arg;
1592 KASSERT(sc != NULL, ("[ae, %d]: sc is NULL", __LINE__));
1593 AE_LOCK(sc);
1594
1595 ifp = sc->ifp;
1596 mii = device_get_softc(sc->miibus);
1597 if (mii == NULL || ifp == NULL ||
1598 (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
1599 AE_UNLOCK(sc); /* XXX: could happen? */
1600 return;
1601 }
1602
1603 sc->flags &= ~AE_FLAG_LINK;
1604 if ((mii->mii_media_status & (IFM_AVALID | IFM_ACTIVE)) ==
1605 (IFM_AVALID | IFM_ACTIVE)) {
1606 switch(IFM_SUBTYPE(mii->mii_media_active)) {
1607 case IFM_10_T:
1608 case IFM_100_TX:
1609 sc->flags |= AE_FLAG_LINK;
1610 break;
1611 default:
1612 break;
1613 }
1614 }
1615
1616 /*
1617 * Stop Rx/Tx MACs.
1618 */
1619 ae_stop_rxmac(sc);
1620 ae_stop_txmac(sc);
1621
1622 if ((sc->flags & AE_FLAG_LINK) != 0) {
1623 ae_mac_config(sc);
1624
1625 /*
1626 * Restart DMA engines.
1627 */
1628 AE_WRITE_1(sc, AE_DMAREAD_REG, AE_DMAREAD_EN);
1629 AE_WRITE_1(sc, AE_DMAWRITE_REG, AE_DMAWRITE_EN);
1630
1631 /*
1632 * Enable Rx and Tx MACs.
1633 */
1634 val = AE_READ_4(sc, AE_MAC_REG);
1635 val |= AE_MAC_TX_EN | AE_MAC_RX_EN;
1636 AE_WRITE_4(sc, AE_MAC_REG, val);
1637 }
1638 AE_UNLOCK(sc);
1639 }
1640
1641 static void
ae_stop_rxmac(ae_softc_t * sc)1642 ae_stop_rxmac(ae_softc_t *sc)
1643 {
1644 uint32_t val;
1645 int i;
1646
1647 AE_LOCK_ASSERT(sc);
1648
1649 /*
1650 * Stop Rx MAC engine.
1651 */
1652 val = AE_READ_4(sc, AE_MAC_REG);
1653 if ((val & AE_MAC_RX_EN) != 0) {
1654 val &= ~AE_MAC_RX_EN;
1655 AE_WRITE_4(sc, AE_MAC_REG, val);
1656 }
1657
1658 /*
1659 * Stop Rx DMA engine.
1660 */
1661 if (AE_READ_1(sc, AE_DMAWRITE_REG) == AE_DMAWRITE_EN)
1662 AE_WRITE_1(sc, AE_DMAWRITE_REG, 0);
1663
1664 /*
1665 * Wait for IDLE state.
1666 */
1667 for (i = 0; i < AE_IDLE_TIMEOUT; i++) {
1668 val = AE_READ_4(sc, AE_IDLE_REG);
1669 if ((val & (AE_IDLE_RXMAC | AE_IDLE_DMAWRITE)) == 0)
1670 break;
1671 DELAY(100);
1672 }
1673 if (i == AE_IDLE_TIMEOUT)
1674 device_printf(sc->dev, "timed out while stopping Rx MAC.\n");
1675 }
1676
1677 static void
ae_stop_txmac(ae_softc_t * sc)1678 ae_stop_txmac(ae_softc_t *sc)
1679 {
1680 uint32_t val;
1681 int i;
1682
1683 AE_LOCK_ASSERT(sc);
1684
1685 /*
1686 * Stop Tx MAC engine.
1687 */
1688 val = AE_READ_4(sc, AE_MAC_REG);
1689 if ((val & AE_MAC_TX_EN) != 0) {
1690 val &= ~AE_MAC_TX_EN;
1691 AE_WRITE_4(sc, AE_MAC_REG, val);
1692 }
1693
1694 /*
1695 * Stop Tx DMA engine.
1696 */
1697 if (AE_READ_1(sc, AE_DMAREAD_REG) == AE_DMAREAD_EN)
1698 AE_WRITE_1(sc, AE_DMAREAD_REG, 0);
1699
1700 /*
1701 * Wait for IDLE state.
1702 */
1703 for (i = 0; i < AE_IDLE_TIMEOUT; i++) {
1704 val = AE_READ_4(sc, AE_IDLE_REG);
1705 if ((val & (AE_IDLE_TXMAC | AE_IDLE_DMAREAD)) == 0)
1706 break;
1707 DELAY(100);
1708 }
1709 if (i == AE_IDLE_TIMEOUT)
1710 device_printf(sc->dev, "timed out while stopping Tx MAC.\n");
1711 }
1712
1713 static void
ae_mac_config(ae_softc_t * sc)1714 ae_mac_config(ae_softc_t *sc)
1715 {
1716 struct mii_data *mii;
1717 uint32_t val;
1718
1719 AE_LOCK_ASSERT(sc);
1720
1721 mii = device_get_softc(sc->miibus);
1722 val = AE_READ_4(sc, AE_MAC_REG);
1723 val &= ~AE_MAC_FULL_DUPLEX;
1724 /* XXX disable AE_MAC_TX_FLOW_EN? */
1725
1726 if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0)
1727 val |= AE_MAC_FULL_DUPLEX;
1728
1729 AE_WRITE_4(sc, AE_MAC_REG, val);
1730 }
1731
1732 static int
ae_intr(void * arg)1733 ae_intr(void *arg)
1734 {
1735 ae_softc_t *sc;
1736 uint32_t val;
1737
1738 sc = (ae_softc_t *)arg;
1739 KASSERT(sc != NULL, ("[ae, %d]: sc is NULL", __LINE__));
1740
1741 val = AE_READ_4(sc, AE_ISR_REG);
1742 if (val == 0 || (val & AE_IMR_DEFAULT) == 0)
1743 return (FILTER_STRAY);
1744
1745 /* Disable interrupts. */
1746 AE_WRITE_4(sc, AE_ISR_REG, AE_ISR_DISABLE);
1747
1748 /* Schedule interrupt processing. */
1749 taskqueue_enqueue(sc->tq, &sc->int_task);
1750
1751 return (FILTER_HANDLED);
1752 }
1753
1754 static void
ae_int_task(void * arg,int pending)1755 ae_int_task(void *arg, int pending)
1756 {
1757 ae_softc_t *sc;
1758 struct ifnet *ifp;
1759 uint32_t val;
1760
1761 sc = (ae_softc_t *)arg;
1762
1763 AE_LOCK(sc);
1764
1765 ifp = sc->ifp;
1766
1767 val = AE_READ_4(sc, AE_ISR_REG); /* Read interrupt status. */
1768 if (val == 0) {
1769 AE_UNLOCK(sc);
1770 return;
1771 }
1772
1773 /*
1774 * Clear interrupts and disable them.
1775 */
1776 AE_WRITE_4(sc, AE_ISR_REG, val | AE_ISR_DISABLE);
1777
1778 #ifdef AE_DEBUG
1779 if_printf(ifp, "Interrupt received: 0x%08x\n", val);
1780 #endif
1781
1782 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
1783 if ((val & (AE_ISR_DMAR_TIMEOUT | AE_ISR_DMAW_TIMEOUT |
1784 AE_ISR_PHY_LINKDOWN)) != 0) {
1785 ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1786 ae_init_locked(sc);
1787 AE_UNLOCK(sc);
1788 return;
1789 }
1790 if ((val & AE_ISR_TX_EVENT) != 0)
1791 ae_tx_intr(sc);
1792 if ((val & AE_ISR_RX_EVENT) != 0)
1793 ae_rx_intr(sc);
1794 /*
1795 * Re-enable interrupts.
1796 */
1797 AE_WRITE_4(sc, AE_ISR_REG, 0);
1798
1799 if ((sc->flags & AE_FLAG_TXAVAIL) != 0) {
1800 if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1801 ae_start_locked(ifp);
1802 }
1803 }
1804
1805 AE_UNLOCK(sc);
1806 }
1807
1808 static void
ae_tx_intr(ae_softc_t * sc)1809 ae_tx_intr(ae_softc_t *sc)
1810 {
1811 struct ifnet *ifp;
1812 ae_txd_t *txd;
1813 ae_txs_t *txs;
1814 uint16_t flags;
1815
1816 AE_LOCK_ASSERT(sc);
1817
1818 ifp = sc->ifp;
1819
1820 #ifdef AE_DEBUG
1821 if_printf(ifp, "Tx interrupt occuried.\n");
1822 #endif
1823
1824 /*
1825 * Syncronize DMA buffers.
1826 */
1827 bus_dmamap_sync(sc->dma_txd_tag, sc->dma_txd_map,
1828 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1829 bus_dmamap_sync(sc->dma_txs_tag, sc->dma_txs_map,
1830 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1831
1832 for (;;) {
1833 txs = sc->txs_base + sc->txs_ack;
1834 flags = le16toh(txs->flags);
1835 if ((flags & AE_TXS_UPDATE) == 0)
1836 break;
1837 txs->flags = htole16(flags & ~AE_TXS_UPDATE);
1838 /* Update stats. */
1839 ae_update_stats_tx(flags, &sc->stats);
1840
1841 /*
1842 * Update TxS position.
1843 */
1844 sc->txs_ack = (sc->txs_ack + 1) % AE_TXS_COUNT_DEFAULT;
1845 sc->flags |= AE_FLAG_TXAVAIL;
1846
1847 txd = (ae_txd_t *)(sc->txd_base + sc->txd_ack);
1848 if (txs->len != txd->len)
1849 device_printf(sc->dev, "Size mismatch: TxS:%d TxD:%d\n",
1850 le16toh(txs->len), le16toh(txd->len));
1851
1852 /*
1853 * Move txd ack and align on 4-byte boundary.
1854 */
1855 sc->txd_ack = ((sc->txd_ack + le16toh(txd->len) +
1856 sizeof(ae_txs_t) + 3) & ~3) % AE_TXD_BUFSIZE_DEFAULT;
1857
1858 if ((flags & AE_TXS_SUCCESS) != 0)
1859 if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1);
1860 else
1861 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
1862
1863 sc->tx_inproc--;
1864 }
1865
1866 if ((sc->flags & AE_FLAG_TXAVAIL) != 0)
1867 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1868 if (sc->tx_inproc < 0) {
1869 if_printf(ifp, "Received stray Tx interrupt(s).\n");
1870 sc->tx_inproc = 0;
1871 }
1872
1873 if (sc->tx_inproc == 0)
1874 sc->wd_timer = 0; /* Unarm watchdog. */
1875
1876 /*
1877 * Syncronize DMA buffers.
1878 */
1879 bus_dmamap_sync(sc->dma_txd_tag, sc->dma_txd_map,
1880 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1881 bus_dmamap_sync(sc->dma_txs_tag, sc->dma_txs_map,
1882 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1883 }
1884
1885 static void
ae_rxeof(ae_softc_t * sc,ae_rxd_t * rxd)1886 ae_rxeof(ae_softc_t *sc, ae_rxd_t *rxd)
1887 {
1888 struct ifnet *ifp;
1889 struct mbuf *m;
1890 unsigned int size;
1891 uint16_t flags;
1892
1893 AE_LOCK_ASSERT(sc);
1894
1895 ifp = sc->ifp;
1896 flags = le16toh(rxd->flags);
1897
1898 #ifdef AE_DEBUG
1899 if_printf(ifp, "Rx interrupt occuried.\n");
1900 #endif
1901 size = le16toh(rxd->len) - ETHER_CRC_LEN;
1902 if (size < (ETHER_MIN_LEN - ETHER_CRC_LEN - ETHER_VLAN_ENCAP_LEN)) {
1903 if_printf(ifp, "Runt frame received.");
1904 if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
1905 return;
1906 }
1907
1908 m = m_devget(&rxd->data[0], size, ETHER_ALIGN, ifp, NULL);
1909 if (m == NULL) {
1910 if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
1911 return;
1912 }
1913
1914 if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0 &&
1915 (flags & AE_RXD_HAS_VLAN) != 0) {
1916 m->m_pkthdr.ether_vtag = AE_RXD_VLAN(le16toh(rxd->vlan));
1917 m->m_flags |= M_VLANTAG;
1918 }
1919
1920 if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1);
1921 /*
1922 * Pass it through.
1923 */
1924 AE_UNLOCK(sc);
1925 (*ifp->if_input)(ifp, m);
1926 AE_LOCK(sc);
1927 }
1928
1929 static void
ae_rx_intr(ae_softc_t * sc)1930 ae_rx_intr(ae_softc_t *sc)
1931 {
1932 ae_rxd_t *rxd;
1933 struct ifnet *ifp;
1934 uint16_t flags;
1935 int count;
1936
1937 KASSERT(sc != NULL, ("[ae, %d]: sc is NULL!", __LINE__));
1938
1939 AE_LOCK_ASSERT(sc);
1940
1941 ifp = sc->ifp;
1942
1943 /*
1944 * Syncronize DMA buffers.
1945 */
1946 bus_dmamap_sync(sc->dma_rxd_tag, sc->dma_rxd_map,
1947 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1948
1949 for (count = 0;; count++) {
1950 rxd = (ae_rxd_t *)(sc->rxd_base + sc->rxd_cur);
1951 flags = le16toh(rxd->flags);
1952 if ((flags & AE_RXD_UPDATE) == 0)
1953 break;
1954 rxd->flags = htole16(flags & ~AE_RXD_UPDATE);
1955 /* Update stats. */
1956 ae_update_stats_rx(flags, &sc->stats);
1957
1958 /*
1959 * Update position index.
1960 */
1961 sc->rxd_cur = (sc->rxd_cur + 1) % AE_RXD_COUNT_DEFAULT;
1962
1963 if ((flags & AE_RXD_SUCCESS) != 0)
1964 ae_rxeof(sc, rxd);
1965 else
1966 if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
1967 }
1968
1969 if (count > 0) {
1970 bus_dmamap_sync(sc->dma_rxd_tag, sc->dma_rxd_map,
1971 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1972 /*
1973 * Update Rx index.
1974 */
1975 AE_WRITE_2(sc, AE_MB_RXD_IDX_REG, sc->rxd_cur);
1976 }
1977 }
1978
1979 static void
ae_watchdog(ae_softc_t * sc)1980 ae_watchdog(ae_softc_t *sc)
1981 {
1982 struct ifnet *ifp;
1983
1984 KASSERT(sc != NULL, ("[ae, %d]: sc is NULL!", __LINE__));
1985 AE_LOCK_ASSERT(sc);
1986 ifp = sc->ifp;
1987
1988 if (sc->wd_timer == 0 || --sc->wd_timer != 0)
1989 return; /* Noting to do. */
1990
1991 if ((sc->flags & AE_FLAG_LINK) == 0)
1992 if_printf(ifp, "watchdog timeout (missed link).\n");
1993 else
1994 if_printf(ifp, "watchdog timeout - resetting.\n");
1995
1996 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
1997 ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1998 ae_init_locked(sc);
1999 if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
2000 ae_start_locked(ifp);
2001 }
2002
2003 static void
ae_tick(void * arg)2004 ae_tick(void *arg)
2005 {
2006 ae_softc_t *sc;
2007 struct mii_data *mii;
2008
2009 sc = (ae_softc_t *)arg;
2010 KASSERT(sc != NULL, ("[ae, %d]: sc is NULL!", __LINE__));
2011 AE_LOCK_ASSERT(sc);
2012
2013 mii = device_get_softc(sc->miibus);
2014 mii_tick(mii);
2015 ae_watchdog(sc); /* Watchdog check. */
2016 callout_reset(&sc->tick_ch, hz, ae_tick, sc);
2017 }
2018
2019 static void
ae_rxvlan(ae_softc_t * sc)2020 ae_rxvlan(ae_softc_t *sc)
2021 {
2022 struct ifnet *ifp;
2023 uint32_t val;
2024
2025 AE_LOCK_ASSERT(sc);
2026 ifp = sc->ifp;
2027 val = AE_READ_4(sc, AE_MAC_REG);
2028 val &= ~AE_MAC_RMVLAN_EN;
2029 if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0)
2030 val |= AE_MAC_RMVLAN_EN;
2031 AE_WRITE_4(sc, AE_MAC_REG, val);
2032 }
2033
2034 static void
ae_rxfilter(ae_softc_t * sc)2035 ae_rxfilter(ae_softc_t *sc)
2036 {
2037 struct ifnet *ifp;
2038 struct ifmultiaddr *ifma;
2039 uint32_t crc;
2040 uint32_t mchash[2];
2041 uint32_t rxcfg;
2042
2043 KASSERT(sc != NULL, ("[ae, %d]: sc is NULL!", __LINE__));
2044
2045 AE_LOCK_ASSERT(sc);
2046
2047 ifp = sc->ifp;
2048
2049 rxcfg = AE_READ_4(sc, AE_MAC_REG);
2050 rxcfg &= ~(AE_MAC_MCAST_EN | AE_MAC_BCAST_EN | AE_MAC_PROMISC_EN);
2051
2052 if ((ifp->if_flags & IFF_BROADCAST) != 0)
2053 rxcfg |= AE_MAC_BCAST_EN;
2054 if ((ifp->if_flags & IFF_PROMISC) != 0)
2055 rxcfg |= AE_MAC_PROMISC_EN;
2056 if ((ifp->if_flags & IFF_ALLMULTI) != 0)
2057 rxcfg |= AE_MAC_MCAST_EN;
2058
2059 /*
2060 * Wipe old settings.
2061 */
2062 AE_WRITE_4(sc, AE_REG_MHT0, 0);
2063 AE_WRITE_4(sc, AE_REG_MHT1, 0);
2064 if ((ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI)) != 0) {
2065 AE_WRITE_4(sc, AE_REG_MHT0, 0xffffffff);
2066 AE_WRITE_4(sc, AE_REG_MHT1, 0xffffffff);
2067 AE_WRITE_4(sc, AE_MAC_REG, rxcfg);
2068 return;
2069 }
2070
2071 /*
2072 * Load multicast tables.
2073 */
2074 bzero(mchash, sizeof(mchash));
2075 if_maddr_rlock(ifp);
2076 CK_STAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
2077 if (ifma->ifma_addr->sa_family != AF_LINK)
2078 continue;
2079 crc = ether_crc32_be(LLADDR((struct sockaddr_dl *)
2080 ifma->ifma_addr), ETHER_ADDR_LEN);
2081 mchash[crc >> 31] |= 1 << ((crc >> 26) & 0x1f);
2082 }
2083 if_maddr_runlock(ifp);
2084 AE_WRITE_4(sc, AE_REG_MHT0, mchash[0]);
2085 AE_WRITE_4(sc, AE_REG_MHT1, mchash[1]);
2086 AE_WRITE_4(sc, AE_MAC_REG, rxcfg);
2087 }
2088
2089 static int
ae_ioctl(struct ifnet * ifp,u_long cmd,caddr_t data)2090 ae_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
2091 {
2092 struct ae_softc *sc;
2093 struct ifreq *ifr;
2094 struct mii_data *mii;
2095 int error, mask;
2096
2097 sc = ifp->if_softc;
2098 ifr = (struct ifreq *)data;
2099 error = 0;
2100
2101 switch (cmd) {
2102 case SIOCSIFMTU:
2103 if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > ETHERMTU)
2104 error = EINVAL;
2105 else if (ifp->if_mtu != ifr->ifr_mtu) {
2106 AE_LOCK(sc);
2107 ifp->if_mtu = ifr->ifr_mtu;
2108 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
2109 ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2110 ae_init_locked(sc);
2111 }
2112 AE_UNLOCK(sc);
2113 }
2114 break;
2115 case SIOCSIFFLAGS:
2116 AE_LOCK(sc);
2117 if ((ifp->if_flags & IFF_UP) != 0) {
2118 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
2119 if (((ifp->if_flags ^ sc->if_flags)
2120 & (IFF_PROMISC | IFF_ALLMULTI)) != 0)
2121 ae_rxfilter(sc);
2122 } else {
2123 if ((sc->flags & AE_FLAG_DETACH) == 0)
2124 ae_init_locked(sc);
2125 }
2126 } else {
2127 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
2128 ae_stop(sc);
2129 }
2130 sc->if_flags = ifp->if_flags;
2131 AE_UNLOCK(sc);
2132 break;
2133 case SIOCADDMULTI:
2134 case SIOCDELMULTI:
2135 AE_LOCK(sc);
2136 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
2137 ae_rxfilter(sc);
2138 AE_UNLOCK(sc);
2139 break;
2140 case SIOCSIFMEDIA:
2141 case SIOCGIFMEDIA:
2142 mii = device_get_softc(sc->miibus);
2143 error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, cmd);
2144 break;
2145 case SIOCSIFCAP:
2146 AE_LOCK(sc);
2147 mask = ifr->ifr_reqcap ^ ifp->if_capenable;
2148 if ((mask & IFCAP_VLAN_HWTAGGING) != 0 &&
2149 (ifp->if_capabilities & IFCAP_VLAN_HWTAGGING) != 0) {
2150 ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
2151 ae_rxvlan(sc);
2152 }
2153 VLAN_CAPABILITIES(ifp);
2154 AE_UNLOCK(sc);
2155 break;
2156 default:
2157 error = ether_ioctl(ifp, cmd, data);
2158 break;
2159 }
2160 return (error);
2161 }
2162
2163 static void
ae_stop(ae_softc_t * sc)2164 ae_stop(ae_softc_t *sc)
2165 {
2166 struct ifnet *ifp;
2167 int i;
2168
2169 AE_LOCK_ASSERT(sc);
2170
2171 ifp = sc->ifp;
2172 ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
2173 sc->flags &= ~AE_FLAG_LINK;
2174 sc->wd_timer = 0; /* Cancel watchdog. */
2175 callout_stop(&sc->tick_ch);
2176
2177 /*
2178 * Clear and disable interrupts.
2179 */
2180 AE_WRITE_4(sc, AE_IMR_REG, 0);
2181 AE_WRITE_4(sc, AE_ISR_REG, 0xffffffff);
2182
2183 /*
2184 * Stop Rx/Tx MACs.
2185 */
2186 ae_stop_txmac(sc);
2187 ae_stop_rxmac(sc);
2188
2189 /*
2190 * Stop DMA engines.
2191 */
2192 AE_WRITE_1(sc, AE_DMAREAD_REG, ~AE_DMAREAD_EN);
2193 AE_WRITE_1(sc, AE_DMAWRITE_REG, ~AE_DMAWRITE_EN);
2194
2195 /*
2196 * Wait for everything to enter idle state.
2197 */
2198 for (i = 0; i < AE_IDLE_TIMEOUT; i++) {
2199 if (AE_READ_4(sc, AE_IDLE_REG) == 0)
2200 break;
2201 DELAY(100);
2202 }
2203 if (i == AE_IDLE_TIMEOUT)
2204 device_printf(sc->dev, "could not enter idle state in stop.\n");
2205 }
2206
2207 static void
ae_update_stats_tx(uint16_t flags,ae_stats_t * stats)2208 ae_update_stats_tx(uint16_t flags, ae_stats_t *stats)
2209 {
2210
2211 if ((flags & AE_TXS_BCAST) != 0)
2212 stats->tx_bcast++;
2213 if ((flags & AE_TXS_MCAST) != 0)
2214 stats->tx_mcast++;
2215 if ((flags & AE_TXS_PAUSE) != 0)
2216 stats->tx_pause++;
2217 if ((flags & AE_TXS_CTRL) != 0)
2218 stats->tx_ctrl++;
2219 if ((flags & AE_TXS_DEFER) != 0)
2220 stats->tx_defer++;
2221 if ((flags & AE_TXS_EXCDEFER) != 0)
2222 stats->tx_excdefer++;
2223 if ((flags & AE_TXS_SINGLECOL) != 0)
2224 stats->tx_singlecol++;
2225 if ((flags & AE_TXS_MULTICOL) != 0)
2226 stats->tx_multicol++;
2227 if ((flags & AE_TXS_LATECOL) != 0)
2228 stats->tx_latecol++;
2229 if ((flags & AE_TXS_ABORTCOL) != 0)
2230 stats->tx_abortcol++;
2231 if ((flags & AE_TXS_UNDERRUN) != 0)
2232 stats->tx_underrun++;
2233 }
2234
2235 static void
ae_update_stats_rx(uint16_t flags,ae_stats_t * stats)2236 ae_update_stats_rx(uint16_t flags, ae_stats_t *stats)
2237 {
2238
2239 if ((flags & AE_RXD_BCAST) != 0)
2240 stats->rx_bcast++;
2241 if ((flags & AE_RXD_MCAST) != 0)
2242 stats->rx_mcast++;
2243 if ((flags & AE_RXD_PAUSE) != 0)
2244 stats->rx_pause++;
2245 if ((flags & AE_RXD_CTRL) != 0)
2246 stats->rx_ctrl++;
2247 if ((flags & AE_RXD_CRCERR) != 0)
2248 stats->rx_crcerr++;
2249 if ((flags & AE_RXD_CODEERR) != 0)
2250 stats->rx_codeerr++;
2251 if ((flags & AE_RXD_RUNT) != 0)
2252 stats->rx_runt++;
2253 if ((flags & AE_RXD_FRAG) != 0)
2254 stats->rx_frag++;
2255 if ((flags & AE_RXD_TRUNC) != 0)
2256 stats->rx_trunc++;
2257 if ((flags & AE_RXD_ALIGN) != 0)
2258 stats->rx_align++;
2259 }
2260