xref: /freebsd-12.1/sys/compat/linux/linux_misc.c (revision 5efda737)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 2002 Doug Rabson
5  * Copyright (c) 1994-1995 Søren Schmidt
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer
13  *    in this position and unchanged.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  * 3. The name of the author may not be used to endorse or promote products
18  *    derived from this software without specific prior written permission
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
21  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
22  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
23  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
24  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
25  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
29  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30  */
31 
32 #include <sys/cdefs.h>
33 __FBSDID("$FreeBSD$");
34 
35 #include "opt_compat.h"
36 
37 #include <sys/param.h>
38 #include <sys/blist.h>
39 #include <sys/fcntl.h>
40 #if defined(__i386__)
41 #include <sys/imgact_aout.h>
42 #endif
43 #include <sys/jail.h>
44 #include <sys/kernel.h>
45 #include <sys/limits.h>
46 #include <sys/lock.h>
47 #include <sys/malloc.h>
48 #include <sys/mman.h>
49 #include <sys/mount.h>
50 #include <sys/mutex.h>
51 #include <sys/namei.h>
52 #include <sys/priv.h>
53 #include <sys/proc.h>
54 #include <sys/procctl.h>
55 #include <sys/reboot.h>
56 #include <sys/racct.h>
57 #include <sys/random.h>
58 #include <sys/resourcevar.h>
59 #include <sys/sched.h>
60 #include <sys/sdt.h>
61 #include <sys/signalvar.h>
62 #include <sys/stat.h>
63 #include <sys/syscallsubr.h>
64 #include <sys/sysctl.h>
65 #include <sys/sysproto.h>
66 #include <sys/systm.h>
67 #include <sys/time.h>
68 #include <sys/vmmeter.h>
69 #include <sys/vnode.h>
70 #include <sys/wait.h>
71 #include <sys/cpuset.h>
72 #include <sys/uio.h>
73 
74 #include <security/mac/mac_framework.h>
75 
76 #include <vm/vm.h>
77 #include <vm/pmap.h>
78 #include <vm/vm_kern.h>
79 #include <vm/vm_map.h>
80 #include <vm/vm_extern.h>
81 #include <vm/vm_object.h>
82 #include <vm/swap_pager.h>
83 
84 #ifdef COMPAT_LINUX32
85 #include <machine/../linux32/linux.h>
86 #include <machine/../linux32/linux32_proto.h>
87 #else
88 #include <machine/../linux/linux.h>
89 #include <machine/../linux/linux_proto.h>
90 #endif
91 
92 #include <compat/linux/linux_dtrace.h>
93 #include <compat/linux/linux_file.h>
94 #include <compat/linux/linux_mib.h>
95 #include <compat/linux/linux_signal.h>
96 #include <compat/linux/linux_timer.h>
97 #include <compat/linux/linux_util.h>
98 #include <compat/linux/linux_sysproto.h>
99 #include <compat/linux/linux_emul.h>
100 #include <compat/linux/linux_misc.h>
101 
102 /**
103  * Special DTrace provider for the linuxulator.
104  *
105  * In this file we define the provider for the entire linuxulator. All
106  * modules (= files of the linuxulator) use it.
107  *
108  * We define a different name depending on the emulated bitsize, see
109  * ../../<ARCH>/linux{,32}/linux.h, e.g.:
110  *      native bitsize          = linuxulator
111  *      amd64, 32bit emulation  = linuxulator32
112  */
113 LIN_SDT_PROVIDER_DEFINE(LINUX_DTRACE);
114 
115 int stclohz;				/* Statistics clock frequency */
116 
117 static unsigned int linux_to_bsd_resource[LINUX_RLIM_NLIMITS] = {
118 	RLIMIT_CPU, RLIMIT_FSIZE, RLIMIT_DATA, RLIMIT_STACK,
119 	RLIMIT_CORE, RLIMIT_RSS, RLIMIT_NPROC, RLIMIT_NOFILE,
120 	RLIMIT_MEMLOCK, RLIMIT_AS
121 };
122 
123 struct l_sysinfo {
124 	l_long		uptime;		/* Seconds since boot */
125 	l_ulong		loads[3];	/* 1, 5, and 15 minute load averages */
126 #define LINUX_SYSINFO_LOADS_SCALE 65536
127 	l_ulong		totalram;	/* Total usable main memory size */
128 	l_ulong		freeram;	/* Available memory size */
129 	l_ulong		sharedram;	/* Amount of shared memory */
130 	l_ulong		bufferram;	/* Memory used by buffers */
131 	l_ulong		totalswap;	/* Total swap space size */
132 	l_ulong		freeswap;	/* swap space still available */
133 	l_ushort	procs;		/* Number of current processes */
134 	l_ushort	pads;
135 	l_ulong		totalbig;
136 	l_ulong		freebig;
137 	l_uint		mem_unit;
138 	char		_f[20-2*sizeof(l_long)-sizeof(l_int)];	/* padding */
139 };
140 
141 struct l_pselect6arg {
142 	l_uintptr_t	ss;
143 	l_size_t	ss_len;
144 };
145 
146 static int	linux_utimensat_nsec_valid(l_long);
147 
148 
149 int
linux_sysinfo(struct thread * td,struct linux_sysinfo_args * args)150 linux_sysinfo(struct thread *td, struct linux_sysinfo_args *args)
151 {
152 	struct l_sysinfo sysinfo;
153 	vm_object_t object;
154 	int i, j;
155 	struct timespec ts;
156 
157 	bzero(&sysinfo, sizeof(sysinfo));
158 	getnanouptime(&ts);
159 	if (ts.tv_nsec != 0)
160 		ts.tv_sec++;
161 	sysinfo.uptime = ts.tv_sec;
162 
163 	/* Use the information from the mib to get our load averages */
164 	for (i = 0; i < 3; i++)
165 		sysinfo.loads[i] = averunnable.ldavg[i] *
166 		    LINUX_SYSINFO_LOADS_SCALE / averunnable.fscale;
167 
168 	sysinfo.totalram = physmem * PAGE_SIZE;
169 	sysinfo.freeram = sysinfo.totalram - vm_wire_count() * PAGE_SIZE;
170 
171 	sysinfo.sharedram = 0;
172 	mtx_lock(&vm_object_list_mtx);
173 	TAILQ_FOREACH(object, &vm_object_list, object_list)
174 		if (object->shadow_count > 1)
175 			sysinfo.sharedram += object->resident_page_count;
176 	mtx_unlock(&vm_object_list_mtx);
177 
178 	sysinfo.sharedram *= PAGE_SIZE;
179 	sysinfo.bufferram = 0;
180 
181 	swap_pager_status(&i, &j);
182 	sysinfo.totalswap = i * PAGE_SIZE;
183 	sysinfo.freeswap = (i - j) * PAGE_SIZE;
184 
185 	sysinfo.procs = nprocs;
186 
187 	/* The following are only present in newer Linux kernels. */
188 	sysinfo.totalbig = 0;
189 	sysinfo.freebig = 0;
190 	sysinfo.mem_unit = 1;
191 
192 	return (copyout(&sysinfo, args->info, sizeof(sysinfo)));
193 }
194 
195 #ifdef LINUX_LEGACY_SYSCALLS
196 int
linux_alarm(struct thread * td,struct linux_alarm_args * args)197 linux_alarm(struct thread *td, struct linux_alarm_args *args)
198 {
199 	struct itimerval it, old_it;
200 	u_int secs;
201 	int error;
202 
203 #ifdef DEBUG
204 	if (ldebug(alarm))
205 		printf(ARGS(alarm, "%u"), args->secs);
206 #endif
207 	secs = args->secs;
208 	/*
209 	 * Linux alarm() is always successful. Limit secs to INT32_MAX / 2
210 	 * to match kern_setitimer()'s limit to avoid error from it.
211 	 *
212 	 * XXX. Linux limit secs to INT_MAX on 32 and does not limit on 64-bit
213 	 * platforms.
214 	 */
215 	if (secs > INT32_MAX / 2)
216 		secs = INT32_MAX / 2;
217 
218 	it.it_value.tv_sec = secs;
219 	it.it_value.tv_usec = 0;
220 	timevalclear(&it.it_interval);
221 	error = kern_setitimer(td, ITIMER_REAL, &it, &old_it);
222 	KASSERT(error == 0, ("kern_setitimer returns %d", error));
223 
224 	if ((old_it.it_value.tv_sec == 0 && old_it.it_value.tv_usec > 0) ||
225 	    old_it.it_value.tv_usec >= 500000)
226 		old_it.it_value.tv_sec++;
227 	td->td_retval[0] = old_it.it_value.tv_sec;
228 	return (0);
229 }
230 #endif
231 
232 int
linux_brk(struct thread * td,struct linux_brk_args * args)233 linux_brk(struct thread *td, struct linux_brk_args *args)
234 {
235 	struct vmspace *vm = td->td_proc->p_vmspace;
236 	uintptr_t new, old;
237 
238 #ifdef DEBUG
239 	if (ldebug(brk))
240 		printf(ARGS(brk, "%p"), (void *)(uintptr_t)args->dsend);
241 #endif
242 	old = (uintptr_t)vm->vm_daddr + ctob(vm->vm_dsize);
243 	new = (uintptr_t)args->dsend;
244 	if ((caddr_t)new > vm->vm_daddr && !kern_break(td, &new))
245 		td->td_retval[0] = (register_t)new;
246 	else
247 		td->td_retval[0] = (register_t)old;
248 
249 	return (0);
250 }
251 
252 #if defined(__i386__)
253 /* XXX: what about amd64/linux32? */
254 
255 int
linux_uselib(struct thread * td,struct linux_uselib_args * args)256 linux_uselib(struct thread *td, struct linux_uselib_args *args)
257 {
258 	struct nameidata ni;
259 	struct vnode *vp;
260 	struct exec *a_out;
261 	vm_map_t map;
262 	vm_map_entry_t entry;
263 	struct vattr attr;
264 	vm_offset_t vmaddr;
265 	unsigned long file_offset;
266 	unsigned long bss_size;
267 	char *library;
268 	ssize_t aresid;
269 	int error;
270 	bool locked, opened, textset;
271 
272 	LCONVPATHEXIST(td, args->library, &library);
273 
274 #ifdef DEBUG
275 	if (ldebug(uselib))
276 		printf(ARGS(uselib, "%s"), library);
277 #endif
278 
279 	a_out = NULL;
280 	vp = NULL;
281 	locked = false;
282 	textset = false;
283 	opened = false;
284 
285 	NDINIT(&ni, LOOKUP, ISOPEN | FOLLOW | LOCKLEAF | AUDITVNODE1,
286 	    UIO_SYSSPACE, library, td);
287 	error = namei(&ni);
288 	LFREEPATH(library);
289 	if (error)
290 		goto cleanup;
291 
292 	vp = ni.ni_vp;
293 	NDFREE(&ni, NDF_ONLY_PNBUF);
294 
295 	/*
296 	 * From here on down, we have a locked vnode that must be unlocked.
297 	 * XXX: The code below largely duplicates exec_check_permissions().
298 	 */
299 	locked = true;
300 
301 	/* Executable? */
302 	error = VOP_GETATTR(vp, &attr, td->td_ucred);
303 	if (error)
304 		goto cleanup;
305 
306 	if ((vp->v_mount->mnt_flag & MNT_NOEXEC) ||
307 	    ((attr.va_mode & 0111) == 0) || (attr.va_type != VREG)) {
308 		/* EACCESS is what exec(2) returns. */
309 		error = ENOEXEC;
310 		goto cleanup;
311 	}
312 
313 	/* Sensible size? */
314 	if (attr.va_size == 0) {
315 		error = ENOEXEC;
316 		goto cleanup;
317 	}
318 
319 	/* Can we access it? */
320 	error = VOP_ACCESS(vp, VEXEC, td->td_ucred, td);
321 	if (error)
322 		goto cleanup;
323 
324 	/*
325 	 * XXX: This should use vn_open() so that it is properly authorized,
326 	 * and to reduce code redundancy all over the place here.
327 	 * XXX: Not really, it duplicates far more of exec_check_permissions()
328 	 * than vn_open().
329 	 */
330 #ifdef MAC
331 	error = mac_vnode_check_open(td->td_ucred, vp, VREAD);
332 	if (error)
333 		goto cleanup;
334 #endif
335 	error = VOP_OPEN(vp, FREAD, td->td_ucred, td, NULL);
336 	if (error)
337 		goto cleanup;
338 	opened = true;
339 
340 	/* Pull in executable header into exec_map */
341 	error = vm_mmap(exec_map, (vm_offset_t *)&a_out, PAGE_SIZE,
342 	    VM_PROT_READ, VM_PROT_READ, 0, OBJT_VNODE, vp, 0);
343 	if (error)
344 		goto cleanup;
345 
346 	/* Is it a Linux binary ? */
347 	if (((a_out->a_magic >> 16) & 0xff) != 0x64) {
348 		error = ENOEXEC;
349 		goto cleanup;
350 	}
351 
352 	/*
353 	 * While we are here, we should REALLY do some more checks
354 	 */
355 
356 	/* Set file/virtual offset based on a.out variant. */
357 	switch ((int)(a_out->a_magic & 0xffff)) {
358 	case 0413:			/* ZMAGIC */
359 		file_offset = 1024;
360 		break;
361 	case 0314:			/* QMAGIC */
362 		file_offset = 0;
363 		break;
364 	default:
365 		error = ENOEXEC;
366 		goto cleanup;
367 	}
368 
369 	bss_size = round_page(a_out->a_bss);
370 
371 	/* Check various fields in header for validity/bounds. */
372 	if (a_out->a_text & PAGE_MASK || a_out->a_data & PAGE_MASK) {
373 		error = ENOEXEC;
374 		goto cleanup;
375 	}
376 
377 	/* text + data can't exceed file size */
378 	if (a_out->a_data + a_out->a_text > attr.va_size) {
379 		error = EFAULT;
380 		goto cleanup;
381 	}
382 
383 	/*
384 	 * text/data/bss must not exceed limits
385 	 * XXX - this is not complete. it should check current usage PLUS
386 	 * the resources needed by this library.
387 	 */
388 	PROC_LOCK(td->td_proc);
389 	if (a_out->a_text > maxtsiz ||
390 	    a_out->a_data + bss_size > lim_cur_proc(td->td_proc, RLIMIT_DATA) ||
391 	    racct_set(td->td_proc, RACCT_DATA, a_out->a_data +
392 	    bss_size) != 0) {
393 		PROC_UNLOCK(td->td_proc);
394 		error = ENOMEM;
395 		goto cleanup;
396 	}
397 	PROC_UNLOCK(td->td_proc);
398 
399 	/*
400 	 * Prevent more writers.
401 	 */
402 	error = VOP_SET_TEXT(vp);
403 	if (error != 0)
404 		goto cleanup;
405 	textset = true;
406 
407 	/*
408 	 * Lock no longer needed
409 	 */
410 	locked = false;
411 	VOP_UNLOCK(vp, 0);
412 
413 	/*
414 	 * Check if file_offset page aligned. Currently we cannot handle
415 	 * misalinged file offsets, and so we read in the entire image
416 	 * (what a waste).
417 	 */
418 	if (file_offset & PAGE_MASK) {
419 #ifdef DEBUG
420 		printf("uselib: Non page aligned binary %lu\n", file_offset);
421 #endif
422 		/* Map text+data read/write/execute */
423 
424 		/* a_entry is the load address and is page aligned */
425 		vmaddr = trunc_page(a_out->a_entry);
426 
427 		/* get anon user mapping, read+write+execute */
428 		error = vm_map_find(&td->td_proc->p_vmspace->vm_map, NULL, 0,
429 		    &vmaddr, a_out->a_text + a_out->a_data, 0, VMFS_NO_SPACE,
430 		    VM_PROT_ALL, VM_PROT_ALL, 0);
431 		if (error)
432 			goto cleanup;
433 
434 		error = vn_rdwr(UIO_READ, vp, (void *)vmaddr, file_offset,
435 		    a_out->a_text + a_out->a_data, UIO_USERSPACE, 0,
436 		    td->td_ucred, NOCRED, &aresid, td);
437 		if (error != 0)
438 			goto cleanup;
439 		if (aresid != 0) {
440 			error = ENOEXEC;
441 			goto cleanup;
442 		}
443 	} else {
444 #ifdef DEBUG
445 		printf("uselib: Page aligned binary %lu\n", file_offset);
446 #endif
447 		/*
448 		 * for QMAGIC, a_entry is 20 bytes beyond the load address
449 		 * to skip the executable header
450 		 */
451 		vmaddr = trunc_page(a_out->a_entry);
452 
453 		/*
454 		 * Map it all into the process's space as a single
455 		 * copy-on-write "data" segment.
456 		 */
457 		map = &td->td_proc->p_vmspace->vm_map;
458 		error = vm_mmap(map, &vmaddr,
459 		    a_out->a_text + a_out->a_data, VM_PROT_ALL, VM_PROT_ALL,
460 		    MAP_PRIVATE | MAP_FIXED, OBJT_VNODE, vp, file_offset);
461 		if (error)
462 			goto cleanup;
463 		vm_map_lock(map);
464 		if (!vm_map_lookup_entry(map, vmaddr, &entry)) {
465 			vm_map_unlock(map);
466 			error = EDOOFUS;
467 			goto cleanup;
468 		}
469 		entry->eflags |= MAP_ENTRY_VN_EXEC;
470 		vm_map_unlock(map);
471 		textset = false;
472 	}
473 #ifdef DEBUG
474 	printf("mem=%08lx = %08lx %08lx\n", (long)vmaddr, ((long *)vmaddr)[0],
475 	    ((long *)vmaddr)[1]);
476 #endif
477 	if (bss_size != 0) {
478 		/* Calculate BSS start address */
479 		vmaddr = trunc_page(a_out->a_entry) + a_out->a_text +
480 		    a_out->a_data;
481 
482 		/* allocate some 'anon' space */
483 		error = vm_map_find(&td->td_proc->p_vmspace->vm_map, NULL, 0,
484 		    &vmaddr, bss_size, 0, VMFS_NO_SPACE, VM_PROT_ALL,
485 		    VM_PROT_ALL, 0);
486 		if (error)
487 			goto cleanup;
488 	}
489 
490 cleanup:
491 	if (opened) {
492 		if (locked)
493 			VOP_UNLOCK(vp, 0);
494 		locked = false;
495 		VOP_CLOSE(vp, FREAD, td->td_ucred, td);
496 	}
497 	if (textset) {
498 		if (!locked) {
499 			locked = true;
500 			VOP_LOCK(vp, LK_SHARED | LK_RETRY);
501 		}
502 		VOP_UNSET_TEXT_CHECKED(vp);
503 	}
504 	if (locked)
505 		VOP_UNLOCK(vp, 0);
506 
507 	/* Release the temporary mapping. */
508 	if (a_out)
509 		kmap_free_wakeup(exec_map, (vm_offset_t)a_out, PAGE_SIZE);
510 
511 	return (error);
512 }
513 
514 #endif	/* __i386__ */
515 
516 #ifdef LINUX_LEGACY_SYSCALLS
517 int
linux_select(struct thread * td,struct linux_select_args * args)518 linux_select(struct thread *td, struct linux_select_args *args)
519 {
520 	l_timeval ltv;
521 	struct timeval tv0, tv1, utv, *tvp;
522 	int error;
523 
524 #ifdef DEBUG
525 	if (ldebug(select))
526 		printf(ARGS(select, "%d, %p, %p, %p, %p"), args->nfds,
527 		    (void *)args->readfds, (void *)args->writefds,
528 		    (void *)args->exceptfds, (void *)args->timeout);
529 #endif
530 
531 	/*
532 	 * Store current time for computation of the amount of
533 	 * time left.
534 	 */
535 	if (args->timeout) {
536 		if ((error = copyin(args->timeout, &ltv, sizeof(ltv))))
537 			goto select_out;
538 		utv.tv_sec = ltv.tv_sec;
539 		utv.tv_usec = ltv.tv_usec;
540 #ifdef DEBUG
541 		if (ldebug(select))
542 			printf(LMSG("incoming timeout (%jd/%ld)"),
543 			    (intmax_t)utv.tv_sec, utv.tv_usec);
544 #endif
545 
546 		if (itimerfix(&utv)) {
547 			/*
548 			 * The timeval was invalid.  Convert it to something
549 			 * valid that will act as it does under Linux.
550 			 */
551 			utv.tv_sec += utv.tv_usec / 1000000;
552 			utv.tv_usec %= 1000000;
553 			if (utv.tv_usec < 0) {
554 				utv.tv_sec -= 1;
555 				utv.tv_usec += 1000000;
556 			}
557 			if (utv.tv_sec < 0)
558 				timevalclear(&utv);
559 		}
560 		microtime(&tv0);
561 		tvp = &utv;
562 	} else
563 		tvp = NULL;
564 
565 	error = kern_select(td, args->nfds, args->readfds, args->writefds,
566 	    args->exceptfds, tvp, LINUX_NFDBITS);
567 
568 #ifdef DEBUG
569 	if (ldebug(select))
570 		printf(LMSG("real select returns %d"), error);
571 #endif
572 	if (error)
573 		goto select_out;
574 
575 	if (args->timeout) {
576 		if (td->td_retval[0]) {
577 			/*
578 			 * Compute how much time was left of the timeout,
579 			 * by subtracting the current time and the time
580 			 * before we started the call, and subtracting
581 			 * that result from the user-supplied value.
582 			 */
583 			microtime(&tv1);
584 			timevalsub(&tv1, &tv0);
585 			timevalsub(&utv, &tv1);
586 			if (utv.tv_sec < 0)
587 				timevalclear(&utv);
588 		} else
589 			timevalclear(&utv);
590 #ifdef DEBUG
591 		if (ldebug(select))
592 			printf(LMSG("outgoing timeout (%jd/%ld)"),
593 			    (intmax_t)utv.tv_sec, utv.tv_usec);
594 #endif
595 		ltv.tv_sec = utv.tv_sec;
596 		ltv.tv_usec = utv.tv_usec;
597 		if ((error = copyout(&ltv, args->timeout, sizeof(ltv))))
598 			goto select_out;
599 	}
600 
601 select_out:
602 #ifdef DEBUG
603 	if (ldebug(select))
604 		printf(LMSG("select_out -> %d"), error);
605 #endif
606 	return (error);
607 }
608 #endif
609 
610 int
linux_mremap(struct thread * td,struct linux_mremap_args * args)611 linux_mremap(struct thread *td, struct linux_mremap_args *args)
612 {
613 	uintptr_t addr;
614 	size_t len;
615 	int error = 0;
616 
617 #ifdef DEBUG
618 	if (ldebug(mremap))
619 		printf(ARGS(mremap, "%p, %08lx, %08lx, %08lx"),
620 		    (void *)(uintptr_t)args->addr,
621 		    (unsigned long)args->old_len,
622 		    (unsigned long)args->new_len,
623 		    (unsigned long)args->flags);
624 #endif
625 
626 	if (args->flags & ~(LINUX_MREMAP_FIXED | LINUX_MREMAP_MAYMOVE)) {
627 		td->td_retval[0] = 0;
628 		return (EINVAL);
629 	}
630 
631 	/*
632 	 * Check for the page alignment.
633 	 * Linux defines PAGE_MASK to be FreeBSD ~PAGE_MASK.
634 	 */
635 	if (args->addr & PAGE_MASK) {
636 		td->td_retval[0] = 0;
637 		return (EINVAL);
638 	}
639 
640 	args->new_len = round_page(args->new_len);
641 	args->old_len = round_page(args->old_len);
642 
643 	if (args->new_len > args->old_len) {
644 		td->td_retval[0] = 0;
645 		return (ENOMEM);
646 	}
647 
648 	if (args->new_len < args->old_len) {
649 		addr = args->addr + args->new_len;
650 		len = args->old_len - args->new_len;
651 		error = kern_munmap(td, addr, len);
652 	}
653 
654 	td->td_retval[0] = error ? 0 : (uintptr_t)args->addr;
655 	return (error);
656 }
657 
658 #define LINUX_MS_ASYNC       0x0001
659 #define LINUX_MS_INVALIDATE  0x0002
660 #define LINUX_MS_SYNC        0x0004
661 
662 int
linux_msync(struct thread * td,struct linux_msync_args * args)663 linux_msync(struct thread *td, struct linux_msync_args *args)
664 {
665 
666 	return (kern_msync(td, args->addr, args->len,
667 	    args->fl & ~LINUX_MS_SYNC));
668 }
669 
670 #ifdef LINUX_LEGACY_SYSCALLS
671 int
linux_time(struct thread * td,struct linux_time_args * args)672 linux_time(struct thread *td, struct linux_time_args *args)
673 {
674 	struct timeval tv;
675 	l_time_t tm;
676 	int error;
677 
678 #ifdef DEBUG
679 	if (ldebug(time))
680 		printf(ARGS(time, "*"));
681 #endif
682 
683 	microtime(&tv);
684 	tm = tv.tv_sec;
685 	if (args->tm && (error = copyout(&tm, args->tm, sizeof(tm))))
686 		return (error);
687 	td->td_retval[0] = tm;
688 	return (0);
689 }
690 #endif
691 
692 struct l_times_argv {
693 	l_clock_t	tms_utime;
694 	l_clock_t	tms_stime;
695 	l_clock_t	tms_cutime;
696 	l_clock_t	tms_cstime;
697 };
698 
699 
700 /*
701  * Glibc versions prior to 2.2.1 always use hard-coded CLK_TCK value.
702  * Since 2.2.1 Glibc uses value exported from kernel via AT_CLKTCK
703  * auxiliary vector entry.
704  */
705 #define	CLK_TCK		100
706 
707 #define	CONVOTCK(r)	(r.tv_sec * CLK_TCK + r.tv_usec / (1000000 / CLK_TCK))
708 #define	CONVNTCK(r)	(r.tv_sec * stclohz + r.tv_usec / (1000000 / stclohz))
709 
710 #define	CONVTCK(r)	(linux_kernver(td) >= LINUX_KERNVER_2004000 ?		\
711 			    CONVNTCK(r) : CONVOTCK(r))
712 
713 int
linux_times(struct thread * td,struct linux_times_args * args)714 linux_times(struct thread *td, struct linux_times_args *args)
715 {
716 	struct timeval tv, utime, stime, cutime, cstime;
717 	struct l_times_argv tms;
718 	struct proc *p;
719 	int error;
720 
721 #ifdef DEBUG
722 	if (ldebug(times))
723 		printf(ARGS(times, "*"));
724 #endif
725 
726 	if (args->buf != NULL) {
727 		p = td->td_proc;
728 		PROC_LOCK(p);
729 		PROC_STATLOCK(p);
730 		calcru(p, &utime, &stime);
731 		PROC_STATUNLOCK(p);
732 		calccru(p, &cutime, &cstime);
733 		PROC_UNLOCK(p);
734 
735 		tms.tms_utime = CONVTCK(utime);
736 		tms.tms_stime = CONVTCK(stime);
737 
738 		tms.tms_cutime = CONVTCK(cutime);
739 		tms.tms_cstime = CONVTCK(cstime);
740 
741 		if ((error = copyout(&tms, args->buf, sizeof(tms))))
742 			return (error);
743 	}
744 
745 	microuptime(&tv);
746 	td->td_retval[0] = (int)CONVTCK(tv);
747 	return (0);
748 }
749 
750 int
linux_newuname(struct thread * td,struct linux_newuname_args * args)751 linux_newuname(struct thread *td, struct linux_newuname_args *args)
752 {
753 	struct l_new_utsname utsname;
754 	char osname[LINUX_MAX_UTSNAME];
755 	char osrelease[LINUX_MAX_UTSNAME];
756 	char *p;
757 
758 #ifdef DEBUG
759 	if (ldebug(newuname))
760 		printf(ARGS(newuname, "*"));
761 #endif
762 
763 	linux_get_osname(td, osname);
764 	linux_get_osrelease(td, osrelease);
765 
766 	bzero(&utsname, sizeof(utsname));
767 	strlcpy(utsname.sysname, osname, LINUX_MAX_UTSNAME);
768 	getcredhostname(td->td_ucred, utsname.nodename, LINUX_MAX_UTSNAME);
769 	getcreddomainname(td->td_ucred, utsname.domainname, LINUX_MAX_UTSNAME);
770 	strlcpy(utsname.release, osrelease, LINUX_MAX_UTSNAME);
771 	strlcpy(utsname.version, version, LINUX_MAX_UTSNAME);
772 	for (p = utsname.version; *p != '\0'; ++p)
773 		if (*p == '\n') {
774 			*p = '\0';
775 			break;
776 		}
777 	strlcpy(utsname.machine, linux_kplatform, LINUX_MAX_UTSNAME);
778 
779 	return (copyout(&utsname, args->buf, sizeof(utsname)));
780 }
781 
782 struct l_utimbuf {
783 	l_time_t l_actime;
784 	l_time_t l_modtime;
785 };
786 
787 #ifdef LINUX_LEGACY_SYSCALLS
788 int
linux_utime(struct thread * td,struct linux_utime_args * args)789 linux_utime(struct thread *td, struct linux_utime_args *args)
790 {
791 	struct timeval tv[2], *tvp;
792 	struct l_utimbuf lut;
793 	char *fname;
794 	int error;
795 
796 	LCONVPATHEXIST(td, args->fname, &fname);
797 
798 #ifdef DEBUG
799 	if (ldebug(utime))
800 		printf(ARGS(utime, "%s, *"), fname);
801 #endif
802 
803 	if (args->times) {
804 		if ((error = copyin(args->times, &lut, sizeof lut))) {
805 			LFREEPATH(fname);
806 			return (error);
807 		}
808 		tv[0].tv_sec = lut.l_actime;
809 		tv[0].tv_usec = 0;
810 		tv[1].tv_sec = lut.l_modtime;
811 		tv[1].tv_usec = 0;
812 		tvp = tv;
813 	} else
814 		tvp = NULL;
815 
816 	error = kern_utimesat(td, AT_FDCWD, fname, UIO_SYSSPACE, tvp,
817 	    UIO_SYSSPACE);
818 	LFREEPATH(fname);
819 	return (error);
820 }
821 #endif
822 
823 #ifdef LINUX_LEGACY_SYSCALLS
824 int
linux_utimes(struct thread * td,struct linux_utimes_args * args)825 linux_utimes(struct thread *td, struct linux_utimes_args *args)
826 {
827 	l_timeval ltv[2];
828 	struct timeval tv[2], *tvp = NULL;
829 	char *fname;
830 	int error;
831 
832 	LCONVPATHEXIST(td, args->fname, &fname);
833 
834 #ifdef DEBUG
835 	if (ldebug(utimes))
836 		printf(ARGS(utimes, "%s, *"), fname);
837 #endif
838 
839 	if (args->tptr != NULL) {
840 		if ((error = copyin(args->tptr, ltv, sizeof ltv))) {
841 			LFREEPATH(fname);
842 			return (error);
843 		}
844 		tv[0].tv_sec = ltv[0].tv_sec;
845 		tv[0].tv_usec = ltv[0].tv_usec;
846 		tv[1].tv_sec = ltv[1].tv_sec;
847 		tv[1].tv_usec = ltv[1].tv_usec;
848 		tvp = tv;
849 	}
850 
851 	error = kern_utimesat(td, AT_FDCWD, fname, UIO_SYSSPACE,
852 	    tvp, UIO_SYSSPACE);
853 	LFREEPATH(fname);
854 	return (error);
855 }
856 #endif
857 
858 static int
linux_utimensat_nsec_valid(l_long nsec)859 linux_utimensat_nsec_valid(l_long nsec)
860 {
861 
862 	if (nsec == LINUX_UTIME_OMIT || nsec == LINUX_UTIME_NOW)
863 		return (0);
864 	if (nsec >= 0 && nsec <= 999999999)
865 		return (0);
866 	return (1);
867 }
868 
869 int
linux_utimensat(struct thread * td,struct linux_utimensat_args * args)870 linux_utimensat(struct thread *td, struct linux_utimensat_args *args)
871 {
872 	struct l_timespec l_times[2];
873 	struct timespec times[2], *timesp = NULL;
874 	char *path = NULL;
875 	int error, dfd, flags = 0;
876 
877 	dfd = (args->dfd == LINUX_AT_FDCWD) ? AT_FDCWD : args->dfd;
878 
879 #ifdef DEBUG
880 	if (ldebug(utimensat))
881 		printf(ARGS(utimensat, "%d, *"), dfd);
882 #endif
883 
884 	if (args->flags & ~LINUX_AT_SYMLINK_NOFOLLOW)
885 		return (EINVAL);
886 
887 	if (args->times != NULL) {
888 		error = copyin(args->times, l_times, sizeof(l_times));
889 		if (error != 0)
890 			return (error);
891 
892 		if (linux_utimensat_nsec_valid(l_times[0].tv_nsec) != 0 ||
893 		    linux_utimensat_nsec_valid(l_times[1].tv_nsec) != 0)
894 			return (EINVAL);
895 
896 		times[0].tv_sec = l_times[0].tv_sec;
897 		switch (l_times[0].tv_nsec)
898 		{
899 		case LINUX_UTIME_OMIT:
900 			times[0].tv_nsec = UTIME_OMIT;
901 			break;
902 		case LINUX_UTIME_NOW:
903 			times[0].tv_nsec = UTIME_NOW;
904 			break;
905 		default:
906 			times[0].tv_nsec = l_times[0].tv_nsec;
907 		}
908 
909 		times[1].tv_sec = l_times[1].tv_sec;
910 		switch (l_times[1].tv_nsec)
911 		{
912 		case LINUX_UTIME_OMIT:
913 			times[1].tv_nsec = UTIME_OMIT;
914 			break;
915 		case LINUX_UTIME_NOW:
916 			times[1].tv_nsec = UTIME_NOW;
917 			break;
918 		default:
919 			times[1].tv_nsec = l_times[1].tv_nsec;
920 			break;
921 		}
922 		timesp = times;
923 
924 		/* This breaks POSIX, but is what the Linux kernel does
925 		 * _on purpose_ (documented in the man page for utimensat(2)),
926 		 * so we must follow that behaviour. */
927 		if (times[0].tv_nsec == UTIME_OMIT &&
928 		    times[1].tv_nsec == UTIME_OMIT)
929 			return (0);
930 	}
931 
932 	if (args->pathname != NULL)
933 		LCONVPATHEXIST_AT(td, args->pathname, &path, dfd);
934 	else if (args->flags != 0)
935 		return (EINVAL);
936 
937 	if (args->flags & LINUX_AT_SYMLINK_NOFOLLOW)
938 		flags |= AT_SYMLINK_NOFOLLOW;
939 
940 	if (path == NULL)
941 		error = kern_futimens(td, dfd, timesp, UIO_SYSSPACE);
942 	else {
943 		error = kern_utimensat(td, dfd, path, UIO_SYSSPACE, timesp,
944 			UIO_SYSSPACE, flags);
945 		LFREEPATH(path);
946 	}
947 
948 	return (error);
949 }
950 
951 #ifdef LINUX_LEGACY_SYSCALLS
952 int
linux_futimesat(struct thread * td,struct linux_futimesat_args * args)953 linux_futimesat(struct thread *td, struct linux_futimesat_args *args)
954 {
955 	l_timeval ltv[2];
956 	struct timeval tv[2], *tvp = NULL;
957 	char *fname;
958 	int error, dfd;
959 
960 	dfd = (args->dfd == LINUX_AT_FDCWD) ? AT_FDCWD : args->dfd;
961 	LCONVPATHEXIST_AT(td, args->filename, &fname, dfd);
962 
963 #ifdef DEBUG
964 	if (ldebug(futimesat))
965 		printf(ARGS(futimesat, "%s, *"), fname);
966 #endif
967 
968 	if (args->utimes != NULL) {
969 		if ((error = copyin(args->utimes, ltv, sizeof ltv))) {
970 			LFREEPATH(fname);
971 			return (error);
972 		}
973 		tv[0].tv_sec = ltv[0].tv_sec;
974 		tv[0].tv_usec = ltv[0].tv_usec;
975 		tv[1].tv_sec = ltv[1].tv_sec;
976 		tv[1].tv_usec = ltv[1].tv_usec;
977 		tvp = tv;
978 	}
979 
980 	error = kern_utimesat(td, dfd, fname, UIO_SYSSPACE, tvp, UIO_SYSSPACE);
981 	LFREEPATH(fname);
982 	return (error);
983 }
984 #endif
985 
986 int
linux_common_wait(struct thread * td,int pid,int * status,int options,struct rusage * ru)987 linux_common_wait(struct thread *td, int pid, int *status,
988     int options, struct rusage *ru)
989 {
990 	int error, tmpstat;
991 
992 	error = kern_wait(td, pid, &tmpstat, options, ru);
993 	if (error)
994 		return (error);
995 
996 	if (status) {
997 		tmpstat &= 0xffff;
998 		if (WIFSIGNALED(tmpstat))
999 			tmpstat = (tmpstat & 0xffffff80) |
1000 			    bsd_to_linux_signal(WTERMSIG(tmpstat));
1001 		else if (WIFSTOPPED(tmpstat))
1002 			tmpstat = (tmpstat & 0xffff00ff) |
1003 			    (bsd_to_linux_signal(WSTOPSIG(tmpstat)) << 8);
1004 		else if (WIFCONTINUED(tmpstat))
1005 			tmpstat = 0xffff;
1006 		error = copyout(&tmpstat, status, sizeof(int));
1007 	}
1008 
1009 	return (error);
1010 }
1011 
1012 #if defined(__i386__) || (defined(__amd64__) && defined(COMPAT_LINUX32))
1013 int
linux_waitpid(struct thread * td,struct linux_waitpid_args * args)1014 linux_waitpid(struct thread *td, struct linux_waitpid_args *args)
1015 {
1016 	struct linux_wait4_args wait4_args;
1017 
1018 #ifdef DEBUG
1019 	if (ldebug(waitpid))
1020 		printf(ARGS(waitpid, "%d, %p, %d"),
1021 		    args->pid, (void *)args->status, args->options);
1022 #endif
1023 
1024 	wait4_args.pid = args->pid;
1025 	wait4_args.status = args->status;
1026 	wait4_args.options = args->options;
1027 	wait4_args.rusage = NULL;
1028 
1029 	return (linux_wait4(td, &wait4_args));
1030 }
1031 #endif /* __i386__ || (__amd64__ && COMPAT_LINUX32) */
1032 
1033 int
linux_wait4(struct thread * td,struct linux_wait4_args * args)1034 linux_wait4(struct thread *td, struct linux_wait4_args *args)
1035 {
1036 	int error, options;
1037 	struct rusage ru, *rup;
1038 
1039 #ifdef DEBUG
1040 	if (ldebug(wait4))
1041 		printf(ARGS(wait4, "%d, %p, %d, %p"),
1042 		    args->pid, (void *)args->status, args->options,
1043 		    (void *)args->rusage);
1044 #endif
1045 	if (args->options & ~(LINUX_WUNTRACED | LINUX_WNOHANG |
1046 	    LINUX_WCONTINUED | __WCLONE | __WNOTHREAD | __WALL))
1047 		return (EINVAL);
1048 
1049 	options = WEXITED;
1050 	linux_to_bsd_waitopts(args->options, &options);
1051 
1052 	if (args->rusage != NULL)
1053 		rup = &ru;
1054 	else
1055 		rup = NULL;
1056 	error = linux_common_wait(td, args->pid, args->status, options, rup);
1057 	if (error != 0)
1058 		return (error);
1059 	if (args->rusage != NULL)
1060 		error = linux_copyout_rusage(&ru, args->rusage);
1061 	return (error);
1062 }
1063 
1064 int
linux_waitid(struct thread * td,struct linux_waitid_args * args)1065 linux_waitid(struct thread *td, struct linux_waitid_args *args)
1066 {
1067 	int status, options, sig;
1068 	struct __wrusage wru;
1069 	siginfo_t siginfo;
1070 	l_siginfo_t lsi;
1071 	idtype_t idtype;
1072 	struct proc *p;
1073 	int error;
1074 
1075 	options = 0;
1076 	linux_to_bsd_waitopts(args->options, &options);
1077 
1078 	if (options & ~(WNOHANG | WNOWAIT | WEXITED | WUNTRACED | WCONTINUED))
1079 		return (EINVAL);
1080 	if (!(options & (WEXITED | WUNTRACED | WCONTINUED)))
1081 		return (EINVAL);
1082 
1083 	switch (args->idtype) {
1084 	case LINUX_P_ALL:
1085 		idtype = P_ALL;
1086 		break;
1087 	case LINUX_P_PID:
1088 		if (args->id <= 0)
1089 			return (EINVAL);
1090 		idtype = P_PID;
1091 		break;
1092 	case LINUX_P_PGID:
1093 		if (args->id <= 0)
1094 			return (EINVAL);
1095 		idtype = P_PGID;
1096 		break;
1097 	default:
1098 		return (EINVAL);
1099 	}
1100 
1101 	error = kern_wait6(td, idtype, args->id, &status, options,
1102 	    &wru, &siginfo);
1103 	if (error != 0)
1104 		return (error);
1105 	if (args->rusage != NULL) {
1106 		error = linux_copyout_rusage(&wru.wru_children,
1107 		    args->rusage);
1108 		if (error != 0)
1109 			return (error);
1110 	}
1111 	if (args->info != NULL) {
1112 		p = td->td_proc;
1113 		bzero(&lsi, sizeof(lsi));
1114 		if (td->td_retval[0] != 0) {
1115 			sig = bsd_to_linux_signal(siginfo.si_signo);
1116 			siginfo_to_lsiginfo(&siginfo, &lsi, sig);
1117 		}
1118 		error = copyout(&lsi, args->info, sizeof(lsi));
1119 	}
1120 	td->td_retval[0] = 0;
1121 
1122 	return (error);
1123 }
1124 
1125 #ifdef LINUX_LEGACY_SYSCALLS
1126 int
linux_mknod(struct thread * td,struct linux_mknod_args * args)1127 linux_mknod(struct thread *td, struct linux_mknod_args *args)
1128 {
1129 	char *path;
1130 	int error;
1131 
1132 	LCONVPATHCREAT(td, args->path, &path);
1133 
1134 #ifdef DEBUG
1135 	if (ldebug(mknod))
1136 		printf(ARGS(mknod, "%s, %d, %ju"), path, args->mode,
1137 		    (uintmax_t)args->dev);
1138 #endif
1139 
1140 	switch (args->mode & S_IFMT) {
1141 	case S_IFIFO:
1142 	case S_IFSOCK:
1143 		error = kern_mkfifoat(td, AT_FDCWD, path, UIO_SYSSPACE,
1144 		    args->mode);
1145 		break;
1146 
1147 	case S_IFCHR:
1148 	case S_IFBLK:
1149 		error = kern_mknodat(td, AT_FDCWD, path, UIO_SYSSPACE,
1150 		    args->mode, args->dev);
1151 		break;
1152 
1153 	case S_IFDIR:
1154 		error = EPERM;
1155 		break;
1156 
1157 	case 0:
1158 		args->mode |= S_IFREG;
1159 		/* FALLTHROUGH */
1160 	case S_IFREG:
1161 		error = kern_openat(td, AT_FDCWD, path, UIO_SYSSPACE,
1162 		    O_WRONLY | O_CREAT | O_TRUNC, args->mode);
1163 		if (error == 0)
1164 			kern_close(td, td->td_retval[0]);
1165 		break;
1166 
1167 	default:
1168 		error = EINVAL;
1169 		break;
1170 	}
1171 	LFREEPATH(path);
1172 	return (error);
1173 }
1174 #endif
1175 
1176 int
linux_mknodat(struct thread * td,struct linux_mknodat_args * args)1177 linux_mknodat(struct thread *td, struct linux_mknodat_args *args)
1178 {
1179 	char *path;
1180 	int error, dfd;
1181 
1182 	dfd = (args->dfd == LINUX_AT_FDCWD) ? AT_FDCWD : args->dfd;
1183 	LCONVPATHCREAT_AT(td, args->filename, &path, dfd);
1184 
1185 #ifdef DEBUG
1186 	if (ldebug(mknodat))
1187 		printf(ARGS(mknodat, "%s, %d, %d"), path, args->mode, args->dev);
1188 #endif
1189 
1190 	switch (args->mode & S_IFMT) {
1191 	case S_IFIFO:
1192 	case S_IFSOCK:
1193 		error = kern_mkfifoat(td, dfd, path, UIO_SYSSPACE, args->mode);
1194 		break;
1195 
1196 	case S_IFCHR:
1197 	case S_IFBLK:
1198 		error = kern_mknodat(td, dfd, path, UIO_SYSSPACE, args->mode,
1199 		    args->dev);
1200 		break;
1201 
1202 	case S_IFDIR:
1203 		error = EPERM;
1204 		break;
1205 
1206 	case 0:
1207 		args->mode |= S_IFREG;
1208 		/* FALLTHROUGH */
1209 	case S_IFREG:
1210 		error = kern_openat(td, dfd, path, UIO_SYSSPACE,
1211 		    O_WRONLY | O_CREAT | O_TRUNC, args->mode);
1212 		if (error == 0)
1213 			kern_close(td, td->td_retval[0]);
1214 		break;
1215 
1216 	default:
1217 		error = EINVAL;
1218 		break;
1219 	}
1220 	LFREEPATH(path);
1221 	return (error);
1222 }
1223 
1224 /*
1225  * UGH! This is just about the dumbest idea I've ever heard!!
1226  */
1227 int
linux_personality(struct thread * td,struct linux_personality_args * args)1228 linux_personality(struct thread *td, struct linux_personality_args *args)
1229 {
1230 	struct linux_pemuldata *pem;
1231 	struct proc *p = td->td_proc;
1232 	uint32_t old;
1233 
1234 #ifdef DEBUG
1235 	if (ldebug(personality))
1236 		printf(ARGS(personality, "%u"), args->per);
1237 #endif
1238 
1239 	PROC_LOCK(p);
1240 	pem = pem_find(p);
1241 	old = pem->persona;
1242 	if (args->per != 0xffffffff)
1243 		pem->persona = args->per;
1244 	PROC_UNLOCK(p);
1245 
1246 	td->td_retval[0] = old;
1247 	return (0);
1248 }
1249 
1250 struct l_itimerval {
1251 	l_timeval it_interval;
1252 	l_timeval it_value;
1253 };
1254 
1255 #define	B2L_ITIMERVAL(bip, lip)						\
1256 	(bip)->it_interval.tv_sec = (lip)->it_interval.tv_sec;		\
1257 	(bip)->it_interval.tv_usec = (lip)->it_interval.tv_usec;	\
1258 	(bip)->it_value.tv_sec = (lip)->it_value.tv_sec;		\
1259 	(bip)->it_value.tv_usec = (lip)->it_value.tv_usec;
1260 
1261 int
linux_setitimer(struct thread * td,struct linux_setitimer_args * uap)1262 linux_setitimer(struct thread *td, struct linux_setitimer_args *uap)
1263 {
1264 	int error;
1265 	struct l_itimerval ls;
1266 	struct itimerval aitv, oitv;
1267 
1268 #ifdef DEBUG
1269 	if (ldebug(setitimer))
1270 		printf(ARGS(setitimer, "%p, %p"),
1271 		    (void *)uap->itv, (void *)uap->oitv);
1272 #endif
1273 
1274 	if (uap->itv == NULL) {
1275 		uap->itv = uap->oitv;
1276 		return (linux_getitimer(td, (struct linux_getitimer_args *)uap));
1277 	}
1278 
1279 	error = copyin(uap->itv, &ls, sizeof(ls));
1280 	if (error != 0)
1281 		return (error);
1282 	B2L_ITIMERVAL(&aitv, &ls);
1283 #ifdef DEBUG
1284 	if (ldebug(setitimer)) {
1285 		printf("setitimer: value: sec: %jd, usec: %ld\n",
1286 		    (intmax_t)aitv.it_value.tv_sec, aitv.it_value.tv_usec);
1287 		printf("setitimer: interval: sec: %jd, usec: %ld\n",
1288 		    (intmax_t)aitv.it_interval.tv_sec, aitv.it_interval.tv_usec);
1289 	}
1290 #endif
1291 	error = kern_setitimer(td, uap->which, &aitv, &oitv);
1292 	if (error != 0 || uap->oitv == NULL)
1293 		return (error);
1294 	B2L_ITIMERVAL(&ls, &oitv);
1295 
1296 	return (copyout(&ls, uap->oitv, sizeof(ls)));
1297 }
1298 
1299 int
linux_getitimer(struct thread * td,struct linux_getitimer_args * uap)1300 linux_getitimer(struct thread *td, struct linux_getitimer_args *uap)
1301 {
1302 	int error;
1303 	struct l_itimerval ls;
1304 	struct itimerval aitv;
1305 
1306 #ifdef DEBUG
1307 	if (ldebug(getitimer))
1308 		printf(ARGS(getitimer, "%p"), (void *)uap->itv);
1309 #endif
1310 	error = kern_getitimer(td, uap->which, &aitv);
1311 	if (error != 0)
1312 		return (error);
1313 	B2L_ITIMERVAL(&ls, &aitv);
1314 	return (copyout(&ls, uap->itv, sizeof(ls)));
1315 }
1316 
1317 #if defined(__i386__) || (defined(__amd64__) && defined(COMPAT_LINUX32))
1318 int
linux_nice(struct thread * td,struct linux_nice_args * args)1319 linux_nice(struct thread *td, struct linux_nice_args *args)
1320 {
1321 	struct setpriority_args bsd_args;
1322 
1323 	bsd_args.which = PRIO_PROCESS;
1324 	bsd_args.who = 0;		/* current process */
1325 	bsd_args.prio = args->inc;
1326 	return (sys_setpriority(td, &bsd_args));
1327 }
1328 #endif /* __i386__ || (__amd64__ && COMPAT_LINUX32) */
1329 
1330 int
linux_setgroups(struct thread * td,struct linux_setgroups_args * args)1331 linux_setgroups(struct thread *td, struct linux_setgroups_args *args)
1332 {
1333 	struct ucred *newcred, *oldcred;
1334 	l_gid_t *linux_gidset;
1335 	gid_t *bsd_gidset;
1336 	int ngrp, error;
1337 	struct proc *p;
1338 
1339 	ngrp = args->gidsetsize;
1340 	if (ngrp < 0 || ngrp >= ngroups_max + 1)
1341 		return (EINVAL);
1342 	linux_gidset = malloc(ngrp * sizeof(*linux_gidset), M_LINUX, M_WAITOK);
1343 	error = copyin(args->grouplist, linux_gidset, ngrp * sizeof(l_gid_t));
1344 	if (error)
1345 		goto out;
1346 	newcred = crget();
1347 	crextend(newcred, ngrp + 1);
1348 	p = td->td_proc;
1349 	PROC_LOCK(p);
1350 	oldcred = p->p_ucred;
1351 	crcopy(newcred, oldcred);
1352 
1353 	/*
1354 	 * cr_groups[0] holds egid. Setting the whole set from
1355 	 * the supplied set will cause egid to be changed too.
1356 	 * Keep cr_groups[0] unchanged to prevent that.
1357 	 */
1358 
1359 	if ((error = priv_check_cred(oldcred, PRIV_CRED_SETGROUPS, 0)) != 0) {
1360 		PROC_UNLOCK(p);
1361 		crfree(newcred);
1362 		goto out;
1363 	}
1364 
1365 	if (ngrp > 0) {
1366 		newcred->cr_ngroups = ngrp + 1;
1367 
1368 		bsd_gidset = newcred->cr_groups;
1369 		ngrp--;
1370 		while (ngrp >= 0) {
1371 			bsd_gidset[ngrp + 1] = linux_gidset[ngrp];
1372 			ngrp--;
1373 		}
1374 	} else
1375 		newcred->cr_ngroups = 1;
1376 
1377 	setsugid(p);
1378 	proc_set_cred(p, newcred);
1379 	PROC_UNLOCK(p);
1380 	crfree(oldcred);
1381 	error = 0;
1382 out:
1383 	free(linux_gidset, M_LINUX);
1384 	return (error);
1385 }
1386 
1387 int
linux_getgroups(struct thread * td,struct linux_getgroups_args * args)1388 linux_getgroups(struct thread *td, struct linux_getgroups_args *args)
1389 {
1390 	struct ucred *cred;
1391 	l_gid_t *linux_gidset;
1392 	gid_t *bsd_gidset;
1393 	int bsd_gidsetsz, ngrp, error;
1394 
1395 	cred = td->td_ucred;
1396 	bsd_gidset = cred->cr_groups;
1397 	bsd_gidsetsz = cred->cr_ngroups - 1;
1398 
1399 	/*
1400 	 * cr_groups[0] holds egid. Returning the whole set
1401 	 * here will cause a duplicate. Exclude cr_groups[0]
1402 	 * to prevent that.
1403 	 */
1404 
1405 	if ((ngrp = args->gidsetsize) == 0) {
1406 		td->td_retval[0] = bsd_gidsetsz;
1407 		return (0);
1408 	}
1409 
1410 	if (ngrp < bsd_gidsetsz)
1411 		return (EINVAL);
1412 
1413 	ngrp = 0;
1414 	linux_gidset = malloc(bsd_gidsetsz * sizeof(*linux_gidset),
1415 	    M_LINUX, M_WAITOK);
1416 	while (ngrp < bsd_gidsetsz) {
1417 		linux_gidset[ngrp] = bsd_gidset[ngrp + 1];
1418 		ngrp++;
1419 	}
1420 
1421 	error = copyout(linux_gidset, args->grouplist, ngrp * sizeof(l_gid_t));
1422 	free(linux_gidset, M_LINUX);
1423 	if (error)
1424 		return (error);
1425 
1426 	td->td_retval[0] = ngrp;
1427 	return (0);
1428 }
1429 
1430 int
linux_setrlimit(struct thread * td,struct linux_setrlimit_args * args)1431 linux_setrlimit(struct thread *td, struct linux_setrlimit_args *args)
1432 {
1433 	struct rlimit bsd_rlim;
1434 	struct l_rlimit rlim;
1435 	u_int which;
1436 	int error;
1437 
1438 #ifdef DEBUG
1439 	if (ldebug(setrlimit))
1440 		printf(ARGS(setrlimit, "%d, %p"),
1441 		    args->resource, (void *)args->rlim);
1442 #endif
1443 
1444 	if (args->resource >= LINUX_RLIM_NLIMITS)
1445 		return (EINVAL);
1446 
1447 	which = linux_to_bsd_resource[args->resource];
1448 	if (which == -1)
1449 		return (EINVAL);
1450 
1451 	error = copyin(args->rlim, &rlim, sizeof(rlim));
1452 	if (error)
1453 		return (error);
1454 
1455 	bsd_rlim.rlim_cur = (rlim_t)rlim.rlim_cur;
1456 	bsd_rlim.rlim_max = (rlim_t)rlim.rlim_max;
1457 	return (kern_setrlimit(td, which, &bsd_rlim));
1458 }
1459 
1460 #if defined(__i386__) || (defined(__amd64__) && defined(COMPAT_LINUX32))
1461 int
linux_old_getrlimit(struct thread * td,struct linux_old_getrlimit_args * args)1462 linux_old_getrlimit(struct thread *td, struct linux_old_getrlimit_args *args)
1463 {
1464 	struct l_rlimit rlim;
1465 	struct rlimit bsd_rlim;
1466 	u_int which;
1467 
1468 #ifdef DEBUG
1469 	if (ldebug(old_getrlimit))
1470 		printf(ARGS(old_getrlimit, "%d, %p"),
1471 		    args->resource, (void *)args->rlim);
1472 #endif
1473 
1474 	if (args->resource >= LINUX_RLIM_NLIMITS)
1475 		return (EINVAL);
1476 
1477 	which = linux_to_bsd_resource[args->resource];
1478 	if (which == -1)
1479 		return (EINVAL);
1480 
1481 	lim_rlimit(td, which, &bsd_rlim);
1482 
1483 #ifdef COMPAT_LINUX32
1484 	rlim.rlim_cur = (unsigned int)bsd_rlim.rlim_cur;
1485 	if (rlim.rlim_cur == UINT_MAX)
1486 		rlim.rlim_cur = INT_MAX;
1487 	rlim.rlim_max = (unsigned int)bsd_rlim.rlim_max;
1488 	if (rlim.rlim_max == UINT_MAX)
1489 		rlim.rlim_max = INT_MAX;
1490 #else
1491 	rlim.rlim_cur = (unsigned long)bsd_rlim.rlim_cur;
1492 	if (rlim.rlim_cur == ULONG_MAX)
1493 		rlim.rlim_cur = LONG_MAX;
1494 	rlim.rlim_max = (unsigned long)bsd_rlim.rlim_max;
1495 	if (rlim.rlim_max == ULONG_MAX)
1496 		rlim.rlim_max = LONG_MAX;
1497 #endif
1498 	return (copyout(&rlim, args->rlim, sizeof(rlim)));
1499 }
1500 #endif /* __i386__ || (__amd64__ && COMPAT_LINUX32) */
1501 
1502 int
linux_getrlimit(struct thread * td,struct linux_getrlimit_args * args)1503 linux_getrlimit(struct thread *td, struct linux_getrlimit_args *args)
1504 {
1505 	struct l_rlimit rlim;
1506 	struct rlimit bsd_rlim;
1507 	u_int which;
1508 
1509 #ifdef DEBUG
1510 	if (ldebug(getrlimit))
1511 		printf(ARGS(getrlimit, "%d, %p"),
1512 		    args->resource, (void *)args->rlim);
1513 #endif
1514 
1515 	if (args->resource >= LINUX_RLIM_NLIMITS)
1516 		return (EINVAL);
1517 
1518 	which = linux_to_bsd_resource[args->resource];
1519 	if (which == -1)
1520 		return (EINVAL);
1521 
1522 	lim_rlimit(td, which, &bsd_rlim);
1523 
1524 	rlim.rlim_cur = (l_ulong)bsd_rlim.rlim_cur;
1525 	rlim.rlim_max = (l_ulong)bsd_rlim.rlim_max;
1526 	return (copyout(&rlim, args->rlim, sizeof(rlim)));
1527 }
1528 
1529 int
linux_sched_setscheduler(struct thread * td,struct linux_sched_setscheduler_args * args)1530 linux_sched_setscheduler(struct thread *td,
1531     struct linux_sched_setscheduler_args *args)
1532 {
1533 	struct sched_param sched_param;
1534 	struct thread *tdt;
1535 	int error, policy;
1536 
1537 #ifdef DEBUG
1538 	if (ldebug(sched_setscheduler))
1539 		printf(ARGS(sched_setscheduler, "%d, %d, %p"),
1540 		    args->pid, args->policy, (const void *)args->param);
1541 #endif
1542 
1543 	switch (args->policy) {
1544 	case LINUX_SCHED_OTHER:
1545 		policy = SCHED_OTHER;
1546 		break;
1547 	case LINUX_SCHED_FIFO:
1548 		policy = SCHED_FIFO;
1549 		break;
1550 	case LINUX_SCHED_RR:
1551 		policy = SCHED_RR;
1552 		break;
1553 	default:
1554 		return (EINVAL);
1555 	}
1556 
1557 	error = copyin(args->param, &sched_param, sizeof(sched_param));
1558 	if (error)
1559 		return (error);
1560 
1561 	tdt = linux_tdfind(td, args->pid, -1);
1562 	if (tdt == NULL)
1563 		return (ESRCH);
1564 
1565 	error = kern_sched_setscheduler(td, tdt, policy, &sched_param);
1566 	PROC_UNLOCK(tdt->td_proc);
1567 	return (error);
1568 }
1569 
1570 int
linux_sched_getscheduler(struct thread * td,struct linux_sched_getscheduler_args * args)1571 linux_sched_getscheduler(struct thread *td,
1572     struct linux_sched_getscheduler_args *args)
1573 {
1574 	struct thread *tdt;
1575 	int error, policy;
1576 
1577 #ifdef DEBUG
1578 	if (ldebug(sched_getscheduler))
1579 		printf(ARGS(sched_getscheduler, "%d"), args->pid);
1580 #endif
1581 
1582 	tdt = linux_tdfind(td, args->pid, -1);
1583 	if (tdt == NULL)
1584 		return (ESRCH);
1585 
1586 	error = kern_sched_getscheduler(td, tdt, &policy);
1587 	PROC_UNLOCK(tdt->td_proc);
1588 
1589 	switch (policy) {
1590 	case SCHED_OTHER:
1591 		td->td_retval[0] = LINUX_SCHED_OTHER;
1592 		break;
1593 	case SCHED_FIFO:
1594 		td->td_retval[0] = LINUX_SCHED_FIFO;
1595 		break;
1596 	case SCHED_RR:
1597 		td->td_retval[0] = LINUX_SCHED_RR;
1598 		break;
1599 	}
1600 	return (error);
1601 }
1602 
1603 int
linux_sched_get_priority_max(struct thread * td,struct linux_sched_get_priority_max_args * args)1604 linux_sched_get_priority_max(struct thread *td,
1605     struct linux_sched_get_priority_max_args *args)
1606 {
1607 	struct sched_get_priority_max_args bsd;
1608 
1609 #ifdef DEBUG
1610 	if (ldebug(sched_get_priority_max))
1611 		printf(ARGS(sched_get_priority_max, "%d"), args->policy);
1612 #endif
1613 
1614 	switch (args->policy) {
1615 	case LINUX_SCHED_OTHER:
1616 		bsd.policy = SCHED_OTHER;
1617 		break;
1618 	case LINUX_SCHED_FIFO:
1619 		bsd.policy = SCHED_FIFO;
1620 		break;
1621 	case LINUX_SCHED_RR:
1622 		bsd.policy = SCHED_RR;
1623 		break;
1624 	default:
1625 		return (EINVAL);
1626 	}
1627 	return (sys_sched_get_priority_max(td, &bsd));
1628 }
1629 
1630 int
linux_sched_get_priority_min(struct thread * td,struct linux_sched_get_priority_min_args * args)1631 linux_sched_get_priority_min(struct thread *td,
1632     struct linux_sched_get_priority_min_args *args)
1633 {
1634 	struct sched_get_priority_min_args bsd;
1635 
1636 #ifdef DEBUG
1637 	if (ldebug(sched_get_priority_min))
1638 		printf(ARGS(sched_get_priority_min, "%d"), args->policy);
1639 #endif
1640 
1641 	switch (args->policy) {
1642 	case LINUX_SCHED_OTHER:
1643 		bsd.policy = SCHED_OTHER;
1644 		break;
1645 	case LINUX_SCHED_FIFO:
1646 		bsd.policy = SCHED_FIFO;
1647 		break;
1648 	case LINUX_SCHED_RR:
1649 		bsd.policy = SCHED_RR;
1650 		break;
1651 	default:
1652 		return (EINVAL);
1653 	}
1654 	return (sys_sched_get_priority_min(td, &bsd));
1655 }
1656 
1657 #define REBOOT_CAD_ON	0x89abcdef
1658 #define REBOOT_CAD_OFF	0
1659 #define REBOOT_HALT	0xcdef0123
1660 #define REBOOT_RESTART	0x01234567
1661 #define REBOOT_RESTART2	0xA1B2C3D4
1662 #define REBOOT_POWEROFF	0x4321FEDC
1663 #define REBOOT_MAGIC1	0xfee1dead
1664 #define REBOOT_MAGIC2	0x28121969
1665 #define REBOOT_MAGIC2A	0x05121996
1666 #define REBOOT_MAGIC2B	0x16041998
1667 
1668 int
linux_reboot(struct thread * td,struct linux_reboot_args * args)1669 linux_reboot(struct thread *td, struct linux_reboot_args *args)
1670 {
1671 	struct reboot_args bsd_args;
1672 
1673 #ifdef DEBUG
1674 	if (ldebug(reboot))
1675 		printf(ARGS(reboot, "0x%x"), args->cmd);
1676 #endif
1677 
1678 	if (args->magic1 != REBOOT_MAGIC1)
1679 		return (EINVAL);
1680 
1681 	switch (args->magic2) {
1682 	case REBOOT_MAGIC2:
1683 	case REBOOT_MAGIC2A:
1684 	case REBOOT_MAGIC2B:
1685 		break;
1686 	default:
1687 		return (EINVAL);
1688 	}
1689 
1690 	switch (args->cmd) {
1691 	case REBOOT_CAD_ON:
1692 	case REBOOT_CAD_OFF:
1693 		return (priv_check(td, PRIV_REBOOT));
1694 	case REBOOT_HALT:
1695 		bsd_args.opt = RB_HALT;
1696 		break;
1697 	case REBOOT_RESTART:
1698 	case REBOOT_RESTART2:
1699 		bsd_args.opt = 0;
1700 		break;
1701 	case REBOOT_POWEROFF:
1702 		bsd_args.opt = RB_POWEROFF;
1703 		break;
1704 	default:
1705 		return (EINVAL);
1706 	}
1707 	return (sys_reboot(td, &bsd_args));
1708 }
1709 
1710 
1711 int
linux_getpid(struct thread * td,struct linux_getpid_args * args)1712 linux_getpid(struct thread *td, struct linux_getpid_args *args)
1713 {
1714 
1715 #ifdef DEBUG
1716 	if (ldebug(getpid))
1717 		printf(ARGS(getpid, ""));
1718 #endif
1719 	td->td_retval[0] = td->td_proc->p_pid;
1720 
1721 	return (0);
1722 }
1723 
1724 int
linux_gettid(struct thread * td,struct linux_gettid_args * args)1725 linux_gettid(struct thread *td, struct linux_gettid_args *args)
1726 {
1727 	struct linux_emuldata *em;
1728 
1729 #ifdef DEBUG
1730 	if (ldebug(gettid))
1731 		printf(ARGS(gettid, ""));
1732 #endif
1733 
1734 	em = em_find(td);
1735 	KASSERT(em != NULL, ("gettid: emuldata not found.\n"));
1736 
1737 	td->td_retval[0] = em->em_tid;
1738 
1739 	return (0);
1740 }
1741 
1742 
1743 int
linux_getppid(struct thread * td,struct linux_getppid_args * args)1744 linux_getppid(struct thread *td, struct linux_getppid_args *args)
1745 {
1746 
1747 #ifdef DEBUG
1748 	if (ldebug(getppid))
1749 		printf(ARGS(getppid, ""));
1750 #endif
1751 
1752 	td->td_retval[0] = kern_getppid(td);
1753 	return (0);
1754 }
1755 
1756 int
linux_getgid(struct thread * td,struct linux_getgid_args * args)1757 linux_getgid(struct thread *td, struct linux_getgid_args *args)
1758 {
1759 
1760 #ifdef DEBUG
1761 	if (ldebug(getgid))
1762 		printf(ARGS(getgid, ""));
1763 #endif
1764 
1765 	td->td_retval[0] = td->td_ucred->cr_rgid;
1766 	return (0);
1767 }
1768 
1769 int
linux_getuid(struct thread * td,struct linux_getuid_args * args)1770 linux_getuid(struct thread *td, struct linux_getuid_args *args)
1771 {
1772 
1773 #ifdef DEBUG
1774 	if (ldebug(getuid))
1775 		printf(ARGS(getuid, ""));
1776 #endif
1777 
1778 	td->td_retval[0] = td->td_ucred->cr_ruid;
1779 	return (0);
1780 }
1781 
1782 
1783 int
linux_getsid(struct thread * td,struct linux_getsid_args * args)1784 linux_getsid(struct thread *td, struct linux_getsid_args *args)
1785 {
1786 	struct getsid_args bsd;
1787 
1788 #ifdef DEBUG
1789 	if (ldebug(getsid))
1790 		printf(ARGS(getsid, "%i"), args->pid);
1791 #endif
1792 
1793 	bsd.pid = args->pid;
1794 	return (sys_getsid(td, &bsd));
1795 }
1796 
1797 int
linux_nosys(struct thread * td,struct nosys_args * ignore)1798 linux_nosys(struct thread *td, struct nosys_args *ignore)
1799 {
1800 
1801 	return (ENOSYS);
1802 }
1803 
1804 int
linux_getpriority(struct thread * td,struct linux_getpriority_args * args)1805 linux_getpriority(struct thread *td, struct linux_getpriority_args *args)
1806 {
1807 	struct getpriority_args bsd_args;
1808 	int error;
1809 
1810 #ifdef DEBUG
1811 	if (ldebug(getpriority))
1812 		printf(ARGS(getpriority, "%i, %i"), args->which, args->who);
1813 #endif
1814 
1815 	bsd_args.which = args->which;
1816 	bsd_args.who = args->who;
1817 	error = sys_getpriority(td, &bsd_args);
1818 	td->td_retval[0] = 20 - td->td_retval[0];
1819 	return (error);
1820 }
1821 
1822 int
linux_sethostname(struct thread * td,struct linux_sethostname_args * args)1823 linux_sethostname(struct thread *td, struct linux_sethostname_args *args)
1824 {
1825 	int name[2];
1826 
1827 #ifdef DEBUG
1828 	if (ldebug(sethostname))
1829 		printf(ARGS(sethostname, "*, %i"), args->len);
1830 #endif
1831 
1832 	name[0] = CTL_KERN;
1833 	name[1] = KERN_HOSTNAME;
1834 	return (userland_sysctl(td, name, 2, 0, 0, 0, args->hostname,
1835 	    args->len, 0, 0));
1836 }
1837 
1838 int
linux_setdomainname(struct thread * td,struct linux_setdomainname_args * args)1839 linux_setdomainname(struct thread *td, struct linux_setdomainname_args *args)
1840 {
1841 	int name[2];
1842 
1843 #ifdef DEBUG
1844 	if (ldebug(setdomainname))
1845 		printf(ARGS(setdomainname, "*, %i"), args->len);
1846 #endif
1847 
1848 	name[0] = CTL_KERN;
1849 	name[1] = KERN_NISDOMAINNAME;
1850 	return (userland_sysctl(td, name, 2, 0, 0, 0, args->name,
1851 	    args->len, 0, 0));
1852 }
1853 
1854 int
linux_exit_group(struct thread * td,struct linux_exit_group_args * args)1855 linux_exit_group(struct thread *td, struct linux_exit_group_args *args)
1856 {
1857 
1858 #ifdef DEBUG
1859 	if (ldebug(exit_group))
1860 		printf(ARGS(exit_group, "%i"), args->error_code);
1861 #endif
1862 
1863 	LINUX_CTR2(exit_group, "thread(%d) (%d)", td->td_tid,
1864 	    args->error_code);
1865 
1866 	/*
1867 	 * XXX: we should send a signal to the parent if
1868 	 * SIGNAL_EXIT_GROUP is set. We ignore that (temporarily?)
1869 	 * as it doesnt occur often.
1870 	 */
1871 	exit1(td, args->error_code, 0);
1872 		/* NOTREACHED */
1873 }
1874 
1875 #define _LINUX_CAPABILITY_VERSION_1  0x19980330
1876 #define _LINUX_CAPABILITY_VERSION_2  0x20071026
1877 #define _LINUX_CAPABILITY_VERSION_3  0x20080522
1878 
1879 struct l_user_cap_header {
1880 	l_int	version;
1881 	l_int	pid;
1882 };
1883 
1884 struct l_user_cap_data {
1885 	l_int	effective;
1886 	l_int	permitted;
1887 	l_int	inheritable;
1888 };
1889 
1890 int
linux_capget(struct thread * td,struct linux_capget_args * uap)1891 linux_capget(struct thread *td, struct linux_capget_args *uap)
1892 {
1893 	struct l_user_cap_header luch;
1894 	struct l_user_cap_data lucd[2];
1895 	int error, u32s;
1896 
1897 	if (uap->hdrp == NULL)
1898 		return (EFAULT);
1899 
1900 	error = copyin(uap->hdrp, &luch, sizeof(luch));
1901 	if (error != 0)
1902 		return (error);
1903 
1904 	switch (luch.version) {
1905 	case _LINUX_CAPABILITY_VERSION_1:
1906 		u32s = 1;
1907 		break;
1908 	case _LINUX_CAPABILITY_VERSION_2:
1909 	case _LINUX_CAPABILITY_VERSION_3:
1910 		u32s = 2;
1911 		break;
1912 	default:
1913 #ifdef DEBUG
1914 		if (ldebug(capget))
1915 			printf(LMSG("invalid capget capability version 0x%x"),
1916 			    luch.version);
1917 #endif
1918 		luch.version = _LINUX_CAPABILITY_VERSION_1;
1919 		error = copyout(&luch, uap->hdrp, sizeof(luch));
1920 		if (error)
1921 			return (error);
1922 		return (EINVAL);
1923 	}
1924 
1925 	if (luch.pid)
1926 		return (EPERM);
1927 
1928 	if (uap->datap) {
1929 		/*
1930 		 * The current implementation doesn't support setting
1931 		 * a capability (it's essentially a stub) so indicate
1932 		 * that no capabilities are currently set or available
1933 		 * to request.
1934 		 */
1935 		memset(&lucd, 0, u32s * sizeof(lucd[0]));
1936 		error = copyout(&lucd, uap->datap, u32s * sizeof(lucd[0]));
1937 	}
1938 
1939 	return (error);
1940 }
1941 
1942 int
linux_capset(struct thread * td,struct linux_capset_args * uap)1943 linux_capset(struct thread *td, struct linux_capset_args *uap)
1944 {
1945 	struct l_user_cap_header luch;
1946 	struct l_user_cap_data lucd[2];
1947 	int error, i, u32s;
1948 
1949 	if (uap->hdrp == NULL || uap->datap == NULL)
1950 		return (EFAULT);
1951 
1952 	error = copyin(uap->hdrp, &luch, sizeof(luch));
1953 	if (error != 0)
1954 		return (error);
1955 
1956 	switch (luch.version) {
1957 	case _LINUX_CAPABILITY_VERSION_1:
1958 		u32s = 1;
1959 		break;
1960 	case _LINUX_CAPABILITY_VERSION_2:
1961 	case _LINUX_CAPABILITY_VERSION_3:
1962 		u32s = 2;
1963 		break;
1964 	default:
1965 #ifdef DEBUG
1966 		if (ldebug(capset))
1967 			printf(LMSG("invalid capset capability version 0x%x"),
1968 			    luch.version);
1969 #endif
1970 		luch.version = _LINUX_CAPABILITY_VERSION_1;
1971 		error = copyout(&luch, uap->hdrp, sizeof(luch));
1972 		if (error)
1973 			return (error);
1974 		return (EINVAL);
1975 	}
1976 
1977 	if (luch.pid)
1978 		return (EPERM);
1979 
1980 	error = copyin(uap->datap, &lucd, u32s * sizeof(lucd[0]));
1981 	if (error != 0)
1982 		return (error);
1983 
1984 	/* We currently don't support setting any capabilities. */
1985 	for (i = 0; i < u32s; i++) {
1986 		if (lucd[i].effective || lucd[i].permitted ||
1987 		    lucd[i].inheritable) {
1988 			linux_msg(td,
1989 			    "capset[%d] effective=0x%x, permitted=0x%x, "
1990 			    "inheritable=0x%x is not implemented", i,
1991 			    (int)lucd[i].effective, (int)lucd[i].permitted,
1992 			    (int)lucd[i].inheritable);
1993 			return (EPERM);
1994 		}
1995 	}
1996 
1997 	return (0);
1998 }
1999 
2000 int
linux_prctl(struct thread * td,struct linux_prctl_args * args)2001 linux_prctl(struct thread *td, struct linux_prctl_args *args)
2002 {
2003 	int error = 0, max_size;
2004 	struct proc *p = td->td_proc;
2005 	char comm[LINUX_MAX_COMM_LEN];
2006 	int pdeath_signal;
2007 
2008 #ifdef DEBUG
2009 	if (ldebug(prctl))
2010 		printf(ARGS(prctl, "%d, %ju, %ju, %ju, %ju"), args->option,
2011 		    (uintmax_t)args->arg2, (uintmax_t)args->arg3,
2012 		    (uintmax_t)args->arg4, (uintmax_t)args->arg5);
2013 #endif
2014 
2015 	switch (args->option) {
2016 	case LINUX_PR_SET_PDEATHSIG:
2017 		if (!LINUX_SIG_VALID(args->arg2))
2018 			return (EINVAL);
2019 		pdeath_signal = linux_to_bsd_signal(args->arg2);
2020 		return (kern_procctl(td, P_PID, 0, PROC_PDEATHSIG_CTL,
2021 		    &pdeath_signal));
2022 	case LINUX_PR_GET_PDEATHSIG:
2023 		error = kern_procctl(td, P_PID, 0, PROC_PDEATHSIG_STATUS,
2024 		    &pdeath_signal);
2025 		if (error != 0)
2026 			return (error);
2027 		pdeath_signal = bsd_to_linux_signal(pdeath_signal);
2028 		return (copyout(&pdeath_signal,
2029 		    (void *)(register_t)args->arg2,
2030 		    sizeof(pdeath_signal)));
2031 		break;
2032 	case LINUX_PR_GET_KEEPCAPS:
2033 		/*
2034 		 * Indicate that we always clear the effective and
2035 		 * permitted capability sets when the user id becomes
2036 		 * non-zero (actually the capability sets are simply
2037 		 * always zero in the current implementation).
2038 		 */
2039 		td->td_retval[0] = 0;
2040 		break;
2041 	case LINUX_PR_SET_KEEPCAPS:
2042 		/*
2043 		 * Ignore requests to keep the effective and permitted
2044 		 * capability sets when the user id becomes non-zero.
2045 		 */
2046 		break;
2047 	case LINUX_PR_SET_NAME:
2048 		/*
2049 		 * To be on the safe side we need to make sure to not
2050 		 * overflow the size a Linux program expects. We already
2051 		 * do this here in the copyin, so that we don't need to
2052 		 * check on copyout.
2053 		 */
2054 		max_size = MIN(sizeof(comm), sizeof(p->p_comm));
2055 		error = copyinstr((void *)(register_t)args->arg2, comm,
2056 		    max_size, NULL);
2057 
2058 		/* Linux silently truncates the name if it is too long. */
2059 		if (error == ENAMETOOLONG) {
2060 			/*
2061 			 * XXX: copyinstr() isn't documented to populate the
2062 			 * array completely, so do a copyin() to be on the
2063 			 * safe side. This should be changed in case
2064 			 * copyinstr() is changed to guarantee this.
2065 			 */
2066 			error = copyin((void *)(register_t)args->arg2, comm,
2067 			    max_size - 1);
2068 			comm[max_size - 1] = '\0';
2069 		}
2070 		if (error)
2071 			return (error);
2072 
2073 		PROC_LOCK(p);
2074 		strlcpy(p->p_comm, comm, sizeof(p->p_comm));
2075 		PROC_UNLOCK(p);
2076 		break;
2077 	case LINUX_PR_GET_NAME:
2078 		PROC_LOCK(p);
2079 		strlcpy(comm, p->p_comm, sizeof(comm));
2080 		PROC_UNLOCK(p);
2081 		error = copyout(comm, (void *)(register_t)args->arg2,
2082 		    strlen(comm) + 1);
2083 		break;
2084 	default:
2085 		error = EINVAL;
2086 		break;
2087 	}
2088 
2089 	return (error);
2090 }
2091 
2092 int
linux_sched_setparam(struct thread * td,struct linux_sched_setparam_args * uap)2093 linux_sched_setparam(struct thread *td,
2094     struct linux_sched_setparam_args *uap)
2095 {
2096 	struct sched_param sched_param;
2097 	struct thread *tdt;
2098 	int error;
2099 
2100 #ifdef DEBUG
2101 	if (ldebug(sched_setparam))
2102 		printf(ARGS(sched_setparam, "%d, *"), uap->pid);
2103 #endif
2104 
2105 	error = copyin(uap->param, &sched_param, sizeof(sched_param));
2106 	if (error)
2107 		return (error);
2108 
2109 	tdt = linux_tdfind(td, uap->pid, -1);
2110 	if (tdt == NULL)
2111 		return (ESRCH);
2112 
2113 	error = kern_sched_setparam(td, tdt, &sched_param);
2114 	PROC_UNLOCK(tdt->td_proc);
2115 	return (error);
2116 }
2117 
2118 int
linux_sched_getparam(struct thread * td,struct linux_sched_getparam_args * uap)2119 linux_sched_getparam(struct thread *td,
2120     struct linux_sched_getparam_args *uap)
2121 {
2122 	struct sched_param sched_param;
2123 	struct thread *tdt;
2124 	int error;
2125 
2126 #ifdef DEBUG
2127 	if (ldebug(sched_getparam))
2128 		printf(ARGS(sched_getparam, "%d, *"), uap->pid);
2129 #endif
2130 
2131 	tdt = linux_tdfind(td, uap->pid, -1);
2132 	if (tdt == NULL)
2133 		return (ESRCH);
2134 
2135 	error = kern_sched_getparam(td, tdt, &sched_param);
2136 	PROC_UNLOCK(tdt->td_proc);
2137 	if (error == 0)
2138 		error = copyout(&sched_param, uap->param,
2139 		    sizeof(sched_param));
2140 	return (error);
2141 }
2142 
2143 /*
2144  * Get affinity of a process.
2145  */
2146 int
linux_sched_getaffinity(struct thread * td,struct linux_sched_getaffinity_args * args)2147 linux_sched_getaffinity(struct thread *td,
2148     struct linux_sched_getaffinity_args *args)
2149 {
2150 	int error;
2151 	struct thread *tdt;
2152 
2153 #ifdef DEBUG
2154 	if (ldebug(sched_getaffinity))
2155 		printf(ARGS(sched_getaffinity, "%d, %d, *"), args->pid,
2156 		    args->len);
2157 #endif
2158 	if (args->len < sizeof(cpuset_t))
2159 		return (EINVAL);
2160 
2161 	tdt = linux_tdfind(td, args->pid, -1);
2162 	if (tdt == NULL)
2163 		return (ESRCH);
2164 
2165 	PROC_UNLOCK(tdt->td_proc);
2166 
2167 	error = kern_cpuset_getaffinity(td, CPU_LEVEL_WHICH, CPU_WHICH_TID,
2168 	    tdt->td_tid, sizeof(cpuset_t), (cpuset_t *)args->user_mask_ptr);
2169 	if (error == 0)
2170 		td->td_retval[0] = sizeof(cpuset_t);
2171 
2172 	return (error);
2173 }
2174 
2175 /*
2176  *  Set affinity of a process.
2177  */
2178 int
linux_sched_setaffinity(struct thread * td,struct linux_sched_setaffinity_args * args)2179 linux_sched_setaffinity(struct thread *td,
2180     struct linux_sched_setaffinity_args *args)
2181 {
2182 	struct thread *tdt;
2183 
2184 #ifdef DEBUG
2185 	if (ldebug(sched_setaffinity))
2186 		printf(ARGS(sched_setaffinity, "%d, %d, *"), args->pid,
2187 		    args->len);
2188 #endif
2189 	if (args->len < sizeof(cpuset_t))
2190 		return (EINVAL);
2191 
2192 	tdt = linux_tdfind(td, args->pid, -1);
2193 	if (tdt == NULL)
2194 		return (ESRCH);
2195 
2196 	PROC_UNLOCK(tdt->td_proc);
2197 
2198 	return (kern_cpuset_setaffinity(td, CPU_LEVEL_WHICH, CPU_WHICH_TID,
2199 	    tdt->td_tid, sizeof(cpuset_t), (cpuset_t *) args->user_mask_ptr));
2200 }
2201 
2202 struct linux_rlimit64 {
2203 	uint64_t	rlim_cur;
2204 	uint64_t	rlim_max;
2205 };
2206 
2207 int
linux_prlimit64(struct thread * td,struct linux_prlimit64_args * args)2208 linux_prlimit64(struct thread *td, struct linux_prlimit64_args *args)
2209 {
2210 	struct rlimit rlim, nrlim;
2211 	struct linux_rlimit64 lrlim;
2212 	struct proc *p;
2213 	u_int which;
2214 	int flags;
2215 	int error;
2216 
2217 #ifdef DEBUG
2218 	if (ldebug(prlimit64))
2219 		printf(ARGS(prlimit64, "%d, %d, %p, %p"), args->pid,
2220 		    args->resource, (void *)args->new, (void *)args->old);
2221 #endif
2222 
2223 	if (args->resource >= LINUX_RLIM_NLIMITS)
2224 		return (EINVAL);
2225 
2226 	which = linux_to_bsd_resource[args->resource];
2227 	if (which == -1)
2228 		return (EINVAL);
2229 
2230 	if (args->new != NULL) {
2231 		/*
2232 		 * Note. Unlike FreeBSD where rlim is signed 64-bit Linux
2233 		 * rlim is unsigned 64-bit. FreeBSD treats negative limits
2234 		 * as INFINITY so we do not need a conversion even.
2235 		 */
2236 		error = copyin(args->new, &nrlim, sizeof(nrlim));
2237 		if (error != 0)
2238 			return (error);
2239 	}
2240 
2241 	flags = PGET_HOLD | PGET_NOTWEXIT;
2242 	if (args->new != NULL)
2243 		flags |= PGET_CANDEBUG;
2244 	else
2245 		flags |= PGET_CANSEE;
2246 	error = pget(args->pid, flags, &p);
2247 	if (error != 0)
2248 		return (error);
2249 
2250 	if (args->old != NULL) {
2251 		PROC_LOCK(p);
2252 		lim_rlimit_proc(p, which, &rlim);
2253 		PROC_UNLOCK(p);
2254 		if (rlim.rlim_cur == RLIM_INFINITY)
2255 			lrlim.rlim_cur = LINUX_RLIM_INFINITY;
2256 		else
2257 			lrlim.rlim_cur = rlim.rlim_cur;
2258 		if (rlim.rlim_max == RLIM_INFINITY)
2259 			lrlim.rlim_max = LINUX_RLIM_INFINITY;
2260 		else
2261 			lrlim.rlim_max = rlim.rlim_max;
2262 		error = copyout(&lrlim, args->old, sizeof(lrlim));
2263 		if (error != 0)
2264 			goto out;
2265 	}
2266 
2267 	if (args->new != NULL)
2268 		error = kern_proc_setrlimit(td, p, which, &nrlim);
2269 
2270  out:
2271 	PRELE(p);
2272 	return (error);
2273 }
2274 
2275 int
linux_pselect6(struct thread * td,struct linux_pselect6_args * args)2276 linux_pselect6(struct thread *td, struct linux_pselect6_args *args)
2277 {
2278 	struct timeval utv, tv0, tv1, *tvp;
2279 	struct l_pselect6arg lpse6;
2280 	struct l_timespec lts;
2281 	struct timespec uts;
2282 	l_sigset_t l_ss;
2283 	sigset_t *ssp;
2284 	sigset_t ss;
2285 	int error;
2286 
2287 	ssp = NULL;
2288 	if (args->sig != NULL) {
2289 		error = copyin(args->sig, &lpse6, sizeof(lpse6));
2290 		if (error != 0)
2291 			return (error);
2292 		if (lpse6.ss_len != sizeof(l_ss))
2293 			return (EINVAL);
2294 		if (lpse6.ss != 0) {
2295 			error = copyin(PTRIN(lpse6.ss), &l_ss,
2296 			    sizeof(l_ss));
2297 			if (error != 0)
2298 				return (error);
2299 			linux_to_bsd_sigset(&l_ss, &ss);
2300 			ssp = &ss;
2301 		}
2302 	}
2303 
2304 	/*
2305 	 * Currently glibc changes nanosecond number to microsecond.
2306 	 * This mean losing precision but for now it is hardly seen.
2307 	 */
2308 	if (args->tsp != NULL) {
2309 		error = copyin(args->tsp, &lts, sizeof(lts));
2310 		if (error != 0)
2311 			return (error);
2312 		error = linux_to_native_timespec(&uts, &lts);
2313 		if (error != 0)
2314 			return (error);
2315 
2316 		TIMESPEC_TO_TIMEVAL(&utv, &uts);
2317 		if (itimerfix(&utv))
2318 			return (EINVAL);
2319 
2320 		microtime(&tv0);
2321 		tvp = &utv;
2322 	} else
2323 		tvp = NULL;
2324 
2325 	error = kern_pselect(td, args->nfds, args->readfds, args->writefds,
2326 	    args->exceptfds, tvp, ssp, LINUX_NFDBITS);
2327 
2328 	if (error == 0 && args->tsp != NULL) {
2329 		if (td->td_retval[0] != 0) {
2330 			/*
2331 			 * Compute how much time was left of the timeout,
2332 			 * by subtracting the current time and the time
2333 			 * before we started the call, and subtracting
2334 			 * that result from the user-supplied value.
2335 			 */
2336 
2337 			microtime(&tv1);
2338 			timevalsub(&tv1, &tv0);
2339 			timevalsub(&utv, &tv1);
2340 			if (utv.tv_sec < 0)
2341 				timevalclear(&utv);
2342 		} else
2343 			timevalclear(&utv);
2344 
2345 		TIMEVAL_TO_TIMESPEC(&utv, &uts);
2346 
2347 		error = native_to_linux_timespec(&lts, &uts);
2348 		if (error == 0)
2349 			error = copyout(&lts, args->tsp, sizeof(lts));
2350 	}
2351 
2352 	return (error);
2353 }
2354 
2355 int
linux_ppoll(struct thread * td,struct linux_ppoll_args * args)2356 linux_ppoll(struct thread *td, struct linux_ppoll_args *args)
2357 {
2358 	struct timespec ts0, ts1;
2359 	struct l_timespec lts;
2360 	struct timespec uts, *tsp;
2361 	l_sigset_t l_ss;
2362 	sigset_t *ssp;
2363 	sigset_t ss;
2364 	int error;
2365 
2366 	if (args->sset != NULL) {
2367 		if (args->ssize != sizeof(l_ss))
2368 			return (EINVAL);
2369 		error = copyin(args->sset, &l_ss, sizeof(l_ss));
2370 		if (error)
2371 			return (error);
2372 		linux_to_bsd_sigset(&l_ss, &ss);
2373 		ssp = &ss;
2374 	} else
2375 		ssp = NULL;
2376 	if (args->tsp != NULL) {
2377 		error = copyin(args->tsp, &lts, sizeof(lts));
2378 		if (error)
2379 			return (error);
2380 		error = linux_to_native_timespec(&uts, &lts);
2381 		if (error != 0)
2382 			return (error);
2383 
2384 		nanotime(&ts0);
2385 		tsp = &uts;
2386 	} else
2387 		tsp = NULL;
2388 
2389 	error = kern_poll(td, args->fds, args->nfds, tsp, ssp);
2390 
2391 	if (error == 0 && args->tsp != NULL) {
2392 		if (td->td_retval[0]) {
2393 			nanotime(&ts1);
2394 			timespecsub(&ts1, &ts0, &ts1);
2395 			timespecsub(&uts, &ts1, &uts);
2396 			if (uts.tv_sec < 0)
2397 				timespecclear(&uts);
2398 		} else
2399 			timespecclear(&uts);
2400 
2401 		error = native_to_linux_timespec(&lts, &uts);
2402 		if (error == 0)
2403 			error = copyout(&lts, args->tsp, sizeof(lts));
2404 	}
2405 
2406 	return (error);
2407 }
2408 
2409 #if defined(DEBUG) || defined(KTR)
2410 /* XXX: can be removed when every ldebug(...) and KTR stuff are removed. */
2411 
2412 #ifdef COMPAT_LINUX32
2413 #define	L_MAXSYSCALL	LINUX32_SYS_MAXSYSCALL
2414 #else
2415 #define	L_MAXSYSCALL	LINUX_SYS_MAXSYSCALL
2416 #endif
2417 
2418 u_char linux_debug_map[howmany(L_MAXSYSCALL, sizeof(u_char))];
2419 
2420 static int
linux_debug(int syscall,int toggle,int global)2421 linux_debug(int syscall, int toggle, int global)
2422 {
2423 
2424 	if (global) {
2425 		char c = toggle ? 0 : 0xff;
2426 
2427 		memset(linux_debug_map, c, sizeof(linux_debug_map));
2428 		return (0);
2429 	}
2430 	if (syscall < 0 || syscall >= L_MAXSYSCALL)
2431 		return (EINVAL);
2432 	if (toggle)
2433 		clrbit(linux_debug_map, syscall);
2434 	else
2435 		setbit(linux_debug_map, syscall);
2436 	return (0);
2437 }
2438 #undef L_MAXSYSCALL
2439 
2440 /*
2441  * Usage: sysctl linux.debug=<syscall_nr>.<0/1>
2442  *
2443  *    E.g.: sysctl linux.debug=21.0
2444  *
2445  * As a special case, syscall "all" will apply to all syscalls globally.
2446  */
2447 #define LINUX_MAX_DEBUGSTR	16
2448 int
linux_sysctl_debug(SYSCTL_HANDLER_ARGS)2449 linux_sysctl_debug(SYSCTL_HANDLER_ARGS)
2450 {
2451 	char value[LINUX_MAX_DEBUGSTR], *p;
2452 	int error, sysc, toggle;
2453 	int global = 0;
2454 
2455 	value[0] = '\0';
2456 	error = sysctl_handle_string(oidp, value, LINUX_MAX_DEBUGSTR, req);
2457 	if (error || req->newptr == NULL)
2458 		return (error);
2459 	for (p = value; *p != '\0' && *p != '.'; p++);
2460 	if (*p == '\0')
2461 		return (EINVAL);
2462 	*p++ = '\0';
2463 	sysc = strtol(value, NULL, 0);
2464 	toggle = strtol(p, NULL, 0);
2465 	if (strcmp(value, "all") == 0)
2466 		global = 1;
2467 	error = linux_debug(sysc, toggle, global);
2468 	return (error);
2469 }
2470 
2471 #endif /* DEBUG || KTR */
2472 
2473 int
linux_sched_rr_get_interval(struct thread * td,struct linux_sched_rr_get_interval_args * uap)2474 linux_sched_rr_get_interval(struct thread *td,
2475     struct linux_sched_rr_get_interval_args *uap)
2476 {
2477 	struct timespec ts;
2478 	struct l_timespec lts;
2479 	struct thread *tdt;
2480 	int error;
2481 
2482 	/*
2483 	 * According to man in case the invalid pid specified
2484 	 * EINVAL should be returned.
2485 	 */
2486 	if (uap->pid < 0)
2487 		return (EINVAL);
2488 
2489 	tdt = linux_tdfind(td, uap->pid, -1);
2490 	if (tdt == NULL)
2491 		return (ESRCH);
2492 
2493 	error = kern_sched_rr_get_interval_td(td, tdt, &ts);
2494 	PROC_UNLOCK(tdt->td_proc);
2495 	if (error != 0)
2496 		return (error);
2497 	error = native_to_linux_timespec(&lts, &ts);
2498 	if (error != 0)
2499 		return (error);
2500 	return (copyout(&lts, uap->interval, sizeof(lts)));
2501 }
2502 
2503 /*
2504  * In case when the Linux thread is the initial thread in
2505  * the thread group thread id is equal to the process id.
2506  * Glibc depends on this magic (assert in pthread_getattr_np.c).
2507  */
2508 struct thread *
linux_tdfind(struct thread * td,lwpid_t tid,pid_t pid)2509 linux_tdfind(struct thread *td, lwpid_t tid, pid_t pid)
2510 {
2511 	struct linux_emuldata *em;
2512 	struct thread *tdt;
2513 	struct proc *p;
2514 
2515 	tdt = NULL;
2516 	if (tid == 0 || tid == td->td_tid) {
2517 		tdt = td;
2518 		PROC_LOCK(tdt->td_proc);
2519 	} else if (tid > PID_MAX)
2520 		tdt = tdfind(tid, pid);
2521 	else {
2522 		/*
2523 		 * Initial thread where the tid equal to the pid.
2524 		 */
2525 		p = pfind(tid);
2526 		if (p != NULL) {
2527 			if (SV_PROC_ABI(p) != SV_ABI_LINUX) {
2528 				/*
2529 				 * p is not a Linuxulator process.
2530 				 */
2531 				PROC_UNLOCK(p);
2532 				return (NULL);
2533 			}
2534 			FOREACH_THREAD_IN_PROC(p, tdt) {
2535 				em = em_find(tdt);
2536 				if (tid == em->em_tid)
2537 					return (tdt);
2538 			}
2539 			PROC_UNLOCK(p);
2540 		}
2541 		return (NULL);
2542 	}
2543 
2544 	return (tdt);
2545 }
2546 
2547 void
linux_to_bsd_waitopts(int options,int * bsdopts)2548 linux_to_bsd_waitopts(int options, int *bsdopts)
2549 {
2550 
2551 	if (options & LINUX_WNOHANG)
2552 		*bsdopts |= WNOHANG;
2553 	if (options & LINUX_WUNTRACED)
2554 		*bsdopts |= WUNTRACED;
2555 	if (options & LINUX_WEXITED)
2556 		*bsdopts |= WEXITED;
2557 	if (options & LINUX_WCONTINUED)
2558 		*bsdopts |= WCONTINUED;
2559 	if (options & LINUX_WNOWAIT)
2560 		*bsdopts |= WNOWAIT;
2561 
2562 	if (options & __WCLONE)
2563 		*bsdopts |= WLINUXCLONE;
2564 }
2565 
2566 int
linux_getrandom(struct thread * td,struct linux_getrandom_args * args)2567 linux_getrandom(struct thread *td, struct linux_getrandom_args *args)
2568 {
2569 	struct uio uio;
2570 	struct iovec iov;
2571 	int error;
2572 
2573 	if (args->flags & ~(LINUX_GRND_NONBLOCK|LINUX_GRND_RANDOM))
2574 		return (EINVAL);
2575 	if (args->count > INT_MAX)
2576 		args->count = INT_MAX;
2577 
2578 	iov.iov_base = args->buf;
2579 	iov.iov_len = args->count;
2580 
2581 	uio.uio_iov = &iov;
2582 	uio.uio_iovcnt = 1;
2583 	uio.uio_resid = iov.iov_len;
2584 	uio.uio_segflg = UIO_USERSPACE;
2585 	uio.uio_rw = UIO_READ;
2586 	uio.uio_td = td;
2587 
2588 	error = read_random_uio(&uio, args->flags & LINUX_GRND_NONBLOCK);
2589 	if (error == 0)
2590 		td->td_retval[0] = args->count - uio.uio_resid;
2591 	return (error);
2592 }
2593 
2594 int
linux_mincore(struct thread * td,struct linux_mincore_args * args)2595 linux_mincore(struct thread *td, struct linux_mincore_args *args)
2596 {
2597 
2598 	/* Needs to be page-aligned */
2599 	if (args->start & PAGE_MASK)
2600 		return (EINVAL);
2601 	return (kern_mincore(td, args->start, args->len, args->vec));
2602 }
2603