1 /*
2 ** This file is in the public domain, so clarified as of
3 ** 1996-06-05 by Arthur David Olson.
4 */
5
6 #include <sys/cdefs.h>
7 #ifndef lint
8 #ifndef NOID
9 static char elsieid[] __unused = "@(#)localtime.c 8.14";
10 #endif /* !defined NOID */
11 #endif /* !defined lint */
12 __FBSDID("$FreeBSD$");
13
14 /*
15 ** Leap second handling from Bradley White.
16 ** POSIX-style TZ environment variable handling from Guy Harris.
17 */
18
19 /*LINTLIBRARY*/
20
21 #include "namespace.h"
22 #include <sys/types.h>
23 #include <sys/stat.h>
24 #include <errno.h>
25 #include <fcntl.h>
26 #include <pthread.h>
27 #include "private.h"
28 #include "un-namespace.h"
29
30 #include "tzfile.h"
31 #include "float.h" /* for FLT_MAX and DBL_MAX */
32
33 #ifndef TZ_ABBR_MAX_LEN
34 #define TZ_ABBR_MAX_LEN 16
35 #endif /* !defined TZ_ABBR_MAX_LEN */
36
37 #ifndef TZ_ABBR_CHAR_SET
38 #define TZ_ABBR_CHAR_SET \
39 "abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789 :+-._"
40 #endif /* !defined TZ_ABBR_CHAR_SET */
41
42 #ifndef TZ_ABBR_ERR_CHAR
43 #define TZ_ABBR_ERR_CHAR '_'
44 #endif /* !defined TZ_ABBR_ERR_CHAR */
45
46 #include "libc_private.h"
47
48 #define _MUTEX_LOCK(x) if (__isthreaded) _pthread_mutex_lock(x)
49 #define _MUTEX_UNLOCK(x) if (__isthreaded) _pthread_mutex_unlock(x)
50
51 #define _RWLOCK_RDLOCK(x) \
52 do { \
53 if (__isthreaded) _pthread_rwlock_rdlock(x); \
54 } while (0)
55
56 #define _RWLOCK_WRLOCK(x) \
57 do { \
58 if (__isthreaded) _pthread_rwlock_wrlock(x); \
59 } while (0)
60
61 #define _RWLOCK_UNLOCK(x) \
62 do { \
63 if (__isthreaded) _pthread_rwlock_unlock(x); \
64 } while (0)
65
66 /*
67 ** SunOS 4.1.1 headers lack O_BINARY.
68 */
69
70 #ifdef O_BINARY
71 #define OPEN_MODE (O_RDONLY | O_BINARY)
72 #endif /* defined O_BINARY */
73 #ifndef O_BINARY
74 #define OPEN_MODE O_RDONLY
75 #endif /* !defined O_BINARY */
76
77 #ifndef WILDABBR
78 /*
79 ** Someone might make incorrect use of a time zone abbreviation:
80 ** 1. They might reference tzname[0] before calling tzset (explicitly
81 ** or implicitly).
82 ** 2. They might reference tzname[1] before calling tzset (explicitly
83 ** or implicitly).
84 ** 3. They might reference tzname[1] after setting to a time zone
85 ** in which Daylight Saving Time is never observed.
86 ** 4. They might reference tzname[0] after setting to a time zone
87 ** in which Standard Time is never observed.
88 ** 5. They might reference tm.TM_ZONE after calling offtime.
89 ** What's best to do in the above cases is open to debate;
90 ** for now, we just set things up so that in any of the five cases
91 ** WILDABBR is used. Another possibility: initialize tzname[0] to the
92 ** string "tzname[0] used before set", and similarly for the other cases.
93 ** And another: initialize tzname[0] to "ERA", with an explanation in the
94 ** manual page of what this "time zone abbreviation" means (doing this so
95 ** that tzname[0] has the "normal" length of three characters).
96 */
97 #define WILDABBR " "
98 #endif /* !defined WILDABBR */
99
100 static char wildabbr[] = WILDABBR;
101
102 /*
103 * In June 2004 it was decided UTC was a more appropriate default time
104 * zone than GMT.
105 */
106
107 static const char gmt[] = "UTC";
108
109 /*
110 ** The DST rules to use if TZ has no rules and we can't load TZDEFRULES.
111 ** We default to US rules as of 1999-08-17.
112 ** POSIX 1003.1 section 8.1.1 says that the default DST rules are
113 ** implementation dependent; for historical reasons, US rules are a
114 ** common default.
115 */
116 #ifndef TZDEFRULESTRING
117 #define TZDEFRULESTRING ",M4.1.0,M10.5.0"
118 #endif /* !defined TZDEFDST */
119
120 struct ttinfo { /* time type information */
121 long tt_gmtoff; /* UTC offset in seconds */
122 int tt_isdst; /* used to set tm_isdst */
123 int tt_abbrind; /* abbreviation list index */
124 int tt_ttisstd; /* TRUE if transition is std time */
125 int tt_ttisgmt; /* TRUE if transition is UTC */
126 };
127
128 struct lsinfo { /* leap second information */
129 time_t ls_trans; /* transition time */
130 long ls_corr; /* correction to apply */
131 };
132
133 #define BIGGEST(a, b) (((a) > (b)) ? (a) : (b))
134
135 #ifdef TZNAME_MAX
136 #define MY_TZNAME_MAX TZNAME_MAX
137 #endif /* defined TZNAME_MAX */
138 #ifndef TZNAME_MAX
139 #define MY_TZNAME_MAX 255
140 #endif /* !defined TZNAME_MAX */
141
142 struct state {
143 int leapcnt;
144 int timecnt;
145 int typecnt;
146 int charcnt;
147 int goback;
148 int goahead;
149 time_t ats[TZ_MAX_TIMES];
150 unsigned char types[TZ_MAX_TIMES];
151 struct ttinfo ttis[TZ_MAX_TYPES];
152 char chars[BIGGEST(BIGGEST(TZ_MAX_CHARS + 1, sizeof gmt),
153 (2 * (MY_TZNAME_MAX + 1)))];
154 struct lsinfo lsis[TZ_MAX_LEAPS];
155 };
156
157 struct rule {
158 int r_type; /* type of rule--see below */
159 int r_day; /* day number of rule */
160 int r_week; /* week number of rule */
161 int r_mon; /* month number of rule */
162 long r_time; /* transition time of rule */
163 };
164
165 #define JULIAN_DAY 0 /* Jn - Julian day */
166 #define DAY_OF_YEAR 1 /* n - day of year */
167 #define MONTH_NTH_DAY_OF_WEEK 2 /* Mm.n.d - month, week, day of week */
168
169 /*
170 ** Prototypes for static functions.
171 */
172
173 static long detzcode(const char * codep);
174 static time_t detzcode64(const char * codep);
175 static int differ_by_repeat(time_t t1, time_t t0);
176 static const char * getzname(const char * strp) ATTRIBUTE_PURE;
177 static const char * getqzname(const char * strp, const int delim)
178 ATTRIBUTE_PURE;
179 static const char * getnum(const char * strp, int * nump, int min,
180 int max);
181 static const char * getsecs(const char * strp, long * secsp);
182 static const char * getoffset(const char * strp, long * offsetp);
183 static const char * getrule(const char * strp, struct rule * rulep);
184 static void gmtload(struct state * sp);
185 static struct tm * gmtsub(const time_t * timep, long offset,
186 struct tm * tmp);
187 static struct tm * localsub(const time_t * timep, long offset,
188 struct tm * tmp);
189 static int increment_overflow(int * number, int delta);
190 static int leaps_thru_end_of(int y) ATTRIBUTE_PURE;
191 static int long_increment_overflow(long * number, int delta);
192 static int long_normalize_overflow(long * tensptr,
193 int * unitsptr, int base);
194 static int normalize_overflow(int * tensptr, int * unitsptr,
195 int base);
196 static void settzname(void);
197 static time_t time1(struct tm * tmp,
198 struct tm * (*funcp)(const time_t *,
199 long, struct tm *),
200 long offset);
201 static time_t time2(struct tm *tmp,
202 struct tm * (*funcp)(const time_t *,
203 long, struct tm*),
204 long offset, int * okayp);
205 static time_t time2sub(struct tm *tmp,
206 struct tm * (*funcp)(const time_t *,
207 long, struct tm*),
208 long offset, int * okayp, int do_norm_secs);
209 static struct tm * timesub(const time_t * timep, long offset,
210 const struct state * sp, struct tm * tmp);
211 static int tmcomp(const struct tm * atmp,
212 const struct tm * btmp);
213 static time_t transtime(time_t janfirst, int year,
214 const struct rule * rulep, long offset)
215 ATTRIBUTE_PURE;
216 static int typesequiv(const struct state * sp, int a, int b);
217 static int tzload(const char * name, struct state * sp,
218 int doextend);
219 static int tzparse(const char * name, struct state * sp,
220 int lastditch);
221
222 #ifdef ALL_STATE
223 static struct state * lclptr;
224 static struct state * gmtptr;
225 #endif /* defined ALL_STATE */
226
227 #ifndef ALL_STATE
228 static struct state lclmem;
229 static struct state gmtmem;
230 #define lclptr (&lclmem)
231 #define gmtptr (&gmtmem)
232 #endif /* State Farm */
233
234 #ifndef TZ_STRLEN_MAX
235 #define TZ_STRLEN_MAX 255
236 #endif /* !defined TZ_STRLEN_MAX */
237
238 static char lcl_TZname[TZ_STRLEN_MAX + 1];
239 static int lcl_is_set;
240 static pthread_once_t gmt_once = PTHREAD_ONCE_INIT;
241 static pthread_rwlock_t lcl_rwlock = PTHREAD_RWLOCK_INITIALIZER;
242 static pthread_once_t gmtime_once = PTHREAD_ONCE_INIT;
243 static pthread_key_t gmtime_key;
244 static int gmtime_key_error;
245 static pthread_once_t localtime_once = PTHREAD_ONCE_INIT;
246 static pthread_key_t localtime_key;
247 static int localtime_key_error;
248
249 char * tzname[2] = {
250 wildabbr,
251 wildabbr
252 };
253
254 /*
255 ** Section 4.12.3 of X3.159-1989 requires that
256 ** Except for the strftime function, these functions [asctime,
257 ** ctime, gmtime, localtime] return values in one of two static
258 ** objects: a broken-down time structure and an array of char.
259 ** Thanks to Paul Eggert for noting this.
260 */
261
262 static struct tm tm;
263
264 #ifdef USG_COMPAT
265 time_t timezone = 0;
266 int daylight = 0;
267 #endif /* defined USG_COMPAT */
268
269 #ifdef ALTZONE
270 time_t altzone = 0;
271 #endif /* defined ALTZONE */
272
273 static long
detzcode(const char * const codep)274 detzcode(const char *const codep)
275 {
276 long result;
277 int i;
278
279 result = (codep[0] & 0x80) ? ~0L : 0;
280 for (i = 0; i < 4; ++i)
281 result = (result << 8) | (codep[i] & 0xff);
282 return result;
283 }
284
285 static time_t
detzcode64(const char * const codep)286 detzcode64(const char *const codep)
287 {
288 register time_t result;
289 register int i;
290
291 result = (codep[0] & 0x80) ? (~(int_fast64_t) 0) : 0;
292 for (i = 0; i < 8; ++i)
293 result = result * 256 + (codep[i] & 0xff);
294 return result;
295 }
296
297 static void
settzname(void)298 settzname(void)
299 {
300 struct state * sp = lclptr;
301 int i;
302
303 tzname[0] = wildabbr;
304 tzname[1] = wildabbr;
305 #ifdef USG_COMPAT
306 daylight = 0;
307 timezone = 0;
308 #endif /* defined USG_COMPAT */
309 #ifdef ALTZONE
310 altzone = 0;
311 #endif /* defined ALTZONE */
312 #ifdef ALL_STATE
313 if (sp == NULL) {
314 tzname[0] = tzname[1] = gmt;
315 return;
316 }
317 #endif /* defined ALL_STATE */
318 /*
319 ** And to get the latest zone names into tzname. . .
320 */
321 for (i = 0; i < sp->typecnt; ++i) {
322 const struct ttinfo * const ttisp = &sp->ttis[sp->types[i]];
323
324 tzname[ttisp->tt_isdst] =
325 &sp->chars[ttisp->tt_abbrind];
326 #ifdef USG_COMPAT
327 if (ttisp->tt_isdst)
328 daylight = 1;
329 if (!ttisp->tt_isdst)
330 timezone = -(ttisp->tt_gmtoff);
331 #endif /* defined USG_COMPAT */
332 #ifdef ALTZONE
333 if (ttisp->tt_isdst)
334 altzone = -(ttisp->tt_gmtoff);
335 #endif /* defined ALTZONE */
336 }
337 /*
338 ** Finally, scrub the abbreviations.
339 ** First, replace bogus characters.
340 */
341 for (i = 0; i < sp->charcnt; ++i)
342 if (strchr(TZ_ABBR_CHAR_SET, sp->chars[i]) == NULL)
343 sp->chars[i] = TZ_ABBR_ERR_CHAR;
344 /*
345 ** Second, truncate long abbreviations.
346 */
347 for (i = 0; i < sp->typecnt; ++i) {
348 register const struct ttinfo * const ttisp = &sp->ttis[i];
349 register char * cp = &sp->chars[ttisp->tt_abbrind];
350
351 if (strlen(cp) > TZ_ABBR_MAX_LEN &&
352 strcmp(cp, GRANDPARENTED) != 0)
353 *(cp + TZ_ABBR_MAX_LEN) = '\0';
354 }
355 }
356
357 static int
differ_by_repeat(const time_t t1,const time_t t0)358 differ_by_repeat(const time_t t1, const time_t t0)
359 {
360 int_fast64_t _t0 = t0;
361 int_fast64_t _t1 = t1;
362
363 if (TYPE_INTEGRAL(time_t) &&
364 TYPE_BIT(time_t) - TYPE_SIGNED(time_t) < SECSPERREPEAT_BITS)
365 return 0;
366 //turn ((int_fast64_t)(t1 - t0) == SECSPERREPEAT);
367 return _t1 - _t0 == SECSPERREPEAT;
368 }
369
370 static int
tzload(name,sp,doextend)371 tzload(name, sp, doextend)
372 const char * name;
373 struct state * const sp;
374 register const int doextend;
375 {
376 const char * p;
377 int i;
378 int fid;
379 int stored;
380 int nread;
381 int res;
382 union {
383 struct tzhead tzhead;
384 char buf[2 * sizeof(struct tzhead) +
385 2 * sizeof *sp +
386 4 * TZ_MAX_TIMES];
387 } *u;
388
389 u = NULL;
390 res = -1;
391 sp->goback = sp->goahead = FALSE;
392
393 /* XXX The following is from OpenBSD, and I'm not sure it is correct */
394 if (name != NULL && issetugid() != 0)
395 if ((name[0] == ':' && name[1] == '/') ||
396 name[0] == '/' || strchr(name, '.'))
397 name = NULL;
398 if (name == NULL && (name = TZDEFAULT) == NULL)
399 return -1;
400 {
401 int doaccess;
402 struct stat stab;
403 /*
404 ** Section 4.9.1 of the C standard says that
405 ** "FILENAME_MAX expands to an integral constant expression
406 ** that is the size needed for an array of char large enough
407 ** to hold the longest file name string that the implementation
408 ** guarantees can be opened."
409 */
410 char *fullname;
411
412 fullname = malloc(FILENAME_MAX + 1);
413 if (fullname == NULL)
414 goto out;
415
416 if (name[0] == ':')
417 ++name;
418 doaccess = name[0] == '/';
419 if (!doaccess) {
420 if ((p = TZDIR) == NULL) {
421 free(fullname);
422 return -1;
423 }
424 if (strlen(p) + 1 + strlen(name) >= FILENAME_MAX) {
425 free(fullname);
426 return -1;
427 }
428 (void) strcpy(fullname, p);
429 (void) strcat(fullname, "/");
430 (void) strcat(fullname, name);
431 /*
432 ** Set doaccess if '.' (as in "../") shows up in name.
433 */
434 if (strchr(name, '.') != NULL)
435 doaccess = TRUE;
436 name = fullname;
437 }
438 if (doaccess && access(name, R_OK) != 0) {
439 free(fullname);
440 return -1;
441 }
442 if ((fid = _open(name, OPEN_MODE)) == -1) {
443 free(fullname);
444 return -1;
445 }
446 if ((_fstat(fid, &stab) < 0) || !S_ISREG(stab.st_mode)) {
447 free(fullname);
448 _close(fid);
449 return -1;
450 }
451 free(fullname);
452 }
453 u = malloc(sizeof(*u));
454 if (u == NULL)
455 goto out;
456 nread = _read(fid, u->buf, sizeof u->buf);
457 if (_close(fid) < 0 || nread <= 0)
458 goto out;
459 for (stored = 4; stored <= 8; stored *= 2) {
460 int ttisstdcnt;
461 int ttisgmtcnt;
462
463 ttisstdcnt = (int) detzcode(u->tzhead.tzh_ttisstdcnt);
464 ttisgmtcnt = (int) detzcode(u->tzhead.tzh_ttisgmtcnt);
465 sp->leapcnt = (int) detzcode(u->tzhead.tzh_leapcnt);
466 sp->timecnt = (int) detzcode(u->tzhead.tzh_timecnt);
467 sp->typecnt = (int) detzcode(u->tzhead.tzh_typecnt);
468 sp->charcnt = (int) detzcode(u->tzhead.tzh_charcnt);
469 p = u->tzhead.tzh_charcnt + sizeof u->tzhead.tzh_charcnt;
470 if (sp->leapcnt < 0 || sp->leapcnt > TZ_MAX_LEAPS ||
471 sp->typecnt <= 0 || sp->typecnt > TZ_MAX_TYPES ||
472 sp->timecnt < 0 || sp->timecnt > TZ_MAX_TIMES ||
473 sp->charcnt < 0 || sp->charcnt > TZ_MAX_CHARS ||
474 (ttisstdcnt != sp->typecnt && ttisstdcnt != 0) ||
475 (ttisgmtcnt != sp->typecnt && ttisgmtcnt != 0))
476 goto out;
477 if (nread - (p - u->buf) <
478 sp->timecnt * stored + /* ats */
479 sp->timecnt + /* types */
480 sp->typecnt * 6 + /* ttinfos */
481 sp->charcnt + /* chars */
482 sp->leapcnt * (stored + 4) + /* lsinfos */
483 ttisstdcnt + /* ttisstds */
484 ttisgmtcnt) /* ttisgmts */
485 goto out;
486 for (i = 0; i < sp->timecnt; ++i) {
487 sp->ats[i] = (stored == 4) ?
488 detzcode(p) : detzcode64(p);
489 p += stored;
490 }
491 for (i = 0; i < sp->timecnt; ++i) {
492 sp->types[i] = (unsigned char) *p++;
493 if (sp->types[i] >= sp->typecnt)
494 goto out;
495 }
496 for (i = 0; i < sp->typecnt; ++i) {
497 struct ttinfo * ttisp;
498
499 ttisp = &sp->ttis[i];
500 ttisp->tt_gmtoff = detzcode(p);
501 p += 4;
502 ttisp->tt_isdst = (unsigned char) *p++;
503 if (ttisp->tt_isdst != 0 && ttisp->tt_isdst != 1)
504 goto out;
505 ttisp->tt_abbrind = (unsigned char) *p++;
506 if (ttisp->tt_abbrind < 0 ||
507 ttisp->tt_abbrind > sp->charcnt)
508 goto out;
509 }
510 for (i = 0; i < sp->charcnt; ++i)
511 sp->chars[i] = *p++;
512 sp->chars[i] = '\0'; /* ensure '\0' at end */
513 for (i = 0; i < sp->leapcnt; ++i) {
514 struct lsinfo * lsisp;
515
516 lsisp = &sp->lsis[i];
517 lsisp->ls_trans = (stored == 4) ?
518 detzcode(p) : detzcode64(p);
519 p += stored;
520 lsisp->ls_corr = detzcode(p);
521 p += 4;
522 }
523 for (i = 0; i < sp->typecnt; ++i) {
524 struct ttinfo * ttisp;
525
526 ttisp = &sp->ttis[i];
527 if (ttisstdcnt == 0)
528 ttisp->tt_ttisstd = FALSE;
529 else {
530 ttisp->tt_ttisstd = *p++;
531 if (ttisp->tt_ttisstd != TRUE &&
532 ttisp->tt_ttisstd != FALSE)
533 goto out;
534 }
535 }
536 for (i = 0; i < sp->typecnt; ++i) {
537 struct ttinfo * ttisp;
538
539 ttisp = &sp->ttis[i];
540 if (ttisgmtcnt == 0)
541 ttisp->tt_ttisgmt = FALSE;
542 else {
543 ttisp->tt_ttisgmt = *p++;
544 if (ttisp->tt_ttisgmt != TRUE &&
545 ttisp->tt_ttisgmt != FALSE)
546 goto out;
547 }
548 }
549 /*
550 ** Out-of-sort ats should mean we're running on a
551 ** signed time_t system but using a data file with
552 ** unsigned values (or vice versa).
553 */
554 for (i = 0; i < sp->timecnt - 2; ++i)
555 if (sp->ats[i] > sp->ats[i + 1]) {
556 ++i;
557 if (TYPE_SIGNED(time_t)) {
558 /*
559 ** Ignore the end (easy).
560 */
561 sp->timecnt = i;
562 } else {
563 /*
564 ** Ignore the beginning (harder).
565 */
566 register int j;
567
568 for (j = 0; j + i < sp->timecnt; ++j) {
569 sp->ats[j] = sp->ats[j + i];
570 sp->types[j] = sp->types[j + i];
571 }
572 sp->timecnt = j;
573 }
574 break;
575 }
576 /*
577 ** If this is an old file, we're done.
578 */
579 if (u->tzhead.tzh_version[0] == '\0')
580 break;
581 nread -= p - u->buf;
582 for (i = 0; i < nread; ++i)
583 u->buf[i] = p[i];
584 /*
585 ** If this is a narrow integer time_t system, we're done.
586 */
587 if (stored >= (int) sizeof(time_t) && TYPE_INTEGRAL(time_t))
588 break;
589 }
590 if (doextend && nread > 2 &&
591 u->buf[0] == '\n' && u->buf[nread - 1] == '\n' &&
592 sp->typecnt + 2 <= TZ_MAX_TYPES) {
593 struct state *ts;
594 register int result;
595
596 ts = malloc(sizeof(*ts));
597 if (ts == NULL)
598 goto out;
599 u->buf[nread - 1] = '\0';
600 result = tzparse(&u->buf[1], ts, FALSE);
601 if (result == 0 && ts->typecnt == 2 &&
602 sp->charcnt + ts->charcnt <= TZ_MAX_CHARS) {
603 for (i = 0; i < 2; ++i)
604 ts->ttis[i].tt_abbrind +=
605 sp->charcnt;
606 for (i = 0; i < ts->charcnt; ++i)
607 sp->chars[sp->charcnt++] =
608 ts->chars[i];
609 i = 0;
610 while (i < ts->timecnt &&
611 ts->ats[i] <=
612 sp->ats[sp->timecnt - 1])
613 ++i;
614 while (i < ts->timecnt &&
615 sp->timecnt < TZ_MAX_TIMES) {
616 sp->ats[sp->timecnt] =
617 ts->ats[i];
618 sp->types[sp->timecnt] =
619 sp->typecnt +
620 ts->types[i];
621 ++sp->timecnt;
622 ++i;
623 }
624 sp->ttis[sp->typecnt++] = ts->ttis[0];
625 sp->ttis[sp->typecnt++] = ts->ttis[1];
626 }
627 free(ts);
628 }
629 if (sp->timecnt > 1) {
630 for (i = 1; i < sp->timecnt; ++i)
631 if (typesequiv(sp, sp->types[i], sp->types[0]) &&
632 differ_by_repeat(sp->ats[i], sp->ats[0])) {
633 sp->goback = TRUE;
634 break;
635 }
636 for (i = sp->timecnt - 2; i >= 0; --i)
637 if (typesequiv(sp, sp->types[sp->timecnt - 1],
638 sp->types[i]) &&
639 differ_by_repeat(sp->ats[sp->timecnt - 1],
640 sp->ats[i])) {
641 sp->goahead = TRUE;
642 break;
643 }
644 }
645 res = 0;
646 out:
647 free(u);
648 return (res);
649 }
650
651 static int
typesequiv(sp,a,b)652 typesequiv(sp, a, b)
653 const struct state * const sp;
654 const int a;
655 const int b;
656 {
657 register int result;
658
659 if (sp == NULL ||
660 a < 0 || a >= sp->typecnt ||
661 b < 0 || b >= sp->typecnt)
662 result = FALSE;
663 else {
664 register const struct ttinfo * ap = &sp->ttis[a];
665 register const struct ttinfo * bp = &sp->ttis[b];
666 result = ap->tt_gmtoff == bp->tt_gmtoff &&
667 ap->tt_isdst == bp->tt_isdst &&
668 ap->tt_ttisstd == bp->tt_ttisstd &&
669 ap->tt_ttisgmt == bp->tt_ttisgmt &&
670 strcmp(&sp->chars[ap->tt_abbrind],
671 &sp->chars[bp->tt_abbrind]) == 0;
672 }
673 return result;
674 }
675
676 static const int mon_lengths[2][MONSPERYEAR] = {
677 { 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 },
678 { 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 }
679 };
680
681 static const int year_lengths[2] = {
682 DAYSPERNYEAR, DAYSPERLYEAR
683 };
684
685 /*
686 ** Given a pointer into a time zone string, scan until a character that is not
687 ** a valid character in a zone name is found. Return a pointer to that
688 ** character.
689 */
690
691 static const char *
getzname(strp)692 getzname(strp)
693 const char * strp;
694 {
695 char c;
696
697 while ((c = *strp) != '\0' && !is_digit(c) && c != ',' && c != '-' &&
698 c != '+')
699 ++strp;
700 return strp;
701 }
702
703 /*
704 ** Given a pointer into an extended time zone string, scan until the ending
705 ** delimiter of the zone name is located. Return a pointer to the delimiter.
706 **
707 ** As with getzname above, the legal character set is actually quite
708 ** restricted, with other characters producing undefined results.
709 ** We don't do any checking here; checking is done later in common-case code.
710 */
711
712 static const char *
getqzname(register const char * strp,const int delim)713 getqzname(register const char *strp, const int delim)
714 {
715 register int c;
716
717 while ((c = *strp) != '\0' && c != delim)
718 ++strp;
719 return strp;
720 }
721
722 /*
723 ** Given a pointer into a time zone string, extract a number from that string.
724 ** Check that the number is within a specified range; if it is not, return
725 ** NULL.
726 ** Otherwise, return a pointer to the first character not part of the number.
727 */
728
729 static const char *
getnum(strp,nump,min,max)730 getnum(strp, nump, min, max)
731 const char * strp;
732 int * const nump;
733 const int min;
734 const int max;
735 {
736 char c;
737 int num;
738
739 if (strp == NULL || !is_digit(c = *strp))
740 return NULL;
741 num = 0;
742 do {
743 num = num * 10 + (c - '0');
744 if (num > max)
745 return NULL; /* illegal value */
746 c = *++strp;
747 } while (is_digit(c));
748 if (num < min)
749 return NULL; /* illegal value */
750 *nump = num;
751 return strp;
752 }
753
754 /*
755 ** Given a pointer into a time zone string, extract a number of seconds,
756 ** in hh[:mm[:ss]] form, from the string.
757 ** If any error occurs, return NULL.
758 ** Otherwise, return a pointer to the first character not part of the number
759 ** of seconds.
760 */
761
762 static const char *
getsecs(strp,secsp)763 getsecs(strp, secsp)
764 const char * strp;
765 long * const secsp;
766 {
767 int num;
768
769 /*
770 ** `HOURSPERDAY * DAYSPERWEEK - 1' allows quasi-Posix rules like
771 ** "M10.4.6/26", which does not conform to Posix,
772 ** but which specifies the equivalent of
773 ** ``02:00 on the first Sunday on or after 23 Oct''.
774 */
775 strp = getnum(strp, &num, 0, HOURSPERDAY * DAYSPERWEEK - 1);
776 if (strp == NULL)
777 return NULL;
778 *secsp = num * (long) SECSPERHOUR;
779 if (*strp == ':') {
780 ++strp;
781 strp = getnum(strp, &num, 0, MINSPERHOUR - 1);
782 if (strp == NULL)
783 return NULL;
784 *secsp += num * SECSPERMIN;
785 if (*strp == ':') {
786 ++strp;
787 /* `SECSPERMIN' allows for leap seconds. */
788 strp = getnum(strp, &num, 0, SECSPERMIN);
789 if (strp == NULL)
790 return NULL;
791 *secsp += num;
792 }
793 }
794 return strp;
795 }
796
797 /*
798 ** Given a pointer into a time zone string, extract an offset, in
799 ** [+-]hh[:mm[:ss]] form, from the string.
800 ** If any error occurs, return NULL.
801 ** Otherwise, return a pointer to the first character not part of the time.
802 */
803
804 static const char *
getoffset(strp,offsetp)805 getoffset(strp, offsetp)
806 const char * strp;
807 long * const offsetp;
808 {
809 int neg = 0;
810
811 if (*strp == '-') {
812 neg = 1;
813 ++strp;
814 } else if (*strp == '+')
815 ++strp;
816 strp = getsecs(strp, offsetp);
817 if (strp == NULL)
818 return NULL; /* illegal time */
819 if (neg)
820 *offsetp = -*offsetp;
821 return strp;
822 }
823
824 /*
825 ** Given a pointer into a time zone string, extract a rule in the form
826 ** date[/time]. See POSIX section 8 for the format of "date" and "time".
827 ** If a valid rule is not found, return NULL.
828 ** Otherwise, return a pointer to the first character not part of the rule.
829 */
830
831 static const char *
getrule(strp,rulep)832 getrule(strp, rulep)
833 const char * strp;
834 struct rule * const rulep;
835 {
836 if (*strp == 'J') {
837 /*
838 ** Julian day.
839 */
840 rulep->r_type = JULIAN_DAY;
841 ++strp;
842 strp = getnum(strp, &rulep->r_day, 1, DAYSPERNYEAR);
843 } else if (*strp == 'M') {
844 /*
845 ** Month, week, day.
846 */
847 rulep->r_type = MONTH_NTH_DAY_OF_WEEK;
848 ++strp;
849 strp = getnum(strp, &rulep->r_mon, 1, MONSPERYEAR);
850 if (strp == NULL)
851 return NULL;
852 if (*strp++ != '.')
853 return NULL;
854 strp = getnum(strp, &rulep->r_week, 1, 5);
855 if (strp == NULL)
856 return NULL;
857 if (*strp++ != '.')
858 return NULL;
859 strp = getnum(strp, &rulep->r_day, 0, DAYSPERWEEK - 1);
860 } else if (is_digit(*strp)) {
861 /*
862 ** Day of year.
863 */
864 rulep->r_type = DAY_OF_YEAR;
865 strp = getnum(strp, &rulep->r_day, 0, DAYSPERLYEAR - 1);
866 } else return NULL; /* invalid format */
867 if (strp == NULL)
868 return NULL;
869 if (*strp == '/') {
870 /*
871 ** Time specified.
872 */
873 ++strp;
874 strp = getsecs(strp, &rulep->r_time);
875 } else rulep->r_time = 2 * SECSPERHOUR; /* default = 2:00:00 */
876 return strp;
877 }
878
879 /*
880 ** Given the Epoch-relative time of January 1, 00:00:00 UTC, in a year, the
881 ** year, a rule, and the offset from UTC at the time that rule takes effect,
882 ** calculate the Epoch-relative time that rule takes effect.
883 */
884
885 static time_t
transtime(janfirst,year,rulep,offset)886 transtime(janfirst, year, rulep, offset)
887 const time_t janfirst;
888 const int year;
889 const struct rule * const rulep;
890 const long offset;
891 {
892 int leapyear;
893 time_t value;
894 int i;
895 int d, m1, yy0, yy1, yy2, dow;
896
897 INITIALIZE(value);
898 leapyear = isleap(year);
899 switch (rulep->r_type) {
900
901 case JULIAN_DAY:
902 /*
903 ** Jn - Julian day, 1 == January 1, 60 == March 1 even in leap
904 ** years.
905 ** In non-leap years, or if the day number is 59 or less, just
906 ** add SECSPERDAY times the day number-1 to the time of
907 ** January 1, midnight, to get the day.
908 */
909 value = janfirst + (rulep->r_day - 1) * SECSPERDAY;
910 if (leapyear && rulep->r_day >= 60)
911 value += SECSPERDAY;
912 break;
913
914 case DAY_OF_YEAR:
915 /*
916 ** n - day of year.
917 ** Just add SECSPERDAY times the day number to the time of
918 ** January 1, midnight, to get the day.
919 */
920 value = janfirst + rulep->r_day * SECSPERDAY;
921 break;
922
923 case MONTH_NTH_DAY_OF_WEEK:
924 /*
925 ** Mm.n.d - nth "dth day" of month m.
926 */
927 value = janfirst;
928 for (i = 0; i < rulep->r_mon - 1; ++i)
929 value += mon_lengths[leapyear][i] * SECSPERDAY;
930
931 /*
932 ** Use Zeller's Congruence to get day-of-week of first day of
933 ** month.
934 */
935 m1 = (rulep->r_mon + 9) % 12 + 1;
936 yy0 = (rulep->r_mon <= 2) ? (year - 1) : year;
937 yy1 = yy0 / 100;
938 yy2 = yy0 % 100;
939 dow = ((26 * m1 - 2) / 10 +
940 1 + yy2 + yy2 / 4 + yy1 / 4 - 2 * yy1) % 7;
941 if (dow < 0)
942 dow += DAYSPERWEEK;
943
944 /*
945 ** "dow" is the day-of-week of the first day of the month. Get
946 ** the day-of-month (zero-origin) of the first "dow" day of the
947 ** month.
948 */
949 d = rulep->r_day - dow;
950 if (d < 0)
951 d += DAYSPERWEEK;
952 for (i = 1; i < rulep->r_week; ++i) {
953 if (d + DAYSPERWEEK >=
954 mon_lengths[leapyear][rulep->r_mon - 1])
955 break;
956 d += DAYSPERWEEK;
957 }
958
959 /*
960 ** "d" is the day-of-month (zero-origin) of the day we want.
961 */
962 value += d * SECSPERDAY;
963 break;
964 }
965
966 /*
967 ** "value" is the Epoch-relative time of 00:00:00 UTC on the day in
968 ** question. To get the Epoch-relative time of the specified local
969 ** time on that day, add the transition time and the current offset
970 ** from UTC.
971 */
972 return value + rulep->r_time + offset;
973 }
974
975 /*
976 ** Given a POSIX section 8-style TZ string, fill in the rule tables as
977 ** appropriate.
978 */
979
980 static int
tzparse(name,sp,lastditch)981 tzparse(name, sp, lastditch)
982 const char * name;
983 struct state * const sp;
984 const int lastditch;
985 {
986 const char * stdname;
987 const char * dstname;
988 size_t stdlen;
989 size_t dstlen;
990 long stdoffset;
991 long dstoffset;
992 time_t * atp;
993 unsigned char * typep;
994 char * cp;
995 int load_result;
996
997 INITIALIZE(dstname);
998 stdname = name;
999 if (lastditch) {
1000 stdlen = strlen(name); /* length of standard zone name */
1001 name += stdlen;
1002 if (stdlen >= sizeof sp->chars)
1003 stdlen = (sizeof sp->chars) - 1;
1004 stdoffset = 0;
1005 } else {
1006 if (*name == '<') {
1007 name++;
1008 stdname = name;
1009 name = getqzname(name, '>');
1010 if (*name != '>')
1011 return (-1);
1012 stdlen = name - stdname;
1013 name++;
1014 } else {
1015 name = getzname(name);
1016 stdlen = name - stdname;
1017 }
1018 if (*name == '\0')
1019 return -1; /* was "stdoffset = 0;" */
1020 else {
1021 name = getoffset(name, &stdoffset);
1022 if (name == NULL)
1023 return -1;
1024 }
1025 }
1026 load_result = tzload(TZDEFRULES, sp, FALSE);
1027 if (load_result != 0)
1028 sp->leapcnt = 0; /* so, we're off a little */
1029 if (*name != '\0') {
1030 if (*name == '<') {
1031 dstname = ++name;
1032 name = getqzname(name, '>');
1033 if (*name != '>')
1034 return -1;
1035 dstlen = name - dstname;
1036 name++;
1037 } else {
1038 dstname = name;
1039 name = getzname(name);
1040 dstlen = name - dstname; /* length of DST zone name */
1041 }
1042 if (*name != '\0' && *name != ',' && *name != ';') {
1043 name = getoffset(name, &dstoffset);
1044 if (name == NULL)
1045 return -1;
1046 } else dstoffset = stdoffset - SECSPERHOUR;
1047 if (*name == '\0' && load_result != 0)
1048 name = TZDEFRULESTRING;
1049 if (*name == ',' || *name == ';') {
1050 struct rule start;
1051 struct rule end;
1052 int year;
1053 time_t janfirst;
1054 time_t starttime;
1055 time_t endtime;
1056
1057 ++name;
1058 if ((name = getrule(name, &start)) == NULL)
1059 return -1;
1060 if (*name++ != ',')
1061 return -1;
1062 if ((name = getrule(name, &end)) == NULL)
1063 return -1;
1064 if (*name != '\0')
1065 return -1;
1066 sp->typecnt = 2; /* standard time and DST */
1067 /*
1068 ** Two transitions per year, from EPOCH_YEAR forward.
1069 */
1070 sp->ttis[0].tt_gmtoff = -dstoffset;
1071 sp->ttis[0].tt_isdst = 1;
1072 sp->ttis[0].tt_abbrind = stdlen + 1;
1073 sp->ttis[1].tt_gmtoff = -stdoffset;
1074 sp->ttis[1].tt_isdst = 0;
1075 sp->ttis[1].tt_abbrind = 0;
1076 atp = sp->ats;
1077 typep = sp->types;
1078 janfirst = 0;
1079 sp->timecnt = 0;
1080 for (year = EPOCH_YEAR;
1081 sp->timecnt + 2 <= TZ_MAX_TIMES;
1082 ++year) {
1083 time_t newfirst;
1084
1085 starttime = transtime(janfirst, year, &start,
1086 stdoffset);
1087 endtime = transtime(janfirst, year, &end,
1088 dstoffset);
1089 if (starttime > endtime) {
1090 *atp++ = endtime;
1091 *typep++ = 1; /* DST ends */
1092 *atp++ = starttime;
1093 *typep++ = 0; /* DST begins */
1094 } else {
1095 *atp++ = starttime;
1096 *typep++ = 0; /* DST begins */
1097 *atp++ = endtime;
1098 *typep++ = 1; /* DST ends */
1099 }
1100 sp->timecnt += 2;
1101 newfirst = janfirst;
1102 newfirst += year_lengths[isleap(year)] *
1103 SECSPERDAY;
1104 if (newfirst <= janfirst)
1105 break;
1106 janfirst = newfirst;
1107 }
1108 } else {
1109 long theirstdoffset;
1110 long theirdstoffset;
1111 long theiroffset;
1112 int isdst;
1113 int i;
1114 int j;
1115
1116 if (*name != '\0')
1117 return -1;
1118 /*
1119 ** Initial values of theirstdoffset and theirdstoffset.
1120 */
1121 theirstdoffset = 0;
1122 for (i = 0; i < sp->timecnt; ++i) {
1123 j = sp->types[i];
1124 if (!sp->ttis[j].tt_isdst) {
1125 theirstdoffset =
1126 -sp->ttis[j].tt_gmtoff;
1127 break;
1128 }
1129 }
1130 theirdstoffset = 0;
1131 for (i = 0; i < sp->timecnt; ++i) {
1132 j = sp->types[i];
1133 if (sp->ttis[j].tt_isdst) {
1134 theirdstoffset =
1135 -sp->ttis[j].tt_gmtoff;
1136 break;
1137 }
1138 }
1139 /*
1140 ** Initially we're assumed to be in standard time.
1141 */
1142 isdst = FALSE;
1143 theiroffset = theirstdoffset;
1144 /*
1145 ** Now juggle transition times and types
1146 ** tracking offsets as you do.
1147 */
1148 for (i = 0; i < sp->timecnt; ++i) {
1149 j = sp->types[i];
1150 sp->types[i] = sp->ttis[j].tt_isdst;
1151 if (sp->ttis[j].tt_ttisgmt) {
1152 /* No adjustment to transition time */
1153 } else {
1154 /*
1155 ** If summer time is in effect, and the
1156 ** transition time was not specified as
1157 ** standard time, add the summer time
1158 ** offset to the transition time;
1159 ** otherwise, add the standard time
1160 ** offset to the transition time.
1161 */
1162 /*
1163 ** Transitions from DST to DDST
1164 ** will effectively disappear since
1165 ** POSIX provides for only one DST
1166 ** offset.
1167 */
1168 if (isdst && !sp->ttis[j].tt_ttisstd) {
1169 sp->ats[i] += dstoffset -
1170 theirdstoffset;
1171 } else {
1172 sp->ats[i] += stdoffset -
1173 theirstdoffset;
1174 }
1175 }
1176 theiroffset = -sp->ttis[j].tt_gmtoff;
1177 if (sp->ttis[j].tt_isdst)
1178 theirdstoffset = theiroffset;
1179 else theirstdoffset = theiroffset;
1180 }
1181 /*
1182 ** Finally, fill in ttis.
1183 ** ttisstd and ttisgmt need not be handled.
1184 */
1185 sp->ttis[0].tt_gmtoff = -stdoffset;
1186 sp->ttis[0].tt_isdst = FALSE;
1187 sp->ttis[0].tt_abbrind = 0;
1188 sp->ttis[1].tt_gmtoff = -dstoffset;
1189 sp->ttis[1].tt_isdst = TRUE;
1190 sp->ttis[1].tt_abbrind = stdlen + 1;
1191 sp->typecnt = 2;
1192 }
1193 } else {
1194 dstlen = 0;
1195 sp->typecnt = 1; /* only standard time */
1196 sp->timecnt = 0;
1197 sp->ttis[0].tt_gmtoff = -stdoffset;
1198 sp->ttis[0].tt_isdst = 0;
1199 sp->ttis[0].tt_abbrind = 0;
1200 }
1201 sp->charcnt = stdlen + 1;
1202 if (dstlen != 0)
1203 sp->charcnt += dstlen + 1;
1204 if ((size_t) sp->charcnt > sizeof sp->chars)
1205 return -1;
1206 cp = sp->chars;
1207 (void) strncpy(cp, stdname, stdlen);
1208 cp += stdlen;
1209 *cp++ = '\0';
1210 if (dstlen != 0) {
1211 (void) strncpy(cp, dstname, dstlen);
1212 *(cp + dstlen) = '\0';
1213 }
1214 return 0;
1215 }
1216
1217 static void
gmtload(struct state * const sp)1218 gmtload(struct state *const sp)
1219 {
1220 if (tzload(gmt, sp, TRUE) != 0)
1221 (void) tzparse(gmt, sp, TRUE);
1222 }
1223
1224 static void
tzsetwall_basic(int rdlocked)1225 tzsetwall_basic(int rdlocked)
1226 {
1227 if (!rdlocked)
1228 _RWLOCK_RDLOCK(&lcl_rwlock);
1229 if (lcl_is_set < 0) {
1230 if (!rdlocked)
1231 _RWLOCK_UNLOCK(&lcl_rwlock);
1232 return;
1233 }
1234 _RWLOCK_UNLOCK(&lcl_rwlock);
1235
1236 _RWLOCK_WRLOCK(&lcl_rwlock);
1237 lcl_is_set = -1;
1238
1239 #ifdef ALL_STATE
1240 if (lclptr == NULL) {
1241 lclptr = calloc(1, sizeof *lclptr);
1242 if (lclptr == NULL) {
1243 settzname(); /* all we can do */
1244 _RWLOCK_UNLOCK(&lcl_rwlock);
1245 if (rdlocked)
1246 _RWLOCK_RDLOCK(&lcl_rwlock);
1247 return;
1248 }
1249 }
1250 #endif /* defined ALL_STATE */
1251 if (tzload((char *) NULL, lclptr, TRUE) != 0)
1252 gmtload(lclptr);
1253 settzname();
1254 _RWLOCK_UNLOCK(&lcl_rwlock);
1255
1256 if (rdlocked)
1257 _RWLOCK_RDLOCK(&lcl_rwlock);
1258 }
1259
1260 void
tzsetwall(void)1261 tzsetwall(void)
1262 {
1263 tzsetwall_basic(0);
1264 }
1265
1266 static void
tzset_basic(int rdlocked)1267 tzset_basic(int rdlocked)
1268 {
1269 const char * name;
1270
1271 name = getenv("TZ");
1272 if (name == NULL) {
1273 tzsetwall_basic(rdlocked);
1274 return;
1275 }
1276
1277 if (!rdlocked)
1278 _RWLOCK_RDLOCK(&lcl_rwlock);
1279 if (lcl_is_set > 0 && strcmp(lcl_TZname, name) == 0) {
1280 if (!rdlocked)
1281 _RWLOCK_UNLOCK(&lcl_rwlock);
1282 return;
1283 }
1284 _RWLOCK_UNLOCK(&lcl_rwlock);
1285
1286 _RWLOCK_WRLOCK(&lcl_rwlock);
1287 lcl_is_set = strlen(name) < sizeof lcl_TZname;
1288 if (lcl_is_set)
1289 (void) strcpy(lcl_TZname, name);
1290
1291 #ifdef ALL_STATE
1292 if (lclptr == NULL) {
1293 lclptr = (struct state *) calloc(1, sizeof *lclptr);
1294 if (lclptr == NULL) {
1295 settzname(); /* all we can do */
1296 _RWLOCK_UNLOCK(&lcl_rwlock);
1297 if (rdlocked)
1298 _RWLOCK_RDLOCK(&lcl_rwlock);
1299 return;
1300 }
1301 }
1302 #endif /* defined ALL_STATE */
1303 if (*name == '\0') {
1304 /*
1305 ** User wants it fast rather than right.
1306 */
1307 lclptr->leapcnt = 0; /* so, we're off a little */
1308 lclptr->timecnt = 0;
1309 lclptr->typecnt = 0;
1310 lclptr->ttis[0].tt_isdst = 0;
1311 lclptr->ttis[0].tt_gmtoff = 0;
1312 lclptr->ttis[0].tt_abbrind = 0;
1313 (void) strcpy(lclptr->chars, gmt);
1314 } else if (tzload(name, lclptr, TRUE) != 0)
1315 if (name[0] == ':' || tzparse(name, lclptr, FALSE) != 0)
1316 (void) gmtload(lclptr);
1317 settzname();
1318 _RWLOCK_UNLOCK(&lcl_rwlock);
1319
1320 if (rdlocked)
1321 _RWLOCK_RDLOCK(&lcl_rwlock);
1322 }
1323
1324 void
tzset(void)1325 tzset(void)
1326 {
1327 tzset_basic(0);
1328 }
1329
1330 /*
1331 ** The easy way to behave "as if no library function calls" localtime
1332 ** is to not call it--so we drop its guts into "localsub", which can be
1333 ** freely called. (And no, the PANS doesn't require the above behavior--
1334 ** but it *is* desirable.)
1335 **
1336 ** The unused offset argument is for the benefit of mktime variants.
1337 */
1338
1339 /*ARGSUSED*/
1340 static struct tm *
localsub(const time_t * const timep,const long offset,struct tm * const tmp)1341 localsub(const time_t *const timep, const long offset, struct tm *const tmp)
1342 {
1343 struct state * sp;
1344 const struct ttinfo * ttisp;
1345 int i;
1346 struct tm * result;
1347 const time_t t = *timep;
1348
1349 sp = lclptr;
1350 #ifdef ALL_STATE
1351 if (sp == NULL)
1352 return gmtsub(timep, offset, tmp);
1353 #endif /* defined ALL_STATE */
1354 if ((sp->goback && t < sp->ats[0]) ||
1355 (sp->goahead && t > sp->ats[sp->timecnt - 1])) {
1356 time_t newt = t;
1357 register time_t seconds;
1358 register time_t tcycles;
1359 register int_fast64_t icycles;
1360
1361 if (t < sp->ats[0])
1362 seconds = sp->ats[0] - t;
1363 else seconds = t - sp->ats[sp->timecnt - 1];
1364 --seconds;
1365 tcycles = seconds / YEARSPERREPEAT / AVGSECSPERYEAR;
1366 ++tcycles;
1367 icycles = tcycles;
1368 if (tcycles - icycles >= 1 || icycles - tcycles >= 1)
1369 return NULL;
1370 seconds = icycles;
1371 seconds *= YEARSPERREPEAT;
1372 seconds *= AVGSECSPERYEAR;
1373 if (t < sp->ats[0])
1374 newt += seconds;
1375 else newt -= seconds;
1376 if (newt < sp->ats[0] ||
1377 newt > sp->ats[sp->timecnt - 1])
1378 return NULL; /* "cannot happen" */
1379 result = localsub(&newt, offset, tmp);
1380 if (result == tmp) {
1381 register time_t newy;
1382
1383 newy = tmp->tm_year;
1384 if (t < sp->ats[0])
1385 newy -= icycles * YEARSPERREPEAT;
1386 else newy += icycles * YEARSPERREPEAT;
1387 tmp->tm_year = newy;
1388 if (tmp->tm_year != newy)
1389 return NULL;
1390 }
1391 return result;
1392 }
1393 if (sp->timecnt == 0 || t < sp->ats[0]) {
1394 i = 0;
1395 while (sp->ttis[i].tt_isdst)
1396 if (++i >= sp->typecnt) {
1397 i = 0;
1398 break;
1399 }
1400 } else {
1401 register int lo = 1;
1402 register int hi = sp->timecnt;
1403
1404 while (lo < hi) {
1405 register int mid = (lo + hi) >> 1;
1406
1407 if (t < sp->ats[mid])
1408 hi = mid;
1409 else lo = mid + 1;
1410 }
1411 i = (int) sp->types[lo - 1];
1412 }
1413 ttisp = &sp->ttis[i];
1414 /*
1415 ** To get (wrong) behavior that's compatible with System V Release 2.0
1416 ** you'd replace the statement below with
1417 ** t += ttisp->tt_gmtoff;
1418 ** timesub(&t, 0L, sp, tmp);
1419 */
1420 result = timesub(&t, ttisp->tt_gmtoff, sp, tmp);
1421 tmp->tm_isdst = ttisp->tt_isdst;
1422 tzname[tmp->tm_isdst] = &sp->chars[ttisp->tt_abbrind];
1423 #ifdef TM_ZONE
1424 tmp->TM_ZONE = &sp->chars[ttisp->tt_abbrind];
1425 #endif /* defined TM_ZONE */
1426 return result;
1427 }
1428
1429 static void
localtime_key_init(void)1430 localtime_key_init(void)
1431 {
1432
1433 localtime_key_error = _pthread_key_create(&localtime_key, free);
1434 }
1435
1436 struct tm *
localtime(const time_t * const timep)1437 localtime(const time_t *const timep)
1438 {
1439 struct tm *p_tm;
1440
1441 if (__isthreaded != 0) {
1442 _pthread_once(&localtime_once, localtime_key_init);
1443 if (localtime_key_error != 0) {
1444 errno = localtime_key_error;
1445 return(NULL);
1446 }
1447 p_tm = _pthread_getspecific(localtime_key);
1448 if (p_tm == NULL) {
1449 if ((p_tm = (struct tm *)malloc(sizeof(struct tm)))
1450 == NULL)
1451 return(NULL);
1452 _pthread_setspecific(localtime_key, p_tm);
1453 }
1454 _RWLOCK_RDLOCK(&lcl_rwlock);
1455 tzset_basic(1);
1456 p_tm = localsub(timep, 0L, p_tm);
1457 _RWLOCK_UNLOCK(&lcl_rwlock);
1458 } else {
1459 tzset_basic(0);
1460 p_tm = localsub(timep, 0L, &tm);
1461 }
1462 return(p_tm);
1463 }
1464
1465 /*
1466 ** Re-entrant version of localtime.
1467 */
1468
1469 struct tm *
localtime_r(const time_t * const timep,struct tm * tmp)1470 localtime_r(const time_t *const timep, struct tm *tmp)
1471 {
1472 _RWLOCK_RDLOCK(&lcl_rwlock);
1473 tzset_basic(1);
1474 tmp = localsub(timep, 0L, tmp);
1475 _RWLOCK_UNLOCK(&lcl_rwlock);
1476 return tmp;
1477 }
1478
1479 static void
gmt_init(void)1480 gmt_init(void)
1481 {
1482
1483 #ifdef ALL_STATE
1484 gmtptr = (struct state *) calloc(1, sizeof *gmtptr);
1485 if (gmtptr != NULL)
1486 #endif /* defined ALL_STATE */
1487 gmtload(gmtptr);
1488 }
1489
1490 /*
1491 ** gmtsub is to gmtime as localsub is to localtime.
1492 */
1493
1494 static struct tm *
gmtsub(timep,offset,tmp)1495 gmtsub(timep, offset, tmp)
1496 const time_t * const timep;
1497 const long offset;
1498 struct tm * const tmp;
1499 {
1500 register struct tm * result;
1501
1502 _once(&gmt_once, gmt_init);
1503 result = timesub(timep, offset, gmtptr, tmp);
1504 #ifdef TM_ZONE
1505 /*
1506 ** Could get fancy here and deliver something such as
1507 ** "UTC+xxxx" or "UTC-xxxx" if offset is non-zero,
1508 ** but this is no time for a treasure hunt.
1509 */
1510 if (offset != 0)
1511 tmp->TM_ZONE = wildabbr;
1512 else {
1513 #ifdef ALL_STATE
1514 if (gmtptr == NULL)
1515 tmp->TM_ZONE = gmt;
1516 else tmp->TM_ZONE = gmtptr->chars;
1517 #endif /* defined ALL_STATE */
1518 #ifndef ALL_STATE
1519 tmp->TM_ZONE = gmtptr->chars;
1520 #endif /* State Farm */
1521 }
1522 #endif /* defined TM_ZONE */
1523 return result;
1524 }
1525
1526 static void
gmtime_key_init(void)1527 gmtime_key_init(void)
1528 {
1529
1530 gmtime_key_error = _pthread_key_create(&gmtime_key, free);
1531 }
1532
1533 struct tm *
gmtime(const time_t * const timep)1534 gmtime(const time_t *const timep)
1535 {
1536 struct tm *p_tm;
1537
1538 if (__isthreaded != 0) {
1539 _pthread_once(&gmtime_once, gmtime_key_init);
1540 if (gmtime_key_error != 0) {
1541 errno = gmtime_key_error;
1542 return(NULL);
1543 }
1544 /*
1545 * Changed to follow POSIX.1 threads standard, which
1546 * is what BSD currently has.
1547 */
1548 if ((p_tm = _pthread_getspecific(gmtime_key)) == NULL) {
1549 if ((p_tm = (struct tm *)malloc(sizeof(struct tm)))
1550 == NULL) {
1551 return(NULL);
1552 }
1553 _pthread_setspecific(gmtime_key, p_tm);
1554 }
1555 gmtsub(timep, 0L, p_tm);
1556 return(p_tm);
1557 }
1558 else {
1559 gmtsub(timep, 0L, &tm);
1560 return(&tm);
1561 }
1562 }
1563
1564 /*
1565 * Re-entrant version of gmtime.
1566 */
1567
1568 struct tm *
gmtime_r(const time_t * const timep,struct tm * tmp)1569 gmtime_r(const time_t *const timep, struct tm *tmp)
1570 {
1571 return gmtsub(timep, 0L, tmp);
1572 }
1573
1574 #ifdef STD_INSPIRED
1575
1576 struct tm *
offtime(const time_t * const timep,const long offset)1577 offtime(const time_t *const timep, const long offset)
1578 {
1579 return gmtsub(timep, offset, &tm);
1580 }
1581
1582 #endif /* defined STD_INSPIRED */
1583
1584 /*
1585 ** Return the number of leap years through the end of the given year
1586 ** where, to make the math easy, the answer for year zero is defined as zero.
1587 */
1588
1589 static int
leaps_thru_end_of(y)1590 leaps_thru_end_of(y)
1591 register const int y;
1592 {
1593 return (y >= 0) ? (y / 4 - y / 100 + y / 400) :
1594 -(leaps_thru_end_of(-(y + 1)) + 1);
1595 }
1596
1597 static struct tm *
timesub(timep,offset,sp,tmp)1598 timesub(timep, offset, sp, tmp)
1599 const time_t * const timep;
1600 const long offset;
1601 const struct state * const sp;
1602 struct tm * const tmp;
1603 {
1604 const struct lsinfo * lp;
1605 time_t tdays;
1606 int idays; /* unsigned would be so 2003 */
1607 long rem;
1608 int y;
1609 const int * ip;
1610 long corr;
1611 int hit;
1612 int i;
1613
1614 corr = 0;
1615 hit = 0;
1616 #ifdef ALL_STATE
1617 i = (sp == NULL) ? 0 : sp->leapcnt;
1618 #endif /* defined ALL_STATE */
1619 #ifndef ALL_STATE
1620 i = sp->leapcnt;
1621 #endif /* State Farm */
1622 while (--i >= 0) {
1623 lp = &sp->lsis[i];
1624 if (*timep >= lp->ls_trans) {
1625 if (*timep == lp->ls_trans) {
1626 hit = ((i == 0 && lp->ls_corr > 0) ||
1627 lp->ls_corr > sp->lsis[i - 1].ls_corr);
1628 if (hit)
1629 while (i > 0 &&
1630 sp->lsis[i].ls_trans ==
1631 sp->lsis[i - 1].ls_trans + 1 &&
1632 sp->lsis[i].ls_corr ==
1633 sp->lsis[i - 1].ls_corr + 1) {
1634 ++hit;
1635 --i;
1636 }
1637 }
1638 corr = lp->ls_corr;
1639 break;
1640 }
1641 }
1642 y = EPOCH_YEAR;
1643 tdays = *timep / SECSPERDAY;
1644 rem = *timep - tdays * SECSPERDAY;
1645 while (tdays < 0 || tdays >= year_lengths[isleap(y)]) {
1646 int newy;
1647 register time_t tdelta;
1648 register int idelta;
1649 register int leapdays;
1650
1651 tdelta = tdays / DAYSPERLYEAR;
1652 idelta = tdelta;
1653 if (tdelta - idelta >= 1 || idelta - tdelta >= 1)
1654 return NULL;
1655 if (idelta == 0)
1656 idelta = (tdays < 0) ? -1 : 1;
1657 newy = y;
1658 if (increment_overflow(&newy, idelta))
1659 return NULL;
1660 leapdays = leaps_thru_end_of(newy - 1) -
1661 leaps_thru_end_of(y - 1);
1662 tdays -= ((time_t) newy - y) * DAYSPERNYEAR;
1663 tdays -= leapdays;
1664 y = newy;
1665 }
1666 {
1667 register long seconds;
1668
1669 seconds = tdays * SECSPERDAY + 0.5;
1670 tdays = seconds / SECSPERDAY;
1671 rem += seconds - tdays * SECSPERDAY;
1672 }
1673 /*
1674 ** Given the range, we can now fearlessly cast...
1675 */
1676 idays = tdays;
1677 rem += offset - corr;
1678 while (rem < 0) {
1679 rem += SECSPERDAY;
1680 --idays;
1681 }
1682 while (rem >= SECSPERDAY) {
1683 rem -= SECSPERDAY;
1684 ++idays;
1685 }
1686 while (idays < 0) {
1687 if (increment_overflow(&y, -1))
1688 return NULL;
1689 idays += year_lengths[isleap(y)];
1690 }
1691 while (idays >= year_lengths[isleap(y)]) {
1692 idays -= year_lengths[isleap(y)];
1693 if (increment_overflow(&y, 1))
1694 return NULL;
1695 }
1696 tmp->tm_year = y;
1697 if (increment_overflow(&tmp->tm_year, -TM_YEAR_BASE))
1698 return NULL;
1699 tmp->tm_yday = idays;
1700 /*
1701 ** The "extra" mods below avoid overflow problems.
1702 */
1703 tmp->tm_wday = EPOCH_WDAY +
1704 ((y - EPOCH_YEAR) % DAYSPERWEEK) *
1705 (DAYSPERNYEAR % DAYSPERWEEK) +
1706 leaps_thru_end_of(y - 1) -
1707 leaps_thru_end_of(EPOCH_YEAR - 1) +
1708 idays;
1709 tmp->tm_wday %= DAYSPERWEEK;
1710 if (tmp->tm_wday < 0)
1711 tmp->tm_wday += DAYSPERWEEK;
1712 tmp->tm_hour = (int) (rem / SECSPERHOUR);
1713 rem %= SECSPERHOUR;
1714 tmp->tm_min = (int) (rem / SECSPERMIN);
1715 /*
1716 ** A positive leap second requires a special
1717 ** representation. This uses "... ??:59:60" et seq.
1718 */
1719 tmp->tm_sec = (int) (rem % SECSPERMIN) + hit;
1720 ip = mon_lengths[isleap(y)];
1721 for (tmp->tm_mon = 0; idays >= ip[tmp->tm_mon]; ++(tmp->tm_mon))
1722 idays -= ip[tmp->tm_mon];
1723 tmp->tm_mday = (int) (idays + 1);
1724 tmp->tm_isdst = 0;
1725 #ifdef TM_GMTOFF
1726 tmp->TM_GMTOFF = offset;
1727 #endif /* defined TM_GMTOFF */
1728 return tmp;
1729 }
1730
1731 char *
ctime(const time_t * const timep)1732 ctime(const time_t *const timep)
1733 {
1734 /*
1735 ** Section 4.12.3.2 of X3.159-1989 requires that
1736 ** The ctime function converts the calendar time pointed to by timer
1737 ** to local time in the form of a string. It is equivalent to
1738 ** asctime(localtime(timer))
1739 */
1740 return asctime(localtime(timep));
1741 }
1742
1743 char *
ctime_r(const time_t * const timep,char * buf)1744 ctime_r(const time_t *const timep, char *buf)
1745 {
1746 struct tm mytm;
1747
1748 return asctime_r(localtime_r(timep, &mytm), buf);
1749 }
1750
1751 /*
1752 ** Adapted from code provided by Robert Elz, who writes:
1753 ** The "best" way to do mktime I think is based on an idea of Bob
1754 ** Kridle's (so its said...) from a long time ago.
1755 ** It does a binary search of the time_t space. Since time_t's are
1756 ** just 32 bits, its a max of 32 iterations (even at 64 bits it
1757 ** would still be very reasonable).
1758 */
1759
1760 #ifndef WRONG
1761 #define WRONG (-1)
1762 #endif /* !defined WRONG */
1763
1764 /*
1765 ** Simplified normalize logic courtesy Paul Eggert.
1766 */
1767
1768 static int
increment_overflow(number,delta)1769 increment_overflow(number, delta)
1770 int * number;
1771 int delta;
1772 {
1773 int number0;
1774
1775 number0 = *number;
1776 *number += delta;
1777 return (*number < number0) != (delta < 0);
1778 }
1779
1780 static int
long_increment_overflow(number,delta)1781 long_increment_overflow(number, delta)
1782 long * number;
1783 int delta;
1784 {
1785 long number0;
1786
1787 number0 = *number;
1788 *number += delta;
1789 return (*number < number0) != (delta < 0);
1790 }
1791
1792 static int
normalize_overflow(int * const tensptr,int * const unitsptr,const int base)1793 normalize_overflow(int *const tensptr, int *const unitsptr, const int base)
1794 {
1795 int tensdelta;
1796
1797 tensdelta = (*unitsptr >= 0) ?
1798 (*unitsptr / base) :
1799 (-1 - (-1 - *unitsptr) / base);
1800 *unitsptr -= tensdelta * base;
1801 return increment_overflow(tensptr, tensdelta);
1802 }
1803
1804 static int
long_normalize_overflow(long * const tensptr,int * const unitsptr,const int base)1805 long_normalize_overflow(long *const tensptr, int *const unitsptr, const int base)
1806 {
1807 register int tensdelta;
1808
1809 tensdelta = (*unitsptr >= 0) ?
1810 (*unitsptr / base) :
1811 (-1 - (-1 - *unitsptr) / base);
1812 *unitsptr -= tensdelta * base;
1813 return long_increment_overflow(tensptr, tensdelta);
1814 }
1815
1816 static int
tmcomp(atmp,btmp)1817 tmcomp(atmp, btmp)
1818 const struct tm * const atmp;
1819 const struct tm * const btmp;
1820 {
1821 int result;
1822
1823 if ((result = (atmp->tm_year - btmp->tm_year)) == 0 &&
1824 (result = (atmp->tm_mon - btmp->tm_mon)) == 0 &&
1825 (result = (atmp->tm_mday - btmp->tm_mday)) == 0 &&
1826 (result = (atmp->tm_hour - btmp->tm_hour)) == 0 &&
1827 (result = (atmp->tm_min - btmp->tm_min)) == 0)
1828 result = atmp->tm_sec - btmp->tm_sec;
1829 return result;
1830 }
1831
1832 static time_t
time2sub(struct tm * const tmp,struct tm * (* const funcp)(const time_t *,long,struct tm *),const long offset,int * const okayp,const int do_norm_secs)1833 time2sub(struct tm *const tmp,
1834 struct tm *(*const funcp)(const time_t *, long, struct tm *),
1835 const long offset,
1836 int *const okayp,
1837 const int do_norm_secs)
1838 {
1839 const struct state * sp;
1840 int dir;
1841 int i, j;
1842 int saved_seconds;
1843 long li;
1844 time_t lo;
1845 time_t hi;
1846 long y;
1847 time_t newt;
1848 time_t t;
1849 struct tm yourtm, mytm;
1850
1851 *okayp = FALSE;
1852 yourtm = *tmp;
1853 if (do_norm_secs) {
1854 if (normalize_overflow(&yourtm.tm_min, &yourtm.tm_sec,
1855 SECSPERMIN))
1856 return WRONG;
1857 }
1858 if (normalize_overflow(&yourtm.tm_hour, &yourtm.tm_min, MINSPERHOUR))
1859 return WRONG;
1860 if (normalize_overflow(&yourtm.tm_mday, &yourtm.tm_hour, HOURSPERDAY))
1861 return WRONG;
1862 y = yourtm.tm_year;
1863 if (long_normalize_overflow(&y, &yourtm.tm_mon, MONSPERYEAR))
1864 return WRONG;
1865 /*
1866 ** Turn y into an actual year number for now.
1867 ** It is converted back to an offset from TM_YEAR_BASE later.
1868 */
1869 if (long_increment_overflow(&y, TM_YEAR_BASE))
1870 return WRONG;
1871 while (yourtm.tm_mday <= 0) {
1872 if (long_increment_overflow(&y, -1))
1873 return WRONG;
1874 li = y + (1 < yourtm.tm_mon);
1875 yourtm.tm_mday += year_lengths[isleap(li)];
1876 }
1877 while (yourtm.tm_mday > DAYSPERLYEAR) {
1878 li = y + (1 < yourtm.tm_mon);
1879 yourtm.tm_mday -= year_lengths[isleap(li)];
1880 if (long_increment_overflow(&y, 1))
1881 return WRONG;
1882 }
1883 for ( ; ; ) {
1884 i = mon_lengths[isleap(y)][yourtm.tm_mon];
1885 if (yourtm.tm_mday <= i)
1886 break;
1887 yourtm.tm_mday -= i;
1888 if (++yourtm.tm_mon >= MONSPERYEAR) {
1889 yourtm.tm_mon = 0;
1890 if (long_increment_overflow(&y, 1))
1891 return WRONG;
1892 }
1893 }
1894 if (long_increment_overflow(&y, -TM_YEAR_BASE))
1895 return WRONG;
1896 yourtm.tm_year = y;
1897 if (yourtm.tm_year != y)
1898 return WRONG;
1899 /* Don't go below 1900 for POLA */
1900 if (yourtm.tm_year < 0)
1901 return WRONG;
1902 if (yourtm.tm_sec >= 0 && yourtm.tm_sec < SECSPERMIN)
1903 saved_seconds = 0;
1904 else if (y + TM_YEAR_BASE < EPOCH_YEAR) {
1905 /*
1906 ** We can't set tm_sec to 0, because that might push the
1907 ** time below the minimum representable time.
1908 ** Set tm_sec to 59 instead.
1909 ** This assumes that the minimum representable time is
1910 ** not in the same minute that a leap second was deleted from,
1911 ** which is a safer assumption than using 58 would be.
1912 */
1913 if (increment_overflow(&yourtm.tm_sec, 1 - SECSPERMIN))
1914 return WRONG;
1915 saved_seconds = yourtm.tm_sec;
1916 yourtm.tm_sec = SECSPERMIN - 1;
1917 } else {
1918 saved_seconds = yourtm.tm_sec;
1919 yourtm.tm_sec = 0;
1920 }
1921 /*
1922 ** Do a binary search (this works whatever time_t's type is).
1923 */
1924 if (!TYPE_SIGNED(time_t)) {
1925 lo = 0;
1926 hi = lo - 1;
1927 } else if (!TYPE_INTEGRAL(time_t)) {
1928 if (sizeof(time_t) > sizeof(float))
1929 hi = (time_t) DBL_MAX;
1930 else hi = (time_t) FLT_MAX;
1931 lo = -hi;
1932 } else {
1933 lo = 1;
1934 for (i = 0; i < (int) TYPE_BIT(time_t) - 1; ++i)
1935 lo *= 2;
1936 hi = -(lo + 1);
1937 }
1938 for ( ; ; ) {
1939 t = lo / 2 + hi / 2;
1940 if (t < lo)
1941 t = lo;
1942 else if (t > hi)
1943 t = hi;
1944 if ((*funcp)(&t, offset, &mytm) == NULL) {
1945 /*
1946 ** Assume that t is too extreme to be represented in
1947 ** a struct tm; arrange things so that it is less
1948 ** extreme on the next pass.
1949 */
1950 dir = (t > 0) ? 1 : -1;
1951 } else dir = tmcomp(&mytm, &yourtm);
1952 if (dir != 0) {
1953 if (t == lo) {
1954 ++t;
1955 if (t <= lo)
1956 return WRONG;
1957 ++lo;
1958 } else if (t == hi) {
1959 --t;
1960 if (t >= hi)
1961 return WRONG;
1962 --hi;
1963 }
1964 if (lo > hi)
1965 return WRONG;
1966 if (dir > 0)
1967 hi = t;
1968 else lo = t;
1969 continue;
1970 }
1971 if (yourtm.tm_isdst < 0 || mytm.tm_isdst == yourtm.tm_isdst)
1972 break;
1973 /*
1974 ** Right time, wrong type.
1975 ** Hunt for right time, right type.
1976 ** It's okay to guess wrong since the guess
1977 ** gets checked.
1978 */
1979 sp = (const struct state *)
1980 ((funcp == localsub) ? lclptr : gmtptr);
1981 #ifdef ALL_STATE
1982 if (sp == NULL)
1983 return WRONG;
1984 #endif /* defined ALL_STATE */
1985 for (i = sp->typecnt - 1; i >= 0; --i) {
1986 if (sp->ttis[i].tt_isdst != yourtm.tm_isdst)
1987 continue;
1988 for (j = sp->typecnt - 1; j >= 0; --j) {
1989 if (sp->ttis[j].tt_isdst == yourtm.tm_isdst)
1990 continue;
1991 newt = t + sp->ttis[j].tt_gmtoff -
1992 sp->ttis[i].tt_gmtoff;
1993 if ((*funcp)(&newt, offset, &mytm) == NULL)
1994 continue;
1995 if (tmcomp(&mytm, &yourtm) != 0)
1996 continue;
1997 if (mytm.tm_isdst != yourtm.tm_isdst)
1998 continue;
1999 /*
2000 ** We have a match.
2001 */
2002 t = newt;
2003 goto label;
2004 }
2005 }
2006 return WRONG;
2007 }
2008 label:
2009 newt = t + saved_seconds;
2010 if ((newt < t) != (saved_seconds < 0))
2011 return WRONG;
2012 t = newt;
2013 if ((*funcp)(&t, offset, tmp))
2014 *okayp = TRUE;
2015 return t;
2016 }
2017
2018 static time_t
time2(struct tm * const tmp,struct tm * (* const funcp)(const time_t *,long,struct tm *),const long offset,int * const okayp)2019 time2(struct tm * const tmp,
2020 struct tm * (*const funcp)(const time_t *, long, struct tm *),
2021 const long offset,
2022 int *const okayp)
2023 {
2024 time_t t;
2025
2026 /*
2027 ** First try without normalization of seconds
2028 ** (in case tm_sec contains a value associated with a leap second).
2029 ** If that fails, try with normalization of seconds.
2030 */
2031 t = time2sub(tmp, funcp, offset, okayp, FALSE);
2032 return *okayp ? t : time2sub(tmp, funcp, offset, okayp, TRUE);
2033 }
2034
2035 static time_t
time1(tmp,funcp,offset)2036 time1(tmp, funcp, offset)
2037 struct tm * const tmp;
2038 struct tm * (* const funcp)(const time_t *, long, struct tm *);
2039 const long offset;
2040 {
2041 time_t t;
2042 const struct state * sp;
2043 int samei, otheri;
2044 int sameind, otherind;
2045 int i;
2046 int nseen;
2047 int seen[TZ_MAX_TYPES];
2048 int types[TZ_MAX_TYPES];
2049 int okay;
2050
2051 if (tmp == NULL) {
2052 errno = EINVAL;
2053 return WRONG;
2054 }
2055
2056 if (tmp->tm_isdst > 1)
2057 tmp->tm_isdst = 1;
2058 t = time2(tmp, funcp, offset, &okay);
2059 #ifdef PCTS
2060 /*
2061 ** PCTS code courtesy Grant Sullivan.
2062 */
2063 if (okay)
2064 return t;
2065 if (tmp->tm_isdst < 0)
2066 tmp->tm_isdst = 0; /* reset to std and try again */
2067 #endif /* defined PCTS */
2068 #ifndef PCTS
2069 if (okay || tmp->tm_isdst < 0)
2070 return t;
2071 #endif /* !defined PCTS */
2072 /*
2073 ** We're supposed to assume that somebody took a time of one type
2074 ** and did some math on it that yielded a "struct tm" that's bad.
2075 ** We try to divine the type they started from and adjust to the
2076 ** type they need.
2077 */
2078 sp = (const struct state *) ((funcp == localsub) ? lclptr : gmtptr);
2079 #ifdef ALL_STATE
2080 if (sp == NULL)
2081 return WRONG;
2082 #endif /* defined ALL_STATE */
2083 for (i = 0; i < sp->typecnt; ++i)
2084 seen[i] = FALSE;
2085 nseen = 0;
2086 for (i = sp->timecnt - 1; i >= 0; --i)
2087 if (!seen[sp->types[i]]) {
2088 seen[sp->types[i]] = TRUE;
2089 types[nseen++] = sp->types[i];
2090 }
2091 for (sameind = 0; sameind < nseen; ++sameind) {
2092 samei = types[sameind];
2093 if (sp->ttis[samei].tt_isdst != tmp->tm_isdst)
2094 continue;
2095 for (otherind = 0; otherind < nseen; ++otherind) {
2096 otheri = types[otherind];
2097 if (sp->ttis[otheri].tt_isdst == tmp->tm_isdst)
2098 continue;
2099 tmp->tm_sec += sp->ttis[otheri].tt_gmtoff -
2100 sp->ttis[samei].tt_gmtoff;
2101 tmp->tm_isdst = !tmp->tm_isdst;
2102 t = time2(tmp, funcp, offset, &okay);
2103 if (okay)
2104 return t;
2105 tmp->tm_sec -= sp->ttis[otheri].tt_gmtoff -
2106 sp->ttis[samei].tt_gmtoff;
2107 tmp->tm_isdst = !tmp->tm_isdst;
2108 }
2109 }
2110 return WRONG;
2111 }
2112
2113 time_t
mktime(struct tm * const tmp)2114 mktime(struct tm *const tmp)
2115 {
2116 time_t mktime_return_value;
2117 _RWLOCK_RDLOCK(&lcl_rwlock);
2118 tzset_basic(1);
2119 mktime_return_value = time1(tmp, localsub, 0L);
2120 _RWLOCK_UNLOCK(&lcl_rwlock);
2121 return(mktime_return_value);
2122 }
2123
2124 #ifdef STD_INSPIRED
2125
2126 time_t
timelocal(struct tm * const tmp)2127 timelocal(struct tm *const tmp)
2128 {
2129 if (tmp != NULL)
2130 tmp->tm_isdst = -1; /* in case it wasn't initialized */
2131 return mktime(tmp);
2132 }
2133
2134 time_t
timegm(struct tm * const tmp)2135 timegm(struct tm *const tmp)
2136 {
2137 if (tmp != NULL)
2138 tmp->tm_isdst = 0;
2139 return time1(tmp, gmtsub, 0L);
2140 }
2141
2142 time_t
timeoff(struct tm * const tmp,const long offset)2143 timeoff(struct tm *const tmp, const long offset)
2144 {
2145 if (tmp != NULL)
2146 tmp->tm_isdst = 0;
2147 return time1(tmp, gmtsub, offset);
2148 }
2149
2150 #endif /* defined STD_INSPIRED */
2151
2152 #ifdef CMUCS
2153
2154 /*
2155 ** The following is supplied for compatibility with
2156 ** previous versions of the CMUCS runtime library.
2157 */
2158
2159 long
gtime(struct tm * const tmp)2160 gtime(struct tm *const tmp)
2161 {
2162 const time_t t = mktime(tmp);
2163
2164 if (t == WRONG)
2165 return -1;
2166 return t;
2167 }
2168
2169 #endif /* defined CMUCS */
2170
2171 /*
2172 ** XXX--is the below the right way to conditionalize??
2173 */
2174
2175 #ifdef STD_INSPIRED
2176
2177 /*
2178 ** IEEE Std 1003.1-1988 (POSIX) legislates that 536457599
2179 ** shall correspond to "Wed Dec 31 23:59:59 UTC 1986", which
2180 ** is not the case if we are accounting for leap seconds.
2181 ** So, we provide the following conversion routines for use
2182 ** when exchanging timestamps with POSIX conforming systems.
2183 */
2184
2185 static long
leapcorr(time_t * timep)2186 leapcorr(time_t *timep)
2187 {
2188 struct state * sp;
2189 struct lsinfo * lp;
2190 int i;
2191
2192 sp = lclptr;
2193 i = sp->leapcnt;
2194 while (--i >= 0) {
2195 lp = &sp->lsis[i];
2196 if (*timep >= lp->ls_trans)
2197 return lp->ls_corr;
2198 }
2199 return 0;
2200 }
2201
2202 time_t
time2posix(time_t t)2203 time2posix(time_t t)
2204 {
2205 tzset();
2206 return t - leapcorr(&t);
2207 }
2208
2209 time_t
posix2time(time_t t)2210 posix2time(time_t t)
2211 {
2212 time_t x;
2213 time_t y;
2214
2215 tzset();
2216 /*
2217 ** For a positive leap second hit, the result
2218 ** is not unique. For a negative leap second
2219 ** hit, the corresponding time doesn't exist,
2220 ** so we return an adjacent second.
2221 */
2222 x = t + leapcorr(&t);
2223 y = x - leapcorr(&x);
2224 if (y < t) {
2225 do {
2226 x++;
2227 y = x - leapcorr(&x);
2228 } while (y < t);
2229 if (t != y)
2230 return x - 1;
2231 } else if (y > t) {
2232 do {
2233 --x;
2234 y = x - leapcorr(&x);
2235 } while (y > t);
2236 if (t != y)
2237 return x + 1;
2238 }
2239 return x;
2240 }
2241
2242 #endif /* defined STD_INSPIRED */
2243