xref: /freebsd-12.1/libexec/rtld-elf/rtld.c (revision 2a3873b3)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright 1996, 1997, 1998, 1999, 2000 John D. Polstra.
5  * Copyright 2003 Alexander Kabaev <[email protected]>.
6  * Copyright 2009-2013 Konstantin Belousov <[email protected]>.
7  * Copyright 2012 John Marino <[email protected]>.
8  * Copyright 2014-2017 The FreeBSD Foundation
9  * All rights reserved.
10  *
11  * Portions of this software were developed by Konstantin Belousov
12  * under sponsorship from the FreeBSD Foundation.
13  *
14  * Redistribution and use in source and binary forms, with or without
15  * modification, are permitted provided that the following conditions
16  * are met:
17  * 1. Redistributions of source code must retain the above copyright
18  *    notice, this list of conditions and the following disclaimer.
19  * 2. Redistributions in binary form must reproduce the above copyright
20  *    notice, this list of conditions and the following disclaimer in the
21  *    documentation and/or other materials provided with the distribution.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
24  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
25  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
27  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
28  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
32  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33  */
34 
35 /*
36  * Dynamic linker for ELF.
37  *
38  * John Polstra <[email protected]>.
39  */
40 
41 #include <sys/cdefs.h>
42 __FBSDID("$FreeBSD$");
43 
44 #include <sys/param.h>
45 #include <sys/mount.h>
46 #include <sys/mman.h>
47 #include <sys/stat.h>
48 #include <sys/sysctl.h>
49 #include <sys/uio.h>
50 #include <sys/utsname.h>
51 #include <sys/ktrace.h>
52 
53 #include <dlfcn.h>
54 #include <err.h>
55 #include <errno.h>
56 #include <fcntl.h>
57 #include <stdarg.h>
58 #include <stdio.h>
59 #include <stdlib.h>
60 #include <string.h>
61 #include <unistd.h>
62 
63 #include "debug.h"
64 #include "rtld.h"
65 #include "libmap.h"
66 #include "paths.h"
67 #include "rtld_tls.h"
68 #include "rtld_printf.h"
69 #include "rtld_malloc.h"
70 #include "rtld_utrace.h"
71 #include "notes.h"
72 
73 /* Types. */
74 typedef void (*func_ptr_type)(void);
75 typedef void * (*path_enum_proc) (const char *path, size_t len, void *arg);
76 
77 
78 /* Variables that cannot be static: */
79 extern struct r_debug r_debug; /* For GDB */
80 extern int _thread_autoinit_dummy_decl;
81 extern char* __progname;
82 extern void (*__cleanup)(void);
83 
84 
85 /*
86  * Function declarations.
87  */
88 static const char *basename(const char *);
89 static void digest_dynamic1(Obj_Entry *, int, const Elf_Dyn **,
90     const Elf_Dyn **, const Elf_Dyn **);
91 static void digest_dynamic2(Obj_Entry *, const Elf_Dyn *, const Elf_Dyn *,
92     const Elf_Dyn *);
93 static void digest_dynamic(Obj_Entry *, int);
94 static Obj_Entry *digest_phdr(const Elf_Phdr *, int, caddr_t, const char *);
95 static void distribute_static_tls(Objlist *, RtldLockState *);
96 static Obj_Entry *dlcheck(void *);
97 static int dlclose_locked(void *, RtldLockState *);
98 static Obj_Entry *dlopen_object(const char *name, int fd, Obj_Entry *refobj,
99     int lo_flags, int mode, RtldLockState *lockstate);
100 static Obj_Entry *do_load_object(int, const char *, char *, struct stat *, int);
101 static int do_search_info(const Obj_Entry *obj, int, struct dl_serinfo *);
102 static bool donelist_check(DoneList *, const Obj_Entry *);
103 static void errmsg_restore(char *);
104 static char *errmsg_save(void);
105 static void *fill_search_info(const char *, size_t, void *);
106 static char *find_library(const char *, const Obj_Entry *, int *);
107 static const char *gethints(bool);
108 static void hold_object(Obj_Entry *);
109 static void unhold_object(Obj_Entry *);
110 static void init_dag(Obj_Entry *);
111 static void init_marker(Obj_Entry *);
112 static void init_pagesizes(Elf_Auxinfo **aux_info);
113 static void init_rtld(caddr_t, Elf_Auxinfo **);
114 static void initlist_add_neededs(Needed_Entry *, Objlist *);
115 static void initlist_add_objects(Obj_Entry *, Obj_Entry *, Objlist *);
116 static int initlist_objects_ifunc(Objlist *, bool, int, RtldLockState *);
117 static void linkmap_add(Obj_Entry *);
118 static void linkmap_delete(Obj_Entry *);
119 static void load_filtees(Obj_Entry *, int flags, RtldLockState *);
120 static void unload_filtees(Obj_Entry *, RtldLockState *);
121 static int load_needed_objects(Obj_Entry *, int);
122 static int load_preload_objects(void);
123 static Obj_Entry *load_object(const char *, int fd, const Obj_Entry *, int);
124 static void map_stacks_exec(RtldLockState *);
125 static int obj_disable_relro(Obj_Entry *);
126 static int obj_enforce_relro(Obj_Entry *);
127 static Obj_Entry *obj_from_addr(const void *);
128 static void objlist_call_fini(Objlist *, Obj_Entry *, RtldLockState *);
129 static void objlist_call_init(Objlist *, RtldLockState *);
130 static void objlist_clear(Objlist *);
131 static Objlist_Entry *objlist_find(Objlist *, const Obj_Entry *);
132 static void objlist_init(Objlist *);
133 static void objlist_push_head(Objlist *, Obj_Entry *);
134 static void objlist_push_tail(Objlist *, Obj_Entry *);
135 static void objlist_put_after(Objlist *, Obj_Entry *, Obj_Entry *);
136 static void objlist_remove(Objlist *, Obj_Entry *);
137 static int open_binary_fd(const char *argv0, bool search_in_path);
138 static int parse_args(char* argv[], int argc, bool *use_pathp, int *fdp);
139 static int parse_integer(const char *);
140 static void *path_enumerate(const char *, path_enum_proc, const char *, void *);
141 static void print_usage(const char *argv0);
142 static void release_object(Obj_Entry *);
143 static int relocate_object_dag(Obj_Entry *root, bool bind_now,
144     Obj_Entry *rtldobj, int flags, RtldLockState *lockstate);
145 static int relocate_object(Obj_Entry *obj, bool bind_now, Obj_Entry *rtldobj,
146     int flags, RtldLockState *lockstate);
147 static int relocate_objects(Obj_Entry *, bool, Obj_Entry *, int,
148     RtldLockState *);
149 static int resolve_object_ifunc(Obj_Entry *, bool, int, RtldLockState *);
150 static int rtld_dirname(const char *, char *);
151 static int rtld_dirname_abs(const char *, char *);
152 static void *rtld_dlopen(const char *name, int fd, int mode);
153 static void rtld_exit(void);
154 static void rtld_nop_exit(void);
155 static char *search_library_path(const char *, const char *, const char *,
156     int *);
157 static char *search_library_pathfds(const char *, const char *, int *);
158 static const void **get_program_var_addr(const char *, RtldLockState *);
159 static void set_program_var(const char *, const void *);
160 static int symlook_default(SymLook *, const Obj_Entry *refobj);
161 static int symlook_global(SymLook *, DoneList *);
162 static void symlook_init_from_req(SymLook *, const SymLook *);
163 static int symlook_list(SymLook *, const Objlist *, DoneList *);
164 static int symlook_needed(SymLook *, const Needed_Entry *, DoneList *);
165 static int symlook_obj1_sysv(SymLook *, const Obj_Entry *);
166 static int symlook_obj1_gnu(SymLook *, const Obj_Entry *);
167 static void trace_loaded_objects(Obj_Entry *);
168 static void unlink_object(Obj_Entry *);
169 static void unload_object(Obj_Entry *, RtldLockState *lockstate);
170 static void unref_dag(Obj_Entry *);
171 static void ref_dag(Obj_Entry *);
172 static char *origin_subst_one(Obj_Entry *, char *, const char *,
173     const char *, bool);
174 static char *origin_subst(Obj_Entry *, const char *);
175 static bool obj_resolve_origin(Obj_Entry *obj);
176 static void preinit_main(void);
177 static int  rtld_verify_versions(const Objlist *);
178 static int  rtld_verify_object_versions(Obj_Entry *);
179 static void object_add_name(Obj_Entry *, const char *);
180 static int  object_match_name(const Obj_Entry *, const char *);
181 static void ld_utrace_log(int, void *, void *, size_t, int, const char *);
182 static void rtld_fill_dl_phdr_info(const Obj_Entry *obj,
183     struct dl_phdr_info *phdr_info);
184 static uint32_t gnu_hash(const char *);
185 static bool matched_symbol(SymLook *, const Obj_Entry *, Sym_Match_Result *,
186     const unsigned long);
187 
188 void r_debug_state(struct r_debug *, struct link_map *) __noinline __exported;
189 void _r_debug_postinit(struct link_map *) __noinline __exported;
190 
191 int __sys_openat(int, const char *, int, ...);
192 
193 /*
194  * Data declarations.
195  */
196 static char *error_message;	/* Message for dlerror(), or NULL */
197 struct r_debug r_debug __exported;	/* for GDB; */
198 static bool libmap_disable;	/* Disable libmap */
199 static bool ld_loadfltr;	/* Immediate filters processing */
200 static char *libmap_override;	/* Maps to use in addition to libmap.conf */
201 static bool trust;		/* False for setuid and setgid programs */
202 static bool dangerous_ld_env;	/* True if environment variables have been
203 				   used to affect the libraries loaded */
204 bool ld_bind_not;		/* Disable PLT update */
205 static char *ld_bind_now;	/* Environment variable for immediate binding */
206 static char *ld_debug;		/* Environment variable for debugging */
207 static char *ld_library_path;	/* Environment variable for search path */
208 static char *ld_library_dirs;	/* Environment variable for library descriptors */
209 static char *ld_preload;	/* Environment variable for libraries to
210 				   load first */
211 static const char *ld_elf_hints_path;	/* Environment variable for alternative hints path */
212 static const char *ld_tracing;	/* Called from ldd to print libs */
213 static char *ld_utrace;		/* Use utrace() to log events. */
214 static struct obj_entry_q obj_list;	/* Queue of all loaded objects */
215 static Obj_Entry *obj_main;	/* The main program shared object */
216 static Obj_Entry obj_rtld;	/* The dynamic linker shared object */
217 static unsigned int obj_count;	/* Number of objects in obj_list */
218 static unsigned int obj_loads;	/* Number of loads of objects (gen count) */
219 
220 static Objlist list_global =	/* Objects dlopened with RTLD_GLOBAL */
221   STAILQ_HEAD_INITIALIZER(list_global);
222 static Objlist list_main =	/* Objects loaded at program startup */
223   STAILQ_HEAD_INITIALIZER(list_main);
224 static Objlist list_fini =	/* Objects needing fini() calls */
225   STAILQ_HEAD_INITIALIZER(list_fini);
226 
227 Elf_Sym sym_zero;		/* For resolving undefined weak refs. */
228 
229 #define GDB_STATE(s,m)	r_debug.r_state = s; r_debug_state(&r_debug,m);
230 
231 extern Elf_Dyn _DYNAMIC;
232 #pragma weak _DYNAMIC
233 
234 int dlclose(void *) __exported;
235 char *dlerror(void) __exported;
236 void *dlopen(const char *, int) __exported;
237 void *fdlopen(int, int) __exported;
238 void *dlsym(void *, const char *) __exported;
239 dlfunc_t dlfunc(void *, const char *) __exported;
240 void *dlvsym(void *, const char *, const char *) __exported;
241 int dladdr(const void *, Dl_info *) __exported;
242 void dllockinit(void *, void *(*)(void *), void (*)(void *), void (*)(void *),
243     void (*)(void *), void (*)(void *), void (*)(void *)) __exported;
244 int dlinfo(void *, int , void *) __exported;
245 int dl_iterate_phdr(__dl_iterate_hdr_callback, void *) __exported;
246 int _rtld_addr_phdr(const void *, struct dl_phdr_info *) __exported;
247 int _rtld_get_stack_prot(void) __exported;
248 int _rtld_is_dlopened(void *) __exported;
249 void _rtld_error(const char *, ...) __exported;
250 
251 /* Only here to fix -Wmissing-prototypes warnings */
252 int __getosreldate(void);
253 void __pthread_cxa_finalize(struct dl_phdr_info *a);
254 func_ptr_type _rtld(Elf_Addr *sp, func_ptr_type *exit_proc, Obj_Entry **objp);
255 Elf_Addr _rtld_bind(Obj_Entry *obj, Elf_Size reloff);
256 
257 
258 int npagesizes;
259 static int osreldate;
260 size_t *pagesizes;
261 
262 static int stack_prot = PROT_READ | PROT_WRITE | RTLD_DEFAULT_STACK_EXEC;
263 static int max_stack_flags;
264 
265 /*
266  * Global declarations normally provided by crt1.  The dynamic linker is
267  * not built with crt1, so we have to provide them ourselves.
268  */
269 char *__progname;
270 char **environ;
271 
272 /*
273  * Used to pass argc, argv to init functions.
274  */
275 int main_argc;
276 char **main_argv;
277 
278 /*
279  * Globals to control TLS allocation.
280  */
281 size_t tls_last_offset;		/* Static TLS offset of last module */
282 size_t tls_last_size;		/* Static TLS size of last module */
283 size_t tls_static_space;	/* Static TLS space allocated */
284 static size_t tls_static_max_align;
285 Elf_Addr tls_dtv_generation = 1;	/* Used to detect when dtv size changes */
286 int tls_max_index = 1;		/* Largest module index allocated */
287 
288 static bool ld_library_path_rpath = false;
289 
290 /*
291  * Globals for path names, and such
292  */
293 const char *ld_elf_hints_default = _PATH_ELF_HINTS;
294 const char *ld_path_libmap_conf = _PATH_LIBMAP_CONF;
295 const char *ld_path_rtld = _PATH_RTLD;
296 const char *ld_standard_library_path = STANDARD_LIBRARY_PATH;
297 const char *ld_env_prefix = LD_;
298 
299 static void (*rtld_exit_ptr)(void);
300 
301 /*
302  * Fill in a DoneList with an allocation large enough to hold all of
303  * the currently-loaded objects.  Keep this as a macro since it calls
304  * alloca and we want that to occur within the scope of the caller.
305  */
306 #define donelist_init(dlp)					\
307     ((dlp)->objs = alloca(obj_count * sizeof (dlp)->objs[0]),	\
308     assert((dlp)->objs != NULL),				\
309     (dlp)->num_alloc = obj_count,				\
310     (dlp)->num_used = 0)
311 
312 #define	LD_UTRACE(e, h, mb, ms, r, n) do {			\
313 	if (ld_utrace != NULL)					\
314 		ld_utrace_log(e, h, mb, ms, r, n);		\
315 } while (0)
316 
317 static void
ld_utrace_log(int event,void * handle,void * mapbase,size_t mapsize,int refcnt,const char * name)318 ld_utrace_log(int event, void *handle, void *mapbase, size_t mapsize,
319     int refcnt, const char *name)
320 {
321 	struct utrace_rtld ut;
322 	static const char rtld_utrace_sig[RTLD_UTRACE_SIG_SZ] = RTLD_UTRACE_SIG;
323 
324 	memcpy(ut.sig, rtld_utrace_sig, sizeof(ut.sig));
325 	ut.event = event;
326 	ut.handle = handle;
327 	ut.mapbase = mapbase;
328 	ut.mapsize = mapsize;
329 	ut.refcnt = refcnt;
330 	bzero(ut.name, sizeof(ut.name));
331 	if (name)
332 		strlcpy(ut.name, name, sizeof(ut.name));
333 	utrace(&ut, sizeof(ut));
334 }
335 
336 #ifdef RTLD_VARIANT_ENV_NAMES
337 /*
338  * construct the env variable based on the type of binary that's
339  * running.
340  */
341 static inline const char *
_LD(const char * var)342 _LD(const char *var)
343 {
344 	static char buffer[128];
345 
346 	strlcpy(buffer, ld_env_prefix, sizeof(buffer));
347 	strlcat(buffer, var, sizeof(buffer));
348 	return (buffer);
349 }
350 #else
351 #define _LD(x)	LD_ x
352 #endif
353 
354 /*
355  * Main entry point for dynamic linking.  The first argument is the
356  * stack pointer.  The stack is expected to be laid out as described
357  * in the SVR4 ABI specification, Intel 386 Processor Supplement.
358  * Specifically, the stack pointer points to a word containing
359  * ARGC.  Following that in the stack is a null-terminated sequence
360  * of pointers to argument strings.  Then comes a null-terminated
361  * sequence of pointers to environment strings.  Finally, there is a
362  * sequence of "auxiliary vector" entries.
363  *
364  * The second argument points to a place to store the dynamic linker's
365  * exit procedure pointer and the third to a place to store the main
366  * program's object.
367  *
368  * The return value is the main program's entry point.
369  */
370 func_ptr_type
_rtld(Elf_Addr * sp,func_ptr_type * exit_proc,Obj_Entry ** objp)371 _rtld(Elf_Addr *sp, func_ptr_type *exit_proc, Obj_Entry **objp)
372 {
373     Elf_Auxinfo *aux, *auxp, *auxpf, *aux_info[AT_COUNT];
374     Objlist_Entry *entry;
375     Obj_Entry *last_interposer, *obj, *preload_tail;
376     const Elf_Phdr *phdr;
377     Objlist initlist;
378     RtldLockState lockstate;
379     struct stat st;
380     Elf_Addr *argcp;
381     char **argv, **env, **envp, *kexecpath, *library_path_rpath;
382     const char *argv0;
383     caddr_t imgentry;
384     char buf[MAXPATHLEN];
385     int argc, fd, i, phnum, rtld_argc;
386     bool dir_enable, explicit_fd, search_in_path;
387 
388     /*
389      * On entry, the dynamic linker itself has not been relocated yet.
390      * Be very careful not to reference any global data until after
391      * init_rtld has returned.  It is OK to reference file-scope statics
392      * and string constants, and to call static and global functions.
393      */
394 
395     /* Find the auxiliary vector on the stack. */
396     argcp = sp;
397     argc = *sp++;
398     argv = (char **) sp;
399     sp += argc + 1;	/* Skip over arguments and NULL terminator */
400     env = (char **) sp;
401     while (*sp++ != 0)	/* Skip over environment, and NULL terminator */
402 	;
403     aux = (Elf_Auxinfo *) sp;
404 
405     /* Digest the auxiliary vector. */
406     for (i = 0;  i < AT_COUNT;  i++)
407 	aux_info[i] = NULL;
408     for (auxp = aux;  auxp->a_type != AT_NULL;  auxp++) {
409 	if (auxp->a_type < AT_COUNT)
410 	    aux_info[auxp->a_type] = auxp;
411     }
412 
413     /* Initialize and relocate ourselves. */
414     assert(aux_info[AT_BASE] != NULL);
415     init_rtld((caddr_t) aux_info[AT_BASE]->a_un.a_ptr, aux_info);
416 
417     __progname = obj_rtld.path;
418     argv0 = argv[0] != NULL ? argv[0] : "(null)";
419     environ = env;
420     main_argc = argc;
421     main_argv = argv;
422 
423     trust = !issetugid();
424 
425     md_abi_variant_hook(aux_info);
426 
427     fd = -1;
428     if (aux_info[AT_EXECFD] != NULL) {
429 	fd = aux_info[AT_EXECFD]->a_un.a_val;
430     } else {
431 	assert(aux_info[AT_PHDR] != NULL);
432 	phdr = (const Elf_Phdr *)aux_info[AT_PHDR]->a_un.a_ptr;
433 	if (phdr == obj_rtld.phdr) {
434 	    if (!trust) {
435 		_rtld_error("Tainted process refusing to run binary %s",
436 		    argv0);
437 		rtld_die();
438 	    }
439 	    dbg("opening main program in direct exec mode");
440 	    if (argc >= 2) {
441 		rtld_argc = parse_args(argv, argc, &search_in_path, &fd);
442 		argv0 = argv[rtld_argc];
443 		explicit_fd = (fd != -1);
444 		if (!explicit_fd)
445 		    fd = open_binary_fd(argv0, search_in_path);
446 		if (fstat(fd, &st) == -1) {
447 		    _rtld_error("Failed to fstat FD %d (%s): %s", fd,
448 		      explicit_fd ? "user-provided descriptor" : argv0,
449 		      rtld_strerror(errno));
450 		    rtld_die();
451 		}
452 
453 		/*
454 		 * Rough emulation of the permission checks done by
455 		 * execve(2), only Unix DACs are checked, ACLs are
456 		 * ignored.  Preserve the semantic of disabling owner
457 		 * to execute if owner x bit is cleared, even if
458 		 * others x bit is enabled.
459 		 * mmap(2) does not allow to mmap with PROT_EXEC if
460 		 * binary' file comes from noexec mount.  We cannot
461 		 * set a text reference on the binary.
462 		 */
463 		dir_enable = false;
464 		if (st.st_uid == geteuid()) {
465 		    if ((st.st_mode & S_IXUSR) != 0)
466 			dir_enable = true;
467 		} else if (st.st_gid == getegid()) {
468 		    if ((st.st_mode & S_IXGRP) != 0)
469 			dir_enable = true;
470 		} else if ((st.st_mode & S_IXOTH) != 0) {
471 		    dir_enable = true;
472 		}
473 		if (!dir_enable) {
474 		    _rtld_error("No execute permission for binary %s",
475 		        argv0);
476 		    rtld_die();
477 		}
478 
479 		/*
480 		 * For direct exec mode, argv[0] is the interpreter
481 		 * name, we must remove it and shift arguments left
482 		 * before invoking binary main.  Since stack layout
483 		 * places environment pointers and aux vectors right
484 		 * after the terminating NULL, we must shift
485 		 * environment and aux as well.
486 		 */
487 		main_argc = argc - rtld_argc;
488 		for (i = 0; i <= main_argc; i++)
489 		    argv[i] = argv[i + rtld_argc];
490 		*argcp -= rtld_argc;
491 		environ = env = envp = argv + main_argc + 1;
492 		do {
493 		    *envp = *(envp + rtld_argc);
494 		    envp++;
495 		} while (*envp != NULL);
496 		aux = auxp = (Elf_Auxinfo *)envp;
497 		auxpf = (Elf_Auxinfo *)(envp + rtld_argc);
498 		for (;; auxp++, auxpf++) {
499 		    *auxp = *auxpf;
500 		    if (auxp->a_type == AT_NULL)
501 			    break;
502 		}
503 	    } else {
504 		_rtld_error("No binary");
505 		rtld_die();
506 	    }
507 	}
508     }
509 
510     ld_bind_now = getenv(_LD("BIND_NOW"));
511 
512     /*
513      * If the process is tainted, then we un-set the dangerous environment
514      * variables.  The process will be marked as tainted until setuid(2)
515      * is called.  If any child process calls setuid(2) we do not want any
516      * future processes to honor the potentially un-safe variables.
517      */
518     if (!trust) {
519 	if (unsetenv(_LD("PRELOAD")) || unsetenv(_LD("LIBMAP")) ||
520 	    unsetenv(_LD("LIBRARY_PATH")) || unsetenv(_LD("LIBRARY_PATH_FDS")) ||
521 	    unsetenv(_LD("LIBMAP_DISABLE")) || unsetenv(_LD("BIND_NOT")) ||
522 	    unsetenv(_LD("DEBUG")) || unsetenv(_LD("ELF_HINTS_PATH")) ||
523 	    unsetenv(_LD("LOADFLTR")) || unsetenv(_LD("LIBRARY_PATH_RPATH"))) {
524 		_rtld_error("environment corrupt; aborting");
525 		rtld_die();
526 	}
527     }
528     ld_debug = getenv(_LD("DEBUG"));
529     if (ld_bind_now == NULL)
530 	    ld_bind_not = getenv(_LD("BIND_NOT")) != NULL;
531     libmap_disable = getenv(_LD("LIBMAP_DISABLE")) != NULL;
532     libmap_override = getenv(_LD("LIBMAP"));
533     ld_library_path = getenv(_LD("LIBRARY_PATH"));
534     ld_library_dirs = getenv(_LD("LIBRARY_PATH_FDS"));
535     ld_preload = getenv(_LD("PRELOAD"));
536     ld_elf_hints_path = getenv(_LD("ELF_HINTS_PATH"));
537     ld_loadfltr = getenv(_LD("LOADFLTR")) != NULL;
538     library_path_rpath = getenv(_LD("LIBRARY_PATH_RPATH"));
539     if (library_path_rpath != NULL) {
540 	    if (library_path_rpath[0] == 'y' ||
541 		library_path_rpath[0] == 'Y' ||
542 		library_path_rpath[0] == '1')
543 		    ld_library_path_rpath = true;
544 	    else
545 		    ld_library_path_rpath = false;
546     }
547     dangerous_ld_env = libmap_disable || (libmap_override != NULL) ||
548 	(ld_library_path != NULL) || (ld_preload != NULL) ||
549 	(ld_elf_hints_path != NULL) || ld_loadfltr;
550     ld_tracing = getenv(_LD("TRACE_LOADED_OBJECTS"));
551     ld_utrace = getenv(_LD("UTRACE"));
552 
553     if ((ld_elf_hints_path == NULL) || strlen(ld_elf_hints_path) == 0)
554 	ld_elf_hints_path = ld_elf_hints_default;
555 
556     if (ld_debug != NULL && *ld_debug != '\0')
557 	debug = 1;
558     dbg("%s is initialized, base address = %p", __progname,
559 	(caddr_t) aux_info[AT_BASE]->a_un.a_ptr);
560     dbg("RTLD dynamic = %p", obj_rtld.dynamic);
561     dbg("RTLD pltgot  = %p", obj_rtld.pltgot);
562 
563     dbg("initializing thread locks");
564     lockdflt_init();
565 
566     /*
567      * Load the main program, or process its program header if it is
568      * already loaded.
569      */
570     if (fd != -1) {	/* Load the main program. */
571 	dbg("loading main program");
572 	obj_main = map_object(fd, argv0, NULL);
573 	close(fd);
574 	if (obj_main == NULL)
575 	    rtld_die();
576 	max_stack_flags = obj_main->stack_flags;
577     } else {				/* Main program already loaded. */
578 	dbg("processing main program's program header");
579 	assert(aux_info[AT_PHDR] != NULL);
580 	phdr = (const Elf_Phdr *) aux_info[AT_PHDR]->a_un.a_ptr;
581 	assert(aux_info[AT_PHNUM] != NULL);
582 	phnum = aux_info[AT_PHNUM]->a_un.a_val;
583 	assert(aux_info[AT_PHENT] != NULL);
584 	assert(aux_info[AT_PHENT]->a_un.a_val == sizeof(Elf_Phdr));
585 	assert(aux_info[AT_ENTRY] != NULL);
586 	imgentry = (caddr_t) aux_info[AT_ENTRY]->a_un.a_ptr;
587 	if ((obj_main = digest_phdr(phdr, phnum, imgentry, argv0)) == NULL)
588 	    rtld_die();
589     }
590 
591     if (aux_info[AT_EXECPATH] != NULL && fd == -1) {
592 	    kexecpath = aux_info[AT_EXECPATH]->a_un.a_ptr;
593 	    dbg("AT_EXECPATH %p %s", kexecpath, kexecpath);
594 	    if (kexecpath[0] == '/')
595 		    obj_main->path = kexecpath;
596 	    else if (getcwd(buf, sizeof(buf)) == NULL ||
597 		     strlcat(buf, "/", sizeof(buf)) >= sizeof(buf) ||
598 		     strlcat(buf, kexecpath, sizeof(buf)) >= sizeof(buf))
599 		    obj_main->path = xstrdup(argv0);
600 	    else
601 		    obj_main->path = xstrdup(buf);
602     } else {
603 	    dbg("No AT_EXECPATH or direct exec");
604 	    obj_main->path = xstrdup(argv0);
605     }
606     dbg("obj_main path %s", obj_main->path);
607     obj_main->mainprog = true;
608 
609     if (aux_info[AT_STACKPROT] != NULL &&
610       aux_info[AT_STACKPROT]->a_un.a_val != 0)
611 	    stack_prot = aux_info[AT_STACKPROT]->a_un.a_val;
612 
613 #ifndef COMPAT_32BIT
614     /*
615      * Get the actual dynamic linker pathname from the executable if
616      * possible.  (It should always be possible.)  That ensures that
617      * gdb will find the right dynamic linker even if a non-standard
618      * one is being used.
619      */
620     if (obj_main->interp != NULL &&
621       strcmp(obj_main->interp, obj_rtld.path) != 0) {
622 	free(obj_rtld.path);
623 	obj_rtld.path = xstrdup(obj_main->interp);
624         __progname = obj_rtld.path;
625     }
626 #endif
627 
628     digest_dynamic(obj_main, 0);
629     dbg("%s valid_hash_sysv %d valid_hash_gnu %d dynsymcount %d",
630 	obj_main->path, obj_main->valid_hash_sysv, obj_main->valid_hash_gnu,
631 	obj_main->dynsymcount);
632 
633     linkmap_add(obj_main);
634     linkmap_add(&obj_rtld);
635 
636     /* Link the main program into the list of objects. */
637     TAILQ_INSERT_HEAD(&obj_list, obj_main, next);
638     obj_count++;
639     obj_loads++;
640 
641     /* Initialize a fake symbol for resolving undefined weak references. */
642     sym_zero.st_info = ELF_ST_INFO(STB_GLOBAL, STT_NOTYPE);
643     sym_zero.st_shndx = SHN_UNDEF;
644     sym_zero.st_value = -(uintptr_t)obj_main->relocbase;
645 
646     if (!libmap_disable)
647         libmap_disable = (bool)lm_init(libmap_override);
648 
649     dbg("loading LD_PRELOAD libraries");
650     if (load_preload_objects() == -1)
651 	rtld_die();
652     preload_tail = globallist_curr(TAILQ_LAST(&obj_list, obj_entry_q));
653 
654     dbg("loading needed objects");
655     if (load_needed_objects(obj_main, 0) == -1)
656 	rtld_die();
657 
658     /* Make a list of all objects loaded at startup. */
659     last_interposer = obj_main;
660     TAILQ_FOREACH(obj, &obj_list, next) {
661 	if (obj->marker)
662 	    continue;
663 	if (obj->z_interpose && obj != obj_main) {
664 	    objlist_put_after(&list_main, last_interposer, obj);
665 	    last_interposer = obj;
666 	} else {
667 	    objlist_push_tail(&list_main, obj);
668 	}
669     	obj->refcount++;
670     }
671 
672     dbg("checking for required versions");
673     if (rtld_verify_versions(&list_main) == -1 && !ld_tracing)
674 	rtld_die();
675 
676     if (ld_tracing) {		/* We're done */
677 	trace_loaded_objects(obj_main);
678 	exit(0);
679     }
680 
681     if (getenv(_LD("DUMP_REL_PRE")) != NULL) {
682        dump_relocations(obj_main);
683        exit (0);
684     }
685 
686     /*
687      * Processing tls relocations requires having the tls offsets
688      * initialized.  Prepare offsets before starting initial
689      * relocation processing.
690      */
691     dbg("initializing initial thread local storage offsets");
692     STAILQ_FOREACH(entry, &list_main, link) {
693 	/*
694 	 * Allocate all the initial objects out of the static TLS
695 	 * block even if they didn't ask for it.
696 	 */
697 	allocate_tls_offset(entry->obj);
698     }
699 
700     if (relocate_objects(obj_main,
701       ld_bind_now != NULL && *ld_bind_now != '\0',
702       &obj_rtld, SYMLOOK_EARLY, NULL) == -1)
703 	rtld_die();
704 
705     dbg("doing copy relocations");
706     if (do_copy_relocations(obj_main) == -1)
707 	rtld_die();
708 
709     if (getenv(_LD("DUMP_REL_POST")) != NULL) {
710        dump_relocations(obj_main);
711        exit (0);
712     }
713 
714     ifunc_init(aux);
715 
716     /*
717      * Setup TLS for main thread.  This must be done after the
718      * relocations are processed, since tls initialization section
719      * might be the subject for relocations.
720      */
721     dbg("initializing initial thread local storage");
722     allocate_initial_tls(globallist_curr(TAILQ_FIRST(&obj_list)));
723 
724     dbg("initializing key program variables");
725     set_program_var("__progname", argv[0] != NULL ? basename(argv[0]) : "");
726     set_program_var("environ", env);
727     set_program_var("__elf_aux_vector", aux);
728 
729     /* Make a list of init functions to call. */
730     objlist_init(&initlist);
731     initlist_add_objects(globallist_curr(TAILQ_FIRST(&obj_list)),
732       preload_tail, &initlist);
733 
734     r_debug_state(NULL, &obj_main->linkmap); /* say hello to gdb! */
735 
736     map_stacks_exec(NULL);
737 
738     if (!obj_main->crt_no_init) {
739 	/*
740 	 * Make sure we don't call the main program's init and fini
741 	 * functions for binaries linked with old crt1 which calls
742 	 * _init itself.
743 	 */
744 	obj_main->init = obj_main->fini = (Elf_Addr)NULL;
745 	obj_main->preinit_array = obj_main->init_array =
746 	    obj_main->fini_array = (Elf_Addr)NULL;
747     }
748 
749     /*
750      * Execute MD initializers required before we call the objects'
751      * init functions.
752      */
753     pre_init();
754 
755     wlock_acquire(rtld_bind_lock, &lockstate);
756 
757     dbg("resolving ifuncs");
758     if (initlist_objects_ifunc(&initlist, ld_bind_now != NULL &&
759       *ld_bind_now != '\0', SYMLOOK_EARLY, &lockstate) == -1)
760 	rtld_die();
761 
762     rtld_exit_ptr = rtld_exit;
763     if (obj_main->crt_no_init)
764 	preinit_main();
765     objlist_call_init(&initlist, &lockstate);
766     _r_debug_postinit(&obj_main->linkmap);
767     objlist_clear(&initlist);
768     dbg("loading filtees");
769     TAILQ_FOREACH(obj, &obj_list, next) {
770 	if (obj->marker)
771 	    continue;
772 	if (ld_loadfltr || obj->z_loadfltr)
773 	    load_filtees(obj, 0, &lockstate);
774     }
775 
776     dbg("enforcing main obj relro");
777     if (obj_enforce_relro(obj_main) == -1)
778 	rtld_die();
779 
780     lock_release(rtld_bind_lock, &lockstate);
781 
782     dbg("transferring control to program entry point = %p", obj_main->entry);
783 
784     /* Return the exit procedure and the program entry point. */
785     *exit_proc = rtld_exit_ptr;
786     *objp = obj_main;
787     return (func_ptr_type) obj_main->entry;
788 }
789 
790 void *
rtld_resolve_ifunc(const Obj_Entry * obj,const Elf_Sym * def)791 rtld_resolve_ifunc(const Obj_Entry *obj, const Elf_Sym *def)
792 {
793 	void *ptr;
794 	Elf_Addr target;
795 
796 	ptr = (void *)make_function_pointer(def, obj);
797 	target = call_ifunc_resolver(ptr);
798 	return ((void *)target);
799 }
800 
801 /*
802  * NB: MIPS uses a private version of this function (_mips_rtld_bind).
803  * Changes to this function should be applied there as well.
804  */
805 Elf_Addr
_rtld_bind(Obj_Entry * obj,Elf_Size reloff)806 _rtld_bind(Obj_Entry *obj, Elf_Size reloff)
807 {
808     const Elf_Rel *rel;
809     const Elf_Sym *def;
810     const Obj_Entry *defobj;
811     Elf_Addr *where;
812     Elf_Addr target;
813     RtldLockState lockstate;
814 
815     rlock_acquire(rtld_bind_lock, &lockstate);
816     if (sigsetjmp(lockstate.env, 0) != 0)
817 	    lock_upgrade(rtld_bind_lock, &lockstate);
818     if (obj->pltrel)
819 	rel = (const Elf_Rel *)((const char *)obj->pltrel + reloff);
820     else
821 	rel = (const Elf_Rel *)((const char *)obj->pltrela + reloff);
822 
823     where = (Elf_Addr *)(obj->relocbase + rel->r_offset);
824     def = find_symdef(ELF_R_SYM(rel->r_info), obj, &defobj, SYMLOOK_IN_PLT,
825 	NULL, &lockstate);
826     if (def == NULL)
827 	rtld_die();
828     if (ELF_ST_TYPE(def->st_info) == STT_GNU_IFUNC)
829 	target = (Elf_Addr)rtld_resolve_ifunc(defobj, def);
830     else
831 	target = (Elf_Addr)(defobj->relocbase + def->st_value);
832 
833     dbg("\"%s\" in \"%s\" ==> %p in \"%s\"",
834       defobj->strtab + def->st_name, basename(obj->path),
835       (void *)target, basename(defobj->path));
836 
837     /*
838      * Write the new contents for the jmpslot. Note that depending on
839      * architecture, the value which we need to return back to the
840      * lazy binding trampoline may or may not be the target
841      * address. The value returned from reloc_jmpslot() is the value
842      * that the trampoline needs.
843      */
844     target = reloc_jmpslot(where, target, defobj, obj, rel);
845     lock_release(rtld_bind_lock, &lockstate);
846     return target;
847 }
848 
849 /*
850  * Error reporting function.  Use it like printf.  If formats the message
851  * into a buffer, and sets things up so that the next call to dlerror()
852  * will return the message.
853  */
854 void
_rtld_error(const char * fmt,...)855 _rtld_error(const char *fmt, ...)
856 {
857     static char buf[512];
858     va_list ap;
859 
860     va_start(ap, fmt);
861     rtld_vsnprintf(buf, sizeof buf, fmt, ap);
862     error_message = buf;
863     va_end(ap);
864     LD_UTRACE(UTRACE_RTLD_ERROR, NULL, NULL, 0, 0, error_message);
865 }
866 
867 /*
868  * Return a dynamically-allocated copy of the current error message, if any.
869  */
870 static char *
errmsg_save(void)871 errmsg_save(void)
872 {
873     return error_message == NULL ? NULL : xstrdup(error_message);
874 }
875 
876 /*
877  * Restore the current error message from a copy which was previously saved
878  * by errmsg_save().  The copy is freed.
879  */
880 static void
errmsg_restore(char * saved_msg)881 errmsg_restore(char *saved_msg)
882 {
883     if (saved_msg == NULL)
884 	error_message = NULL;
885     else {
886 	_rtld_error("%s", saved_msg);
887 	free(saved_msg);
888     }
889 }
890 
891 static const char *
basename(const char * name)892 basename(const char *name)
893 {
894     const char *p = strrchr(name, '/');
895     return p != NULL ? p + 1 : name;
896 }
897 
898 static struct utsname uts;
899 
900 static char *
origin_subst_one(Obj_Entry * obj,char * real,const char * kw,const char * subst,bool may_free)901 origin_subst_one(Obj_Entry *obj, char *real, const char *kw,
902     const char *subst, bool may_free)
903 {
904 	char *p, *p1, *res, *resp;
905 	int subst_len, kw_len, subst_count, old_len, new_len;
906 
907 	kw_len = strlen(kw);
908 
909 	/*
910 	 * First, count the number of the keyword occurrences, to
911 	 * preallocate the final string.
912 	 */
913 	for (p = real, subst_count = 0;; p = p1 + kw_len, subst_count++) {
914 		p1 = strstr(p, kw);
915 		if (p1 == NULL)
916 			break;
917 	}
918 
919 	/*
920 	 * If the keyword is not found, just return.
921 	 *
922 	 * Return non-substituted string if resolution failed.  We
923 	 * cannot do anything more reasonable, the failure mode of the
924 	 * caller is unresolved library anyway.
925 	 */
926 	if (subst_count == 0 || (obj != NULL && !obj_resolve_origin(obj)))
927 		return (may_free ? real : xstrdup(real));
928 	if (obj != NULL)
929 		subst = obj->origin_path;
930 
931 	/*
932 	 * There is indeed something to substitute.  Calculate the
933 	 * length of the resulting string, and allocate it.
934 	 */
935 	subst_len = strlen(subst);
936 	old_len = strlen(real);
937 	new_len = old_len + (subst_len - kw_len) * subst_count;
938 	res = xmalloc(new_len + 1);
939 
940 	/*
941 	 * Now, execute the substitution loop.
942 	 */
943 	for (p = real, resp = res, *resp = '\0';;) {
944 		p1 = strstr(p, kw);
945 		if (p1 != NULL) {
946 			/* Copy the prefix before keyword. */
947 			memcpy(resp, p, p1 - p);
948 			resp += p1 - p;
949 			/* Keyword replacement. */
950 			memcpy(resp, subst, subst_len);
951 			resp += subst_len;
952 			*resp = '\0';
953 			p = p1 + kw_len;
954 		} else
955 			break;
956 	}
957 
958 	/* Copy to the end of string and finish. */
959 	strcat(resp, p);
960 	if (may_free)
961 		free(real);
962 	return (res);
963 }
964 
965 static char *
origin_subst(Obj_Entry * obj,const char * real)966 origin_subst(Obj_Entry *obj, const char *real)
967 {
968 	char *res1, *res2, *res3, *res4;
969 
970 	if (obj == NULL || !trust)
971 		return (xstrdup(real));
972 	if (uts.sysname[0] == '\0') {
973 		if (uname(&uts) != 0) {
974 			_rtld_error("utsname failed: %d", errno);
975 			return (NULL);
976 		}
977 	}
978 	/* __DECONST is safe here since without may_free real is unchanged */
979 	res1 = origin_subst_one(obj, __DECONST(char *, real), "$ORIGIN", NULL,
980 	    false);
981 	res2 = origin_subst_one(NULL, res1, "$OSNAME", uts.sysname, true);
982 	res3 = origin_subst_one(NULL, res2, "$OSREL", uts.release, true);
983 	res4 = origin_subst_one(NULL, res3, "$PLATFORM", uts.machine, true);
984 	return (res4);
985 }
986 
987 void
rtld_die(void)988 rtld_die(void)
989 {
990     const char *msg = dlerror();
991 
992     if (msg == NULL)
993 	msg = "Fatal error";
994     rtld_fdputstr(STDERR_FILENO, _BASENAME_RTLD ": ");
995     rtld_fdputstr(STDERR_FILENO, msg);
996     rtld_fdputchar(STDERR_FILENO, '\n');
997     _exit(1);
998 }
999 
1000 /*
1001  * Process a shared object's DYNAMIC section, and save the important
1002  * information in its Obj_Entry structure.
1003  */
1004 static void
digest_dynamic1(Obj_Entry * obj,int early,const Elf_Dyn ** dyn_rpath,const Elf_Dyn ** dyn_soname,const Elf_Dyn ** dyn_runpath)1005 digest_dynamic1(Obj_Entry *obj, int early, const Elf_Dyn **dyn_rpath,
1006     const Elf_Dyn **dyn_soname, const Elf_Dyn **dyn_runpath)
1007 {
1008     const Elf_Dyn *dynp;
1009     Needed_Entry **needed_tail = &obj->needed;
1010     Needed_Entry **needed_filtees_tail = &obj->needed_filtees;
1011     Needed_Entry **needed_aux_filtees_tail = &obj->needed_aux_filtees;
1012     const Elf_Hashelt *hashtab;
1013     const Elf32_Word *hashval;
1014     Elf32_Word bkt, nmaskwords;
1015     int bloom_size32;
1016     int plttype = DT_REL;
1017 
1018     *dyn_rpath = NULL;
1019     *dyn_soname = NULL;
1020     *dyn_runpath = NULL;
1021 
1022     obj->bind_now = false;
1023     for (dynp = obj->dynamic;  dynp->d_tag != DT_NULL;  dynp++) {
1024 	switch (dynp->d_tag) {
1025 
1026 	case DT_REL:
1027 	    obj->rel = (const Elf_Rel *)(obj->relocbase + dynp->d_un.d_ptr);
1028 	    break;
1029 
1030 	case DT_RELSZ:
1031 	    obj->relsize = dynp->d_un.d_val;
1032 	    break;
1033 
1034 	case DT_RELENT:
1035 	    assert(dynp->d_un.d_val == sizeof(Elf_Rel));
1036 	    break;
1037 
1038 	case DT_JMPREL:
1039 	    obj->pltrel = (const Elf_Rel *)
1040 	      (obj->relocbase + dynp->d_un.d_ptr);
1041 	    break;
1042 
1043 	case DT_PLTRELSZ:
1044 	    obj->pltrelsize = dynp->d_un.d_val;
1045 	    break;
1046 
1047 	case DT_RELA:
1048 	    obj->rela = (const Elf_Rela *)(obj->relocbase + dynp->d_un.d_ptr);
1049 	    break;
1050 
1051 	case DT_RELASZ:
1052 	    obj->relasize = dynp->d_un.d_val;
1053 	    break;
1054 
1055 	case DT_RELAENT:
1056 	    assert(dynp->d_un.d_val == sizeof(Elf_Rela));
1057 	    break;
1058 
1059 	case DT_PLTREL:
1060 	    plttype = dynp->d_un.d_val;
1061 	    assert(dynp->d_un.d_val == DT_REL || plttype == DT_RELA);
1062 	    break;
1063 
1064 	case DT_SYMTAB:
1065 	    obj->symtab = (const Elf_Sym *)
1066 	      (obj->relocbase + dynp->d_un.d_ptr);
1067 	    break;
1068 
1069 	case DT_SYMENT:
1070 	    assert(dynp->d_un.d_val == sizeof(Elf_Sym));
1071 	    break;
1072 
1073 	case DT_STRTAB:
1074 	    obj->strtab = (const char *)(obj->relocbase + dynp->d_un.d_ptr);
1075 	    break;
1076 
1077 	case DT_STRSZ:
1078 	    obj->strsize = dynp->d_un.d_val;
1079 	    break;
1080 
1081 	case DT_VERNEED:
1082 	    obj->verneed = (const Elf_Verneed *)(obj->relocbase +
1083 		dynp->d_un.d_val);
1084 	    break;
1085 
1086 	case DT_VERNEEDNUM:
1087 	    obj->verneednum = dynp->d_un.d_val;
1088 	    break;
1089 
1090 	case DT_VERDEF:
1091 	    obj->verdef = (const Elf_Verdef *)(obj->relocbase +
1092 		dynp->d_un.d_val);
1093 	    break;
1094 
1095 	case DT_VERDEFNUM:
1096 	    obj->verdefnum = dynp->d_un.d_val;
1097 	    break;
1098 
1099 	case DT_VERSYM:
1100 	    obj->versyms = (const Elf_Versym *)(obj->relocbase +
1101 		dynp->d_un.d_val);
1102 	    break;
1103 
1104 	case DT_HASH:
1105 	    {
1106 		hashtab = (const Elf_Hashelt *)(obj->relocbase +
1107 		    dynp->d_un.d_ptr);
1108 		obj->nbuckets = hashtab[0];
1109 		obj->nchains = hashtab[1];
1110 		obj->buckets = hashtab + 2;
1111 		obj->chains = obj->buckets + obj->nbuckets;
1112 		obj->valid_hash_sysv = obj->nbuckets > 0 && obj->nchains > 0 &&
1113 		  obj->buckets != NULL;
1114 	    }
1115 	    break;
1116 
1117 	case DT_GNU_HASH:
1118 	    {
1119 		hashtab = (const Elf_Hashelt *)(obj->relocbase +
1120 		    dynp->d_un.d_ptr);
1121 		obj->nbuckets_gnu = hashtab[0];
1122 		obj->symndx_gnu = hashtab[1];
1123 		nmaskwords = hashtab[2];
1124 		bloom_size32 = (__ELF_WORD_SIZE / 32) * nmaskwords;
1125 		obj->maskwords_bm_gnu = nmaskwords - 1;
1126 		obj->shift2_gnu = hashtab[3];
1127 		obj->bloom_gnu = (const Elf_Addr *)(hashtab + 4);
1128 		obj->buckets_gnu = hashtab + 4 + bloom_size32;
1129 		obj->chain_zero_gnu = obj->buckets_gnu + obj->nbuckets_gnu -
1130 		  obj->symndx_gnu;
1131 		/* Number of bitmask words is required to be power of 2 */
1132 		obj->valid_hash_gnu = powerof2(nmaskwords) &&
1133 		    obj->nbuckets_gnu > 0 && obj->buckets_gnu != NULL;
1134 	    }
1135 	    break;
1136 
1137 	case DT_NEEDED:
1138 	    if (!obj->rtld) {
1139 		Needed_Entry *nep = NEW(Needed_Entry);
1140 		nep->name = dynp->d_un.d_val;
1141 		nep->obj = NULL;
1142 		nep->next = NULL;
1143 
1144 		*needed_tail = nep;
1145 		needed_tail = &nep->next;
1146 	    }
1147 	    break;
1148 
1149 	case DT_FILTER:
1150 	    if (!obj->rtld) {
1151 		Needed_Entry *nep = NEW(Needed_Entry);
1152 		nep->name = dynp->d_un.d_val;
1153 		nep->obj = NULL;
1154 		nep->next = NULL;
1155 
1156 		*needed_filtees_tail = nep;
1157 		needed_filtees_tail = &nep->next;
1158 	    }
1159 	    break;
1160 
1161 	case DT_AUXILIARY:
1162 	    if (!obj->rtld) {
1163 		Needed_Entry *nep = NEW(Needed_Entry);
1164 		nep->name = dynp->d_un.d_val;
1165 		nep->obj = NULL;
1166 		nep->next = NULL;
1167 
1168 		*needed_aux_filtees_tail = nep;
1169 		needed_aux_filtees_tail = &nep->next;
1170 	    }
1171 	    break;
1172 
1173 	case DT_PLTGOT:
1174 	    obj->pltgot = (Elf_Addr *)(obj->relocbase + dynp->d_un.d_ptr);
1175 	    break;
1176 
1177 	case DT_TEXTREL:
1178 	    obj->textrel = true;
1179 	    break;
1180 
1181 	case DT_SYMBOLIC:
1182 	    obj->symbolic = true;
1183 	    break;
1184 
1185 	case DT_RPATH:
1186 	    /*
1187 	     * We have to wait until later to process this, because we
1188 	     * might not have gotten the address of the string table yet.
1189 	     */
1190 	    *dyn_rpath = dynp;
1191 	    break;
1192 
1193 	case DT_SONAME:
1194 	    *dyn_soname = dynp;
1195 	    break;
1196 
1197 	case DT_RUNPATH:
1198 	    *dyn_runpath = dynp;
1199 	    break;
1200 
1201 	case DT_INIT:
1202 	    obj->init = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1203 	    break;
1204 
1205 	case DT_PREINIT_ARRAY:
1206 	    obj->preinit_array = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1207 	    break;
1208 
1209 	case DT_PREINIT_ARRAYSZ:
1210 	    obj->preinit_array_num = dynp->d_un.d_val / sizeof(Elf_Addr);
1211 	    break;
1212 
1213 	case DT_INIT_ARRAY:
1214 	    obj->init_array = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1215 	    break;
1216 
1217 	case DT_INIT_ARRAYSZ:
1218 	    obj->init_array_num = dynp->d_un.d_val / sizeof(Elf_Addr);
1219 	    break;
1220 
1221 	case DT_FINI:
1222 	    obj->fini = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1223 	    break;
1224 
1225 	case DT_FINI_ARRAY:
1226 	    obj->fini_array = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1227 	    break;
1228 
1229 	case DT_FINI_ARRAYSZ:
1230 	    obj->fini_array_num = dynp->d_un.d_val / sizeof(Elf_Addr);
1231 	    break;
1232 
1233 	/*
1234 	 * Don't process DT_DEBUG on MIPS as the dynamic section
1235 	 * is mapped read-only. DT_MIPS_RLD_MAP is used instead.
1236 	 */
1237 
1238 #ifndef __mips__
1239 	case DT_DEBUG:
1240 	    if (!early)
1241 		dbg("Filling in DT_DEBUG entry");
1242 	    (__DECONST(Elf_Dyn *, dynp))->d_un.d_ptr = (Elf_Addr)&r_debug;
1243 	    break;
1244 #endif
1245 
1246 	case DT_FLAGS:
1247 		if (dynp->d_un.d_val & DF_ORIGIN)
1248 		    obj->z_origin = true;
1249 		if (dynp->d_un.d_val & DF_SYMBOLIC)
1250 		    obj->symbolic = true;
1251 		if (dynp->d_un.d_val & DF_TEXTREL)
1252 		    obj->textrel = true;
1253 		if (dynp->d_un.d_val & DF_BIND_NOW)
1254 		    obj->bind_now = true;
1255 		if (dynp->d_un.d_val & DF_STATIC_TLS)
1256 		    obj->static_tls = true;
1257 	    break;
1258 #ifdef __mips__
1259 	case DT_MIPS_LOCAL_GOTNO:
1260 		obj->local_gotno = dynp->d_un.d_val;
1261 		break;
1262 
1263 	case DT_MIPS_SYMTABNO:
1264 		obj->symtabno = dynp->d_un.d_val;
1265 		break;
1266 
1267 	case DT_MIPS_GOTSYM:
1268 		obj->gotsym = dynp->d_un.d_val;
1269 		break;
1270 
1271 	case DT_MIPS_RLD_MAP:
1272 		*((Elf_Addr *)(dynp->d_un.d_ptr)) = (Elf_Addr) &r_debug;
1273 		break;
1274 
1275 	case DT_MIPS_PLTGOT:
1276 		obj->mips_pltgot = (Elf_Addr *)(obj->relocbase +
1277 		    dynp->d_un.d_ptr);
1278 		break;
1279 
1280 #endif
1281 
1282 #ifdef __powerpc64__
1283 	case DT_PPC64_GLINK:
1284 		obj->glink = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1285 		break;
1286 #endif
1287 
1288 	case DT_FLAGS_1:
1289 		if (dynp->d_un.d_val & DF_1_NOOPEN)
1290 		    obj->z_noopen = true;
1291 		if (dynp->d_un.d_val & DF_1_ORIGIN)
1292 		    obj->z_origin = true;
1293 		if (dynp->d_un.d_val & DF_1_GLOBAL)
1294 		    obj->z_global = true;
1295 		if (dynp->d_un.d_val & DF_1_BIND_NOW)
1296 		    obj->bind_now = true;
1297 		if (dynp->d_un.d_val & DF_1_NODELETE)
1298 		    obj->z_nodelete = true;
1299 		if (dynp->d_un.d_val & DF_1_LOADFLTR)
1300 		    obj->z_loadfltr = true;
1301 		if (dynp->d_un.d_val & DF_1_INTERPOSE)
1302 		    obj->z_interpose = true;
1303 		if (dynp->d_un.d_val & DF_1_NODEFLIB)
1304 		    obj->z_nodeflib = true;
1305 	    break;
1306 
1307 	default:
1308 	    if (!early) {
1309 		dbg("Ignoring d_tag %ld = %#lx", (long)dynp->d_tag,
1310 		    (long)dynp->d_tag);
1311 	    }
1312 	    break;
1313 	}
1314     }
1315 
1316     obj->traced = false;
1317 
1318     if (plttype == DT_RELA) {
1319 	obj->pltrela = (const Elf_Rela *) obj->pltrel;
1320 	obj->pltrel = NULL;
1321 	obj->pltrelasize = obj->pltrelsize;
1322 	obj->pltrelsize = 0;
1323     }
1324 
1325     /* Determine size of dynsym table (equal to nchains of sysv hash) */
1326     if (obj->valid_hash_sysv)
1327 	obj->dynsymcount = obj->nchains;
1328     else if (obj->valid_hash_gnu) {
1329 	obj->dynsymcount = 0;
1330 	for (bkt = 0; bkt < obj->nbuckets_gnu; bkt++) {
1331 	    if (obj->buckets_gnu[bkt] == 0)
1332 		continue;
1333 	    hashval = &obj->chain_zero_gnu[obj->buckets_gnu[bkt]];
1334 	    do
1335 		obj->dynsymcount++;
1336 	    while ((*hashval++ & 1u) == 0);
1337 	}
1338 	obj->dynsymcount += obj->symndx_gnu;
1339     }
1340 }
1341 
1342 static bool
obj_resolve_origin(Obj_Entry * obj)1343 obj_resolve_origin(Obj_Entry *obj)
1344 {
1345 
1346 	if (obj->origin_path != NULL)
1347 		return (true);
1348 	obj->origin_path = xmalloc(PATH_MAX);
1349 	return (rtld_dirname_abs(obj->path, obj->origin_path) != -1);
1350 }
1351 
1352 static void
digest_dynamic2(Obj_Entry * obj,const Elf_Dyn * dyn_rpath,const Elf_Dyn * dyn_soname,const Elf_Dyn * dyn_runpath)1353 digest_dynamic2(Obj_Entry *obj, const Elf_Dyn *dyn_rpath,
1354     const Elf_Dyn *dyn_soname, const Elf_Dyn *dyn_runpath)
1355 {
1356 
1357 	if (obj->z_origin && !obj_resolve_origin(obj))
1358 		rtld_die();
1359 
1360 	if (dyn_runpath != NULL) {
1361 		obj->runpath = (const char *)obj->strtab + dyn_runpath->d_un.d_val;
1362 		obj->runpath = origin_subst(obj, obj->runpath);
1363 	} else if (dyn_rpath != NULL) {
1364 		obj->rpath = (const char *)obj->strtab + dyn_rpath->d_un.d_val;
1365 		obj->rpath = origin_subst(obj, obj->rpath);
1366 	}
1367 	if (dyn_soname != NULL)
1368 		object_add_name(obj, obj->strtab + dyn_soname->d_un.d_val);
1369 }
1370 
1371 static void
digest_dynamic(Obj_Entry * obj,int early)1372 digest_dynamic(Obj_Entry *obj, int early)
1373 {
1374 	const Elf_Dyn *dyn_rpath;
1375 	const Elf_Dyn *dyn_soname;
1376 	const Elf_Dyn *dyn_runpath;
1377 
1378 	digest_dynamic1(obj, early, &dyn_rpath, &dyn_soname, &dyn_runpath);
1379 	digest_dynamic2(obj, dyn_rpath, dyn_soname, dyn_runpath);
1380 }
1381 
1382 /*
1383  * Process a shared object's program header.  This is used only for the
1384  * main program, when the kernel has already loaded the main program
1385  * into memory before calling the dynamic linker.  It creates and
1386  * returns an Obj_Entry structure.
1387  */
1388 static Obj_Entry *
digest_phdr(const Elf_Phdr * phdr,int phnum,caddr_t entry,const char * path)1389 digest_phdr(const Elf_Phdr *phdr, int phnum, caddr_t entry, const char *path)
1390 {
1391     Obj_Entry *obj;
1392     const Elf_Phdr *phlimit = phdr + phnum;
1393     const Elf_Phdr *ph;
1394     Elf_Addr note_start, note_end;
1395     int nsegs = 0;
1396 
1397     obj = obj_new();
1398     for (ph = phdr;  ph < phlimit;  ph++) {
1399 	if (ph->p_type != PT_PHDR)
1400 	    continue;
1401 
1402 	obj->phdr = phdr;
1403 	obj->phsize = ph->p_memsz;
1404 	obj->relocbase = __DECONST(char *, phdr) - ph->p_vaddr;
1405 	break;
1406     }
1407 
1408     obj->stack_flags = PF_X | PF_R | PF_W;
1409 
1410     for (ph = phdr;  ph < phlimit;  ph++) {
1411 	switch (ph->p_type) {
1412 
1413 	case PT_INTERP:
1414 	    obj->interp = (const char *)(ph->p_vaddr + obj->relocbase);
1415 	    break;
1416 
1417 	case PT_LOAD:
1418 	    if (nsegs == 0) {	/* First load segment */
1419 		obj->vaddrbase = trunc_page(ph->p_vaddr);
1420 		obj->mapbase = obj->vaddrbase + obj->relocbase;
1421 		obj->textsize = round_page(ph->p_vaddr + ph->p_memsz) -
1422 		  obj->vaddrbase;
1423 	    } else {		/* Last load segment */
1424 		obj->mapsize = round_page(ph->p_vaddr + ph->p_memsz) -
1425 		  obj->vaddrbase;
1426 	    }
1427 	    nsegs++;
1428 	    break;
1429 
1430 	case PT_DYNAMIC:
1431 	    obj->dynamic = (const Elf_Dyn *)(ph->p_vaddr + obj->relocbase);
1432 	    break;
1433 
1434 	case PT_TLS:
1435 	    obj->tlsindex = 1;
1436 	    obj->tlssize = ph->p_memsz;
1437 	    obj->tlsalign = ph->p_align;
1438 	    obj->tlsinitsize = ph->p_filesz;
1439 	    obj->tlsinit = (void*)(ph->p_vaddr + obj->relocbase);
1440 	    break;
1441 
1442 	case PT_GNU_STACK:
1443 	    obj->stack_flags = ph->p_flags;
1444 	    break;
1445 
1446 	case PT_GNU_RELRO:
1447 	    obj->relro_page = obj->relocbase + trunc_page(ph->p_vaddr);
1448 	    obj->relro_size = round_page(ph->p_memsz);
1449 	    break;
1450 
1451 	case PT_NOTE:
1452 	    note_start = (Elf_Addr)obj->relocbase + ph->p_vaddr;
1453 	    note_end = note_start + ph->p_filesz;
1454 	    digest_notes(obj, note_start, note_end);
1455 	    break;
1456 	}
1457     }
1458     if (nsegs < 1) {
1459 	_rtld_error("%s: too few PT_LOAD segments", path);
1460 	return NULL;
1461     }
1462 
1463     obj->entry = entry;
1464     return obj;
1465 }
1466 
1467 void
digest_notes(Obj_Entry * obj,Elf_Addr note_start,Elf_Addr note_end)1468 digest_notes(Obj_Entry *obj, Elf_Addr note_start, Elf_Addr note_end)
1469 {
1470 	const Elf_Note *note;
1471 	const char *note_name;
1472 	uintptr_t p;
1473 
1474 	for (note = (const Elf_Note *)note_start; (Elf_Addr)note < note_end;
1475 	    note = (const Elf_Note *)((const char *)(note + 1) +
1476 	      roundup2(note->n_namesz, sizeof(Elf32_Addr)) +
1477 	      roundup2(note->n_descsz, sizeof(Elf32_Addr)))) {
1478 		if (note->n_namesz != sizeof(NOTE_FREEBSD_VENDOR) ||
1479 		    note->n_descsz != sizeof(int32_t))
1480 			continue;
1481 		if (note->n_type != NT_FREEBSD_ABI_TAG &&
1482 		    note->n_type != NT_FREEBSD_FEATURE_CTL &&
1483 		    note->n_type != NT_FREEBSD_NOINIT_TAG)
1484 			continue;
1485 		note_name = (const char *)(note + 1);
1486 		if (strncmp(NOTE_FREEBSD_VENDOR, note_name,
1487 		    sizeof(NOTE_FREEBSD_VENDOR)) != 0)
1488 			continue;
1489 		switch (note->n_type) {
1490 		case NT_FREEBSD_ABI_TAG:
1491 			/* FreeBSD osrel note */
1492 			p = (uintptr_t)(note + 1);
1493 			p += roundup2(note->n_namesz, sizeof(Elf32_Addr));
1494 			obj->osrel = *(const int32_t *)(p);
1495 			dbg("note osrel %d", obj->osrel);
1496 			break;
1497 		case NT_FREEBSD_FEATURE_CTL:
1498 			/* FreeBSD ABI feature control note */
1499 			p = (uintptr_t)(note + 1);
1500 			p += roundup2(note->n_namesz, sizeof(Elf32_Addr));
1501 			obj->fctl0 = *(const uint32_t *)(p);
1502 			dbg("note fctl0 %#x", obj->fctl0);
1503 			break;
1504 		case NT_FREEBSD_NOINIT_TAG:
1505 			/* FreeBSD 'crt does not call init' note */
1506 			obj->crt_no_init = true;
1507 			dbg("note crt_no_init");
1508 			break;
1509 		}
1510 	}
1511 }
1512 
1513 static Obj_Entry *
dlcheck(void * handle)1514 dlcheck(void *handle)
1515 {
1516     Obj_Entry *obj;
1517 
1518     TAILQ_FOREACH(obj, &obj_list, next) {
1519 	if (obj == (Obj_Entry *) handle)
1520 	    break;
1521     }
1522 
1523     if (obj == NULL || obj->refcount == 0 || obj->dl_refcount == 0) {
1524 	_rtld_error("Invalid shared object handle %p", handle);
1525 	return NULL;
1526     }
1527     return obj;
1528 }
1529 
1530 /*
1531  * If the given object is already in the donelist, return true.  Otherwise
1532  * add the object to the list and return false.
1533  */
1534 static bool
donelist_check(DoneList * dlp,const Obj_Entry * obj)1535 donelist_check(DoneList *dlp, const Obj_Entry *obj)
1536 {
1537     unsigned int i;
1538 
1539     for (i = 0;  i < dlp->num_used;  i++)
1540 	if (dlp->objs[i] == obj)
1541 	    return true;
1542     /*
1543      * Our donelist allocation should always be sufficient.  But if
1544      * our threads locking isn't working properly, more shared objects
1545      * could have been loaded since we allocated the list.  That should
1546      * never happen, but we'll handle it properly just in case it does.
1547      */
1548     if (dlp->num_used < dlp->num_alloc)
1549 	dlp->objs[dlp->num_used++] = obj;
1550     return false;
1551 }
1552 
1553 /*
1554  * Hash function for symbol table lookup.  Don't even think about changing
1555  * this.  It is specified by the System V ABI.
1556  */
1557 unsigned long
elf_hash(const char * name)1558 elf_hash(const char *name)
1559 {
1560     const unsigned char *p = (const unsigned char *) name;
1561     unsigned long h = 0;
1562     unsigned long g;
1563 
1564     while (*p != '\0') {
1565 	h = (h << 4) + *p++;
1566 	if ((g = h & 0xf0000000) != 0)
1567 	    h ^= g >> 24;
1568 	h &= ~g;
1569     }
1570     return h;
1571 }
1572 
1573 /*
1574  * The GNU hash function is the Daniel J. Bernstein hash clipped to 32 bits
1575  * unsigned in case it's implemented with a wider type.
1576  */
1577 static uint32_t
gnu_hash(const char * s)1578 gnu_hash(const char *s)
1579 {
1580 	uint32_t h;
1581 	unsigned char c;
1582 
1583 	h = 5381;
1584 	for (c = *s; c != '\0'; c = *++s)
1585 		h = h * 33 + c;
1586 	return (h & 0xffffffff);
1587 }
1588 
1589 
1590 /*
1591  * Find the library with the given name, and return its full pathname.
1592  * The returned string is dynamically allocated.  Generates an error
1593  * message and returns NULL if the library cannot be found.
1594  *
1595  * If the second argument is non-NULL, then it refers to an already-
1596  * loaded shared object, whose library search path will be searched.
1597  *
1598  * If a library is successfully located via LD_LIBRARY_PATH_FDS, its
1599  * descriptor (which is close-on-exec) will be passed out via the third
1600  * argument.
1601  *
1602  * The search order is:
1603  *   DT_RPATH in the referencing file _unless_ DT_RUNPATH is present (1)
1604  *   DT_RPATH of the main object if DSO without defined DT_RUNPATH (1)
1605  *   LD_LIBRARY_PATH
1606  *   DT_RUNPATH in the referencing file
1607  *   ldconfig hints (if -z nodefaultlib, filter out default library directories
1608  *	 from list)
1609  *   /lib:/usr/lib _unless_ the referencing file is linked with -z nodefaultlib
1610  *
1611  * (1) Handled in digest_dynamic2 - rpath left NULL if runpath defined.
1612  */
1613 static char *
find_library(const char * xname,const Obj_Entry * refobj,int * fdp)1614 find_library(const char *xname, const Obj_Entry *refobj, int *fdp)
1615 {
1616 	char *pathname, *refobj_path;
1617 	const char *name;
1618 	bool nodeflib, objgiven;
1619 
1620 	objgiven = refobj != NULL;
1621 
1622 	if (libmap_disable || !objgiven ||
1623 	    (name = lm_find(refobj->path, xname)) == NULL)
1624 		name = xname;
1625 
1626 	if (strchr(name, '/') != NULL) {	/* Hard coded pathname */
1627 		if (name[0] != '/' && !trust) {
1628 			_rtld_error("Absolute pathname required "
1629 			    "for shared object \"%s\"", name);
1630 			return (NULL);
1631 		}
1632 		return (origin_subst(__DECONST(Obj_Entry *, refobj),
1633 		    __DECONST(char *, name)));
1634 	}
1635 
1636 	dbg(" Searching for \"%s\"", name);
1637 	refobj_path = objgiven ? refobj->path : NULL;
1638 
1639 	/*
1640 	 * If refobj->rpath != NULL, then refobj->runpath is NULL.  Fall
1641 	 * back to pre-conforming behaviour if user requested so with
1642 	 * LD_LIBRARY_PATH_RPATH environment variable and ignore -z
1643 	 * nodeflib.
1644 	 */
1645 	if (objgiven && refobj->rpath != NULL && ld_library_path_rpath) {
1646 		pathname = search_library_path(name, ld_library_path,
1647 		    refobj_path, fdp);
1648 		if (pathname != NULL)
1649 			return (pathname);
1650 		if (refobj != NULL) {
1651 			pathname = search_library_path(name, refobj->rpath,
1652 			    refobj_path, fdp);
1653 			if (pathname != NULL)
1654 				return (pathname);
1655 		}
1656 		pathname = search_library_pathfds(name, ld_library_dirs, fdp);
1657 		if (pathname != NULL)
1658 			return (pathname);
1659 		pathname = search_library_path(name, gethints(false),
1660 		    refobj_path, fdp);
1661 		if (pathname != NULL)
1662 			return (pathname);
1663 		pathname = search_library_path(name, ld_standard_library_path,
1664 		    refobj_path, fdp);
1665 		if (pathname != NULL)
1666 			return (pathname);
1667 	} else {
1668 		nodeflib = objgiven ? refobj->z_nodeflib : false;
1669 		if (objgiven) {
1670 			pathname = search_library_path(name, refobj->rpath,
1671 			    refobj->path, fdp);
1672 			if (pathname != NULL)
1673 				return (pathname);
1674 		}
1675 		if (objgiven && refobj->runpath == NULL && refobj != obj_main) {
1676 			pathname = search_library_path(name, obj_main->rpath,
1677 			    refobj_path, fdp);
1678 			if (pathname != NULL)
1679 				return (pathname);
1680 		}
1681 		pathname = search_library_path(name, ld_library_path,
1682 		    refobj_path, fdp);
1683 		if (pathname != NULL)
1684 			return (pathname);
1685 		if (objgiven) {
1686 			pathname = search_library_path(name, refobj->runpath,
1687 			    refobj_path, fdp);
1688 			if (pathname != NULL)
1689 				return (pathname);
1690 		}
1691 		pathname = search_library_pathfds(name, ld_library_dirs, fdp);
1692 		if (pathname != NULL)
1693 			return (pathname);
1694 		pathname = search_library_path(name, gethints(nodeflib),
1695 		    refobj_path, fdp);
1696 		if (pathname != NULL)
1697 			return (pathname);
1698 		if (objgiven && !nodeflib) {
1699 			pathname = search_library_path(name,
1700 			    ld_standard_library_path, refobj_path, fdp);
1701 			if (pathname != NULL)
1702 				return (pathname);
1703 		}
1704 	}
1705 
1706 	if (objgiven && refobj->path != NULL) {
1707 		_rtld_error("Shared object \"%s\" not found, "
1708 		    "required by \"%s\"", name, basename(refobj->path));
1709 	} else {
1710 		_rtld_error("Shared object \"%s\" not found", name);
1711 	}
1712 	return (NULL);
1713 }
1714 
1715 /*
1716  * Given a symbol number in a referencing object, find the corresponding
1717  * definition of the symbol.  Returns a pointer to the symbol, or NULL if
1718  * no definition was found.  Returns a pointer to the Obj_Entry of the
1719  * defining object via the reference parameter DEFOBJ_OUT.
1720  */
1721 const Elf_Sym *
find_symdef(unsigned long symnum,const Obj_Entry * refobj,const Obj_Entry ** defobj_out,int flags,SymCache * cache,RtldLockState * lockstate)1722 find_symdef(unsigned long symnum, const Obj_Entry *refobj,
1723     const Obj_Entry **defobj_out, int flags, SymCache *cache,
1724     RtldLockState *lockstate)
1725 {
1726     const Elf_Sym *ref;
1727     const Elf_Sym *def;
1728     const Obj_Entry *defobj;
1729     const Ver_Entry *ve;
1730     SymLook req;
1731     const char *name;
1732     int res;
1733 
1734     /*
1735      * If we have already found this symbol, get the information from
1736      * the cache.
1737      */
1738     if (symnum >= refobj->dynsymcount)
1739 	return NULL;	/* Bad object */
1740     if (cache != NULL && cache[symnum].sym != NULL) {
1741 	*defobj_out = cache[symnum].obj;
1742 	return cache[symnum].sym;
1743     }
1744 
1745     ref = refobj->symtab + symnum;
1746     name = refobj->strtab + ref->st_name;
1747     def = NULL;
1748     defobj = NULL;
1749     ve = NULL;
1750 
1751     /*
1752      * We don't have to do a full scale lookup if the symbol is local.
1753      * We know it will bind to the instance in this load module; to
1754      * which we already have a pointer (ie ref). By not doing a lookup,
1755      * we not only improve performance, but it also avoids unresolvable
1756      * symbols when local symbols are not in the hash table. This has
1757      * been seen with the ia64 toolchain.
1758      */
1759     if (ELF_ST_BIND(ref->st_info) != STB_LOCAL) {
1760 	if (ELF_ST_TYPE(ref->st_info) == STT_SECTION) {
1761 	    _rtld_error("%s: Bogus symbol table entry %lu", refobj->path,
1762 		symnum);
1763 	}
1764 	symlook_init(&req, name);
1765 	req.flags = flags;
1766 	ve = req.ventry = fetch_ventry(refobj, symnum);
1767 	req.lockstate = lockstate;
1768 	res = symlook_default(&req, refobj);
1769 	if (res == 0) {
1770 	    def = req.sym_out;
1771 	    defobj = req.defobj_out;
1772 	}
1773     } else {
1774 	def = ref;
1775 	defobj = refobj;
1776     }
1777 
1778     /*
1779      * If we found no definition and the reference is weak, treat the
1780      * symbol as having the value zero.
1781      */
1782     if (def == NULL && ELF_ST_BIND(ref->st_info) == STB_WEAK) {
1783 	def = &sym_zero;
1784 	defobj = obj_main;
1785     }
1786 
1787     if (def != NULL) {
1788 	*defobj_out = defobj;
1789 	/* Record the information in the cache to avoid subsequent lookups. */
1790 	if (cache != NULL) {
1791 	    cache[symnum].sym = def;
1792 	    cache[symnum].obj = defobj;
1793 	}
1794     } else {
1795 	if (refobj != &obj_rtld)
1796 	    _rtld_error("%s: Undefined symbol \"%s%s%s\"", refobj->path, name,
1797 	      ve != NULL ? "@" : "", ve != NULL ? ve->name : "");
1798     }
1799     return def;
1800 }
1801 
1802 /*
1803  * Return the search path from the ldconfig hints file, reading it if
1804  * necessary.  If nostdlib is true, then the default search paths are
1805  * not added to result.
1806  *
1807  * Returns NULL if there are problems with the hints file,
1808  * or if the search path there is empty.
1809  */
1810 static const char *
gethints(bool nostdlib)1811 gethints(bool nostdlib)
1812 {
1813 	static char *filtered_path;
1814 	static const char *hints;
1815 	static struct elfhints_hdr hdr;
1816 	struct fill_search_info_args sargs, hargs;
1817 	struct dl_serinfo smeta, hmeta, *SLPinfo, *hintinfo;
1818 	struct dl_serpath *SLPpath, *hintpath;
1819 	char *p;
1820 	struct stat hint_stat;
1821 	unsigned int SLPndx, hintndx, fndx, fcount;
1822 	int fd;
1823 	size_t flen;
1824 	uint32_t dl;
1825 	bool skip;
1826 
1827 	/* First call, read the hints file */
1828 	if (hints == NULL) {
1829 		/* Keep from trying again in case the hints file is bad. */
1830 		hints = "";
1831 
1832 		if ((fd = open(ld_elf_hints_path, O_RDONLY | O_CLOEXEC)) == -1)
1833 			return (NULL);
1834 
1835 		/*
1836 		 * Check of hdr.dirlistlen value against type limit
1837 		 * intends to pacify static analyzers.  Further
1838 		 * paranoia leads to checks that dirlist is fully
1839 		 * contained in the file range.
1840 		 */
1841 		if (read(fd, &hdr, sizeof hdr) != sizeof hdr ||
1842 		    hdr.magic != ELFHINTS_MAGIC ||
1843 		    hdr.version != 1 || hdr.dirlistlen > UINT_MAX / 2 ||
1844 		    fstat(fd, &hint_stat) == -1) {
1845 cleanup1:
1846 			close(fd);
1847 			hdr.dirlistlen = 0;
1848 			return (NULL);
1849 		}
1850 		dl = hdr.strtab;
1851 		if (dl + hdr.dirlist < dl)
1852 			goto cleanup1;
1853 		dl += hdr.dirlist;
1854 		if (dl + hdr.dirlistlen < dl)
1855 			goto cleanup1;
1856 		dl += hdr.dirlistlen;
1857 		if (dl > hint_stat.st_size)
1858 			goto cleanup1;
1859 		p = xmalloc(hdr.dirlistlen + 1);
1860 		if (pread(fd, p, hdr.dirlistlen + 1,
1861 		    hdr.strtab + hdr.dirlist) != (ssize_t)hdr.dirlistlen + 1 ||
1862 		    p[hdr.dirlistlen] != '\0') {
1863 			free(p);
1864 			goto cleanup1;
1865 		}
1866 		hints = p;
1867 		close(fd);
1868 	}
1869 
1870 	/*
1871 	 * If caller agreed to receive list which includes the default
1872 	 * paths, we are done. Otherwise, if we still did not
1873 	 * calculated filtered result, do it now.
1874 	 */
1875 	if (!nostdlib)
1876 		return (hints[0] != '\0' ? hints : NULL);
1877 	if (filtered_path != NULL)
1878 		goto filt_ret;
1879 
1880 	/*
1881 	 * Obtain the list of all configured search paths, and the
1882 	 * list of the default paths.
1883 	 *
1884 	 * First estimate the size of the results.
1885 	 */
1886 	smeta.dls_size = __offsetof(struct dl_serinfo, dls_serpath);
1887 	smeta.dls_cnt = 0;
1888 	hmeta.dls_size = __offsetof(struct dl_serinfo, dls_serpath);
1889 	hmeta.dls_cnt = 0;
1890 
1891 	sargs.request = RTLD_DI_SERINFOSIZE;
1892 	sargs.serinfo = &smeta;
1893 	hargs.request = RTLD_DI_SERINFOSIZE;
1894 	hargs.serinfo = &hmeta;
1895 
1896 	path_enumerate(ld_standard_library_path, fill_search_info, NULL,
1897 	    &sargs);
1898 	path_enumerate(hints, fill_search_info, NULL, &hargs);
1899 
1900 	SLPinfo = xmalloc(smeta.dls_size);
1901 	hintinfo = xmalloc(hmeta.dls_size);
1902 
1903 	/*
1904 	 * Next fetch both sets of paths.
1905 	 */
1906 	sargs.request = RTLD_DI_SERINFO;
1907 	sargs.serinfo = SLPinfo;
1908 	sargs.serpath = &SLPinfo->dls_serpath[0];
1909 	sargs.strspace = (char *)&SLPinfo->dls_serpath[smeta.dls_cnt];
1910 
1911 	hargs.request = RTLD_DI_SERINFO;
1912 	hargs.serinfo = hintinfo;
1913 	hargs.serpath = &hintinfo->dls_serpath[0];
1914 	hargs.strspace = (char *)&hintinfo->dls_serpath[hmeta.dls_cnt];
1915 
1916 	path_enumerate(ld_standard_library_path, fill_search_info, NULL,
1917 	    &sargs);
1918 	path_enumerate(hints, fill_search_info, NULL, &hargs);
1919 
1920 	/*
1921 	 * Now calculate the difference between two sets, by excluding
1922 	 * standard paths from the full set.
1923 	 */
1924 	fndx = 0;
1925 	fcount = 0;
1926 	filtered_path = xmalloc(hdr.dirlistlen + 1);
1927 	hintpath = &hintinfo->dls_serpath[0];
1928 	for (hintndx = 0; hintndx < hmeta.dls_cnt; hintndx++, hintpath++) {
1929 		skip = false;
1930 		SLPpath = &SLPinfo->dls_serpath[0];
1931 		/*
1932 		 * Check each standard path against current.
1933 		 */
1934 		for (SLPndx = 0; SLPndx < smeta.dls_cnt; SLPndx++, SLPpath++) {
1935 			/* matched, skip the path */
1936 			if (!strcmp(hintpath->dls_name, SLPpath->dls_name)) {
1937 				skip = true;
1938 				break;
1939 			}
1940 		}
1941 		if (skip)
1942 			continue;
1943 		/*
1944 		 * Not matched against any standard path, add the path
1945 		 * to result. Separate consequtive paths with ':'.
1946 		 */
1947 		if (fcount > 0) {
1948 			filtered_path[fndx] = ':';
1949 			fndx++;
1950 		}
1951 		fcount++;
1952 		flen = strlen(hintpath->dls_name);
1953 		strncpy((filtered_path + fndx),	hintpath->dls_name, flen);
1954 		fndx += flen;
1955 	}
1956 	filtered_path[fndx] = '\0';
1957 
1958 	free(SLPinfo);
1959 	free(hintinfo);
1960 
1961 filt_ret:
1962 	return (filtered_path[0] != '\0' ? filtered_path : NULL);
1963 }
1964 
1965 static void
init_dag(Obj_Entry * root)1966 init_dag(Obj_Entry *root)
1967 {
1968     const Needed_Entry *needed;
1969     const Objlist_Entry *elm;
1970     DoneList donelist;
1971 
1972     if (root->dag_inited)
1973 	return;
1974     donelist_init(&donelist);
1975 
1976     /* Root object belongs to own DAG. */
1977     objlist_push_tail(&root->dldags, root);
1978     objlist_push_tail(&root->dagmembers, root);
1979     donelist_check(&donelist, root);
1980 
1981     /*
1982      * Add dependencies of root object to DAG in breadth order
1983      * by exploiting the fact that each new object get added
1984      * to the tail of the dagmembers list.
1985      */
1986     STAILQ_FOREACH(elm, &root->dagmembers, link) {
1987 	for (needed = elm->obj->needed; needed != NULL; needed = needed->next) {
1988 	    if (needed->obj == NULL || donelist_check(&donelist, needed->obj))
1989 		continue;
1990 	    objlist_push_tail(&needed->obj->dldags, root);
1991 	    objlist_push_tail(&root->dagmembers, needed->obj);
1992 	}
1993     }
1994     root->dag_inited = true;
1995 }
1996 
1997 static void
init_marker(Obj_Entry * marker)1998 init_marker(Obj_Entry *marker)
1999 {
2000 
2001 	bzero(marker, sizeof(*marker));
2002 	marker->marker = true;
2003 }
2004 
2005 Obj_Entry *
globallist_curr(const Obj_Entry * obj)2006 globallist_curr(const Obj_Entry *obj)
2007 {
2008 
2009 	for (;;) {
2010 		if (obj == NULL)
2011 			return (NULL);
2012 		if (!obj->marker)
2013 			return (__DECONST(Obj_Entry *, obj));
2014 		obj = TAILQ_PREV(obj, obj_entry_q, next);
2015 	}
2016 }
2017 
2018 Obj_Entry *
globallist_next(const Obj_Entry * obj)2019 globallist_next(const Obj_Entry *obj)
2020 {
2021 
2022 	for (;;) {
2023 		obj = TAILQ_NEXT(obj, next);
2024 		if (obj == NULL)
2025 			return (NULL);
2026 		if (!obj->marker)
2027 			return (__DECONST(Obj_Entry *, obj));
2028 	}
2029 }
2030 
2031 /* Prevent the object from being unmapped while the bind lock is dropped. */
2032 static void
hold_object(Obj_Entry * obj)2033 hold_object(Obj_Entry *obj)
2034 {
2035 
2036 	obj->holdcount++;
2037 }
2038 
2039 static void
unhold_object(Obj_Entry * obj)2040 unhold_object(Obj_Entry *obj)
2041 {
2042 
2043 	assert(obj->holdcount > 0);
2044 	if (--obj->holdcount == 0 && obj->unholdfree)
2045 		release_object(obj);
2046 }
2047 
2048 static void
process_z(Obj_Entry * root)2049 process_z(Obj_Entry *root)
2050 {
2051 	const Objlist_Entry *elm;
2052 	Obj_Entry *obj;
2053 
2054 	/*
2055 	 * Walk over object DAG and process every dependent object
2056 	 * that is marked as DF_1_NODELETE or DF_1_GLOBAL. They need
2057 	 * to grow their own DAG.
2058 	 *
2059 	 * For DF_1_GLOBAL, DAG is required for symbol lookups in
2060 	 * symlook_global() to work.
2061 	 *
2062 	 * For DF_1_NODELETE, the DAG should have its reference upped.
2063 	 */
2064 	STAILQ_FOREACH(elm, &root->dagmembers, link) {
2065 		obj = elm->obj;
2066 		if (obj == NULL)
2067 			continue;
2068 		if (obj->z_nodelete && !obj->ref_nodel) {
2069 			dbg("obj %s -z nodelete", obj->path);
2070 			init_dag(obj);
2071 			ref_dag(obj);
2072 			obj->ref_nodel = true;
2073 		}
2074 		if (obj->z_global && objlist_find(&list_global, obj) == NULL) {
2075 			dbg("obj %s -z global", obj->path);
2076 			objlist_push_tail(&list_global, obj);
2077 			init_dag(obj);
2078 		}
2079 	}
2080 }
2081 /*
2082  * Initialize the dynamic linker.  The argument is the address at which
2083  * the dynamic linker has been mapped into memory.  The primary task of
2084  * this function is to relocate the dynamic linker.
2085  */
2086 static void
init_rtld(caddr_t mapbase,Elf_Auxinfo ** aux_info)2087 init_rtld(caddr_t mapbase, Elf_Auxinfo **aux_info)
2088 {
2089     Obj_Entry objtmp;	/* Temporary rtld object */
2090     const Elf_Ehdr *ehdr;
2091     const Elf_Dyn *dyn_rpath;
2092     const Elf_Dyn *dyn_soname;
2093     const Elf_Dyn *dyn_runpath;
2094 
2095 #ifdef RTLD_INIT_PAGESIZES_EARLY
2096     /* The page size is required by the dynamic memory allocator. */
2097     init_pagesizes(aux_info);
2098 #endif
2099 
2100     /*
2101      * Conjure up an Obj_Entry structure for the dynamic linker.
2102      *
2103      * The "path" member can't be initialized yet because string constants
2104      * cannot yet be accessed. Below we will set it correctly.
2105      */
2106     memset(&objtmp, 0, sizeof(objtmp));
2107     objtmp.path = NULL;
2108     objtmp.rtld = true;
2109     objtmp.mapbase = mapbase;
2110 #ifdef PIC
2111     objtmp.relocbase = mapbase;
2112 #endif
2113 
2114     objtmp.dynamic = rtld_dynamic(&objtmp);
2115     digest_dynamic1(&objtmp, 1, &dyn_rpath, &dyn_soname, &dyn_runpath);
2116     assert(objtmp.needed == NULL);
2117 #if !defined(__mips__)
2118     /* MIPS has a bogus DT_TEXTREL. */
2119     assert(!objtmp.textrel);
2120 #endif
2121     /*
2122      * Temporarily put the dynamic linker entry into the object list, so
2123      * that symbols can be found.
2124      */
2125     relocate_objects(&objtmp, true, &objtmp, 0, NULL);
2126 
2127     ehdr = (Elf_Ehdr *)mapbase;
2128     objtmp.phdr = (Elf_Phdr *)((char *)mapbase + ehdr->e_phoff);
2129     objtmp.phsize = ehdr->e_phnum * sizeof(objtmp.phdr[0]);
2130 
2131     /* Initialize the object list. */
2132     TAILQ_INIT(&obj_list);
2133 
2134     /* Now that non-local variables can be accesses, copy out obj_rtld. */
2135     memcpy(&obj_rtld, &objtmp, sizeof(obj_rtld));
2136 
2137 #ifndef RTLD_INIT_PAGESIZES_EARLY
2138     /* The page size is required by the dynamic memory allocator. */
2139     init_pagesizes(aux_info);
2140 #endif
2141 
2142     if (aux_info[AT_OSRELDATE] != NULL)
2143 	    osreldate = aux_info[AT_OSRELDATE]->a_un.a_val;
2144 
2145     digest_dynamic2(&obj_rtld, dyn_rpath, dyn_soname, dyn_runpath);
2146 
2147     /* Replace the path with a dynamically allocated copy. */
2148     obj_rtld.path = xstrdup(ld_path_rtld);
2149 
2150     r_debug.r_brk = r_debug_state;
2151     r_debug.r_state = RT_CONSISTENT;
2152 }
2153 
2154 /*
2155  * Retrieve the array of supported page sizes.  The kernel provides the page
2156  * sizes in increasing order.
2157  */
2158 static void
init_pagesizes(Elf_Auxinfo ** aux_info)2159 init_pagesizes(Elf_Auxinfo **aux_info)
2160 {
2161 	static size_t psa[MAXPAGESIZES];
2162 	int mib[2];
2163 	size_t len, size;
2164 
2165 	if (aux_info[AT_PAGESIZES] != NULL && aux_info[AT_PAGESIZESLEN] !=
2166 	    NULL) {
2167 		size = aux_info[AT_PAGESIZESLEN]->a_un.a_val;
2168 		pagesizes = aux_info[AT_PAGESIZES]->a_un.a_ptr;
2169 	} else {
2170 		len = 2;
2171 		if (sysctlnametomib("hw.pagesizes", mib, &len) == 0)
2172 			size = sizeof(psa);
2173 		else {
2174 			/* As a fallback, retrieve the base page size. */
2175 			size = sizeof(psa[0]);
2176 			if (aux_info[AT_PAGESZ] != NULL) {
2177 				psa[0] = aux_info[AT_PAGESZ]->a_un.a_val;
2178 				goto psa_filled;
2179 			} else {
2180 				mib[0] = CTL_HW;
2181 				mib[1] = HW_PAGESIZE;
2182 				len = 2;
2183 			}
2184 		}
2185 		if (sysctl(mib, len, psa, &size, NULL, 0) == -1) {
2186 			_rtld_error("sysctl for hw.pagesize(s) failed");
2187 			rtld_die();
2188 		}
2189 psa_filled:
2190 		pagesizes = psa;
2191 	}
2192 	npagesizes = size / sizeof(pagesizes[0]);
2193 	/* Discard any invalid entries at the end of the array. */
2194 	while (npagesizes > 0 && pagesizes[npagesizes - 1] == 0)
2195 		npagesizes--;
2196 }
2197 
2198 /*
2199  * Add the init functions from a needed object list (and its recursive
2200  * needed objects) to "list".  This is not used directly; it is a helper
2201  * function for initlist_add_objects().  The write lock must be held
2202  * when this function is called.
2203  */
2204 static void
initlist_add_neededs(Needed_Entry * needed,Objlist * list)2205 initlist_add_neededs(Needed_Entry *needed, Objlist *list)
2206 {
2207     /* Recursively process the successor needed objects. */
2208     if (needed->next != NULL)
2209 	initlist_add_neededs(needed->next, list);
2210 
2211     /* Process the current needed object. */
2212     if (needed->obj != NULL)
2213 	initlist_add_objects(needed->obj, needed->obj, list);
2214 }
2215 
2216 /*
2217  * Scan all of the DAGs rooted in the range of objects from "obj" to
2218  * "tail" and add their init functions to "list".  This recurses over
2219  * the DAGs and ensure the proper init ordering such that each object's
2220  * needed libraries are initialized before the object itself.  At the
2221  * same time, this function adds the objects to the global finalization
2222  * list "list_fini" in the opposite order.  The write lock must be
2223  * held when this function is called.
2224  */
2225 static void
initlist_add_objects(Obj_Entry * obj,Obj_Entry * tail,Objlist * list)2226 initlist_add_objects(Obj_Entry *obj, Obj_Entry *tail, Objlist *list)
2227 {
2228     Obj_Entry *nobj;
2229 
2230     if (obj->init_scanned || obj->init_done)
2231 	return;
2232     obj->init_scanned = true;
2233 
2234     /* Recursively process the successor objects. */
2235     nobj = globallist_next(obj);
2236     if (nobj != NULL && obj != tail)
2237 	initlist_add_objects(nobj, tail, list);
2238 
2239     /* Recursively process the needed objects. */
2240     if (obj->needed != NULL)
2241 	initlist_add_neededs(obj->needed, list);
2242     if (obj->needed_filtees != NULL)
2243 	initlist_add_neededs(obj->needed_filtees, list);
2244     if (obj->needed_aux_filtees != NULL)
2245 	initlist_add_neededs(obj->needed_aux_filtees, list);
2246 
2247     /* Add the object to the init list. */
2248     objlist_push_tail(list, obj);
2249 
2250     /* Add the object to the global fini list in the reverse order. */
2251     if ((obj->fini != (Elf_Addr)NULL || obj->fini_array != (Elf_Addr)NULL)
2252       && !obj->on_fini_list) {
2253 	objlist_push_head(&list_fini, obj);
2254 	obj->on_fini_list = true;
2255     }
2256 }
2257 
2258 #ifndef FPTR_TARGET
2259 #define FPTR_TARGET(f)	((Elf_Addr) (f))
2260 #endif
2261 
2262 static void
free_needed_filtees(Needed_Entry * n,RtldLockState * lockstate)2263 free_needed_filtees(Needed_Entry *n, RtldLockState *lockstate)
2264 {
2265     Needed_Entry *needed, *needed1;
2266 
2267     for (needed = n; needed != NULL; needed = needed->next) {
2268 	if (needed->obj != NULL) {
2269 	    dlclose_locked(needed->obj, lockstate);
2270 	    needed->obj = NULL;
2271 	}
2272     }
2273     for (needed = n; needed != NULL; needed = needed1) {
2274 	needed1 = needed->next;
2275 	free(needed);
2276     }
2277 }
2278 
2279 static void
unload_filtees(Obj_Entry * obj,RtldLockState * lockstate)2280 unload_filtees(Obj_Entry *obj, RtldLockState *lockstate)
2281 {
2282 
2283 	free_needed_filtees(obj->needed_filtees, lockstate);
2284 	obj->needed_filtees = NULL;
2285 	free_needed_filtees(obj->needed_aux_filtees, lockstate);
2286 	obj->needed_aux_filtees = NULL;
2287 	obj->filtees_loaded = false;
2288 }
2289 
2290 static void
load_filtee1(Obj_Entry * obj,Needed_Entry * needed,int flags,RtldLockState * lockstate)2291 load_filtee1(Obj_Entry *obj, Needed_Entry *needed, int flags,
2292     RtldLockState *lockstate)
2293 {
2294 
2295     for (; needed != NULL; needed = needed->next) {
2296 	needed->obj = dlopen_object(obj->strtab + needed->name, -1, obj,
2297 	  flags, ((ld_loadfltr || obj->z_loadfltr) ? RTLD_NOW : RTLD_LAZY) |
2298 	  RTLD_LOCAL, lockstate);
2299     }
2300 }
2301 
2302 static void
load_filtees(Obj_Entry * obj,int flags,RtldLockState * lockstate)2303 load_filtees(Obj_Entry *obj, int flags, RtldLockState *lockstate)
2304 {
2305 
2306     lock_restart_for_upgrade(lockstate);
2307     if (!obj->filtees_loaded) {
2308 	load_filtee1(obj, obj->needed_filtees, flags, lockstate);
2309 	load_filtee1(obj, obj->needed_aux_filtees, flags, lockstate);
2310 	obj->filtees_loaded = true;
2311     }
2312 }
2313 
2314 static int
process_needed(Obj_Entry * obj,Needed_Entry * needed,int flags)2315 process_needed(Obj_Entry *obj, Needed_Entry *needed, int flags)
2316 {
2317     Obj_Entry *obj1;
2318 
2319     for (; needed != NULL; needed = needed->next) {
2320 	obj1 = needed->obj = load_object(obj->strtab + needed->name, -1, obj,
2321 	  flags & ~RTLD_LO_NOLOAD);
2322 	if (obj1 == NULL && !ld_tracing && (flags & RTLD_LO_FILTEES) == 0)
2323 	    return (-1);
2324     }
2325     return (0);
2326 }
2327 
2328 /*
2329  * Given a shared object, traverse its list of needed objects, and load
2330  * each of them.  Returns 0 on success.  Generates an error message and
2331  * returns -1 on failure.
2332  */
2333 static int
load_needed_objects(Obj_Entry * first,int flags)2334 load_needed_objects(Obj_Entry *first, int flags)
2335 {
2336     Obj_Entry *obj;
2337 
2338     for (obj = first; obj != NULL; obj = TAILQ_NEXT(obj, next)) {
2339 	if (obj->marker)
2340 	    continue;
2341 	if (process_needed(obj, obj->needed, flags) == -1)
2342 	    return (-1);
2343     }
2344     return (0);
2345 }
2346 
2347 static int
load_preload_objects(void)2348 load_preload_objects(void)
2349 {
2350     char *p = ld_preload;
2351     Obj_Entry *obj;
2352     static const char delim[] = " \t:;";
2353 
2354     if (p == NULL)
2355 	return 0;
2356 
2357     p += strspn(p, delim);
2358     while (*p != '\0') {
2359 	size_t len = strcspn(p, delim);
2360 	char savech;
2361 
2362 	savech = p[len];
2363 	p[len] = '\0';
2364 	obj = load_object(p, -1, NULL, 0);
2365 	if (obj == NULL)
2366 	    return -1;	/* XXX - cleanup */
2367 	obj->z_interpose = true;
2368 	p[len] = savech;
2369 	p += len;
2370 	p += strspn(p, delim);
2371     }
2372     LD_UTRACE(UTRACE_PRELOAD_FINISHED, NULL, NULL, 0, 0, NULL);
2373     return 0;
2374 }
2375 
2376 static const char *
printable_path(const char * path)2377 printable_path(const char *path)
2378 {
2379 
2380 	return (path == NULL ? "<unknown>" : path);
2381 }
2382 
2383 /*
2384  * Load a shared object into memory, if it is not already loaded.  The
2385  * object may be specified by name or by user-supplied file descriptor
2386  * fd_u. In the later case, the fd_u descriptor is not closed, but its
2387  * duplicate is.
2388  *
2389  * Returns a pointer to the Obj_Entry for the object.  Returns NULL
2390  * on failure.
2391  */
2392 static Obj_Entry *
load_object(const char * name,int fd_u,const Obj_Entry * refobj,int flags)2393 load_object(const char *name, int fd_u, const Obj_Entry *refobj, int flags)
2394 {
2395     Obj_Entry *obj;
2396     int fd;
2397     struct stat sb;
2398     char *path;
2399 
2400     fd = -1;
2401     if (name != NULL) {
2402 	TAILQ_FOREACH(obj, &obj_list, next) {
2403 	    if (obj->marker || obj->doomed)
2404 		continue;
2405 	    if (object_match_name(obj, name))
2406 		return (obj);
2407 	}
2408 
2409 	path = find_library(name, refobj, &fd);
2410 	if (path == NULL)
2411 	    return (NULL);
2412     } else
2413 	path = NULL;
2414 
2415     if (fd >= 0) {
2416 	/*
2417 	 * search_library_pathfds() opens a fresh file descriptor for the
2418 	 * library, so there is no need to dup().
2419 	 */
2420     } else if (fd_u == -1) {
2421 	/*
2422 	 * If we didn't find a match by pathname, or the name is not
2423 	 * supplied, open the file and check again by device and inode.
2424 	 * This avoids false mismatches caused by multiple links or ".."
2425 	 * in pathnames.
2426 	 *
2427 	 * To avoid a race, we open the file and use fstat() rather than
2428 	 * using stat().
2429 	 */
2430 	if ((fd = open(path, O_RDONLY | O_CLOEXEC | O_VERIFY)) == -1) {
2431 	    _rtld_error("Cannot open \"%s\"", path);
2432 	    free(path);
2433 	    return (NULL);
2434 	}
2435     } else {
2436 	fd = fcntl(fd_u, F_DUPFD_CLOEXEC, 0);
2437 	if (fd == -1) {
2438 	    _rtld_error("Cannot dup fd");
2439 	    free(path);
2440 	    return (NULL);
2441 	}
2442     }
2443     if (fstat(fd, &sb) == -1) {
2444 	_rtld_error("Cannot fstat \"%s\"", printable_path(path));
2445 	close(fd);
2446 	free(path);
2447 	return NULL;
2448     }
2449     TAILQ_FOREACH(obj, &obj_list, next) {
2450 	if (obj->marker || obj->doomed)
2451 	    continue;
2452 	if (obj->ino == sb.st_ino && obj->dev == sb.st_dev)
2453 	    break;
2454     }
2455     if (obj != NULL && name != NULL) {
2456 	object_add_name(obj, name);
2457 	free(path);
2458 	close(fd);
2459 	return obj;
2460     }
2461     if (flags & RTLD_LO_NOLOAD) {
2462 	free(path);
2463 	close(fd);
2464 	return (NULL);
2465     }
2466 
2467     /* First use of this object, so we must map it in */
2468     obj = do_load_object(fd, name, path, &sb, flags);
2469     if (obj == NULL)
2470 	free(path);
2471     close(fd);
2472 
2473     return obj;
2474 }
2475 
2476 static Obj_Entry *
do_load_object(int fd,const char * name,char * path,struct stat * sbp,int flags)2477 do_load_object(int fd, const char *name, char *path, struct stat *sbp,
2478   int flags)
2479 {
2480     Obj_Entry *obj;
2481     struct statfs fs;
2482 
2483     /*
2484      * but first, make sure that environment variables haven't been
2485      * used to circumvent the noexec flag on a filesystem.
2486      */
2487     if (dangerous_ld_env) {
2488 	if (fstatfs(fd, &fs) != 0) {
2489 	    _rtld_error("Cannot fstatfs \"%s\"", printable_path(path));
2490 	    return NULL;
2491 	}
2492 	if (fs.f_flags & MNT_NOEXEC) {
2493 	    _rtld_error("Cannot execute objects on %s", fs.f_mntonname);
2494 	    return NULL;
2495 	}
2496     }
2497     dbg("loading \"%s\"", printable_path(path));
2498     obj = map_object(fd, printable_path(path), sbp);
2499     if (obj == NULL)
2500         return NULL;
2501 
2502     /*
2503      * If DT_SONAME is present in the object, digest_dynamic2 already
2504      * added it to the object names.
2505      */
2506     if (name != NULL)
2507 	object_add_name(obj, name);
2508     obj->path = path;
2509     digest_dynamic(obj, 0);
2510     dbg("%s valid_hash_sysv %d valid_hash_gnu %d dynsymcount %d", obj->path,
2511 	obj->valid_hash_sysv, obj->valid_hash_gnu, obj->dynsymcount);
2512     if (obj->z_noopen && (flags & (RTLD_LO_DLOPEN | RTLD_LO_TRACE)) ==
2513       RTLD_LO_DLOPEN) {
2514 	dbg("refusing to load non-loadable \"%s\"", obj->path);
2515 	_rtld_error("Cannot dlopen non-loadable %s", obj->path);
2516 	munmap(obj->mapbase, obj->mapsize);
2517 	obj_free(obj);
2518 	return (NULL);
2519     }
2520 
2521     obj->dlopened = (flags & RTLD_LO_DLOPEN) != 0;
2522     TAILQ_INSERT_TAIL(&obj_list, obj, next);
2523     obj_count++;
2524     obj_loads++;
2525     linkmap_add(obj);	/* for GDB & dlinfo() */
2526     max_stack_flags |= obj->stack_flags;
2527 
2528     dbg("  %p .. %p: %s", obj->mapbase,
2529          obj->mapbase + obj->mapsize - 1, obj->path);
2530     if (obj->textrel)
2531 	dbg("  WARNING: %s has impure text", obj->path);
2532     LD_UTRACE(UTRACE_LOAD_OBJECT, obj, obj->mapbase, obj->mapsize, 0,
2533 	obj->path);
2534 
2535     return obj;
2536 }
2537 
2538 static Obj_Entry *
obj_from_addr(const void * addr)2539 obj_from_addr(const void *addr)
2540 {
2541     Obj_Entry *obj;
2542 
2543     TAILQ_FOREACH(obj, &obj_list, next) {
2544 	if (obj->marker)
2545 	    continue;
2546 	if (addr < (void *) obj->mapbase)
2547 	    continue;
2548 	if (addr < (void *)(obj->mapbase + obj->mapsize))
2549 	    return obj;
2550     }
2551     return NULL;
2552 }
2553 
2554 static void
preinit_main(void)2555 preinit_main(void)
2556 {
2557     Elf_Addr *preinit_addr;
2558     int index;
2559 
2560     preinit_addr = (Elf_Addr *)obj_main->preinit_array;
2561     if (preinit_addr == NULL)
2562 	return;
2563 
2564     for (index = 0; index < obj_main->preinit_array_num; index++) {
2565 	if (preinit_addr[index] != 0 && preinit_addr[index] != 1) {
2566 	    dbg("calling preinit function for %s at %p", obj_main->path,
2567 	      (void *)preinit_addr[index]);
2568 	    LD_UTRACE(UTRACE_INIT_CALL, obj_main, (void *)preinit_addr[index],
2569 	      0, 0, obj_main->path);
2570 	    call_init_pointer(obj_main, preinit_addr[index]);
2571 	}
2572     }
2573 }
2574 
2575 /*
2576  * Call the finalization functions for each of the objects in "list"
2577  * belonging to the DAG of "root" and referenced once. If NULL "root"
2578  * is specified, every finalization function will be called regardless
2579  * of the reference count and the list elements won't be freed. All of
2580  * the objects are expected to have non-NULL fini functions.
2581  */
2582 static void
objlist_call_fini(Objlist * list,Obj_Entry * root,RtldLockState * lockstate)2583 objlist_call_fini(Objlist *list, Obj_Entry *root, RtldLockState *lockstate)
2584 {
2585     Objlist_Entry *elm;
2586     char *saved_msg;
2587     Elf_Addr *fini_addr;
2588     int index;
2589 
2590     assert(root == NULL || root->refcount == 1);
2591 
2592     if (root != NULL)
2593 	root->doomed = true;
2594 
2595     /*
2596      * Preserve the current error message since a fini function might
2597      * call into the dynamic linker and overwrite it.
2598      */
2599     saved_msg = errmsg_save();
2600     do {
2601 	STAILQ_FOREACH(elm, list, link) {
2602 	    if (root != NULL && (elm->obj->refcount != 1 ||
2603 	      objlist_find(&root->dagmembers, elm->obj) == NULL))
2604 		continue;
2605 	    /* Remove object from fini list to prevent recursive invocation. */
2606 	    STAILQ_REMOVE(list, elm, Struct_Objlist_Entry, link);
2607 	    /* Ensure that new references cannot be acquired. */
2608 	    elm->obj->doomed = true;
2609 
2610 	    hold_object(elm->obj);
2611 	    lock_release(rtld_bind_lock, lockstate);
2612 	    /*
2613 	     * It is legal to have both DT_FINI and DT_FINI_ARRAY defined.
2614 	     * When this happens, DT_FINI_ARRAY is processed first.
2615 	     */
2616 	    fini_addr = (Elf_Addr *)elm->obj->fini_array;
2617 	    if (fini_addr != NULL && elm->obj->fini_array_num > 0) {
2618 		for (index = elm->obj->fini_array_num - 1; index >= 0;
2619 		  index--) {
2620 		    if (fini_addr[index] != 0 && fini_addr[index] != 1) {
2621 			dbg("calling fini function for %s at %p",
2622 			    elm->obj->path, (void *)fini_addr[index]);
2623 			LD_UTRACE(UTRACE_FINI_CALL, elm->obj,
2624 			    (void *)fini_addr[index], 0, 0, elm->obj->path);
2625 			call_initfini_pointer(elm->obj, fini_addr[index]);
2626 		    }
2627 		}
2628 	    }
2629 	    if (elm->obj->fini != (Elf_Addr)NULL) {
2630 		dbg("calling fini function for %s at %p", elm->obj->path,
2631 		    (void *)elm->obj->fini);
2632 		LD_UTRACE(UTRACE_FINI_CALL, elm->obj, (void *)elm->obj->fini,
2633 		    0, 0, elm->obj->path);
2634 		call_initfini_pointer(elm->obj, elm->obj->fini);
2635 	    }
2636 	    wlock_acquire(rtld_bind_lock, lockstate);
2637 	    unhold_object(elm->obj);
2638 	    /* No need to free anything if process is going down. */
2639 	    if (root != NULL)
2640 	    	free(elm);
2641 	    /*
2642 	     * We must restart the list traversal after every fini call
2643 	     * because a dlclose() call from the fini function or from
2644 	     * another thread might have modified the reference counts.
2645 	     */
2646 	    break;
2647 	}
2648     } while (elm != NULL);
2649     errmsg_restore(saved_msg);
2650 }
2651 
2652 /*
2653  * Call the initialization functions for each of the objects in
2654  * "list".  All of the objects are expected to have non-NULL init
2655  * functions.
2656  */
2657 static void
objlist_call_init(Objlist * list,RtldLockState * lockstate)2658 objlist_call_init(Objlist *list, RtldLockState *lockstate)
2659 {
2660     Objlist_Entry *elm;
2661     Obj_Entry *obj;
2662     char *saved_msg;
2663     Elf_Addr *init_addr;
2664     void (*reg)(void (*)(void));
2665     int index;
2666 
2667     /*
2668      * Clean init_scanned flag so that objects can be rechecked and
2669      * possibly initialized earlier if any of vectors called below
2670      * cause the change by using dlopen.
2671      */
2672     TAILQ_FOREACH(obj, &obj_list, next) {
2673 	if (obj->marker)
2674 	    continue;
2675 	obj->init_scanned = false;
2676     }
2677 
2678     /*
2679      * Preserve the current error message since an init function might
2680      * call into the dynamic linker and overwrite it.
2681      */
2682     saved_msg = errmsg_save();
2683     STAILQ_FOREACH(elm, list, link) {
2684 	if (elm->obj->init_done) /* Initialized early. */
2685 	    continue;
2686 	/*
2687 	 * Race: other thread might try to use this object before current
2688 	 * one completes the initialization. Not much can be done here
2689 	 * without better locking.
2690 	 */
2691 	elm->obj->init_done = true;
2692 	hold_object(elm->obj);
2693 	reg = NULL;
2694 	if (elm->obj == obj_main && obj_main->crt_no_init) {
2695 		reg = (void (*)(void (*)(void)))get_program_var_addr(
2696 		    "__libc_atexit", lockstate);
2697 	}
2698 	lock_release(rtld_bind_lock, lockstate);
2699 	if (reg != NULL) {
2700 		reg(rtld_exit);
2701 		rtld_exit_ptr = rtld_nop_exit;
2702 	}
2703 
2704         /*
2705          * It is legal to have both DT_INIT and DT_INIT_ARRAY defined.
2706          * When this happens, DT_INIT is processed first.
2707          */
2708 	if (elm->obj->init != (Elf_Addr)NULL) {
2709 	    dbg("calling init function for %s at %p", elm->obj->path,
2710 	        (void *)elm->obj->init);
2711 	    LD_UTRACE(UTRACE_INIT_CALL, elm->obj, (void *)elm->obj->init,
2712 	        0, 0, elm->obj->path);
2713 	    call_initfini_pointer(elm->obj, elm->obj->init);
2714 	}
2715 	init_addr = (Elf_Addr *)elm->obj->init_array;
2716 	if (init_addr != NULL) {
2717 	    for (index = 0; index < elm->obj->init_array_num; index++) {
2718 		if (init_addr[index] != 0 && init_addr[index] != 1) {
2719 		    dbg("calling init function for %s at %p", elm->obj->path,
2720 			(void *)init_addr[index]);
2721 		    LD_UTRACE(UTRACE_INIT_CALL, elm->obj,
2722 			(void *)init_addr[index], 0, 0, elm->obj->path);
2723 		    call_init_pointer(elm->obj, init_addr[index]);
2724 		}
2725 	    }
2726 	}
2727 	wlock_acquire(rtld_bind_lock, lockstate);
2728 	unhold_object(elm->obj);
2729     }
2730     errmsg_restore(saved_msg);
2731 }
2732 
2733 static void
objlist_clear(Objlist * list)2734 objlist_clear(Objlist *list)
2735 {
2736     Objlist_Entry *elm;
2737 
2738     while (!STAILQ_EMPTY(list)) {
2739 	elm = STAILQ_FIRST(list);
2740 	STAILQ_REMOVE_HEAD(list, link);
2741 	free(elm);
2742     }
2743 }
2744 
2745 static Objlist_Entry *
objlist_find(Objlist * list,const Obj_Entry * obj)2746 objlist_find(Objlist *list, const Obj_Entry *obj)
2747 {
2748     Objlist_Entry *elm;
2749 
2750     STAILQ_FOREACH(elm, list, link)
2751 	if (elm->obj == obj)
2752 	    return elm;
2753     return NULL;
2754 }
2755 
2756 static void
objlist_init(Objlist * list)2757 objlist_init(Objlist *list)
2758 {
2759     STAILQ_INIT(list);
2760 }
2761 
2762 static void
objlist_push_head(Objlist * list,Obj_Entry * obj)2763 objlist_push_head(Objlist *list, Obj_Entry *obj)
2764 {
2765     Objlist_Entry *elm;
2766 
2767     elm = NEW(Objlist_Entry);
2768     elm->obj = obj;
2769     STAILQ_INSERT_HEAD(list, elm, link);
2770 }
2771 
2772 static void
objlist_push_tail(Objlist * list,Obj_Entry * obj)2773 objlist_push_tail(Objlist *list, Obj_Entry *obj)
2774 {
2775     Objlist_Entry *elm;
2776 
2777     elm = NEW(Objlist_Entry);
2778     elm->obj = obj;
2779     STAILQ_INSERT_TAIL(list, elm, link);
2780 }
2781 
2782 static void
objlist_put_after(Objlist * list,Obj_Entry * listobj,Obj_Entry * obj)2783 objlist_put_after(Objlist *list, Obj_Entry *listobj, Obj_Entry *obj)
2784 {
2785 	Objlist_Entry *elm, *listelm;
2786 
2787 	STAILQ_FOREACH(listelm, list, link) {
2788 		if (listelm->obj == listobj)
2789 			break;
2790 	}
2791 	elm = NEW(Objlist_Entry);
2792 	elm->obj = obj;
2793 	if (listelm != NULL)
2794 		STAILQ_INSERT_AFTER(list, listelm, elm, link);
2795 	else
2796 		STAILQ_INSERT_TAIL(list, elm, link);
2797 }
2798 
2799 static void
objlist_remove(Objlist * list,Obj_Entry * obj)2800 objlist_remove(Objlist *list, Obj_Entry *obj)
2801 {
2802     Objlist_Entry *elm;
2803 
2804     if ((elm = objlist_find(list, obj)) != NULL) {
2805 	STAILQ_REMOVE(list, elm, Struct_Objlist_Entry, link);
2806 	free(elm);
2807     }
2808 }
2809 
2810 /*
2811  * Relocate dag rooted in the specified object.
2812  * Returns 0 on success, or -1 on failure.
2813  */
2814 
2815 static int
relocate_object_dag(Obj_Entry * root,bool bind_now,Obj_Entry * rtldobj,int flags,RtldLockState * lockstate)2816 relocate_object_dag(Obj_Entry *root, bool bind_now, Obj_Entry *rtldobj,
2817     int flags, RtldLockState *lockstate)
2818 {
2819 	Objlist_Entry *elm;
2820 	int error;
2821 
2822 	error = 0;
2823 	STAILQ_FOREACH(elm, &root->dagmembers, link) {
2824 		error = relocate_object(elm->obj, bind_now, rtldobj, flags,
2825 		    lockstate);
2826 		if (error == -1)
2827 			break;
2828 	}
2829 	return (error);
2830 }
2831 
2832 /*
2833  * Prepare for, or clean after, relocating an object marked with
2834  * DT_TEXTREL or DF_TEXTREL.  Before relocating, all read-only
2835  * segments are remapped read-write.  After relocations are done, the
2836  * segment's permissions are returned back to the modes specified in
2837  * the phdrs.  If any relocation happened, or always for wired
2838  * program, COW is triggered.
2839  */
2840 static int
reloc_textrel_prot(Obj_Entry * obj,bool before)2841 reloc_textrel_prot(Obj_Entry *obj, bool before)
2842 {
2843 	const Elf_Phdr *ph;
2844 	void *base;
2845 	size_t l, sz;
2846 	int prot;
2847 
2848 	for (l = obj->phsize / sizeof(*ph), ph = obj->phdr; l > 0;
2849 	    l--, ph++) {
2850 		if (ph->p_type != PT_LOAD || (ph->p_flags & PF_W) != 0)
2851 			continue;
2852 		base = obj->relocbase + trunc_page(ph->p_vaddr);
2853 		sz = round_page(ph->p_vaddr + ph->p_filesz) -
2854 		    trunc_page(ph->p_vaddr);
2855 		prot = convert_prot(ph->p_flags) | (before ? PROT_WRITE : 0);
2856 		if (mprotect(base, sz, prot) == -1) {
2857 			_rtld_error("%s: Cannot write-%sable text segment: %s",
2858 			    obj->path, before ? "en" : "dis",
2859 			    rtld_strerror(errno));
2860 			return (-1);
2861 		}
2862 	}
2863 	return (0);
2864 }
2865 
2866 /*
2867  * Relocate single object.
2868  * Returns 0 on success, or -1 on failure.
2869  */
2870 static int
relocate_object(Obj_Entry * obj,bool bind_now,Obj_Entry * rtldobj,int flags,RtldLockState * lockstate)2871 relocate_object(Obj_Entry *obj, bool bind_now, Obj_Entry *rtldobj,
2872     int flags, RtldLockState *lockstate)
2873 {
2874 
2875 	if (obj->relocated)
2876 		return (0);
2877 	obj->relocated = true;
2878 	if (obj != rtldobj)
2879 		dbg("relocating \"%s\"", obj->path);
2880 
2881 	if (obj->symtab == NULL || obj->strtab == NULL ||
2882 	    !(obj->valid_hash_sysv || obj->valid_hash_gnu)) {
2883 		_rtld_error("%s: Shared object has no run-time symbol table",
2884 			    obj->path);
2885 		return (-1);
2886 	}
2887 
2888 	/* There are relocations to the write-protected text segment. */
2889 	if (obj->textrel && reloc_textrel_prot(obj, true) != 0)
2890 		return (-1);
2891 
2892 	/* Process the non-PLT non-IFUNC relocations. */
2893 	if (reloc_non_plt(obj, rtldobj, flags, lockstate))
2894 		return (-1);
2895 
2896 	/* Re-protected the text segment. */
2897 	if (obj->textrel && reloc_textrel_prot(obj, false) != 0)
2898 		return (-1);
2899 
2900 	/* Set the special PLT or GOT entries. */
2901 	init_pltgot(obj);
2902 
2903 	/* Process the PLT relocations. */
2904 	if (reloc_plt(obj, flags, lockstate) == -1)
2905 		return (-1);
2906 	/* Relocate the jump slots if we are doing immediate binding. */
2907 	if ((obj->bind_now || bind_now) && reloc_jmpslots(obj, flags,
2908 	    lockstate) == -1)
2909 		return (-1);
2910 
2911 	if (!obj->mainprog && obj_enforce_relro(obj) == -1)
2912 		return (-1);
2913 
2914 	/*
2915 	 * Set up the magic number and version in the Obj_Entry.  These
2916 	 * were checked in the crt1.o from the original ElfKit, so we
2917 	 * set them for backward compatibility.
2918 	 */
2919 	obj->magic = RTLD_MAGIC;
2920 	obj->version = RTLD_VERSION;
2921 
2922 	return (0);
2923 }
2924 
2925 /*
2926  * Relocate newly-loaded shared objects.  The argument is a pointer to
2927  * the Obj_Entry for the first such object.  All objects from the first
2928  * to the end of the list of objects are relocated.  Returns 0 on success,
2929  * or -1 on failure.
2930  */
2931 static int
relocate_objects(Obj_Entry * first,bool bind_now,Obj_Entry * rtldobj,int flags,RtldLockState * lockstate)2932 relocate_objects(Obj_Entry *first, bool bind_now, Obj_Entry *rtldobj,
2933     int flags, RtldLockState *lockstate)
2934 {
2935 	Obj_Entry *obj;
2936 	int error;
2937 
2938 	for (error = 0, obj = first;  obj != NULL;
2939 	    obj = TAILQ_NEXT(obj, next)) {
2940 		if (obj->marker)
2941 			continue;
2942 		error = relocate_object(obj, bind_now, rtldobj, flags,
2943 		    lockstate);
2944 		if (error == -1)
2945 			break;
2946 	}
2947 	return (error);
2948 }
2949 
2950 /*
2951  * The handling of R_MACHINE_IRELATIVE relocations and jumpslots
2952  * referencing STT_GNU_IFUNC symbols is postponed till the other
2953  * relocations are done.  The indirect functions specified as
2954  * ifunc are allowed to call other symbols, so we need to have
2955  * objects relocated before asking for resolution from indirects.
2956  *
2957  * The R_MACHINE_IRELATIVE slots are resolved in greedy fashion,
2958  * instead of the usual lazy handling of PLT slots.  It is
2959  * consistent with how GNU does it.
2960  */
2961 static int
resolve_object_ifunc(Obj_Entry * obj,bool bind_now,int flags,RtldLockState * lockstate)2962 resolve_object_ifunc(Obj_Entry *obj, bool bind_now, int flags,
2963     RtldLockState *lockstate)
2964 {
2965 
2966 	if (obj->ifuncs_resolved)
2967 		return (0);
2968 	obj->ifuncs_resolved = true;
2969 	if (!obj->irelative && !((obj->bind_now || bind_now) && obj->gnu_ifunc))
2970 		return (0);
2971 	if (obj_disable_relro(obj) == -1 ||
2972 	    (obj->irelative && reloc_iresolve(obj, lockstate) == -1) ||
2973 	    ((obj->bind_now || bind_now) && obj->gnu_ifunc &&
2974 	    reloc_gnu_ifunc(obj, flags, lockstate) == -1) ||
2975 	    obj_enforce_relro(obj) == -1)
2976 		return (-1);
2977 	return (0);
2978 }
2979 
2980 static int
initlist_objects_ifunc(Objlist * list,bool bind_now,int flags,RtldLockState * lockstate)2981 initlist_objects_ifunc(Objlist *list, bool bind_now, int flags,
2982     RtldLockState *lockstate)
2983 {
2984 	Objlist_Entry *elm;
2985 	Obj_Entry *obj;
2986 
2987 	STAILQ_FOREACH(elm, list, link) {
2988 		obj = elm->obj;
2989 		if (obj->marker)
2990 			continue;
2991 		if (resolve_object_ifunc(obj, bind_now, flags,
2992 		    lockstate) == -1)
2993 			return (-1);
2994 	}
2995 	return (0);
2996 }
2997 
2998 /*
2999  * Cleanup procedure.  It will be called (by the atexit mechanism) just
3000  * before the process exits.
3001  */
3002 static void
rtld_exit(void)3003 rtld_exit(void)
3004 {
3005     RtldLockState lockstate;
3006 
3007     wlock_acquire(rtld_bind_lock, &lockstate);
3008     dbg("rtld_exit()");
3009     objlist_call_fini(&list_fini, NULL, &lockstate);
3010     /* No need to remove the items from the list, since we are exiting. */
3011     if (!libmap_disable)
3012         lm_fini();
3013     lock_release(rtld_bind_lock, &lockstate);
3014 }
3015 
3016 static void
rtld_nop_exit(void)3017 rtld_nop_exit(void)
3018 {
3019 }
3020 
3021 /*
3022  * Iterate over a search path, translate each element, and invoke the
3023  * callback on the result.
3024  */
3025 static void *
path_enumerate(const char * path,path_enum_proc callback,const char * refobj_path,void * arg)3026 path_enumerate(const char *path, path_enum_proc callback,
3027     const char *refobj_path, void *arg)
3028 {
3029     const char *trans;
3030     if (path == NULL)
3031 	return (NULL);
3032 
3033     path += strspn(path, ":;");
3034     while (*path != '\0') {
3035 	size_t len;
3036 	char  *res;
3037 
3038 	len = strcspn(path, ":;");
3039 	trans = lm_findn(refobj_path, path, len);
3040 	if (trans)
3041 	    res = callback(trans, strlen(trans), arg);
3042 	else
3043 	    res = callback(path, len, arg);
3044 
3045 	if (res != NULL)
3046 	    return (res);
3047 
3048 	path += len;
3049 	path += strspn(path, ":;");
3050     }
3051 
3052     return (NULL);
3053 }
3054 
3055 struct try_library_args {
3056     const char	*name;
3057     size_t	 namelen;
3058     char	*buffer;
3059     size_t	 buflen;
3060     int		 fd;
3061 };
3062 
3063 static void *
try_library_path(const char * dir,size_t dirlen,void * param)3064 try_library_path(const char *dir, size_t dirlen, void *param)
3065 {
3066     struct try_library_args *arg;
3067     int fd;
3068 
3069     arg = param;
3070     if (*dir == '/' || trust) {
3071 	char *pathname;
3072 
3073 	if (dirlen + 1 + arg->namelen + 1 > arg->buflen)
3074 		return (NULL);
3075 
3076 	pathname = arg->buffer;
3077 	strncpy(pathname, dir, dirlen);
3078 	pathname[dirlen] = '/';
3079 	strcpy(pathname + dirlen + 1, arg->name);
3080 
3081 	dbg("  Trying \"%s\"", pathname);
3082 	fd = open(pathname, O_RDONLY | O_CLOEXEC | O_VERIFY);
3083 	if (fd >= 0) {
3084 	    dbg("  Opened \"%s\", fd %d", pathname, fd);
3085 	    pathname = xmalloc(dirlen + 1 + arg->namelen + 1);
3086 	    strcpy(pathname, arg->buffer);
3087 	    arg->fd = fd;
3088 	    return (pathname);
3089 	} else {
3090 	    dbg("  Failed to open \"%s\": %s",
3091 		pathname, rtld_strerror(errno));
3092 	}
3093     }
3094     return (NULL);
3095 }
3096 
3097 static char *
search_library_path(const char * name,const char * path,const char * refobj_path,int * fdp)3098 search_library_path(const char *name, const char *path,
3099     const char *refobj_path, int *fdp)
3100 {
3101     char *p;
3102     struct try_library_args arg;
3103 
3104     if (path == NULL)
3105 	return NULL;
3106 
3107     arg.name = name;
3108     arg.namelen = strlen(name);
3109     arg.buffer = xmalloc(PATH_MAX);
3110     arg.buflen = PATH_MAX;
3111     arg.fd = -1;
3112 
3113     p = path_enumerate(path, try_library_path, refobj_path, &arg);
3114     *fdp = arg.fd;
3115 
3116     free(arg.buffer);
3117 
3118     return (p);
3119 }
3120 
3121 
3122 /*
3123  * Finds the library with the given name using the directory descriptors
3124  * listed in the LD_LIBRARY_PATH_FDS environment variable.
3125  *
3126  * Returns a freshly-opened close-on-exec file descriptor for the library,
3127  * or -1 if the library cannot be found.
3128  */
3129 static char *
search_library_pathfds(const char * name,const char * path,int * fdp)3130 search_library_pathfds(const char *name, const char *path, int *fdp)
3131 {
3132 	char *envcopy, *fdstr, *found, *last_token;
3133 	size_t len;
3134 	int dirfd, fd;
3135 
3136 	dbg("%s('%s', '%s', fdp)", __func__, name, path);
3137 
3138 	/* Don't load from user-specified libdirs into setuid binaries. */
3139 	if (!trust)
3140 		return (NULL);
3141 
3142 	/* We can't do anything if LD_LIBRARY_PATH_FDS isn't set. */
3143 	if (path == NULL)
3144 		return (NULL);
3145 
3146 	/* LD_LIBRARY_PATH_FDS only works with relative paths. */
3147 	if (name[0] == '/') {
3148 		dbg("Absolute path (%s) passed to %s", name, __func__);
3149 		return (NULL);
3150 	}
3151 
3152 	/*
3153 	 * Use strtok_r() to walk the FD:FD:FD list.  This requires a local
3154 	 * copy of the path, as strtok_r rewrites separator tokens
3155 	 * with '\0'.
3156 	 */
3157 	found = NULL;
3158 	envcopy = xstrdup(path);
3159 	for (fdstr = strtok_r(envcopy, ":", &last_token); fdstr != NULL;
3160 	    fdstr = strtok_r(NULL, ":", &last_token)) {
3161 		dirfd = parse_integer(fdstr);
3162 		if (dirfd < 0) {
3163 			_rtld_error("failed to parse directory FD: '%s'",
3164 				fdstr);
3165 			break;
3166 		}
3167 		fd = __sys_openat(dirfd, name, O_RDONLY | O_CLOEXEC | O_VERIFY);
3168 		if (fd >= 0) {
3169 			*fdp = fd;
3170 			len = strlen(fdstr) + strlen(name) + 3;
3171 			found = xmalloc(len);
3172 			if (rtld_snprintf(found, len, "#%d/%s", dirfd, name) < 0) {
3173 				_rtld_error("error generating '%d/%s'",
3174 				    dirfd, name);
3175 				rtld_die();
3176 			}
3177 			dbg("open('%s') => %d", found, fd);
3178 			break;
3179 		}
3180 	}
3181 	free(envcopy);
3182 
3183 	return (found);
3184 }
3185 
3186 
3187 int
dlclose(void * handle)3188 dlclose(void *handle)
3189 {
3190 	RtldLockState lockstate;
3191 	int error;
3192 
3193 	wlock_acquire(rtld_bind_lock, &lockstate);
3194 	error = dlclose_locked(handle, &lockstate);
3195 	lock_release(rtld_bind_lock, &lockstate);
3196 	return (error);
3197 }
3198 
3199 static int
dlclose_locked(void * handle,RtldLockState * lockstate)3200 dlclose_locked(void *handle, RtldLockState *lockstate)
3201 {
3202     Obj_Entry *root;
3203 
3204     root = dlcheck(handle);
3205     if (root == NULL)
3206 	return -1;
3207     LD_UTRACE(UTRACE_DLCLOSE_START, handle, NULL, 0, root->dl_refcount,
3208 	root->path);
3209 
3210     /* Unreference the object and its dependencies. */
3211     root->dl_refcount--;
3212 
3213     if (root->refcount == 1) {
3214 	/*
3215 	 * The object will be no longer referenced, so we must unload it.
3216 	 * First, call the fini functions.
3217 	 */
3218 	objlist_call_fini(&list_fini, root, lockstate);
3219 
3220 	unref_dag(root);
3221 
3222 	/* Finish cleaning up the newly-unreferenced objects. */
3223 	GDB_STATE(RT_DELETE,&root->linkmap);
3224 	unload_object(root, lockstate);
3225 	GDB_STATE(RT_CONSISTENT,NULL);
3226     } else
3227 	unref_dag(root);
3228 
3229     LD_UTRACE(UTRACE_DLCLOSE_STOP, handle, NULL, 0, 0, NULL);
3230     return 0;
3231 }
3232 
3233 char *
dlerror(void)3234 dlerror(void)
3235 {
3236     char *msg = error_message;
3237     error_message = NULL;
3238     return msg;
3239 }
3240 
3241 /*
3242  * This function is deprecated and has no effect.
3243  */
3244 void
dllockinit(void * context,void * (* _lock_create)(void * context)__unused,void (* _rlock_acquire)(void * lock)__unused,void (* _wlock_acquire)(void * lock)__unused,void (* _lock_release)(void * lock)__unused,void (* _lock_destroy)(void * lock)__unused,void (* context_destroy)(void * context))3245 dllockinit(void *context,
3246     void *(*_lock_create)(void *context) __unused,
3247     void (*_rlock_acquire)(void *lock) __unused,
3248     void (*_wlock_acquire)(void *lock)  __unused,
3249     void (*_lock_release)(void *lock) __unused,
3250     void (*_lock_destroy)(void *lock) __unused,
3251     void (*context_destroy)(void *context))
3252 {
3253     static void *cur_context;
3254     static void (*cur_context_destroy)(void *);
3255 
3256     /* Just destroy the context from the previous call, if necessary. */
3257     if (cur_context_destroy != NULL)
3258 	cur_context_destroy(cur_context);
3259     cur_context = context;
3260     cur_context_destroy = context_destroy;
3261 }
3262 
3263 void *
dlopen(const char * name,int mode)3264 dlopen(const char *name, int mode)
3265 {
3266 
3267 	return (rtld_dlopen(name, -1, mode));
3268 }
3269 
3270 void *
fdlopen(int fd,int mode)3271 fdlopen(int fd, int mode)
3272 {
3273 
3274 	return (rtld_dlopen(NULL, fd, mode));
3275 }
3276 
3277 static void *
rtld_dlopen(const char * name,int fd,int mode)3278 rtld_dlopen(const char *name, int fd, int mode)
3279 {
3280     RtldLockState lockstate;
3281     int lo_flags;
3282 
3283     LD_UTRACE(UTRACE_DLOPEN_START, NULL, NULL, 0, mode, name);
3284     ld_tracing = (mode & RTLD_TRACE) == 0 ? NULL : "1";
3285     if (ld_tracing != NULL) {
3286 	rlock_acquire(rtld_bind_lock, &lockstate);
3287 	if (sigsetjmp(lockstate.env, 0) != 0)
3288 	    lock_upgrade(rtld_bind_lock, &lockstate);
3289 	environ = __DECONST(char **, *get_program_var_addr("environ", &lockstate));
3290 	lock_release(rtld_bind_lock, &lockstate);
3291     }
3292     lo_flags = RTLD_LO_DLOPEN;
3293     if (mode & RTLD_NODELETE)
3294 	    lo_flags |= RTLD_LO_NODELETE;
3295     if (mode & RTLD_NOLOAD)
3296 	    lo_flags |= RTLD_LO_NOLOAD;
3297     if (ld_tracing != NULL)
3298 	    lo_flags |= RTLD_LO_TRACE;
3299 
3300     return (dlopen_object(name, fd, obj_main, lo_flags,
3301       mode & (RTLD_MODEMASK | RTLD_GLOBAL), NULL));
3302 }
3303 
3304 static void
dlopen_cleanup(Obj_Entry * obj,RtldLockState * lockstate)3305 dlopen_cleanup(Obj_Entry *obj, RtldLockState *lockstate)
3306 {
3307 
3308 	obj->dl_refcount--;
3309 	unref_dag(obj);
3310 	if (obj->refcount == 0)
3311 		unload_object(obj, lockstate);
3312 }
3313 
3314 static Obj_Entry *
dlopen_object(const char * name,int fd,Obj_Entry * refobj,int lo_flags,int mode,RtldLockState * lockstate)3315 dlopen_object(const char *name, int fd, Obj_Entry *refobj, int lo_flags,
3316     int mode, RtldLockState *lockstate)
3317 {
3318     Obj_Entry *old_obj_tail;
3319     Obj_Entry *obj;
3320     Objlist initlist;
3321     RtldLockState mlockstate;
3322     int result;
3323 
3324     objlist_init(&initlist);
3325 
3326     if (lockstate == NULL && !(lo_flags & RTLD_LO_EARLY)) {
3327 	wlock_acquire(rtld_bind_lock, &mlockstate);
3328 	lockstate = &mlockstate;
3329     }
3330     GDB_STATE(RT_ADD,NULL);
3331 
3332     old_obj_tail = globallist_curr(TAILQ_LAST(&obj_list, obj_entry_q));
3333     obj = NULL;
3334     if (name == NULL && fd == -1) {
3335 	obj = obj_main;
3336 	obj->refcount++;
3337     } else {
3338 	obj = load_object(name, fd, refobj, lo_flags);
3339     }
3340 
3341     if (obj) {
3342 	obj->dl_refcount++;
3343 	if (mode & RTLD_GLOBAL && objlist_find(&list_global, obj) == NULL)
3344 	    objlist_push_tail(&list_global, obj);
3345 	if (globallist_next(old_obj_tail) != NULL) {
3346 	    /* We loaded something new. */
3347 	    assert(globallist_next(old_obj_tail) == obj);
3348 	    result = 0;
3349 	    if ((lo_flags & RTLD_LO_EARLY) == 0 && obj->static_tls &&
3350 	      !allocate_tls_offset(obj)) {
3351 		_rtld_error("%s: No space available "
3352 		  "for static Thread Local Storage", obj->path);
3353 		result = -1;
3354 	    }
3355 	    if (result != -1)
3356 		result = load_needed_objects(obj, lo_flags & (RTLD_LO_DLOPEN |
3357 		    RTLD_LO_EARLY));
3358 	    init_dag(obj);
3359 	    ref_dag(obj);
3360 	    if (result != -1)
3361 		result = rtld_verify_versions(&obj->dagmembers);
3362 	    if (result != -1 && ld_tracing)
3363 		goto trace;
3364 	    if (result == -1 || relocate_object_dag(obj,
3365 	      (mode & RTLD_MODEMASK) == RTLD_NOW, &obj_rtld,
3366 	      (lo_flags & RTLD_LO_EARLY) ? SYMLOOK_EARLY : 0,
3367 	      lockstate) == -1) {
3368 		dlopen_cleanup(obj, lockstate);
3369 		obj = NULL;
3370 	    } else if (lo_flags & RTLD_LO_EARLY) {
3371 		/*
3372 		 * Do not call the init functions for early loaded
3373 		 * filtees.  The image is still not initialized enough
3374 		 * for them to work.
3375 		 *
3376 		 * Our object is found by the global object list and
3377 		 * will be ordered among all init calls done right
3378 		 * before transferring control to main.
3379 		 */
3380 	    } else {
3381 		/* Make list of init functions to call. */
3382 		initlist_add_objects(obj, obj, &initlist);
3383 	    }
3384 	    /*
3385 	     * Process all no_delete or global objects here, given
3386 	     * them own DAGs to prevent their dependencies from being
3387 	     * unloaded.  This has to be done after we have loaded all
3388 	     * of the dependencies, so that we do not miss any.
3389 	     */
3390 	    if (obj != NULL)
3391 		process_z(obj);
3392 	} else {
3393 	    /*
3394 	     * Bump the reference counts for objects on this DAG.  If
3395 	     * this is the first dlopen() call for the object that was
3396 	     * already loaded as a dependency, initialize the dag
3397 	     * starting at it.
3398 	     */
3399 	    init_dag(obj);
3400 	    ref_dag(obj);
3401 
3402 	    if ((lo_flags & RTLD_LO_TRACE) != 0)
3403 		goto trace;
3404 	}
3405 	if (obj != NULL && ((lo_flags & RTLD_LO_NODELETE) != 0 ||
3406 	  obj->z_nodelete) && !obj->ref_nodel) {
3407 	    dbg("obj %s nodelete", obj->path);
3408 	    ref_dag(obj);
3409 	    obj->z_nodelete = obj->ref_nodel = true;
3410 	}
3411     }
3412 
3413     LD_UTRACE(UTRACE_DLOPEN_STOP, obj, NULL, 0, obj ? obj->dl_refcount : 0,
3414 	name);
3415     GDB_STATE(RT_CONSISTENT,obj ? &obj->linkmap : NULL);
3416 
3417     if ((lo_flags & RTLD_LO_EARLY) == 0) {
3418 	map_stacks_exec(lockstate);
3419 	if (obj != NULL)
3420 	    distribute_static_tls(&initlist, lockstate);
3421     }
3422 
3423     if (initlist_objects_ifunc(&initlist, (mode & RTLD_MODEMASK) == RTLD_NOW,
3424       (lo_flags & RTLD_LO_EARLY) ? SYMLOOK_EARLY : 0,
3425       lockstate) == -1) {
3426 	objlist_clear(&initlist);
3427 	dlopen_cleanup(obj, lockstate);
3428 	if (lockstate == &mlockstate)
3429 	    lock_release(rtld_bind_lock, lockstate);
3430 	return (NULL);
3431     }
3432 
3433     if (!(lo_flags & RTLD_LO_EARLY)) {
3434 	/* Call the init functions. */
3435 	objlist_call_init(&initlist, lockstate);
3436     }
3437     objlist_clear(&initlist);
3438     if (lockstate == &mlockstate)
3439 	lock_release(rtld_bind_lock, lockstate);
3440     return obj;
3441 trace:
3442     trace_loaded_objects(obj);
3443     if (lockstate == &mlockstate)
3444 	lock_release(rtld_bind_lock, lockstate);
3445     exit(0);
3446 }
3447 
3448 static void *
do_dlsym(void * handle,const char * name,void * retaddr,const Ver_Entry * ve,int flags)3449 do_dlsym(void *handle, const char *name, void *retaddr, const Ver_Entry *ve,
3450     int flags)
3451 {
3452     DoneList donelist;
3453     const Obj_Entry *obj, *defobj;
3454     const Elf_Sym *def;
3455     SymLook req;
3456     RtldLockState lockstate;
3457     tls_index ti;
3458     void *sym;
3459     int res;
3460 
3461     def = NULL;
3462     defobj = NULL;
3463     symlook_init(&req, name);
3464     req.ventry = ve;
3465     req.flags = flags | SYMLOOK_IN_PLT;
3466     req.lockstate = &lockstate;
3467 
3468     LD_UTRACE(UTRACE_DLSYM_START, handle, NULL, 0, 0, name);
3469     rlock_acquire(rtld_bind_lock, &lockstate);
3470     if (sigsetjmp(lockstate.env, 0) != 0)
3471 	    lock_upgrade(rtld_bind_lock, &lockstate);
3472     if (handle == NULL || handle == RTLD_NEXT ||
3473 	handle == RTLD_DEFAULT || handle == RTLD_SELF) {
3474 
3475 	if ((obj = obj_from_addr(retaddr)) == NULL) {
3476 	    _rtld_error("Cannot determine caller's shared object");
3477 	    lock_release(rtld_bind_lock, &lockstate);
3478 	    LD_UTRACE(UTRACE_DLSYM_STOP, handle, NULL, 0, 0, name);
3479 	    return NULL;
3480 	}
3481 	if (handle == NULL) {	/* Just the caller's shared object. */
3482 	    res = symlook_obj(&req, obj);
3483 	    if (res == 0) {
3484 		def = req.sym_out;
3485 		defobj = req.defobj_out;
3486 	    }
3487 	} else if (handle == RTLD_NEXT || /* Objects after caller's */
3488 		   handle == RTLD_SELF) { /* ... caller included */
3489 	    if (handle == RTLD_NEXT)
3490 		obj = globallist_next(obj);
3491 	    for (; obj != NULL; obj = TAILQ_NEXT(obj, next)) {
3492 		if (obj->marker)
3493 		    continue;
3494 		res = symlook_obj(&req, obj);
3495 		if (res == 0) {
3496 		    if (def == NULL ||
3497 		      ELF_ST_BIND(req.sym_out->st_info) != STB_WEAK) {
3498 			def = req.sym_out;
3499 			defobj = req.defobj_out;
3500 			if (ELF_ST_BIND(def->st_info) != STB_WEAK)
3501 			    break;
3502 		    }
3503 		}
3504 	    }
3505 	    /*
3506 	     * Search the dynamic linker itself, and possibly resolve the
3507 	     * symbol from there.  This is how the application links to
3508 	     * dynamic linker services such as dlopen.
3509 	     */
3510 	    if (def == NULL || ELF_ST_BIND(def->st_info) == STB_WEAK) {
3511 		res = symlook_obj(&req, &obj_rtld);
3512 		if (res == 0) {
3513 		    def = req.sym_out;
3514 		    defobj = req.defobj_out;
3515 		}
3516 	    }
3517 	} else {
3518 	    assert(handle == RTLD_DEFAULT);
3519 	    res = symlook_default(&req, obj);
3520 	    if (res == 0) {
3521 		defobj = req.defobj_out;
3522 		def = req.sym_out;
3523 	    }
3524 	}
3525     } else {
3526 	if ((obj = dlcheck(handle)) == NULL) {
3527 	    lock_release(rtld_bind_lock, &lockstate);
3528 	    LD_UTRACE(UTRACE_DLSYM_STOP, handle, NULL, 0, 0, name);
3529 	    return NULL;
3530 	}
3531 
3532 	donelist_init(&donelist);
3533 	if (obj->mainprog) {
3534             /* Handle obtained by dlopen(NULL, ...) implies global scope. */
3535 	    res = symlook_global(&req, &donelist);
3536 	    if (res == 0) {
3537 		def = req.sym_out;
3538 		defobj = req.defobj_out;
3539 	    }
3540 	    /*
3541 	     * Search the dynamic linker itself, and possibly resolve the
3542 	     * symbol from there.  This is how the application links to
3543 	     * dynamic linker services such as dlopen.
3544 	     */
3545 	    if (def == NULL || ELF_ST_BIND(def->st_info) == STB_WEAK) {
3546 		res = symlook_obj(&req, &obj_rtld);
3547 		if (res == 0) {
3548 		    def = req.sym_out;
3549 		    defobj = req.defobj_out;
3550 		}
3551 	    }
3552 	}
3553 	else {
3554 	    /* Search the whole DAG rooted at the given object. */
3555 	    res = symlook_list(&req, &obj->dagmembers, &donelist);
3556 	    if (res == 0) {
3557 		def = req.sym_out;
3558 		defobj = req.defobj_out;
3559 	    }
3560 	}
3561     }
3562 
3563     if (def != NULL) {
3564 	lock_release(rtld_bind_lock, &lockstate);
3565 
3566 	/*
3567 	 * The value required by the caller is derived from the value
3568 	 * of the symbol. this is simply the relocated value of the
3569 	 * symbol.
3570 	 */
3571 	if (ELF_ST_TYPE(def->st_info) == STT_FUNC)
3572 	    sym = make_function_pointer(def, defobj);
3573 	else if (ELF_ST_TYPE(def->st_info) == STT_GNU_IFUNC)
3574 	    sym = rtld_resolve_ifunc(defobj, def);
3575 	else if (ELF_ST_TYPE(def->st_info) == STT_TLS) {
3576 	    ti.ti_module = defobj->tlsindex;
3577 	    ti.ti_offset = def->st_value;
3578 	    sym = __tls_get_addr(&ti);
3579 	} else
3580 	    sym = defobj->relocbase + def->st_value;
3581 	LD_UTRACE(UTRACE_DLSYM_STOP, handle, sym, 0, 0, name);
3582 	return (sym);
3583     }
3584 
3585     _rtld_error("Undefined symbol \"%s%s%s\"", name, ve != NULL ? "@" : "",
3586       ve != NULL ? ve->name : "");
3587     lock_release(rtld_bind_lock, &lockstate);
3588     LD_UTRACE(UTRACE_DLSYM_STOP, handle, NULL, 0, 0, name);
3589     return NULL;
3590 }
3591 
3592 void *
dlsym(void * handle,const char * name)3593 dlsym(void *handle, const char *name)
3594 {
3595 	return do_dlsym(handle, name, __builtin_return_address(0), NULL,
3596 	    SYMLOOK_DLSYM);
3597 }
3598 
3599 dlfunc_t
dlfunc(void * handle,const char * name)3600 dlfunc(void *handle, const char *name)
3601 {
3602 	union {
3603 		void *d;
3604 		dlfunc_t f;
3605 	} rv;
3606 
3607 	rv.d = do_dlsym(handle, name, __builtin_return_address(0), NULL,
3608 	    SYMLOOK_DLSYM);
3609 	return (rv.f);
3610 }
3611 
3612 void *
dlvsym(void * handle,const char * name,const char * version)3613 dlvsym(void *handle, const char *name, const char *version)
3614 {
3615 	Ver_Entry ventry;
3616 
3617 	ventry.name = version;
3618 	ventry.file = NULL;
3619 	ventry.hash = elf_hash(version);
3620 	ventry.flags= 0;
3621 	return do_dlsym(handle, name, __builtin_return_address(0), &ventry,
3622 	    SYMLOOK_DLSYM);
3623 }
3624 
3625 int
_rtld_addr_phdr(const void * addr,struct dl_phdr_info * phdr_info)3626 _rtld_addr_phdr(const void *addr, struct dl_phdr_info *phdr_info)
3627 {
3628     const Obj_Entry *obj;
3629     RtldLockState lockstate;
3630 
3631     rlock_acquire(rtld_bind_lock, &lockstate);
3632     obj = obj_from_addr(addr);
3633     if (obj == NULL) {
3634         _rtld_error("No shared object contains address");
3635 	lock_release(rtld_bind_lock, &lockstate);
3636         return (0);
3637     }
3638     rtld_fill_dl_phdr_info(obj, phdr_info);
3639     lock_release(rtld_bind_lock, &lockstate);
3640     return (1);
3641 }
3642 
3643 int
dladdr(const void * addr,Dl_info * info)3644 dladdr(const void *addr, Dl_info *info)
3645 {
3646     const Obj_Entry *obj;
3647     const Elf_Sym *def;
3648     void *symbol_addr;
3649     unsigned long symoffset;
3650     RtldLockState lockstate;
3651 
3652     rlock_acquire(rtld_bind_lock, &lockstate);
3653     obj = obj_from_addr(addr);
3654     if (obj == NULL) {
3655         _rtld_error("No shared object contains address");
3656 	lock_release(rtld_bind_lock, &lockstate);
3657         return 0;
3658     }
3659     info->dli_fname = obj->path;
3660     info->dli_fbase = obj->mapbase;
3661     info->dli_saddr = (void *)0;
3662     info->dli_sname = NULL;
3663 
3664     /*
3665      * Walk the symbol list looking for the symbol whose address is
3666      * closest to the address sent in.
3667      */
3668     for (symoffset = 0; symoffset < obj->dynsymcount; symoffset++) {
3669         def = obj->symtab + symoffset;
3670 
3671         /*
3672          * For skip the symbol if st_shndx is either SHN_UNDEF or
3673          * SHN_COMMON.
3674          */
3675         if (def->st_shndx == SHN_UNDEF || def->st_shndx == SHN_COMMON)
3676             continue;
3677 
3678         /*
3679          * If the symbol is greater than the specified address, or if it
3680          * is further away from addr than the current nearest symbol,
3681          * then reject it.
3682          */
3683         symbol_addr = obj->relocbase + def->st_value;
3684         if (symbol_addr > addr || symbol_addr < info->dli_saddr)
3685             continue;
3686 
3687         /* Update our idea of the nearest symbol. */
3688         info->dli_sname = obj->strtab + def->st_name;
3689         info->dli_saddr = symbol_addr;
3690 
3691         /* Exact match? */
3692         if (info->dli_saddr == addr)
3693             break;
3694     }
3695     lock_release(rtld_bind_lock, &lockstate);
3696     return 1;
3697 }
3698 
3699 int
dlinfo(void * handle,int request,void * p)3700 dlinfo(void *handle, int request, void *p)
3701 {
3702     const Obj_Entry *obj;
3703     RtldLockState lockstate;
3704     int error;
3705 
3706     rlock_acquire(rtld_bind_lock, &lockstate);
3707 
3708     if (handle == NULL || handle == RTLD_SELF) {
3709 	void *retaddr;
3710 
3711 	retaddr = __builtin_return_address(0);	/* __GNUC__ only */
3712 	if ((obj = obj_from_addr(retaddr)) == NULL)
3713 	    _rtld_error("Cannot determine caller's shared object");
3714     } else
3715 	obj = dlcheck(handle);
3716 
3717     if (obj == NULL) {
3718 	lock_release(rtld_bind_lock, &lockstate);
3719 	return (-1);
3720     }
3721 
3722     error = 0;
3723     switch (request) {
3724     case RTLD_DI_LINKMAP:
3725 	*((struct link_map const **)p) = &obj->linkmap;
3726 	break;
3727     case RTLD_DI_ORIGIN:
3728 	error = rtld_dirname(obj->path, p);
3729 	break;
3730 
3731     case RTLD_DI_SERINFOSIZE:
3732     case RTLD_DI_SERINFO:
3733 	error = do_search_info(obj, request, (struct dl_serinfo *)p);
3734 	break;
3735 
3736     default:
3737 	_rtld_error("Invalid request %d passed to dlinfo()", request);
3738 	error = -1;
3739     }
3740 
3741     lock_release(rtld_bind_lock, &lockstate);
3742 
3743     return (error);
3744 }
3745 
3746 static void
rtld_fill_dl_phdr_info(const Obj_Entry * obj,struct dl_phdr_info * phdr_info)3747 rtld_fill_dl_phdr_info(const Obj_Entry *obj, struct dl_phdr_info *phdr_info)
3748 {
3749 
3750 	phdr_info->dlpi_addr = (Elf_Addr)obj->relocbase;
3751 	phdr_info->dlpi_name = obj->path;
3752 	phdr_info->dlpi_phdr = obj->phdr;
3753 	phdr_info->dlpi_phnum = obj->phsize / sizeof(obj->phdr[0]);
3754 	phdr_info->dlpi_tls_modid = obj->tlsindex;
3755 	phdr_info->dlpi_tls_data = obj->tlsinit;
3756 	phdr_info->dlpi_adds = obj_loads;
3757 	phdr_info->dlpi_subs = obj_loads - obj_count;
3758 }
3759 
3760 int
dl_iterate_phdr(__dl_iterate_hdr_callback callback,void * param)3761 dl_iterate_phdr(__dl_iterate_hdr_callback callback, void *param)
3762 {
3763 	struct dl_phdr_info phdr_info;
3764 	Obj_Entry *obj, marker;
3765 	RtldLockState bind_lockstate, phdr_lockstate;
3766 	int error;
3767 
3768 	init_marker(&marker);
3769 	error = 0;
3770 
3771 	wlock_acquire(rtld_phdr_lock, &phdr_lockstate);
3772 	wlock_acquire(rtld_bind_lock, &bind_lockstate);
3773 	for (obj = globallist_curr(TAILQ_FIRST(&obj_list)); obj != NULL;) {
3774 		TAILQ_INSERT_AFTER(&obj_list, obj, &marker, next);
3775 		rtld_fill_dl_phdr_info(obj, &phdr_info);
3776 		hold_object(obj);
3777 		lock_release(rtld_bind_lock, &bind_lockstate);
3778 
3779 		error = callback(&phdr_info, sizeof phdr_info, param);
3780 
3781 		wlock_acquire(rtld_bind_lock, &bind_lockstate);
3782 		unhold_object(obj);
3783 		obj = globallist_next(&marker);
3784 		TAILQ_REMOVE(&obj_list, &marker, next);
3785 		if (error != 0) {
3786 			lock_release(rtld_bind_lock, &bind_lockstate);
3787 			lock_release(rtld_phdr_lock, &phdr_lockstate);
3788 			return (error);
3789 		}
3790 	}
3791 
3792 	if (error == 0) {
3793 		rtld_fill_dl_phdr_info(&obj_rtld, &phdr_info);
3794 		lock_release(rtld_bind_lock, &bind_lockstate);
3795 		error = callback(&phdr_info, sizeof(phdr_info), param);
3796 	}
3797 	lock_release(rtld_phdr_lock, &phdr_lockstate);
3798 	return (error);
3799 }
3800 
3801 static void *
fill_search_info(const char * dir,size_t dirlen,void * param)3802 fill_search_info(const char *dir, size_t dirlen, void *param)
3803 {
3804     struct fill_search_info_args *arg;
3805 
3806     arg = param;
3807 
3808     if (arg->request == RTLD_DI_SERINFOSIZE) {
3809 	arg->serinfo->dls_cnt ++;
3810 	arg->serinfo->dls_size += sizeof(struct dl_serpath) + dirlen + 1;
3811     } else {
3812 	struct dl_serpath *s_entry;
3813 
3814 	s_entry = arg->serpath;
3815 	s_entry->dls_name  = arg->strspace;
3816 	s_entry->dls_flags = arg->flags;
3817 
3818 	strncpy(arg->strspace, dir, dirlen);
3819 	arg->strspace[dirlen] = '\0';
3820 
3821 	arg->strspace += dirlen + 1;
3822 	arg->serpath++;
3823     }
3824 
3825     return (NULL);
3826 }
3827 
3828 static int
do_search_info(const Obj_Entry * obj,int request,struct dl_serinfo * info)3829 do_search_info(const Obj_Entry *obj, int request, struct dl_serinfo *info)
3830 {
3831     struct dl_serinfo _info;
3832     struct fill_search_info_args args;
3833 
3834     args.request = RTLD_DI_SERINFOSIZE;
3835     args.serinfo = &_info;
3836 
3837     _info.dls_size = __offsetof(struct dl_serinfo, dls_serpath);
3838     _info.dls_cnt  = 0;
3839 
3840     path_enumerate(obj->rpath, fill_search_info, NULL, &args);
3841     path_enumerate(ld_library_path, fill_search_info, NULL, &args);
3842     path_enumerate(obj->runpath, fill_search_info, NULL, &args);
3843     path_enumerate(gethints(obj->z_nodeflib), fill_search_info, NULL, &args);
3844     if (!obj->z_nodeflib)
3845       path_enumerate(ld_standard_library_path, fill_search_info, NULL, &args);
3846 
3847 
3848     if (request == RTLD_DI_SERINFOSIZE) {
3849 	info->dls_size = _info.dls_size;
3850 	info->dls_cnt = _info.dls_cnt;
3851 	return (0);
3852     }
3853 
3854     if (info->dls_cnt != _info.dls_cnt || info->dls_size != _info.dls_size) {
3855 	_rtld_error("Uninitialized Dl_serinfo struct passed to dlinfo()");
3856 	return (-1);
3857     }
3858 
3859     args.request  = RTLD_DI_SERINFO;
3860     args.serinfo  = info;
3861     args.serpath  = &info->dls_serpath[0];
3862     args.strspace = (char *)&info->dls_serpath[_info.dls_cnt];
3863 
3864     args.flags = LA_SER_RUNPATH;
3865     if (path_enumerate(obj->rpath, fill_search_info, NULL, &args) != NULL)
3866 	return (-1);
3867 
3868     args.flags = LA_SER_LIBPATH;
3869     if (path_enumerate(ld_library_path, fill_search_info, NULL, &args) != NULL)
3870 	return (-1);
3871 
3872     args.flags = LA_SER_RUNPATH;
3873     if (path_enumerate(obj->runpath, fill_search_info, NULL, &args) != NULL)
3874 	return (-1);
3875 
3876     args.flags = LA_SER_CONFIG;
3877     if (path_enumerate(gethints(obj->z_nodeflib), fill_search_info, NULL, &args)
3878       != NULL)
3879 	return (-1);
3880 
3881     args.flags = LA_SER_DEFAULT;
3882     if (!obj->z_nodeflib && path_enumerate(ld_standard_library_path,
3883       fill_search_info, NULL, &args) != NULL)
3884 	return (-1);
3885     return (0);
3886 }
3887 
3888 static int
rtld_dirname(const char * path,char * bname)3889 rtld_dirname(const char *path, char *bname)
3890 {
3891     const char *endp;
3892 
3893     /* Empty or NULL string gets treated as "." */
3894     if (path == NULL || *path == '\0') {
3895 	bname[0] = '.';
3896 	bname[1] = '\0';
3897 	return (0);
3898     }
3899 
3900     /* Strip trailing slashes */
3901     endp = path + strlen(path) - 1;
3902     while (endp > path && *endp == '/')
3903 	endp--;
3904 
3905     /* Find the start of the dir */
3906     while (endp > path && *endp != '/')
3907 	endp--;
3908 
3909     /* Either the dir is "/" or there are no slashes */
3910     if (endp == path) {
3911 	bname[0] = *endp == '/' ? '/' : '.';
3912 	bname[1] = '\0';
3913 	return (0);
3914     } else {
3915 	do {
3916 	    endp--;
3917 	} while (endp > path && *endp == '/');
3918     }
3919 
3920     if (endp - path + 2 > PATH_MAX)
3921     {
3922 	_rtld_error("Filename is too long: %s", path);
3923 	return(-1);
3924     }
3925 
3926     strncpy(bname, path, endp - path + 1);
3927     bname[endp - path + 1] = '\0';
3928     return (0);
3929 }
3930 
3931 static int
rtld_dirname_abs(const char * path,char * base)3932 rtld_dirname_abs(const char *path, char *base)
3933 {
3934 	char *last;
3935 
3936 	if (realpath(path, base) == NULL)
3937 		return (-1);
3938 	dbg("%s -> %s", path, base);
3939 	last = strrchr(base, '/');
3940 	if (last == NULL)
3941 		return (-1);
3942 	if (last != base)
3943 		*last = '\0';
3944 	return (0);
3945 }
3946 
3947 static void
linkmap_add(Obj_Entry * obj)3948 linkmap_add(Obj_Entry *obj)
3949 {
3950     struct link_map *l = &obj->linkmap;
3951     struct link_map *prev;
3952 
3953     obj->linkmap.l_name = obj->path;
3954     obj->linkmap.l_addr = obj->mapbase;
3955     obj->linkmap.l_ld = obj->dynamic;
3956 #ifdef __mips__
3957     /* GDB needs load offset on MIPS to use the symbols */
3958     obj->linkmap.l_offs = obj->relocbase;
3959 #endif
3960 
3961     if (r_debug.r_map == NULL) {
3962 	r_debug.r_map = l;
3963 	return;
3964     }
3965 
3966     /*
3967      * Scan to the end of the list, but not past the entry for the
3968      * dynamic linker, which we want to keep at the very end.
3969      */
3970     for (prev = r_debug.r_map;
3971       prev->l_next != NULL && prev->l_next != &obj_rtld.linkmap;
3972       prev = prev->l_next)
3973 	;
3974 
3975     /* Link in the new entry. */
3976     l->l_prev = prev;
3977     l->l_next = prev->l_next;
3978     if (l->l_next != NULL)
3979 	l->l_next->l_prev = l;
3980     prev->l_next = l;
3981 }
3982 
3983 static void
linkmap_delete(Obj_Entry * obj)3984 linkmap_delete(Obj_Entry *obj)
3985 {
3986     struct link_map *l = &obj->linkmap;
3987 
3988     if (l->l_prev == NULL) {
3989 	if ((r_debug.r_map = l->l_next) != NULL)
3990 	    l->l_next->l_prev = NULL;
3991 	return;
3992     }
3993 
3994     if ((l->l_prev->l_next = l->l_next) != NULL)
3995 	l->l_next->l_prev = l->l_prev;
3996 }
3997 
3998 /*
3999  * Function for the debugger to set a breakpoint on to gain control.
4000  *
4001  * The two parameters allow the debugger to easily find and determine
4002  * what the runtime loader is doing and to whom it is doing it.
4003  *
4004  * When the loadhook trap is hit (r_debug_state, set at program
4005  * initialization), the arguments can be found on the stack:
4006  *
4007  *  +8   struct link_map *m
4008  *  +4   struct r_debug  *rd
4009  *  +0   RetAddr
4010  */
4011 void
r_debug_state(struct r_debug * rd __unused,struct link_map * m __unused)4012 r_debug_state(struct r_debug* rd __unused, struct link_map *m  __unused)
4013 {
4014     /*
4015      * The following is a hack to force the compiler to emit calls to
4016      * this function, even when optimizing.  If the function is empty,
4017      * the compiler is not obliged to emit any code for calls to it,
4018      * even when marked __noinline.  However, gdb depends on those
4019      * calls being made.
4020      */
4021     __compiler_membar();
4022 }
4023 
4024 /*
4025  * A function called after init routines have completed. This can be used to
4026  * break before a program's entry routine is called, and can be used when
4027  * main is not available in the symbol table.
4028  */
4029 void
_r_debug_postinit(struct link_map * m __unused)4030 _r_debug_postinit(struct link_map *m __unused)
4031 {
4032 
4033 	/* See r_debug_state(). */
4034 	__compiler_membar();
4035 }
4036 
4037 static void
release_object(Obj_Entry * obj)4038 release_object(Obj_Entry *obj)
4039 {
4040 
4041 	if (obj->holdcount > 0) {
4042 		obj->unholdfree = true;
4043 		return;
4044 	}
4045 	munmap(obj->mapbase, obj->mapsize);
4046 	linkmap_delete(obj);
4047 	obj_free(obj);
4048 }
4049 
4050 /*
4051  * Get address of the pointer variable in the main program.
4052  * Prefer non-weak symbol over the weak one.
4053  */
4054 static const void **
get_program_var_addr(const char * name,RtldLockState * lockstate)4055 get_program_var_addr(const char *name, RtldLockState *lockstate)
4056 {
4057     SymLook req;
4058     DoneList donelist;
4059 
4060     symlook_init(&req, name);
4061     req.lockstate = lockstate;
4062     donelist_init(&donelist);
4063     if (symlook_global(&req, &donelist) != 0)
4064 	return (NULL);
4065     if (ELF_ST_TYPE(req.sym_out->st_info) == STT_FUNC)
4066 	return ((const void **)make_function_pointer(req.sym_out,
4067 	  req.defobj_out));
4068     else if (ELF_ST_TYPE(req.sym_out->st_info) == STT_GNU_IFUNC)
4069 	return ((const void **)rtld_resolve_ifunc(req.defobj_out, req.sym_out));
4070     else
4071 	return ((const void **)(req.defobj_out->relocbase +
4072 	  req.sym_out->st_value));
4073 }
4074 
4075 /*
4076  * Set a pointer variable in the main program to the given value.  This
4077  * is used to set key variables such as "environ" before any of the
4078  * init functions are called.
4079  */
4080 static void
set_program_var(const char * name,const void * value)4081 set_program_var(const char *name, const void *value)
4082 {
4083     const void **addr;
4084 
4085     if ((addr = get_program_var_addr(name, NULL)) != NULL) {
4086 	dbg("\"%s\": *%p <-- %p", name, addr, value);
4087 	*addr = value;
4088     }
4089 }
4090 
4091 /*
4092  * Search the global objects, including dependencies and main object,
4093  * for the given symbol.
4094  */
4095 static int
symlook_global(SymLook * req,DoneList * donelist)4096 symlook_global(SymLook *req, DoneList *donelist)
4097 {
4098     SymLook req1;
4099     const Objlist_Entry *elm;
4100     int res;
4101 
4102     symlook_init_from_req(&req1, req);
4103 
4104     /* Search all objects loaded at program start up. */
4105     if (req->defobj_out == NULL ||
4106       ELF_ST_BIND(req->sym_out->st_info) == STB_WEAK) {
4107 	res = symlook_list(&req1, &list_main, donelist);
4108 	if (res == 0 && (req->defobj_out == NULL ||
4109 	  ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
4110 	    req->sym_out = req1.sym_out;
4111 	    req->defobj_out = req1.defobj_out;
4112 	    assert(req->defobj_out != NULL);
4113 	}
4114     }
4115 
4116     /* Search all DAGs whose roots are RTLD_GLOBAL objects. */
4117     STAILQ_FOREACH(elm, &list_global, link) {
4118 	if (req->defobj_out != NULL &&
4119 	  ELF_ST_BIND(req->sym_out->st_info) != STB_WEAK)
4120 	    break;
4121 	res = symlook_list(&req1, &elm->obj->dagmembers, donelist);
4122 	if (res == 0 && (req->defobj_out == NULL ||
4123 	  ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
4124 	    req->sym_out = req1.sym_out;
4125 	    req->defobj_out = req1.defobj_out;
4126 	    assert(req->defobj_out != NULL);
4127 	}
4128     }
4129 
4130     return (req->sym_out != NULL ? 0 : ESRCH);
4131 }
4132 
4133 /*
4134  * Given a symbol name in a referencing object, find the corresponding
4135  * definition of the symbol.  Returns a pointer to the symbol, or NULL if
4136  * no definition was found.  Returns a pointer to the Obj_Entry of the
4137  * defining object via the reference parameter DEFOBJ_OUT.
4138  */
4139 static int
symlook_default(SymLook * req,const Obj_Entry * refobj)4140 symlook_default(SymLook *req, const Obj_Entry *refobj)
4141 {
4142     DoneList donelist;
4143     const Objlist_Entry *elm;
4144     SymLook req1;
4145     int res;
4146 
4147     donelist_init(&donelist);
4148     symlook_init_from_req(&req1, req);
4149 
4150     /*
4151      * Look first in the referencing object if linked symbolically,
4152      * and similarly handle protected symbols.
4153      */
4154     res = symlook_obj(&req1, refobj);
4155     if (res == 0 && (refobj->symbolic ||
4156       ELF_ST_VISIBILITY(req1.sym_out->st_other) == STV_PROTECTED)) {
4157 	req->sym_out = req1.sym_out;
4158 	req->defobj_out = req1.defobj_out;
4159 	assert(req->defobj_out != NULL);
4160     }
4161     if (refobj->symbolic || req->defobj_out != NULL)
4162 	donelist_check(&donelist, refobj);
4163 
4164     symlook_global(req, &donelist);
4165 
4166     /* Search all dlopened DAGs containing the referencing object. */
4167     STAILQ_FOREACH(elm, &refobj->dldags, link) {
4168 	if (req->sym_out != NULL &&
4169 	  ELF_ST_BIND(req->sym_out->st_info) != STB_WEAK)
4170 	    break;
4171 	res = symlook_list(&req1, &elm->obj->dagmembers, &donelist);
4172 	if (res == 0 && (req->sym_out == NULL ||
4173 	  ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
4174 	    req->sym_out = req1.sym_out;
4175 	    req->defobj_out = req1.defobj_out;
4176 	    assert(req->defobj_out != NULL);
4177 	}
4178     }
4179 
4180     /*
4181      * Search the dynamic linker itself, and possibly resolve the
4182      * symbol from there.  This is how the application links to
4183      * dynamic linker services such as dlopen.
4184      */
4185     if (req->sym_out == NULL ||
4186       ELF_ST_BIND(req->sym_out->st_info) == STB_WEAK) {
4187 	res = symlook_obj(&req1, &obj_rtld);
4188 	if (res == 0) {
4189 	    req->sym_out = req1.sym_out;
4190 	    req->defobj_out = req1.defobj_out;
4191 	    assert(req->defobj_out != NULL);
4192 	}
4193     }
4194 
4195     return (req->sym_out != NULL ? 0 : ESRCH);
4196 }
4197 
4198 static int
symlook_list(SymLook * req,const Objlist * objlist,DoneList * dlp)4199 symlook_list(SymLook *req, const Objlist *objlist, DoneList *dlp)
4200 {
4201     const Elf_Sym *def;
4202     const Obj_Entry *defobj;
4203     const Objlist_Entry *elm;
4204     SymLook req1;
4205     int res;
4206 
4207     def = NULL;
4208     defobj = NULL;
4209     STAILQ_FOREACH(elm, objlist, link) {
4210 	if (donelist_check(dlp, elm->obj))
4211 	    continue;
4212 	symlook_init_from_req(&req1, req);
4213 	if ((res = symlook_obj(&req1, elm->obj)) == 0) {
4214 	    if (def == NULL || ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK) {
4215 		def = req1.sym_out;
4216 		defobj = req1.defobj_out;
4217 		if (ELF_ST_BIND(def->st_info) != STB_WEAK)
4218 		    break;
4219 	    }
4220 	}
4221     }
4222     if (def != NULL) {
4223 	req->sym_out = def;
4224 	req->defobj_out = defobj;
4225 	return (0);
4226     }
4227     return (ESRCH);
4228 }
4229 
4230 /*
4231  * Search the chain of DAGS cointed to by the given Needed_Entry
4232  * for a symbol of the given name.  Each DAG is scanned completely
4233  * before advancing to the next one.  Returns a pointer to the symbol,
4234  * or NULL if no definition was found.
4235  */
4236 static int
symlook_needed(SymLook * req,const Needed_Entry * needed,DoneList * dlp)4237 symlook_needed(SymLook *req, const Needed_Entry *needed, DoneList *dlp)
4238 {
4239     const Elf_Sym *def;
4240     const Needed_Entry *n;
4241     const Obj_Entry *defobj;
4242     SymLook req1;
4243     int res;
4244 
4245     def = NULL;
4246     defobj = NULL;
4247     symlook_init_from_req(&req1, req);
4248     for (n = needed; n != NULL; n = n->next) {
4249 	if (n->obj == NULL ||
4250 	    (res = symlook_list(&req1, &n->obj->dagmembers, dlp)) != 0)
4251 	    continue;
4252 	if (def == NULL || ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK) {
4253 	    def = req1.sym_out;
4254 	    defobj = req1.defobj_out;
4255 	    if (ELF_ST_BIND(def->st_info) != STB_WEAK)
4256 		break;
4257 	}
4258     }
4259     if (def != NULL) {
4260 	req->sym_out = def;
4261 	req->defobj_out = defobj;
4262 	return (0);
4263     }
4264     return (ESRCH);
4265 }
4266 
4267 /*
4268  * Search the symbol table of a single shared object for a symbol of
4269  * the given name and version, if requested.  Returns a pointer to the
4270  * symbol, or NULL if no definition was found.  If the object is
4271  * filter, return filtered symbol from filtee.
4272  *
4273  * The symbol's hash value is passed in for efficiency reasons; that
4274  * eliminates many recomputations of the hash value.
4275  */
4276 int
symlook_obj(SymLook * req,const Obj_Entry * obj)4277 symlook_obj(SymLook *req, const Obj_Entry *obj)
4278 {
4279     DoneList donelist;
4280     SymLook req1;
4281     int flags, res, mres;
4282 
4283     /*
4284      * If there is at least one valid hash at this point, we prefer to
4285      * use the faster GNU version if available.
4286      */
4287     if (obj->valid_hash_gnu)
4288 	mres = symlook_obj1_gnu(req, obj);
4289     else if (obj->valid_hash_sysv)
4290 	mres = symlook_obj1_sysv(req, obj);
4291     else
4292 	return (EINVAL);
4293 
4294     if (mres == 0) {
4295 	if (obj->needed_filtees != NULL) {
4296 	    flags = (req->flags & SYMLOOK_EARLY) ? RTLD_LO_EARLY : 0;
4297 	    load_filtees(__DECONST(Obj_Entry *, obj), flags, req->lockstate);
4298 	    donelist_init(&donelist);
4299 	    symlook_init_from_req(&req1, req);
4300 	    res = symlook_needed(&req1, obj->needed_filtees, &donelist);
4301 	    if (res == 0) {
4302 		req->sym_out = req1.sym_out;
4303 		req->defobj_out = req1.defobj_out;
4304 	    }
4305 	    return (res);
4306 	}
4307 	if (obj->needed_aux_filtees != NULL) {
4308 	    flags = (req->flags & SYMLOOK_EARLY) ? RTLD_LO_EARLY : 0;
4309 	    load_filtees(__DECONST(Obj_Entry *, obj), flags, req->lockstate);
4310 	    donelist_init(&donelist);
4311 	    symlook_init_from_req(&req1, req);
4312 	    res = symlook_needed(&req1, obj->needed_aux_filtees, &donelist);
4313 	    if (res == 0) {
4314 		req->sym_out = req1.sym_out;
4315 		req->defobj_out = req1.defobj_out;
4316 		return (res);
4317 	    }
4318 	}
4319     }
4320     return (mres);
4321 }
4322 
4323 /* Symbol match routine common to both hash functions */
4324 static bool
matched_symbol(SymLook * req,const Obj_Entry * obj,Sym_Match_Result * result,const unsigned long symnum)4325 matched_symbol(SymLook *req, const Obj_Entry *obj, Sym_Match_Result *result,
4326     const unsigned long symnum)
4327 {
4328 	Elf_Versym verndx;
4329 	const Elf_Sym *symp;
4330 	const char *strp;
4331 
4332 	symp = obj->symtab + symnum;
4333 	strp = obj->strtab + symp->st_name;
4334 
4335 	switch (ELF_ST_TYPE(symp->st_info)) {
4336 	case STT_FUNC:
4337 	case STT_NOTYPE:
4338 	case STT_OBJECT:
4339 	case STT_COMMON:
4340 	case STT_GNU_IFUNC:
4341 		if (symp->st_value == 0)
4342 			return (false);
4343 		/* fallthrough */
4344 	case STT_TLS:
4345 		if (symp->st_shndx != SHN_UNDEF)
4346 			break;
4347 #ifndef __mips__
4348 		else if (((req->flags & SYMLOOK_IN_PLT) == 0) &&
4349 		    (ELF_ST_TYPE(symp->st_info) == STT_FUNC))
4350 			break;
4351 #endif
4352 		/* fallthrough */
4353 	default:
4354 		return (false);
4355 	}
4356 	if (req->name[0] != strp[0] || strcmp(req->name, strp) != 0)
4357 		return (false);
4358 
4359 	if (req->ventry == NULL) {
4360 		if (obj->versyms != NULL) {
4361 			verndx = VER_NDX(obj->versyms[symnum]);
4362 			if (verndx > obj->vernum) {
4363 				_rtld_error(
4364 				    "%s: symbol %s references wrong version %d",
4365 				    obj->path, obj->strtab + symnum, verndx);
4366 				return (false);
4367 			}
4368 			/*
4369 			 * If we are not called from dlsym (i.e. this
4370 			 * is a normal relocation from unversioned
4371 			 * binary), accept the symbol immediately if
4372 			 * it happens to have first version after this
4373 			 * shared object became versioned.  Otherwise,
4374 			 * if symbol is versioned and not hidden,
4375 			 * remember it. If it is the only symbol with
4376 			 * this name exported by the shared object, it
4377 			 * will be returned as a match by the calling
4378 			 * function. If symbol is global (verndx < 2)
4379 			 * accept it unconditionally.
4380 			 */
4381 			if ((req->flags & SYMLOOK_DLSYM) == 0 &&
4382 			    verndx == VER_NDX_GIVEN) {
4383 				result->sym_out = symp;
4384 				return (true);
4385 			}
4386 			else if (verndx >= VER_NDX_GIVEN) {
4387 				if ((obj->versyms[symnum] & VER_NDX_HIDDEN)
4388 				    == 0) {
4389 					if (result->vsymp == NULL)
4390 						result->vsymp = symp;
4391 					result->vcount++;
4392 				}
4393 				return (false);
4394 			}
4395 		}
4396 		result->sym_out = symp;
4397 		return (true);
4398 	}
4399 	if (obj->versyms == NULL) {
4400 		if (object_match_name(obj, req->ventry->name)) {
4401 			_rtld_error("%s: object %s should provide version %s "
4402 			    "for symbol %s", obj_rtld.path, obj->path,
4403 			    req->ventry->name, obj->strtab + symnum);
4404 			return (false);
4405 		}
4406 	} else {
4407 		verndx = VER_NDX(obj->versyms[symnum]);
4408 		if (verndx > obj->vernum) {
4409 			_rtld_error("%s: symbol %s references wrong version %d",
4410 			    obj->path, obj->strtab + symnum, verndx);
4411 			return (false);
4412 		}
4413 		if (obj->vertab[verndx].hash != req->ventry->hash ||
4414 		    strcmp(obj->vertab[verndx].name, req->ventry->name)) {
4415 			/*
4416 			 * Version does not match. Look if this is a
4417 			 * global symbol and if it is not hidden. If
4418 			 * global symbol (verndx < 2) is available,
4419 			 * use it. Do not return symbol if we are
4420 			 * called by dlvsym, because dlvsym looks for
4421 			 * a specific version and default one is not
4422 			 * what dlvsym wants.
4423 			 */
4424 			if ((req->flags & SYMLOOK_DLSYM) ||
4425 			    (verndx >= VER_NDX_GIVEN) ||
4426 			    (obj->versyms[symnum] & VER_NDX_HIDDEN))
4427 				return (false);
4428 		}
4429 	}
4430 	result->sym_out = symp;
4431 	return (true);
4432 }
4433 
4434 /*
4435  * Search for symbol using SysV hash function.
4436  * obj->buckets is known not to be NULL at this point; the test for this was
4437  * performed with the obj->valid_hash_sysv assignment.
4438  */
4439 static int
symlook_obj1_sysv(SymLook * req,const Obj_Entry * obj)4440 symlook_obj1_sysv(SymLook *req, const Obj_Entry *obj)
4441 {
4442 	unsigned long symnum;
4443 	Sym_Match_Result matchres;
4444 
4445 	matchres.sym_out = NULL;
4446 	matchres.vsymp = NULL;
4447 	matchres.vcount = 0;
4448 
4449 	for (symnum = obj->buckets[req->hash % obj->nbuckets];
4450 	    symnum != STN_UNDEF; symnum = obj->chains[symnum]) {
4451 		if (symnum >= obj->nchains)
4452 			return (ESRCH);	/* Bad object */
4453 
4454 		if (matched_symbol(req, obj, &matchres, symnum)) {
4455 			req->sym_out = matchres.sym_out;
4456 			req->defobj_out = obj;
4457 			return (0);
4458 		}
4459 	}
4460 	if (matchres.vcount == 1) {
4461 		req->sym_out = matchres.vsymp;
4462 		req->defobj_out = obj;
4463 		return (0);
4464 	}
4465 	return (ESRCH);
4466 }
4467 
4468 /* Search for symbol using GNU hash function */
4469 static int
symlook_obj1_gnu(SymLook * req,const Obj_Entry * obj)4470 symlook_obj1_gnu(SymLook *req, const Obj_Entry *obj)
4471 {
4472 	Elf_Addr bloom_word;
4473 	const Elf32_Word *hashval;
4474 	Elf32_Word bucket;
4475 	Sym_Match_Result matchres;
4476 	unsigned int h1, h2;
4477 	unsigned long symnum;
4478 
4479 	matchres.sym_out = NULL;
4480 	matchres.vsymp = NULL;
4481 	matchres.vcount = 0;
4482 
4483 	/* Pick right bitmask word from Bloom filter array */
4484 	bloom_word = obj->bloom_gnu[(req->hash_gnu / __ELF_WORD_SIZE) &
4485 	    obj->maskwords_bm_gnu];
4486 
4487 	/* Calculate modulus word size of gnu hash and its derivative */
4488 	h1 = req->hash_gnu & (__ELF_WORD_SIZE - 1);
4489 	h2 = ((req->hash_gnu >> obj->shift2_gnu) & (__ELF_WORD_SIZE - 1));
4490 
4491 	/* Filter out the "definitely not in set" queries */
4492 	if (((bloom_word >> h1) & (bloom_word >> h2) & 1) == 0)
4493 		return (ESRCH);
4494 
4495 	/* Locate hash chain and corresponding value element*/
4496 	bucket = obj->buckets_gnu[req->hash_gnu % obj->nbuckets_gnu];
4497 	if (bucket == 0)
4498 		return (ESRCH);
4499 	hashval = &obj->chain_zero_gnu[bucket];
4500 	do {
4501 		if (((*hashval ^ req->hash_gnu) >> 1) == 0) {
4502 			symnum = hashval - obj->chain_zero_gnu;
4503 			if (matched_symbol(req, obj, &matchres, symnum)) {
4504 				req->sym_out = matchres.sym_out;
4505 				req->defobj_out = obj;
4506 				return (0);
4507 			}
4508 		}
4509 	} while ((*hashval++ & 1) == 0);
4510 	if (matchres.vcount == 1) {
4511 		req->sym_out = matchres.vsymp;
4512 		req->defobj_out = obj;
4513 		return (0);
4514 	}
4515 	return (ESRCH);
4516 }
4517 
4518 static void
trace_loaded_objects(Obj_Entry * obj)4519 trace_loaded_objects(Obj_Entry *obj)
4520 {
4521     const char *fmt1, *fmt2, *fmt, *main_local, *list_containers;
4522     int c;
4523 
4524     if ((main_local = getenv(_LD("TRACE_LOADED_OBJECTS_PROGNAME"))) == NULL)
4525 	main_local = "";
4526 
4527     if ((fmt1 = getenv(_LD("TRACE_LOADED_OBJECTS_FMT1"))) == NULL)
4528 	fmt1 = "\t%o => %p (%x)\n";
4529 
4530     if ((fmt2 = getenv(_LD("TRACE_LOADED_OBJECTS_FMT2"))) == NULL)
4531 	fmt2 = "\t%o (%x)\n";
4532 
4533     list_containers = getenv(_LD("TRACE_LOADED_OBJECTS_ALL"));
4534 
4535     for (; obj != NULL; obj = TAILQ_NEXT(obj, next)) {
4536 	Needed_Entry *needed;
4537 	const char *name, *path;
4538 	bool is_lib;
4539 
4540 	if (obj->marker)
4541 	    continue;
4542 	if (list_containers && obj->needed != NULL)
4543 	    rtld_printf("%s:\n", obj->path);
4544 	for (needed = obj->needed; needed; needed = needed->next) {
4545 	    if (needed->obj != NULL) {
4546 		if (needed->obj->traced && !list_containers)
4547 		    continue;
4548 		needed->obj->traced = true;
4549 		path = needed->obj->path;
4550 	    } else
4551 		path = "not found";
4552 
4553 	    name = obj->strtab + needed->name;
4554 	    is_lib = strncmp(name, "lib", 3) == 0;	/* XXX - bogus */
4555 
4556 	    fmt = is_lib ? fmt1 : fmt2;
4557 	    while ((c = *fmt++) != '\0') {
4558 		switch (c) {
4559 		default:
4560 		    rtld_putchar(c);
4561 		    continue;
4562 		case '\\':
4563 		    switch (c = *fmt) {
4564 		    case '\0':
4565 			continue;
4566 		    case 'n':
4567 			rtld_putchar('\n');
4568 			break;
4569 		    case 't':
4570 			rtld_putchar('\t');
4571 			break;
4572 		    }
4573 		    break;
4574 		case '%':
4575 		    switch (c = *fmt) {
4576 		    case '\0':
4577 			continue;
4578 		    case '%':
4579 		    default:
4580 			rtld_putchar(c);
4581 			break;
4582 		    case 'A':
4583 			rtld_putstr(main_local);
4584 			break;
4585 		    case 'a':
4586 			rtld_putstr(obj_main->path);
4587 			break;
4588 		    case 'o':
4589 			rtld_putstr(name);
4590 			break;
4591 #if 0
4592 		    case 'm':
4593 			rtld_printf("%d", sodp->sod_major);
4594 			break;
4595 		    case 'n':
4596 			rtld_printf("%d", sodp->sod_minor);
4597 			break;
4598 #endif
4599 		    case 'p':
4600 			rtld_putstr(path);
4601 			break;
4602 		    case 'x':
4603 			rtld_printf("%p", needed->obj ? needed->obj->mapbase :
4604 			  0);
4605 			break;
4606 		    }
4607 		    break;
4608 		}
4609 		++fmt;
4610 	    }
4611 	}
4612     }
4613 }
4614 
4615 /*
4616  * Unload a dlopened object and its dependencies from memory and from
4617  * our data structures.  It is assumed that the DAG rooted in the
4618  * object has already been unreferenced, and that the object has a
4619  * reference count of 0.
4620  */
4621 static void
unload_object(Obj_Entry * root,RtldLockState * lockstate)4622 unload_object(Obj_Entry *root, RtldLockState *lockstate)
4623 {
4624 	Obj_Entry marker, *obj, *next;
4625 
4626 	assert(root->refcount == 0);
4627 
4628 	/*
4629 	 * Pass over the DAG removing unreferenced objects from
4630 	 * appropriate lists.
4631 	 */
4632 	unlink_object(root);
4633 
4634 	/* Unmap all objects that are no longer referenced. */
4635 	for (obj = TAILQ_FIRST(&obj_list); obj != NULL; obj = next) {
4636 		next = TAILQ_NEXT(obj, next);
4637 		if (obj->marker || obj->refcount != 0)
4638 			continue;
4639 		LD_UTRACE(UTRACE_UNLOAD_OBJECT, obj, obj->mapbase,
4640 		    obj->mapsize, 0, obj->path);
4641 		dbg("unloading \"%s\"", obj->path);
4642 		/*
4643 		 * Unlink the object now to prevent new references from
4644 		 * being acquired while the bind lock is dropped in
4645 		 * recursive dlclose() invocations.
4646 		 */
4647 		TAILQ_REMOVE(&obj_list, obj, next);
4648 		obj_count--;
4649 
4650 		if (obj->filtees_loaded) {
4651 			if (next != NULL) {
4652 				init_marker(&marker);
4653 				TAILQ_INSERT_BEFORE(next, &marker, next);
4654 				unload_filtees(obj, lockstate);
4655 				next = TAILQ_NEXT(&marker, next);
4656 				TAILQ_REMOVE(&obj_list, &marker, next);
4657 			} else
4658 				unload_filtees(obj, lockstate);
4659 		}
4660 		release_object(obj);
4661 	}
4662 }
4663 
4664 static void
unlink_object(Obj_Entry * root)4665 unlink_object(Obj_Entry *root)
4666 {
4667     Objlist_Entry *elm;
4668 
4669     if (root->refcount == 0) {
4670 	/* Remove the object from the RTLD_GLOBAL list. */
4671 	objlist_remove(&list_global, root);
4672 
4673     	/* Remove the object from all objects' DAG lists. */
4674     	STAILQ_FOREACH(elm, &root->dagmembers, link) {
4675 	    objlist_remove(&elm->obj->dldags, root);
4676 	    if (elm->obj != root)
4677 		unlink_object(elm->obj);
4678 	}
4679     }
4680 }
4681 
4682 static void
ref_dag(Obj_Entry * root)4683 ref_dag(Obj_Entry *root)
4684 {
4685     Objlist_Entry *elm;
4686 
4687     assert(root->dag_inited);
4688     STAILQ_FOREACH(elm, &root->dagmembers, link)
4689 	elm->obj->refcount++;
4690 }
4691 
4692 static void
unref_dag(Obj_Entry * root)4693 unref_dag(Obj_Entry *root)
4694 {
4695     Objlist_Entry *elm;
4696 
4697     assert(root->dag_inited);
4698     STAILQ_FOREACH(elm, &root->dagmembers, link)
4699 	elm->obj->refcount--;
4700 }
4701 
4702 /*
4703  * Common code for MD __tls_get_addr().
4704  */
4705 static void *tls_get_addr_slow(Elf_Addr **, int, size_t) __noinline;
4706 static void *
tls_get_addr_slow(Elf_Addr ** dtvp,int index,size_t offset)4707 tls_get_addr_slow(Elf_Addr **dtvp, int index, size_t offset)
4708 {
4709     Elf_Addr *newdtv, *dtv;
4710     RtldLockState lockstate;
4711     int to_copy;
4712 
4713     dtv = *dtvp;
4714     /* Check dtv generation in case new modules have arrived */
4715     if (dtv[0] != tls_dtv_generation) {
4716 	wlock_acquire(rtld_bind_lock, &lockstate);
4717 	newdtv = xcalloc(tls_max_index + 2, sizeof(Elf_Addr));
4718 	to_copy = dtv[1];
4719 	if (to_copy > tls_max_index)
4720 	    to_copy = tls_max_index;
4721 	memcpy(&newdtv[2], &dtv[2], to_copy * sizeof(Elf_Addr));
4722 	newdtv[0] = tls_dtv_generation;
4723 	newdtv[1] = tls_max_index;
4724 	free(dtv);
4725 	lock_release(rtld_bind_lock, &lockstate);
4726 	dtv = *dtvp = newdtv;
4727     }
4728 
4729     /* Dynamically allocate module TLS if necessary */
4730     if (dtv[index + 1] == 0) {
4731 	/* Signal safe, wlock will block out signals. */
4732 	wlock_acquire(rtld_bind_lock, &lockstate);
4733 	if (!dtv[index + 1])
4734 	    dtv[index + 1] = (Elf_Addr)allocate_module_tls(index);
4735 	lock_release(rtld_bind_lock, &lockstate);
4736     }
4737     return ((void *)(dtv[index + 1] + offset));
4738 }
4739 
4740 void *
tls_get_addr_common(Elf_Addr ** dtvp,int index,size_t offset)4741 tls_get_addr_common(Elf_Addr **dtvp, int index, size_t offset)
4742 {
4743 	Elf_Addr *dtv;
4744 
4745 	dtv = *dtvp;
4746 	/* Check dtv generation in case new modules have arrived */
4747 	if (__predict_true(dtv[0] == tls_dtv_generation &&
4748 	    dtv[index + 1] != 0))
4749 		return ((void *)(dtv[index + 1] + offset));
4750 	return (tls_get_addr_slow(dtvp, index, offset));
4751 }
4752 
4753 #if defined(__aarch64__) || defined(__arm__) || defined(__mips__) || \
4754     defined(__powerpc__) || defined(__riscv)
4755 
4756 /*
4757  * Return pointer to allocated TLS block
4758  */
4759 static void *
get_tls_block_ptr(void * tcb,size_t tcbsize)4760 get_tls_block_ptr(void *tcb, size_t tcbsize)
4761 {
4762     size_t extra_size, post_size, pre_size, tls_block_size;
4763     size_t tls_init_align;
4764 
4765     tls_init_align = MAX(obj_main->tlsalign, 1);
4766 
4767     /* Compute fragments sizes. */
4768     extra_size = tcbsize - TLS_TCB_SIZE;
4769     post_size = calculate_tls_post_size(tls_init_align);
4770     tls_block_size = tcbsize + post_size;
4771     pre_size = roundup2(tls_block_size, tls_init_align) - tls_block_size;
4772 
4773     return ((char *)tcb - pre_size - extra_size);
4774 }
4775 
4776 /*
4777  * Allocate Static TLS using the Variant I method.
4778  *
4779  * For details on the layout, see lib/libc/gen/tls.c.
4780  *
4781  * NB: rtld's tls_static_space variable includes TLS_TCB_SIZE and post_size as
4782  *     it is based on tls_last_offset, and TLS offsets here are really TCB
4783  *     offsets, whereas libc's tls_static_space is just the executable's static
4784  *     TLS segment.
4785  */
4786 void *
allocate_tls(Obj_Entry * objs,void * oldtcb,size_t tcbsize,size_t tcbalign)4787 allocate_tls(Obj_Entry *objs, void *oldtcb, size_t tcbsize, size_t tcbalign)
4788 {
4789     Obj_Entry *obj;
4790     char *tls_block;
4791     Elf_Addr *dtv, **tcb;
4792     Elf_Addr addr;
4793     Elf_Addr i;
4794     size_t extra_size, maxalign, post_size, pre_size, tls_block_size;
4795     size_t tls_init_align;
4796 
4797     if (oldtcb != NULL && tcbsize == TLS_TCB_SIZE)
4798 	return (oldtcb);
4799 
4800     assert(tcbsize >= TLS_TCB_SIZE);
4801     maxalign = MAX(tcbalign, tls_static_max_align);
4802     tls_init_align = MAX(obj_main->tlsalign, 1);
4803 
4804     /* Compute fragmets sizes. */
4805     extra_size = tcbsize - TLS_TCB_SIZE;
4806     post_size = calculate_tls_post_size(tls_init_align);
4807     tls_block_size = tcbsize + post_size;
4808     pre_size = roundup2(tls_block_size, tls_init_align) - tls_block_size;
4809     tls_block_size += pre_size + tls_static_space - TLS_TCB_SIZE - post_size;
4810 
4811     /* Allocate whole TLS block */
4812     tls_block = malloc_aligned(tls_block_size, maxalign);
4813     tcb = (Elf_Addr **)(tls_block + pre_size + extra_size);
4814 
4815     if (oldtcb != NULL) {
4816 	memcpy(tls_block, get_tls_block_ptr(oldtcb, tcbsize),
4817 	    tls_static_space);
4818 	free_aligned(get_tls_block_ptr(oldtcb, tcbsize));
4819 
4820 	/* Adjust the DTV. */
4821 	dtv = tcb[0];
4822 	for (i = 0; i < dtv[1]; i++) {
4823 	    if (dtv[i+2] >= (Elf_Addr)oldtcb &&
4824 		dtv[i+2] < (Elf_Addr)oldtcb + tls_static_space) {
4825 		dtv[i+2] = dtv[i+2] - (Elf_Addr)oldtcb + (Elf_Addr)tcb;
4826 	    }
4827 	}
4828     } else {
4829 	dtv = xcalloc(tls_max_index + 2, sizeof(Elf_Addr));
4830 	tcb[0] = dtv;
4831 	dtv[0] = tls_dtv_generation;
4832 	dtv[1] = tls_max_index;
4833 
4834 	for (obj = globallist_curr(objs); obj != NULL;
4835 	  obj = globallist_next(obj)) {
4836 	    if (obj->tlsoffset > 0) {
4837 		addr = (Elf_Addr)tcb + obj->tlsoffset;
4838 		if (obj->tlsinitsize > 0)
4839 		    memcpy((void*) addr, obj->tlsinit, obj->tlsinitsize);
4840 		if (obj->tlssize > obj->tlsinitsize)
4841 		    memset((void*)(addr + obj->tlsinitsize), 0,
4842 			   obj->tlssize - obj->tlsinitsize);
4843 		dtv[obj->tlsindex + 1] = addr;
4844 	    }
4845 	}
4846     }
4847 
4848     return (tcb);
4849 }
4850 
4851 void
free_tls(void * tcb,size_t tcbsize,size_t tcbalign __unused)4852 free_tls(void *tcb, size_t tcbsize, size_t tcbalign __unused)
4853 {
4854     Elf_Addr *dtv;
4855     Elf_Addr tlsstart, tlsend;
4856     size_t post_size;
4857     size_t dtvsize, i, tls_init_align;
4858 
4859     assert(tcbsize >= TLS_TCB_SIZE);
4860     tls_init_align = MAX(obj_main->tlsalign, 1);
4861 
4862     /* Compute fragments sizes. */
4863     post_size = calculate_tls_post_size(tls_init_align);
4864 
4865     tlsstart = (Elf_Addr)tcb + TLS_TCB_SIZE + post_size;
4866     tlsend = (Elf_Addr)tcb + tls_static_space;
4867 
4868     dtv = *(Elf_Addr **)tcb;
4869     dtvsize = dtv[1];
4870     for (i = 0; i < dtvsize; i++) {
4871 	if (dtv[i+2] && (dtv[i+2] < tlsstart || dtv[i+2] >= tlsend)) {
4872 	    free((void*)dtv[i+2]);
4873 	}
4874     }
4875     free(dtv);
4876     free_aligned(get_tls_block_ptr(tcb, tcbsize));
4877 }
4878 
4879 #endif
4880 
4881 #if defined(__i386__) || defined(__amd64__) || defined(__sparc64__)
4882 
4883 /*
4884  * Allocate Static TLS using the Variant II method.
4885  */
4886 void *
allocate_tls(Obj_Entry * objs,void * oldtls,size_t tcbsize,size_t tcbalign)4887 allocate_tls(Obj_Entry *objs, void *oldtls, size_t tcbsize, size_t tcbalign)
4888 {
4889     Obj_Entry *obj;
4890     size_t size, ralign;
4891     char *tls;
4892     Elf_Addr *dtv, *olddtv;
4893     Elf_Addr segbase, oldsegbase, addr;
4894     size_t i;
4895 
4896     ralign = tcbalign;
4897     if (tls_static_max_align > ralign)
4898 	    ralign = tls_static_max_align;
4899     size = round(tls_static_space, ralign) + round(tcbsize, ralign);
4900 
4901     assert(tcbsize >= 2*sizeof(Elf_Addr));
4902     tls = malloc_aligned(size, ralign);
4903     dtv = xcalloc(tls_max_index + 2, sizeof(Elf_Addr));
4904 
4905     segbase = (Elf_Addr)(tls + round(tls_static_space, ralign));
4906     ((Elf_Addr*)segbase)[0] = segbase;
4907     ((Elf_Addr*)segbase)[1] = (Elf_Addr) dtv;
4908 
4909     dtv[0] = tls_dtv_generation;
4910     dtv[1] = tls_max_index;
4911 
4912     if (oldtls) {
4913 	/*
4914 	 * Copy the static TLS block over whole.
4915 	 */
4916 	oldsegbase = (Elf_Addr) oldtls;
4917 	memcpy((void *)(segbase - tls_static_space),
4918 	       (const void *)(oldsegbase - tls_static_space),
4919 	       tls_static_space);
4920 
4921 	/*
4922 	 * If any dynamic TLS blocks have been created tls_get_addr(),
4923 	 * move them over.
4924 	 */
4925 	olddtv = ((Elf_Addr**)oldsegbase)[1];
4926 	for (i = 0; i < olddtv[1]; i++) {
4927 	    if (olddtv[i+2] < oldsegbase - size || olddtv[i+2] > oldsegbase) {
4928 		dtv[i+2] = olddtv[i+2];
4929 		olddtv[i+2] = 0;
4930 	    }
4931 	}
4932 
4933 	/*
4934 	 * We assume that this block was the one we created with
4935 	 * allocate_initial_tls().
4936 	 */
4937 	free_tls(oldtls, 2*sizeof(Elf_Addr), sizeof(Elf_Addr));
4938     } else {
4939 	for (obj = objs; obj != NULL; obj = TAILQ_NEXT(obj, next)) {
4940 		if (obj->marker || obj->tlsoffset == 0)
4941 			continue;
4942 		addr = segbase - obj->tlsoffset;
4943 		memset((void*)(addr + obj->tlsinitsize),
4944 		       0, obj->tlssize - obj->tlsinitsize);
4945 		if (obj->tlsinit) {
4946 		    memcpy((void*) addr, obj->tlsinit, obj->tlsinitsize);
4947 		    obj->static_tls_copied = true;
4948 		}
4949 		dtv[obj->tlsindex + 1] = addr;
4950 	}
4951     }
4952 
4953     return (void*) segbase;
4954 }
4955 
4956 void
free_tls(void * tls,size_t tcbsize __unused,size_t tcbalign)4957 free_tls(void *tls, size_t tcbsize  __unused, size_t tcbalign)
4958 {
4959     Elf_Addr* dtv;
4960     size_t size, ralign;
4961     int dtvsize, i;
4962     Elf_Addr tlsstart, tlsend;
4963 
4964     /*
4965      * Figure out the size of the initial TLS block so that we can
4966      * find stuff which ___tls_get_addr() allocated dynamically.
4967      */
4968     ralign = tcbalign;
4969     if (tls_static_max_align > ralign)
4970 	    ralign = tls_static_max_align;
4971     size = round(tls_static_space, ralign);
4972 
4973     dtv = ((Elf_Addr**)tls)[1];
4974     dtvsize = dtv[1];
4975     tlsend = (Elf_Addr) tls;
4976     tlsstart = tlsend - size;
4977     for (i = 0; i < dtvsize; i++) {
4978 	if (dtv[i + 2] != 0 && (dtv[i + 2] < tlsstart || dtv[i + 2] > tlsend)) {
4979 		free_aligned((void *)dtv[i + 2]);
4980 	}
4981     }
4982 
4983     free_aligned((void *)tlsstart);
4984     free((void*) dtv);
4985 }
4986 
4987 #endif
4988 
4989 /*
4990  * Allocate TLS block for module with given index.
4991  */
4992 void *
allocate_module_tls(int index)4993 allocate_module_tls(int index)
4994 {
4995     Obj_Entry* obj;
4996     char* p;
4997 
4998     TAILQ_FOREACH(obj, &obj_list, next) {
4999 	if (obj->marker)
5000 	    continue;
5001 	if (obj->tlsindex == index)
5002 	    break;
5003     }
5004     if (!obj) {
5005 	_rtld_error("Can't find module with TLS index %d", index);
5006 	rtld_die();
5007     }
5008 
5009     p = malloc_aligned(obj->tlssize, obj->tlsalign);
5010     memcpy(p, obj->tlsinit, obj->tlsinitsize);
5011     memset(p + obj->tlsinitsize, 0, obj->tlssize - obj->tlsinitsize);
5012 
5013     return p;
5014 }
5015 
5016 bool
allocate_tls_offset(Obj_Entry * obj)5017 allocate_tls_offset(Obj_Entry *obj)
5018 {
5019     size_t off;
5020 
5021     if (obj->tls_done)
5022 	return true;
5023 
5024     if (obj->tlssize == 0) {
5025 	obj->tls_done = true;
5026 	return true;
5027     }
5028 
5029     if (tls_last_offset == 0)
5030 	off = calculate_first_tls_offset(obj->tlssize, obj->tlsalign);
5031     else
5032 	off = calculate_tls_offset(tls_last_offset, tls_last_size,
5033 				   obj->tlssize, obj->tlsalign);
5034 
5035     /*
5036      * If we have already fixed the size of the static TLS block, we
5037      * must stay within that size. When allocating the static TLS, we
5038      * leave a small amount of space spare to be used for dynamically
5039      * loading modules which use static TLS.
5040      */
5041     if (tls_static_space != 0) {
5042 	if (calculate_tls_end(off, obj->tlssize) > tls_static_space)
5043 	    return false;
5044     } else if (obj->tlsalign > tls_static_max_align) {
5045 	    tls_static_max_align = obj->tlsalign;
5046     }
5047 
5048     tls_last_offset = obj->tlsoffset = off;
5049     tls_last_size = obj->tlssize;
5050     obj->tls_done = true;
5051 
5052     return true;
5053 }
5054 
5055 void
free_tls_offset(Obj_Entry * obj)5056 free_tls_offset(Obj_Entry *obj)
5057 {
5058 
5059     /*
5060      * If we were the last thing to allocate out of the static TLS
5061      * block, we give our space back to the 'allocator'. This is a
5062      * simplistic workaround to allow libGL.so.1 to be loaded and
5063      * unloaded multiple times.
5064      */
5065     if (calculate_tls_end(obj->tlsoffset, obj->tlssize)
5066 	== calculate_tls_end(tls_last_offset, tls_last_size)) {
5067 	tls_last_offset -= obj->tlssize;
5068 	tls_last_size = 0;
5069     }
5070 }
5071 
5072 void *
_rtld_allocate_tls(void * oldtls,size_t tcbsize,size_t tcbalign)5073 _rtld_allocate_tls(void *oldtls, size_t tcbsize, size_t tcbalign)
5074 {
5075     void *ret;
5076     RtldLockState lockstate;
5077 
5078     wlock_acquire(rtld_bind_lock, &lockstate);
5079     ret = allocate_tls(globallist_curr(TAILQ_FIRST(&obj_list)), oldtls,
5080       tcbsize, tcbalign);
5081     lock_release(rtld_bind_lock, &lockstate);
5082     return (ret);
5083 }
5084 
5085 void
_rtld_free_tls(void * tcb,size_t tcbsize,size_t tcbalign)5086 _rtld_free_tls(void *tcb, size_t tcbsize, size_t tcbalign)
5087 {
5088     RtldLockState lockstate;
5089 
5090     wlock_acquire(rtld_bind_lock, &lockstate);
5091     free_tls(tcb, tcbsize, tcbalign);
5092     lock_release(rtld_bind_lock, &lockstate);
5093 }
5094 
5095 static void
object_add_name(Obj_Entry * obj,const char * name)5096 object_add_name(Obj_Entry *obj, const char *name)
5097 {
5098     Name_Entry *entry;
5099     size_t len;
5100 
5101     len = strlen(name);
5102     entry = malloc(sizeof(Name_Entry) + len);
5103 
5104     if (entry != NULL) {
5105 	strcpy(entry->name, name);
5106 	STAILQ_INSERT_TAIL(&obj->names, entry, link);
5107     }
5108 }
5109 
5110 static int
object_match_name(const Obj_Entry * obj,const char * name)5111 object_match_name(const Obj_Entry *obj, const char *name)
5112 {
5113     Name_Entry *entry;
5114 
5115     STAILQ_FOREACH(entry, &obj->names, link) {
5116 	if (strcmp(name, entry->name) == 0)
5117 	    return (1);
5118     }
5119     return (0);
5120 }
5121 
5122 static Obj_Entry *
locate_dependency(const Obj_Entry * obj,const char * name)5123 locate_dependency(const Obj_Entry *obj, const char *name)
5124 {
5125     const Objlist_Entry *entry;
5126     const Needed_Entry *needed;
5127 
5128     STAILQ_FOREACH(entry, &list_main, link) {
5129 	if (object_match_name(entry->obj, name))
5130 	    return entry->obj;
5131     }
5132 
5133     for (needed = obj->needed;  needed != NULL;  needed = needed->next) {
5134 	if (strcmp(obj->strtab + needed->name, name) == 0 ||
5135 	  (needed->obj != NULL && object_match_name(needed->obj, name))) {
5136 	    /*
5137 	     * If there is DT_NEEDED for the name we are looking for,
5138 	     * we are all set.  Note that object might not be found if
5139 	     * dependency was not loaded yet, so the function can
5140 	     * return NULL here.  This is expected and handled
5141 	     * properly by the caller.
5142 	     */
5143 	    return (needed->obj);
5144 	}
5145     }
5146     _rtld_error("%s: Unexpected inconsistency: dependency %s not found",
5147 	obj->path, name);
5148     rtld_die();
5149 }
5150 
5151 static int
check_object_provided_version(Obj_Entry * refobj,const Obj_Entry * depobj,const Elf_Vernaux * vna)5152 check_object_provided_version(Obj_Entry *refobj, const Obj_Entry *depobj,
5153     const Elf_Vernaux *vna)
5154 {
5155     const Elf_Verdef *vd;
5156     const char *vername;
5157 
5158     vername = refobj->strtab + vna->vna_name;
5159     vd = depobj->verdef;
5160     if (vd == NULL) {
5161 	_rtld_error("%s: version %s required by %s not defined",
5162 	    depobj->path, vername, refobj->path);
5163 	return (-1);
5164     }
5165     for (;;) {
5166 	if (vd->vd_version != VER_DEF_CURRENT) {
5167 	    _rtld_error("%s: Unsupported version %d of Elf_Verdef entry",
5168 		depobj->path, vd->vd_version);
5169 	    return (-1);
5170 	}
5171 	if (vna->vna_hash == vd->vd_hash) {
5172 	    const Elf_Verdaux *aux = (const Elf_Verdaux *)
5173 		((const char *)vd + vd->vd_aux);
5174 	    if (strcmp(vername, depobj->strtab + aux->vda_name) == 0)
5175 		return (0);
5176 	}
5177 	if (vd->vd_next == 0)
5178 	    break;
5179 	vd = (const Elf_Verdef *)((const char *)vd + vd->vd_next);
5180     }
5181     if (vna->vna_flags & VER_FLG_WEAK)
5182 	return (0);
5183     _rtld_error("%s: version %s required by %s not found",
5184 	depobj->path, vername, refobj->path);
5185     return (-1);
5186 }
5187 
5188 static int
rtld_verify_object_versions(Obj_Entry * obj)5189 rtld_verify_object_versions(Obj_Entry *obj)
5190 {
5191     const Elf_Verneed *vn;
5192     const Elf_Verdef  *vd;
5193     const Elf_Verdaux *vda;
5194     const Elf_Vernaux *vna;
5195     const Obj_Entry *depobj;
5196     int maxvernum, vernum;
5197 
5198     if (obj->ver_checked)
5199 	return (0);
5200     obj->ver_checked = true;
5201 
5202     maxvernum = 0;
5203     /*
5204      * Walk over defined and required version records and figure out
5205      * max index used by any of them. Do very basic sanity checking
5206      * while there.
5207      */
5208     vn = obj->verneed;
5209     while (vn != NULL) {
5210 	if (vn->vn_version != VER_NEED_CURRENT) {
5211 	    _rtld_error("%s: Unsupported version %d of Elf_Verneed entry",
5212 		obj->path, vn->vn_version);
5213 	    return (-1);
5214 	}
5215 	vna = (const Elf_Vernaux *)((const char *)vn + vn->vn_aux);
5216 	for (;;) {
5217 	    vernum = VER_NEED_IDX(vna->vna_other);
5218 	    if (vernum > maxvernum)
5219 		maxvernum = vernum;
5220 	    if (vna->vna_next == 0)
5221 		 break;
5222 	    vna = (const Elf_Vernaux *)((const char *)vna + vna->vna_next);
5223 	}
5224 	if (vn->vn_next == 0)
5225 	    break;
5226 	vn = (const Elf_Verneed *)((const char *)vn + vn->vn_next);
5227     }
5228 
5229     vd = obj->verdef;
5230     while (vd != NULL) {
5231 	if (vd->vd_version != VER_DEF_CURRENT) {
5232 	    _rtld_error("%s: Unsupported version %d of Elf_Verdef entry",
5233 		obj->path, vd->vd_version);
5234 	    return (-1);
5235 	}
5236 	vernum = VER_DEF_IDX(vd->vd_ndx);
5237 	if (vernum > maxvernum)
5238 		maxvernum = vernum;
5239 	if (vd->vd_next == 0)
5240 	    break;
5241 	vd = (const Elf_Verdef *)((const char *)vd + vd->vd_next);
5242     }
5243 
5244     if (maxvernum == 0)
5245 	return (0);
5246 
5247     /*
5248      * Store version information in array indexable by version index.
5249      * Verify that object version requirements are satisfied along the
5250      * way.
5251      */
5252     obj->vernum = maxvernum + 1;
5253     obj->vertab = xcalloc(obj->vernum, sizeof(Ver_Entry));
5254 
5255     vd = obj->verdef;
5256     while (vd != NULL) {
5257 	if ((vd->vd_flags & VER_FLG_BASE) == 0) {
5258 	    vernum = VER_DEF_IDX(vd->vd_ndx);
5259 	    assert(vernum <= maxvernum);
5260 	    vda = (const Elf_Verdaux *)((const char *)vd + vd->vd_aux);
5261 	    obj->vertab[vernum].hash = vd->vd_hash;
5262 	    obj->vertab[vernum].name = obj->strtab + vda->vda_name;
5263 	    obj->vertab[vernum].file = NULL;
5264 	    obj->vertab[vernum].flags = 0;
5265 	}
5266 	if (vd->vd_next == 0)
5267 	    break;
5268 	vd = (const Elf_Verdef *)((const char *)vd + vd->vd_next);
5269     }
5270 
5271     vn = obj->verneed;
5272     while (vn != NULL) {
5273 	depobj = locate_dependency(obj, obj->strtab + vn->vn_file);
5274 	if (depobj == NULL)
5275 	    return (-1);
5276 	vna = (const Elf_Vernaux *)((const char *)vn + vn->vn_aux);
5277 	for (;;) {
5278 	    if (check_object_provided_version(obj, depobj, vna))
5279 		return (-1);
5280 	    vernum = VER_NEED_IDX(vna->vna_other);
5281 	    assert(vernum <= maxvernum);
5282 	    obj->vertab[vernum].hash = vna->vna_hash;
5283 	    obj->vertab[vernum].name = obj->strtab + vna->vna_name;
5284 	    obj->vertab[vernum].file = obj->strtab + vn->vn_file;
5285 	    obj->vertab[vernum].flags = (vna->vna_other & VER_NEED_HIDDEN) ?
5286 		VER_INFO_HIDDEN : 0;
5287 	    if (vna->vna_next == 0)
5288 		 break;
5289 	    vna = (const Elf_Vernaux *)((const char *)vna + vna->vna_next);
5290 	}
5291 	if (vn->vn_next == 0)
5292 	    break;
5293 	vn = (const Elf_Verneed *)((const char *)vn + vn->vn_next);
5294     }
5295     return 0;
5296 }
5297 
5298 static int
rtld_verify_versions(const Objlist * objlist)5299 rtld_verify_versions(const Objlist *objlist)
5300 {
5301     Objlist_Entry *entry;
5302     int rc;
5303 
5304     rc = 0;
5305     STAILQ_FOREACH(entry, objlist, link) {
5306 	/*
5307 	 * Skip dummy objects or objects that have their version requirements
5308 	 * already checked.
5309 	 */
5310 	if (entry->obj->strtab == NULL || entry->obj->vertab != NULL)
5311 	    continue;
5312 	if (rtld_verify_object_versions(entry->obj) == -1) {
5313 	    rc = -1;
5314 	    if (ld_tracing == NULL)
5315 		break;
5316 	}
5317     }
5318     if (rc == 0 || ld_tracing != NULL)
5319     	rc = rtld_verify_object_versions(&obj_rtld);
5320     return rc;
5321 }
5322 
5323 const Ver_Entry *
fetch_ventry(const Obj_Entry * obj,unsigned long symnum)5324 fetch_ventry(const Obj_Entry *obj, unsigned long symnum)
5325 {
5326     Elf_Versym vernum;
5327 
5328     if (obj->vertab) {
5329 	vernum = VER_NDX(obj->versyms[symnum]);
5330 	if (vernum >= obj->vernum) {
5331 	    _rtld_error("%s: symbol %s has wrong verneed value %d",
5332 		obj->path, obj->strtab + symnum, vernum);
5333 	} else if (obj->vertab[vernum].hash != 0) {
5334 	    return &obj->vertab[vernum];
5335 	}
5336     }
5337     return NULL;
5338 }
5339 
5340 int
_rtld_get_stack_prot(void)5341 _rtld_get_stack_prot(void)
5342 {
5343 
5344 	return (stack_prot);
5345 }
5346 
5347 int
_rtld_is_dlopened(void * arg)5348 _rtld_is_dlopened(void *arg)
5349 {
5350 	Obj_Entry *obj;
5351 	RtldLockState lockstate;
5352 	int res;
5353 
5354 	rlock_acquire(rtld_bind_lock, &lockstate);
5355 	obj = dlcheck(arg);
5356 	if (obj == NULL)
5357 		obj = obj_from_addr(arg);
5358 	if (obj == NULL) {
5359 		_rtld_error("No shared object contains address");
5360 		lock_release(rtld_bind_lock, &lockstate);
5361 		return (-1);
5362 	}
5363 	res = obj->dlopened ? 1 : 0;
5364 	lock_release(rtld_bind_lock, &lockstate);
5365 	return (res);
5366 }
5367 
5368 static int
obj_remap_relro(Obj_Entry * obj,int prot)5369 obj_remap_relro(Obj_Entry *obj, int prot)
5370 {
5371 
5372 	if (obj->relro_size > 0 && mprotect(obj->relro_page, obj->relro_size,
5373 	    prot) == -1) {
5374 		_rtld_error("%s: Cannot set relro protection to %#x: %s",
5375 		    obj->path, prot, rtld_strerror(errno));
5376 		return (-1);
5377 	}
5378 	return (0);
5379 }
5380 
5381 static int
obj_disable_relro(Obj_Entry * obj)5382 obj_disable_relro(Obj_Entry *obj)
5383 {
5384 
5385 	return (obj_remap_relro(obj, PROT_READ | PROT_WRITE));
5386 }
5387 
5388 static int
obj_enforce_relro(Obj_Entry * obj)5389 obj_enforce_relro(Obj_Entry *obj)
5390 {
5391 
5392 	return (obj_remap_relro(obj, PROT_READ));
5393 }
5394 
5395 static void
map_stacks_exec(RtldLockState * lockstate)5396 map_stacks_exec(RtldLockState *lockstate)
5397 {
5398 	void (*thr_map_stacks_exec)(void);
5399 
5400 	if ((max_stack_flags & PF_X) == 0 || (stack_prot & PROT_EXEC) != 0)
5401 		return;
5402 	thr_map_stacks_exec = (void (*)(void))(uintptr_t)
5403 	    get_program_var_addr("__pthread_map_stacks_exec", lockstate);
5404 	if (thr_map_stacks_exec != NULL) {
5405 		stack_prot |= PROT_EXEC;
5406 		thr_map_stacks_exec();
5407 	}
5408 }
5409 
5410 static void
distribute_static_tls(Objlist * list,RtldLockState * lockstate)5411 distribute_static_tls(Objlist *list, RtldLockState *lockstate)
5412 {
5413 	Objlist_Entry *elm;
5414 	Obj_Entry *obj;
5415 	void (*distrib)(size_t, void *, size_t, size_t);
5416 
5417 	distrib = (void (*)(size_t, void *, size_t, size_t))(uintptr_t)
5418 	    get_program_var_addr("__pthread_distribute_static_tls", lockstate);
5419 	if (distrib == NULL)
5420 		return;
5421 	STAILQ_FOREACH(elm, list, link) {
5422 		obj = elm->obj;
5423 		if (obj->marker || !obj->tls_done || obj->static_tls_copied)
5424 			continue;
5425 		distrib(obj->tlsoffset, obj->tlsinit, obj->tlsinitsize,
5426 		    obj->tlssize);
5427 		obj->static_tls_copied = true;
5428 	}
5429 }
5430 
5431 void
symlook_init(SymLook * dst,const char * name)5432 symlook_init(SymLook *dst, const char *name)
5433 {
5434 
5435 	bzero(dst, sizeof(*dst));
5436 	dst->name = name;
5437 	dst->hash = elf_hash(name);
5438 	dst->hash_gnu = gnu_hash(name);
5439 }
5440 
5441 static void
symlook_init_from_req(SymLook * dst,const SymLook * src)5442 symlook_init_from_req(SymLook *dst, const SymLook *src)
5443 {
5444 
5445 	dst->name = src->name;
5446 	dst->hash = src->hash;
5447 	dst->hash_gnu = src->hash_gnu;
5448 	dst->ventry = src->ventry;
5449 	dst->flags = src->flags;
5450 	dst->defobj_out = NULL;
5451 	dst->sym_out = NULL;
5452 	dst->lockstate = src->lockstate;
5453 }
5454 
5455 static int
open_binary_fd(const char * argv0,bool search_in_path)5456 open_binary_fd(const char *argv0, bool search_in_path)
5457 {
5458 	char *pathenv, *pe, binpath[PATH_MAX];
5459 	int fd;
5460 
5461 	if (search_in_path && strchr(argv0, '/') == NULL) {
5462 		pathenv = getenv("PATH");
5463 		if (pathenv == NULL) {
5464 			_rtld_error("-p and no PATH environment variable");
5465 			rtld_die();
5466 		}
5467 		pathenv = strdup(pathenv);
5468 		if (pathenv == NULL) {
5469 			_rtld_error("Cannot allocate memory");
5470 			rtld_die();
5471 		}
5472 		fd = -1;
5473 		errno = ENOENT;
5474 		while ((pe = strsep(&pathenv, ":")) != NULL) {
5475 			if (strlcpy(binpath, pe, sizeof(binpath)) >=
5476 			    sizeof(binpath))
5477 				continue;
5478 			if (binpath[0] != '\0' &&
5479 			    strlcat(binpath, "/", sizeof(binpath)) >=
5480 			    sizeof(binpath))
5481 				continue;
5482 			if (strlcat(binpath, argv0, sizeof(binpath)) >=
5483 			    sizeof(binpath))
5484 				continue;
5485 			fd = open(binpath, O_RDONLY | O_CLOEXEC | O_VERIFY);
5486 			if (fd != -1 || errno != ENOENT)
5487 				break;
5488 		}
5489 		free(pathenv);
5490 	} else {
5491 		fd = open(argv0, O_RDONLY | O_CLOEXEC | O_VERIFY);
5492 	}
5493 
5494 	if (fd == -1) {
5495 		_rtld_error("Cannot open %s: %s", argv0, rtld_strerror(errno));
5496 		rtld_die();
5497 	}
5498 	return (fd);
5499 }
5500 
5501 /*
5502  * Parse a set of command-line arguments.
5503  */
5504 static int
parse_args(char * argv[],int argc,bool * use_pathp,int * fdp)5505 parse_args(char* argv[], int argc, bool *use_pathp, int *fdp)
5506 {
5507 	const char *arg;
5508 	int fd, i, j, arglen;
5509 	char opt;
5510 
5511 	dbg("Parsing command-line arguments");
5512 	*use_pathp = false;
5513 	*fdp = -1;
5514 
5515 	for (i = 1; i < argc; i++ ) {
5516 		arg = argv[i];
5517 		dbg("argv[%d]: '%s'", i, arg);
5518 
5519 		/*
5520 		 * rtld arguments end with an explicit "--" or with the first
5521 		 * non-prefixed argument.
5522 		 */
5523 		if (strcmp(arg, "--") == 0) {
5524 			i++;
5525 			break;
5526 		}
5527 		if (arg[0] != '-')
5528 			break;
5529 
5530 		/*
5531 		 * All other arguments are single-character options that can
5532 		 * be combined, so we need to search through `arg` for them.
5533 		 */
5534 		arglen = strlen(arg);
5535 		for (j = 1; j < arglen; j++) {
5536 			opt = arg[j];
5537 			if (opt == 'h') {
5538 				print_usage(argv[0]);
5539 				_exit(0);
5540 			} else if (opt == 'f') {
5541 			/*
5542 			 * -f XX can be used to specify a descriptor for the
5543 			 * binary named at the command line (i.e., the later
5544 			 * argument will specify the process name but the
5545 			 * descriptor is what will actually be executed)
5546 			 */
5547 			if (j != arglen - 1) {
5548 				/* -f must be the last option in, e.g., -abcf */
5549 				_rtld_error("Invalid options: %s", arg);
5550 				rtld_die();
5551 			}
5552 			i++;
5553 			fd = parse_integer(argv[i]);
5554 			if (fd == -1) {
5555 				_rtld_error("Invalid file descriptor: '%s'",
5556 				    argv[i]);
5557 				rtld_die();
5558 			}
5559 			*fdp = fd;
5560 			break;
5561 			} else if (opt == 'p') {
5562 				*use_pathp = true;
5563 			} else {
5564 				_rtld_error("Invalid argument: '%s'", arg);
5565 				print_usage(argv[0]);
5566 				rtld_die();
5567 			}
5568 		}
5569 	}
5570 
5571 	return (i);
5572 }
5573 
5574 /*
5575  * Parse a file descriptor number without pulling in more of libc (e.g. atoi).
5576  */
5577 static int
parse_integer(const char * str)5578 parse_integer(const char *str)
5579 {
5580 	static const int RADIX = 10;  /* XXXJA: possibly support hex? */
5581 	const char *orig;
5582 	int n;
5583 	char c;
5584 
5585 	orig = str;
5586 	n = 0;
5587 	for (c = *str; c != '\0'; c = *++str) {
5588 		if (c < '0' || c > '9')
5589 			return (-1);
5590 
5591 		n *= RADIX;
5592 		n += c - '0';
5593 	}
5594 
5595 	/* Make sure we actually parsed something. */
5596 	if (str == orig)
5597 		return (-1);
5598 	return (n);
5599 }
5600 
5601 static void
print_usage(const char * argv0)5602 print_usage(const char *argv0)
5603 {
5604 
5605 	rtld_printf("Usage: %s [-h] [-f <FD>] [--] <binary> [<args>]\n"
5606 		"\n"
5607 		"Options:\n"
5608 		"  -h        Display this help message\n"
5609 		"  -p        Search in PATH for named binary\n"
5610 		"  -f <FD>   Execute <FD> instead of searching for <binary>\n"
5611 		"  --        End of RTLD options\n"
5612 		"  <binary>  Name of process to execute\n"
5613 		"  <args>    Arguments to the executed process\n", argv0);
5614 }
5615 
5616 /*
5617  * Overrides for libc_pic-provided functions.
5618  */
5619 
5620 int
__getosreldate(void)5621 __getosreldate(void)
5622 {
5623 	size_t len;
5624 	int oid[2];
5625 	int error, osrel;
5626 
5627 	if (osreldate != 0)
5628 		return (osreldate);
5629 
5630 	oid[0] = CTL_KERN;
5631 	oid[1] = KERN_OSRELDATE;
5632 	osrel = 0;
5633 	len = sizeof(osrel);
5634 	error = sysctl(oid, 2, &osrel, &len, NULL, 0);
5635 	if (error == 0 && osrel > 0 && len == sizeof(osrel))
5636 		osreldate = osrel;
5637 	return (osreldate);
5638 }
5639 
5640 void
exit(int status)5641 exit(int status)
5642 {
5643 
5644 	_exit(status);
5645 }
5646 
5647 void (*__cleanup)(void);
5648 int __isthreaded = 0;
5649 int _thread_autoinit_dummy_decl = 1;
5650 
5651 /*
5652  * No unresolved symbols for rtld.
5653  */
5654 void
__pthread_cxa_finalize(struct dl_phdr_info * a __unused)5655 __pthread_cxa_finalize(struct dl_phdr_info *a __unused)
5656 {
5657 }
5658 
5659 const char *
rtld_strerror(int errnum)5660 rtld_strerror(int errnum)
5661 {
5662 
5663 	if (errnum < 0 || errnum >= sys_nerr)
5664 		return ("Unknown error");
5665 	return (sys_errlist[errnum]);
5666 }
5667 
5668 /*
5669  * No ifunc relocations.
5670  */
5671 void *
memset(void * dest,int c,size_t len)5672 memset(void *dest, int c, size_t len)
5673 {
5674 	size_t i;
5675 
5676 	for (i = 0; i < len; i++)
5677 		((char *)dest)[i] = c;
5678 	return (dest);
5679 }
5680 
5681 void
bzero(void * dest,size_t len)5682 bzero(void *dest, size_t len)
5683 {
5684 	size_t i;
5685 
5686 	for (i = 0; i < len; i++)
5687 		((char *)dest)[i] = 0;
5688 }
5689 
5690 /* malloc */
5691 void *
malloc(size_t nbytes)5692 malloc(size_t nbytes)
5693 {
5694 
5695 	return (__crt_malloc(nbytes));
5696 }
5697 
5698 void *
calloc(size_t num,size_t size)5699 calloc(size_t num, size_t size)
5700 {
5701 
5702 	return (__crt_calloc(num, size));
5703 }
5704 
5705 void
free(void * cp)5706 free(void *cp)
5707 {
5708 
5709 	__crt_free(cp);
5710 }
5711 
5712 void *
realloc(void * cp,size_t nbytes)5713 realloc(void *cp, size_t nbytes)
5714 {
5715 
5716 	return (__crt_realloc(cp, nbytes));
5717 }
5718