xref: /freebsd-12.1/sys/dev/advansys/adwlib.c (revision 718cf2cc)
1 /*-
2  * Low level routines for Second Generation
3  * Advanced Systems Inc. SCSI controllers chips
4  *
5  * SPDX-License-Identifier: BSD-3-Clause
6  *
7  * Copyright (c) 1998, 1999, 2000 Justin Gibbs.
8  * All rights reserved.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions, and the following disclaimer,
15  *    without modification.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  * 3. The name of the author may not be used to endorse or promote products
20  *    derived from this software without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
26  * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  */
34 /*-
35  * Ported from:
36  * advansys.c - Linux Host Driver for AdvanSys SCSI Adapters
37  *
38  * Copyright (c) 1995-1998 Advanced System Products, Inc.
39  * All Rights Reserved.
40  *
41  * Redistribution and use in source and binary forms, with or without
42  * modification, are permitted provided that redistributions of source
43  * code retain the above copyright notice and this comment without
44  * modification.
45  */
46 
47 #include <sys/cdefs.h>
48 __FBSDID("$FreeBSD$");
49 
50 #include <sys/param.h>
51 #include <sys/conf.h>
52 #include <sys/lock.h>
53 #include <sys/mutex.h>
54 #include <sys/systm.h>
55 #include <sys/bus.h>
56 #include <sys/rman.h>
57 
58 #include <machine/bus.h>
59 
60 #include <cam/cam.h>
61 #include <cam/cam_ccb.h>
62 #include <cam/cam_sim.h>
63 #include <cam/cam_xpt_sim.h>
64 #include <cam/scsi/scsi_all.h>
65 
66 #include <dev/advansys/adwlib.h>
67 
68 const struct adw_eeprom adw_asc3550_default_eeprom =
69 {
70 	ADW_EEPROM_BIOS_ENABLE,		/* cfg_lsw */
71 	0x0000,				/* cfg_msw */
72 	0xFFFF,				/* disc_enable */
73 	0xFFFF,				/* wdtr_able */
74 	{ 0xFFFF },			/* sdtr_able */
75 	0xFFFF,				/* start_motor */
76 	0xFFFF,				/* tagqng_able */
77 	0xFFFF,				/* bios_scan */
78 	0,				/* scam_tolerant */
79 	7,				/* adapter_scsi_id */
80 	0,				/* bios_boot_delay */
81 	3,				/* scsi_reset_delay */
82 	0,				/* bios_id_lun */
83 	0,				/* termination */
84 	0,				/* reserved1 */
85 	0xFFE7,				/* bios_ctrl */
86 	{ 0xFFFF },			/* ultra_able */
87 	{ 0 },				/* reserved2 */
88 	ADW_DEF_MAX_HOST_QNG,		/* max_host_qng */
89 	ADW_DEF_MAX_DVC_QNG,		/* max_dvc_qng */
90 	0,				/* dvc_cntl */
91 	{ 0 },				/* bug_fix */
92 	{ 0, 0, 0 },			/* serial_number */
93 	0,				/* check_sum */
94 	{				/* oem_name[16] */
95 	  0, 0, 0, 0, 0, 0, 0, 0,
96 	  0, 0, 0, 0, 0, 0, 0, 0
97 	},
98 	0,				/* dvc_err_code */
99 	0,				/* adv_err_code */
100 	0,				/* adv_err_addr */
101 	0,				/* saved_dvc_err_code */
102 	0,				/* saved_adv_err_code */
103 	0				/* saved_adv_err_addr */
104 };
105 
106 const struct adw_eeprom adw_asc38C0800_default_eeprom =
107 {
108 	ADW_EEPROM_BIOS_ENABLE,		/* 00 cfg_lsw */
109 	0x0000,				/* 01 cfg_msw */
110 	0xFFFF,				/* 02 disc_enable */
111 	0xFFFF,				/* 03 wdtr_able */
112 	{ 0x4444 },			/* 04 sdtr_speed1 */
113 	0xFFFF,				/* 05 start_motor */
114 	0xFFFF,				/* 06 tagqng_able */
115 	0xFFFF,				/* 07 bios_scan */
116 	0,				/* 08 scam_tolerant */
117 	7,				/* 09 adapter_scsi_id */
118 	0,				/*    bios_boot_delay */
119 	3,				/* 10 scsi_reset_delay */
120 	0,				/*    bios_id_lun */
121 	0,				/* 11 termination_se */
122 	0,				/*    termination_lvd */
123 	0xFFE7,				/* 12 bios_ctrl */
124 	{ 0x4444 },			/* 13 sdtr_speed2 */
125 	{ 0x4444 },			/* 14 sdtr_speed3 */
126 	ADW_DEF_MAX_HOST_QNG,		/* 15 max_host_qng */
127 	ADW_DEF_MAX_DVC_QNG,		/*    max_dvc_qng */
128 	0,				/* 16 dvc_cntl */
129 	{ 0x4444 } ,			/* 17 sdtr_speed4 */
130 	{ 0, 0, 0 },			/* 18-20 serial_number */
131 	0,				/* 21 check_sum */
132 	{				/* 22-29 oem_name[16] */
133 	  0, 0, 0, 0, 0, 0, 0, 0,
134 	  0, 0, 0, 0, 0, 0, 0, 0
135 	},
136 	0,				/* 30 dvc_err_code */
137 	0,				/* 31 adv_err_code */
138 	0,				/* 32 adv_err_addr */
139 	0,				/* 33 saved_dvc_err_code */
140 	0,				/* 34 saved_adv_err_code */
141 	0,				/* 35 saved_adv_err_addr */
142 	{				/* 36 - 55 reserved */
143 	  0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
144 	  0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
145 	},
146 	0,				/* 56 cisptr_lsw */
147 	0,				/* 57 cisprt_msw */
148 					/* 58-59 sub-id */
149 	(PCI_ID_ADVANSYS_38C0800_REV1 & PCI_ID_DEV_VENDOR_MASK) >> 32,
150 };
151 
152 #define ADW_MC_SDTR_OFFSET_ULTRA2_DT	0
153 #define ADW_MC_SDTR_OFFSET_ULTRA2	1
154 #define ADW_MC_SDTR_OFFSET_ULTRA	2
155 const struct adw_syncrate adw_syncrates[] =
156 {
157 	/*   mc_sdtr		  period      rate */
158 	{ ADW_MC_SDTR_80,	    9,	     "80.0"  },
159 	{ ADW_MC_SDTR_40,	    10,	     "40.0"  },
160 	{ ADW_MC_SDTR_20,	    12,	     "20.0"  },
161 	{ ADW_MC_SDTR_10,	    25,	     "10.0"  },
162 	{ ADW_MC_SDTR_5,	    50,	     "5.0"   },
163 	{ ADW_MC_SDTR_ASYNC,	    0,	     "async" }
164 };
165 
166 static u_int16_t	adw_eeprom_read_16(struct adw_softc *adw, int addr);
167 static void		adw_eeprom_write_16(struct adw_softc *adw, int addr,
168 					    u_int data);
169 static void		adw_eeprom_wait(struct adw_softc *adw);
170 
171 int
adw_find_signature(struct adw_softc * adw)172 adw_find_signature(struct adw_softc *adw)
173 {
174 	if (adw_inb(adw, ADW_SIGNATURE_BYTE) == ADW_CHIP_ID_BYTE
175 	 && adw_inw(adw, ADW_SIGNATURE_WORD) == ADW_CHIP_ID_WORD)
176 		return (1);
177 	return (0);
178 }
179 
180 /*
181  * Reset Chip.
182  */
183 void
adw_reset_chip(struct adw_softc * adw)184 adw_reset_chip(struct adw_softc *adw)
185 {
186 	adw_outw(adw, ADW_CTRL_REG, ADW_CTRL_REG_CMD_RESET);
187 	DELAY(1000 * 100);
188 	adw_outw(adw, ADW_CTRL_REG, ADW_CTRL_REG_CMD_WR_IO_REG);
189 
190 	/*
191 	 * Initialize Chip registers.
192 	 */
193 	adw_outw(adw, ADW_SCSI_CFG1,
194 		 adw_inw(adw, ADW_SCSI_CFG1) & ~ADW_SCSI_CFG1_BIG_ENDIAN);
195 }
196 
197 /*
198  * Reset the SCSI bus.
199  */
200 int
adw_reset_bus(struct adw_softc * adw)201 adw_reset_bus(struct adw_softc *adw)
202 {
203 	adw_idle_cmd_status_t status;
204 
205 	if (!dumping)
206 		mtx_assert(&adw->lock, MA_OWNED);
207 	status =
208 	    adw_idle_cmd_send(adw, ADW_IDLE_CMD_SCSI_RESET_START, /*param*/0);
209 	if (status != ADW_IDLE_CMD_SUCCESS) {
210 		xpt_print_path(adw->path);
211 		printf("Bus Reset start attempt failed\n");
212 		return (1);
213 	}
214 	DELAY(ADW_BUS_RESET_HOLD_DELAY_US);
215 	status =
216 	    adw_idle_cmd_send(adw, ADW_IDLE_CMD_SCSI_RESET_END, /*param*/0);
217 	if (status != ADW_IDLE_CMD_SUCCESS) {
218 		xpt_print_path(adw->path);
219 		printf("Bus Reset end attempt failed\n");
220 		return (1);
221 	}
222 	return (0);
223 }
224 
225 /*
226  * Read the specified EEPROM location
227  */
228 static u_int16_t
adw_eeprom_read_16(struct adw_softc * adw,int addr)229 adw_eeprom_read_16(struct adw_softc *adw, int addr)
230 {
231 	adw_outw(adw, ADW_EEP_CMD, ADW_EEP_CMD_READ | addr);
232 	adw_eeprom_wait(adw);
233 	return (adw_inw(adw, ADW_EEP_DATA));
234 }
235 
236 static void
adw_eeprom_write_16(struct adw_softc * adw,int addr,u_int data)237 adw_eeprom_write_16(struct adw_softc *adw, int addr, u_int data)
238 {
239 	adw_outw(adw, ADW_EEP_DATA, data);
240 	adw_outw(adw, ADW_EEP_CMD, ADW_EEP_CMD_WRITE | addr);
241 	adw_eeprom_wait(adw);
242 }
243 
244 /*
245  * Wait for and EEPROM command to complete
246  */
247 static void
adw_eeprom_wait(struct adw_softc * adw)248 adw_eeprom_wait(struct adw_softc *adw)
249 {
250 	int i;
251 
252 	for (i = 0; i < ADW_EEP_DELAY_MS; i++) {
253 		if ((adw_inw(adw, ADW_EEP_CMD) & ADW_EEP_CMD_DONE) != 0)
254             		break;
255 		DELAY(1000);
256     	}
257 	if (i == ADW_EEP_DELAY_MS)
258 		panic("%s: Timedout Reading EEPROM",
259 		    device_get_nameunit(adw->device));
260 }
261 
262 /*
263  * Read EEPROM configuration into the specified buffer.
264  *
265  * Return a checksum based on the EEPROM configuration read.
266  */
267 u_int16_t
adw_eeprom_read(struct adw_softc * adw,struct adw_eeprom * eep_buf)268 adw_eeprom_read(struct adw_softc *adw, struct adw_eeprom *eep_buf)
269 {
270 	u_int16_t *wbuf;
271 	u_int16_t  wval;
272 	u_int16_t  chksum;
273 	int	   eep_addr;
274 
275 	wbuf = (u_int16_t *)eep_buf;
276 	chksum = 0;
277 
278 	for (eep_addr = ADW_EEP_DVC_CFG_BEGIN;
279 	     eep_addr < ADW_EEP_DVC_CFG_END;
280 	     eep_addr++, wbuf++) {
281 		wval = adw_eeprom_read_16(adw, eep_addr);
282 		chksum += wval;
283 		*wbuf = wval;
284 	}
285 
286 	/* checksum field is not counted in the checksum */
287 	*wbuf = adw_eeprom_read_16(adw, eep_addr);
288 	wbuf++;
289 
290 	/* Driver seeprom variables are not included in the checksum */
291 	for (eep_addr = ADW_EEP_DVC_CTL_BEGIN;
292 	     eep_addr < ADW_EEP_MAX_WORD_ADDR;
293 	     eep_addr++, wbuf++)
294 		*wbuf = adw_eeprom_read_16(adw, eep_addr);
295 
296 	return (chksum);
297 }
298 
299 void
adw_eeprom_write(struct adw_softc * adw,struct adw_eeprom * eep_buf)300 adw_eeprom_write(struct adw_softc *adw, struct adw_eeprom *eep_buf)
301 {
302 	u_int16_t *wbuf;
303 	u_int16_t  addr;
304 	u_int16_t  chksum;
305 
306 	wbuf = (u_int16_t *)eep_buf;
307 	chksum = 0;
308 
309 	adw_outw(adw, ADW_EEP_CMD, ADW_EEP_CMD_WRITE_ABLE);
310 	adw_eeprom_wait(adw);
311 
312 	/*
313 	 * Write EEPROM until checksum.
314 	 */
315 	for (addr = ADW_EEP_DVC_CFG_BEGIN;
316 	     addr < ADW_EEP_DVC_CFG_END; addr++, wbuf++) {
317 		chksum += *wbuf;
318 		adw_eeprom_write_16(adw, addr, *wbuf);
319 	}
320 
321 	/*
322 	 * Write calculated EEPROM checksum
323 	 */
324 	adw_eeprom_write_16(adw, addr, chksum);
325 
326 	/* skip over buffer's checksum */
327 	wbuf++;
328 
329 	/*
330 	 * Write the rest.
331 	 */
332 	for (addr = ADW_EEP_DVC_CTL_BEGIN;
333 	     addr < ADW_EEP_MAX_WORD_ADDR; addr++, wbuf++)
334 		adw_eeprom_write_16(adw, addr, *wbuf);
335 
336 	adw_outw(adw, ADW_EEP_CMD, ADW_EEP_CMD_WRITE_DISABLE);
337 	adw_eeprom_wait(adw);
338 }
339 
340 int
adw_init_chip(struct adw_softc * adw,u_int term_scsicfg1)341 adw_init_chip(struct adw_softc *adw, u_int term_scsicfg1)
342 {
343 	u_int8_t	    biosmem[ADW_MC_BIOSLEN];
344 	const u_int16_t    *word_table;
345 	const u_int8_t     *byte_codes;
346 	const u_int8_t     *byte_codes_end;
347 	u_int		    bios_sig;
348 	u_int		    bytes_downloaded;
349 	u_int		    addr;
350 	u_int		    end_addr;
351 	u_int		    checksum;
352 	u_int		    scsicfg1;
353 	u_int		    tid;
354 
355 	/*
356 	 * Save the RISC memory BIOS region before writing the microcode.
357 	 * The BIOS may already be loaded and using its RISC LRAM region
358 	 * so its region must be saved and restored.
359 	 */
360 	for (addr = 0; addr < ADW_MC_BIOSLEN; addr++)
361 		biosmem[addr] = adw_lram_read_8(adw, ADW_MC_BIOSMEM + addr);
362 
363 	/*
364 	 * Save current per TID negotiated values if the BIOS has been
365 	 * loaded (BIOS signature is present).  These will be used if
366 	 * we cannot get information from the EEPROM.
367 	 */
368 	addr = ADW_MC_BIOS_SIGNATURE - ADW_MC_BIOSMEM;
369 	bios_sig = biosmem[addr]
370 		 | (biosmem[addr + 1] << 8);
371 	if (bios_sig == 0x55AA
372 	 && (adw->flags & ADW_EEPROM_FAILED) != 0) {
373 		u_int major_ver;
374 		u_int minor_ver;
375 		u_int sdtr_able;
376 
377 		addr = ADW_MC_BIOS_VERSION - ADW_MC_BIOSMEM;
378 		minor_ver = biosmem[addr + 1] & 0xF;
379 		major_ver = (biosmem[addr + 1] >> 4) & 0xF;
380 		if ((adw->chip == ADW_CHIP_ASC3550)
381 		 && (major_ver <= 3
382 		  || (major_ver == 3 && minor_ver <= 1))) {
383 			/*
384 			 * BIOS 3.1 and earlier location of
385 			 * 'wdtr_able' variable.
386 			 */
387 			adw->user_wdtr =
388 			    adw_lram_read_16(adw, ADW_MC_WDTR_ABLE_BIOS_31);
389 		} else {
390 			adw->user_wdtr =
391 			    adw_lram_read_16(adw, ADW_MC_WDTR_ABLE);
392 		}
393 		sdtr_able = adw_lram_read_16(adw, ADW_MC_SDTR_ABLE);
394 		for (tid = 0; tid < ADW_MAX_TID; tid++) {
395 			u_int tid_mask;
396 			u_int mc_sdtr;
397 
398 			tid_mask = 0x1 << tid;
399 			if ((sdtr_able & tid_mask) == 0)
400 				mc_sdtr = ADW_MC_SDTR_ASYNC;
401 			else if ((adw->features & ADW_DT) != 0)
402 				mc_sdtr = ADW_MC_SDTR_80;
403 			else if ((adw->features & ADW_ULTRA2) != 0)
404 				mc_sdtr = ADW_MC_SDTR_40;
405 			else
406 				mc_sdtr = ADW_MC_SDTR_20;
407 			adw_set_user_sdtr(adw, tid, mc_sdtr);
408 		}
409 		adw->user_tagenb = adw_lram_read_16(adw, ADW_MC_TAGQNG_ABLE);
410 	}
411 
412 	/*
413 	 * Load the Microcode.
414 	 *
415 	 * Assume the following compressed format of the microcode buffer:
416 	 *
417 	 *	253 word (506 byte) table indexed by byte code followed
418 	 *	by the following byte codes:
419 	 *
420 	 *	1-Byte Code:
421 	 *		00: Emit word 0 in table.
422 	 *		01: Emit word 1 in table.
423 	 *		.
424 	 *		FD: Emit word 253 in table.
425 	 *
426 	 *	Multi-Byte Code:
427 	 *		FD RESEVED
428 	 *
429 	 *		FE WW WW: (3 byte code)
430 	 *			Word to emit is the next word WW WW.
431 	 *		FF BB WW WW: (4 byte code)
432 	 *			Emit BB count times next word WW WW.
433 	 *
434 	 */
435 	bytes_downloaded = 0;
436 	word_table = (const u_int16_t *)adw->mcode_data->mcode_buf;
437 	byte_codes = (const u_int8_t *)&word_table[253];
438 	byte_codes_end = adw->mcode_data->mcode_buf
439 		       + adw->mcode_data->mcode_size;
440 	adw_outw(adw, ADW_RAM_ADDR, 0);
441 	while (byte_codes < byte_codes_end) {
442 		if (*byte_codes == 0xFF) {
443 			u_int16_t value;
444 
445 			value = byte_codes[2]
446 			      | byte_codes[3] << 8;
447 			adw_set_multi_2(adw, ADW_RAM_DATA,
448 					value, byte_codes[1]);
449 			bytes_downloaded += byte_codes[1];
450 			byte_codes += 4;
451 		} else if (*byte_codes == 0xFE) {
452 			u_int16_t value;
453 
454 			value = byte_codes[1]
455 			      | byte_codes[2] << 8;
456 			adw_outw(adw, ADW_RAM_DATA, value);
457 			bytes_downloaded++;
458 			byte_codes += 3;
459 		} else {
460 			adw_outw(adw, ADW_RAM_DATA, word_table[*byte_codes]);
461 			bytes_downloaded++;
462 			byte_codes++;
463 		}
464 	}
465 	/* Convert from words to bytes */
466 	bytes_downloaded *= 2;
467 
468 	/*
469 	 * Clear the rest of LRAM.
470 	 */
471 	for (addr = bytes_downloaded; addr < adw->memsize; addr += 2)
472 		adw_outw(adw, ADW_RAM_DATA, 0);
473 
474 	/*
475 	 * Verify the microcode checksum.
476 	 */
477 	checksum = 0;
478 	adw_outw(adw, ADW_RAM_ADDR, 0);
479 	for (addr = 0; addr < bytes_downloaded; addr += 2)
480 		checksum += adw_inw(adw, ADW_RAM_DATA);
481 
482 	if (checksum != adw->mcode_data->mcode_chksum) {
483 		device_printf(adw->device, "Firmware load failed!\n");
484 		return (EIO);
485 	}
486 
487 	/*
488 	 * Restore the RISC memory BIOS region.
489 	 */
490 	for (addr = 0; addr < ADW_MC_BIOSLEN; addr++)
491 		adw_lram_write_8(adw, addr + ADW_MC_BIOSLEN, biosmem[addr]);
492 
493 	/*
494 	 * Calculate and write the microcode code checksum to
495 	 * the microcode code checksum location.
496 	 */
497 	addr = adw_lram_read_16(adw, ADW_MC_CODE_BEGIN_ADDR);
498 	end_addr = adw_lram_read_16(adw, ADW_MC_CODE_END_ADDR);
499 	checksum = 0;
500 	adw_outw(adw, ADW_RAM_ADDR, addr);
501 	for (; addr < end_addr; addr += 2)
502 		checksum += adw_inw(adw, ADW_RAM_DATA);
503 	adw_lram_write_16(adw, ADW_MC_CODE_CHK_SUM, checksum);
504 
505 	/*
506 	 * Tell the microcode what kind of chip it's running on.
507 	 */
508 	adw_lram_write_16(adw, ADW_MC_CHIP_TYPE, adw->chip);
509 
510 	/*
511 	 * Leave WDTR and SDTR negotiation disabled until the XPT has
512 	 * informed us of device capabilities, but do set the desired
513 	 * user rates in case we receive an SDTR request from the target
514 	 * before we negotiate.  We turn on tagged queuing at the microcode
515 	 * level for all devices, and modulate this on a per command basis.
516 	 */
517 	adw_lram_write_16(adw, ADW_MC_SDTR_SPEED1, adw->user_sdtr[0]);
518 	adw_lram_write_16(adw, ADW_MC_SDTR_SPEED2, adw->user_sdtr[1]);
519 	adw_lram_write_16(adw, ADW_MC_SDTR_SPEED3, adw->user_sdtr[2]);
520 	adw_lram_write_16(adw, ADW_MC_SDTR_SPEED4, adw->user_sdtr[3]);
521 	adw_lram_write_16(adw, ADW_MC_DISC_ENABLE, adw->user_discenb);
522 	for (tid = 0; tid < ADW_MAX_TID; tid++) {
523 		/* Cam limits the maximum number of commands for us */
524 		adw_lram_write_8(adw, ADW_MC_NUMBER_OF_MAX_CMD + tid,
525 				 adw->max_acbs);
526 	}
527 	adw_lram_write_16(adw, ADW_MC_TAGQNG_ABLE, ~0);
528 
529 	/*
530 	 * Set SCSI_CFG0 Microcode Default Value.
531 	 *
532 	 * The microcode will set the SCSI_CFG0 register using this value
533 	 * after it is started.
534 	 */
535 	adw_lram_write_16(adw, ADW_MC_DEFAULT_SCSI_CFG0,
536 			  ADW_SCSI_CFG0_PARITY_EN|ADW_SCSI_CFG0_SEL_TMO_LONG|
537 			  ADW_SCSI_CFG0_OUR_ID_EN|adw->initiator_id);
538 
539 	/*
540 	 * Tell the MC about the memory size that
541 	 * was setup by the probe code.
542 	 */
543 	adw_lram_write_16(adw, ADW_MC_DEFAULT_MEM_CFG,
544 			  adw_inb(adw, ADW_MEM_CFG) & ADW_MEM_CFG_RAM_SZ_MASK);
545 
546 	/*
547 	 * Determine SCSI_CFG1 Microcode Default Value.
548 	 *
549 	 * The microcode will set the SCSI_CFG1 register using this value
550 	 * after it is started below.
551 	 */
552 	scsicfg1 = adw_inw(adw, ADW_SCSI_CFG1);
553 
554 	/*
555 	 * If the internal narrow cable is reversed all of the SCSI_CTRL
556 	 * register signals will be set. Check for and return an error if
557 	 * this condition is found.
558 	 */
559 	if ((adw_inw(adw, ADW_SCSI_CTRL) & 0x3F07) == 0x3F07) {
560 		device_printf(adw->device, "Illegal Cable Config!\n");
561 		device_printf(adw->device, "Internal cable is reversed!\n");
562 		return (EIO);
563 	}
564 
565 	/*
566 	 * If this is a differential board and a single-ended device
567 	 * is attached to one of the connectors, return an error.
568 	 */
569 	if ((adw->features & ADW_ULTRA) != 0)  {
570 		if ((scsicfg1 & ADW_SCSI_CFG1_DIFF_MODE) != 0
571 		 && (scsicfg1 & ADW_SCSI_CFG1_DIFF_SENSE) == 0) {
572 			device_printf(adw->device, "A Single Ended Device is "
573 			    "attached to our differential bus!\n");
574 		        return (EIO);
575 		}
576 	} else {
577 		if ((scsicfg1 & ADW2_SCSI_CFG1_DEV_DETECT_HVD) != 0) {
578 			device_printf(adw->device,
579 			    "A High Voltage Differential Device "
580 			    "is attached to this controller.\n");
581 			device_printf(adw->device,
582 			    "HVD devices are not supported.\n");
583 		        return (EIO);
584 		}
585 	}
586 
587 	/*
588 	 * Perform automatic termination control if desired.
589 	 */
590 	if ((adw->features & ADW_ULTRA2) != 0) {
591 		u_int cable_det;
592 
593 		/*
594 		 * Ultra2 Chips require termination disabled to
595 		 * detect cable presence.
596 		 */
597 		adw_outw(adw, ADW_SCSI_CFG1,
598 			 scsicfg1 | ADW2_SCSI_CFG1_DIS_TERM_DRV);
599 		cable_det = adw_inw(adw, ADW_SCSI_CFG1);
600 		adw_outw(adw, ADW_SCSI_CFG1, scsicfg1);
601 
602 		/* SE Termination first if auto-term has been specified */
603 		if ((term_scsicfg1 & ADW_SCSI_CFG1_TERM_CTL_MASK) == 0) {
604 
605 			/*
606 			 * For all SE cable configurations, high byte
607 			 * termination is enabled.
608 			 */
609 			term_scsicfg1 |= ADW_SCSI_CFG1_TERM_CTL_H;
610 			if ((cable_det & ADW_SCSI_CFG1_INT8_MASK) != 0
611 			 || (cable_det & ADW_SCSI_CFG1_INT16_MASK) != 0) {
612 				/*
613 				 * If either cable is not present, the
614 				 * low byte must be terminated as well.
615 				 */
616 				term_scsicfg1 |= ADW_SCSI_CFG1_TERM_CTL_L;
617 			}
618 		}
619 
620 		/* LVD auto-term */
621 		if ((term_scsicfg1 & ADW2_SCSI_CFG1_TERM_CTL_LVD) == 0
622 		 && (term_scsicfg1 & ADW2_SCSI_CFG1_DIS_TERM_DRV) == 0) {
623 			/*
624 			 * If both cables are installed, termination
625 			 * is disabled.  Otherwise it is enabled.
626 			 */
627 			if ((cable_det & ADW2_SCSI_CFG1_EXTLVD_MASK) != 0
628 			 || (cable_det & ADW2_SCSI_CFG1_INTLVD_MASK) != 0) {
629 
630 				term_scsicfg1 |= ADW2_SCSI_CFG1_TERM_CTL_LVD;
631 			}
632 		}
633 		term_scsicfg1 &= ~ADW2_SCSI_CFG1_DIS_TERM_DRV;
634 	} else {
635 		/* Ultra Controller Termination */
636 		if ((term_scsicfg1 & ADW_SCSI_CFG1_TERM_CTL_MASK) == 0) {
637 			int cable_count;
638 			int wide_cable_count;
639 
640 			cable_count = 0;
641 			wide_cable_count = 0;
642 			if ((scsicfg1 & ADW_SCSI_CFG1_INT16_MASK) == 0) {
643 				cable_count++;
644 				wide_cable_count++;
645 			}
646 			if ((scsicfg1 & ADW_SCSI_CFG1_INT8_MASK) == 0)
647 				cable_count++;
648 
649 			/* There is only one external port */
650 			if ((scsicfg1 & ADW_SCSI_CFG1_EXT16_MASK) == 0) {
651 				cable_count++;
652 				wide_cable_count++;
653 			} else if ((scsicfg1 & ADW_SCSI_CFG1_EXT8_MASK) == 0)
654 				cable_count++;
655 
656 			if (cable_count == 3) {
657 				device_printf(adw->device,
658 				    "Illegal Cable Config!\n");
659 				device_printf(adw->device,
660 				    "Only Two Ports may be used at a time!\n");
661 			} else if (cable_count <= 1) {
662 				/*
663 				 * At least two out of three cables missing.
664 				 * Terminate both bytes.
665 				 */
666 				term_scsicfg1 |= ADW_SCSI_CFG1_TERM_CTL_H
667 					      |  ADW_SCSI_CFG1_TERM_CTL_L;
668 			} else if (wide_cable_count <= 1) {
669 				/* No two 16bit cables present.  High on. */
670 				term_scsicfg1 |= ADW_SCSI_CFG1_TERM_CTL_H;
671 			}
672 		}
673         }
674 
675 	/* Tell the user about our decission */
676 	switch (term_scsicfg1 & ADW_SCSI_CFG1_TERM_CTL_MASK) {
677 	case ADW_SCSI_CFG1_TERM_CTL_MASK:
678 		printf("High & Low SE Term Enabled, ");
679 		break;
680 	case ADW_SCSI_CFG1_TERM_CTL_H:
681 		printf("High SE Termination Enabled, ");
682 		break;
683 	case ADW_SCSI_CFG1_TERM_CTL_L:
684 		printf("Low SE Term Enabled, ");
685 		break;
686 	default:
687 		break;
688 	}
689 
690 	if ((adw->features & ADW_ULTRA2) != 0
691 	 && (term_scsicfg1 & ADW2_SCSI_CFG1_TERM_CTL_LVD) != 0)
692 		printf("LVD Term Enabled, ");
693 
694 	/*
695 	 * Invert the TERM_CTL_H and TERM_CTL_L bits and then
696 	 * set 'scsicfg1'. The TERM_POL bit does not need to be
697 	 * referenced, because the hardware internally inverts
698 	 * the Termination High and Low bits if TERM_POL is set.
699 	 */
700 	if ((adw->features & ADW_ULTRA2) != 0) {
701 		term_scsicfg1 = ~term_scsicfg1;
702 		term_scsicfg1 &= ADW_SCSI_CFG1_TERM_CTL_MASK
703 			      |  ADW2_SCSI_CFG1_TERM_CTL_LVD;
704 		scsicfg1 &= ~(ADW_SCSI_CFG1_TERM_CTL_MASK
705 			     |ADW2_SCSI_CFG1_TERM_CTL_LVD
706 			     |ADW_SCSI_CFG1_BIG_ENDIAN
707 			     |ADW_SCSI_CFG1_TERM_POL
708 			     |ADW2_SCSI_CFG1_DEV_DETECT);
709 		scsicfg1 |= term_scsicfg1;
710 	} else {
711 		term_scsicfg1 = ~term_scsicfg1 & ADW_SCSI_CFG1_TERM_CTL_MASK;
712 		scsicfg1 &= ~ADW_SCSI_CFG1_TERM_CTL_MASK;
713 		scsicfg1 |= term_scsicfg1 | ADW_SCSI_CFG1_TERM_CTL_MANUAL;
714 		scsicfg1 |= ADW_SCSI_CFG1_FLTR_DISABLE;
715 	}
716 
717 	/*
718 	 * Set SCSI_CFG1 Microcode Default Value
719 	 *
720 	 * The microcode will set the SCSI_CFG1 register using this value
721 	 * after it is started below.
722 	 */
723 	adw_lram_write_16(adw, ADW_MC_DEFAULT_SCSI_CFG1, scsicfg1);
724 
725 	/*
726 	 * Only accept selections on our initiator target id.
727 	 * This may change in target mode scenarios...
728 	 */
729 	adw_lram_write_16(adw, ADW_MC_DEFAULT_SEL_MASK,
730 			  (0x01 << adw->initiator_id));
731 
732 	/*
733 	 * Tell the microcode where it can find our
734 	 * Initiator Command Queue (ICQ).  It is
735 	 * currently empty hence the "stopper" address.
736 	 */
737 	adw->commandq = adw->free_carriers;
738 	adw->free_carriers = carrierbotov(adw, adw->commandq->next_ba);
739 	adw->commandq->next_ba = ADW_CQ_STOPPER;
740 	adw_lram_write_32(adw, ADW_MC_ICQ, adw->commandq->carr_ba);
741 
742 	/*
743 	 * Tell the microcode where it can find our
744 	 * Initiator Response Queue (IRQ).  It too
745 	 * is currently empty.
746 	 */
747 	adw->responseq = adw->free_carriers;
748 	adw->free_carriers = carrierbotov(adw, adw->responseq->next_ba);
749 	adw->responseq->next_ba = ADW_CQ_STOPPER;
750 	adw_lram_write_32(adw, ADW_MC_IRQ, adw->responseq->carr_ba);
751 
752 	adw_outb(adw, ADW_INTR_ENABLES,
753 		 ADW_INTR_ENABLE_HOST_INTR|ADW_INTR_ENABLE_GLOBAL_INTR);
754 
755 	adw_outw(adw, ADW_PC, adw_lram_read_16(adw, ADW_MC_CODE_BEGIN_ADDR));
756 
757 	return (0);
758 }
759 
760 void
adw_set_user_sdtr(struct adw_softc * adw,u_int tid,u_int mc_sdtr)761 adw_set_user_sdtr(struct adw_softc *adw, u_int tid, u_int mc_sdtr)
762 {
763 	adw->user_sdtr[ADW_TARGET_GROUP(tid)] &= ~ADW_TARGET_GROUP_MASK(tid);
764 	adw->user_sdtr[ADW_TARGET_GROUP(tid)] |=
765 	    mc_sdtr << ADW_TARGET_GROUP_SHIFT(tid);
766 }
767 
768 u_int
adw_get_user_sdtr(struct adw_softc * adw,u_int tid)769 adw_get_user_sdtr(struct adw_softc *adw, u_int tid)
770 {
771 	u_int mc_sdtr;
772 
773 	mc_sdtr = adw->user_sdtr[ADW_TARGET_GROUP(tid)];
774 	mc_sdtr &= ADW_TARGET_GROUP_MASK(tid);
775 	mc_sdtr >>= ADW_TARGET_GROUP_SHIFT(tid);
776 	return (mc_sdtr);
777 }
778 
779 void
adw_set_chip_sdtr(struct adw_softc * adw,u_int tid,u_int sdtr)780 adw_set_chip_sdtr(struct adw_softc *adw, u_int tid, u_int sdtr)
781 {
782 	u_int mc_sdtr_offset;
783 	u_int mc_sdtr;
784 
785 	mc_sdtr_offset = ADW_MC_SDTR_SPEED1;
786 	mc_sdtr_offset += ADW_TARGET_GROUP(tid) * 2;
787 	mc_sdtr = adw_lram_read_16(adw, mc_sdtr_offset);
788 	mc_sdtr &= ~ADW_TARGET_GROUP_MASK(tid);
789 	mc_sdtr |= sdtr << ADW_TARGET_GROUP_SHIFT(tid);
790 	adw_lram_write_16(adw, mc_sdtr_offset, mc_sdtr);
791 }
792 
793 u_int
adw_get_chip_sdtr(struct adw_softc * adw,u_int tid)794 adw_get_chip_sdtr(struct adw_softc *adw, u_int tid)
795 {
796 	u_int mc_sdtr_offset;
797 	u_int mc_sdtr;
798 
799 	mc_sdtr_offset = ADW_MC_SDTR_SPEED1;
800 	mc_sdtr_offset += ADW_TARGET_GROUP(tid) * 2;
801 	mc_sdtr = adw_lram_read_16(adw, mc_sdtr_offset);
802 	mc_sdtr &= ADW_TARGET_GROUP_MASK(tid);
803 	mc_sdtr >>= ADW_TARGET_GROUP_SHIFT(tid);
804 	return (mc_sdtr);
805 }
806 
807 u_int
adw_find_sdtr(struct adw_softc * adw,u_int period)808 adw_find_sdtr(struct adw_softc *adw, u_int period)
809 {
810 	int i;
811 
812 	i = 0;
813 	if ((adw->features & ADW_DT) == 0)
814 		i = ADW_MC_SDTR_OFFSET_ULTRA2;
815 	if ((adw->features & ADW_ULTRA2) == 0)
816 		i = ADW_MC_SDTR_OFFSET_ULTRA;
817 	if (period == 0)
818 		return ADW_MC_SDTR_ASYNC;
819 
820 	for (; i < nitems(adw_syncrates); i++) {
821 		if (period <= adw_syncrates[i].period)
822 			return (adw_syncrates[i].mc_sdtr);
823 	}
824 	return ADW_MC_SDTR_ASYNC;
825 }
826 
827 u_int
adw_find_period(struct adw_softc * adw,u_int mc_sdtr)828 adw_find_period(struct adw_softc *adw, u_int mc_sdtr)
829 {
830 	int i;
831 
832 	for (i = 0; i < nitems(adw_syncrates); i++) {
833 		if (mc_sdtr == adw_syncrates[i].mc_sdtr)
834 			break;
835 	}
836 	return (adw_syncrates[i].period);
837 }
838 
839 u_int
adw_hshk_cfg_period_factor(u_int tinfo)840 adw_hshk_cfg_period_factor(u_int tinfo)
841 {
842 	tinfo &= ADW_HSHK_CFG_RATE_MASK;
843 	tinfo >>= ADW_HSHK_CFG_RATE_SHIFT;
844 	if (tinfo == 0x11)
845 		/* 80MHz/DT */
846 		return (9);
847 	else if (tinfo == 0x10)
848 		/* 40MHz */
849 		return (10);
850 	else
851 		return (((tinfo * 25) + 50) / 4);
852 }
853 
854 /*
855  * Send an idle command to the chip and wait for completion.
856  */
857 adw_idle_cmd_status_t
adw_idle_cmd_send(struct adw_softc * adw,adw_idle_cmd_t cmd,u_int parameter)858 adw_idle_cmd_send(struct adw_softc *adw, adw_idle_cmd_t cmd, u_int parameter)
859 {
860 	u_int		      timeout;
861 	adw_idle_cmd_status_t status;
862 
863 	if (!dumping)
864 		mtx_assert(&adw->lock, MA_OWNED);
865 
866 	/*
867 	 * Clear the idle command status which is set by the microcode
868 	 * to a non-zero value to indicate when the command is completed.
869 	 */
870 	adw_lram_write_16(adw, ADW_MC_IDLE_CMD_STATUS, 0);
871 
872 	/*
873 	 * Write the idle command value after the idle command parameter
874 	 * has been written to avoid a race condition. If the order is not
875 	 * followed, the microcode may process the idle command before the
876 	 * parameters have been written to LRAM.
877 	 */
878 	adw_lram_write_32(adw, ADW_MC_IDLE_CMD_PARAMETER, parameter);
879     	adw_lram_write_16(adw, ADW_MC_IDLE_CMD, cmd);
880 
881 	/*
882 	 * Tickle the RISC to tell it to process the idle command.
883 	 */
884 	adw_tickle_risc(adw, ADW_TICKLE_B);
885 
886 	/* Wait for up to 10 seconds for the command to complete */
887 	timeout = 5000000;
888 	while (--timeout) {
889 		status = adw_lram_read_16(adw, ADW_MC_IDLE_CMD_STATUS);
890        		if (status != 0)
891 			break;
892 		DELAY(20);
893 	}
894 
895 	if (timeout == 0)
896 		panic("%s: Idle Command Timed Out!",
897 		    device_get_nameunit(adw->device));
898 	return (status);
899 }
900