1 /* 2 * kmp_affinity.cpp -- affinity management 3 */ 4 5 //===----------------------------------------------------------------------===// 6 // 7 // The LLVM Compiler Infrastructure 8 // 9 // This file is dual licensed under the MIT and the University of Illinois Open 10 // Source Licenses. See LICENSE.txt for details. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "kmp.h" 15 #include "kmp_affinity.h" 16 #include "kmp_i18n.h" 17 #include "kmp_io.h" 18 #include "kmp_str.h" 19 #include "kmp_wrapper_getpid.h" 20 #if KMP_USE_HIER_SCHED 21 #include "kmp_dispatch_hier.h" 22 #endif 23 24 // Store the real or imagined machine hierarchy here 25 static hierarchy_info machine_hierarchy; 26 27 void __kmp_cleanup_hierarchy() { machine_hierarchy.fini(); } 28 29 void __kmp_get_hierarchy(kmp_uint32 nproc, kmp_bstate_t *thr_bar) { 30 kmp_uint32 depth; 31 // The test below is true if affinity is available, but set to "none". Need to 32 // init on first use of hierarchical barrier. 33 if (TCR_1(machine_hierarchy.uninitialized)) 34 machine_hierarchy.init(NULL, nproc); 35 36 // Adjust the hierarchy in case num threads exceeds original 37 if (nproc > machine_hierarchy.base_num_threads) 38 machine_hierarchy.resize(nproc); 39 40 depth = machine_hierarchy.depth; 41 KMP_DEBUG_ASSERT(depth > 0); 42 43 thr_bar->depth = depth; 44 thr_bar->base_leaf_kids = (kmp_uint8)machine_hierarchy.numPerLevel[0] - 1; 45 thr_bar->skip_per_level = machine_hierarchy.skipPerLevel; 46 } 47 48 #if KMP_AFFINITY_SUPPORTED 49 50 bool KMPAffinity::picked_api = false; 51 52 void *KMPAffinity::Mask::operator new(size_t n) { return __kmp_allocate(n); } 53 void *KMPAffinity::Mask::operator new[](size_t n) { return __kmp_allocate(n); } 54 void KMPAffinity::Mask::operator delete(void *p) { __kmp_free(p); } 55 void KMPAffinity::Mask::operator delete[](void *p) { __kmp_free(p); } 56 void *KMPAffinity::operator new(size_t n) { return __kmp_allocate(n); } 57 void KMPAffinity::operator delete(void *p) { __kmp_free(p); } 58 59 void KMPAffinity::pick_api() { 60 KMPAffinity *affinity_dispatch; 61 if (picked_api) 62 return; 63 #if KMP_USE_HWLOC 64 // Only use Hwloc if affinity isn't explicitly disabled and 65 // user requests Hwloc topology method 66 if (__kmp_affinity_top_method == affinity_top_method_hwloc && 67 __kmp_affinity_type != affinity_disabled) { 68 affinity_dispatch = new KMPHwlocAffinity(); 69 } else 70 #endif 71 { 72 affinity_dispatch = new KMPNativeAffinity(); 73 } 74 __kmp_affinity_dispatch = affinity_dispatch; 75 picked_api = true; 76 } 77 78 void KMPAffinity::destroy_api() { 79 if (__kmp_affinity_dispatch != NULL) { 80 delete __kmp_affinity_dispatch; 81 __kmp_affinity_dispatch = NULL; 82 picked_api = false; 83 } 84 } 85 86 #define KMP_ADVANCE_SCAN(scan) \ 87 while (*scan != '\0') { \ 88 scan++; \ 89 } 90 91 // Print the affinity mask to the character array in a pretty format. 92 // The format is a comma separated list of non-negative integers or integer 93 // ranges: e.g., 1,2,3-5,7,9-15 94 // The format can also be the string "{<empty>}" if no bits are set in mask 95 char *__kmp_affinity_print_mask(char *buf, int buf_len, 96 kmp_affin_mask_t *mask) { 97 int start = 0, finish = 0, previous = 0; 98 bool first_range; 99 KMP_ASSERT(buf); 100 KMP_ASSERT(buf_len >= 40); 101 KMP_ASSERT(mask); 102 char *scan = buf; 103 char *end = buf + buf_len - 1; 104 105 // Check for empty set. 106 if (mask->begin() == mask->end()) { 107 KMP_SNPRINTF(scan, end - scan + 1, "{<empty>}"); 108 KMP_ADVANCE_SCAN(scan); 109 KMP_ASSERT(scan <= end); 110 return buf; 111 } 112 113 first_range = true; 114 start = mask->begin(); 115 while (1) { 116 // Find next range 117 // [start, previous] is inclusive range of contiguous bits in mask 118 for (finish = mask->next(start), previous = start; 119 finish == previous + 1 && finish != mask->end(); 120 finish = mask->next(finish)) { 121 previous = finish; 122 } 123 124 // The first range does not need a comma printed before it, but the rest 125 // of the ranges do need a comma beforehand 126 if (!first_range) { 127 KMP_SNPRINTF(scan, end - scan + 1, "%s", ","); 128 KMP_ADVANCE_SCAN(scan); 129 } else { 130 first_range = false; 131 } 132 // Range with three or more contiguous bits in the affinity mask 133 if (previous - start > 1) { 134 KMP_SNPRINTF(scan, end - scan + 1, "%d-%d", static_cast<int>(start), 135 static_cast<int>(previous)); 136 } else { 137 // Range with one or two contiguous bits in the affinity mask 138 KMP_SNPRINTF(scan, end - scan + 1, "%d", static_cast<int>(start)); 139 KMP_ADVANCE_SCAN(scan); 140 if (previous - start > 0) { 141 KMP_SNPRINTF(scan, end - scan + 1, ",%d", static_cast<int>(previous)); 142 } 143 } 144 KMP_ADVANCE_SCAN(scan); 145 // Start over with new start point 146 start = finish; 147 if (start == mask->end()) 148 break; 149 // Check for overflow 150 if (end - scan < 2) 151 break; 152 } 153 154 // Check for overflow 155 KMP_ASSERT(scan <= end); 156 return buf; 157 } 158 #undef KMP_ADVANCE_SCAN 159 160 // Print the affinity mask to the string buffer object in a pretty format 161 // The format is a comma separated list of non-negative integers or integer 162 // ranges: e.g., 1,2,3-5,7,9-15 163 // The format can also be the string "{<empty>}" if no bits are set in mask 164 kmp_str_buf_t *__kmp_affinity_str_buf_mask(kmp_str_buf_t *buf, 165 kmp_affin_mask_t *mask) { 166 int start = 0, finish = 0, previous = 0; 167 bool first_range; 168 KMP_ASSERT(buf); 169 KMP_ASSERT(mask); 170 171 __kmp_str_buf_clear(buf); 172 173 // Check for empty set. 174 if (mask->begin() == mask->end()) { 175 __kmp_str_buf_print(buf, "%s", "{<empty>}"); 176 return buf; 177 } 178 179 first_range = true; 180 start = mask->begin(); 181 while (1) { 182 // Find next range 183 // [start, previous] is inclusive range of contiguous bits in mask 184 for (finish = mask->next(start), previous = start; 185 finish == previous + 1 && finish != mask->end(); 186 finish = mask->next(finish)) { 187 previous = finish; 188 } 189 190 // The first range does not need a comma printed before it, but the rest 191 // of the ranges do need a comma beforehand 192 if (!first_range) { 193 __kmp_str_buf_print(buf, "%s", ","); 194 } else { 195 first_range = false; 196 } 197 // Range with three or more contiguous bits in the affinity mask 198 if (previous - start > 1) { 199 __kmp_str_buf_print(buf, "%d-%d", static_cast<int>(start), 200 static_cast<int>(previous)); 201 } else { 202 // Range with one or two contiguous bits in the affinity mask 203 __kmp_str_buf_print(buf, "%d", static_cast<int>(start)); 204 if (previous - start > 0) { 205 __kmp_str_buf_print(buf, ",%d", static_cast<int>(previous)); 206 } 207 } 208 // Start over with new start point 209 start = finish; 210 if (start == mask->end()) 211 break; 212 } 213 return buf; 214 } 215 216 void __kmp_affinity_entire_machine_mask(kmp_affin_mask_t *mask) { 217 KMP_CPU_ZERO(mask); 218 219 #if KMP_GROUP_AFFINITY 220 221 if (__kmp_num_proc_groups > 1) { 222 int group; 223 KMP_DEBUG_ASSERT(__kmp_GetActiveProcessorCount != NULL); 224 for (group = 0; group < __kmp_num_proc_groups; group++) { 225 int i; 226 int num = __kmp_GetActiveProcessorCount(group); 227 for (i = 0; i < num; i++) { 228 KMP_CPU_SET(i + group * (CHAR_BIT * sizeof(DWORD_PTR)), mask); 229 } 230 } 231 } else 232 233 #endif /* KMP_GROUP_AFFINITY */ 234 235 { 236 int proc; 237 for (proc = 0; proc < __kmp_xproc; proc++) { 238 KMP_CPU_SET(proc, mask); 239 } 240 } 241 } 242 243 // When sorting by labels, __kmp_affinity_assign_child_nums() must first be 244 // called to renumber the labels from [0..n] and place them into the child_num 245 // vector of the address object. This is done in case the labels used for 246 // the children at one node of the hierarchy differ from those used for 247 // another node at the same level. Example: suppose the machine has 2 nodes 248 // with 2 packages each. The first node contains packages 601 and 602, and 249 // second node contains packages 603 and 604. If we try to sort the table 250 // for "scatter" affinity, the table will still be sorted 601, 602, 603, 604 251 // because we are paying attention to the labels themselves, not the ordinal 252 // child numbers. By using the child numbers in the sort, the result is 253 // {0,0}=601, {0,1}=603, {1,0}=602, {1,1}=604. 254 static void __kmp_affinity_assign_child_nums(AddrUnsPair *address2os, 255 int numAddrs) { 256 KMP_DEBUG_ASSERT(numAddrs > 0); 257 int depth = address2os->first.depth; 258 unsigned *counts = (unsigned *)__kmp_allocate(depth * sizeof(unsigned)); 259 unsigned *lastLabel = (unsigned *)__kmp_allocate(depth * sizeof(unsigned)); 260 int labCt; 261 for (labCt = 0; labCt < depth; labCt++) { 262 address2os[0].first.childNums[labCt] = counts[labCt] = 0; 263 lastLabel[labCt] = address2os[0].first.labels[labCt]; 264 } 265 int i; 266 for (i = 1; i < numAddrs; i++) { 267 for (labCt = 0; labCt < depth; labCt++) { 268 if (address2os[i].first.labels[labCt] != lastLabel[labCt]) { 269 int labCt2; 270 for (labCt2 = labCt + 1; labCt2 < depth; labCt2++) { 271 counts[labCt2] = 0; 272 lastLabel[labCt2] = address2os[i].first.labels[labCt2]; 273 } 274 counts[labCt]++; 275 lastLabel[labCt] = address2os[i].first.labels[labCt]; 276 break; 277 } 278 } 279 for (labCt = 0; labCt < depth; labCt++) { 280 address2os[i].first.childNums[labCt] = counts[labCt]; 281 } 282 for (; labCt < (int)Address::maxDepth; labCt++) { 283 address2os[i].first.childNums[labCt] = 0; 284 } 285 } 286 __kmp_free(lastLabel); 287 __kmp_free(counts); 288 } 289 290 // All of the __kmp_affinity_create_*_map() routines should set 291 // __kmp_affinity_masks to a vector of affinity mask objects of length 292 // __kmp_affinity_num_masks, if __kmp_affinity_type != affinity_none, and return 293 // the number of levels in the machine topology tree (zero if 294 // __kmp_affinity_type == affinity_none). 295 // 296 // All of the __kmp_affinity_create_*_map() routines should set 297 // *__kmp_affin_fullMask to the affinity mask for the initialization thread. 298 // They need to save and restore the mask, and it could be needed later, so 299 // saving it is just an optimization to avoid calling kmp_get_system_affinity() 300 // again. 301 kmp_affin_mask_t *__kmp_affin_fullMask = NULL; 302 303 static int nCoresPerPkg, nPackages; 304 static int __kmp_nThreadsPerCore; 305 #ifndef KMP_DFLT_NTH_CORES 306 static int __kmp_ncores; 307 #endif 308 static int *__kmp_pu_os_idx = NULL; 309 310 // __kmp_affinity_uniform_topology() doesn't work when called from 311 // places which support arbitrarily many levels in the machine topology 312 // map, i.e. the non-default cases in __kmp_affinity_create_cpuinfo_map() 313 // __kmp_affinity_create_x2apicid_map(). 314 inline static bool __kmp_affinity_uniform_topology() { 315 return __kmp_avail_proc == (__kmp_nThreadsPerCore * nCoresPerPkg * nPackages); 316 } 317 318 // Print out the detailed machine topology map, i.e. the physical locations 319 // of each OS proc. 320 static void __kmp_affinity_print_topology(AddrUnsPair *address2os, int len, 321 int depth, int pkgLevel, 322 int coreLevel, int threadLevel) { 323 int proc; 324 325 KMP_INFORM(OSProcToPhysicalThreadMap, "KMP_AFFINITY"); 326 for (proc = 0; proc < len; proc++) { 327 int level; 328 kmp_str_buf_t buf; 329 __kmp_str_buf_init(&buf); 330 for (level = 0; level < depth; level++) { 331 if (level == threadLevel) { 332 __kmp_str_buf_print(&buf, "%s ", KMP_I18N_STR(Thread)); 333 } else if (level == coreLevel) { 334 __kmp_str_buf_print(&buf, "%s ", KMP_I18N_STR(Core)); 335 } else if (level == pkgLevel) { 336 __kmp_str_buf_print(&buf, "%s ", KMP_I18N_STR(Package)); 337 } else if (level > pkgLevel) { 338 __kmp_str_buf_print(&buf, "%s_%d ", KMP_I18N_STR(Node), 339 level - pkgLevel - 1); 340 } else { 341 __kmp_str_buf_print(&buf, "L%d ", level); 342 } 343 __kmp_str_buf_print(&buf, "%d ", address2os[proc].first.labels[level]); 344 } 345 KMP_INFORM(OSProcMapToPack, "KMP_AFFINITY", address2os[proc].second, 346 buf.str); 347 __kmp_str_buf_free(&buf); 348 } 349 } 350 351 #if KMP_USE_HWLOC 352 353 static void __kmp_affinity_print_hwloc_tp(AddrUnsPair *addrP, int len, 354 int depth, int *levels) { 355 int proc; 356 kmp_str_buf_t buf; 357 __kmp_str_buf_init(&buf); 358 KMP_INFORM(OSProcToPhysicalThreadMap, "KMP_AFFINITY"); 359 for (proc = 0; proc < len; proc++) { 360 __kmp_str_buf_print(&buf, "%s %d ", KMP_I18N_STR(Package), 361 addrP[proc].first.labels[0]); 362 if (depth > 1) { 363 int level = 1; // iterate over levels 364 int label = 1; // iterate over labels 365 if (__kmp_numa_detected) 366 // node level follows package 367 if (levels[level++] > 0) 368 __kmp_str_buf_print(&buf, "%s %d ", KMP_I18N_STR(Node), 369 addrP[proc].first.labels[label++]); 370 if (__kmp_tile_depth > 0) 371 // tile level follows node if any, or package 372 if (levels[level++] > 0) 373 __kmp_str_buf_print(&buf, "%s %d ", KMP_I18N_STR(Tile), 374 addrP[proc].first.labels[label++]); 375 if (levels[level++] > 0) 376 // core level follows 377 __kmp_str_buf_print(&buf, "%s %d ", KMP_I18N_STR(Core), 378 addrP[proc].first.labels[label++]); 379 if (levels[level++] > 0) 380 // thread level is the latest 381 __kmp_str_buf_print(&buf, "%s %d ", KMP_I18N_STR(Thread), 382 addrP[proc].first.labels[label++]); 383 KMP_DEBUG_ASSERT(label == depth); 384 } 385 KMP_INFORM(OSProcMapToPack, "KMP_AFFINITY", addrP[proc].second, buf.str); 386 __kmp_str_buf_clear(&buf); 387 } 388 __kmp_str_buf_free(&buf); 389 } 390 391 static int nNodePerPkg, nTilePerPkg, nTilePerNode, nCorePerNode, nCorePerTile; 392 393 // This function removes the topology levels that are radix 1 and don't offer 394 // further information about the topology. The most common example is when you 395 // have one thread context per core, we don't want the extra thread context 396 // level if it offers no unique labels. So they are removed. 397 // return value: the new depth of address2os 398 static int __kmp_affinity_remove_radix_one_levels(AddrUnsPair *addrP, int nTh, 399 int depth, int *levels) { 400 int level; 401 int i; 402 int radix1_detected; 403 int new_depth = depth; 404 for (level = depth - 1; level > 0; --level) { 405 // Detect if this level is radix 1 406 radix1_detected = 1; 407 for (i = 1; i < nTh; ++i) { 408 if (addrP[0].first.labels[level] != addrP[i].first.labels[level]) { 409 // There are differing label values for this level so it stays 410 radix1_detected = 0; 411 break; 412 } 413 } 414 if (!radix1_detected) 415 continue; 416 // Radix 1 was detected 417 --new_depth; 418 levels[level] = -1; // mark level as not present in address2os array 419 if (level == new_depth) { 420 // "turn off" deepest level, just decrement the depth that removes 421 // the level from address2os array 422 for (i = 0; i < nTh; ++i) { 423 addrP[i].first.depth--; 424 } 425 } else { 426 // For other levels, we move labels over and also reduce the depth 427 int j; 428 for (j = level; j < new_depth; ++j) { 429 for (i = 0; i < nTh; ++i) { 430 addrP[i].first.labels[j] = addrP[i].first.labels[j + 1]; 431 addrP[i].first.depth--; 432 } 433 levels[j + 1] -= 1; 434 } 435 } 436 } 437 return new_depth; 438 } 439 440 // Returns the number of objects of type 'type' below 'obj' within the topology 441 // tree structure. e.g., if obj is a HWLOC_OBJ_PACKAGE object, and type is 442 // HWLOC_OBJ_PU, then this will return the number of PU's under the SOCKET 443 // object. 444 static int __kmp_hwloc_get_nobjs_under_obj(hwloc_obj_t obj, 445 hwloc_obj_type_t type) { 446 int retval = 0; 447 hwloc_obj_t first; 448 for (first = hwloc_get_obj_below_by_type(__kmp_hwloc_topology, obj->type, 449 obj->logical_index, type, 0); 450 first != NULL && 451 hwloc_get_ancestor_obj_by_type(__kmp_hwloc_topology, obj->type, first) == 452 obj; 453 first = hwloc_get_next_obj_by_type(__kmp_hwloc_topology, first->type, 454 first)) { 455 ++retval; 456 } 457 return retval; 458 } 459 460 static int __kmp_hwloc_count_children_by_depth(hwloc_topology_t t, 461 hwloc_obj_t o, unsigned depth, 462 hwloc_obj_t *f) { 463 if (o->depth == depth) { 464 if (*f == NULL) 465 *f = o; // output first descendant found 466 return 1; 467 } 468 int sum = 0; 469 for (unsigned i = 0; i < o->arity; i++) 470 sum += __kmp_hwloc_count_children_by_depth(t, o->children[i], depth, f); 471 return sum; // will be 0 if no one found (as PU arity is 0) 472 } 473 474 static int __kmp_hwloc_count_children_by_type(hwloc_topology_t t, hwloc_obj_t o, 475 hwloc_obj_type_t type, 476 hwloc_obj_t *f) { 477 if (!hwloc_compare_types(o->type, type)) { 478 if (*f == NULL) 479 *f = o; // output first descendant found 480 return 1; 481 } 482 int sum = 0; 483 for (unsigned i = 0; i < o->arity; i++) 484 sum += __kmp_hwloc_count_children_by_type(t, o->children[i], type, f); 485 return sum; // will be 0 if no one found (as PU arity is 0) 486 } 487 488 static int __kmp_hwloc_process_obj_core_pu(AddrUnsPair *addrPair, 489 int &nActiveThreads, 490 int &num_active_cores, 491 hwloc_obj_t obj, int depth, 492 int *labels) { 493 hwloc_obj_t core = NULL; 494 hwloc_topology_t &tp = __kmp_hwloc_topology; 495 int NC = __kmp_hwloc_count_children_by_type(tp, obj, HWLOC_OBJ_CORE, &core); 496 for (int core_id = 0; core_id < NC; ++core_id, core = core->next_cousin) { 497 hwloc_obj_t pu = NULL; 498 KMP_DEBUG_ASSERT(core != NULL); 499 int num_active_threads = 0; 500 int NT = __kmp_hwloc_count_children_by_type(tp, core, HWLOC_OBJ_PU, &pu); 501 // int NT = core->arity; pu = core->first_child; // faster? 502 for (int pu_id = 0; pu_id < NT; ++pu_id, pu = pu->next_cousin) { 503 KMP_DEBUG_ASSERT(pu != NULL); 504 if (!KMP_CPU_ISSET(pu->os_index, __kmp_affin_fullMask)) 505 continue; // skip inactive (inaccessible) unit 506 Address addr(depth + 2); 507 KA_TRACE(20, ("Hwloc inserting %d (%d) %d (%d) %d (%d) into address2os\n", 508 obj->os_index, obj->logical_index, core->os_index, 509 core->logical_index, pu->os_index, pu->logical_index)); 510 for (int i = 0; i < depth; ++i) 511 addr.labels[i] = labels[i]; // package, etc. 512 addr.labels[depth] = core_id; // core 513 addr.labels[depth + 1] = pu_id; // pu 514 addrPair[nActiveThreads] = AddrUnsPair(addr, pu->os_index); 515 __kmp_pu_os_idx[nActiveThreads] = pu->os_index; 516 nActiveThreads++; 517 ++num_active_threads; // count active threads per core 518 } 519 if (num_active_threads) { // were there any active threads on the core? 520 ++__kmp_ncores; // count total active cores 521 ++num_active_cores; // count active cores per socket 522 if (num_active_threads > __kmp_nThreadsPerCore) 523 __kmp_nThreadsPerCore = num_active_threads; // calc maximum 524 } 525 } 526 return 0; 527 } 528 529 // Check if NUMA node detected below the package, 530 // and if tile object is detected and return its depth 531 static int __kmp_hwloc_check_numa() { 532 hwloc_topology_t &tp = __kmp_hwloc_topology; 533 hwloc_obj_t hT, hC, hL, hN, hS; // hwloc objects (pointers to) 534 int depth; 535 536 // Get some PU 537 hT = hwloc_get_obj_by_type(tp, HWLOC_OBJ_PU, 0); 538 if (hT == NULL) // something has gone wrong 539 return 1; 540 541 // check NUMA node below PACKAGE 542 hN = hwloc_get_ancestor_obj_by_type(tp, HWLOC_OBJ_NUMANODE, hT); 543 hS = hwloc_get_ancestor_obj_by_type(tp, HWLOC_OBJ_PACKAGE, hT); 544 KMP_DEBUG_ASSERT(hS != NULL); 545 if (hN != NULL && hN->depth > hS->depth) { 546 __kmp_numa_detected = TRUE; // socket includes node(s) 547 if (__kmp_affinity_gran == affinity_gran_node) { 548 __kmp_affinity_gran == affinity_gran_numa; 549 } 550 } 551 552 // check tile, get object by depth because of multiple caches possible 553 depth = hwloc_get_cache_type_depth(tp, 2, HWLOC_OBJ_CACHE_UNIFIED); 554 hL = hwloc_get_ancestor_obj_by_depth(tp, depth, hT); 555 hC = NULL; // not used, but reset it here just in case 556 if (hL != NULL && 557 __kmp_hwloc_count_children_by_type(tp, hL, HWLOC_OBJ_CORE, &hC) > 1) 558 __kmp_tile_depth = depth; // tile consists of multiple cores 559 return 0; 560 } 561 562 static int __kmp_affinity_create_hwloc_map(AddrUnsPair **address2os, 563 kmp_i18n_id_t *const msg_id) { 564 hwloc_topology_t &tp = __kmp_hwloc_topology; // shortcut of a long name 565 *address2os = NULL; 566 *msg_id = kmp_i18n_null; 567 568 // Save the affinity mask for the current thread. 569 kmp_affin_mask_t *oldMask; 570 KMP_CPU_ALLOC(oldMask); 571 __kmp_get_system_affinity(oldMask, TRUE); 572 __kmp_hwloc_check_numa(); 573 574 if (!KMP_AFFINITY_CAPABLE()) { 575 // Hack to try and infer the machine topology using only the data 576 // available from cpuid on the current thread, and __kmp_xproc. 577 KMP_ASSERT(__kmp_affinity_type == affinity_none); 578 579 nCoresPerPkg = __kmp_hwloc_get_nobjs_under_obj( 580 hwloc_get_obj_by_type(tp, HWLOC_OBJ_PACKAGE, 0), HWLOC_OBJ_CORE); 581 __kmp_nThreadsPerCore = __kmp_hwloc_get_nobjs_under_obj( 582 hwloc_get_obj_by_type(tp, HWLOC_OBJ_CORE, 0), HWLOC_OBJ_PU); 583 __kmp_ncores = __kmp_xproc / __kmp_nThreadsPerCore; 584 nPackages = (__kmp_xproc + nCoresPerPkg - 1) / nCoresPerPkg; 585 if (__kmp_affinity_verbose) { 586 KMP_INFORM(AffNotCapableUseLocCpuidL11, "KMP_AFFINITY"); 587 KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc); 588 if (__kmp_affinity_uniform_topology()) { 589 KMP_INFORM(Uniform, "KMP_AFFINITY"); 590 } else { 591 KMP_INFORM(NonUniform, "KMP_AFFINITY"); 592 } 593 KMP_INFORM(Topology, "KMP_AFFINITY", nPackages, nCoresPerPkg, 594 __kmp_nThreadsPerCore, __kmp_ncores); 595 } 596 KMP_CPU_FREE(oldMask); 597 return 0; 598 } 599 600 int depth = 3; 601 int levels[5] = {0, 1, 2, 3, 4}; // package, [node,] [tile,] core, thread 602 int labels[3] = {0}; // package [,node] [,tile] - head of lables array 603 if (__kmp_numa_detected) 604 ++depth; 605 if (__kmp_tile_depth) 606 ++depth; 607 608 // Allocate the data structure to be returned. 609 AddrUnsPair *retval = 610 (AddrUnsPair *)__kmp_allocate(sizeof(AddrUnsPair) * __kmp_avail_proc); 611 KMP_DEBUG_ASSERT(__kmp_pu_os_idx == NULL); 612 __kmp_pu_os_idx = (int *)__kmp_allocate(sizeof(int) * __kmp_avail_proc); 613 614 // When affinity is off, this routine will still be called to set 615 // __kmp_ncores, as well as __kmp_nThreadsPerCore, 616 // nCoresPerPkg, & nPackages. Make sure all these vars are set 617 // correctly, and return if affinity is not enabled. 618 619 hwloc_obj_t socket, node, tile; 620 int nActiveThreads = 0; 621 int socket_id = 0; 622 // re-calculate globals to count only accessible resources 623 __kmp_ncores = nPackages = nCoresPerPkg = __kmp_nThreadsPerCore = 0; 624 nNodePerPkg = nTilePerPkg = nTilePerNode = nCorePerNode = nCorePerTile = 0; 625 for (socket = hwloc_get_obj_by_type(tp, HWLOC_OBJ_PACKAGE, 0); socket != NULL; 626 socket = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_PACKAGE, socket), 627 socket_id++) { 628 labels[0] = socket_id; 629 if (__kmp_numa_detected) { 630 int NN; 631 int n_active_nodes = 0; 632 node = NULL; 633 NN = __kmp_hwloc_count_children_by_type(tp, socket, HWLOC_OBJ_NUMANODE, 634 &node); 635 for (int node_id = 0; node_id < NN; ++node_id, node = node->next_cousin) { 636 labels[1] = node_id; 637 if (__kmp_tile_depth) { 638 // NUMA + tiles 639 int NT; 640 int n_active_tiles = 0; 641 tile = NULL; 642 NT = __kmp_hwloc_count_children_by_depth(tp, node, __kmp_tile_depth, 643 &tile); 644 for (int tl_id = 0; tl_id < NT; ++tl_id, tile = tile->next_cousin) { 645 labels[2] = tl_id; 646 int n_active_cores = 0; 647 __kmp_hwloc_process_obj_core_pu(retval, nActiveThreads, 648 n_active_cores, tile, 3, labels); 649 if (n_active_cores) { // were there any active cores on the socket? 650 ++n_active_tiles; // count active tiles per node 651 if (n_active_cores > nCorePerTile) 652 nCorePerTile = n_active_cores; // calc maximum 653 } 654 } 655 if (n_active_tiles) { // were there any active tiles on the socket? 656 ++n_active_nodes; // count active nodes per package 657 if (n_active_tiles > nTilePerNode) 658 nTilePerNode = n_active_tiles; // calc maximum 659 } 660 } else { 661 // NUMA, no tiles 662 int n_active_cores = 0; 663 __kmp_hwloc_process_obj_core_pu(retval, nActiveThreads, 664 n_active_cores, node, 2, labels); 665 if (n_active_cores) { // were there any active cores on the socket? 666 ++n_active_nodes; // count active nodes per package 667 if (n_active_cores > nCorePerNode) 668 nCorePerNode = n_active_cores; // calc maximum 669 } 670 } 671 } 672 if (n_active_nodes) { // were there any active nodes on the socket? 673 ++nPackages; // count total active packages 674 if (n_active_nodes > nNodePerPkg) 675 nNodePerPkg = n_active_nodes; // calc maximum 676 } 677 } else { 678 if (__kmp_tile_depth) { 679 // no NUMA, tiles 680 int NT; 681 int n_active_tiles = 0; 682 tile = NULL; 683 NT = __kmp_hwloc_count_children_by_depth(tp, socket, __kmp_tile_depth, 684 &tile); 685 for (int tl_id = 0; tl_id < NT; ++tl_id, tile = tile->next_cousin) { 686 labels[1] = tl_id; 687 int n_active_cores = 0; 688 __kmp_hwloc_process_obj_core_pu(retval, nActiveThreads, 689 n_active_cores, tile, 2, labels); 690 if (n_active_cores) { // were there any active cores on the socket? 691 ++n_active_tiles; // count active tiles per package 692 if (n_active_cores > nCorePerTile) 693 nCorePerTile = n_active_cores; // calc maximum 694 } 695 } 696 if (n_active_tiles) { // were there any active tiles on the socket? 697 ++nPackages; // count total active packages 698 if (n_active_tiles > nTilePerPkg) 699 nTilePerPkg = n_active_tiles; // calc maximum 700 } 701 } else { 702 // no NUMA, no tiles 703 int n_active_cores = 0; 704 __kmp_hwloc_process_obj_core_pu(retval, nActiveThreads, n_active_cores, 705 socket, 1, labels); 706 if (n_active_cores) { // were there any active cores on the socket? 707 ++nPackages; // count total active packages 708 if (n_active_cores > nCoresPerPkg) 709 nCoresPerPkg = n_active_cores; // calc maximum 710 } 711 } 712 } 713 } 714 715 // If there's only one thread context to bind to, return now. 716 KMP_DEBUG_ASSERT(nActiveThreads == __kmp_avail_proc); 717 KMP_ASSERT(nActiveThreads > 0); 718 if (nActiveThreads == 1) { 719 __kmp_ncores = nPackages = 1; 720 __kmp_nThreadsPerCore = nCoresPerPkg = 1; 721 if (__kmp_affinity_verbose) { 722 char buf[KMP_AFFIN_MASK_PRINT_LEN]; 723 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, oldMask); 724 725 KMP_INFORM(AffUsingHwloc, "KMP_AFFINITY"); 726 if (__kmp_affinity_respect_mask) { 727 KMP_INFORM(InitOSProcSetRespect, "KMP_AFFINITY", buf); 728 } else { 729 KMP_INFORM(InitOSProcSetNotRespect, "KMP_AFFINITY", buf); 730 } 731 KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc); 732 KMP_INFORM(Uniform, "KMP_AFFINITY"); 733 KMP_INFORM(Topology, "KMP_AFFINITY", nPackages, nCoresPerPkg, 734 __kmp_nThreadsPerCore, __kmp_ncores); 735 } 736 737 if (__kmp_affinity_type == affinity_none) { 738 __kmp_free(retval); 739 KMP_CPU_FREE(oldMask); 740 return 0; 741 } 742 743 // Form an Address object which only includes the package level. 744 Address addr(1); 745 addr.labels[0] = retval[0].first.labels[0]; 746 retval[0].first = addr; 747 748 if (__kmp_affinity_gran_levels < 0) { 749 __kmp_affinity_gran_levels = 0; 750 } 751 752 if (__kmp_affinity_verbose) { 753 __kmp_affinity_print_topology(retval, 1, 1, 0, -1, -1); 754 } 755 756 *address2os = retval; 757 KMP_CPU_FREE(oldMask); 758 return 1; 759 } 760 761 // Sort the table by physical Id. 762 qsort(retval, nActiveThreads, sizeof(*retval), 763 __kmp_affinity_cmp_Address_labels); 764 765 // Check to see if the machine topology is uniform 766 int nPUs = nPackages * __kmp_nThreadsPerCore; 767 if (__kmp_numa_detected) { 768 if (__kmp_tile_depth) { // NUMA + tiles 769 nPUs *= (nNodePerPkg * nTilePerNode * nCorePerTile); 770 } else { // NUMA, no tiles 771 nPUs *= (nNodePerPkg * nCorePerNode); 772 } 773 } else { 774 if (__kmp_tile_depth) { // no NUMA, tiles 775 nPUs *= (nTilePerPkg * nCorePerTile); 776 } else { // no NUMA, no tiles 777 nPUs *= nCoresPerPkg; 778 } 779 } 780 unsigned uniform = (nPUs == nActiveThreads); 781 782 // Print the machine topology summary. 783 if (__kmp_affinity_verbose) { 784 char mask[KMP_AFFIN_MASK_PRINT_LEN]; 785 __kmp_affinity_print_mask(mask, KMP_AFFIN_MASK_PRINT_LEN, oldMask); 786 if (__kmp_affinity_respect_mask) { 787 KMP_INFORM(InitOSProcSetRespect, "KMP_AFFINITY", mask); 788 } else { 789 KMP_INFORM(InitOSProcSetNotRespect, "KMP_AFFINITY", mask); 790 } 791 KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc); 792 if (uniform) { 793 KMP_INFORM(Uniform, "KMP_AFFINITY"); 794 } else { 795 KMP_INFORM(NonUniform, "KMP_AFFINITY"); 796 } 797 if (__kmp_numa_detected) { 798 if (__kmp_tile_depth) { // NUMA + tiles 799 KMP_INFORM(TopologyExtraNoTi, "KMP_AFFINITY", nPackages, nNodePerPkg, 800 nTilePerNode, nCorePerTile, __kmp_nThreadsPerCore, 801 __kmp_ncores); 802 } else { // NUMA, no tiles 803 KMP_INFORM(TopologyExtraNode, "KMP_AFFINITY", nPackages, nNodePerPkg, 804 nCorePerNode, __kmp_nThreadsPerCore, __kmp_ncores); 805 nPUs *= (nNodePerPkg * nCorePerNode); 806 } 807 } else { 808 if (__kmp_tile_depth) { // no NUMA, tiles 809 KMP_INFORM(TopologyExtraTile, "KMP_AFFINITY", nPackages, nTilePerPkg, 810 nCorePerTile, __kmp_nThreadsPerCore, __kmp_ncores); 811 } else { // no NUMA, no tiles 812 kmp_str_buf_t buf; 813 __kmp_str_buf_init(&buf); 814 __kmp_str_buf_print(&buf, "%d", nPackages); 815 KMP_INFORM(TopologyExtra, "KMP_AFFINITY", buf.str, nCoresPerPkg, 816 __kmp_nThreadsPerCore, __kmp_ncores); 817 __kmp_str_buf_free(&buf); 818 } 819 } 820 } 821 822 if (__kmp_affinity_type == affinity_none) { 823 __kmp_free(retval); 824 KMP_CPU_FREE(oldMask); 825 return 0; 826 } 827 828 int depth_full = depth; // number of levels before compressing 829 // Find any levels with radiix 1, and remove them from the map 830 // (except for the package level). 831 depth = __kmp_affinity_remove_radix_one_levels(retval, nActiveThreads, depth, 832 levels); 833 KMP_DEBUG_ASSERT(__kmp_affinity_gran != affinity_gran_default); 834 if (__kmp_affinity_gran_levels < 0) { 835 // Set the granularity level based on what levels are modeled 836 // in the machine topology map. 837 __kmp_affinity_gran_levels = 0; // lowest level (e.g. fine) 838 if (__kmp_affinity_gran > affinity_gran_thread) { 839 for (int i = 1; i <= depth_full; ++i) { 840 if (__kmp_affinity_gran <= i) // only count deeper levels 841 break; 842 if (levels[depth_full - i] > 0) 843 __kmp_affinity_gran_levels++; 844 } 845 } 846 if (__kmp_affinity_gran > affinity_gran_package) 847 __kmp_affinity_gran_levels++; // e.g. granularity = group 848 } 849 850 if (__kmp_affinity_verbose) 851 __kmp_affinity_print_hwloc_tp(retval, nActiveThreads, depth, levels); 852 853 KMP_CPU_FREE(oldMask); 854 *address2os = retval; 855 return depth; 856 } 857 #endif // KMP_USE_HWLOC 858 859 // If we don't know how to retrieve the machine's processor topology, or 860 // encounter an error in doing so, this routine is called to form a "flat" 861 // mapping of os thread id's <-> processor id's. 862 static int __kmp_affinity_create_flat_map(AddrUnsPair **address2os, 863 kmp_i18n_id_t *const msg_id) { 864 *address2os = NULL; 865 *msg_id = kmp_i18n_null; 866 867 // Even if __kmp_affinity_type == affinity_none, this routine might still 868 // called to set __kmp_ncores, as well as 869 // __kmp_nThreadsPerCore, nCoresPerPkg, & nPackages. 870 if (!KMP_AFFINITY_CAPABLE()) { 871 KMP_ASSERT(__kmp_affinity_type == affinity_none); 872 __kmp_ncores = nPackages = __kmp_xproc; 873 __kmp_nThreadsPerCore = nCoresPerPkg = 1; 874 if (__kmp_affinity_verbose) { 875 KMP_INFORM(AffFlatTopology, "KMP_AFFINITY"); 876 KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc); 877 KMP_INFORM(Uniform, "KMP_AFFINITY"); 878 KMP_INFORM(Topology, "KMP_AFFINITY", nPackages, nCoresPerPkg, 879 __kmp_nThreadsPerCore, __kmp_ncores); 880 } 881 return 0; 882 } 883 884 // When affinity is off, this routine will still be called to set 885 // __kmp_ncores, as well as __kmp_nThreadsPerCore, nCoresPerPkg, & nPackages. 886 // Make sure all these vars are set correctly, and return now if affinity is 887 // not enabled. 888 __kmp_ncores = nPackages = __kmp_avail_proc; 889 __kmp_nThreadsPerCore = nCoresPerPkg = 1; 890 if (__kmp_affinity_verbose) { 891 char buf[KMP_AFFIN_MASK_PRINT_LEN]; 892 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, 893 __kmp_affin_fullMask); 894 895 KMP_INFORM(AffCapableUseFlat, "KMP_AFFINITY"); 896 if (__kmp_affinity_respect_mask) { 897 KMP_INFORM(InitOSProcSetRespect, "KMP_AFFINITY", buf); 898 } else { 899 KMP_INFORM(InitOSProcSetNotRespect, "KMP_AFFINITY", buf); 900 } 901 KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc); 902 KMP_INFORM(Uniform, "KMP_AFFINITY"); 903 KMP_INFORM(Topology, "KMP_AFFINITY", nPackages, nCoresPerPkg, 904 __kmp_nThreadsPerCore, __kmp_ncores); 905 } 906 KMP_DEBUG_ASSERT(__kmp_pu_os_idx == NULL); 907 __kmp_pu_os_idx = (int *)__kmp_allocate(sizeof(int) * __kmp_avail_proc); 908 if (__kmp_affinity_type == affinity_none) { 909 int avail_ct = 0; 910 int i; 911 KMP_CPU_SET_ITERATE(i, __kmp_affin_fullMask) { 912 if (!KMP_CPU_ISSET(i, __kmp_affin_fullMask)) 913 continue; 914 __kmp_pu_os_idx[avail_ct++] = i; // suppose indices are flat 915 } 916 return 0; 917 } 918 919 // Contruct the data structure to be returned. 920 *address2os = 921 (AddrUnsPair *)__kmp_allocate(sizeof(**address2os) * __kmp_avail_proc); 922 int avail_ct = 0; 923 int i; 924 KMP_CPU_SET_ITERATE(i, __kmp_affin_fullMask) { 925 // Skip this proc if it is not included in the machine model. 926 if (!KMP_CPU_ISSET(i, __kmp_affin_fullMask)) { 927 continue; 928 } 929 __kmp_pu_os_idx[avail_ct] = i; // suppose indices are flat 930 Address addr(1); 931 addr.labels[0] = i; 932 (*address2os)[avail_ct++] = AddrUnsPair(addr, i); 933 } 934 if (__kmp_affinity_verbose) { 935 KMP_INFORM(OSProcToPackage, "KMP_AFFINITY"); 936 } 937 938 if (__kmp_affinity_gran_levels < 0) { 939 // Only the package level is modeled in the machine topology map, 940 // so the #levels of granularity is either 0 or 1. 941 if (__kmp_affinity_gran > affinity_gran_package) { 942 __kmp_affinity_gran_levels = 1; 943 } else { 944 __kmp_affinity_gran_levels = 0; 945 } 946 } 947 return 1; 948 } 949 950 #if KMP_GROUP_AFFINITY 951 952 // If multiple Windows* OS processor groups exist, we can create a 2-level 953 // topology map with the groups at level 0 and the individual procs at level 1. 954 // This facilitates letting the threads float among all procs in a group, 955 // if granularity=group (the default when there are multiple groups). 956 static int __kmp_affinity_create_proc_group_map(AddrUnsPair **address2os, 957 kmp_i18n_id_t *const msg_id) { 958 *address2os = NULL; 959 *msg_id = kmp_i18n_null; 960 961 // If we aren't affinity capable, then return now. 962 // The flat mapping will be used. 963 if (!KMP_AFFINITY_CAPABLE()) { 964 // FIXME set *msg_id 965 return -1; 966 } 967 968 // Contruct the data structure to be returned. 969 *address2os = 970 (AddrUnsPair *)__kmp_allocate(sizeof(**address2os) * __kmp_avail_proc); 971 KMP_DEBUG_ASSERT(__kmp_pu_os_idx == NULL); 972 __kmp_pu_os_idx = (int *)__kmp_allocate(sizeof(int) * __kmp_avail_proc); 973 int avail_ct = 0; 974 int i; 975 KMP_CPU_SET_ITERATE(i, __kmp_affin_fullMask) { 976 // Skip this proc if it is not included in the machine model. 977 if (!KMP_CPU_ISSET(i, __kmp_affin_fullMask)) { 978 continue; 979 } 980 __kmp_pu_os_idx[avail_ct] = i; // suppose indices are flat 981 Address addr(2); 982 addr.labels[0] = i / (CHAR_BIT * sizeof(DWORD_PTR)); 983 addr.labels[1] = i % (CHAR_BIT * sizeof(DWORD_PTR)); 984 (*address2os)[avail_ct++] = AddrUnsPair(addr, i); 985 986 if (__kmp_affinity_verbose) { 987 KMP_INFORM(AffOSProcToGroup, "KMP_AFFINITY", i, addr.labels[0], 988 addr.labels[1]); 989 } 990 } 991 992 if (__kmp_affinity_gran_levels < 0) { 993 if (__kmp_affinity_gran == affinity_gran_group) { 994 __kmp_affinity_gran_levels = 1; 995 } else if ((__kmp_affinity_gran == affinity_gran_fine) || 996 (__kmp_affinity_gran == affinity_gran_thread)) { 997 __kmp_affinity_gran_levels = 0; 998 } else { 999 const char *gran_str = NULL; 1000 if (__kmp_affinity_gran == affinity_gran_core) { 1001 gran_str = "core"; 1002 } else if (__kmp_affinity_gran == affinity_gran_package) { 1003 gran_str = "package"; 1004 } else if (__kmp_affinity_gran == affinity_gran_node) { 1005 gran_str = "node"; 1006 } else { 1007 KMP_ASSERT(0); 1008 } 1009 1010 // Warning: can't use affinity granularity \"gran\" with group topology 1011 // method, using "thread" 1012 __kmp_affinity_gran_levels = 0; 1013 } 1014 } 1015 return 2; 1016 } 1017 1018 #endif /* KMP_GROUP_AFFINITY */ 1019 1020 #if KMP_ARCH_X86 || KMP_ARCH_X86_64 1021 1022 static int __kmp_cpuid_mask_width(int count) { 1023 int r = 0; 1024 1025 while ((1 << r) < count) 1026 ++r; 1027 return r; 1028 } 1029 1030 class apicThreadInfo { 1031 public: 1032 unsigned osId; // param to __kmp_affinity_bind_thread 1033 unsigned apicId; // from cpuid after binding 1034 unsigned maxCoresPerPkg; // "" 1035 unsigned maxThreadsPerPkg; // "" 1036 unsigned pkgId; // inferred from above values 1037 unsigned coreId; // "" 1038 unsigned threadId; // "" 1039 }; 1040 1041 static int __kmp_affinity_cmp_apicThreadInfo_phys_id(const void *a, 1042 const void *b) { 1043 const apicThreadInfo *aa = (const apicThreadInfo *)a; 1044 const apicThreadInfo *bb = (const apicThreadInfo *)b; 1045 if (aa->pkgId < bb->pkgId) 1046 return -1; 1047 if (aa->pkgId > bb->pkgId) 1048 return 1; 1049 if (aa->coreId < bb->coreId) 1050 return -1; 1051 if (aa->coreId > bb->coreId) 1052 return 1; 1053 if (aa->threadId < bb->threadId) 1054 return -1; 1055 if (aa->threadId > bb->threadId) 1056 return 1; 1057 return 0; 1058 } 1059 1060 // On IA-32 architecture and Intel(R) 64 architecture, we attempt to use 1061 // an algorithm which cycles through the available os threads, setting 1062 // the current thread's affinity mask to that thread, and then retrieves 1063 // the Apic Id for each thread context using the cpuid instruction. 1064 static int __kmp_affinity_create_apicid_map(AddrUnsPair **address2os, 1065 kmp_i18n_id_t *const msg_id) { 1066 kmp_cpuid buf; 1067 *address2os = NULL; 1068 *msg_id = kmp_i18n_null; 1069 1070 // Check if cpuid leaf 4 is supported. 1071 __kmp_x86_cpuid(0, 0, &buf); 1072 if (buf.eax < 4) { 1073 *msg_id = kmp_i18n_str_NoLeaf4Support; 1074 return -1; 1075 } 1076 1077 // The algorithm used starts by setting the affinity to each available thread 1078 // and retrieving info from the cpuid instruction, so if we are not capable of 1079 // calling __kmp_get_system_affinity() and _kmp_get_system_affinity(), then we 1080 // need to do something else - use the defaults that we calculated from 1081 // issuing cpuid without binding to each proc. 1082 if (!KMP_AFFINITY_CAPABLE()) { 1083 // Hack to try and infer the machine topology using only the data 1084 // available from cpuid on the current thread, and __kmp_xproc. 1085 KMP_ASSERT(__kmp_affinity_type == affinity_none); 1086 1087 // Get an upper bound on the number of threads per package using cpuid(1). 1088 // On some OS/chps combinations where HT is supported by the chip but is 1089 // disabled, this value will be 2 on a single core chip. Usually, it will be 1090 // 2 if HT is enabled and 1 if HT is disabled. 1091 __kmp_x86_cpuid(1, 0, &buf); 1092 int maxThreadsPerPkg = (buf.ebx >> 16) & 0xff; 1093 if (maxThreadsPerPkg == 0) { 1094 maxThreadsPerPkg = 1; 1095 } 1096 1097 // The num cores per pkg comes from cpuid(4). 1 must be added to the encoded 1098 // value. 1099 // 1100 // The author of cpu_count.cpp treated this only an upper bound on the 1101 // number of cores, but I haven't seen any cases where it was greater than 1102 // the actual number of cores, so we will treat it as exact in this block of 1103 // code. 1104 // 1105 // First, we need to check if cpuid(4) is supported on this chip. To see if 1106 // cpuid(n) is supported, issue cpuid(0) and check if eax has the value n or 1107 // greater. 1108 __kmp_x86_cpuid(0, 0, &buf); 1109 if (buf.eax >= 4) { 1110 __kmp_x86_cpuid(4, 0, &buf); 1111 nCoresPerPkg = ((buf.eax >> 26) & 0x3f) + 1; 1112 } else { 1113 nCoresPerPkg = 1; 1114 } 1115 1116 // There is no way to reliably tell if HT is enabled without issuing the 1117 // cpuid instruction from every thread, can correlating the cpuid info, so 1118 // if the machine is not affinity capable, we assume that HT is off. We have 1119 // seen quite a few machines where maxThreadsPerPkg is 2, yet the machine 1120 // does not support HT. 1121 // 1122 // - Older OSes are usually found on machines with older chips, which do not 1123 // support HT. 1124 // - The performance penalty for mistakenly identifying a machine as HT when 1125 // it isn't (which results in blocktime being incorrecly set to 0) is 1126 // greater than the penalty when for mistakenly identifying a machine as 1127 // being 1 thread/core when it is really HT enabled (which results in 1128 // blocktime being incorrectly set to a positive value). 1129 __kmp_ncores = __kmp_xproc; 1130 nPackages = (__kmp_xproc + nCoresPerPkg - 1) / nCoresPerPkg; 1131 __kmp_nThreadsPerCore = 1; 1132 if (__kmp_affinity_verbose) { 1133 KMP_INFORM(AffNotCapableUseLocCpuid, "KMP_AFFINITY"); 1134 KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc); 1135 if (__kmp_affinity_uniform_topology()) { 1136 KMP_INFORM(Uniform, "KMP_AFFINITY"); 1137 } else { 1138 KMP_INFORM(NonUniform, "KMP_AFFINITY"); 1139 } 1140 KMP_INFORM(Topology, "KMP_AFFINITY", nPackages, nCoresPerPkg, 1141 __kmp_nThreadsPerCore, __kmp_ncores); 1142 } 1143 return 0; 1144 } 1145 1146 // From here on, we can assume that it is safe to call 1147 // __kmp_get_system_affinity() and __kmp_set_system_affinity(), even if 1148 // __kmp_affinity_type = affinity_none. 1149 1150 // Save the affinity mask for the current thread. 1151 kmp_affin_mask_t *oldMask; 1152 KMP_CPU_ALLOC(oldMask); 1153 KMP_ASSERT(oldMask != NULL); 1154 __kmp_get_system_affinity(oldMask, TRUE); 1155 1156 // Run through each of the available contexts, binding the current thread 1157 // to it, and obtaining the pertinent information using the cpuid instr. 1158 // 1159 // The relevant information is: 1160 // - Apic Id: Bits 24:31 of ebx after issuing cpuid(1) - each thread context 1161 // has a uniqie Apic Id, which is of the form pkg# : core# : thread#. 1162 // - Max Threads Per Pkg: Bits 16:23 of ebx after issuing cpuid(1). The value 1163 // of this field determines the width of the core# + thread# fields in the 1164 // Apic Id. It is also an upper bound on the number of threads per 1165 // package, but it has been verified that situations happen were it is not 1166 // exact. In particular, on certain OS/chip combinations where Intel(R) 1167 // Hyper-Threading Technology is supported by the chip but has been 1168 // disabled, the value of this field will be 2 (for a single core chip). 1169 // On other OS/chip combinations supporting Intel(R) Hyper-Threading 1170 // Technology, the value of this field will be 1 when Intel(R) 1171 // Hyper-Threading Technology is disabled and 2 when it is enabled. 1172 // - Max Cores Per Pkg: Bits 26:31 of eax after issuing cpuid(4). The value 1173 // of this field (+1) determines the width of the core# field in the Apic 1174 // Id. The comments in "cpucount.cpp" say that this value is an upper 1175 // bound, but the IA-32 architecture manual says that it is exactly the 1176 // number of cores per package, and I haven't seen any case where it 1177 // wasn't. 1178 // 1179 // From this information, deduce the package Id, core Id, and thread Id, 1180 // and set the corresponding fields in the apicThreadInfo struct. 1181 unsigned i; 1182 apicThreadInfo *threadInfo = (apicThreadInfo *)__kmp_allocate( 1183 __kmp_avail_proc * sizeof(apicThreadInfo)); 1184 unsigned nApics = 0; 1185 KMP_CPU_SET_ITERATE(i, __kmp_affin_fullMask) { 1186 // Skip this proc if it is not included in the machine model. 1187 if (!KMP_CPU_ISSET(i, __kmp_affin_fullMask)) { 1188 continue; 1189 } 1190 KMP_DEBUG_ASSERT((int)nApics < __kmp_avail_proc); 1191 1192 __kmp_affinity_dispatch->bind_thread(i); 1193 threadInfo[nApics].osId = i; 1194 1195 // The apic id and max threads per pkg come from cpuid(1). 1196 __kmp_x86_cpuid(1, 0, &buf); 1197 if (((buf.edx >> 9) & 1) == 0) { 1198 __kmp_set_system_affinity(oldMask, TRUE); 1199 __kmp_free(threadInfo); 1200 KMP_CPU_FREE(oldMask); 1201 *msg_id = kmp_i18n_str_ApicNotPresent; 1202 return -1; 1203 } 1204 threadInfo[nApics].apicId = (buf.ebx >> 24) & 0xff; 1205 threadInfo[nApics].maxThreadsPerPkg = (buf.ebx >> 16) & 0xff; 1206 if (threadInfo[nApics].maxThreadsPerPkg == 0) { 1207 threadInfo[nApics].maxThreadsPerPkg = 1; 1208 } 1209 1210 // Max cores per pkg comes from cpuid(4). 1 must be added to the encoded 1211 // value. 1212 // 1213 // First, we need to check if cpuid(4) is supported on this chip. To see if 1214 // cpuid(n) is supported, issue cpuid(0) and check if eax has the value n 1215 // or greater. 1216 __kmp_x86_cpuid(0, 0, &buf); 1217 if (buf.eax >= 4) { 1218 __kmp_x86_cpuid(4, 0, &buf); 1219 threadInfo[nApics].maxCoresPerPkg = ((buf.eax >> 26) & 0x3f) + 1; 1220 } else { 1221 threadInfo[nApics].maxCoresPerPkg = 1; 1222 } 1223 1224 // Infer the pkgId / coreId / threadId using only the info obtained locally. 1225 int widthCT = __kmp_cpuid_mask_width(threadInfo[nApics].maxThreadsPerPkg); 1226 threadInfo[nApics].pkgId = threadInfo[nApics].apicId >> widthCT; 1227 1228 int widthC = __kmp_cpuid_mask_width(threadInfo[nApics].maxCoresPerPkg); 1229 int widthT = widthCT - widthC; 1230 if (widthT < 0) { 1231 // I've never seen this one happen, but I suppose it could, if the cpuid 1232 // instruction on a chip was really screwed up. Make sure to restore the 1233 // affinity mask before the tail call. 1234 __kmp_set_system_affinity(oldMask, TRUE); 1235 __kmp_free(threadInfo); 1236 KMP_CPU_FREE(oldMask); 1237 *msg_id = kmp_i18n_str_InvalidCpuidInfo; 1238 return -1; 1239 } 1240 1241 int maskC = (1 << widthC) - 1; 1242 threadInfo[nApics].coreId = (threadInfo[nApics].apicId >> widthT) & maskC; 1243 1244 int maskT = (1 << widthT) - 1; 1245 threadInfo[nApics].threadId = threadInfo[nApics].apicId & maskT; 1246 1247 nApics++; 1248 } 1249 1250 // We've collected all the info we need. 1251 // Restore the old affinity mask for this thread. 1252 __kmp_set_system_affinity(oldMask, TRUE); 1253 1254 // If there's only one thread context to bind to, form an Address object 1255 // with depth 1 and return immediately (or, if affinity is off, set 1256 // address2os to NULL and return). 1257 // 1258 // If it is configured to omit the package level when there is only a single 1259 // package, the logic at the end of this routine won't work if there is only 1260 // a single thread - it would try to form an Address object with depth 0. 1261 KMP_ASSERT(nApics > 0); 1262 if (nApics == 1) { 1263 __kmp_ncores = nPackages = 1; 1264 __kmp_nThreadsPerCore = nCoresPerPkg = 1; 1265 if (__kmp_affinity_verbose) { 1266 char buf[KMP_AFFIN_MASK_PRINT_LEN]; 1267 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, oldMask); 1268 1269 KMP_INFORM(AffUseGlobCpuid, "KMP_AFFINITY"); 1270 if (__kmp_affinity_respect_mask) { 1271 KMP_INFORM(InitOSProcSetRespect, "KMP_AFFINITY", buf); 1272 } else { 1273 KMP_INFORM(InitOSProcSetNotRespect, "KMP_AFFINITY", buf); 1274 } 1275 KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc); 1276 KMP_INFORM(Uniform, "KMP_AFFINITY"); 1277 KMP_INFORM(Topology, "KMP_AFFINITY", nPackages, nCoresPerPkg, 1278 __kmp_nThreadsPerCore, __kmp_ncores); 1279 } 1280 1281 if (__kmp_affinity_type == affinity_none) { 1282 __kmp_free(threadInfo); 1283 KMP_CPU_FREE(oldMask); 1284 return 0; 1285 } 1286 1287 *address2os = (AddrUnsPair *)__kmp_allocate(sizeof(AddrUnsPair)); 1288 Address addr(1); 1289 addr.labels[0] = threadInfo[0].pkgId; 1290 (*address2os)[0] = AddrUnsPair(addr, threadInfo[0].osId); 1291 1292 if (__kmp_affinity_gran_levels < 0) { 1293 __kmp_affinity_gran_levels = 0; 1294 } 1295 1296 if (__kmp_affinity_verbose) { 1297 __kmp_affinity_print_topology(*address2os, 1, 1, 0, -1, -1); 1298 } 1299 1300 __kmp_free(threadInfo); 1301 KMP_CPU_FREE(oldMask); 1302 return 1; 1303 } 1304 1305 // Sort the threadInfo table by physical Id. 1306 qsort(threadInfo, nApics, sizeof(*threadInfo), 1307 __kmp_affinity_cmp_apicThreadInfo_phys_id); 1308 1309 // The table is now sorted by pkgId / coreId / threadId, but we really don't 1310 // know the radix of any of the fields. pkgId's may be sparsely assigned among 1311 // the chips on a system. Although coreId's are usually assigned 1312 // [0 .. coresPerPkg-1] and threadId's are usually assigned 1313 // [0..threadsPerCore-1], we don't want to make any such assumptions. 1314 // 1315 // For that matter, we don't know what coresPerPkg and threadsPerCore (or the 1316 // total # packages) are at this point - we want to determine that now. We 1317 // only have an upper bound on the first two figures. 1318 // 1319 // We also perform a consistency check at this point: the values returned by 1320 // the cpuid instruction for any thread bound to a given package had better 1321 // return the same info for maxThreadsPerPkg and maxCoresPerPkg. 1322 nPackages = 1; 1323 nCoresPerPkg = 1; 1324 __kmp_nThreadsPerCore = 1; 1325 unsigned nCores = 1; 1326 1327 unsigned pkgCt = 1; // to determine radii 1328 unsigned lastPkgId = threadInfo[0].pkgId; 1329 unsigned coreCt = 1; 1330 unsigned lastCoreId = threadInfo[0].coreId; 1331 unsigned threadCt = 1; 1332 unsigned lastThreadId = threadInfo[0].threadId; 1333 1334 // intra-pkg consist checks 1335 unsigned prevMaxCoresPerPkg = threadInfo[0].maxCoresPerPkg; 1336 unsigned prevMaxThreadsPerPkg = threadInfo[0].maxThreadsPerPkg; 1337 1338 for (i = 1; i < nApics; i++) { 1339 if (threadInfo[i].pkgId != lastPkgId) { 1340 nCores++; 1341 pkgCt++; 1342 lastPkgId = threadInfo[i].pkgId; 1343 if ((int)coreCt > nCoresPerPkg) 1344 nCoresPerPkg = coreCt; 1345 coreCt = 1; 1346 lastCoreId = threadInfo[i].coreId; 1347 if ((int)threadCt > __kmp_nThreadsPerCore) 1348 __kmp_nThreadsPerCore = threadCt; 1349 threadCt = 1; 1350 lastThreadId = threadInfo[i].threadId; 1351 1352 // This is a different package, so go on to the next iteration without 1353 // doing any consistency checks. Reset the consistency check vars, though. 1354 prevMaxCoresPerPkg = threadInfo[i].maxCoresPerPkg; 1355 prevMaxThreadsPerPkg = threadInfo[i].maxThreadsPerPkg; 1356 continue; 1357 } 1358 1359 if (threadInfo[i].coreId != lastCoreId) { 1360 nCores++; 1361 coreCt++; 1362 lastCoreId = threadInfo[i].coreId; 1363 if ((int)threadCt > __kmp_nThreadsPerCore) 1364 __kmp_nThreadsPerCore = threadCt; 1365 threadCt = 1; 1366 lastThreadId = threadInfo[i].threadId; 1367 } else if (threadInfo[i].threadId != lastThreadId) { 1368 threadCt++; 1369 lastThreadId = threadInfo[i].threadId; 1370 } else { 1371 __kmp_free(threadInfo); 1372 KMP_CPU_FREE(oldMask); 1373 *msg_id = kmp_i18n_str_LegacyApicIDsNotUnique; 1374 return -1; 1375 } 1376 1377 // Check to make certain that the maxCoresPerPkg and maxThreadsPerPkg 1378 // fields agree between all the threads bounds to a given package. 1379 if ((prevMaxCoresPerPkg != threadInfo[i].maxCoresPerPkg) || 1380 (prevMaxThreadsPerPkg != threadInfo[i].maxThreadsPerPkg)) { 1381 __kmp_free(threadInfo); 1382 KMP_CPU_FREE(oldMask); 1383 *msg_id = kmp_i18n_str_InconsistentCpuidInfo; 1384 return -1; 1385 } 1386 } 1387 nPackages = pkgCt; 1388 if ((int)coreCt > nCoresPerPkg) 1389 nCoresPerPkg = coreCt; 1390 if ((int)threadCt > __kmp_nThreadsPerCore) 1391 __kmp_nThreadsPerCore = threadCt; 1392 1393 // When affinity is off, this routine will still be called to set 1394 // __kmp_ncores, as well as __kmp_nThreadsPerCore, nCoresPerPkg, & nPackages. 1395 // Make sure all these vars are set correctly, and return now if affinity is 1396 // not enabled. 1397 __kmp_ncores = nCores; 1398 if (__kmp_affinity_verbose) { 1399 char buf[KMP_AFFIN_MASK_PRINT_LEN]; 1400 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, oldMask); 1401 1402 KMP_INFORM(AffUseGlobCpuid, "KMP_AFFINITY"); 1403 if (__kmp_affinity_respect_mask) { 1404 KMP_INFORM(InitOSProcSetRespect, "KMP_AFFINITY", buf); 1405 } else { 1406 KMP_INFORM(InitOSProcSetNotRespect, "KMP_AFFINITY", buf); 1407 } 1408 KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc); 1409 if (__kmp_affinity_uniform_topology()) { 1410 KMP_INFORM(Uniform, "KMP_AFFINITY"); 1411 } else { 1412 KMP_INFORM(NonUniform, "KMP_AFFINITY"); 1413 } 1414 KMP_INFORM(Topology, "KMP_AFFINITY", nPackages, nCoresPerPkg, 1415 __kmp_nThreadsPerCore, __kmp_ncores); 1416 } 1417 KMP_DEBUG_ASSERT(__kmp_pu_os_idx == NULL); 1418 KMP_DEBUG_ASSERT(nApics == (unsigned)__kmp_avail_proc); 1419 __kmp_pu_os_idx = (int *)__kmp_allocate(sizeof(int) * __kmp_avail_proc); 1420 for (i = 0; i < nApics; ++i) { 1421 __kmp_pu_os_idx[i] = threadInfo[i].osId; 1422 } 1423 if (__kmp_affinity_type == affinity_none) { 1424 __kmp_free(threadInfo); 1425 KMP_CPU_FREE(oldMask); 1426 return 0; 1427 } 1428 1429 // Now that we've determined the number of packages, the number of cores per 1430 // package, and the number of threads per core, we can construct the data 1431 // structure that is to be returned. 1432 int pkgLevel = 0; 1433 int coreLevel = (nCoresPerPkg <= 1) ? -1 : 1; 1434 int threadLevel = 1435 (__kmp_nThreadsPerCore <= 1) ? -1 : ((coreLevel >= 0) ? 2 : 1); 1436 unsigned depth = (pkgLevel >= 0) + (coreLevel >= 0) + (threadLevel >= 0); 1437 1438 KMP_ASSERT(depth > 0); 1439 *address2os = (AddrUnsPair *)__kmp_allocate(sizeof(AddrUnsPair) * nApics); 1440 1441 for (i = 0; i < nApics; ++i) { 1442 Address addr(depth); 1443 unsigned os = threadInfo[i].osId; 1444 int d = 0; 1445 1446 if (pkgLevel >= 0) { 1447 addr.labels[d++] = threadInfo[i].pkgId; 1448 } 1449 if (coreLevel >= 0) { 1450 addr.labels[d++] = threadInfo[i].coreId; 1451 } 1452 if (threadLevel >= 0) { 1453 addr.labels[d++] = threadInfo[i].threadId; 1454 } 1455 (*address2os)[i] = AddrUnsPair(addr, os); 1456 } 1457 1458 if (__kmp_affinity_gran_levels < 0) { 1459 // Set the granularity level based on what levels are modeled in the machine 1460 // topology map. 1461 __kmp_affinity_gran_levels = 0; 1462 if ((threadLevel >= 0) && (__kmp_affinity_gran > affinity_gran_thread)) { 1463 __kmp_affinity_gran_levels++; 1464 } 1465 if ((coreLevel >= 0) && (__kmp_affinity_gran > affinity_gran_core)) { 1466 __kmp_affinity_gran_levels++; 1467 } 1468 if ((pkgLevel >= 0) && (__kmp_affinity_gran > affinity_gran_package)) { 1469 __kmp_affinity_gran_levels++; 1470 } 1471 } 1472 1473 if (__kmp_affinity_verbose) { 1474 __kmp_affinity_print_topology(*address2os, nApics, depth, pkgLevel, 1475 coreLevel, threadLevel); 1476 } 1477 1478 __kmp_free(threadInfo); 1479 KMP_CPU_FREE(oldMask); 1480 return depth; 1481 } 1482 1483 // Intel(R) microarchitecture code name Nehalem, Dunnington and later 1484 // architectures support a newer interface for specifying the x2APIC Ids, 1485 // based on cpuid leaf 11. 1486 static int __kmp_affinity_create_x2apicid_map(AddrUnsPair **address2os, 1487 kmp_i18n_id_t *const msg_id) { 1488 kmp_cpuid buf; 1489 *address2os = NULL; 1490 *msg_id = kmp_i18n_null; 1491 1492 // Check to see if cpuid leaf 11 is supported. 1493 __kmp_x86_cpuid(0, 0, &buf); 1494 if (buf.eax < 11) { 1495 *msg_id = kmp_i18n_str_NoLeaf11Support; 1496 return -1; 1497 } 1498 __kmp_x86_cpuid(11, 0, &buf); 1499 if (buf.ebx == 0) { 1500 *msg_id = kmp_i18n_str_NoLeaf11Support; 1501 return -1; 1502 } 1503 1504 // Find the number of levels in the machine topology. While we're at it, get 1505 // the default values for __kmp_nThreadsPerCore & nCoresPerPkg. We will try to 1506 // get more accurate values later by explicitly counting them, but get 1507 // reasonable defaults now, in case we return early. 1508 int level; 1509 int threadLevel = -1; 1510 int coreLevel = -1; 1511 int pkgLevel = -1; 1512 __kmp_nThreadsPerCore = nCoresPerPkg = nPackages = 1; 1513 1514 for (level = 0;; level++) { 1515 if (level > 31) { 1516 // FIXME: Hack for DPD200163180 1517 // 1518 // If level is big then something went wrong -> exiting 1519 // 1520 // There could actually be 32 valid levels in the machine topology, but so 1521 // far, the only machine we have seen which does not exit this loop before 1522 // iteration 32 has fubar x2APIC settings. 1523 // 1524 // For now, just reject this case based upon loop trip count. 1525 *msg_id = kmp_i18n_str_InvalidCpuidInfo; 1526 return -1; 1527 } 1528 __kmp_x86_cpuid(11, level, &buf); 1529 if (buf.ebx == 0) { 1530 if (pkgLevel < 0) { 1531 // Will infer nPackages from __kmp_xproc 1532 pkgLevel = level; 1533 level++; 1534 } 1535 break; 1536 } 1537 int kind = (buf.ecx >> 8) & 0xff; 1538 if (kind == 1) { 1539 // SMT level 1540 threadLevel = level; 1541 coreLevel = -1; 1542 pkgLevel = -1; 1543 __kmp_nThreadsPerCore = buf.ebx & 0xffff; 1544 if (__kmp_nThreadsPerCore == 0) { 1545 *msg_id = kmp_i18n_str_InvalidCpuidInfo; 1546 return -1; 1547 } 1548 } else if (kind == 2) { 1549 // core level 1550 coreLevel = level; 1551 pkgLevel = -1; 1552 nCoresPerPkg = buf.ebx & 0xffff; 1553 if (nCoresPerPkg == 0) { 1554 *msg_id = kmp_i18n_str_InvalidCpuidInfo; 1555 return -1; 1556 } 1557 } else { 1558 if (level <= 0) { 1559 *msg_id = kmp_i18n_str_InvalidCpuidInfo; 1560 return -1; 1561 } 1562 if (pkgLevel >= 0) { 1563 continue; 1564 } 1565 pkgLevel = level; 1566 nPackages = buf.ebx & 0xffff; 1567 if (nPackages == 0) { 1568 *msg_id = kmp_i18n_str_InvalidCpuidInfo; 1569 return -1; 1570 } 1571 } 1572 } 1573 int depth = level; 1574 1575 // In the above loop, "level" was counted from the finest level (usually 1576 // thread) to the coarsest. The caller expects that we will place the labels 1577 // in (*address2os)[].first.labels[] in the inverse order, so we need to 1578 // invert the vars saying which level means what. 1579 if (threadLevel >= 0) { 1580 threadLevel = depth - threadLevel - 1; 1581 } 1582 if (coreLevel >= 0) { 1583 coreLevel = depth - coreLevel - 1; 1584 } 1585 KMP_DEBUG_ASSERT(pkgLevel >= 0); 1586 pkgLevel = depth - pkgLevel - 1; 1587 1588 // The algorithm used starts by setting the affinity to each available thread 1589 // and retrieving info from the cpuid instruction, so if we are not capable of 1590 // calling __kmp_get_system_affinity() and _kmp_get_system_affinity(), then we 1591 // need to do something else - use the defaults that we calculated from 1592 // issuing cpuid without binding to each proc. 1593 if (!KMP_AFFINITY_CAPABLE()) { 1594 // Hack to try and infer the machine topology using only the data 1595 // available from cpuid on the current thread, and __kmp_xproc. 1596 KMP_ASSERT(__kmp_affinity_type == affinity_none); 1597 1598 __kmp_ncores = __kmp_xproc / __kmp_nThreadsPerCore; 1599 nPackages = (__kmp_xproc + nCoresPerPkg - 1) / nCoresPerPkg; 1600 if (__kmp_affinity_verbose) { 1601 KMP_INFORM(AffNotCapableUseLocCpuidL11, "KMP_AFFINITY"); 1602 KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc); 1603 if (__kmp_affinity_uniform_topology()) { 1604 KMP_INFORM(Uniform, "KMP_AFFINITY"); 1605 } else { 1606 KMP_INFORM(NonUniform, "KMP_AFFINITY"); 1607 } 1608 KMP_INFORM(Topology, "KMP_AFFINITY", nPackages, nCoresPerPkg, 1609 __kmp_nThreadsPerCore, __kmp_ncores); 1610 } 1611 return 0; 1612 } 1613 1614 // From here on, we can assume that it is safe to call 1615 // __kmp_get_system_affinity() and __kmp_set_system_affinity(), even if 1616 // __kmp_affinity_type = affinity_none. 1617 1618 // Save the affinity mask for the current thread. 1619 kmp_affin_mask_t *oldMask; 1620 KMP_CPU_ALLOC(oldMask); 1621 __kmp_get_system_affinity(oldMask, TRUE); 1622 1623 // Allocate the data structure to be returned. 1624 AddrUnsPair *retval = 1625 (AddrUnsPair *)__kmp_allocate(sizeof(AddrUnsPair) * __kmp_avail_proc); 1626 1627 // Run through each of the available contexts, binding the current thread 1628 // to it, and obtaining the pertinent information using the cpuid instr. 1629 unsigned int proc; 1630 int nApics = 0; 1631 KMP_CPU_SET_ITERATE(proc, __kmp_affin_fullMask) { 1632 // Skip this proc if it is not included in the machine model. 1633 if (!KMP_CPU_ISSET(proc, __kmp_affin_fullMask)) { 1634 continue; 1635 } 1636 KMP_DEBUG_ASSERT(nApics < __kmp_avail_proc); 1637 1638 __kmp_affinity_dispatch->bind_thread(proc); 1639 1640 // Extract labels for each level in the machine topology map from Apic ID. 1641 Address addr(depth); 1642 int prev_shift = 0; 1643 1644 for (level = 0; level < depth; level++) { 1645 __kmp_x86_cpuid(11, level, &buf); 1646 unsigned apicId = buf.edx; 1647 if (buf.ebx == 0) { 1648 if (level != depth - 1) { 1649 KMP_CPU_FREE(oldMask); 1650 *msg_id = kmp_i18n_str_InconsistentCpuidInfo; 1651 return -1; 1652 } 1653 addr.labels[depth - level - 1] = apicId >> prev_shift; 1654 level++; 1655 break; 1656 } 1657 int shift = buf.eax & 0x1f; 1658 int mask = (1 << shift) - 1; 1659 addr.labels[depth - level - 1] = (apicId & mask) >> prev_shift; 1660 prev_shift = shift; 1661 } 1662 if (level != depth) { 1663 KMP_CPU_FREE(oldMask); 1664 *msg_id = kmp_i18n_str_InconsistentCpuidInfo; 1665 return -1; 1666 } 1667 1668 retval[nApics] = AddrUnsPair(addr, proc); 1669 nApics++; 1670 } 1671 1672 // We've collected all the info we need. 1673 // Restore the old affinity mask for this thread. 1674 __kmp_set_system_affinity(oldMask, TRUE); 1675 1676 // If there's only one thread context to bind to, return now. 1677 KMP_ASSERT(nApics > 0); 1678 if (nApics == 1) { 1679 __kmp_ncores = nPackages = 1; 1680 __kmp_nThreadsPerCore = nCoresPerPkg = 1; 1681 if (__kmp_affinity_verbose) { 1682 char buf[KMP_AFFIN_MASK_PRINT_LEN]; 1683 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, oldMask); 1684 1685 KMP_INFORM(AffUseGlobCpuidL11, "KMP_AFFINITY"); 1686 if (__kmp_affinity_respect_mask) { 1687 KMP_INFORM(InitOSProcSetRespect, "KMP_AFFINITY", buf); 1688 } else { 1689 KMP_INFORM(InitOSProcSetNotRespect, "KMP_AFFINITY", buf); 1690 } 1691 KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc); 1692 KMP_INFORM(Uniform, "KMP_AFFINITY"); 1693 KMP_INFORM(Topology, "KMP_AFFINITY", nPackages, nCoresPerPkg, 1694 __kmp_nThreadsPerCore, __kmp_ncores); 1695 } 1696 1697 if (__kmp_affinity_type == affinity_none) { 1698 __kmp_free(retval); 1699 KMP_CPU_FREE(oldMask); 1700 return 0; 1701 } 1702 1703 // Form an Address object which only includes the package level. 1704 Address addr(1); 1705 addr.labels[0] = retval[0].first.labels[pkgLevel]; 1706 retval[0].first = addr; 1707 1708 if (__kmp_affinity_gran_levels < 0) { 1709 __kmp_affinity_gran_levels = 0; 1710 } 1711 1712 if (__kmp_affinity_verbose) { 1713 __kmp_affinity_print_topology(retval, 1, 1, 0, -1, -1); 1714 } 1715 1716 *address2os = retval; 1717 KMP_CPU_FREE(oldMask); 1718 return 1; 1719 } 1720 1721 // Sort the table by physical Id. 1722 qsort(retval, nApics, sizeof(*retval), __kmp_affinity_cmp_Address_labels); 1723 1724 // Find the radix at each of the levels. 1725 unsigned *totals = (unsigned *)__kmp_allocate(depth * sizeof(unsigned)); 1726 unsigned *counts = (unsigned *)__kmp_allocate(depth * sizeof(unsigned)); 1727 unsigned *maxCt = (unsigned *)__kmp_allocate(depth * sizeof(unsigned)); 1728 unsigned *last = (unsigned *)__kmp_allocate(depth * sizeof(unsigned)); 1729 for (level = 0; level < depth; level++) { 1730 totals[level] = 1; 1731 maxCt[level] = 1; 1732 counts[level] = 1; 1733 last[level] = retval[0].first.labels[level]; 1734 } 1735 1736 // From here on, the iteration variable "level" runs from the finest level to 1737 // the coarsest, i.e. we iterate forward through 1738 // (*address2os)[].first.labels[] - in the previous loops, we iterated 1739 // backwards. 1740 for (proc = 1; (int)proc < nApics; proc++) { 1741 int level; 1742 for (level = 0; level < depth; level++) { 1743 if (retval[proc].first.labels[level] != last[level]) { 1744 int j; 1745 for (j = level + 1; j < depth; j++) { 1746 totals[j]++; 1747 counts[j] = 1; 1748 // The line below causes printing incorrect topology information in 1749 // case the max value for some level (maxCt[level]) is encountered 1750 // earlier than some less value while going through the array. For 1751 // example, let pkg0 has 4 cores and pkg1 has 2 cores. Then 1752 // maxCt[1] == 2 1753 // whereas it must be 4. 1754 // TODO!!! Check if it can be commented safely 1755 // maxCt[j] = 1; 1756 last[j] = retval[proc].first.labels[j]; 1757 } 1758 totals[level]++; 1759 counts[level]++; 1760 if (counts[level] > maxCt[level]) { 1761 maxCt[level] = counts[level]; 1762 } 1763 last[level] = retval[proc].first.labels[level]; 1764 break; 1765 } else if (level == depth - 1) { 1766 __kmp_free(last); 1767 __kmp_free(maxCt); 1768 __kmp_free(counts); 1769 __kmp_free(totals); 1770 __kmp_free(retval); 1771 KMP_CPU_FREE(oldMask); 1772 *msg_id = kmp_i18n_str_x2ApicIDsNotUnique; 1773 return -1; 1774 } 1775 } 1776 } 1777 1778 // When affinity is off, this routine will still be called to set 1779 // __kmp_ncores, as well as __kmp_nThreadsPerCore, nCoresPerPkg, & nPackages. 1780 // Make sure all these vars are set correctly, and return if affinity is not 1781 // enabled. 1782 if (threadLevel >= 0) { 1783 __kmp_nThreadsPerCore = maxCt[threadLevel]; 1784 } else { 1785 __kmp_nThreadsPerCore = 1; 1786 } 1787 nPackages = totals[pkgLevel]; 1788 1789 if (coreLevel >= 0) { 1790 __kmp_ncores = totals[coreLevel]; 1791 nCoresPerPkg = maxCt[coreLevel]; 1792 } else { 1793 __kmp_ncores = nPackages; 1794 nCoresPerPkg = 1; 1795 } 1796 1797 // Check to see if the machine topology is uniform 1798 unsigned prod = maxCt[0]; 1799 for (level = 1; level < depth; level++) { 1800 prod *= maxCt[level]; 1801 } 1802 bool uniform = (prod == totals[level - 1]); 1803 1804 // Print the machine topology summary. 1805 if (__kmp_affinity_verbose) { 1806 char mask[KMP_AFFIN_MASK_PRINT_LEN]; 1807 __kmp_affinity_print_mask(mask, KMP_AFFIN_MASK_PRINT_LEN, oldMask); 1808 1809 KMP_INFORM(AffUseGlobCpuidL11, "KMP_AFFINITY"); 1810 if (__kmp_affinity_respect_mask) { 1811 KMP_INFORM(InitOSProcSetRespect, "KMP_AFFINITY", mask); 1812 } else { 1813 KMP_INFORM(InitOSProcSetNotRespect, "KMP_AFFINITY", mask); 1814 } 1815 KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc); 1816 if (uniform) { 1817 KMP_INFORM(Uniform, "KMP_AFFINITY"); 1818 } else { 1819 KMP_INFORM(NonUniform, "KMP_AFFINITY"); 1820 } 1821 1822 kmp_str_buf_t buf; 1823 __kmp_str_buf_init(&buf); 1824 1825 __kmp_str_buf_print(&buf, "%d", totals[0]); 1826 for (level = 1; level <= pkgLevel; level++) { 1827 __kmp_str_buf_print(&buf, " x %d", maxCt[level]); 1828 } 1829 KMP_INFORM(TopologyExtra, "KMP_AFFINITY", buf.str, nCoresPerPkg, 1830 __kmp_nThreadsPerCore, __kmp_ncores); 1831 1832 __kmp_str_buf_free(&buf); 1833 } 1834 KMP_DEBUG_ASSERT(__kmp_pu_os_idx == NULL); 1835 KMP_DEBUG_ASSERT(nApics == __kmp_avail_proc); 1836 __kmp_pu_os_idx = (int *)__kmp_allocate(sizeof(int) * __kmp_avail_proc); 1837 for (proc = 0; (int)proc < nApics; ++proc) { 1838 __kmp_pu_os_idx[proc] = retval[proc].second; 1839 } 1840 if (__kmp_affinity_type == affinity_none) { 1841 __kmp_free(last); 1842 __kmp_free(maxCt); 1843 __kmp_free(counts); 1844 __kmp_free(totals); 1845 __kmp_free(retval); 1846 KMP_CPU_FREE(oldMask); 1847 return 0; 1848 } 1849 1850 // Find any levels with radiix 1, and remove them from the map 1851 // (except for the package level). 1852 int new_depth = 0; 1853 for (level = 0; level < depth; level++) { 1854 if ((maxCt[level] == 1) && (level != pkgLevel)) { 1855 continue; 1856 } 1857 new_depth++; 1858 } 1859 1860 // If we are removing any levels, allocate a new vector to return, 1861 // and copy the relevant information to it. 1862 if (new_depth != depth) { 1863 AddrUnsPair *new_retval = 1864 (AddrUnsPair *)__kmp_allocate(sizeof(AddrUnsPair) * nApics); 1865 for (proc = 0; (int)proc < nApics; proc++) { 1866 Address addr(new_depth); 1867 new_retval[proc] = AddrUnsPair(addr, retval[proc].second); 1868 } 1869 int new_level = 0; 1870 int newPkgLevel = -1; 1871 int newCoreLevel = -1; 1872 int newThreadLevel = -1; 1873 for (level = 0; level < depth; level++) { 1874 if ((maxCt[level] == 1) && (level != pkgLevel)) { 1875 // Remove this level. Never remove the package level 1876 continue; 1877 } 1878 if (level == pkgLevel) { 1879 newPkgLevel = new_level; 1880 } 1881 if (level == coreLevel) { 1882 newCoreLevel = new_level; 1883 } 1884 if (level == threadLevel) { 1885 newThreadLevel = new_level; 1886 } 1887 for (proc = 0; (int)proc < nApics; proc++) { 1888 new_retval[proc].first.labels[new_level] = 1889 retval[proc].first.labels[level]; 1890 } 1891 new_level++; 1892 } 1893 1894 __kmp_free(retval); 1895 retval = new_retval; 1896 depth = new_depth; 1897 pkgLevel = newPkgLevel; 1898 coreLevel = newCoreLevel; 1899 threadLevel = newThreadLevel; 1900 } 1901 1902 if (__kmp_affinity_gran_levels < 0) { 1903 // Set the granularity level based on what levels are modeled 1904 // in the machine topology map. 1905 __kmp_affinity_gran_levels = 0; 1906 if ((threadLevel >= 0) && (__kmp_affinity_gran > affinity_gran_thread)) { 1907 __kmp_affinity_gran_levels++; 1908 } 1909 if ((coreLevel >= 0) && (__kmp_affinity_gran > affinity_gran_core)) { 1910 __kmp_affinity_gran_levels++; 1911 } 1912 if (__kmp_affinity_gran > affinity_gran_package) { 1913 __kmp_affinity_gran_levels++; 1914 } 1915 } 1916 1917 if (__kmp_affinity_verbose) { 1918 __kmp_affinity_print_topology(retval, nApics, depth, pkgLevel, coreLevel, 1919 threadLevel); 1920 } 1921 1922 __kmp_free(last); 1923 __kmp_free(maxCt); 1924 __kmp_free(counts); 1925 __kmp_free(totals); 1926 KMP_CPU_FREE(oldMask); 1927 *address2os = retval; 1928 return depth; 1929 } 1930 1931 #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */ 1932 1933 #define osIdIndex 0 1934 #define threadIdIndex 1 1935 #define coreIdIndex 2 1936 #define pkgIdIndex 3 1937 #define nodeIdIndex 4 1938 1939 typedef unsigned *ProcCpuInfo; 1940 static unsigned maxIndex = pkgIdIndex; 1941 1942 static int __kmp_affinity_cmp_ProcCpuInfo_phys_id(const void *a, 1943 const void *b) { 1944 unsigned i; 1945 const unsigned *aa = *(unsigned *const *)a; 1946 const unsigned *bb = *(unsigned *const *)b; 1947 for (i = maxIndex;; i--) { 1948 if (aa[i] < bb[i]) 1949 return -1; 1950 if (aa[i] > bb[i]) 1951 return 1; 1952 if (i == osIdIndex) 1953 break; 1954 } 1955 return 0; 1956 } 1957 1958 #if KMP_USE_HIER_SCHED 1959 // Set the array sizes for the hierarchy layers 1960 static void __kmp_dispatch_set_hierarchy_values() { 1961 // Set the maximum number of L1's to number of cores 1962 // Set the maximum number of L2's to to either number of cores / 2 for 1963 // Intel(R) Xeon Phi(TM) coprocessor formally codenamed Knights Landing 1964 // Or the number of cores for Intel(R) Xeon(R) processors 1965 // Set the maximum number of NUMA nodes and L3's to number of packages 1966 __kmp_hier_max_units[kmp_hier_layer_e::LAYER_THREAD + 1] = 1967 nPackages * nCoresPerPkg * __kmp_nThreadsPerCore; 1968 __kmp_hier_max_units[kmp_hier_layer_e::LAYER_L1 + 1] = __kmp_ncores; 1969 #if KMP_ARCH_X86_64 && (KMP_OS_LINUX || KMP_OS_WINDOWS) 1970 if (__kmp_mic_type >= mic3) 1971 __kmp_hier_max_units[kmp_hier_layer_e::LAYER_L2 + 1] = __kmp_ncores / 2; 1972 else 1973 #endif // KMP_ARCH_X86_64 && (KMP_OS_LINUX || KMP_OS_WINDOWS) 1974 __kmp_hier_max_units[kmp_hier_layer_e::LAYER_L2 + 1] = __kmp_ncores; 1975 __kmp_hier_max_units[kmp_hier_layer_e::LAYER_L3 + 1] = nPackages; 1976 __kmp_hier_max_units[kmp_hier_layer_e::LAYER_NUMA + 1] = nPackages; 1977 __kmp_hier_max_units[kmp_hier_layer_e::LAYER_LOOP + 1] = 1; 1978 // Set the number of threads per unit 1979 // Number of hardware threads per L1/L2/L3/NUMA/LOOP 1980 __kmp_hier_threads_per[kmp_hier_layer_e::LAYER_THREAD + 1] = 1; 1981 __kmp_hier_threads_per[kmp_hier_layer_e::LAYER_L1 + 1] = 1982 __kmp_nThreadsPerCore; 1983 #if KMP_ARCH_X86_64 && (KMP_OS_LINUX || KMP_OS_WINDOWS) 1984 if (__kmp_mic_type >= mic3) 1985 __kmp_hier_threads_per[kmp_hier_layer_e::LAYER_L2 + 1] = 1986 2 * __kmp_nThreadsPerCore; 1987 else 1988 #endif // KMP_ARCH_X86_64 && (KMP_OS_LINUX || KMP_OS_WINDOWS) 1989 __kmp_hier_threads_per[kmp_hier_layer_e::LAYER_L2 + 1] = 1990 __kmp_nThreadsPerCore; 1991 __kmp_hier_threads_per[kmp_hier_layer_e::LAYER_L3 + 1] = 1992 nCoresPerPkg * __kmp_nThreadsPerCore; 1993 __kmp_hier_threads_per[kmp_hier_layer_e::LAYER_NUMA + 1] = 1994 nCoresPerPkg * __kmp_nThreadsPerCore; 1995 __kmp_hier_threads_per[kmp_hier_layer_e::LAYER_LOOP + 1] = 1996 nPackages * nCoresPerPkg * __kmp_nThreadsPerCore; 1997 } 1998 1999 // Return the index into the hierarchy for this tid and layer type (L1, L2, etc) 2000 // i.e., this thread's L1 or this thread's L2, etc. 2001 int __kmp_dispatch_get_index(int tid, kmp_hier_layer_e type) { 2002 int index = type + 1; 2003 int num_hw_threads = __kmp_hier_max_units[kmp_hier_layer_e::LAYER_THREAD + 1]; 2004 KMP_DEBUG_ASSERT(type != kmp_hier_layer_e::LAYER_LAST); 2005 if (type == kmp_hier_layer_e::LAYER_THREAD) 2006 return tid; 2007 else if (type == kmp_hier_layer_e::LAYER_LOOP) 2008 return 0; 2009 KMP_DEBUG_ASSERT(__kmp_hier_max_units[index] != 0); 2010 if (tid >= num_hw_threads) 2011 tid = tid % num_hw_threads; 2012 return (tid / __kmp_hier_threads_per[index]) % __kmp_hier_max_units[index]; 2013 } 2014 2015 // Return the number of t1's per t2 2016 int __kmp_dispatch_get_t1_per_t2(kmp_hier_layer_e t1, kmp_hier_layer_e t2) { 2017 int i1 = t1 + 1; 2018 int i2 = t2 + 1; 2019 KMP_DEBUG_ASSERT(i1 <= i2); 2020 KMP_DEBUG_ASSERT(t1 != kmp_hier_layer_e::LAYER_LAST); 2021 KMP_DEBUG_ASSERT(t2 != kmp_hier_layer_e::LAYER_LAST); 2022 KMP_DEBUG_ASSERT(__kmp_hier_threads_per[i1] != 0); 2023 // (nthreads/t2) / (nthreads/t1) = t1 / t2 2024 return __kmp_hier_threads_per[i2] / __kmp_hier_threads_per[i1]; 2025 } 2026 #endif // KMP_USE_HIER_SCHED 2027 2028 // Parse /proc/cpuinfo (or an alternate file in the same format) to obtain the 2029 // affinity map. 2030 static int __kmp_affinity_create_cpuinfo_map(AddrUnsPair **address2os, 2031 int *line, 2032 kmp_i18n_id_t *const msg_id, 2033 FILE *f) { 2034 *address2os = NULL; 2035 *msg_id = kmp_i18n_null; 2036 2037 // Scan of the file, and count the number of "processor" (osId) fields, 2038 // and find the highest value of <n> for a node_<n> field. 2039 char buf[256]; 2040 unsigned num_records = 0; 2041 while (!feof(f)) { 2042 buf[sizeof(buf) - 1] = 1; 2043 if (!fgets(buf, sizeof(buf), f)) { 2044 // Read errors presumably because of EOF 2045 break; 2046 } 2047 2048 char s1[] = "processor"; 2049 if (strncmp(buf, s1, sizeof(s1) - 1) == 0) { 2050 num_records++; 2051 continue; 2052 } 2053 2054 // FIXME - this will match "node_<n> <garbage>" 2055 unsigned level; 2056 if (KMP_SSCANF(buf, "node_%u id", &level) == 1) { 2057 if (nodeIdIndex + level >= maxIndex) { 2058 maxIndex = nodeIdIndex + level; 2059 } 2060 continue; 2061 } 2062 } 2063 2064 // Check for empty file / no valid processor records, or too many. The number 2065 // of records can't exceed the number of valid bits in the affinity mask. 2066 if (num_records == 0) { 2067 *line = 0; 2068 *msg_id = kmp_i18n_str_NoProcRecords; 2069 return -1; 2070 } 2071 if (num_records > (unsigned)__kmp_xproc) { 2072 *line = 0; 2073 *msg_id = kmp_i18n_str_TooManyProcRecords; 2074 return -1; 2075 } 2076 2077 // Set the file pointer back to the begginning, so that we can scan the file 2078 // again, this time performing a full parse of the data. Allocate a vector of 2079 // ProcCpuInfo object, where we will place the data. Adding an extra element 2080 // at the end allows us to remove a lot of extra checks for termination 2081 // conditions. 2082 if (fseek(f, 0, SEEK_SET) != 0) { 2083 *line = 0; 2084 *msg_id = kmp_i18n_str_CantRewindCpuinfo; 2085 return -1; 2086 } 2087 2088 // Allocate the array of records to store the proc info in. The dummy 2089 // element at the end makes the logic in filling them out easier to code. 2090 unsigned **threadInfo = 2091 (unsigned **)__kmp_allocate((num_records + 1) * sizeof(unsigned *)); 2092 unsigned i; 2093 for (i = 0; i <= num_records; i++) { 2094 threadInfo[i] = 2095 (unsigned *)__kmp_allocate((maxIndex + 1) * sizeof(unsigned)); 2096 } 2097 2098 #define CLEANUP_THREAD_INFO \ 2099 for (i = 0; i <= num_records; i++) { \ 2100 __kmp_free(threadInfo[i]); \ 2101 } \ 2102 __kmp_free(threadInfo); 2103 2104 // A value of UINT_MAX means that we didn't find the field 2105 unsigned __index; 2106 2107 #define INIT_PROC_INFO(p) \ 2108 for (__index = 0; __index <= maxIndex; __index++) { \ 2109 (p)[__index] = UINT_MAX; \ 2110 } 2111 2112 for (i = 0; i <= num_records; i++) { 2113 INIT_PROC_INFO(threadInfo[i]); 2114 } 2115 2116 unsigned num_avail = 0; 2117 *line = 0; 2118 while (!feof(f)) { 2119 // Create an inner scoping level, so that all the goto targets at the end of 2120 // the loop appear in an outer scoping level. This avoids warnings about 2121 // jumping past an initialization to a target in the same block. 2122 { 2123 buf[sizeof(buf) - 1] = 1; 2124 bool long_line = false; 2125 if (!fgets(buf, sizeof(buf), f)) { 2126 // Read errors presumably because of EOF 2127 // If there is valid data in threadInfo[num_avail], then fake 2128 // a blank line in ensure that the last address gets parsed. 2129 bool valid = false; 2130 for (i = 0; i <= maxIndex; i++) { 2131 if (threadInfo[num_avail][i] != UINT_MAX) { 2132 valid = true; 2133 } 2134 } 2135 if (!valid) { 2136 break; 2137 } 2138 buf[0] = 0; 2139 } else if (!buf[sizeof(buf) - 1]) { 2140 // The line is longer than the buffer. Set a flag and don't 2141 // emit an error if we were going to ignore the line, anyway. 2142 long_line = true; 2143 2144 #define CHECK_LINE \ 2145 if (long_line) { \ 2146 CLEANUP_THREAD_INFO; \ 2147 *msg_id = kmp_i18n_str_LongLineCpuinfo; \ 2148 return -1; \ 2149 } 2150 } 2151 (*line)++; 2152 2153 char s1[] = "processor"; 2154 if (strncmp(buf, s1, sizeof(s1) - 1) == 0) { 2155 CHECK_LINE; 2156 char *p = strchr(buf + sizeof(s1) - 1, ':'); 2157 unsigned val; 2158 if ((p == NULL) || (KMP_SSCANF(p + 1, "%u\n", &val) != 1)) 2159 goto no_val; 2160 if (threadInfo[num_avail][osIdIndex] != UINT_MAX) 2161 #if KMP_ARCH_AARCH64 2162 // Handle the old AArch64 /proc/cpuinfo layout differently, 2163 // it contains all of the 'processor' entries listed in a 2164 // single 'Processor' section, therefore the normal looking 2165 // for duplicates in that section will always fail. 2166 num_avail++; 2167 #else 2168 goto dup_field; 2169 #endif 2170 threadInfo[num_avail][osIdIndex] = val; 2171 #if KMP_OS_LINUX && !(KMP_ARCH_X86 || KMP_ARCH_X86_64) 2172 char path[256]; 2173 KMP_SNPRINTF( 2174 path, sizeof(path), 2175 "/sys/devices/system/cpu/cpu%u/topology/physical_package_id", 2176 threadInfo[num_avail][osIdIndex]); 2177 __kmp_read_from_file(path, "%u", &threadInfo[num_avail][pkgIdIndex]); 2178 2179 KMP_SNPRINTF(path, sizeof(path), 2180 "/sys/devices/system/cpu/cpu%u/topology/core_id", 2181 threadInfo[num_avail][osIdIndex]); 2182 __kmp_read_from_file(path, "%u", &threadInfo[num_avail][coreIdIndex]); 2183 continue; 2184 #else 2185 } 2186 char s2[] = "physical id"; 2187 if (strncmp(buf, s2, sizeof(s2) - 1) == 0) { 2188 CHECK_LINE; 2189 char *p = strchr(buf + sizeof(s2) - 1, ':'); 2190 unsigned val; 2191 if ((p == NULL) || (KMP_SSCANF(p + 1, "%u\n", &val) != 1)) 2192 goto no_val; 2193 if (threadInfo[num_avail][pkgIdIndex] != UINT_MAX) 2194 goto dup_field; 2195 threadInfo[num_avail][pkgIdIndex] = val; 2196 continue; 2197 } 2198 char s3[] = "core id"; 2199 if (strncmp(buf, s3, sizeof(s3) - 1) == 0) { 2200 CHECK_LINE; 2201 char *p = strchr(buf + sizeof(s3) - 1, ':'); 2202 unsigned val; 2203 if ((p == NULL) || (KMP_SSCANF(p + 1, "%u\n", &val) != 1)) 2204 goto no_val; 2205 if (threadInfo[num_avail][coreIdIndex] != UINT_MAX) 2206 goto dup_field; 2207 threadInfo[num_avail][coreIdIndex] = val; 2208 continue; 2209 #endif // KMP_OS_LINUX && USE_SYSFS_INFO 2210 } 2211 char s4[] = "thread id"; 2212 if (strncmp(buf, s4, sizeof(s4) - 1) == 0) { 2213 CHECK_LINE; 2214 char *p = strchr(buf + sizeof(s4) - 1, ':'); 2215 unsigned val; 2216 if ((p == NULL) || (KMP_SSCANF(p + 1, "%u\n", &val) != 1)) 2217 goto no_val; 2218 if (threadInfo[num_avail][threadIdIndex] != UINT_MAX) 2219 goto dup_field; 2220 threadInfo[num_avail][threadIdIndex] = val; 2221 continue; 2222 } 2223 unsigned level; 2224 if (KMP_SSCANF(buf, "node_%u id", &level) == 1) { 2225 CHECK_LINE; 2226 char *p = strchr(buf + sizeof(s4) - 1, ':'); 2227 unsigned val; 2228 if ((p == NULL) || (KMP_SSCANF(p + 1, "%u\n", &val) != 1)) 2229 goto no_val; 2230 KMP_ASSERT(nodeIdIndex + level <= maxIndex); 2231 if (threadInfo[num_avail][nodeIdIndex + level] != UINT_MAX) 2232 goto dup_field; 2233 threadInfo[num_avail][nodeIdIndex + level] = val; 2234 continue; 2235 } 2236 2237 // We didn't recognize the leading token on the line. There are lots of 2238 // leading tokens that we don't recognize - if the line isn't empty, go on 2239 // to the next line. 2240 if ((*buf != 0) && (*buf != '\n')) { 2241 // If the line is longer than the buffer, read characters 2242 // until we find a newline. 2243 if (long_line) { 2244 int ch; 2245 while (((ch = fgetc(f)) != EOF) && (ch != '\n')) 2246 ; 2247 } 2248 continue; 2249 } 2250 2251 // A newline has signalled the end of the processor record. 2252 // Check that there aren't too many procs specified. 2253 if ((int)num_avail == __kmp_xproc) { 2254 CLEANUP_THREAD_INFO; 2255 *msg_id = kmp_i18n_str_TooManyEntries; 2256 return -1; 2257 } 2258 2259 // Check for missing fields. The osId field must be there, and we 2260 // currently require that the physical id field is specified, also. 2261 if (threadInfo[num_avail][osIdIndex] == UINT_MAX) { 2262 CLEANUP_THREAD_INFO; 2263 *msg_id = kmp_i18n_str_MissingProcField; 2264 return -1; 2265 } 2266 if (threadInfo[0][pkgIdIndex] == UINT_MAX) { 2267 CLEANUP_THREAD_INFO; 2268 *msg_id = kmp_i18n_str_MissingPhysicalIDField; 2269 return -1; 2270 } 2271 2272 // Skip this proc if it is not included in the machine model. 2273 if (!KMP_CPU_ISSET(threadInfo[num_avail][osIdIndex], 2274 __kmp_affin_fullMask)) { 2275 INIT_PROC_INFO(threadInfo[num_avail]); 2276 continue; 2277 } 2278 2279 // We have a successful parse of this proc's info. 2280 // Increment the counter, and prepare for the next proc. 2281 num_avail++; 2282 KMP_ASSERT(num_avail <= num_records); 2283 INIT_PROC_INFO(threadInfo[num_avail]); 2284 } 2285 continue; 2286 2287 no_val: 2288 CLEANUP_THREAD_INFO; 2289 *msg_id = kmp_i18n_str_MissingValCpuinfo; 2290 return -1; 2291 2292 dup_field: 2293 CLEANUP_THREAD_INFO; 2294 *msg_id = kmp_i18n_str_DuplicateFieldCpuinfo; 2295 return -1; 2296 } 2297 *line = 0; 2298 2299 #if KMP_MIC && REDUCE_TEAM_SIZE 2300 unsigned teamSize = 0; 2301 #endif // KMP_MIC && REDUCE_TEAM_SIZE 2302 2303 // check for num_records == __kmp_xproc ??? 2304 2305 // If there's only one thread context to bind to, form an Address object with 2306 // depth 1 and return immediately (or, if affinity is off, set address2os to 2307 // NULL and return). 2308 // 2309 // If it is configured to omit the package level when there is only a single 2310 // package, the logic at the end of this routine won't work if there is only a 2311 // single thread - it would try to form an Address object with depth 0. 2312 KMP_ASSERT(num_avail > 0); 2313 KMP_ASSERT(num_avail <= num_records); 2314 if (num_avail == 1) { 2315 __kmp_ncores = 1; 2316 __kmp_nThreadsPerCore = nCoresPerPkg = nPackages = 1; 2317 if (__kmp_affinity_verbose) { 2318 if (!KMP_AFFINITY_CAPABLE()) { 2319 KMP_INFORM(AffNotCapableUseCpuinfo, "KMP_AFFINITY"); 2320 KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc); 2321 KMP_INFORM(Uniform, "KMP_AFFINITY"); 2322 } else { 2323 char buf[KMP_AFFIN_MASK_PRINT_LEN]; 2324 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, 2325 __kmp_affin_fullMask); 2326 KMP_INFORM(AffCapableUseCpuinfo, "KMP_AFFINITY"); 2327 if (__kmp_affinity_respect_mask) { 2328 KMP_INFORM(InitOSProcSetRespect, "KMP_AFFINITY", buf); 2329 } else { 2330 KMP_INFORM(InitOSProcSetNotRespect, "KMP_AFFINITY", buf); 2331 } 2332 KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc); 2333 KMP_INFORM(Uniform, "KMP_AFFINITY"); 2334 } 2335 int index; 2336 kmp_str_buf_t buf; 2337 __kmp_str_buf_init(&buf); 2338 __kmp_str_buf_print(&buf, "1"); 2339 for (index = maxIndex - 1; index > pkgIdIndex; index--) { 2340 __kmp_str_buf_print(&buf, " x 1"); 2341 } 2342 KMP_INFORM(TopologyExtra, "KMP_AFFINITY", buf.str, 1, 1, 1); 2343 __kmp_str_buf_free(&buf); 2344 } 2345 2346 if (__kmp_affinity_type == affinity_none) { 2347 CLEANUP_THREAD_INFO; 2348 return 0; 2349 } 2350 2351 *address2os = (AddrUnsPair *)__kmp_allocate(sizeof(AddrUnsPair)); 2352 Address addr(1); 2353 addr.labels[0] = threadInfo[0][pkgIdIndex]; 2354 (*address2os)[0] = AddrUnsPair(addr, threadInfo[0][osIdIndex]); 2355 2356 if (__kmp_affinity_gran_levels < 0) { 2357 __kmp_affinity_gran_levels = 0; 2358 } 2359 2360 if (__kmp_affinity_verbose) { 2361 __kmp_affinity_print_topology(*address2os, 1, 1, 0, -1, -1); 2362 } 2363 2364 CLEANUP_THREAD_INFO; 2365 return 1; 2366 } 2367 2368 // Sort the threadInfo table by physical Id. 2369 qsort(threadInfo, num_avail, sizeof(*threadInfo), 2370 __kmp_affinity_cmp_ProcCpuInfo_phys_id); 2371 2372 // The table is now sorted by pkgId / coreId / threadId, but we really don't 2373 // know the radix of any of the fields. pkgId's may be sparsely assigned among 2374 // the chips on a system. Although coreId's are usually assigned 2375 // [0 .. coresPerPkg-1] and threadId's are usually assigned 2376 // [0..threadsPerCore-1], we don't want to make any such assumptions. 2377 // 2378 // For that matter, we don't know what coresPerPkg and threadsPerCore (or the 2379 // total # packages) are at this point - we want to determine that now. We 2380 // only have an upper bound on the first two figures. 2381 unsigned *counts = 2382 (unsigned *)__kmp_allocate((maxIndex + 1) * sizeof(unsigned)); 2383 unsigned *maxCt = 2384 (unsigned *)__kmp_allocate((maxIndex + 1) * sizeof(unsigned)); 2385 unsigned *totals = 2386 (unsigned *)__kmp_allocate((maxIndex + 1) * sizeof(unsigned)); 2387 unsigned *lastId = 2388 (unsigned *)__kmp_allocate((maxIndex + 1) * sizeof(unsigned)); 2389 2390 bool assign_thread_ids = false; 2391 unsigned threadIdCt; 2392 unsigned index; 2393 2394 restart_radix_check: 2395 threadIdCt = 0; 2396 2397 // Initialize the counter arrays with data from threadInfo[0]. 2398 if (assign_thread_ids) { 2399 if (threadInfo[0][threadIdIndex] == UINT_MAX) { 2400 threadInfo[0][threadIdIndex] = threadIdCt++; 2401 } else if (threadIdCt <= threadInfo[0][threadIdIndex]) { 2402 threadIdCt = threadInfo[0][threadIdIndex] + 1; 2403 } 2404 } 2405 for (index = 0; index <= maxIndex; index++) { 2406 counts[index] = 1; 2407 maxCt[index] = 1; 2408 totals[index] = 1; 2409 lastId[index] = threadInfo[0][index]; 2410 ; 2411 } 2412 2413 // Run through the rest of the OS procs. 2414 for (i = 1; i < num_avail; i++) { 2415 // Find the most significant index whose id differs from the id for the 2416 // previous OS proc. 2417 for (index = maxIndex; index >= threadIdIndex; index--) { 2418 if (assign_thread_ids && (index == threadIdIndex)) { 2419 // Auto-assign the thread id field if it wasn't specified. 2420 if (threadInfo[i][threadIdIndex] == UINT_MAX) { 2421 threadInfo[i][threadIdIndex] = threadIdCt++; 2422 } 2423 // Apparently the thread id field was specified for some entries and not 2424 // others. Start the thread id counter off at the next higher thread id. 2425 else if (threadIdCt <= threadInfo[i][threadIdIndex]) { 2426 threadIdCt = threadInfo[i][threadIdIndex] + 1; 2427 } 2428 } 2429 if (threadInfo[i][index] != lastId[index]) { 2430 // Run through all indices which are less significant, and reset the 2431 // counts to 1. At all levels up to and including index, we need to 2432 // increment the totals and record the last id. 2433 unsigned index2; 2434 for (index2 = threadIdIndex; index2 < index; index2++) { 2435 totals[index2]++; 2436 if (counts[index2] > maxCt[index2]) { 2437 maxCt[index2] = counts[index2]; 2438 } 2439 counts[index2] = 1; 2440 lastId[index2] = threadInfo[i][index2]; 2441 } 2442 counts[index]++; 2443 totals[index]++; 2444 lastId[index] = threadInfo[i][index]; 2445 2446 if (assign_thread_ids && (index > threadIdIndex)) { 2447 2448 #if KMP_MIC && REDUCE_TEAM_SIZE 2449 // The default team size is the total #threads in the machine 2450 // minus 1 thread for every core that has 3 or more threads. 2451 teamSize += (threadIdCt <= 2) ? (threadIdCt) : (threadIdCt - 1); 2452 #endif // KMP_MIC && REDUCE_TEAM_SIZE 2453 2454 // Restart the thread counter, as we are on a new core. 2455 threadIdCt = 0; 2456 2457 // Auto-assign the thread id field if it wasn't specified. 2458 if (threadInfo[i][threadIdIndex] == UINT_MAX) { 2459 threadInfo[i][threadIdIndex] = threadIdCt++; 2460 } 2461 2462 // Aparrently the thread id field was specified for some entries and 2463 // not others. Start the thread id counter off at the next higher 2464 // thread id. 2465 else if (threadIdCt <= threadInfo[i][threadIdIndex]) { 2466 threadIdCt = threadInfo[i][threadIdIndex] + 1; 2467 } 2468 } 2469 break; 2470 } 2471 } 2472 if (index < threadIdIndex) { 2473 // If thread ids were specified, it is an error if they are not unique. 2474 // Also, check that we waven't already restarted the loop (to be safe - 2475 // shouldn't need to). 2476 if ((threadInfo[i][threadIdIndex] != UINT_MAX) || assign_thread_ids) { 2477 __kmp_free(lastId); 2478 __kmp_free(totals); 2479 __kmp_free(maxCt); 2480 __kmp_free(counts); 2481 CLEANUP_THREAD_INFO; 2482 *msg_id = kmp_i18n_str_PhysicalIDsNotUnique; 2483 return -1; 2484 } 2485 2486 // If the thread ids were not specified and we see entries entries that 2487 // are duplicates, start the loop over and assign the thread ids manually. 2488 assign_thread_ids = true; 2489 goto restart_radix_check; 2490 } 2491 } 2492 2493 #if KMP_MIC && REDUCE_TEAM_SIZE 2494 // The default team size is the total #threads in the machine 2495 // minus 1 thread for every core that has 3 or more threads. 2496 teamSize += (threadIdCt <= 2) ? (threadIdCt) : (threadIdCt - 1); 2497 #endif // KMP_MIC && REDUCE_TEAM_SIZE 2498 2499 for (index = threadIdIndex; index <= maxIndex; index++) { 2500 if (counts[index] > maxCt[index]) { 2501 maxCt[index] = counts[index]; 2502 } 2503 } 2504 2505 __kmp_nThreadsPerCore = maxCt[threadIdIndex]; 2506 nCoresPerPkg = maxCt[coreIdIndex]; 2507 nPackages = totals[pkgIdIndex]; 2508 2509 // Check to see if the machine topology is uniform 2510 unsigned prod = totals[maxIndex]; 2511 for (index = threadIdIndex; index < maxIndex; index++) { 2512 prod *= maxCt[index]; 2513 } 2514 bool uniform = (prod == totals[threadIdIndex]); 2515 2516 // When affinity is off, this routine will still be called to set 2517 // __kmp_ncores, as well as __kmp_nThreadsPerCore, nCoresPerPkg, & nPackages. 2518 // Make sure all these vars are set correctly, and return now if affinity is 2519 // not enabled. 2520 __kmp_ncores = totals[coreIdIndex]; 2521 2522 if (__kmp_affinity_verbose) { 2523 if (!KMP_AFFINITY_CAPABLE()) { 2524 KMP_INFORM(AffNotCapableUseCpuinfo, "KMP_AFFINITY"); 2525 KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc); 2526 if (uniform) { 2527 KMP_INFORM(Uniform, "KMP_AFFINITY"); 2528 } else { 2529 KMP_INFORM(NonUniform, "KMP_AFFINITY"); 2530 } 2531 } else { 2532 char buf[KMP_AFFIN_MASK_PRINT_LEN]; 2533 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, 2534 __kmp_affin_fullMask); 2535 KMP_INFORM(AffCapableUseCpuinfo, "KMP_AFFINITY"); 2536 if (__kmp_affinity_respect_mask) { 2537 KMP_INFORM(InitOSProcSetRespect, "KMP_AFFINITY", buf); 2538 } else { 2539 KMP_INFORM(InitOSProcSetNotRespect, "KMP_AFFINITY", buf); 2540 } 2541 KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc); 2542 if (uniform) { 2543 KMP_INFORM(Uniform, "KMP_AFFINITY"); 2544 } else { 2545 KMP_INFORM(NonUniform, "KMP_AFFINITY"); 2546 } 2547 } 2548 kmp_str_buf_t buf; 2549 __kmp_str_buf_init(&buf); 2550 2551 __kmp_str_buf_print(&buf, "%d", totals[maxIndex]); 2552 for (index = maxIndex - 1; index >= pkgIdIndex; index--) { 2553 __kmp_str_buf_print(&buf, " x %d", maxCt[index]); 2554 } 2555 KMP_INFORM(TopologyExtra, "KMP_AFFINITY", buf.str, maxCt[coreIdIndex], 2556 maxCt[threadIdIndex], __kmp_ncores); 2557 2558 __kmp_str_buf_free(&buf); 2559 } 2560 2561 #if KMP_MIC && REDUCE_TEAM_SIZE 2562 // Set the default team size. 2563 if ((__kmp_dflt_team_nth == 0) && (teamSize > 0)) { 2564 __kmp_dflt_team_nth = teamSize; 2565 KA_TRACE(20, ("__kmp_affinity_create_cpuinfo_map: setting " 2566 "__kmp_dflt_team_nth = %d\n", 2567 __kmp_dflt_team_nth)); 2568 } 2569 #endif // KMP_MIC && REDUCE_TEAM_SIZE 2570 2571 KMP_DEBUG_ASSERT(__kmp_pu_os_idx == NULL); 2572 KMP_DEBUG_ASSERT(num_avail == (unsigned)__kmp_avail_proc); 2573 __kmp_pu_os_idx = (int *)__kmp_allocate(sizeof(int) * __kmp_avail_proc); 2574 for (i = 0; i < num_avail; ++i) { // fill the os indices 2575 __kmp_pu_os_idx[i] = threadInfo[i][osIdIndex]; 2576 } 2577 2578 if (__kmp_affinity_type == affinity_none) { 2579 __kmp_free(lastId); 2580 __kmp_free(totals); 2581 __kmp_free(maxCt); 2582 __kmp_free(counts); 2583 CLEANUP_THREAD_INFO; 2584 return 0; 2585 } 2586 2587 // Count the number of levels which have more nodes at that level than at the 2588 // parent's level (with there being an implicit root node of the top level). 2589 // This is equivalent to saying that there is at least one node at this level 2590 // which has a sibling. These levels are in the map, and the package level is 2591 // always in the map. 2592 bool *inMap = (bool *)__kmp_allocate((maxIndex + 1) * sizeof(bool)); 2593 for (index = threadIdIndex; index < maxIndex; index++) { 2594 KMP_ASSERT(totals[index] >= totals[index + 1]); 2595 inMap[index] = (totals[index] > totals[index + 1]); 2596 } 2597 inMap[maxIndex] = (totals[maxIndex] > 1); 2598 inMap[pkgIdIndex] = true; 2599 2600 int depth = 0; 2601 for (index = threadIdIndex; index <= maxIndex; index++) { 2602 if (inMap[index]) { 2603 depth++; 2604 } 2605 } 2606 KMP_ASSERT(depth > 0); 2607 2608 // Construct the data structure that is to be returned. 2609 *address2os = (AddrUnsPair *)__kmp_allocate(sizeof(AddrUnsPair) * num_avail); 2610 int pkgLevel = -1; 2611 int coreLevel = -1; 2612 int threadLevel = -1; 2613 2614 for (i = 0; i < num_avail; ++i) { 2615 Address addr(depth); 2616 unsigned os = threadInfo[i][osIdIndex]; 2617 int src_index; 2618 int dst_index = 0; 2619 2620 for (src_index = maxIndex; src_index >= threadIdIndex; src_index--) { 2621 if (!inMap[src_index]) { 2622 continue; 2623 } 2624 addr.labels[dst_index] = threadInfo[i][src_index]; 2625 if (src_index == pkgIdIndex) { 2626 pkgLevel = dst_index; 2627 } else if (src_index == coreIdIndex) { 2628 coreLevel = dst_index; 2629 } else if (src_index == threadIdIndex) { 2630 threadLevel = dst_index; 2631 } 2632 dst_index++; 2633 } 2634 (*address2os)[i] = AddrUnsPair(addr, os); 2635 } 2636 2637 if (__kmp_affinity_gran_levels < 0) { 2638 // Set the granularity level based on what levels are modeled 2639 // in the machine topology map. 2640 unsigned src_index; 2641 __kmp_affinity_gran_levels = 0; 2642 for (src_index = threadIdIndex; src_index <= maxIndex; src_index++) { 2643 if (!inMap[src_index]) { 2644 continue; 2645 } 2646 switch (src_index) { 2647 case threadIdIndex: 2648 if (__kmp_affinity_gran > affinity_gran_thread) { 2649 __kmp_affinity_gran_levels++; 2650 } 2651 2652 break; 2653 case coreIdIndex: 2654 if (__kmp_affinity_gran > affinity_gran_core) { 2655 __kmp_affinity_gran_levels++; 2656 } 2657 break; 2658 2659 case pkgIdIndex: 2660 if (__kmp_affinity_gran > affinity_gran_package) { 2661 __kmp_affinity_gran_levels++; 2662 } 2663 break; 2664 } 2665 } 2666 } 2667 2668 if (__kmp_affinity_verbose) { 2669 __kmp_affinity_print_topology(*address2os, num_avail, depth, pkgLevel, 2670 coreLevel, threadLevel); 2671 } 2672 2673 __kmp_free(inMap); 2674 __kmp_free(lastId); 2675 __kmp_free(totals); 2676 __kmp_free(maxCt); 2677 __kmp_free(counts); 2678 CLEANUP_THREAD_INFO; 2679 return depth; 2680 } 2681 2682 // Create and return a table of affinity masks, indexed by OS thread ID. 2683 // This routine handles OR'ing together all the affinity masks of threads 2684 // that are sufficiently close, if granularity > fine. 2685 static kmp_affin_mask_t *__kmp_create_masks(unsigned *maxIndex, 2686 unsigned *numUnique, 2687 AddrUnsPair *address2os, 2688 unsigned numAddrs) { 2689 // First form a table of affinity masks in order of OS thread id. 2690 unsigned depth; 2691 unsigned maxOsId; 2692 unsigned i; 2693 2694 KMP_ASSERT(numAddrs > 0); 2695 depth = address2os[0].first.depth; 2696 2697 maxOsId = 0; 2698 for (i = numAddrs - 1;; --i) { 2699 unsigned osId = address2os[i].second; 2700 if (osId > maxOsId) { 2701 maxOsId = osId; 2702 } 2703 if (i == 0) 2704 break; 2705 } 2706 kmp_affin_mask_t *osId2Mask; 2707 KMP_CPU_ALLOC_ARRAY(osId2Mask, (maxOsId + 1)); 2708 2709 // Sort the address2os table according to physical order. Doing so will put 2710 // all threads on the same core/package/node in consecutive locations. 2711 qsort(address2os, numAddrs, sizeof(*address2os), 2712 __kmp_affinity_cmp_Address_labels); 2713 2714 KMP_ASSERT(__kmp_affinity_gran_levels >= 0); 2715 if (__kmp_affinity_verbose && (__kmp_affinity_gran_levels > 0)) { 2716 KMP_INFORM(ThreadsMigrate, "KMP_AFFINITY", __kmp_affinity_gran_levels); 2717 } 2718 if (__kmp_affinity_gran_levels >= (int)depth) { 2719 if (__kmp_affinity_verbose || 2720 (__kmp_affinity_warnings && (__kmp_affinity_type != affinity_none))) { 2721 KMP_WARNING(AffThreadsMayMigrate); 2722 } 2723 } 2724 2725 // Run through the table, forming the masks for all threads on each core. 2726 // Threads on the same core will have identical "Address" objects, not 2727 // considering the last level, which must be the thread id. All threads on a 2728 // core will appear consecutively. 2729 unsigned unique = 0; 2730 unsigned j = 0; // index of 1st thread on core 2731 unsigned leader = 0; 2732 Address *leaderAddr = &(address2os[0].first); 2733 kmp_affin_mask_t *sum; 2734 KMP_CPU_ALLOC_ON_STACK(sum); 2735 KMP_CPU_ZERO(sum); 2736 KMP_CPU_SET(address2os[0].second, sum); 2737 for (i = 1; i < numAddrs; i++) { 2738 // If this thread is sufficiently close to the leader (within the 2739 // granularity setting), then set the bit for this os thread in the 2740 // affinity mask for this group, and go on to the next thread. 2741 if (leaderAddr->isClose(address2os[i].first, __kmp_affinity_gran_levels)) { 2742 KMP_CPU_SET(address2os[i].second, sum); 2743 continue; 2744 } 2745 2746 // For every thread in this group, copy the mask to the thread's entry in 2747 // the osId2Mask table. Mark the first address as a leader. 2748 for (; j < i; j++) { 2749 unsigned osId = address2os[j].second; 2750 KMP_DEBUG_ASSERT(osId <= maxOsId); 2751 kmp_affin_mask_t *mask = KMP_CPU_INDEX(osId2Mask, osId); 2752 KMP_CPU_COPY(mask, sum); 2753 address2os[j].first.leader = (j == leader); 2754 } 2755 unique++; 2756 2757 // Start a new mask. 2758 leader = i; 2759 leaderAddr = &(address2os[i].first); 2760 KMP_CPU_ZERO(sum); 2761 KMP_CPU_SET(address2os[i].second, sum); 2762 } 2763 2764 // For every thread in last group, copy the mask to the thread's 2765 // entry in the osId2Mask table. 2766 for (; j < i; j++) { 2767 unsigned osId = address2os[j].second; 2768 KMP_DEBUG_ASSERT(osId <= maxOsId); 2769 kmp_affin_mask_t *mask = KMP_CPU_INDEX(osId2Mask, osId); 2770 KMP_CPU_COPY(mask, sum); 2771 address2os[j].first.leader = (j == leader); 2772 } 2773 unique++; 2774 KMP_CPU_FREE_FROM_STACK(sum); 2775 2776 *maxIndex = maxOsId; 2777 *numUnique = unique; 2778 return osId2Mask; 2779 } 2780 2781 // Stuff for the affinity proclist parsers. It's easier to declare these vars 2782 // as file-static than to try and pass them through the calling sequence of 2783 // the recursive-descent OMP_PLACES parser. 2784 static kmp_affin_mask_t *newMasks; 2785 static int numNewMasks; 2786 static int nextNewMask; 2787 2788 #define ADD_MASK(_mask) \ 2789 { \ 2790 if (nextNewMask >= numNewMasks) { \ 2791 int i; \ 2792 numNewMasks *= 2; \ 2793 kmp_affin_mask_t *temp; \ 2794 KMP_CPU_INTERNAL_ALLOC_ARRAY(temp, numNewMasks); \ 2795 for (i = 0; i < numNewMasks / 2; i++) { \ 2796 kmp_affin_mask_t *src = KMP_CPU_INDEX(newMasks, i); \ 2797 kmp_affin_mask_t *dest = KMP_CPU_INDEX(temp, i); \ 2798 KMP_CPU_COPY(dest, src); \ 2799 } \ 2800 KMP_CPU_INTERNAL_FREE_ARRAY(newMasks, numNewMasks / 2); \ 2801 newMasks = temp; \ 2802 } \ 2803 KMP_CPU_COPY(KMP_CPU_INDEX(newMasks, nextNewMask), (_mask)); \ 2804 nextNewMask++; \ 2805 } 2806 2807 #define ADD_MASK_OSID(_osId, _osId2Mask, _maxOsId) \ 2808 { \ 2809 if (((_osId) > _maxOsId) || \ 2810 (!KMP_CPU_ISSET((_osId), KMP_CPU_INDEX((_osId2Mask), (_osId))))) { \ 2811 if (__kmp_affinity_verbose || \ 2812 (__kmp_affinity_warnings && \ 2813 (__kmp_affinity_type != affinity_none))) { \ 2814 KMP_WARNING(AffIgnoreInvalidProcID, _osId); \ 2815 } \ 2816 } else { \ 2817 ADD_MASK(KMP_CPU_INDEX(_osId2Mask, (_osId))); \ 2818 } \ 2819 } 2820 2821 // Re-parse the proclist (for the explicit affinity type), and form the list 2822 // of affinity newMasks indexed by gtid. 2823 static void __kmp_affinity_process_proclist(kmp_affin_mask_t **out_masks, 2824 unsigned int *out_numMasks, 2825 const char *proclist, 2826 kmp_affin_mask_t *osId2Mask, 2827 int maxOsId) { 2828 int i; 2829 const char *scan = proclist; 2830 const char *next = proclist; 2831 2832 // We use malloc() for the temporary mask vector, so that we can use 2833 // realloc() to extend it. 2834 numNewMasks = 2; 2835 KMP_CPU_INTERNAL_ALLOC_ARRAY(newMasks, numNewMasks); 2836 nextNewMask = 0; 2837 kmp_affin_mask_t *sumMask; 2838 KMP_CPU_ALLOC(sumMask); 2839 int setSize = 0; 2840 2841 for (;;) { 2842 int start, end, stride; 2843 2844 SKIP_WS(scan); 2845 next = scan; 2846 if (*next == '\0') { 2847 break; 2848 } 2849 2850 if (*next == '{') { 2851 int num; 2852 setSize = 0; 2853 next++; // skip '{' 2854 SKIP_WS(next); 2855 scan = next; 2856 2857 // Read the first integer in the set. 2858 KMP_ASSERT2((*next >= '0') && (*next <= '9'), "bad proclist"); 2859 SKIP_DIGITS(next); 2860 num = __kmp_str_to_int(scan, *next); 2861 KMP_ASSERT2(num >= 0, "bad explicit proc list"); 2862 2863 // Copy the mask for that osId to the sum (union) mask. 2864 if ((num > maxOsId) || 2865 (!KMP_CPU_ISSET(num, KMP_CPU_INDEX(osId2Mask, num)))) { 2866 if (__kmp_affinity_verbose || 2867 (__kmp_affinity_warnings && 2868 (__kmp_affinity_type != affinity_none))) { 2869 KMP_WARNING(AffIgnoreInvalidProcID, num); 2870 } 2871 KMP_CPU_ZERO(sumMask); 2872 } else { 2873 KMP_CPU_COPY(sumMask, KMP_CPU_INDEX(osId2Mask, num)); 2874 setSize = 1; 2875 } 2876 2877 for (;;) { 2878 // Check for end of set. 2879 SKIP_WS(next); 2880 if (*next == '}') { 2881 next++; // skip '}' 2882 break; 2883 } 2884 2885 // Skip optional comma. 2886 if (*next == ',') { 2887 next++; 2888 } 2889 SKIP_WS(next); 2890 2891 // Read the next integer in the set. 2892 scan = next; 2893 KMP_ASSERT2((*next >= '0') && (*next <= '9'), "bad explicit proc list"); 2894 2895 SKIP_DIGITS(next); 2896 num = __kmp_str_to_int(scan, *next); 2897 KMP_ASSERT2(num >= 0, "bad explicit proc list"); 2898 2899 // Add the mask for that osId to the sum mask. 2900 if ((num > maxOsId) || 2901 (!KMP_CPU_ISSET(num, KMP_CPU_INDEX(osId2Mask, num)))) { 2902 if (__kmp_affinity_verbose || 2903 (__kmp_affinity_warnings && 2904 (__kmp_affinity_type != affinity_none))) { 2905 KMP_WARNING(AffIgnoreInvalidProcID, num); 2906 } 2907 } else { 2908 KMP_CPU_UNION(sumMask, KMP_CPU_INDEX(osId2Mask, num)); 2909 setSize++; 2910 } 2911 } 2912 if (setSize > 0) { 2913 ADD_MASK(sumMask); 2914 } 2915 2916 SKIP_WS(next); 2917 if (*next == ',') { 2918 next++; 2919 } 2920 scan = next; 2921 continue; 2922 } 2923 2924 // Read the first integer. 2925 KMP_ASSERT2((*next >= '0') && (*next <= '9'), "bad explicit proc list"); 2926 SKIP_DIGITS(next); 2927 start = __kmp_str_to_int(scan, *next); 2928 KMP_ASSERT2(start >= 0, "bad explicit proc list"); 2929 SKIP_WS(next); 2930 2931 // If this isn't a range, then add a mask to the list and go on. 2932 if (*next != '-') { 2933 ADD_MASK_OSID(start, osId2Mask, maxOsId); 2934 2935 // Skip optional comma. 2936 if (*next == ',') { 2937 next++; 2938 } 2939 scan = next; 2940 continue; 2941 } 2942 2943 // This is a range. Skip over the '-' and read in the 2nd int. 2944 next++; // skip '-' 2945 SKIP_WS(next); 2946 scan = next; 2947 KMP_ASSERT2((*next >= '0') && (*next <= '9'), "bad explicit proc list"); 2948 SKIP_DIGITS(next); 2949 end = __kmp_str_to_int(scan, *next); 2950 KMP_ASSERT2(end >= 0, "bad explicit proc list"); 2951 2952 // Check for a stride parameter 2953 stride = 1; 2954 SKIP_WS(next); 2955 if (*next == ':') { 2956 // A stride is specified. Skip over the ':" and read the 3rd int. 2957 int sign = +1; 2958 next++; // skip ':' 2959 SKIP_WS(next); 2960 scan = next; 2961 if (*next == '-') { 2962 sign = -1; 2963 next++; 2964 SKIP_WS(next); 2965 scan = next; 2966 } 2967 KMP_ASSERT2((*next >= '0') && (*next <= '9'), "bad explicit proc list"); 2968 SKIP_DIGITS(next); 2969 stride = __kmp_str_to_int(scan, *next); 2970 KMP_ASSERT2(stride >= 0, "bad explicit proc list"); 2971 stride *= sign; 2972 } 2973 2974 // Do some range checks. 2975 KMP_ASSERT2(stride != 0, "bad explicit proc list"); 2976 if (stride > 0) { 2977 KMP_ASSERT2(start <= end, "bad explicit proc list"); 2978 } else { 2979 KMP_ASSERT2(start >= end, "bad explicit proc list"); 2980 } 2981 KMP_ASSERT2((end - start) / stride <= 65536, "bad explicit proc list"); 2982 2983 // Add the mask for each OS proc # to the list. 2984 if (stride > 0) { 2985 do { 2986 ADD_MASK_OSID(start, osId2Mask, maxOsId); 2987 start += stride; 2988 } while (start <= end); 2989 } else { 2990 do { 2991 ADD_MASK_OSID(start, osId2Mask, maxOsId); 2992 start += stride; 2993 } while (start >= end); 2994 } 2995 2996 // Skip optional comma. 2997 SKIP_WS(next); 2998 if (*next == ',') { 2999 next++; 3000 } 3001 scan = next; 3002 } 3003 3004 *out_numMasks = nextNewMask; 3005 if (nextNewMask == 0) { 3006 *out_masks = NULL; 3007 KMP_CPU_INTERNAL_FREE_ARRAY(newMasks, numNewMasks); 3008 return; 3009 } 3010 KMP_CPU_ALLOC_ARRAY((*out_masks), nextNewMask); 3011 for (i = 0; i < nextNewMask; i++) { 3012 kmp_affin_mask_t *src = KMP_CPU_INDEX(newMasks, i); 3013 kmp_affin_mask_t *dest = KMP_CPU_INDEX((*out_masks), i); 3014 KMP_CPU_COPY(dest, src); 3015 } 3016 KMP_CPU_INTERNAL_FREE_ARRAY(newMasks, numNewMasks); 3017 KMP_CPU_FREE(sumMask); 3018 } 3019 3020 #if OMP_40_ENABLED 3021 3022 /*----------------------------------------------------------------------------- 3023 Re-parse the OMP_PLACES proc id list, forming the newMasks for the different 3024 places. Again, Here is the grammar: 3025 3026 place_list := place 3027 place_list := place , place_list 3028 place := num 3029 place := place : num 3030 place := place : num : signed 3031 place := { subplacelist } 3032 place := ! place // (lowest priority) 3033 subplace_list := subplace 3034 subplace_list := subplace , subplace_list 3035 subplace := num 3036 subplace := num : num 3037 subplace := num : num : signed 3038 signed := num 3039 signed := + signed 3040 signed := - signed 3041 -----------------------------------------------------------------------------*/ 3042 3043 static void __kmp_process_subplace_list(const char **scan, 3044 kmp_affin_mask_t *osId2Mask, 3045 int maxOsId, kmp_affin_mask_t *tempMask, 3046 int *setSize) { 3047 const char *next; 3048 3049 for (;;) { 3050 int start, count, stride, i; 3051 3052 // Read in the starting proc id 3053 SKIP_WS(*scan); 3054 KMP_ASSERT2((**scan >= '0') && (**scan <= '9'), "bad explicit places list"); 3055 next = *scan; 3056 SKIP_DIGITS(next); 3057 start = __kmp_str_to_int(*scan, *next); 3058 KMP_ASSERT(start >= 0); 3059 *scan = next; 3060 3061 // valid follow sets are ',' ':' and '}' 3062 SKIP_WS(*scan); 3063 if (**scan == '}' || **scan == ',') { 3064 if ((start > maxOsId) || 3065 (!KMP_CPU_ISSET(start, KMP_CPU_INDEX(osId2Mask, start)))) { 3066 if (__kmp_affinity_verbose || 3067 (__kmp_affinity_warnings && 3068 (__kmp_affinity_type != affinity_none))) { 3069 KMP_WARNING(AffIgnoreInvalidProcID, start); 3070 } 3071 } else { 3072 KMP_CPU_UNION(tempMask, KMP_CPU_INDEX(osId2Mask, start)); 3073 (*setSize)++; 3074 } 3075 if (**scan == '}') { 3076 break; 3077 } 3078 (*scan)++; // skip ',' 3079 continue; 3080 } 3081 KMP_ASSERT2(**scan == ':', "bad explicit places list"); 3082 (*scan)++; // skip ':' 3083 3084 // Read count parameter 3085 SKIP_WS(*scan); 3086 KMP_ASSERT2((**scan >= '0') && (**scan <= '9'), "bad explicit places list"); 3087 next = *scan; 3088 SKIP_DIGITS(next); 3089 count = __kmp_str_to_int(*scan, *next); 3090 KMP_ASSERT(count >= 0); 3091 *scan = next; 3092 3093 // valid follow sets are ',' ':' and '}' 3094 SKIP_WS(*scan); 3095 if (**scan == '}' || **scan == ',') { 3096 for (i = 0; i < count; i++) { 3097 if ((start > maxOsId) || 3098 (!KMP_CPU_ISSET(start, KMP_CPU_INDEX(osId2Mask, start)))) { 3099 if (__kmp_affinity_verbose || 3100 (__kmp_affinity_warnings && 3101 (__kmp_affinity_type != affinity_none))) { 3102 KMP_WARNING(AffIgnoreInvalidProcID, start); 3103 } 3104 break; // don't proliferate warnings for large count 3105 } else { 3106 KMP_CPU_UNION(tempMask, KMP_CPU_INDEX(osId2Mask, start)); 3107 start++; 3108 (*setSize)++; 3109 } 3110 } 3111 if (**scan == '}') { 3112 break; 3113 } 3114 (*scan)++; // skip ',' 3115 continue; 3116 } 3117 KMP_ASSERT2(**scan == ':', "bad explicit places list"); 3118 (*scan)++; // skip ':' 3119 3120 // Read stride parameter 3121 int sign = +1; 3122 for (;;) { 3123 SKIP_WS(*scan); 3124 if (**scan == '+') { 3125 (*scan)++; // skip '+' 3126 continue; 3127 } 3128 if (**scan == '-') { 3129 sign *= -1; 3130 (*scan)++; // skip '-' 3131 continue; 3132 } 3133 break; 3134 } 3135 SKIP_WS(*scan); 3136 KMP_ASSERT2((**scan >= '0') && (**scan <= '9'), "bad explicit places list"); 3137 next = *scan; 3138 SKIP_DIGITS(next); 3139 stride = __kmp_str_to_int(*scan, *next); 3140 KMP_ASSERT(stride >= 0); 3141 *scan = next; 3142 stride *= sign; 3143 3144 // valid follow sets are ',' and '}' 3145 SKIP_WS(*scan); 3146 if (**scan == '}' || **scan == ',') { 3147 for (i = 0; i < count; i++) { 3148 if ((start > maxOsId) || 3149 (!KMP_CPU_ISSET(start, KMP_CPU_INDEX(osId2Mask, start)))) { 3150 if (__kmp_affinity_verbose || 3151 (__kmp_affinity_warnings && 3152 (__kmp_affinity_type != affinity_none))) { 3153 KMP_WARNING(AffIgnoreInvalidProcID, start); 3154 } 3155 break; // don't proliferate warnings for large count 3156 } else { 3157 KMP_CPU_UNION(tempMask, KMP_CPU_INDEX(osId2Mask, start)); 3158 start += stride; 3159 (*setSize)++; 3160 } 3161 } 3162 if (**scan == '}') { 3163 break; 3164 } 3165 (*scan)++; // skip ',' 3166 continue; 3167 } 3168 3169 KMP_ASSERT2(0, "bad explicit places list"); 3170 } 3171 } 3172 3173 static void __kmp_process_place(const char **scan, kmp_affin_mask_t *osId2Mask, 3174 int maxOsId, kmp_affin_mask_t *tempMask, 3175 int *setSize) { 3176 const char *next; 3177 3178 // valid follow sets are '{' '!' and num 3179 SKIP_WS(*scan); 3180 if (**scan == '{') { 3181 (*scan)++; // skip '{' 3182 __kmp_process_subplace_list(scan, osId2Mask, maxOsId, tempMask, setSize); 3183 KMP_ASSERT2(**scan == '}', "bad explicit places list"); 3184 (*scan)++; // skip '}' 3185 } else if (**scan == '!') { 3186 (*scan)++; // skip '!' 3187 __kmp_process_place(scan, osId2Mask, maxOsId, tempMask, setSize); 3188 KMP_CPU_COMPLEMENT(maxOsId, tempMask); 3189 } else if ((**scan >= '0') && (**scan <= '9')) { 3190 next = *scan; 3191 SKIP_DIGITS(next); 3192 int num = __kmp_str_to_int(*scan, *next); 3193 KMP_ASSERT(num >= 0); 3194 if ((num > maxOsId) || 3195 (!KMP_CPU_ISSET(num, KMP_CPU_INDEX(osId2Mask, num)))) { 3196 if (__kmp_affinity_verbose || 3197 (__kmp_affinity_warnings && (__kmp_affinity_type != affinity_none))) { 3198 KMP_WARNING(AffIgnoreInvalidProcID, num); 3199 } 3200 } else { 3201 KMP_CPU_UNION(tempMask, KMP_CPU_INDEX(osId2Mask, num)); 3202 (*setSize)++; 3203 } 3204 *scan = next; // skip num 3205 } else { 3206 KMP_ASSERT2(0, "bad explicit places list"); 3207 } 3208 } 3209 3210 // static void 3211 void __kmp_affinity_process_placelist(kmp_affin_mask_t **out_masks, 3212 unsigned int *out_numMasks, 3213 const char *placelist, 3214 kmp_affin_mask_t *osId2Mask, 3215 int maxOsId) { 3216 int i, j, count, stride, sign; 3217 const char *scan = placelist; 3218 const char *next = placelist; 3219 3220 numNewMasks = 2; 3221 KMP_CPU_INTERNAL_ALLOC_ARRAY(newMasks, numNewMasks); 3222 nextNewMask = 0; 3223 3224 // tempMask is modified based on the previous or initial 3225 // place to form the current place 3226 // previousMask contains the previous place 3227 kmp_affin_mask_t *tempMask; 3228 kmp_affin_mask_t *previousMask; 3229 KMP_CPU_ALLOC(tempMask); 3230 KMP_CPU_ZERO(tempMask); 3231 KMP_CPU_ALLOC(previousMask); 3232 KMP_CPU_ZERO(previousMask); 3233 int setSize = 0; 3234 3235 for (;;) { 3236 __kmp_process_place(&scan, osId2Mask, maxOsId, tempMask, &setSize); 3237 3238 // valid follow sets are ',' ':' and EOL 3239 SKIP_WS(scan); 3240 if (*scan == '\0' || *scan == ',') { 3241 if (setSize > 0) { 3242 ADD_MASK(tempMask); 3243 } 3244 KMP_CPU_ZERO(tempMask); 3245 setSize = 0; 3246 if (*scan == '\0') { 3247 break; 3248 } 3249 scan++; // skip ',' 3250 continue; 3251 } 3252 3253 KMP_ASSERT2(*scan == ':', "bad explicit places list"); 3254 scan++; // skip ':' 3255 3256 // Read count parameter 3257 SKIP_WS(scan); 3258 KMP_ASSERT2((*scan >= '0') && (*scan <= '9'), "bad explicit places list"); 3259 next = scan; 3260 SKIP_DIGITS(next); 3261 count = __kmp_str_to_int(scan, *next); 3262 KMP_ASSERT(count >= 0); 3263 scan = next; 3264 3265 // valid follow sets are ',' ':' and EOL 3266 SKIP_WS(scan); 3267 if (*scan == '\0' || *scan == ',') { 3268 stride = +1; 3269 } else { 3270 KMP_ASSERT2(*scan == ':', "bad explicit places list"); 3271 scan++; // skip ':' 3272 3273 // Read stride parameter 3274 sign = +1; 3275 for (;;) { 3276 SKIP_WS(scan); 3277 if (*scan == '+') { 3278 scan++; // skip '+' 3279 continue; 3280 } 3281 if (*scan == '-') { 3282 sign *= -1; 3283 scan++; // skip '-' 3284 continue; 3285 } 3286 break; 3287 } 3288 SKIP_WS(scan); 3289 KMP_ASSERT2((*scan >= '0') && (*scan <= '9'), "bad explicit places list"); 3290 next = scan; 3291 SKIP_DIGITS(next); 3292 stride = __kmp_str_to_int(scan, *next); 3293 KMP_DEBUG_ASSERT(stride >= 0); 3294 scan = next; 3295 stride *= sign; 3296 } 3297 3298 // Add places determined by initial_place : count : stride 3299 for (i = 0; i < count; i++) { 3300 if (setSize == 0) { 3301 break; 3302 } 3303 // Add the current place, then build the next place (tempMask) from that 3304 KMP_CPU_COPY(previousMask, tempMask); 3305 ADD_MASK(previousMask); 3306 KMP_CPU_ZERO(tempMask); 3307 setSize = 0; 3308 KMP_CPU_SET_ITERATE(j, previousMask) { 3309 if (!KMP_CPU_ISSET(j, previousMask)) { 3310 continue; 3311 } 3312 if ((j + stride > maxOsId) || (j + stride < 0) || 3313 (!KMP_CPU_ISSET(j, __kmp_affin_fullMask)) || 3314 (!KMP_CPU_ISSET(j + stride, 3315 KMP_CPU_INDEX(osId2Mask, j + stride)))) { 3316 if ((__kmp_affinity_verbose || 3317 (__kmp_affinity_warnings && 3318 (__kmp_affinity_type != affinity_none))) && 3319 i < count - 1) { 3320 KMP_WARNING(AffIgnoreInvalidProcID, j + stride); 3321 } 3322 continue; 3323 } 3324 KMP_CPU_SET(j + stride, tempMask); 3325 setSize++; 3326 } 3327 } 3328 KMP_CPU_ZERO(tempMask); 3329 setSize = 0; 3330 3331 // valid follow sets are ',' and EOL 3332 SKIP_WS(scan); 3333 if (*scan == '\0') { 3334 break; 3335 } 3336 if (*scan == ',') { 3337 scan++; // skip ',' 3338 continue; 3339 } 3340 3341 KMP_ASSERT2(0, "bad explicit places list"); 3342 } 3343 3344 *out_numMasks = nextNewMask; 3345 if (nextNewMask == 0) { 3346 *out_masks = NULL; 3347 KMP_CPU_INTERNAL_FREE_ARRAY(newMasks, numNewMasks); 3348 return; 3349 } 3350 KMP_CPU_ALLOC_ARRAY((*out_masks), nextNewMask); 3351 KMP_CPU_FREE(tempMask); 3352 KMP_CPU_FREE(previousMask); 3353 for (i = 0; i < nextNewMask; i++) { 3354 kmp_affin_mask_t *src = KMP_CPU_INDEX(newMasks, i); 3355 kmp_affin_mask_t *dest = KMP_CPU_INDEX((*out_masks), i); 3356 KMP_CPU_COPY(dest, src); 3357 } 3358 KMP_CPU_INTERNAL_FREE_ARRAY(newMasks, numNewMasks); 3359 } 3360 3361 #endif /* OMP_40_ENABLED */ 3362 3363 #undef ADD_MASK 3364 #undef ADD_MASK_OSID 3365 3366 #if KMP_USE_HWLOC 3367 static int __kmp_hwloc_skip_PUs_obj(hwloc_topology_t t, hwloc_obj_t o) { 3368 // skip PUs descendants of the object o 3369 int skipped = 0; 3370 hwloc_obj_t hT = NULL; 3371 int N = __kmp_hwloc_count_children_by_type(t, o, HWLOC_OBJ_PU, &hT); 3372 for (int i = 0; i < N; ++i) { 3373 KMP_DEBUG_ASSERT(hT); 3374 unsigned idx = hT->os_index; 3375 if (KMP_CPU_ISSET(idx, __kmp_affin_fullMask)) { 3376 KMP_CPU_CLR(idx, __kmp_affin_fullMask); 3377 KC_TRACE(200, ("KMP_HW_SUBSET: skipped proc %d\n", idx)); 3378 ++skipped; 3379 } 3380 hT = hwloc_get_next_obj_by_type(t, HWLOC_OBJ_PU, hT); 3381 } 3382 return skipped; // count number of skipped units 3383 } 3384 3385 static int __kmp_hwloc_obj_has_PUs(hwloc_topology_t t, hwloc_obj_t o) { 3386 // check if obj has PUs present in fullMask 3387 hwloc_obj_t hT = NULL; 3388 int N = __kmp_hwloc_count_children_by_type(t, o, HWLOC_OBJ_PU, &hT); 3389 for (int i = 0; i < N; ++i) { 3390 KMP_DEBUG_ASSERT(hT); 3391 unsigned idx = hT->os_index; 3392 if (KMP_CPU_ISSET(idx, __kmp_affin_fullMask)) 3393 return 1; // found PU 3394 hT = hwloc_get_next_obj_by_type(t, HWLOC_OBJ_PU, hT); 3395 } 3396 return 0; // no PUs found 3397 } 3398 #endif // KMP_USE_HWLOC 3399 3400 static void __kmp_apply_thread_places(AddrUnsPair **pAddr, int depth) { 3401 AddrUnsPair *newAddr; 3402 if (__kmp_hws_requested == 0) 3403 goto _exit; // no topology limiting actions requested, exit 3404 #if KMP_USE_HWLOC 3405 if (__kmp_affinity_dispatch->get_api_type() == KMPAffinity::HWLOC) { 3406 // Number of subobjects calculated dynamically, this works fine for 3407 // any non-uniform topology. 3408 // L2 cache objects are determined by depth, other objects - by type. 3409 hwloc_topology_t tp = __kmp_hwloc_topology; 3410 int nS = 0, nN = 0, nL = 0, nC = 0, 3411 nT = 0; // logical index including skipped 3412 int nCr = 0, nTr = 0; // number of requested units 3413 int nPkg = 0, nCo = 0, n_new = 0, n_old = 0, nCpP = 0, nTpC = 0; // counters 3414 hwloc_obj_t hT, hC, hL, hN, hS; // hwloc objects (pointers to) 3415 int L2depth, idx; 3416 3417 // check support of extensions ---------------------------------- 3418 int numa_support = 0, tile_support = 0; 3419 if (__kmp_pu_os_idx) 3420 hT = hwloc_get_pu_obj_by_os_index(tp, 3421 __kmp_pu_os_idx[__kmp_avail_proc - 1]); 3422 else 3423 hT = hwloc_get_obj_by_type(tp, HWLOC_OBJ_PU, __kmp_avail_proc - 1); 3424 if (hT == NULL) { // something's gone wrong 3425 KMP_WARNING(AffHWSubsetUnsupported); 3426 goto _exit; 3427 } 3428 // check NUMA node 3429 hN = hwloc_get_ancestor_obj_by_type(tp, HWLOC_OBJ_NUMANODE, hT); 3430 hS = hwloc_get_ancestor_obj_by_type(tp, HWLOC_OBJ_PACKAGE, hT); 3431 if (hN != NULL && hN->depth > hS->depth) { 3432 numa_support = 1; // 1 in case socket includes node(s) 3433 } else if (__kmp_hws_node.num > 0) { 3434 // don't support sockets inside NUMA node (no such HW found for testing) 3435 KMP_WARNING(AffHWSubsetUnsupported); 3436 goto _exit; 3437 } 3438 // check L2 cahce, get object by depth because of multiple caches 3439 L2depth = hwloc_get_cache_type_depth(tp, 2, HWLOC_OBJ_CACHE_UNIFIED); 3440 hL = hwloc_get_ancestor_obj_by_depth(tp, L2depth, hT); 3441 if (hL != NULL && 3442 __kmp_hwloc_count_children_by_type(tp, hL, HWLOC_OBJ_CORE, &hC) > 1) { 3443 tile_support = 1; // no sense to count L2 if it includes single core 3444 } else if (__kmp_hws_tile.num > 0) { 3445 if (__kmp_hws_core.num == 0) { 3446 __kmp_hws_core = __kmp_hws_tile; // replace L2 with core 3447 __kmp_hws_tile.num = 0; 3448 } else { 3449 // L2 and core are both requested, but represent same object 3450 KMP_WARNING(AffHWSubsetInvalid); 3451 goto _exit; 3452 } 3453 } 3454 // end of check of extensions ----------------------------------- 3455 3456 // fill in unset items, validate settings ----------------------- 3457 if (__kmp_hws_socket.num == 0) 3458 __kmp_hws_socket.num = nPackages; // use all available sockets 3459 if (__kmp_hws_socket.offset >= nPackages) { 3460 KMP_WARNING(AffHWSubsetManySockets); 3461 goto _exit; 3462 } 3463 if (numa_support) { 3464 hN = NULL; 3465 int NN = __kmp_hwloc_count_children_by_type(tp, hS, HWLOC_OBJ_NUMANODE, 3466 &hN); // num nodes in socket 3467 if (__kmp_hws_node.num == 0) 3468 __kmp_hws_node.num = NN; // use all available nodes 3469 if (__kmp_hws_node.offset >= NN) { 3470 KMP_WARNING(AffHWSubsetManyNodes); 3471 goto _exit; 3472 } 3473 if (tile_support) { 3474 // get num tiles in node 3475 int NL = __kmp_hwloc_count_children_by_depth(tp, hN, L2depth, &hL); 3476 if (__kmp_hws_tile.num == 0) { 3477 __kmp_hws_tile.num = NL + 1; 3478 } // use all available tiles, some node may have more tiles, thus +1 3479 if (__kmp_hws_tile.offset >= NL) { 3480 KMP_WARNING(AffHWSubsetManyTiles); 3481 goto _exit; 3482 } 3483 int NC = __kmp_hwloc_count_children_by_type(tp, hL, HWLOC_OBJ_CORE, 3484 &hC); // num cores in tile 3485 if (__kmp_hws_core.num == 0) 3486 __kmp_hws_core.num = NC; // use all available cores 3487 if (__kmp_hws_core.offset >= NC) { 3488 KMP_WARNING(AffHWSubsetManyCores); 3489 goto _exit; 3490 } 3491 } else { // tile_support 3492 int NC = __kmp_hwloc_count_children_by_type(tp, hN, HWLOC_OBJ_CORE, 3493 &hC); // num cores in node 3494 if (__kmp_hws_core.num == 0) 3495 __kmp_hws_core.num = NC; // use all available cores 3496 if (__kmp_hws_core.offset >= NC) { 3497 KMP_WARNING(AffHWSubsetManyCores); 3498 goto _exit; 3499 } 3500 } // tile_support 3501 } else { // numa_support 3502 if (tile_support) { 3503 // get num tiles in socket 3504 int NL = __kmp_hwloc_count_children_by_depth(tp, hS, L2depth, &hL); 3505 if (__kmp_hws_tile.num == 0) 3506 __kmp_hws_tile.num = NL; // use all available tiles 3507 if (__kmp_hws_tile.offset >= NL) { 3508 KMP_WARNING(AffHWSubsetManyTiles); 3509 goto _exit; 3510 } 3511 int NC = __kmp_hwloc_count_children_by_type(tp, hL, HWLOC_OBJ_CORE, 3512 &hC); // num cores in tile 3513 if (__kmp_hws_core.num == 0) 3514 __kmp_hws_core.num = NC; // use all available cores 3515 if (__kmp_hws_core.offset >= NC) { 3516 KMP_WARNING(AffHWSubsetManyCores); 3517 goto _exit; 3518 } 3519 } else { // tile_support 3520 int NC = __kmp_hwloc_count_children_by_type(tp, hS, HWLOC_OBJ_CORE, 3521 &hC); // num cores in socket 3522 if (__kmp_hws_core.num == 0) 3523 __kmp_hws_core.num = NC; // use all available cores 3524 if (__kmp_hws_core.offset >= NC) { 3525 KMP_WARNING(AffHWSubsetManyCores); 3526 goto _exit; 3527 } 3528 } // tile_support 3529 } 3530 if (__kmp_hws_proc.num == 0) 3531 __kmp_hws_proc.num = __kmp_nThreadsPerCore; // use all available procs 3532 if (__kmp_hws_proc.offset >= __kmp_nThreadsPerCore) { 3533 KMP_WARNING(AffHWSubsetManyProcs); 3534 goto _exit; 3535 } 3536 // end of validation -------------------------------------------- 3537 3538 if (pAddr) // pAddr is NULL in case of affinity_none 3539 newAddr = (AddrUnsPair *)__kmp_allocate(sizeof(AddrUnsPair) * 3540 __kmp_avail_proc); // max size 3541 // main loop to form HW subset ---------------------------------- 3542 hS = NULL; 3543 int NP = hwloc_get_nbobjs_by_type(tp, HWLOC_OBJ_PACKAGE); 3544 for (int s = 0; s < NP; ++s) { 3545 // Check Socket ----------------------------------------------- 3546 hS = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_PACKAGE, hS); 3547 if (!__kmp_hwloc_obj_has_PUs(tp, hS)) 3548 continue; // skip socket if all PUs are out of fullMask 3549 ++nS; // only count objects those have PUs in affinity mask 3550 if (nS <= __kmp_hws_socket.offset || 3551 nS > __kmp_hws_socket.num + __kmp_hws_socket.offset) { 3552 n_old += __kmp_hwloc_skip_PUs_obj(tp, hS); // skip socket 3553 continue; // move to next socket 3554 } 3555 nCr = 0; // count number of cores per socket 3556 // socket requested, go down the topology tree 3557 // check 4 cases: (+NUMA+Tile), (+NUMA-Tile), (-NUMA+Tile), (-NUMA-Tile) 3558 if (numa_support) { 3559 nN = 0; 3560 hN = NULL; 3561 // num nodes in current socket 3562 int NN = 3563 __kmp_hwloc_count_children_by_type(tp, hS, HWLOC_OBJ_NUMANODE, &hN); 3564 for (int n = 0; n < NN; ++n) { 3565 // Check NUMA Node ---------------------------------------- 3566 if (!__kmp_hwloc_obj_has_PUs(tp, hN)) { 3567 hN = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_NUMANODE, hN); 3568 continue; // skip node if all PUs are out of fullMask 3569 } 3570 ++nN; 3571 if (nN <= __kmp_hws_node.offset || 3572 nN > __kmp_hws_node.num + __kmp_hws_node.offset) { 3573 // skip node as not requested 3574 n_old += __kmp_hwloc_skip_PUs_obj(tp, hN); // skip node 3575 hN = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_NUMANODE, hN); 3576 continue; // move to next node 3577 } 3578 // node requested, go down the topology tree 3579 if (tile_support) { 3580 nL = 0; 3581 hL = NULL; 3582 int NL = __kmp_hwloc_count_children_by_depth(tp, hN, L2depth, &hL); 3583 for (int l = 0; l < NL; ++l) { 3584 // Check L2 (tile) ------------------------------------ 3585 if (!__kmp_hwloc_obj_has_PUs(tp, hL)) { 3586 hL = hwloc_get_next_obj_by_depth(tp, L2depth, hL); 3587 continue; // skip tile if all PUs are out of fullMask 3588 } 3589 ++nL; 3590 if (nL <= __kmp_hws_tile.offset || 3591 nL > __kmp_hws_tile.num + __kmp_hws_tile.offset) { 3592 // skip tile as not requested 3593 n_old += __kmp_hwloc_skip_PUs_obj(tp, hL); // skip tile 3594 hL = hwloc_get_next_obj_by_depth(tp, L2depth, hL); 3595 continue; // move to next tile 3596 } 3597 // tile requested, go down the topology tree 3598 nC = 0; 3599 hC = NULL; 3600 // num cores in current tile 3601 int NC = __kmp_hwloc_count_children_by_type(tp, hL, 3602 HWLOC_OBJ_CORE, &hC); 3603 for (int c = 0; c < NC; ++c) { 3604 // Check Core --------------------------------------- 3605 if (!__kmp_hwloc_obj_has_PUs(tp, hC)) { 3606 hC = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_CORE, hC); 3607 continue; // skip core if all PUs are out of fullMask 3608 } 3609 ++nC; 3610 if (nC <= __kmp_hws_core.offset || 3611 nC > __kmp_hws_core.num + __kmp_hws_core.offset) { 3612 // skip node as not requested 3613 n_old += __kmp_hwloc_skip_PUs_obj(tp, hC); // skip core 3614 hC = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_CORE, hC); 3615 continue; // move to next node 3616 } 3617 // core requested, go down to PUs 3618 nT = 0; 3619 nTr = 0; 3620 hT = NULL; 3621 // num procs in current core 3622 int NT = __kmp_hwloc_count_children_by_type(tp, hC, 3623 HWLOC_OBJ_PU, &hT); 3624 for (int t = 0; t < NT; ++t) { 3625 // Check PU --------------------------------------- 3626 idx = hT->os_index; 3627 if (!KMP_CPU_ISSET(idx, __kmp_affin_fullMask)) { 3628 hT = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_PU, hT); 3629 continue; // skip PU if not in fullMask 3630 } 3631 ++nT; 3632 if (nT <= __kmp_hws_proc.offset || 3633 nT > __kmp_hws_proc.num + __kmp_hws_proc.offset) { 3634 // skip PU 3635 KMP_CPU_CLR(idx, __kmp_affin_fullMask); 3636 ++n_old; 3637 KC_TRACE(200, ("KMP_HW_SUBSET: skipped proc %d\n", idx)); 3638 hT = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_PU, hT); 3639 continue; // move to next node 3640 } 3641 ++nTr; 3642 if (pAddr) // collect requested thread's data 3643 newAddr[n_new] = (*pAddr)[n_old]; 3644 ++n_new; 3645 ++n_old; 3646 hT = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_PU, hT); 3647 } // threads loop 3648 if (nTr > 0) { 3649 ++nCr; // num cores per socket 3650 ++nCo; // total num cores 3651 if (nTr > nTpC) 3652 nTpC = nTr; // calc max threads per core 3653 } 3654 hC = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_CORE, hC); 3655 } // cores loop 3656 hL = hwloc_get_next_obj_by_depth(tp, L2depth, hL); 3657 } // tiles loop 3658 } else { // tile_support 3659 // no tiles, check cores 3660 nC = 0; 3661 hC = NULL; 3662 // num cores in current node 3663 int NC = 3664 __kmp_hwloc_count_children_by_type(tp, hN, HWLOC_OBJ_CORE, &hC); 3665 for (int c = 0; c < NC; ++c) { 3666 // Check Core --------------------------------------- 3667 if (!__kmp_hwloc_obj_has_PUs(tp, hC)) { 3668 hC = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_CORE, hC); 3669 continue; // skip core if all PUs are out of fullMask 3670 } 3671 ++nC; 3672 if (nC <= __kmp_hws_core.offset || 3673 nC > __kmp_hws_core.num + __kmp_hws_core.offset) { 3674 // skip node as not requested 3675 n_old += __kmp_hwloc_skip_PUs_obj(tp, hC); // skip core 3676 hC = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_CORE, hC); 3677 continue; // move to next node 3678 } 3679 // core requested, go down to PUs 3680 nT = 0; 3681 nTr = 0; 3682 hT = NULL; 3683 int NT = 3684 __kmp_hwloc_count_children_by_type(tp, hC, HWLOC_OBJ_PU, &hT); 3685 for (int t = 0; t < NT; ++t) { 3686 // Check PU --------------------------------------- 3687 idx = hT->os_index; 3688 if (!KMP_CPU_ISSET(idx, __kmp_affin_fullMask)) { 3689 hT = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_PU, hT); 3690 continue; // skip PU if not in fullMask 3691 } 3692 ++nT; 3693 if (nT <= __kmp_hws_proc.offset || 3694 nT > __kmp_hws_proc.num + __kmp_hws_proc.offset) { 3695 // skip PU 3696 KMP_CPU_CLR(idx, __kmp_affin_fullMask); 3697 ++n_old; 3698 KC_TRACE(200, ("KMP_HW_SUBSET: skipped proc %d\n", idx)); 3699 hT = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_PU, hT); 3700 continue; // move to next node 3701 } 3702 ++nTr; 3703 if (pAddr) // collect requested thread's data 3704 newAddr[n_new] = (*pAddr)[n_old]; 3705 ++n_new; 3706 ++n_old; 3707 hT = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_PU, hT); 3708 } // threads loop 3709 if (nTr > 0) { 3710 ++nCr; // num cores per socket 3711 ++nCo; // total num cores 3712 if (nTr > nTpC) 3713 nTpC = nTr; // calc max threads per core 3714 } 3715 hC = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_CORE, hC); 3716 } // cores loop 3717 } // tiles support 3718 hN = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_NUMANODE, hN); 3719 } // nodes loop 3720 } else { // numa_support 3721 // no NUMA support 3722 if (tile_support) { 3723 nL = 0; 3724 hL = NULL; 3725 // num tiles in current socket 3726 int NL = __kmp_hwloc_count_children_by_depth(tp, hS, L2depth, &hL); 3727 for (int l = 0; l < NL; ++l) { 3728 // Check L2 (tile) ------------------------------------ 3729 if (!__kmp_hwloc_obj_has_PUs(tp, hL)) { 3730 hL = hwloc_get_next_obj_by_depth(tp, L2depth, hL); 3731 continue; // skip tile if all PUs are out of fullMask 3732 } 3733 ++nL; 3734 if (nL <= __kmp_hws_tile.offset || 3735 nL > __kmp_hws_tile.num + __kmp_hws_tile.offset) { 3736 // skip tile as not requested 3737 n_old += __kmp_hwloc_skip_PUs_obj(tp, hL); // skip tile 3738 hL = hwloc_get_next_obj_by_depth(tp, L2depth, hL); 3739 continue; // move to next tile 3740 } 3741 // tile requested, go down the topology tree 3742 nC = 0; 3743 hC = NULL; 3744 // num cores per tile 3745 int NC = 3746 __kmp_hwloc_count_children_by_type(tp, hL, HWLOC_OBJ_CORE, &hC); 3747 for (int c = 0; c < NC; ++c) { 3748 // Check Core --------------------------------------- 3749 if (!__kmp_hwloc_obj_has_PUs(tp, hC)) { 3750 hC = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_CORE, hC); 3751 continue; // skip core if all PUs are out of fullMask 3752 } 3753 ++nC; 3754 if (nC <= __kmp_hws_core.offset || 3755 nC > __kmp_hws_core.num + __kmp_hws_core.offset) { 3756 // skip node as not requested 3757 n_old += __kmp_hwloc_skip_PUs_obj(tp, hC); // skip core 3758 hC = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_CORE, hC); 3759 continue; // move to next node 3760 } 3761 // core requested, go down to PUs 3762 nT = 0; 3763 nTr = 0; 3764 hT = NULL; 3765 // num procs per core 3766 int NT = 3767 __kmp_hwloc_count_children_by_type(tp, hC, HWLOC_OBJ_PU, &hT); 3768 for (int t = 0; t < NT; ++t) { 3769 // Check PU --------------------------------------- 3770 idx = hT->os_index; 3771 if (!KMP_CPU_ISSET(idx, __kmp_affin_fullMask)) { 3772 hT = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_PU, hT); 3773 continue; // skip PU if not in fullMask 3774 } 3775 ++nT; 3776 if (nT <= __kmp_hws_proc.offset || 3777 nT > __kmp_hws_proc.num + __kmp_hws_proc.offset) { 3778 // skip PU 3779 KMP_CPU_CLR(idx, __kmp_affin_fullMask); 3780 ++n_old; 3781 KC_TRACE(200, ("KMP_HW_SUBSET: skipped proc %d\n", idx)); 3782 hT = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_PU, hT); 3783 continue; // move to next node 3784 } 3785 ++nTr; 3786 if (pAddr) // collect requested thread's data 3787 newAddr[n_new] = (*pAddr)[n_old]; 3788 ++n_new; 3789 ++n_old; 3790 hT = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_PU, hT); 3791 } // threads loop 3792 if (nTr > 0) { 3793 ++nCr; // num cores per socket 3794 ++nCo; // total num cores 3795 if (nTr > nTpC) 3796 nTpC = nTr; // calc max threads per core 3797 } 3798 hC = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_CORE, hC); 3799 } // cores loop 3800 hL = hwloc_get_next_obj_by_depth(tp, L2depth, hL); 3801 } // tiles loop 3802 } else { // tile_support 3803 // no tiles, check cores 3804 nC = 0; 3805 hC = NULL; 3806 // num cores in socket 3807 int NC = 3808 __kmp_hwloc_count_children_by_type(tp, hS, HWLOC_OBJ_CORE, &hC); 3809 for (int c = 0; c < NC; ++c) { 3810 // Check Core ------------------------------------------- 3811 if (!__kmp_hwloc_obj_has_PUs(tp, hC)) { 3812 hC = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_CORE, hC); 3813 continue; // skip core if all PUs are out of fullMask 3814 } 3815 ++nC; 3816 if (nC <= __kmp_hws_core.offset || 3817 nC > __kmp_hws_core.num + __kmp_hws_core.offset) { 3818 // skip node as not requested 3819 n_old += __kmp_hwloc_skip_PUs_obj(tp, hC); // skip core 3820 hC = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_CORE, hC); 3821 continue; // move to next node 3822 } 3823 // core requested, go down to PUs 3824 nT = 0; 3825 nTr = 0; 3826 hT = NULL; 3827 // num procs per core 3828 int NT = 3829 __kmp_hwloc_count_children_by_type(tp, hC, HWLOC_OBJ_PU, &hT); 3830 for (int t = 0; t < NT; ++t) { 3831 // Check PU --------------------------------------- 3832 idx = hT->os_index; 3833 if (!KMP_CPU_ISSET(idx, __kmp_affin_fullMask)) { 3834 hT = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_PU, hT); 3835 continue; // skip PU if not in fullMask 3836 } 3837 ++nT; 3838 if (nT <= __kmp_hws_proc.offset || 3839 nT > __kmp_hws_proc.num + __kmp_hws_proc.offset) { 3840 // skip PU 3841 KMP_CPU_CLR(idx, __kmp_affin_fullMask); 3842 ++n_old; 3843 KC_TRACE(200, ("KMP_HW_SUBSET: skipped proc %d\n", idx)); 3844 hT = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_PU, hT); 3845 continue; // move to next node 3846 } 3847 ++nTr; 3848 if (pAddr) // collect requested thread's data 3849 newAddr[n_new] = (*pAddr)[n_old]; 3850 ++n_new; 3851 ++n_old; 3852 hT = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_PU, hT); 3853 } // threads loop 3854 if (nTr > 0) { 3855 ++nCr; // num cores per socket 3856 ++nCo; // total num cores 3857 if (nTr > nTpC) 3858 nTpC = nTr; // calc max threads per core 3859 } 3860 hC = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_CORE, hC); 3861 } // cores loop 3862 } // tiles support 3863 } // numa_support 3864 if (nCr > 0) { // found cores? 3865 ++nPkg; // num sockets 3866 if (nCr > nCpP) 3867 nCpP = nCr; // calc max cores per socket 3868 } 3869 } // sockets loop 3870 3871 // check the subset is valid 3872 KMP_DEBUG_ASSERT(n_old == __kmp_avail_proc); 3873 KMP_DEBUG_ASSERT(nPkg > 0); 3874 KMP_DEBUG_ASSERT(nCpP > 0); 3875 KMP_DEBUG_ASSERT(nTpC > 0); 3876 KMP_DEBUG_ASSERT(nCo > 0); 3877 KMP_DEBUG_ASSERT(nPkg <= nPackages); 3878 KMP_DEBUG_ASSERT(nCpP <= nCoresPerPkg); 3879 KMP_DEBUG_ASSERT(nTpC <= __kmp_nThreadsPerCore); 3880 KMP_DEBUG_ASSERT(nCo <= __kmp_ncores); 3881 3882 nPackages = nPkg; // correct num sockets 3883 nCoresPerPkg = nCpP; // correct num cores per socket 3884 __kmp_nThreadsPerCore = nTpC; // correct num threads per core 3885 __kmp_avail_proc = n_new; // correct num procs 3886 __kmp_ncores = nCo; // correct num cores 3887 // hwloc topology method end 3888 } else 3889 #endif // KMP_USE_HWLOC 3890 { 3891 int n_old = 0, n_new = 0, proc_num = 0; 3892 if (__kmp_hws_node.num > 0 || __kmp_hws_tile.num > 0) { 3893 KMP_WARNING(AffHWSubsetNoHWLOC); 3894 goto _exit; 3895 } 3896 if (__kmp_hws_socket.num == 0) 3897 __kmp_hws_socket.num = nPackages; // use all available sockets 3898 if (__kmp_hws_core.num == 0) 3899 __kmp_hws_core.num = nCoresPerPkg; // use all available cores 3900 if (__kmp_hws_proc.num == 0 || __kmp_hws_proc.num > __kmp_nThreadsPerCore) 3901 __kmp_hws_proc.num = __kmp_nThreadsPerCore; // use all HW contexts 3902 if (!__kmp_affinity_uniform_topology()) { 3903 KMP_WARNING(AffHWSubsetNonUniform); 3904 goto _exit; // don't support non-uniform topology 3905 } 3906 if (depth > 3) { 3907 KMP_WARNING(AffHWSubsetNonThreeLevel); 3908 goto _exit; // don't support not-3-level topology 3909 } 3910 if (__kmp_hws_socket.offset + __kmp_hws_socket.num > nPackages) { 3911 KMP_WARNING(AffHWSubsetManySockets); 3912 goto _exit; 3913 } 3914 if (__kmp_hws_core.offset + __kmp_hws_core.num > nCoresPerPkg) { 3915 KMP_WARNING(AffHWSubsetManyCores); 3916 goto _exit; 3917 } 3918 // Form the requested subset 3919 if (pAddr) // pAddr is NULL in case of affinity_none 3920 newAddr = (AddrUnsPair *)__kmp_allocate( 3921 sizeof(AddrUnsPair) * __kmp_hws_socket.num * __kmp_hws_core.num * 3922 __kmp_hws_proc.num); 3923 for (int i = 0; i < nPackages; ++i) { 3924 if (i < __kmp_hws_socket.offset || 3925 i >= __kmp_hws_socket.offset + __kmp_hws_socket.num) { 3926 // skip not-requested socket 3927 n_old += nCoresPerPkg * __kmp_nThreadsPerCore; 3928 if (__kmp_pu_os_idx != NULL) { 3929 // walk through skipped socket 3930 for (int j = 0; j < nCoresPerPkg; ++j) { 3931 for (int k = 0; k < __kmp_nThreadsPerCore; ++k) { 3932 KMP_CPU_CLR(__kmp_pu_os_idx[proc_num], __kmp_affin_fullMask); 3933 ++proc_num; 3934 } 3935 } 3936 } 3937 } else { 3938 // walk through requested socket 3939 for (int j = 0; j < nCoresPerPkg; ++j) { 3940 if (j < __kmp_hws_core.offset || 3941 j >= __kmp_hws_core.offset + 3942 __kmp_hws_core.num) { // skip not-requested core 3943 n_old += __kmp_nThreadsPerCore; 3944 if (__kmp_pu_os_idx != NULL) { 3945 for (int k = 0; k < __kmp_nThreadsPerCore; ++k) { 3946 KMP_CPU_CLR(__kmp_pu_os_idx[proc_num], __kmp_affin_fullMask); 3947 ++proc_num; 3948 } 3949 } 3950 } else { 3951 // walk through requested core 3952 for (int k = 0; k < __kmp_nThreadsPerCore; ++k) { 3953 if (k < __kmp_hws_proc.num) { 3954 if (pAddr) // collect requested thread's data 3955 newAddr[n_new] = (*pAddr)[n_old]; 3956 n_new++; 3957 } else { 3958 if (__kmp_pu_os_idx != NULL) 3959 KMP_CPU_CLR(__kmp_pu_os_idx[proc_num], __kmp_affin_fullMask); 3960 } 3961 n_old++; 3962 ++proc_num; 3963 } 3964 } 3965 } 3966 } 3967 } 3968 KMP_DEBUG_ASSERT(n_old == nPackages * nCoresPerPkg * __kmp_nThreadsPerCore); 3969 KMP_DEBUG_ASSERT(n_new == 3970 __kmp_hws_socket.num * __kmp_hws_core.num * 3971 __kmp_hws_proc.num); 3972 nPackages = __kmp_hws_socket.num; // correct nPackages 3973 nCoresPerPkg = __kmp_hws_core.num; // correct nCoresPerPkg 3974 __kmp_nThreadsPerCore = __kmp_hws_proc.num; // correct __kmp_nThreadsPerCore 3975 __kmp_avail_proc = n_new; // correct avail_proc 3976 __kmp_ncores = nPackages * __kmp_hws_core.num; // correct ncores 3977 } // non-hwloc topology method 3978 if (pAddr) { 3979 __kmp_free(*pAddr); 3980 *pAddr = newAddr; // replace old topology with new one 3981 } 3982 if (__kmp_affinity_verbose) { 3983 char m[KMP_AFFIN_MASK_PRINT_LEN]; 3984 __kmp_affinity_print_mask(m, KMP_AFFIN_MASK_PRINT_LEN, 3985 __kmp_affin_fullMask); 3986 if (__kmp_affinity_respect_mask) { 3987 KMP_INFORM(InitOSProcSetRespect, "KMP_HW_SUBSET", m); 3988 } else { 3989 KMP_INFORM(InitOSProcSetNotRespect, "KMP_HW_SUBSET", m); 3990 } 3991 KMP_INFORM(AvailableOSProc, "KMP_HW_SUBSET", __kmp_avail_proc); 3992 kmp_str_buf_t buf; 3993 __kmp_str_buf_init(&buf); 3994 __kmp_str_buf_print(&buf, "%d", nPackages); 3995 KMP_INFORM(TopologyExtra, "KMP_HW_SUBSET", buf.str, nCoresPerPkg, 3996 __kmp_nThreadsPerCore, __kmp_ncores); 3997 __kmp_str_buf_free(&buf); 3998 } 3999 _exit: 4000 if (__kmp_pu_os_idx != NULL) { 4001 __kmp_free(__kmp_pu_os_idx); 4002 __kmp_pu_os_idx = NULL; 4003 } 4004 } 4005 4006 // This function figures out the deepest level at which there is at least one 4007 // cluster/core with more than one processing unit bound to it. 4008 static int __kmp_affinity_find_core_level(const AddrUnsPair *address2os, 4009 int nprocs, int bottom_level) { 4010 int core_level = 0; 4011 4012 for (int i = 0; i < nprocs; i++) { 4013 for (int j = bottom_level; j > 0; j--) { 4014 if (address2os[i].first.labels[j] > 0) { 4015 if (core_level < (j - 1)) { 4016 core_level = j - 1; 4017 } 4018 } 4019 } 4020 } 4021 return core_level; 4022 } 4023 4024 // This function counts number of clusters/cores at given level. 4025 static int __kmp_affinity_compute_ncores(const AddrUnsPair *address2os, 4026 int nprocs, int bottom_level, 4027 int core_level) { 4028 int ncores = 0; 4029 int i, j; 4030 4031 j = bottom_level; 4032 for (i = 0; i < nprocs; i++) { 4033 for (j = bottom_level; j > core_level; j--) { 4034 if ((i + 1) < nprocs) { 4035 if (address2os[i + 1].first.labels[j] > 0) { 4036 break; 4037 } 4038 } 4039 } 4040 if (j == core_level) { 4041 ncores++; 4042 } 4043 } 4044 if (j > core_level) { 4045 // In case of ( nprocs < __kmp_avail_proc ) we may end too deep and miss one 4046 // core. May occur when called from __kmp_affinity_find_core(). 4047 ncores++; 4048 } 4049 return ncores; 4050 } 4051 4052 // This function finds to which cluster/core given processing unit is bound. 4053 static int __kmp_affinity_find_core(const AddrUnsPair *address2os, int proc, 4054 int bottom_level, int core_level) { 4055 return __kmp_affinity_compute_ncores(address2os, proc + 1, bottom_level, 4056 core_level) - 4057 1; 4058 } 4059 4060 // This function finds maximal number of processing units bound to a 4061 // cluster/core at given level. 4062 static int __kmp_affinity_max_proc_per_core(const AddrUnsPair *address2os, 4063 int nprocs, int bottom_level, 4064 int core_level) { 4065 int maxprocpercore = 0; 4066 4067 if (core_level < bottom_level) { 4068 for (int i = 0; i < nprocs; i++) { 4069 int percore = address2os[i].first.labels[core_level + 1] + 1; 4070 4071 if (percore > maxprocpercore) { 4072 maxprocpercore = percore; 4073 } 4074 } 4075 } else { 4076 maxprocpercore = 1; 4077 } 4078 return maxprocpercore; 4079 } 4080 4081 static AddrUnsPair *address2os = NULL; 4082 static int *procarr = NULL; 4083 static int __kmp_aff_depth = 0; 4084 4085 #if KMP_USE_HIER_SCHED 4086 #define KMP_EXIT_AFF_NONE \ 4087 KMP_ASSERT(__kmp_affinity_type == affinity_none); \ 4088 KMP_ASSERT(address2os == NULL); \ 4089 __kmp_apply_thread_places(NULL, 0); \ 4090 __kmp_create_affinity_none_places(); \ 4091 __kmp_dispatch_set_hierarchy_values(); \ 4092 return; 4093 #else 4094 #define KMP_EXIT_AFF_NONE \ 4095 KMP_ASSERT(__kmp_affinity_type == affinity_none); \ 4096 KMP_ASSERT(address2os == NULL); \ 4097 __kmp_apply_thread_places(NULL, 0); \ 4098 __kmp_create_affinity_none_places(); \ 4099 return; 4100 #endif 4101 4102 // Create a one element mask array (set of places) which only contains the 4103 // initial process's affinity mask 4104 static void __kmp_create_affinity_none_places() { 4105 KMP_ASSERT(__kmp_affin_fullMask != NULL); 4106 KMP_ASSERT(__kmp_affinity_type == affinity_none); 4107 __kmp_affinity_num_masks = 1; 4108 KMP_CPU_ALLOC_ARRAY(__kmp_affinity_masks, __kmp_affinity_num_masks); 4109 kmp_affin_mask_t *dest = KMP_CPU_INDEX(__kmp_affinity_masks, 0); 4110 KMP_CPU_COPY(dest, __kmp_affin_fullMask); 4111 } 4112 4113 static int __kmp_affinity_cmp_Address_child_num(const void *a, const void *b) { 4114 const Address *aa = &(((const AddrUnsPair *)a)->first); 4115 const Address *bb = &(((const AddrUnsPair *)b)->first); 4116 unsigned depth = aa->depth; 4117 unsigned i; 4118 KMP_DEBUG_ASSERT(depth == bb->depth); 4119 KMP_DEBUG_ASSERT((unsigned)__kmp_affinity_compact <= depth); 4120 KMP_DEBUG_ASSERT(__kmp_affinity_compact >= 0); 4121 for (i = 0; i < (unsigned)__kmp_affinity_compact; i++) { 4122 int j = depth - i - 1; 4123 if (aa->childNums[j] < bb->childNums[j]) 4124 return -1; 4125 if (aa->childNums[j] > bb->childNums[j]) 4126 return 1; 4127 } 4128 for (; i < depth; i++) { 4129 int j = i - __kmp_affinity_compact; 4130 if (aa->childNums[j] < bb->childNums[j]) 4131 return -1; 4132 if (aa->childNums[j] > bb->childNums[j]) 4133 return 1; 4134 } 4135 return 0; 4136 } 4137 4138 static void __kmp_aux_affinity_initialize(void) { 4139 if (__kmp_affinity_masks != NULL) { 4140 KMP_ASSERT(__kmp_affin_fullMask != NULL); 4141 return; 4142 } 4143 4144 // Create the "full" mask - this defines all of the processors that we 4145 // consider to be in the machine model. If respect is set, then it is the 4146 // initialization thread's affinity mask. Otherwise, it is all processors that 4147 // we know about on the machine. 4148 if (__kmp_affin_fullMask == NULL) { 4149 KMP_CPU_ALLOC(__kmp_affin_fullMask); 4150 } 4151 if (KMP_AFFINITY_CAPABLE()) { 4152 if (__kmp_affinity_respect_mask) { 4153 __kmp_get_system_affinity(__kmp_affin_fullMask, TRUE); 4154 4155 // Count the number of available processors. 4156 unsigned i; 4157 __kmp_avail_proc = 0; 4158 KMP_CPU_SET_ITERATE(i, __kmp_affin_fullMask) { 4159 if (!KMP_CPU_ISSET(i, __kmp_affin_fullMask)) { 4160 continue; 4161 } 4162 __kmp_avail_proc++; 4163 } 4164 if (__kmp_avail_proc > __kmp_xproc) { 4165 if (__kmp_affinity_verbose || 4166 (__kmp_affinity_warnings && 4167 (__kmp_affinity_type != affinity_none))) { 4168 KMP_WARNING(ErrorInitializeAffinity); 4169 } 4170 __kmp_affinity_type = affinity_none; 4171 KMP_AFFINITY_DISABLE(); 4172 return; 4173 } 4174 } else { 4175 __kmp_affinity_entire_machine_mask(__kmp_affin_fullMask); 4176 __kmp_avail_proc = __kmp_xproc; 4177 } 4178 } 4179 4180 if (__kmp_affinity_gran == affinity_gran_tile && 4181 // check if user's request is valid 4182 __kmp_affinity_dispatch->get_api_type() == KMPAffinity::NATIVE_OS) { 4183 KMP_WARNING(AffTilesNoHWLOC, "KMP_AFFINITY"); 4184 __kmp_affinity_gran = affinity_gran_package; 4185 } 4186 4187 int depth = -1; 4188 kmp_i18n_id_t msg_id = kmp_i18n_null; 4189 4190 // For backward compatibility, setting KMP_CPUINFO_FILE => 4191 // KMP_TOPOLOGY_METHOD=cpuinfo 4192 if ((__kmp_cpuinfo_file != NULL) && 4193 (__kmp_affinity_top_method == affinity_top_method_all)) { 4194 __kmp_affinity_top_method = affinity_top_method_cpuinfo; 4195 } 4196 4197 if (__kmp_affinity_top_method == affinity_top_method_all) { 4198 // In the default code path, errors are not fatal - we just try using 4199 // another method. We only emit a warning message if affinity is on, or the 4200 // verbose flag is set, an the nowarnings flag was not set. 4201 const char *file_name = NULL; 4202 int line = 0; 4203 #if KMP_USE_HWLOC 4204 if (depth < 0 && 4205 __kmp_affinity_dispatch->get_api_type() == KMPAffinity::HWLOC) { 4206 if (__kmp_affinity_verbose) { 4207 KMP_INFORM(AffUsingHwloc, "KMP_AFFINITY"); 4208 } 4209 if (!__kmp_hwloc_error) { 4210 depth = __kmp_affinity_create_hwloc_map(&address2os, &msg_id); 4211 if (depth == 0) { 4212 KMP_EXIT_AFF_NONE; 4213 } else if (depth < 0 && __kmp_affinity_verbose) { 4214 KMP_INFORM(AffIgnoringHwloc, "KMP_AFFINITY"); 4215 } 4216 } else if (__kmp_affinity_verbose) { 4217 KMP_INFORM(AffIgnoringHwloc, "KMP_AFFINITY"); 4218 } 4219 } 4220 #endif 4221 4222 #if KMP_ARCH_X86 || KMP_ARCH_X86_64 4223 4224 if (depth < 0) { 4225 if (__kmp_affinity_verbose) { 4226 KMP_INFORM(AffInfoStr, "KMP_AFFINITY", KMP_I18N_STR(Decodingx2APIC)); 4227 } 4228 4229 file_name = NULL; 4230 depth = __kmp_affinity_create_x2apicid_map(&address2os, &msg_id); 4231 if (depth == 0) { 4232 KMP_EXIT_AFF_NONE; 4233 } 4234 4235 if (depth < 0) { 4236 if (__kmp_affinity_verbose) { 4237 if (msg_id != kmp_i18n_null) { 4238 KMP_INFORM(AffInfoStrStr, "KMP_AFFINITY", 4239 __kmp_i18n_catgets(msg_id), 4240 KMP_I18N_STR(DecodingLegacyAPIC)); 4241 } else { 4242 KMP_INFORM(AffInfoStr, "KMP_AFFINITY", 4243 KMP_I18N_STR(DecodingLegacyAPIC)); 4244 } 4245 } 4246 4247 file_name = NULL; 4248 depth = __kmp_affinity_create_apicid_map(&address2os, &msg_id); 4249 if (depth == 0) { 4250 KMP_EXIT_AFF_NONE; 4251 } 4252 } 4253 } 4254 4255 #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */ 4256 4257 #if KMP_OS_LINUX 4258 4259 if (depth < 0) { 4260 if (__kmp_affinity_verbose) { 4261 if (msg_id != kmp_i18n_null) { 4262 KMP_INFORM(AffStrParseFilename, "KMP_AFFINITY", 4263 __kmp_i18n_catgets(msg_id), "/proc/cpuinfo"); 4264 } else { 4265 KMP_INFORM(AffParseFilename, "KMP_AFFINITY", "/proc/cpuinfo"); 4266 } 4267 } 4268 4269 FILE *f = fopen("/proc/cpuinfo", "r"); 4270 if (f == NULL) { 4271 msg_id = kmp_i18n_str_CantOpenCpuinfo; 4272 } else { 4273 file_name = "/proc/cpuinfo"; 4274 depth = 4275 __kmp_affinity_create_cpuinfo_map(&address2os, &line, &msg_id, f); 4276 fclose(f); 4277 if (depth == 0) { 4278 KMP_EXIT_AFF_NONE; 4279 } 4280 } 4281 } 4282 4283 #endif /* KMP_OS_LINUX */ 4284 4285 #if KMP_GROUP_AFFINITY 4286 4287 if ((depth < 0) && (__kmp_num_proc_groups > 1)) { 4288 if (__kmp_affinity_verbose) { 4289 KMP_INFORM(AffWindowsProcGroupMap, "KMP_AFFINITY"); 4290 } 4291 4292 depth = __kmp_affinity_create_proc_group_map(&address2os, &msg_id); 4293 KMP_ASSERT(depth != 0); 4294 } 4295 4296 #endif /* KMP_GROUP_AFFINITY */ 4297 4298 if (depth < 0) { 4299 if (__kmp_affinity_verbose && (msg_id != kmp_i18n_null)) { 4300 if (file_name == NULL) { 4301 KMP_INFORM(UsingFlatOS, __kmp_i18n_catgets(msg_id)); 4302 } else if (line == 0) { 4303 KMP_INFORM(UsingFlatOSFile, file_name, __kmp_i18n_catgets(msg_id)); 4304 } else { 4305 KMP_INFORM(UsingFlatOSFileLine, file_name, line, 4306 __kmp_i18n_catgets(msg_id)); 4307 } 4308 } 4309 // FIXME - print msg if msg_id = kmp_i18n_null ??? 4310 4311 file_name = ""; 4312 depth = __kmp_affinity_create_flat_map(&address2os, &msg_id); 4313 if (depth == 0) { 4314 KMP_EXIT_AFF_NONE; 4315 } 4316 KMP_ASSERT(depth > 0); 4317 KMP_ASSERT(address2os != NULL); 4318 } 4319 } 4320 4321 #if KMP_USE_HWLOC 4322 else if (__kmp_affinity_top_method == affinity_top_method_hwloc) { 4323 KMP_ASSERT(__kmp_affinity_dispatch->get_api_type() == KMPAffinity::HWLOC); 4324 if (__kmp_affinity_verbose) { 4325 KMP_INFORM(AffUsingHwloc, "KMP_AFFINITY"); 4326 } 4327 depth = __kmp_affinity_create_hwloc_map(&address2os, &msg_id); 4328 if (depth == 0) { 4329 KMP_EXIT_AFF_NONE; 4330 } 4331 } 4332 #endif // KMP_USE_HWLOC 4333 4334 // If the user has specified that a paricular topology discovery method is to be 4335 // used, then we abort if that method fails. The exception is group affinity, 4336 // which might have been implicitly set. 4337 4338 #if KMP_ARCH_X86 || KMP_ARCH_X86_64 4339 4340 else if (__kmp_affinity_top_method == affinity_top_method_x2apicid) { 4341 if (__kmp_affinity_verbose) { 4342 KMP_INFORM(AffInfoStr, "KMP_AFFINITY", KMP_I18N_STR(Decodingx2APIC)); 4343 } 4344 4345 depth = __kmp_affinity_create_x2apicid_map(&address2os, &msg_id); 4346 if (depth == 0) { 4347 KMP_EXIT_AFF_NONE; 4348 } 4349 if (depth < 0) { 4350 KMP_ASSERT(msg_id != kmp_i18n_null); 4351 KMP_FATAL(MsgExiting, __kmp_i18n_catgets(msg_id)); 4352 } 4353 } else if (__kmp_affinity_top_method == affinity_top_method_apicid) { 4354 if (__kmp_affinity_verbose) { 4355 KMP_INFORM(AffInfoStr, "KMP_AFFINITY", KMP_I18N_STR(DecodingLegacyAPIC)); 4356 } 4357 4358 depth = __kmp_affinity_create_apicid_map(&address2os, &msg_id); 4359 if (depth == 0) { 4360 KMP_EXIT_AFF_NONE; 4361 } 4362 if (depth < 0) { 4363 KMP_ASSERT(msg_id != kmp_i18n_null); 4364 KMP_FATAL(MsgExiting, __kmp_i18n_catgets(msg_id)); 4365 } 4366 } 4367 4368 #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */ 4369 4370 else if (__kmp_affinity_top_method == affinity_top_method_cpuinfo) { 4371 const char *filename; 4372 if (__kmp_cpuinfo_file != NULL) { 4373 filename = __kmp_cpuinfo_file; 4374 } else { 4375 filename = "/proc/cpuinfo"; 4376 } 4377 4378 if (__kmp_affinity_verbose) { 4379 KMP_INFORM(AffParseFilename, "KMP_AFFINITY", filename); 4380 } 4381 4382 FILE *f = fopen(filename, "r"); 4383 if (f == NULL) { 4384 int code = errno; 4385 if (__kmp_cpuinfo_file != NULL) { 4386 __kmp_fatal(KMP_MSG(CantOpenFileForReading, filename), KMP_ERR(code), 4387 KMP_HNT(NameComesFrom_CPUINFO_FILE), __kmp_msg_null); 4388 } else { 4389 __kmp_fatal(KMP_MSG(CantOpenFileForReading, filename), KMP_ERR(code), 4390 __kmp_msg_null); 4391 } 4392 } 4393 int line = 0; 4394 depth = __kmp_affinity_create_cpuinfo_map(&address2os, &line, &msg_id, f); 4395 fclose(f); 4396 if (depth < 0) { 4397 KMP_ASSERT(msg_id != kmp_i18n_null); 4398 if (line > 0) { 4399 KMP_FATAL(FileLineMsgExiting, filename, line, 4400 __kmp_i18n_catgets(msg_id)); 4401 } else { 4402 KMP_FATAL(FileMsgExiting, filename, __kmp_i18n_catgets(msg_id)); 4403 } 4404 } 4405 if (__kmp_affinity_type == affinity_none) { 4406 KMP_ASSERT(depth == 0); 4407 KMP_EXIT_AFF_NONE; 4408 } 4409 } 4410 4411 #if KMP_GROUP_AFFINITY 4412 4413 else if (__kmp_affinity_top_method == affinity_top_method_group) { 4414 if (__kmp_affinity_verbose) { 4415 KMP_INFORM(AffWindowsProcGroupMap, "KMP_AFFINITY"); 4416 } 4417 4418 depth = __kmp_affinity_create_proc_group_map(&address2os, &msg_id); 4419 KMP_ASSERT(depth != 0); 4420 if (depth < 0) { 4421 KMP_ASSERT(msg_id != kmp_i18n_null); 4422 KMP_FATAL(MsgExiting, __kmp_i18n_catgets(msg_id)); 4423 } 4424 } 4425 4426 #endif /* KMP_GROUP_AFFINITY */ 4427 4428 else if (__kmp_affinity_top_method == affinity_top_method_flat) { 4429 if (__kmp_affinity_verbose) { 4430 KMP_INFORM(AffUsingFlatOS, "KMP_AFFINITY"); 4431 } 4432 4433 depth = __kmp_affinity_create_flat_map(&address2os, &msg_id); 4434 if (depth == 0) { 4435 KMP_EXIT_AFF_NONE; 4436 } 4437 // should not fail 4438 KMP_ASSERT(depth > 0); 4439 KMP_ASSERT(address2os != NULL); 4440 } 4441 4442 #if KMP_USE_HIER_SCHED 4443 __kmp_dispatch_set_hierarchy_values(); 4444 #endif 4445 4446 if (address2os == NULL) { 4447 if (KMP_AFFINITY_CAPABLE() && 4448 (__kmp_affinity_verbose || 4449 (__kmp_affinity_warnings && (__kmp_affinity_type != affinity_none)))) { 4450 KMP_WARNING(ErrorInitializeAffinity); 4451 } 4452 __kmp_affinity_type = affinity_none; 4453 __kmp_create_affinity_none_places(); 4454 KMP_AFFINITY_DISABLE(); 4455 return; 4456 } 4457 4458 if (__kmp_affinity_gran == affinity_gran_tile 4459 #if KMP_USE_HWLOC 4460 && __kmp_tile_depth == 0 4461 #endif 4462 ) { 4463 // tiles requested but not detected, warn user on this 4464 KMP_WARNING(AffTilesNoTiles, "KMP_AFFINITY"); 4465 } 4466 4467 __kmp_apply_thread_places(&address2os, depth); 4468 4469 // Create the table of masks, indexed by thread Id. 4470 unsigned maxIndex; 4471 unsigned numUnique; 4472 kmp_affin_mask_t *osId2Mask = 4473 __kmp_create_masks(&maxIndex, &numUnique, address2os, __kmp_avail_proc); 4474 if (__kmp_affinity_gran_levels == 0) { 4475 KMP_DEBUG_ASSERT((int)numUnique == __kmp_avail_proc); 4476 } 4477 4478 // Set the childNums vector in all Address objects. This must be done before 4479 // we can sort using __kmp_affinity_cmp_Address_child_num(), which takes into 4480 // account the setting of __kmp_affinity_compact. 4481 __kmp_affinity_assign_child_nums(address2os, __kmp_avail_proc); 4482 4483 switch (__kmp_affinity_type) { 4484 4485 case affinity_explicit: 4486 KMP_DEBUG_ASSERT(__kmp_affinity_proclist != NULL); 4487 #if OMP_40_ENABLED 4488 if (__kmp_nested_proc_bind.bind_types[0] == proc_bind_intel) 4489 #endif 4490 { 4491 __kmp_affinity_process_proclist( 4492 &__kmp_affinity_masks, &__kmp_affinity_num_masks, 4493 __kmp_affinity_proclist, osId2Mask, maxIndex); 4494 } 4495 #if OMP_40_ENABLED 4496 else { 4497 __kmp_affinity_process_placelist( 4498 &__kmp_affinity_masks, &__kmp_affinity_num_masks, 4499 __kmp_affinity_proclist, osId2Mask, maxIndex); 4500 } 4501 #endif 4502 if (__kmp_affinity_num_masks == 0) { 4503 if (__kmp_affinity_verbose || 4504 (__kmp_affinity_warnings && (__kmp_affinity_type != affinity_none))) { 4505 KMP_WARNING(AffNoValidProcID); 4506 } 4507 __kmp_affinity_type = affinity_none; 4508 __kmp_create_affinity_none_places(); 4509 return; 4510 } 4511 break; 4512 4513 // The other affinity types rely on sorting the Addresses according to some 4514 // permutation of the machine topology tree. Set __kmp_affinity_compact and 4515 // __kmp_affinity_offset appropriately, then jump to a common code fragment 4516 // to do the sort and create the array of affinity masks. 4517 4518 case affinity_logical: 4519 __kmp_affinity_compact = 0; 4520 if (__kmp_affinity_offset) { 4521 __kmp_affinity_offset = 4522 __kmp_nThreadsPerCore * __kmp_affinity_offset % __kmp_avail_proc; 4523 } 4524 goto sortAddresses; 4525 4526 case affinity_physical: 4527 if (__kmp_nThreadsPerCore > 1) { 4528 __kmp_affinity_compact = 1; 4529 if (__kmp_affinity_compact >= depth) { 4530 __kmp_affinity_compact = 0; 4531 } 4532 } else { 4533 __kmp_affinity_compact = 0; 4534 } 4535 if (__kmp_affinity_offset) { 4536 __kmp_affinity_offset = 4537 __kmp_nThreadsPerCore * __kmp_affinity_offset % __kmp_avail_proc; 4538 } 4539 goto sortAddresses; 4540 4541 case affinity_scatter: 4542 if (__kmp_affinity_compact >= depth) { 4543 __kmp_affinity_compact = 0; 4544 } else { 4545 __kmp_affinity_compact = depth - 1 - __kmp_affinity_compact; 4546 } 4547 goto sortAddresses; 4548 4549 case affinity_compact: 4550 if (__kmp_affinity_compact >= depth) { 4551 __kmp_affinity_compact = depth - 1; 4552 } 4553 goto sortAddresses; 4554 4555 case affinity_balanced: 4556 if (depth <= 1) { 4557 if (__kmp_affinity_verbose || __kmp_affinity_warnings) { 4558 KMP_WARNING(AffBalancedNotAvail, "KMP_AFFINITY"); 4559 } 4560 __kmp_affinity_type = affinity_none; 4561 __kmp_create_affinity_none_places(); 4562 return; 4563 } else if (!__kmp_affinity_uniform_topology()) { 4564 // Save the depth for further usage 4565 __kmp_aff_depth = depth; 4566 4567 int core_level = __kmp_affinity_find_core_level( 4568 address2os, __kmp_avail_proc, depth - 1); 4569 int ncores = __kmp_affinity_compute_ncores(address2os, __kmp_avail_proc, 4570 depth - 1, core_level); 4571 int maxprocpercore = __kmp_affinity_max_proc_per_core( 4572 address2os, __kmp_avail_proc, depth - 1, core_level); 4573 4574 int nproc = ncores * maxprocpercore; 4575 if ((nproc < 2) || (nproc < __kmp_avail_proc)) { 4576 if (__kmp_affinity_verbose || __kmp_affinity_warnings) { 4577 KMP_WARNING(AffBalancedNotAvail, "KMP_AFFINITY"); 4578 } 4579 __kmp_affinity_type = affinity_none; 4580 return; 4581 } 4582 4583 procarr = (int *)__kmp_allocate(sizeof(int) * nproc); 4584 for (int i = 0; i < nproc; i++) { 4585 procarr[i] = -1; 4586 } 4587 4588 int lastcore = -1; 4589 int inlastcore = 0; 4590 for (int i = 0; i < __kmp_avail_proc; i++) { 4591 int proc = address2os[i].second; 4592 int core = 4593 __kmp_affinity_find_core(address2os, i, depth - 1, core_level); 4594 4595 if (core == lastcore) { 4596 inlastcore++; 4597 } else { 4598 inlastcore = 0; 4599 } 4600 lastcore = core; 4601 4602 procarr[core * maxprocpercore + inlastcore] = proc; 4603 } 4604 } 4605 if (__kmp_affinity_compact >= depth) { 4606 __kmp_affinity_compact = depth - 1; 4607 } 4608 4609 sortAddresses: 4610 // Allocate the gtid->affinity mask table. 4611 if (__kmp_affinity_dups) { 4612 __kmp_affinity_num_masks = __kmp_avail_proc; 4613 } else { 4614 __kmp_affinity_num_masks = numUnique; 4615 } 4616 4617 #if OMP_40_ENABLED 4618 if ((__kmp_nested_proc_bind.bind_types[0] != proc_bind_intel) && 4619 (__kmp_affinity_num_places > 0) && 4620 ((unsigned)__kmp_affinity_num_places < __kmp_affinity_num_masks)) { 4621 __kmp_affinity_num_masks = __kmp_affinity_num_places; 4622 } 4623 #endif 4624 4625 KMP_CPU_ALLOC_ARRAY(__kmp_affinity_masks, __kmp_affinity_num_masks); 4626 4627 // Sort the address2os table according to the current setting of 4628 // __kmp_affinity_compact, then fill out __kmp_affinity_masks. 4629 qsort(address2os, __kmp_avail_proc, sizeof(*address2os), 4630 __kmp_affinity_cmp_Address_child_num); 4631 { 4632 int i; 4633 unsigned j; 4634 for (i = 0, j = 0; i < __kmp_avail_proc; i++) { 4635 if ((!__kmp_affinity_dups) && (!address2os[i].first.leader)) { 4636 continue; 4637 } 4638 unsigned osId = address2os[i].second; 4639 kmp_affin_mask_t *src = KMP_CPU_INDEX(osId2Mask, osId); 4640 kmp_affin_mask_t *dest = KMP_CPU_INDEX(__kmp_affinity_masks, j); 4641 KMP_ASSERT(KMP_CPU_ISSET(osId, src)); 4642 KMP_CPU_COPY(dest, src); 4643 if (++j >= __kmp_affinity_num_masks) { 4644 break; 4645 } 4646 } 4647 KMP_DEBUG_ASSERT(j == __kmp_affinity_num_masks); 4648 } 4649 break; 4650 4651 default: 4652 KMP_ASSERT2(0, "Unexpected affinity setting"); 4653 } 4654 4655 KMP_CPU_FREE_ARRAY(osId2Mask, maxIndex + 1); 4656 machine_hierarchy.init(address2os, __kmp_avail_proc); 4657 } 4658 #undef KMP_EXIT_AFF_NONE 4659 4660 void __kmp_affinity_initialize(void) { 4661 // Much of the code above was written assumming that if a machine was not 4662 // affinity capable, then __kmp_affinity_type == affinity_none. We now 4663 // explicitly represent this as __kmp_affinity_type == affinity_disabled. 4664 // There are too many checks for __kmp_affinity_type == affinity_none 4665 // in this code. Instead of trying to change them all, check if 4666 // __kmp_affinity_type == affinity_disabled, and if so, slam it with 4667 // affinity_none, call the real initialization routine, then restore 4668 // __kmp_affinity_type to affinity_disabled. 4669 int disabled = (__kmp_affinity_type == affinity_disabled); 4670 if (!KMP_AFFINITY_CAPABLE()) { 4671 KMP_ASSERT(disabled); 4672 } 4673 if (disabled) { 4674 __kmp_affinity_type = affinity_none; 4675 } 4676 __kmp_aux_affinity_initialize(); 4677 if (disabled) { 4678 __kmp_affinity_type = affinity_disabled; 4679 } 4680 } 4681 4682 void __kmp_affinity_uninitialize(void) { 4683 if (__kmp_affinity_masks != NULL) { 4684 KMP_CPU_FREE_ARRAY(__kmp_affinity_masks, __kmp_affinity_num_masks); 4685 __kmp_affinity_masks = NULL; 4686 } 4687 if (__kmp_affin_fullMask != NULL) { 4688 KMP_CPU_FREE(__kmp_affin_fullMask); 4689 __kmp_affin_fullMask = NULL; 4690 } 4691 __kmp_affinity_num_masks = 0; 4692 __kmp_affinity_type = affinity_default; 4693 #if OMP_40_ENABLED 4694 __kmp_affinity_num_places = 0; 4695 #endif 4696 if (__kmp_affinity_proclist != NULL) { 4697 __kmp_free(__kmp_affinity_proclist); 4698 __kmp_affinity_proclist = NULL; 4699 } 4700 if (address2os != NULL) { 4701 __kmp_free(address2os); 4702 address2os = NULL; 4703 } 4704 if (procarr != NULL) { 4705 __kmp_free(procarr); 4706 procarr = NULL; 4707 } 4708 #if KMP_USE_HWLOC 4709 if (__kmp_hwloc_topology != NULL) { 4710 hwloc_topology_destroy(__kmp_hwloc_topology); 4711 __kmp_hwloc_topology = NULL; 4712 } 4713 #endif 4714 KMPAffinity::destroy_api(); 4715 } 4716 4717 void __kmp_affinity_set_init_mask(int gtid, int isa_root) { 4718 if (!KMP_AFFINITY_CAPABLE()) { 4719 return; 4720 } 4721 4722 kmp_info_t *th = (kmp_info_t *)TCR_SYNC_PTR(__kmp_threads[gtid]); 4723 if (th->th.th_affin_mask == NULL) { 4724 KMP_CPU_ALLOC(th->th.th_affin_mask); 4725 } else { 4726 KMP_CPU_ZERO(th->th.th_affin_mask); 4727 } 4728 4729 // Copy the thread mask to the kmp_info_t strucuture. If 4730 // __kmp_affinity_type == affinity_none, copy the "full" mask, i.e. one that 4731 // has all of the OS proc ids set, or if __kmp_affinity_respect_mask is set, 4732 // then the full mask is the same as the mask of the initialization thread. 4733 kmp_affin_mask_t *mask; 4734 int i; 4735 4736 #if OMP_40_ENABLED 4737 if (KMP_AFFINITY_NON_PROC_BIND) 4738 #endif 4739 { 4740 if ((__kmp_affinity_type == affinity_none) || 4741 (__kmp_affinity_type == affinity_balanced)) { 4742 #if KMP_GROUP_AFFINITY 4743 if (__kmp_num_proc_groups > 1) { 4744 return; 4745 } 4746 #endif 4747 KMP_ASSERT(__kmp_affin_fullMask != NULL); 4748 i = 0; 4749 mask = __kmp_affin_fullMask; 4750 } else { 4751 KMP_DEBUG_ASSERT(__kmp_affinity_num_masks > 0); 4752 i = (gtid + __kmp_affinity_offset) % __kmp_affinity_num_masks; 4753 mask = KMP_CPU_INDEX(__kmp_affinity_masks, i); 4754 } 4755 } 4756 #if OMP_40_ENABLED 4757 else { 4758 if ((!isa_root) || 4759 (__kmp_nested_proc_bind.bind_types[0] == proc_bind_false)) { 4760 #if KMP_GROUP_AFFINITY 4761 if (__kmp_num_proc_groups > 1) { 4762 return; 4763 } 4764 #endif 4765 KMP_ASSERT(__kmp_affin_fullMask != NULL); 4766 i = KMP_PLACE_ALL; 4767 mask = __kmp_affin_fullMask; 4768 } else { 4769 // int i = some hash function or just a counter that doesn't 4770 // always start at 0. Use gtid for now. 4771 KMP_DEBUG_ASSERT(__kmp_affinity_num_masks > 0); 4772 i = (gtid + __kmp_affinity_offset) % __kmp_affinity_num_masks; 4773 mask = KMP_CPU_INDEX(__kmp_affinity_masks, i); 4774 } 4775 } 4776 #endif 4777 4778 #if OMP_40_ENABLED 4779 th->th.th_current_place = i; 4780 if (isa_root) { 4781 th->th.th_new_place = i; 4782 th->th.th_first_place = 0; 4783 th->th.th_last_place = __kmp_affinity_num_masks - 1; 4784 } else if (KMP_AFFINITY_NON_PROC_BIND) { 4785 // When using a Non-OMP_PROC_BIND affinity method, 4786 // set all threads' place-partition-var to the entire place list 4787 th->th.th_first_place = 0; 4788 th->th.th_last_place = __kmp_affinity_num_masks - 1; 4789 } 4790 4791 if (i == KMP_PLACE_ALL) { 4792 KA_TRACE(100, ("__kmp_affinity_set_init_mask: binding T#%d to all places\n", 4793 gtid)); 4794 } else { 4795 KA_TRACE(100, ("__kmp_affinity_set_init_mask: binding T#%d to place %d\n", 4796 gtid, i)); 4797 } 4798 #else 4799 if (i == -1) { 4800 KA_TRACE( 4801 100, 4802 ("__kmp_affinity_set_init_mask: binding T#%d to __kmp_affin_fullMask\n", 4803 gtid)); 4804 } else { 4805 KA_TRACE(100, ("__kmp_affinity_set_init_mask: binding T#%d to mask %d\n", 4806 gtid, i)); 4807 } 4808 #endif /* OMP_40_ENABLED */ 4809 4810 KMP_CPU_COPY(th->th.th_affin_mask, mask); 4811 4812 if (__kmp_affinity_verbose 4813 /* to avoid duplicate printing (will be correctly printed on barrier) */ 4814 && (__kmp_affinity_type == affinity_none || 4815 (i != KMP_PLACE_ALL && __kmp_affinity_type != affinity_balanced))) { 4816 char buf[KMP_AFFIN_MASK_PRINT_LEN]; 4817 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, 4818 th->th.th_affin_mask); 4819 KMP_INFORM(BoundToOSProcSet, "KMP_AFFINITY", (kmp_int32)getpid(), 4820 __kmp_gettid(), gtid, buf); 4821 } 4822 4823 #if KMP_OS_WINDOWS 4824 // On Windows* OS, the process affinity mask might have changed. If the user 4825 // didn't request affinity and this call fails, just continue silently. 4826 // See CQ171393. 4827 if (__kmp_affinity_type == affinity_none) { 4828 __kmp_set_system_affinity(th->th.th_affin_mask, FALSE); 4829 } else 4830 #endif 4831 __kmp_set_system_affinity(th->th.th_affin_mask, TRUE); 4832 } 4833 4834 #if OMP_40_ENABLED 4835 4836 void __kmp_affinity_set_place(int gtid) { 4837 if (!KMP_AFFINITY_CAPABLE()) { 4838 return; 4839 } 4840 4841 kmp_info_t *th = (kmp_info_t *)TCR_SYNC_PTR(__kmp_threads[gtid]); 4842 4843 KA_TRACE(100, ("__kmp_affinity_set_place: binding T#%d to place %d (current " 4844 "place = %d)\n", 4845 gtid, th->th.th_new_place, th->th.th_current_place)); 4846 4847 // Check that the new place is within this thread's partition. 4848 KMP_DEBUG_ASSERT(th->th.th_affin_mask != NULL); 4849 KMP_ASSERT(th->th.th_new_place >= 0); 4850 KMP_ASSERT((unsigned)th->th.th_new_place <= __kmp_affinity_num_masks); 4851 if (th->th.th_first_place <= th->th.th_last_place) { 4852 KMP_ASSERT((th->th.th_new_place >= th->th.th_first_place) && 4853 (th->th.th_new_place <= th->th.th_last_place)); 4854 } else { 4855 KMP_ASSERT((th->th.th_new_place <= th->th.th_first_place) || 4856 (th->th.th_new_place >= th->th.th_last_place)); 4857 } 4858 4859 // Copy the thread mask to the kmp_info_t strucuture, 4860 // and set this thread's affinity. 4861 kmp_affin_mask_t *mask = 4862 KMP_CPU_INDEX(__kmp_affinity_masks, th->th.th_new_place); 4863 KMP_CPU_COPY(th->th.th_affin_mask, mask); 4864 th->th.th_current_place = th->th.th_new_place; 4865 4866 if (__kmp_affinity_verbose) { 4867 char buf[KMP_AFFIN_MASK_PRINT_LEN]; 4868 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, 4869 th->th.th_affin_mask); 4870 KMP_INFORM(BoundToOSProcSet, "OMP_PROC_BIND", (kmp_int32)getpid(), 4871 __kmp_gettid(), gtid, buf); 4872 } 4873 __kmp_set_system_affinity(th->th.th_affin_mask, TRUE); 4874 } 4875 4876 #endif /* OMP_40_ENABLED */ 4877 4878 int __kmp_aux_set_affinity(void **mask) { 4879 int gtid; 4880 kmp_info_t *th; 4881 int retval; 4882 4883 if (!KMP_AFFINITY_CAPABLE()) { 4884 return -1; 4885 } 4886 4887 gtid = __kmp_entry_gtid(); 4888 KA_TRACE(1000, ; { 4889 char buf[KMP_AFFIN_MASK_PRINT_LEN]; 4890 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, 4891 (kmp_affin_mask_t *)(*mask)); 4892 __kmp_debug_printf( 4893 "kmp_set_affinity: setting affinity mask for thread %d = %s\n", gtid, 4894 buf); 4895 }); 4896 4897 if (__kmp_env_consistency_check) { 4898 if ((mask == NULL) || (*mask == NULL)) { 4899 KMP_FATAL(AffinityInvalidMask, "kmp_set_affinity"); 4900 } else { 4901 unsigned proc; 4902 int num_procs = 0; 4903 4904 KMP_CPU_SET_ITERATE(proc, ((kmp_affin_mask_t *)(*mask))) { 4905 if (!KMP_CPU_ISSET(proc, __kmp_affin_fullMask)) { 4906 KMP_FATAL(AffinityInvalidMask, "kmp_set_affinity"); 4907 } 4908 if (!KMP_CPU_ISSET(proc, (kmp_affin_mask_t *)(*mask))) { 4909 continue; 4910 } 4911 num_procs++; 4912 } 4913 if (num_procs == 0) { 4914 KMP_FATAL(AffinityInvalidMask, "kmp_set_affinity"); 4915 } 4916 4917 #if KMP_GROUP_AFFINITY 4918 if (__kmp_get_proc_group((kmp_affin_mask_t *)(*mask)) < 0) { 4919 KMP_FATAL(AffinityInvalidMask, "kmp_set_affinity"); 4920 } 4921 #endif /* KMP_GROUP_AFFINITY */ 4922 } 4923 } 4924 4925 th = __kmp_threads[gtid]; 4926 KMP_DEBUG_ASSERT(th->th.th_affin_mask != NULL); 4927 retval = __kmp_set_system_affinity((kmp_affin_mask_t *)(*mask), FALSE); 4928 if (retval == 0) { 4929 KMP_CPU_COPY(th->th.th_affin_mask, (kmp_affin_mask_t *)(*mask)); 4930 } 4931 4932 #if OMP_40_ENABLED 4933 th->th.th_current_place = KMP_PLACE_UNDEFINED; 4934 th->th.th_new_place = KMP_PLACE_UNDEFINED; 4935 th->th.th_first_place = 0; 4936 th->th.th_last_place = __kmp_affinity_num_masks - 1; 4937 4938 // Turn off 4.0 affinity for the current tread at this parallel level. 4939 th->th.th_current_task->td_icvs.proc_bind = proc_bind_false; 4940 #endif 4941 4942 return retval; 4943 } 4944 4945 int __kmp_aux_get_affinity(void **mask) { 4946 int gtid; 4947 int retval; 4948 kmp_info_t *th; 4949 4950 if (!KMP_AFFINITY_CAPABLE()) { 4951 return -1; 4952 } 4953 4954 gtid = __kmp_entry_gtid(); 4955 th = __kmp_threads[gtid]; 4956 KMP_DEBUG_ASSERT(th->th.th_affin_mask != NULL); 4957 4958 KA_TRACE(1000, ; { 4959 char buf[KMP_AFFIN_MASK_PRINT_LEN]; 4960 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, 4961 th->th.th_affin_mask); 4962 __kmp_printf("kmp_get_affinity: stored affinity mask for thread %d = %s\n", 4963 gtid, buf); 4964 }); 4965 4966 if (__kmp_env_consistency_check) { 4967 if ((mask == NULL) || (*mask == NULL)) { 4968 KMP_FATAL(AffinityInvalidMask, "kmp_get_affinity"); 4969 } 4970 } 4971 4972 #if !KMP_OS_WINDOWS 4973 4974 retval = __kmp_get_system_affinity((kmp_affin_mask_t *)(*mask), FALSE); 4975 KA_TRACE(1000, ; { 4976 char buf[KMP_AFFIN_MASK_PRINT_LEN]; 4977 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, 4978 (kmp_affin_mask_t *)(*mask)); 4979 __kmp_printf("kmp_get_affinity: system affinity mask for thread %d = %s\n", 4980 gtid, buf); 4981 }); 4982 return retval; 4983 4984 #else 4985 4986 KMP_CPU_COPY((kmp_affin_mask_t *)(*mask), th->th.th_affin_mask); 4987 return 0; 4988 4989 #endif /* KMP_OS_WINDOWS */ 4990 } 4991 4992 int __kmp_aux_get_affinity_max_proc() { 4993 if (!KMP_AFFINITY_CAPABLE()) { 4994 return 0; 4995 } 4996 #if KMP_GROUP_AFFINITY 4997 if (__kmp_num_proc_groups > 1) { 4998 return (int)(__kmp_num_proc_groups * sizeof(DWORD_PTR) * CHAR_BIT); 4999 } 5000 #endif 5001 return __kmp_xproc; 5002 } 5003 5004 int __kmp_aux_set_affinity_mask_proc(int proc, void **mask) { 5005 if (!KMP_AFFINITY_CAPABLE()) { 5006 return -1; 5007 } 5008 5009 KA_TRACE(1000, ; { 5010 int gtid = __kmp_entry_gtid(); 5011 char buf[KMP_AFFIN_MASK_PRINT_LEN]; 5012 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, 5013 (kmp_affin_mask_t *)(*mask)); 5014 __kmp_debug_printf("kmp_set_affinity_mask_proc: setting proc %d in " 5015 "affinity mask for thread %d = %s\n", 5016 proc, gtid, buf); 5017 }); 5018 5019 if (__kmp_env_consistency_check) { 5020 if ((mask == NULL) || (*mask == NULL)) { 5021 KMP_FATAL(AffinityInvalidMask, "kmp_set_affinity_mask_proc"); 5022 } 5023 } 5024 5025 if ((proc < 0) || (proc >= __kmp_aux_get_affinity_max_proc())) { 5026 return -1; 5027 } 5028 if (!KMP_CPU_ISSET(proc, __kmp_affin_fullMask)) { 5029 return -2; 5030 } 5031 5032 KMP_CPU_SET(proc, (kmp_affin_mask_t *)(*mask)); 5033 return 0; 5034 } 5035 5036 int __kmp_aux_unset_affinity_mask_proc(int proc, void **mask) { 5037 if (!KMP_AFFINITY_CAPABLE()) { 5038 return -1; 5039 } 5040 5041 KA_TRACE(1000, ; { 5042 int gtid = __kmp_entry_gtid(); 5043 char buf[KMP_AFFIN_MASK_PRINT_LEN]; 5044 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, 5045 (kmp_affin_mask_t *)(*mask)); 5046 __kmp_debug_printf("kmp_unset_affinity_mask_proc: unsetting proc %d in " 5047 "affinity mask for thread %d = %s\n", 5048 proc, gtid, buf); 5049 }); 5050 5051 if (__kmp_env_consistency_check) { 5052 if ((mask == NULL) || (*mask == NULL)) { 5053 KMP_FATAL(AffinityInvalidMask, "kmp_unset_affinity_mask_proc"); 5054 } 5055 } 5056 5057 if ((proc < 0) || (proc >= __kmp_aux_get_affinity_max_proc())) { 5058 return -1; 5059 } 5060 if (!KMP_CPU_ISSET(proc, __kmp_affin_fullMask)) { 5061 return -2; 5062 } 5063 5064 KMP_CPU_CLR(proc, (kmp_affin_mask_t *)(*mask)); 5065 return 0; 5066 } 5067 5068 int __kmp_aux_get_affinity_mask_proc(int proc, void **mask) { 5069 if (!KMP_AFFINITY_CAPABLE()) { 5070 return -1; 5071 } 5072 5073 KA_TRACE(1000, ; { 5074 int gtid = __kmp_entry_gtid(); 5075 char buf[KMP_AFFIN_MASK_PRINT_LEN]; 5076 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, 5077 (kmp_affin_mask_t *)(*mask)); 5078 __kmp_debug_printf("kmp_get_affinity_mask_proc: getting proc %d in " 5079 "affinity mask for thread %d = %s\n", 5080 proc, gtid, buf); 5081 }); 5082 5083 if (__kmp_env_consistency_check) { 5084 if ((mask == NULL) || (*mask == NULL)) { 5085 KMP_FATAL(AffinityInvalidMask, "kmp_get_affinity_mask_proc"); 5086 } 5087 } 5088 5089 if ((proc < 0) || (proc >= __kmp_aux_get_affinity_max_proc())) { 5090 return -1; 5091 } 5092 if (!KMP_CPU_ISSET(proc, __kmp_affin_fullMask)) { 5093 return 0; 5094 } 5095 5096 return KMP_CPU_ISSET(proc, (kmp_affin_mask_t *)(*mask)); 5097 } 5098 5099 // Dynamic affinity settings - Affinity balanced 5100 void __kmp_balanced_affinity(kmp_info_t *th, int nthreads) { 5101 KMP_DEBUG_ASSERT(th); 5102 bool fine_gran = true; 5103 int tid = th->th.th_info.ds.ds_tid; 5104 5105 switch (__kmp_affinity_gran) { 5106 case affinity_gran_fine: 5107 case affinity_gran_thread: 5108 break; 5109 case affinity_gran_core: 5110 if (__kmp_nThreadsPerCore > 1) { 5111 fine_gran = false; 5112 } 5113 break; 5114 case affinity_gran_package: 5115 if (nCoresPerPkg > 1) { 5116 fine_gran = false; 5117 } 5118 break; 5119 default: 5120 fine_gran = false; 5121 } 5122 5123 if (__kmp_affinity_uniform_topology()) { 5124 int coreID; 5125 int threadID; 5126 // Number of hyper threads per core in HT machine 5127 int __kmp_nth_per_core = __kmp_avail_proc / __kmp_ncores; 5128 // Number of cores 5129 int ncores = __kmp_ncores; 5130 if ((nPackages > 1) && (__kmp_nth_per_core <= 1)) { 5131 __kmp_nth_per_core = __kmp_avail_proc / nPackages; 5132 ncores = nPackages; 5133 } 5134 // How many threads will be bound to each core 5135 int chunk = nthreads / ncores; 5136 // How many cores will have an additional thread bound to it - "big cores" 5137 int big_cores = nthreads % ncores; 5138 // Number of threads on the big cores 5139 int big_nth = (chunk + 1) * big_cores; 5140 if (tid < big_nth) { 5141 coreID = tid / (chunk + 1); 5142 threadID = (tid % (chunk + 1)) % __kmp_nth_per_core; 5143 } else { // tid >= big_nth 5144 coreID = (tid - big_cores) / chunk; 5145 threadID = ((tid - big_cores) % chunk) % __kmp_nth_per_core; 5146 } 5147 5148 KMP_DEBUG_ASSERT2(KMP_AFFINITY_CAPABLE(), 5149 "Illegal set affinity operation when not capable"); 5150 5151 kmp_affin_mask_t *mask = th->th.th_affin_mask; 5152 KMP_CPU_ZERO(mask); 5153 5154 if (fine_gran) { 5155 int osID = address2os[coreID * __kmp_nth_per_core + threadID].second; 5156 KMP_CPU_SET(osID, mask); 5157 } else { 5158 for (int i = 0; i < __kmp_nth_per_core; i++) { 5159 int osID; 5160 osID = address2os[coreID * __kmp_nth_per_core + i].second; 5161 KMP_CPU_SET(osID, mask); 5162 } 5163 } 5164 if (__kmp_affinity_verbose) { 5165 char buf[KMP_AFFIN_MASK_PRINT_LEN]; 5166 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, mask); 5167 KMP_INFORM(BoundToOSProcSet, "KMP_AFFINITY", (kmp_int32)getpid(), 5168 __kmp_gettid(), tid, buf); 5169 } 5170 __kmp_set_system_affinity(mask, TRUE); 5171 } else { // Non-uniform topology 5172 5173 kmp_affin_mask_t *mask = th->th.th_affin_mask; 5174 KMP_CPU_ZERO(mask); 5175 5176 int core_level = __kmp_affinity_find_core_level( 5177 address2os, __kmp_avail_proc, __kmp_aff_depth - 1); 5178 int ncores = __kmp_affinity_compute_ncores(address2os, __kmp_avail_proc, 5179 __kmp_aff_depth - 1, core_level); 5180 int nth_per_core = __kmp_affinity_max_proc_per_core( 5181 address2os, __kmp_avail_proc, __kmp_aff_depth - 1, core_level); 5182 5183 // For performance gain consider the special case nthreads == 5184 // __kmp_avail_proc 5185 if (nthreads == __kmp_avail_proc) { 5186 if (fine_gran) { 5187 int osID = address2os[tid].second; 5188 KMP_CPU_SET(osID, mask); 5189 } else { 5190 int core = __kmp_affinity_find_core(address2os, tid, 5191 __kmp_aff_depth - 1, core_level); 5192 for (int i = 0; i < __kmp_avail_proc; i++) { 5193 int osID = address2os[i].second; 5194 if (__kmp_affinity_find_core(address2os, i, __kmp_aff_depth - 1, 5195 core_level) == core) { 5196 KMP_CPU_SET(osID, mask); 5197 } 5198 } 5199 } 5200 } else if (nthreads <= ncores) { 5201 5202 int core = 0; 5203 for (int i = 0; i < ncores; i++) { 5204 // Check if this core from procarr[] is in the mask 5205 int in_mask = 0; 5206 for (int j = 0; j < nth_per_core; j++) { 5207 if (procarr[i * nth_per_core + j] != -1) { 5208 in_mask = 1; 5209 break; 5210 } 5211 } 5212 if (in_mask) { 5213 if (tid == core) { 5214 for (int j = 0; j < nth_per_core; j++) { 5215 int osID = procarr[i * nth_per_core + j]; 5216 if (osID != -1) { 5217 KMP_CPU_SET(osID, mask); 5218 // For fine granularity it is enough to set the first available 5219 // osID for this core 5220 if (fine_gran) { 5221 break; 5222 } 5223 } 5224 } 5225 break; 5226 } else { 5227 core++; 5228 } 5229 } 5230 } 5231 } else { // nthreads > ncores 5232 // Array to save the number of processors at each core 5233 int *nproc_at_core = (int *)KMP_ALLOCA(sizeof(int) * ncores); 5234 // Array to save the number of cores with "x" available processors; 5235 int *ncores_with_x_procs = 5236 (int *)KMP_ALLOCA(sizeof(int) * (nth_per_core + 1)); 5237 // Array to save the number of cores with # procs from x to nth_per_core 5238 int *ncores_with_x_to_max_procs = 5239 (int *)KMP_ALLOCA(sizeof(int) * (nth_per_core + 1)); 5240 5241 for (int i = 0; i <= nth_per_core; i++) { 5242 ncores_with_x_procs[i] = 0; 5243 ncores_with_x_to_max_procs[i] = 0; 5244 } 5245 5246 for (int i = 0; i < ncores; i++) { 5247 int cnt = 0; 5248 for (int j = 0; j < nth_per_core; j++) { 5249 if (procarr[i * nth_per_core + j] != -1) { 5250 cnt++; 5251 } 5252 } 5253 nproc_at_core[i] = cnt; 5254 ncores_with_x_procs[cnt]++; 5255 } 5256 5257 for (int i = 0; i <= nth_per_core; i++) { 5258 for (int j = i; j <= nth_per_core; j++) { 5259 ncores_with_x_to_max_procs[i] += ncores_with_x_procs[j]; 5260 } 5261 } 5262 5263 // Max number of processors 5264 int nproc = nth_per_core * ncores; 5265 // An array to keep number of threads per each context 5266 int *newarr = (int *)__kmp_allocate(sizeof(int) * nproc); 5267 for (int i = 0; i < nproc; i++) { 5268 newarr[i] = 0; 5269 } 5270 5271 int nth = nthreads; 5272 int flag = 0; 5273 while (nth > 0) { 5274 for (int j = 1; j <= nth_per_core; j++) { 5275 int cnt = ncores_with_x_to_max_procs[j]; 5276 for (int i = 0; i < ncores; i++) { 5277 // Skip the core with 0 processors 5278 if (nproc_at_core[i] == 0) { 5279 continue; 5280 } 5281 for (int k = 0; k < nth_per_core; k++) { 5282 if (procarr[i * nth_per_core + k] != -1) { 5283 if (newarr[i * nth_per_core + k] == 0) { 5284 newarr[i * nth_per_core + k] = 1; 5285 cnt--; 5286 nth--; 5287 break; 5288 } else { 5289 if (flag != 0) { 5290 newarr[i * nth_per_core + k]++; 5291 cnt--; 5292 nth--; 5293 break; 5294 } 5295 } 5296 } 5297 } 5298 if (cnt == 0 || nth == 0) { 5299 break; 5300 } 5301 } 5302 if (nth == 0) { 5303 break; 5304 } 5305 } 5306 flag = 1; 5307 } 5308 int sum = 0; 5309 for (int i = 0; i < nproc; i++) { 5310 sum += newarr[i]; 5311 if (sum > tid) { 5312 if (fine_gran) { 5313 int osID = procarr[i]; 5314 KMP_CPU_SET(osID, mask); 5315 } else { 5316 int coreID = i / nth_per_core; 5317 for (int ii = 0; ii < nth_per_core; ii++) { 5318 int osID = procarr[coreID * nth_per_core + ii]; 5319 if (osID != -1) { 5320 KMP_CPU_SET(osID, mask); 5321 } 5322 } 5323 } 5324 break; 5325 } 5326 } 5327 __kmp_free(newarr); 5328 } 5329 5330 if (__kmp_affinity_verbose) { 5331 char buf[KMP_AFFIN_MASK_PRINT_LEN]; 5332 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, mask); 5333 KMP_INFORM(BoundToOSProcSet, "KMP_AFFINITY", (kmp_int32)getpid(), 5334 __kmp_gettid(), tid, buf); 5335 } 5336 __kmp_set_system_affinity(mask, TRUE); 5337 } 5338 } 5339 5340 #if KMP_OS_LINUX 5341 // We don't need this entry for Windows because 5342 // there is GetProcessAffinityMask() api 5343 // 5344 // The intended usage is indicated by these steps: 5345 // 1) The user gets the current affinity mask 5346 // 2) Then sets the affinity by calling this function 5347 // 3) Error check the return value 5348 // 4) Use non-OpenMP parallelization 5349 // 5) Reset the affinity to what was stored in step 1) 5350 #ifdef __cplusplus 5351 extern "C" 5352 #endif 5353 int 5354 kmp_set_thread_affinity_mask_initial() 5355 // the function returns 0 on success, 5356 // -1 if we cannot bind thread 5357 // >0 (errno) if an error happened during binding 5358 { 5359 int gtid = __kmp_get_gtid(); 5360 if (gtid < 0) { 5361 // Do not touch non-omp threads 5362 KA_TRACE(30, ("kmp_set_thread_affinity_mask_initial: " 5363 "non-omp thread, returning\n")); 5364 return -1; 5365 } 5366 if (!KMP_AFFINITY_CAPABLE() || !__kmp_init_middle) { 5367 KA_TRACE(30, ("kmp_set_thread_affinity_mask_initial: " 5368 "affinity not initialized, returning\n")); 5369 return -1; 5370 } 5371 KA_TRACE(30, ("kmp_set_thread_affinity_mask_initial: " 5372 "set full mask for thread %d\n", 5373 gtid)); 5374 KMP_DEBUG_ASSERT(__kmp_affin_fullMask != NULL); 5375 return __kmp_set_system_affinity(__kmp_affin_fullMask, FALSE); 5376 } 5377 #endif 5378 5379 #endif // KMP_AFFINITY_SUPPORTED 5380