1 /*
2  * kmp_affinity.cpp -- affinity management
3  */
4 
5 //===----------------------------------------------------------------------===//
6 //
7 //                     The LLVM Compiler Infrastructure
8 //
9 // This file is dual licensed under the MIT and the University of Illinois Open
10 // Source Licenses. See LICENSE.txt for details.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "kmp.h"
15 #include "kmp_affinity.h"
16 #include "kmp_i18n.h"
17 #include "kmp_io.h"
18 #include "kmp_str.h"
19 #include "kmp_wrapper_getpid.h"
20 #if KMP_USE_HIER_SCHED
21 #include "kmp_dispatch_hier.h"
22 #endif
23 
24 // Store the real or imagined machine hierarchy here
25 static hierarchy_info machine_hierarchy;
26 
__kmp_cleanup_hierarchy()27 void __kmp_cleanup_hierarchy() { machine_hierarchy.fini(); }
28 
__kmp_get_hierarchy(kmp_uint32 nproc,kmp_bstate_t * thr_bar)29 void __kmp_get_hierarchy(kmp_uint32 nproc, kmp_bstate_t *thr_bar) {
30   kmp_uint32 depth;
31   // The test below is true if affinity is available, but set to "none". Need to
32   // init on first use of hierarchical barrier.
33   if (TCR_1(machine_hierarchy.uninitialized))
34     machine_hierarchy.init(NULL, nproc);
35 
36   // Adjust the hierarchy in case num threads exceeds original
37   if (nproc > machine_hierarchy.base_num_threads)
38     machine_hierarchy.resize(nproc);
39 
40   depth = machine_hierarchy.depth;
41   KMP_DEBUG_ASSERT(depth > 0);
42 
43   thr_bar->depth = depth;
44   thr_bar->base_leaf_kids = (kmp_uint8)machine_hierarchy.numPerLevel[0] - 1;
45   thr_bar->skip_per_level = machine_hierarchy.skipPerLevel;
46 }
47 
48 #if KMP_AFFINITY_SUPPORTED
49 
50 bool KMPAffinity::picked_api = false;
51 
operator new(size_t n)52 void *KMPAffinity::Mask::operator new(size_t n) { return __kmp_allocate(n); }
operator new[](size_t n)53 void *KMPAffinity::Mask::operator new[](size_t n) { return __kmp_allocate(n); }
operator delete(void * p)54 void KMPAffinity::Mask::operator delete(void *p) { __kmp_free(p); }
operator delete[](void * p)55 void KMPAffinity::Mask::operator delete[](void *p) { __kmp_free(p); }
operator new(size_t n)56 void *KMPAffinity::operator new(size_t n) { return __kmp_allocate(n); }
operator delete(void * p)57 void KMPAffinity::operator delete(void *p) { __kmp_free(p); }
58 
pick_api()59 void KMPAffinity::pick_api() {
60   KMPAffinity *affinity_dispatch;
61   if (picked_api)
62     return;
63 #if KMP_USE_HWLOC
64   // Only use Hwloc if affinity isn't explicitly disabled and
65   // user requests Hwloc topology method
66   if (__kmp_affinity_top_method == affinity_top_method_hwloc &&
67       __kmp_affinity_type != affinity_disabled) {
68     affinity_dispatch = new KMPHwlocAffinity();
69   } else
70 #endif
71   {
72     affinity_dispatch = new KMPNativeAffinity();
73   }
74   __kmp_affinity_dispatch = affinity_dispatch;
75   picked_api = true;
76 }
77 
destroy_api()78 void KMPAffinity::destroy_api() {
79   if (__kmp_affinity_dispatch != NULL) {
80     delete __kmp_affinity_dispatch;
81     __kmp_affinity_dispatch = NULL;
82     picked_api = false;
83   }
84 }
85 
86 #define KMP_ADVANCE_SCAN(scan)                                                 \
87   while (*scan != '\0') {                                                      \
88     scan++;                                                                    \
89   }
90 
91 // Print the affinity mask to the character array in a pretty format.
92 // The format is a comma separated list of non-negative integers or integer
93 // ranges: e.g., 1,2,3-5,7,9-15
94 // The format can also be the string "{<empty>}" if no bits are set in mask
__kmp_affinity_print_mask(char * buf,int buf_len,kmp_affin_mask_t * mask)95 char *__kmp_affinity_print_mask(char *buf, int buf_len,
96                                 kmp_affin_mask_t *mask) {
97   int start = 0, finish = 0, previous = 0;
98   bool first_range;
99   KMP_ASSERT(buf);
100   KMP_ASSERT(buf_len >= 40);
101   KMP_ASSERT(mask);
102   char *scan = buf;
103   char *end = buf + buf_len - 1;
104 
105   // Check for empty set.
106   if (mask->begin() == mask->end()) {
107     KMP_SNPRINTF(scan, end - scan + 1, "{<empty>}");
108     KMP_ADVANCE_SCAN(scan);
109     KMP_ASSERT(scan <= end);
110     return buf;
111   }
112 
113   first_range = true;
114   start = mask->begin();
115   while (1) {
116     // Find next range
117     // [start, previous] is inclusive range of contiguous bits in mask
118     for (finish = mask->next(start), previous = start;
119          finish == previous + 1 && finish != mask->end();
120          finish = mask->next(finish)) {
121       previous = finish;
122     }
123 
124     // The first range does not need a comma printed before it, but the rest
125     // of the ranges do need a comma beforehand
126     if (!first_range) {
127       KMP_SNPRINTF(scan, end - scan + 1, "%s", ",");
128       KMP_ADVANCE_SCAN(scan);
129     } else {
130       first_range = false;
131     }
132     // Range with three or more contiguous bits in the affinity mask
133     if (previous - start > 1) {
134       KMP_SNPRINTF(scan, end - scan + 1, "%d-%d", static_cast<int>(start),
135                    static_cast<int>(previous));
136     } else {
137       // Range with one or two contiguous bits in the affinity mask
138       KMP_SNPRINTF(scan, end - scan + 1, "%d", static_cast<int>(start));
139       KMP_ADVANCE_SCAN(scan);
140       if (previous - start > 0) {
141         KMP_SNPRINTF(scan, end - scan + 1, ",%d", static_cast<int>(previous));
142       }
143     }
144     KMP_ADVANCE_SCAN(scan);
145     // Start over with new start point
146     start = finish;
147     if (start == mask->end())
148       break;
149     // Check for overflow
150     if (end - scan < 2)
151       break;
152   }
153 
154   // Check for overflow
155   KMP_ASSERT(scan <= end);
156   return buf;
157 }
158 #undef KMP_ADVANCE_SCAN
159 
160 // Print the affinity mask to the string buffer object in a pretty format
161 // The format is a comma separated list of non-negative integers or integer
162 // ranges: e.g., 1,2,3-5,7,9-15
163 // The format can also be the string "{<empty>}" if no bits are set in mask
__kmp_affinity_str_buf_mask(kmp_str_buf_t * buf,kmp_affin_mask_t * mask)164 kmp_str_buf_t *__kmp_affinity_str_buf_mask(kmp_str_buf_t *buf,
165                                            kmp_affin_mask_t *mask) {
166   int start = 0, finish = 0, previous = 0;
167   bool first_range;
168   KMP_ASSERT(buf);
169   KMP_ASSERT(mask);
170 
171   __kmp_str_buf_clear(buf);
172 
173   // Check for empty set.
174   if (mask->begin() == mask->end()) {
175     __kmp_str_buf_print(buf, "%s", "{<empty>}");
176     return buf;
177   }
178 
179   first_range = true;
180   start = mask->begin();
181   while (1) {
182     // Find next range
183     // [start, previous] is inclusive range of contiguous bits in mask
184     for (finish = mask->next(start), previous = start;
185          finish == previous + 1 && finish != mask->end();
186          finish = mask->next(finish)) {
187       previous = finish;
188     }
189 
190     // The first range does not need a comma printed before it, but the rest
191     // of the ranges do need a comma beforehand
192     if (!first_range) {
193       __kmp_str_buf_print(buf, "%s", ",");
194     } else {
195       first_range = false;
196     }
197     // Range with three or more contiguous bits in the affinity mask
198     if (previous - start > 1) {
199       __kmp_str_buf_print(buf, "%d-%d", static_cast<int>(start),
200                           static_cast<int>(previous));
201     } else {
202       // Range with one or two contiguous bits in the affinity mask
203       __kmp_str_buf_print(buf, "%d", static_cast<int>(start));
204       if (previous - start > 0) {
205         __kmp_str_buf_print(buf, ",%d", static_cast<int>(previous));
206       }
207     }
208     // Start over with new start point
209     start = finish;
210     if (start == mask->end())
211       break;
212   }
213   return buf;
214 }
215 
__kmp_affinity_entire_machine_mask(kmp_affin_mask_t * mask)216 void __kmp_affinity_entire_machine_mask(kmp_affin_mask_t *mask) {
217   KMP_CPU_ZERO(mask);
218 
219 #if KMP_GROUP_AFFINITY
220 
221   if (__kmp_num_proc_groups > 1) {
222     int group;
223     KMP_DEBUG_ASSERT(__kmp_GetActiveProcessorCount != NULL);
224     for (group = 0; group < __kmp_num_proc_groups; group++) {
225       int i;
226       int num = __kmp_GetActiveProcessorCount(group);
227       for (i = 0; i < num; i++) {
228         KMP_CPU_SET(i + group * (CHAR_BIT * sizeof(DWORD_PTR)), mask);
229       }
230     }
231   } else
232 
233 #endif /* KMP_GROUP_AFFINITY */
234 
235   {
236     int proc;
237     for (proc = 0; proc < __kmp_xproc; proc++) {
238       KMP_CPU_SET(proc, mask);
239     }
240   }
241 }
242 
243 // When sorting by labels, __kmp_affinity_assign_child_nums() must first be
244 // called to renumber the labels from [0..n] and place them into the child_num
245 // vector of the address object.  This is done in case the labels used for
246 // the children at one node of the hierarchy differ from those used for
247 // another node at the same level.  Example:  suppose the machine has 2 nodes
248 // with 2 packages each.  The first node contains packages 601 and 602, and
249 // second node contains packages 603 and 604.  If we try to sort the table
250 // for "scatter" affinity, the table will still be sorted 601, 602, 603, 604
251 // because we are paying attention to the labels themselves, not the ordinal
252 // child numbers.  By using the child numbers in the sort, the result is
253 // {0,0}=601, {0,1}=603, {1,0}=602, {1,1}=604.
__kmp_affinity_assign_child_nums(AddrUnsPair * address2os,int numAddrs)254 static void __kmp_affinity_assign_child_nums(AddrUnsPair *address2os,
255                                              int numAddrs) {
256   KMP_DEBUG_ASSERT(numAddrs > 0);
257   int depth = address2os->first.depth;
258   unsigned *counts = (unsigned *)__kmp_allocate(depth * sizeof(unsigned));
259   unsigned *lastLabel = (unsigned *)__kmp_allocate(depth * sizeof(unsigned));
260   int labCt;
261   for (labCt = 0; labCt < depth; labCt++) {
262     address2os[0].first.childNums[labCt] = counts[labCt] = 0;
263     lastLabel[labCt] = address2os[0].first.labels[labCt];
264   }
265   int i;
266   for (i = 1; i < numAddrs; i++) {
267     for (labCt = 0; labCt < depth; labCt++) {
268       if (address2os[i].first.labels[labCt] != lastLabel[labCt]) {
269         int labCt2;
270         for (labCt2 = labCt + 1; labCt2 < depth; labCt2++) {
271           counts[labCt2] = 0;
272           lastLabel[labCt2] = address2os[i].first.labels[labCt2];
273         }
274         counts[labCt]++;
275         lastLabel[labCt] = address2os[i].first.labels[labCt];
276         break;
277       }
278     }
279     for (labCt = 0; labCt < depth; labCt++) {
280       address2os[i].first.childNums[labCt] = counts[labCt];
281     }
282     for (; labCt < (int)Address::maxDepth; labCt++) {
283       address2os[i].first.childNums[labCt] = 0;
284     }
285   }
286   __kmp_free(lastLabel);
287   __kmp_free(counts);
288 }
289 
290 // All of the __kmp_affinity_create_*_map() routines should set
291 // __kmp_affinity_masks to a vector of affinity mask objects of length
292 // __kmp_affinity_num_masks, if __kmp_affinity_type != affinity_none, and return
293 // the number of levels in the machine topology tree (zero if
294 // __kmp_affinity_type == affinity_none).
295 //
296 // All of the __kmp_affinity_create_*_map() routines should set
297 // *__kmp_affin_fullMask to the affinity mask for the initialization thread.
298 // They need to save and restore the mask, and it could be needed later, so
299 // saving it is just an optimization to avoid calling kmp_get_system_affinity()
300 // again.
301 kmp_affin_mask_t *__kmp_affin_fullMask = NULL;
302 
303 static int nCoresPerPkg, nPackages;
304 static int __kmp_nThreadsPerCore;
305 #ifndef KMP_DFLT_NTH_CORES
306 static int __kmp_ncores;
307 #endif
308 static int *__kmp_pu_os_idx = NULL;
309 
310 // __kmp_affinity_uniform_topology() doesn't work when called from
311 // places which support arbitrarily many levels in the machine topology
312 // map, i.e. the non-default cases in __kmp_affinity_create_cpuinfo_map()
313 // __kmp_affinity_create_x2apicid_map().
__kmp_affinity_uniform_topology()314 inline static bool __kmp_affinity_uniform_topology() {
315   return __kmp_avail_proc == (__kmp_nThreadsPerCore * nCoresPerPkg * nPackages);
316 }
317 
318 // Print out the detailed machine topology map, i.e. the physical locations
319 // of each OS proc.
__kmp_affinity_print_topology(AddrUnsPair * address2os,int len,int depth,int pkgLevel,int coreLevel,int threadLevel)320 static void __kmp_affinity_print_topology(AddrUnsPair *address2os, int len,
321                                           int depth, int pkgLevel,
322                                           int coreLevel, int threadLevel) {
323   int proc;
324 
325   KMP_INFORM(OSProcToPhysicalThreadMap, "KMP_AFFINITY");
326   for (proc = 0; proc < len; proc++) {
327     int level;
328     kmp_str_buf_t buf;
329     __kmp_str_buf_init(&buf);
330     for (level = 0; level < depth; level++) {
331       if (level == threadLevel) {
332         __kmp_str_buf_print(&buf, "%s ", KMP_I18N_STR(Thread));
333       } else if (level == coreLevel) {
334         __kmp_str_buf_print(&buf, "%s ", KMP_I18N_STR(Core));
335       } else if (level == pkgLevel) {
336         __kmp_str_buf_print(&buf, "%s ", KMP_I18N_STR(Package));
337       } else if (level > pkgLevel) {
338         __kmp_str_buf_print(&buf, "%s_%d ", KMP_I18N_STR(Node),
339                             level - pkgLevel - 1);
340       } else {
341         __kmp_str_buf_print(&buf, "L%d ", level);
342       }
343       __kmp_str_buf_print(&buf, "%d ", address2os[proc].first.labels[level]);
344     }
345     KMP_INFORM(OSProcMapToPack, "KMP_AFFINITY", address2os[proc].second,
346                buf.str);
347     __kmp_str_buf_free(&buf);
348   }
349 }
350 
351 #if KMP_USE_HWLOC
352 
__kmp_affinity_print_hwloc_tp(AddrUnsPair * addrP,int len,int depth,int * levels)353 static void __kmp_affinity_print_hwloc_tp(AddrUnsPair *addrP, int len,
354                                           int depth, int *levels) {
355   int proc;
356   kmp_str_buf_t buf;
357   __kmp_str_buf_init(&buf);
358   KMP_INFORM(OSProcToPhysicalThreadMap, "KMP_AFFINITY");
359   for (proc = 0; proc < len; proc++) {
360     __kmp_str_buf_print(&buf, "%s %d ", KMP_I18N_STR(Package),
361                         addrP[proc].first.labels[0]);
362     if (depth > 1) {
363       int level = 1; // iterate over levels
364       int label = 1; // iterate over labels
365       if (__kmp_numa_detected)
366         // node level follows package
367         if (levels[level++] > 0)
368           __kmp_str_buf_print(&buf, "%s %d ", KMP_I18N_STR(Node),
369                               addrP[proc].first.labels[label++]);
370       if (__kmp_tile_depth > 0)
371         // tile level follows node if any, or package
372         if (levels[level++] > 0)
373           __kmp_str_buf_print(&buf, "%s %d ", KMP_I18N_STR(Tile),
374                               addrP[proc].first.labels[label++]);
375       if (levels[level++] > 0)
376         // core level follows
377         __kmp_str_buf_print(&buf, "%s %d ", KMP_I18N_STR(Core),
378                             addrP[proc].first.labels[label++]);
379       if (levels[level++] > 0)
380         // thread level is the latest
381         __kmp_str_buf_print(&buf, "%s %d ", KMP_I18N_STR(Thread),
382                             addrP[proc].first.labels[label++]);
383       KMP_DEBUG_ASSERT(label == depth);
384     }
385     KMP_INFORM(OSProcMapToPack, "KMP_AFFINITY", addrP[proc].second, buf.str);
386     __kmp_str_buf_clear(&buf);
387   }
388   __kmp_str_buf_free(&buf);
389 }
390 
391 static int nNodePerPkg, nTilePerPkg, nTilePerNode, nCorePerNode, nCorePerTile;
392 
393 // This function removes the topology levels that are radix 1 and don't offer
394 // further information about the topology.  The most common example is when you
395 // have one thread context per core, we don't want the extra thread context
396 // level if it offers no unique labels.  So they are removed.
397 // return value: the new depth of address2os
__kmp_affinity_remove_radix_one_levels(AddrUnsPair * addrP,int nTh,int depth,int * levels)398 static int __kmp_affinity_remove_radix_one_levels(AddrUnsPair *addrP, int nTh,
399                                                   int depth, int *levels) {
400   int level;
401   int i;
402   int radix1_detected;
403   int new_depth = depth;
404   for (level = depth - 1; level > 0; --level) {
405     // Detect if this level is radix 1
406     radix1_detected = 1;
407     for (i = 1; i < nTh; ++i) {
408       if (addrP[0].first.labels[level] != addrP[i].first.labels[level]) {
409         // There are differing label values for this level so it stays
410         radix1_detected = 0;
411         break;
412       }
413     }
414     if (!radix1_detected)
415       continue;
416     // Radix 1 was detected
417     --new_depth;
418     levels[level] = -1; // mark level as not present in address2os array
419     if (level == new_depth) {
420       // "turn off" deepest level, just decrement the depth that removes
421       // the level from address2os array
422       for (i = 0; i < nTh; ++i) {
423         addrP[i].first.depth--;
424       }
425     } else {
426       // For other levels, we move labels over and also reduce the depth
427       int j;
428       for (j = level; j < new_depth; ++j) {
429         for (i = 0; i < nTh; ++i) {
430           addrP[i].first.labels[j] = addrP[i].first.labels[j + 1];
431           addrP[i].first.depth--;
432         }
433         levels[j + 1] -= 1;
434       }
435     }
436   }
437   return new_depth;
438 }
439 
440 // Returns the number of objects of type 'type' below 'obj' within the topology
441 // tree structure. e.g., if obj is a HWLOC_OBJ_PACKAGE object, and type is
442 // HWLOC_OBJ_PU, then this will return the number of PU's under the SOCKET
443 // object.
__kmp_hwloc_get_nobjs_under_obj(hwloc_obj_t obj,hwloc_obj_type_t type)444 static int __kmp_hwloc_get_nobjs_under_obj(hwloc_obj_t obj,
445                                            hwloc_obj_type_t type) {
446   int retval = 0;
447   hwloc_obj_t first;
448   for (first = hwloc_get_obj_below_by_type(__kmp_hwloc_topology, obj->type,
449                                            obj->logical_index, type, 0);
450        first != NULL &&
451        hwloc_get_ancestor_obj_by_type(__kmp_hwloc_topology, obj->type, first) ==
452            obj;
453        first = hwloc_get_next_obj_by_type(__kmp_hwloc_topology, first->type,
454                                           first)) {
455     ++retval;
456   }
457   return retval;
458 }
459 
__kmp_hwloc_count_children_by_depth(hwloc_topology_t t,hwloc_obj_t o,unsigned depth,hwloc_obj_t * f)460 static int __kmp_hwloc_count_children_by_depth(hwloc_topology_t t,
461                                                hwloc_obj_t o, unsigned depth,
462                                                hwloc_obj_t *f) {
463   if (o->depth == depth) {
464     if (*f == NULL)
465       *f = o; // output first descendant found
466     return 1;
467   }
468   int sum = 0;
469   for (unsigned i = 0; i < o->arity; i++)
470     sum += __kmp_hwloc_count_children_by_depth(t, o->children[i], depth, f);
471   return sum; // will be 0 if no one found (as PU arity is 0)
472 }
473 
__kmp_hwloc_count_children_by_type(hwloc_topology_t t,hwloc_obj_t o,hwloc_obj_type_t type,hwloc_obj_t * f)474 static int __kmp_hwloc_count_children_by_type(hwloc_topology_t t, hwloc_obj_t o,
475                                               hwloc_obj_type_t type,
476                                               hwloc_obj_t *f) {
477   if (!hwloc_compare_types(o->type, type)) {
478     if (*f == NULL)
479       *f = o; // output first descendant found
480     return 1;
481   }
482   int sum = 0;
483   for (unsigned i = 0; i < o->arity; i++)
484     sum += __kmp_hwloc_count_children_by_type(t, o->children[i], type, f);
485   return sum; // will be 0 if no one found (as PU arity is 0)
486 }
487 
__kmp_hwloc_process_obj_core_pu(AddrUnsPair * addrPair,int & nActiveThreads,int & num_active_cores,hwloc_obj_t obj,int depth,int * labels)488 static int __kmp_hwloc_process_obj_core_pu(AddrUnsPair *addrPair,
489                                            int &nActiveThreads,
490                                            int &num_active_cores,
491                                            hwloc_obj_t obj, int depth,
492                                            int *labels) {
493   hwloc_obj_t core = NULL;
494   hwloc_topology_t &tp = __kmp_hwloc_topology;
495   int NC = __kmp_hwloc_count_children_by_type(tp, obj, HWLOC_OBJ_CORE, &core);
496   for (int core_id = 0; core_id < NC; ++core_id, core = core->next_cousin) {
497     hwloc_obj_t pu = NULL;
498     KMP_DEBUG_ASSERT(core != NULL);
499     int num_active_threads = 0;
500     int NT = __kmp_hwloc_count_children_by_type(tp, core, HWLOC_OBJ_PU, &pu);
501     // int NT = core->arity; pu = core->first_child; // faster?
502     for (int pu_id = 0; pu_id < NT; ++pu_id, pu = pu->next_cousin) {
503       KMP_DEBUG_ASSERT(pu != NULL);
504       if (!KMP_CPU_ISSET(pu->os_index, __kmp_affin_fullMask))
505         continue; // skip inactive (inaccessible) unit
506       Address addr(depth + 2);
507       KA_TRACE(20, ("Hwloc inserting %d (%d) %d (%d) %d (%d) into address2os\n",
508                     obj->os_index, obj->logical_index, core->os_index,
509                     core->logical_index, pu->os_index, pu->logical_index));
510       for (int i = 0; i < depth; ++i)
511         addr.labels[i] = labels[i]; // package, etc.
512       addr.labels[depth] = core_id; // core
513       addr.labels[depth + 1] = pu_id; // pu
514       addrPair[nActiveThreads] = AddrUnsPair(addr, pu->os_index);
515       __kmp_pu_os_idx[nActiveThreads] = pu->os_index;
516       nActiveThreads++;
517       ++num_active_threads; // count active threads per core
518     }
519     if (num_active_threads) { // were there any active threads on the core?
520       ++__kmp_ncores; // count total active cores
521       ++num_active_cores; // count active cores per socket
522       if (num_active_threads > __kmp_nThreadsPerCore)
523         __kmp_nThreadsPerCore = num_active_threads; // calc maximum
524     }
525   }
526   return 0;
527 }
528 
529 // Check if NUMA node detected below the package,
530 // and if tile object is detected and return its depth
__kmp_hwloc_check_numa()531 static int __kmp_hwloc_check_numa() {
532   hwloc_topology_t &tp = __kmp_hwloc_topology;
533   hwloc_obj_t hT, hC, hL, hN, hS; // hwloc objects (pointers to)
534   int depth;
535 
536   // Get some PU
537   hT = hwloc_get_obj_by_type(tp, HWLOC_OBJ_PU, 0);
538   if (hT == NULL) // something has gone wrong
539     return 1;
540 
541   // check NUMA node below PACKAGE
542   hN = hwloc_get_ancestor_obj_by_type(tp, HWLOC_OBJ_NUMANODE, hT);
543   hS = hwloc_get_ancestor_obj_by_type(tp, HWLOC_OBJ_PACKAGE, hT);
544   KMP_DEBUG_ASSERT(hS != NULL);
545   if (hN != NULL && hN->depth > hS->depth) {
546     __kmp_numa_detected = TRUE; // socket includes node(s)
547     if (__kmp_affinity_gran == affinity_gran_node) {
548       __kmp_affinity_gran == affinity_gran_numa;
549     }
550   }
551 
552   // check tile, get object by depth because of multiple caches possible
553   depth = hwloc_get_cache_type_depth(tp, 2, HWLOC_OBJ_CACHE_UNIFIED);
554   hL = hwloc_get_ancestor_obj_by_depth(tp, depth, hT);
555   hC = NULL; // not used, but reset it here just in case
556   if (hL != NULL &&
557       __kmp_hwloc_count_children_by_type(tp, hL, HWLOC_OBJ_CORE, &hC) > 1)
558     __kmp_tile_depth = depth; // tile consists of multiple cores
559   return 0;
560 }
561 
__kmp_affinity_create_hwloc_map(AddrUnsPair ** address2os,kmp_i18n_id_t * const msg_id)562 static int __kmp_affinity_create_hwloc_map(AddrUnsPair **address2os,
563                                            kmp_i18n_id_t *const msg_id) {
564   hwloc_topology_t &tp = __kmp_hwloc_topology; // shortcut of a long name
565   *address2os = NULL;
566   *msg_id = kmp_i18n_null;
567 
568   // Save the affinity mask for the current thread.
569   kmp_affin_mask_t *oldMask;
570   KMP_CPU_ALLOC(oldMask);
571   __kmp_get_system_affinity(oldMask, TRUE);
572   __kmp_hwloc_check_numa();
573 
574   if (!KMP_AFFINITY_CAPABLE()) {
575     // Hack to try and infer the machine topology using only the data
576     // available from cpuid on the current thread, and __kmp_xproc.
577     KMP_ASSERT(__kmp_affinity_type == affinity_none);
578 
579     nCoresPerPkg = __kmp_hwloc_get_nobjs_under_obj(
580         hwloc_get_obj_by_type(tp, HWLOC_OBJ_PACKAGE, 0), HWLOC_OBJ_CORE);
581     __kmp_nThreadsPerCore = __kmp_hwloc_get_nobjs_under_obj(
582         hwloc_get_obj_by_type(tp, HWLOC_OBJ_CORE, 0), HWLOC_OBJ_PU);
583     __kmp_ncores = __kmp_xproc / __kmp_nThreadsPerCore;
584     nPackages = (__kmp_xproc + nCoresPerPkg - 1) / nCoresPerPkg;
585     if (__kmp_affinity_verbose) {
586       KMP_INFORM(AffNotCapableUseLocCpuidL11, "KMP_AFFINITY");
587       KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc);
588       if (__kmp_affinity_uniform_topology()) {
589         KMP_INFORM(Uniform, "KMP_AFFINITY");
590       } else {
591         KMP_INFORM(NonUniform, "KMP_AFFINITY");
592       }
593       KMP_INFORM(Topology, "KMP_AFFINITY", nPackages, nCoresPerPkg,
594                  __kmp_nThreadsPerCore, __kmp_ncores);
595     }
596     KMP_CPU_FREE(oldMask);
597     return 0;
598   }
599 
600   int depth = 3;
601   int levels[5] = {0, 1, 2, 3, 4}; // package, [node,] [tile,] core, thread
602   int labels[3] = {0}; // package [,node] [,tile] - head of lables array
603   if (__kmp_numa_detected)
604     ++depth;
605   if (__kmp_tile_depth)
606     ++depth;
607 
608   // Allocate the data structure to be returned.
609   AddrUnsPair *retval =
610       (AddrUnsPair *)__kmp_allocate(sizeof(AddrUnsPair) * __kmp_avail_proc);
611   KMP_DEBUG_ASSERT(__kmp_pu_os_idx == NULL);
612   __kmp_pu_os_idx = (int *)__kmp_allocate(sizeof(int) * __kmp_avail_proc);
613 
614   // When affinity is off, this routine will still be called to set
615   // __kmp_ncores, as well as __kmp_nThreadsPerCore,
616   // nCoresPerPkg, & nPackages.  Make sure all these vars are set
617   // correctly, and return if affinity is not enabled.
618 
619   hwloc_obj_t socket, node, tile;
620   int nActiveThreads = 0;
621   int socket_id = 0;
622   // re-calculate globals to count only accessible resources
623   __kmp_ncores = nPackages = nCoresPerPkg = __kmp_nThreadsPerCore = 0;
624   nNodePerPkg = nTilePerPkg = nTilePerNode = nCorePerNode = nCorePerTile = 0;
625   for (socket = hwloc_get_obj_by_type(tp, HWLOC_OBJ_PACKAGE, 0); socket != NULL;
626        socket = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_PACKAGE, socket),
627       socket_id++) {
628     labels[0] = socket_id;
629     if (__kmp_numa_detected) {
630       int NN;
631       int n_active_nodes = 0;
632       node = NULL;
633       NN = __kmp_hwloc_count_children_by_type(tp, socket, HWLOC_OBJ_NUMANODE,
634                                               &node);
635       for (int node_id = 0; node_id < NN; ++node_id, node = node->next_cousin) {
636         labels[1] = node_id;
637         if (__kmp_tile_depth) {
638           // NUMA + tiles
639           int NT;
640           int n_active_tiles = 0;
641           tile = NULL;
642           NT = __kmp_hwloc_count_children_by_depth(tp, node, __kmp_tile_depth,
643                                                    &tile);
644           for (int tl_id = 0; tl_id < NT; ++tl_id, tile = tile->next_cousin) {
645             labels[2] = tl_id;
646             int n_active_cores = 0;
647             __kmp_hwloc_process_obj_core_pu(retval, nActiveThreads,
648                                             n_active_cores, tile, 3, labels);
649             if (n_active_cores) { // were there any active cores on the socket?
650               ++n_active_tiles; // count active tiles per node
651               if (n_active_cores > nCorePerTile)
652                 nCorePerTile = n_active_cores; // calc maximum
653             }
654           }
655           if (n_active_tiles) { // were there any active tiles on the socket?
656             ++n_active_nodes; // count active nodes per package
657             if (n_active_tiles > nTilePerNode)
658               nTilePerNode = n_active_tiles; // calc maximum
659           }
660         } else {
661           // NUMA, no tiles
662           int n_active_cores = 0;
663           __kmp_hwloc_process_obj_core_pu(retval, nActiveThreads,
664                                           n_active_cores, node, 2, labels);
665           if (n_active_cores) { // were there any active cores on the socket?
666             ++n_active_nodes; // count active nodes per package
667             if (n_active_cores > nCorePerNode)
668               nCorePerNode = n_active_cores; // calc maximum
669           }
670         }
671       }
672       if (n_active_nodes) { // were there any active nodes on the socket?
673         ++nPackages; // count total active packages
674         if (n_active_nodes > nNodePerPkg)
675           nNodePerPkg = n_active_nodes; // calc maximum
676       }
677     } else {
678       if (__kmp_tile_depth) {
679         // no NUMA, tiles
680         int NT;
681         int n_active_tiles = 0;
682         tile = NULL;
683         NT = __kmp_hwloc_count_children_by_depth(tp, socket, __kmp_tile_depth,
684                                                  &tile);
685         for (int tl_id = 0; tl_id < NT; ++tl_id, tile = tile->next_cousin) {
686           labels[1] = tl_id;
687           int n_active_cores = 0;
688           __kmp_hwloc_process_obj_core_pu(retval, nActiveThreads,
689                                           n_active_cores, tile, 2, labels);
690           if (n_active_cores) { // were there any active cores on the socket?
691             ++n_active_tiles; // count active tiles per package
692             if (n_active_cores > nCorePerTile)
693               nCorePerTile = n_active_cores; // calc maximum
694           }
695         }
696         if (n_active_tiles) { // were there any active tiles on the socket?
697           ++nPackages; // count total active packages
698           if (n_active_tiles > nTilePerPkg)
699             nTilePerPkg = n_active_tiles; // calc maximum
700         }
701       } else {
702         // no NUMA, no tiles
703         int n_active_cores = 0;
704         __kmp_hwloc_process_obj_core_pu(retval, nActiveThreads, n_active_cores,
705                                         socket, 1, labels);
706         if (n_active_cores) { // were there any active cores on the socket?
707           ++nPackages; // count total active packages
708           if (n_active_cores > nCoresPerPkg)
709             nCoresPerPkg = n_active_cores; // calc maximum
710         }
711       }
712     }
713   }
714 
715   // If there's only one thread context to bind to, return now.
716   KMP_DEBUG_ASSERT(nActiveThreads == __kmp_avail_proc);
717   KMP_ASSERT(nActiveThreads > 0);
718   if (nActiveThreads == 1) {
719     __kmp_ncores = nPackages = 1;
720     __kmp_nThreadsPerCore = nCoresPerPkg = 1;
721     if (__kmp_affinity_verbose) {
722       char buf[KMP_AFFIN_MASK_PRINT_LEN];
723       __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, oldMask);
724 
725       KMP_INFORM(AffUsingHwloc, "KMP_AFFINITY");
726       if (__kmp_affinity_respect_mask) {
727         KMP_INFORM(InitOSProcSetRespect, "KMP_AFFINITY", buf);
728       } else {
729         KMP_INFORM(InitOSProcSetNotRespect, "KMP_AFFINITY", buf);
730       }
731       KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc);
732       KMP_INFORM(Uniform, "KMP_AFFINITY");
733       KMP_INFORM(Topology, "KMP_AFFINITY", nPackages, nCoresPerPkg,
734                  __kmp_nThreadsPerCore, __kmp_ncores);
735     }
736 
737     if (__kmp_affinity_type == affinity_none) {
738       __kmp_free(retval);
739       KMP_CPU_FREE(oldMask);
740       return 0;
741     }
742 
743     // Form an Address object which only includes the package level.
744     Address addr(1);
745     addr.labels[0] = retval[0].first.labels[0];
746     retval[0].first = addr;
747 
748     if (__kmp_affinity_gran_levels < 0) {
749       __kmp_affinity_gran_levels = 0;
750     }
751 
752     if (__kmp_affinity_verbose) {
753       __kmp_affinity_print_topology(retval, 1, 1, 0, -1, -1);
754     }
755 
756     *address2os = retval;
757     KMP_CPU_FREE(oldMask);
758     return 1;
759   }
760 
761   // Sort the table by physical Id.
762   qsort(retval, nActiveThreads, sizeof(*retval),
763         __kmp_affinity_cmp_Address_labels);
764 
765   // Check to see if the machine topology is uniform
766   int nPUs = nPackages * __kmp_nThreadsPerCore;
767   if (__kmp_numa_detected) {
768     if (__kmp_tile_depth) { // NUMA + tiles
769       nPUs *= (nNodePerPkg * nTilePerNode * nCorePerTile);
770     } else { // NUMA, no tiles
771       nPUs *= (nNodePerPkg * nCorePerNode);
772     }
773   } else {
774     if (__kmp_tile_depth) { // no NUMA, tiles
775       nPUs *= (nTilePerPkg * nCorePerTile);
776     } else { // no NUMA, no tiles
777       nPUs *= nCoresPerPkg;
778     }
779   }
780   unsigned uniform = (nPUs == nActiveThreads);
781 
782   // Print the machine topology summary.
783   if (__kmp_affinity_verbose) {
784     char mask[KMP_AFFIN_MASK_PRINT_LEN];
785     __kmp_affinity_print_mask(mask, KMP_AFFIN_MASK_PRINT_LEN, oldMask);
786     if (__kmp_affinity_respect_mask) {
787       KMP_INFORM(InitOSProcSetRespect, "KMP_AFFINITY", mask);
788     } else {
789       KMP_INFORM(InitOSProcSetNotRespect, "KMP_AFFINITY", mask);
790     }
791     KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc);
792     if (uniform) {
793       KMP_INFORM(Uniform, "KMP_AFFINITY");
794     } else {
795       KMP_INFORM(NonUniform, "KMP_AFFINITY");
796     }
797     if (__kmp_numa_detected) {
798       if (__kmp_tile_depth) { // NUMA + tiles
799         KMP_INFORM(TopologyExtraNoTi, "KMP_AFFINITY", nPackages, nNodePerPkg,
800                    nTilePerNode, nCorePerTile, __kmp_nThreadsPerCore,
801                    __kmp_ncores);
802       } else { // NUMA, no tiles
803         KMP_INFORM(TopologyExtraNode, "KMP_AFFINITY", nPackages, nNodePerPkg,
804                    nCorePerNode, __kmp_nThreadsPerCore, __kmp_ncores);
805         nPUs *= (nNodePerPkg * nCorePerNode);
806       }
807     } else {
808       if (__kmp_tile_depth) { // no NUMA, tiles
809         KMP_INFORM(TopologyExtraTile, "KMP_AFFINITY", nPackages, nTilePerPkg,
810                    nCorePerTile, __kmp_nThreadsPerCore, __kmp_ncores);
811       } else { // no NUMA, no tiles
812         kmp_str_buf_t buf;
813         __kmp_str_buf_init(&buf);
814         __kmp_str_buf_print(&buf, "%d", nPackages);
815         KMP_INFORM(TopologyExtra, "KMP_AFFINITY", buf.str, nCoresPerPkg,
816                    __kmp_nThreadsPerCore, __kmp_ncores);
817         __kmp_str_buf_free(&buf);
818       }
819     }
820   }
821 
822   if (__kmp_affinity_type == affinity_none) {
823     __kmp_free(retval);
824     KMP_CPU_FREE(oldMask);
825     return 0;
826   }
827 
828   int depth_full = depth; // number of levels before compressing
829   // Find any levels with radiix 1, and remove them from the map
830   // (except for the package level).
831   depth = __kmp_affinity_remove_radix_one_levels(retval, nActiveThreads, depth,
832                                                  levels);
833   KMP_DEBUG_ASSERT(__kmp_affinity_gran != affinity_gran_default);
834   if (__kmp_affinity_gran_levels < 0) {
835     // Set the granularity level based on what levels are modeled
836     // in the machine topology map.
837     __kmp_affinity_gran_levels = 0; // lowest level (e.g. fine)
838     if (__kmp_affinity_gran > affinity_gran_thread) {
839       for (int i = 1; i <= depth_full; ++i) {
840         if (__kmp_affinity_gran <= i) // only count deeper levels
841           break;
842         if (levels[depth_full - i] > 0)
843           __kmp_affinity_gran_levels++;
844       }
845     }
846     if (__kmp_affinity_gran > affinity_gran_package)
847       __kmp_affinity_gran_levels++; // e.g. granularity = group
848   }
849 
850   if (__kmp_affinity_verbose)
851     __kmp_affinity_print_hwloc_tp(retval, nActiveThreads, depth, levels);
852 
853   KMP_CPU_FREE(oldMask);
854   *address2os = retval;
855   return depth;
856 }
857 #endif // KMP_USE_HWLOC
858 
859 // If we don't know how to retrieve the machine's processor topology, or
860 // encounter an error in doing so, this routine is called to form a "flat"
861 // mapping of os thread id's <-> processor id's.
__kmp_affinity_create_flat_map(AddrUnsPair ** address2os,kmp_i18n_id_t * const msg_id)862 static int __kmp_affinity_create_flat_map(AddrUnsPair **address2os,
863                                           kmp_i18n_id_t *const msg_id) {
864   *address2os = NULL;
865   *msg_id = kmp_i18n_null;
866 
867   // Even if __kmp_affinity_type == affinity_none, this routine might still
868   // called to set __kmp_ncores, as well as
869   // __kmp_nThreadsPerCore, nCoresPerPkg, & nPackages.
870   if (!KMP_AFFINITY_CAPABLE()) {
871     KMP_ASSERT(__kmp_affinity_type == affinity_none);
872     __kmp_ncores = nPackages = __kmp_xproc;
873     __kmp_nThreadsPerCore = nCoresPerPkg = 1;
874     if (__kmp_affinity_verbose) {
875       KMP_INFORM(AffFlatTopology, "KMP_AFFINITY");
876       KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc);
877       KMP_INFORM(Uniform, "KMP_AFFINITY");
878       KMP_INFORM(Topology, "KMP_AFFINITY", nPackages, nCoresPerPkg,
879                  __kmp_nThreadsPerCore, __kmp_ncores);
880     }
881     return 0;
882   }
883 
884   // When affinity is off, this routine will still be called to set
885   // __kmp_ncores, as well as __kmp_nThreadsPerCore, nCoresPerPkg, & nPackages.
886   // Make sure all these vars are set correctly, and return now if affinity is
887   // not enabled.
888   __kmp_ncores = nPackages = __kmp_avail_proc;
889   __kmp_nThreadsPerCore = nCoresPerPkg = 1;
890   if (__kmp_affinity_verbose) {
891     char buf[KMP_AFFIN_MASK_PRINT_LEN];
892     __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN,
893                               __kmp_affin_fullMask);
894 
895     KMP_INFORM(AffCapableUseFlat, "KMP_AFFINITY");
896     if (__kmp_affinity_respect_mask) {
897       KMP_INFORM(InitOSProcSetRespect, "KMP_AFFINITY", buf);
898     } else {
899       KMP_INFORM(InitOSProcSetNotRespect, "KMP_AFFINITY", buf);
900     }
901     KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc);
902     KMP_INFORM(Uniform, "KMP_AFFINITY");
903     KMP_INFORM(Topology, "KMP_AFFINITY", nPackages, nCoresPerPkg,
904                __kmp_nThreadsPerCore, __kmp_ncores);
905   }
906   KMP_DEBUG_ASSERT(__kmp_pu_os_idx == NULL);
907   __kmp_pu_os_idx = (int *)__kmp_allocate(sizeof(int) * __kmp_avail_proc);
908   if (__kmp_affinity_type == affinity_none) {
909     int avail_ct = 0;
910     int i;
911     KMP_CPU_SET_ITERATE(i, __kmp_affin_fullMask) {
912       if (!KMP_CPU_ISSET(i, __kmp_affin_fullMask))
913         continue;
914       __kmp_pu_os_idx[avail_ct++] = i; // suppose indices are flat
915     }
916     return 0;
917   }
918 
919   // Contruct the data structure to be returned.
920   *address2os =
921       (AddrUnsPair *)__kmp_allocate(sizeof(**address2os) * __kmp_avail_proc);
922   int avail_ct = 0;
923   int i;
924   KMP_CPU_SET_ITERATE(i, __kmp_affin_fullMask) {
925     // Skip this proc if it is not included in the machine model.
926     if (!KMP_CPU_ISSET(i, __kmp_affin_fullMask)) {
927       continue;
928     }
929     __kmp_pu_os_idx[avail_ct] = i; // suppose indices are flat
930     Address addr(1);
931     addr.labels[0] = i;
932     (*address2os)[avail_ct++] = AddrUnsPair(addr, i);
933   }
934   if (__kmp_affinity_verbose) {
935     KMP_INFORM(OSProcToPackage, "KMP_AFFINITY");
936   }
937 
938   if (__kmp_affinity_gran_levels < 0) {
939     // Only the package level is modeled in the machine topology map,
940     // so the #levels of granularity is either 0 or 1.
941     if (__kmp_affinity_gran > affinity_gran_package) {
942       __kmp_affinity_gran_levels = 1;
943     } else {
944       __kmp_affinity_gran_levels = 0;
945     }
946   }
947   return 1;
948 }
949 
950 #if KMP_GROUP_AFFINITY
951 
952 // If multiple Windows* OS processor groups exist, we can create a 2-level
953 // topology map with the groups at level 0 and the individual procs at level 1.
954 // This facilitates letting the threads float among all procs in a group,
955 // if granularity=group (the default when there are multiple groups).
__kmp_affinity_create_proc_group_map(AddrUnsPair ** address2os,kmp_i18n_id_t * const msg_id)956 static int __kmp_affinity_create_proc_group_map(AddrUnsPair **address2os,
957                                                 kmp_i18n_id_t *const msg_id) {
958   *address2os = NULL;
959   *msg_id = kmp_i18n_null;
960 
961   // If we aren't affinity capable, then return now.
962   // The flat mapping will be used.
963   if (!KMP_AFFINITY_CAPABLE()) {
964     // FIXME set *msg_id
965     return -1;
966   }
967 
968   // Contruct the data structure to be returned.
969   *address2os =
970       (AddrUnsPair *)__kmp_allocate(sizeof(**address2os) * __kmp_avail_proc);
971   KMP_DEBUG_ASSERT(__kmp_pu_os_idx == NULL);
972   __kmp_pu_os_idx = (int *)__kmp_allocate(sizeof(int) * __kmp_avail_proc);
973   int avail_ct = 0;
974   int i;
975   KMP_CPU_SET_ITERATE(i, __kmp_affin_fullMask) {
976     // Skip this proc if it is not included in the machine model.
977     if (!KMP_CPU_ISSET(i, __kmp_affin_fullMask)) {
978       continue;
979     }
980     __kmp_pu_os_idx[avail_ct] = i; // suppose indices are flat
981     Address addr(2);
982     addr.labels[0] = i / (CHAR_BIT * sizeof(DWORD_PTR));
983     addr.labels[1] = i % (CHAR_BIT * sizeof(DWORD_PTR));
984     (*address2os)[avail_ct++] = AddrUnsPair(addr, i);
985 
986     if (__kmp_affinity_verbose) {
987       KMP_INFORM(AffOSProcToGroup, "KMP_AFFINITY", i, addr.labels[0],
988                  addr.labels[1]);
989     }
990   }
991 
992   if (__kmp_affinity_gran_levels < 0) {
993     if (__kmp_affinity_gran == affinity_gran_group) {
994       __kmp_affinity_gran_levels = 1;
995     } else if ((__kmp_affinity_gran == affinity_gran_fine) ||
996                (__kmp_affinity_gran == affinity_gran_thread)) {
997       __kmp_affinity_gran_levels = 0;
998     } else {
999       const char *gran_str = NULL;
1000       if (__kmp_affinity_gran == affinity_gran_core) {
1001         gran_str = "core";
1002       } else if (__kmp_affinity_gran == affinity_gran_package) {
1003         gran_str = "package";
1004       } else if (__kmp_affinity_gran == affinity_gran_node) {
1005         gran_str = "node";
1006       } else {
1007         KMP_ASSERT(0);
1008       }
1009 
1010       // Warning: can't use affinity granularity \"gran\" with group topology
1011       // method, using "thread"
1012       __kmp_affinity_gran_levels = 0;
1013     }
1014   }
1015   return 2;
1016 }
1017 
1018 #endif /* KMP_GROUP_AFFINITY */
1019 
1020 #if KMP_ARCH_X86 || KMP_ARCH_X86_64
1021 
__kmp_cpuid_mask_width(int count)1022 static int __kmp_cpuid_mask_width(int count) {
1023   int r = 0;
1024 
1025   while ((1 << r) < count)
1026     ++r;
1027   return r;
1028 }
1029 
1030 class apicThreadInfo {
1031 public:
1032   unsigned osId; // param to __kmp_affinity_bind_thread
1033   unsigned apicId; // from cpuid after binding
1034   unsigned maxCoresPerPkg; //      ""
1035   unsigned maxThreadsPerPkg; //      ""
1036   unsigned pkgId; // inferred from above values
1037   unsigned coreId; //      ""
1038   unsigned threadId; //      ""
1039 };
1040 
__kmp_affinity_cmp_apicThreadInfo_phys_id(const void * a,const void * b)1041 static int __kmp_affinity_cmp_apicThreadInfo_phys_id(const void *a,
1042                                                      const void *b) {
1043   const apicThreadInfo *aa = (const apicThreadInfo *)a;
1044   const apicThreadInfo *bb = (const apicThreadInfo *)b;
1045   if (aa->pkgId < bb->pkgId)
1046     return -1;
1047   if (aa->pkgId > bb->pkgId)
1048     return 1;
1049   if (aa->coreId < bb->coreId)
1050     return -1;
1051   if (aa->coreId > bb->coreId)
1052     return 1;
1053   if (aa->threadId < bb->threadId)
1054     return -1;
1055   if (aa->threadId > bb->threadId)
1056     return 1;
1057   return 0;
1058 }
1059 
1060 // On IA-32 architecture and Intel(R) 64 architecture, we attempt to use
1061 // an algorithm which cycles through the available os threads, setting
1062 // the current thread's affinity mask to that thread, and then retrieves
1063 // the Apic Id for each thread context using the cpuid instruction.
__kmp_affinity_create_apicid_map(AddrUnsPair ** address2os,kmp_i18n_id_t * const msg_id)1064 static int __kmp_affinity_create_apicid_map(AddrUnsPair **address2os,
1065                                             kmp_i18n_id_t *const msg_id) {
1066   kmp_cpuid buf;
1067   *address2os = NULL;
1068   *msg_id = kmp_i18n_null;
1069 
1070   // Check if cpuid leaf 4 is supported.
1071   __kmp_x86_cpuid(0, 0, &buf);
1072   if (buf.eax < 4) {
1073     *msg_id = kmp_i18n_str_NoLeaf4Support;
1074     return -1;
1075   }
1076 
1077   // The algorithm used starts by setting the affinity to each available thread
1078   // and retrieving info from the cpuid instruction, so if we are not capable of
1079   // calling __kmp_get_system_affinity() and _kmp_get_system_affinity(), then we
1080   // need to do something else - use the defaults that we calculated from
1081   // issuing cpuid without binding to each proc.
1082   if (!KMP_AFFINITY_CAPABLE()) {
1083     // Hack to try and infer the machine topology using only the data
1084     // available from cpuid on the current thread, and __kmp_xproc.
1085     KMP_ASSERT(__kmp_affinity_type == affinity_none);
1086 
1087     // Get an upper bound on the number of threads per package using cpuid(1).
1088     // On some OS/chps combinations where HT is supported by the chip but is
1089     // disabled, this value will be 2 on a single core chip. Usually, it will be
1090     // 2 if HT is enabled and 1 if HT is disabled.
1091     __kmp_x86_cpuid(1, 0, &buf);
1092     int maxThreadsPerPkg = (buf.ebx >> 16) & 0xff;
1093     if (maxThreadsPerPkg == 0) {
1094       maxThreadsPerPkg = 1;
1095     }
1096 
1097     // The num cores per pkg comes from cpuid(4). 1 must be added to the encoded
1098     // value.
1099     //
1100     // The author of cpu_count.cpp treated this only an upper bound on the
1101     // number of cores, but I haven't seen any cases where it was greater than
1102     // the actual number of cores, so we will treat it as exact in this block of
1103     // code.
1104     //
1105     // First, we need to check if cpuid(4) is supported on this chip. To see if
1106     // cpuid(n) is supported, issue cpuid(0) and check if eax has the value n or
1107     // greater.
1108     __kmp_x86_cpuid(0, 0, &buf);
1109     if (buf.eax >= 4) {
1110       __kmp_x86_cpuid(4, 0, &buf);
1111       nCoresPerPkg = ((buf.eax >> 26) & 0x3f) + 1;
1112     } else {
1113       nCoresPerPkg = 1;
1114     }
1115 
1116     // There is no way to reliably tell if HT is enabled without issuing the
1117     // cpuid instruction from every thread, can correlating the cpuid info, so
1118     // if the machine is not affinity capable, we assume that HT is off. We have
1119     // seen quite a few machines where maxThreadsPerPkg is 2, yet the machine
1120     // does not support HT.
1121     //
1122     // - Older OSes are usually found on machines with older chips, which do not
1123     //   support HT.
1124     // - The performance penalty for mistakenly identifying a machine as HT when
1125     //   it isn't (which results in blocktime being incorrecly set to 0) is
1126     //   greater than the penalty when for mistakenly identifying a machine as
1127     //   being 1 thread/core when it is really HT enabled (which results in
1128     //   blocktime being incorrectly set to a positive value).
1129     __kmp_ncores = __kmp_xproc;
1130     nPackages = (__kmp_xproc + nCoresPerPkg - 1) / nCoresPerPkg;
1131     __kmp_nThreadsPerCore = 1;
1132     if (__kmp_affinity_verbose) {
1133       KMP_INFORM(AffNotCapableUseLocCpuid, "KMP_AFFINITY");
1134       KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc);
1135       if (__kmp_affinity_uniform_topology()) {
1136         KMP_INFORM(Uniform, "KMP_AFFINITY");
1137       } else {
1138         KMP_INFORM(NonUniform, "KMP_AFFINITY");
1139       }
1140       KMP_INFORM(Topology, "KMP_AFFINITY", nPackages, nCoresPerPkg,
1141                  __kmp_nThreadsPerCore, __kmp_ncores);
1142     }
1143     return 0;
1144   }
1145 
1146   // From here on, we can assume that it is safe to call
1147   // __kmp_get_system_affinity() and __kmp_set_system_affinity(), even if
1148   // __kmp_affinity_type = affinity_none.
1149 
1150   // Save the affinity mask for the current thread.
1151   kmp_affin_mask_t *oldMask;
1152   KMP_CPU_ALLOC(oldMask);
1153   KMP_ASSERT(oldMask != NULL);
1154   __kmp_get_system_affinity(oldMask, TRUE);
1155 
1156   // Run through each of the available contexts, binding the current thread
1157   // to it, and obtaining the pertinent information using the cpuid instr.
1158   //
1159   // The relevant information is:
1160   // - Apic Id: Bits 24:31 of ebx after issuing cpuid(1) - each thread context
1161   //     has a uniqie Apic Id, which is of the form pkg# : core# : thread#.
1162   // - Max Threads Per Pkg: Bits 16:23 of ebx after issuing cpuid(1). The value
1163   //     of this field determines the width of the core# + thread# fields in the
1164   //     Apic Id. It is also an upper bound on the number of threads per
1165   //     package, but it has been verified that situations happen were it is not
1166   //     exact. In particular, on certain OS/chip combinations where Intel(R)
1167   //     Hyper-Threading Technology is supported by the chip but has been
1168   //     disabled, the value of this field will be 2 (for a single core chip).
1169   //     On other OS/chip combinations supporting Intel(R) Hyper-Threading
1170   //     Technology, the value of this field will be 1 when Intel(R)
1171   //     Hyper-Threading Technology is disabled and 2 when it is enabled.
1172   // - Max Cores Per Pkg:  Bits 26:31 of eax after issuing cpuid(4). The value
1173   //     of this field (+1) determines the width of the core# field in the Apic
1174   //     Id. The comments in "cpucount.cpp" say that this value is an upper
1175   //     bound, but the IA-32 architecture manual says that it is exactly the
1176   //     number of cores per package, and I haven't seen any case where it
1177   //     wasn't.
1178   //
1179   // From this information, deduce the package Id, core Id, and thread Id,
1180   // and set the corresponding fields in the apicThreadInfo struct.
1181   unsigned i;
1182   apicThreadInfo *threadInfo = (apicThreadInfo *)__kmp_allocate(
1183       __kmp_avail_proc * sizeof(apicThreadInfo));
1184   unsigned nApics = 0;
1185   KMP_CPU_SET_ITERATE(i, __kmp_affin_fullMask) {
1186     // Skip this proc if it is not included in the machine model.
1187     if (!KMP_CPU_ISSET(i, __kmp_affin_fullMask)) {
1188       continue;
1189     }
1190     KMP_DEBUG_ASSERT((int)nApics < __kmp_avail_proc);
1191 
1192     __kmp_affinity_dispatch->bind_thread(i);
1193     threadInfo[nApics].osId = i;
1194 
1195     // The apic id and max threads per pkg come from cpuid(1).
1196     __kmp_x86_cpuid(1, 0, &buf);
1197     if (((buf.edx >> 9) & 1) == 0) {
1198       __kmp_set_system_affinity(oldMask, TRUE);
1199       __kmp_free(threadInfo);
1200       KMP_CPU_FREE(oldMask);
1201       *msg_id = kmp_i18n_str_ApicNotPresent;
1202       return -1;
1203     }
1204     threadInfo[nApics].apicId = (buf.ebx >> 24) & 0xff;
1205     threadInfo[nApics].maxThreadsPerPkg = (buf.ebx >> 16) & 0xff;
1206     if (threadInfo[nApics].maxThreadsPerPkg == 0) {
1207       threadInfo[nApics].maxThreadsPerPkg = 1;
1208     }
1209 
1210     // Max cores per pkg comes from cpuid(4). 1 must be added to the encoded
1211     // value.
1212     //
1213     // First, we need to check if cpuid(4) is supported on this chip. To see if
1214     // cpuid(n) is supported, issue cpuid(0) and check if eax has the value n
1215     // or greater.
1216     __kmp_x86_cpuid(0, 0, &buf);
1217     if (buf.eax >= 4) {
1218       __kmp_x86_cpuid(4, 0, &buf);
1219       threadInfo[nApics].maxCoresPerPkg = ((buf.eax >> 26) & 0x3f) + 1;
1220     } else {
1221       threadInfo[nApics].maxCoresPerPkg = 1;
1222     }
1223 
1224     // Infer the pkgId / coreId / threadId using only the info obtained locally.
1225     int widthCT = __kmp_cpuid_mask_width(threadInfo[nApics].maxThreadsPerPkg);
1226     threadInfo[nApics].pkgId = threadInfo[nApics].apicId >> widthCT;
1227 
1228     int widthC = __kmp_cpuid_mask_width(threadInfo[nApics].maxCoresPerPkg);
1229     int widthT = widthCT - widthC;
1230     if (widthT < 0) {
1231       // I've never seen this one happen, but I suppose it could, if the cpuid
1232       // instruction on a chip was really screwed up. Make sure to restore the
1233       // affinity mask before the tail call.
1234       __kmp_set_system_affinity(oldMask, TRUE);
1235       __kmp_free(threadInfo);
1236       KMP_CPU_FREE(oldMask);
1237       *msg_id = kmp_i18n_str_InvalidCpuidInfo;
1238       return -1;
1239     }
1240 
1241     int maskC = (1 << widthC) - 1;
1242     threadInfo[nApics].coreId = (threadInfo[nApics].apicId >> widthT) & maskC;
1243 
1244     int maskT = (1 << widthT) - 1;
1245     threadInfo[nApics].threadId = threadInfo[nApics].apicId & maskT;
1246 
1247     nApics++;
1248   }
1249 
1250   // We've collected all the info we need.
1251   // Restore the old affinity mask for this thread.
1252   __kmp_set_system_affinity(oldMask, TRUE);
1253 
1254   // If there's only one thread context to bind to, form an Address object
1255   // with depth 1 and return immediately (or, if affinity is off, set
1256   // address2os to NULL and return).
1257   //
1258   // If it is configured to omit the package level when there is only a single
1259   // package, the logic at the end of this routine won't work if there is only
1260   // a single thread - it would try to form an Address object with depth 0.
1261   KMP_ASSERT(nApics > 0);
1262   if (nApics == 1) {
1263     __kmp_ncores = nPackages = 1;
1264     __kmp_nThreadsPerCore = nCoresPerPkg = 1;
1265     if (__kmp_affinity_verbose) {
1266       char buf[KMP_AFFIN_MASK_PRINT_LEN];
1267       __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, oldMask);
1268 
1269       KMP_INFORM(AffUseGlobCpuid, "KMP_AFFINITY");
1270       if (__kmp_affinity_respect_mask) {
1271         KMP_INFORM(InitOSProcSetRespect, "KMP_AFFINITY", buf);
1272       } else {
1273         KMP_INFORM(InitOSProcSetNotRespect, "KMP_AFFINITY", buf);
1274       }
1275       KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc);
1276       KMP_INFORM(Uniform, "KMP_AFFINITY");
1277       KMP_INFORM(Topology, "KMP_AFFINITY", nPackages, nCoresPerPkg,
1278                  __kmp_nThreadsPerCore, __kmp_ncores);
1279     }
1280 
1281     if (__kmp_affinity_type == affinity_none) {
1282       __kmp_free(threadInfo);
1283       KMP_CPU_FREE(oldMask);
1284       return 0;
1285     }
1286 
1287     *address2os = (AddrUnsPair *)__kmp_allocate(sizeof(AddrUnsPair));
1288     Address addr(1);
1289     addr.labels[0] = threadInfo[0].pkgId;
1290     (*address2os)[0] = AddrUnsPair(addr, threadInfo[0].osId);
1291 
1292     if (__kmp_affinity_gran_levels < 0) {
1293       __kmp_affinity_gran_levels = 0;
1294     }
1295 
1296     if (__kmp_affinity_verbose) {
1297       __kmp_affinity_print_topology(*address2os, 1, 1, 0, -1, -1);
1298     }
1299 
1300     __kmp_free(threadInfo);
1301     KMP_CPU_FREE(oldMask);
1302     return 1;
1303   }
1304 
1305   // Sort the threadInfo table by physical Id.
1306   qsort(threadInfo, nApics, sizeof(*threadInfo),
1307         __kmp_affinity_cmp_apicThreadInfo_phys_id);
1308 
1309   // The table is now sorted by pkgId / coreId / threadId, but we really don't
1310   // know the radix of any of the fields. pkgId's may be sparsely assigned among
1311   // the chips on a system. Although coreId's are usually assigned
1312   // [0 .. coresPerPkg-1] and threadId's are usually assigned
1313   // [0..threadsPerCore-1], we don't want to make any such assumptions.
1314   //
1315   // For that matter, we don't know what coresPerPkg and threadsPerCore (or the
1316   // total # packages) are at this point - we want to determine that now. We
1317   // only have an upper bound on the first two figures.
1318   //
1319   // We also perform a consistency check at this point: the values returned by
1320   // the cpuid instruction for any thread bound to a given package had better
1321   // return the same info for maxThreadsPerPkg and maxCoresPerPkg.
1322   nPackages = 1;
1323   nCoresPerPkg = 1;
1324   __kmp_nThreadsPerCore = 1;
1325   unsigned nCores = 1;
1326 
1327   unsigned pkgCt = 1; // to determine radii
1328   unsigned lastPkgId = threadInfo[0].pkgId;
1329   unsigned coreCt = 1;
1330   unsigned lastCoreId = threadInfo[0].coreId;
1331   unsigned threadCt = 1;
1332   unsigned lastThreadId = threadInfo[0].threadId;
1333 
1334   // intra-pkg consist checks
1335   unsigned prevMaxCoresPerPkg = threadInfo[0].maxCoresPerPkg;
1336   unsigned prevMaxThreadsPerPkg = threadInfo[0].maxThreadsPerPkg;
1337 
1338   for (i = 1; i < nApics; i++) {
1339     if (threadInfo[i].pkgId != lastPkgId) {
1340       nCores++;
1341       pkgCt++;
1342       lastPkgId = threadInfo[i].pkgId;
1343       if ((int)coreCt > nCoresPerPkg)
1344         nCoresPerPkg = coreCt;
1345       coreCt = 1;
1346       lastCoreId = threadInfo[i].coreId;
1347       if ((int)threadCt > __kmp_nThreadsPerCore)
1348         __kmp_nThreadsPerCore = threadCt;
1349       threadCt = 1;
1350       lastThreadId = threadInfo[i].threadId;
1351 
1352       // This is a different package, so go on to the next iteration without
1353       // doing any consistency checks. Reset the consistency check vars, though.
1354       prevMaxCoresPerPkg = threadInfo[i].maxCoresPerPkg;
1355       prevMaxThreadsPerPkg = threadInfo[i].maxThreadsPerPkg;
1356       continue;
1357     }
1358 
1359     if (threadInfo[i].coreId != lastCoreId) {
1360       nCores++;
1361       coreCt++;
1362       lastCoreId = threadInfo[i].coreId;
1363       if ((int)threadCt > __kmp_nThreadsPerCore)
1364         __kmp_nThreadsPerCore = threadCt;
1365       threadCt = 1;
1366       lastThreadId = threadInfo[i].threadId;
1367     } else if (threadInfo[i].threadId != lastThreadId) {
1368       threadCt++;
1369       lastThreadId = threadInfo[i].threadId;
1370     } else {
1371       __kmp_free(threadInfo);
1372       KMP_CPU_FREE(oldMask);
1373       *msg_id = kmp_i18n_str_LegacyApicIDsNotUnique;
1374       return -1;
1375     }
1376 
1377     // Check to make certain that the maxCoresPerPkg and maxThreadsPerPkg
1378     // fields agree between all the threads bounds to a given package.
1379     if ((prevMaxCoresPerPkg != threadInfo[i].maxCoresPerPkg) ||
1380         (prevMaxThreadsPerPkg != threadInfo[i].maxThreadsPerPkg)) {
1381       __kmp_free(threadInfo);
1382       KMP_CPU_FREE(oldMask);
1383       *msg_id = kmp_i18n_str_InconsistentCpuidInfo;
1384       return -1;
1385     }
1386   }
1387   nPackages = pkgCt;
1388   if ((int)coreCt > nCoresPerPkg)
1389     nCoresPerPkg = coreCt;
1390   if ((int)threadCt > __kmp_nThreadsPerCore)
1391     __kmp_nThreadsPerCore = threadCt;
1392 
1393   // When affinity is off, this routine will still be called to set
1394   // __kmp_ncores, as well as __kmp_nThreadsPerCore, nCoresPerPkg, & nPackages.
1395   // Make sure all these vars are set correctly, and return now if affinity is
1396   // not enabled.
1397   __kmp_ncores = nCores;
1398   if (__kmp_affinity_verbose) {
1399     char buf[KMP_AFFIN_MASK_PRINT_LEN];
1400     __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, oldMask);
1401 
1402     KMP_INFORM(AffUseGlobCpuid, "KMP_AFFINITY");
1403     if (__kmp_affinity_respect_mask) {
1404       KMP_INFORM(InitOSProcSetRespect, "KMP_AFFINITY", buf);
1405     } else {
1406       KMP_INFORM(InitOSProcSetNotRespect, "KMP_AFFINITY", buf);
1407     }
1408     KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc);
1409     if (__kmp_affinity_uniform_topology()) {
1410       KMP_INFORM(Uniform, "KMP_AFFINITY");
1411     } else {
1412       KMP_INFORM(NonUniform, "KMP_AFFINITY");
1413     }
1414     KMP_INFORM(Topology, "KMP_AFFINITY", nPackages, nCoresPerPkg,
1415                __kmp_nThreadsPerCore, __kmp_ncores);
1416   }
1417   KMP_DEBUG_ASSERT(__kmp_pu_os_idx == NULL);
1418   KMP_DEBUG_ASSERT(nApics == (unsigned)__kmp_avail_proc);
1419   __kmp_pu_os_idx = (int *)__kmp_allocate(sizeof(int) * __kmp_avail_proc);
1420   for (i = 0; i < nApics; ++i) {
1421     __kmp_pu_os_idx[i] = threadInfo[i].osId;
1422   }
1423   if (__kmp_affinity_type == affinity_none) {
1424     __kmp_free(threadInfo);
1425     KMP_CPU_FREE(oldMask);
1426     return 0;
1427   }
1428 
1429   // Now that we've determined the number of packages, the number of cores per
1430   // package, and the number of threads per core, we can construct the data
1431   // structure that is to be returned.
1432   int pkgLevel = 0;
1433   int coreLevel = (nCoresPerPkg <= 1) ? -1 : 1;
1434   int threadLevel =
1435       (__kmp_nThreadsPerCore <= 1) ? -1 : ((coreLevel >= 0) ? 2 : 1);
1436   unsigned depth = (pkgLevel >= 0) + (coreLevel >= 0) + (threadLevel >= 0);
1437 
1438   KMP_ASSERT(depth > 0);
1439   *address2os = (AddrUnsPair *)__kmp_allocate(sizeof(AddrUnsPair) * nApics);
1440 
1441   for (i = 0; i < nApics; ++i) {
1442     Address addr(depth);
1443     unsigned os = threadInfo[i].osId;
1444     int d = 0;
1445 
1446     if (pkgLevel >= 0) {
1447       addr.labels[d++] = threadInfo[i].pkgId;
1448     }
1449     if (coreLevel >= 0) {
1450       addr.labels[d++] = threadInfo[i].coreId;
1451     }
1452     if (threadLevel >= 0) {
1453       addr.labels[d++] = threadInfo[i].threadId;
1454     }
1455     (*address2os)[i] = AddrUnsPair(addr, os);
1456   }
1457 
1458   if (__kmp_affinity_gran_levels < 0) {
1459     // Set the granularity level based on what levels are modeled in the machine
1460     // topology map.
1461     __kmp_affinity_gran_levels = 0;
1462     if ((threadLevel >= 0) && (__kmp_affinity_gran > affinity_gran_thread)) {
1463       __kmp_affinity_gran_levels++;
1464     }
1465     if ((coreLevel >= 0) && (__kmp_affinity_gran > affinity_gran_core)) {
1466       __kmp_affinity_gran_levels++;
1467     }
1468     if ((pkgLevel >= 0) && (__kmp_affinity_gran > affinity_gran_package)) {
1469       __kmp_affinity_gran_levels++;
1470     }
1471   }
1472 
1473   if (__kmp_affinity_verbose) {
1474     __kmp_affinity_print_topology(*address2os, nApics, depth, pkgLevel,
1475                                   coreLevel, threadLevel);
1476   }
1477 
1478   __kmp_free(threadInfo);
1479   KMP_CPU_FREE(oldMask);
1480   return depth;
1481 }
1482 
1483 // Intel(R) microarchitecture code name Nehalem, Dunnington and later
1484 // architectures support a newer interface for specifying the x2APIC Ids,
1485 // based on cpuid leaf 11.
__kmp_affinity_create_x2apicid_map(AddrUnsPair ** address2os,kmp_i18n_id_t * const msg_id)1486 static int __kmp_affinity_create_x2apicid_map(AddrUnsPair **address2os,
1487                                               kmp_i18n_id_t *const msg_id) {
1488   kmp_cpuid buf;
1489   *address2os = NULL;
1490   *msg_id = kmp_i18n_null;
1491 
1492   // Check to see if cpuid leaf 11 is supported.
1493   __kmp_x86_cpuid(0, 0, &buf);
1494   if (buf.eax < 11) {
1495     *msg_id = kmp_i18n_str_NoLeaf11Support;
1496     return -1;
1497   }
1498   __kmp_x86_cpuid(11, 0, &buf);
1499   if (buf.ebx == 0) {
1500     *msg_id = kmp_i18n_str_NoLeaf11Support;
1501     return -1;
1502   }
1503 
1504   // Find the number of levels in the machine topology. While we're at it, get
1505   // the default values for __kmp_nThreadsPerCore & nCoresPerPkg. We will try to
1506   // get more accurate values later by explicitly counting them, but get
1507   // reasonable defaults now, in case we return early.
1508   int level;
1509   int threadLevel = -1;
1510   int coreLevel = -1;
1511   int pkgLevel = -1;
1512   __kmp_nThreadsPerCore = nCoresPerPkg = nPackages = 1;
1513 
1514   for (level = 0;; level++) {
1515     if (level > 31) {
1516       // FIXME: Hack for DPD200163180
1517       //
1518       // If level is big then something went wrong -> exiting
1519       //
1520       // There could actually be 32 valid levels in the machine topology, but so
1521       // far, the only machine we have seen which does not exit this loop before
1522       // iteration 32 has fubar x2APIC settings.
1523       //
1524       // For now, just reject this case based upon loop trip count.
1525       *msg_id = kmp_i18n_str_InvalidCpuidInfo;
1526       return -1;
1527     }
1528     __kmp_x86_cpuid(11, level, &buf);
1529     if (buf.ebx == 0) {
1530       if (pkgLevel < 0) {
1531         // Will infer nPackages from __kmp_xproc
1532         pkgLevel = level;
1533         level++;
1534       }
1535       break;
1536     }
1537     int kind = (buf.ecx >> 8) & 0xff;
1538     if (kind == 1) {
1539       // SMT level
1540       threadLevel = level;
1541       coreLevel = -1;
1542       pkgLevel = -1;
1543       __kmp_nThreadsPerCore = buf.ebx & 0xffff;
1544       if (__kmp_nThreadsPerCore == 0) {
1545         *msg_id = kmp_i18n_str_InvalidCpuidInfo;
1546         return -1;
1547       }
1548     } else if (kind == 2) {
1549       // core level
1550       coreLevel = level;
1551       pkgLevel = -1;
1552       nCoresPerPkg = buf.ebx & 0xffff;
1553       if (nCoresPerPkg == 0) {
1554         *msg_id = kmp_i18n_str_InvalidCpuidInfo;
1555         return -1;
1556       }
1557     } else {
1558       if (level <= 0) {
1559         *msg_id = kmp_i18n_str_InvalidCpuidInfo;
1560         return -1;
1561       }
1562       if (pkgLevel >= 0) {
1563         continue;
1564       }
1565       pkgLevel = level;
1566       nPackages = buf.ebx & 0xffff;
1567       if (nPackages == 0) {
1568         *msg_id = kmp_i18n_str_InvalidCpuidInfo;
1569         return -1;
1570       }
1571     }
1572   }
1573   int depth = level;
1574 
1575   // In the above loop, "level" was counted from the finest level (usually
1576   // thread) to the coarsest.  The caller expects that we will place the labels
1577   // in (*address2os)[].first.labels[] in the inverse order, so we need to
1578   // invert the vars saying which level means what.
1579   if (threadLevel >= 0) {
1580     threadLevel = depth - threadLevel - 1;
1581   }
1582   if (coreLevel >= 0) {
1583     coreLevel = depth - coreLevel - 1;
1584   }
1585   KMP_DEBUG_ASSERT(pkgLevel >= 0);
1586   pkgLevel = depth - pkgLevel - 1;
1587 
1588   // The algorithm used starts by setting the affinity to each available thread
1589   // and retrieving info from the cpuid instruction, so if we are not capable of
1590   // calling __kmp_get_system_affinity() and _kmp_get_system_affinity(), then we
1591   // need to do something else - use the defaults that we calculated from
1592   // issuing cpuid without binding to each proc.
1593   if (!KMP_AFFINITY_CAPABLE()) {
1594     // Hack to try and infer the machine topology using only the data
1595     // available from cpuid on the current thread, and __kmp_xproc.
1596     KMP_ASSERT(__kmp_affinity_type == affinity_none);
1597 
1598     __kmp_ncores = __kmp_xproc / __kmp_nThreadsPerCore;
1599     nPackages = (__kmp_xproc + nCoresPerPkg - 1) / nCoresPerPkg;
1600     if (__kmp_affinity_verbose) {
1601       KMP_INFORM(AffNotCapableUseLocCpuidL11, "KMP_AFFINITY");
1602       KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc);
1603       if (__kmp_affinity_uniform_topology()) {
1604         KMP_INFORM(Uniform, "KMP_AFFINITY");
1605       } else {
1606         KMP_INFORM(NonUniform, "KMP_AFFINITY");
1607       }
1608       KMP_INFORM(Topology, "KMP_AFFINITY", nPackages, nCoresPerPkg,
1609                  __kmp_nThreadsPerCore, __kmp_ncores);
1610     }
1611     return 0;
1612   }
1613 
1614   // From here on, we can assume that it is safe to call
1615   // __kmp_get_system_affinity() and __kmp_set_system_affinity(), even if
1616   // __kmp_affinity_type = affinity_none.
1617 
1618   // Save the affinity mask for the current thread.
1619   kmp_affin_mask_t *oldMask;
1620   KMP_CPU_ALLOC(oldMask);
1621   __kmp_get_system_affinity(oldMask, TRUE);
1622 
1623   // Allocate the data structure to be returned.
1624   AddrUnsPair *retval =
1625       (AddrUnsPair *)__kmp_allocate(sizeof(AddrUnsPair) * __kmp_avail_proc);
1626 
1627   // Run through each of the available contexts, binding the current thread
1628   // to it, and obtaining the pertinent information using the cpuid instr.
1629   unsigned int proc;
1630   int nApics = 0;
1631   KMP_CPU_SET_ITERATE(proc, __kmp_affin_fullMask) {
1632     // Skip this proc if it is not included in the machine model.
1633     if (!KMP_CPU_ISSET(proc, __kmp_affin_fullMask)) {
1634       continue;
1635     }
1636     KMP_DEBUG_ASSERT(nApics < __kmp_avail_proc);
1637 
1638     __kmp_affinity_dispatch->bind_thread(proc);
1639 
1640     // Extract labels for each level in the machine topology map from Apic ID.
1641     Address addr(depth);
1642     int prev_shift = 0;
1643 
1644     for (level = 0; level < depth; level++) {
1645       __kmp_x86_cpuid(11, level, &buf);
1646       unsigned apicId = buf.edx;
1647       if (buf.ebx == 0) {
1648         if (level != depth - 1) {
1649           KMP_CPU_FREE(oldMask);
1650           *msg_id = kmp_i18n_str_InconsistentCpuidInfo;
1651           return -1;
1652         }
1653         addr.labels[depth - level - 1] = apicId >> prev_shift;
1654         level++;
1655         break;
1656       }
1657       int shift = buf.eax & 0x1f;
1658       int mask = (1 << shift) - 1;
1659       addr.labels[depth - level - 1] = (apicId & mask) >> prev_shift;
1660       prev_shift = shift;
1661     }
1662     if (level != depth) {
1663       KMP_CPU_FREE(oldMask);
1664       *msg_id = kmp_i18n_str_InconsistentCpuidInfo;
1665       return -1;
1666     }
1667 
1668     retval[nApics] = AddrUnsPair(addr, proc);
1669     nApics++;
1670   }
1671 
1672   // We've collected all the info we need.
1673   // Restore the old affinity mask for this thread.
1674   __kmp_set_system_affinity(oldMask, TRUE);
1675 
1676   // If there's only one thread context to bind to, return now.
1677   KMP_ASSERT(nApics > 0);
1678   if (nApics == 1) {
1679     __kmp_ncores = nPackages = 1;
1680     __kmp_nThreadsPerCore = nCoresPerPkg = 1;
1681     if (__kmp_affinity_verbose) {
1682       char buf[KMP_AFFIN_MASK_PRINT_LEN];
1683       __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, oldMask);
1684 
1685       KMP_INFORM(AffUseGlobCpuidL11, "KMP_AFFINITY");
1686       if (__kmp_affinity_respect_mask) {
1687         KMP_INFORM(InitOSProcSetRespect, "KMP_AFFINITY", buf);
1688       } else {
1689         KMP_INFORM(InitOSProcSetNotRespect, "KMP_AFFINITY", buf);
1690       }
1691       KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc);
1692       KMP_INFORM(Uniform, "KMP_AFFINITY");
1693       KMP_INFORM(Topology, "KMP_AFFINITY", nPackages, nCoresPerPkg,
1694                  __kmp_nThreadsPerCore, __kmp_ncores);
1695     }
1696 
1697     if (__kmp_affinity_type == affinity_none) {
1698       __kmp_free(retval);
1699       KMP_CPU_FREE(oldMask);
1700       return 0;
1701     }
1702 
1703     // Form an Address object which only includes the package level.
1704     Address addr(1);
1705     addr.labels[0] = retval[0].first.labels[pkgLevel];
1706     retval[0].first = addr;
1707 
1708     if (__kmp_affinity_gran_levels < 0) {
1709       __kmp_affinity_gran_levels = 0;
1710     }
1711 
1712     if (__kmp_affinity_verbose) {
1713       __kmp_affinity_print_topology(retval, 1, 1, 0, -1, -1);
1714     }
1715 
1716     *address2os = retval;
1717     KMP_CPU_FREE(oldMask);
1718     return 1;
1719   }
1720 
1721   // Sort the table by physical Id.
1722   qsort(retval, nApics, sizeof(*retval), __kmp_affinity_cmp_Address_labels);
1723 
1724   // Find the radix at each of the levels.
1725   unsigned *totals = (unsigned *)__kmp_allocate(depth * sizeof(unsigned));
1726   unsigned *counts = (unsigned *)__kmp_allocate(depth * sizeof(unsigned));
1727   unsigned *maxCt = (unsigned *)__kmp_allocate(depth * sizeof(unsigned));
1728   unsigned *last = (unsigned *)__kmp_allocate(depth * sizeof(unsigned));
1729   for (level = 0; level < depth; level++) {
1730     totals[level] = 1;
1731     maxCt[level] = 1;
1732     counts[level] = 1;
1733     last[level] = retval[0].first.labels[level];
1734   }
1735 
1736   // From here on, the iteration variable "level" runs from the finest level to
1737   // the coarsest, i.e. we iterate forward through
1738   // (*address2os)[].first.labels[] - in the previous loops, we iterated
1739   // backwards.
1740   for (proc = 1; (int)proc < nApics; proc++) {
1741     int level;
1742     for (level = 0; level < depth; level++) {
1743       if (retval[proc].first.labels[level] != last[level]) {
1744         int j;
1745         for (j = level + 1; j < depth; j++) {
1746           totals[j]++;
1747           counts[j] = 1;
1748           // The line below causes printing incorrect topology information in
1749           // case the max value for some level (maxCt[level]) is encountered
1750           // earlier than some less value while going through the array. For
1751           // example, let pkg0 has 4 cores and pkg1 has 2 cores. Then
1752           // maxCt[1] == 2
1753           // whereas it must be 4.
1754           // TODO!!! Check if it can be commented safely
1755           // maxCt[j] = 1;
1756           last[j] = retval[proc].first.labels[j];
1757         }
1758         totals[level]++;
1759         counts[level]++;
1760         if (counts[level] > maxCt[level]) {
1761           maxCt[level] = counts[level];
1762         }
1763         last[level] = retval[proc].first.labels[level];
1764         break;
1765       } else if (level == depth - 1) {
1766         __kmp_free(last);
1767         __kmp_free(maxCt);
1768         __kmp_free(counts);
1769         __kmp_free(totals);
1770         __kmp_free(retval);
1771         KMP_CPU_FREE(oldMask);
1772         *msg_id = kmp_i18n_str_x2ApicIDsNotUnique;
1773         return -1;
1774       }
1775     }
1776   }
1777 
1778   // When affinity is off, this routine will still be called to set
1779   // __kmp_ncores, as well as __kmp_nThreadsPerCore, nCoresPerPkg, & nPackages.
1780   // Make sure all these vars are set correctly, and return if affinity is not
1781   // enabled.
1782   if (threadLevel >= 0) {
1783     __kmp_nThreadsPerCore = maxCt[threadLevel];
1784   } else {
1785     __kmp_nThreadsPerCore = 1;
1786   }
1787   nPackages = totals[pkgLevel];
1788 
1789   if (coreLevel >= 0) {
1790     __kmp_ncores = totals[coreLevel];
1791     nCoresPerPkg = maxCt[coreLevel];
1792   } else {
1793     __kmp_ncores = nPackages;
1794     nCoresPerPkg = 1;
1795   }
1796 
1797   // Check to see if the machine topology is uniform
1798   unsigned prod = maxCt[0];
1799   for (level = 1; level < depth; level++) {
1800     prod *= maxCt[level];
1801   }
1802   bool uniform = (prod == totals[level - 1]);
1803 
1804   // Print the machine topology summary.
1805   if (__kmp_affinity_verbose) {
1806     char mask[KMP_AFFIN_MASK_PRINT_LEN];
1807     __kmp_affinity_print_mask(mask, KMP_AFFIN_MASK_PRINT_LEN, oldMask);
1808 
1809     KMP_INFORM(AffUseGlobCpuidL11, "KMP_AFFINITY");
1810     if (__kmp_affinity_respect_mask) {
1811       KMP_INFORM(InitOSProcSetRespect, "KMP_AFFINITY", mask);
1812     } else {
1813       KMP_INFORM(InitOSProcSetNotRespect, "KMP_AFFINITY", mask);
1814     }
1815     KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc);
1816     if (uniform) {
1817       KMP_INFORM(Uniform, "KMP_AFFINITY");
1818     } else {
1819       KMP_INFORM(NonUniform, "KMP_AFFINITY");
1820     }
1821 
1822     kmp_str_buf_t buf;
1823     __kmp_str_buf_init(&buf);
1824 
1825     __kmp_str_buf_print(&buf, "%d", totals[0]);
1826     for (level = 1; level <= pkgLevel; level++) {
1827       __kmp_str_buf_print(&buf, " x %d", maxCt[level]);
1828     }
1829     KMP_INFORM(TopologyExtra, "KMP_AFFINITY", buf.str, nCoresPerPkg,
1830                __kmp_nThreadsPerCore, __kmp_ncores);
1831 
1832     __kmp_str_buf_free(&buf);
1833   }
1834   KMP_DEBUG_ASSERT(__kmp_pu_os_idx == NULL);
1835   KMP_DEBUG_ASSERT(nApics == __kmp_avail_proc);
1836   __kmp_pu_os_idx = (int *)__kmp_allocate(sizeof(int) * __kmp_avail_proc);
1837   for (proc = 0; (int)proc < nApics; ++proc) {
1838     __kmp_pu_os_idx[proc] = retval[proc].second;
1839   }
1840   if (__kmp_affinity_type == affinity_none) {
1841     __kmp_free(last);
1842     __kmp_free(maxCt);
1843     __kmp_free(counts);
1844     __kmp_free(totals);
1845     __kmp_free(retval);
1846     KMP_CPU_FREE(oldMask);
1847     return 0;
1848   }
1849 
1850   // Find any levels with radiix 1, and remove them from the map
1851   // (except for the package level).
1852   int new_depth = 0;
1853   for (level = 0; level < depth; level++) {
1854     if ((maxCt[level] == 1) && (level != pkgLevel)) {
1855       continue;
1856     }
1857     new_depth++;
1858   }
1859 
1860   // If we are removing any levels, allocate a new vector to return,
1861   // and copy the relevant information to it.
1862   if (new_depth != depth) {
1863     AddrUnsPair *new_retval =
1864         (AddrUnsPair *)__kmp_allocate(sizeof(AddrUnsPair) * nApics);
1865     for (proc = 0; (int)proc < nApics; proc++) {
1866       Address addr(new_depth);
1867       new_retval[proc] = AddrUnsPair(addr, retval[proc].second);
1868     }
1869     int new_level = 0;
1870     int newPkgLevel = -1;
1871     int newCoreLevel = -1;
1872     int newThreadLevel = -1;
1873     for (level = 0; level < depth; level++) {
1874       if ((maxCt[level] == 1) && (level != pkgLevel)) {
1875         // Remove this level. Never remove the package level
1876         continue;
1877       }
1878       if (level == pkgLevel) {
1879         newPkgLevel = new_level;
1880       }
1881       if (level == coreLevel) {
1882         newCoreLevel = new_level;
1883       }
1884       if (level == threadLevel) {
1885         newThreadLevel = new_level;
1886       }
1887       for (proc = 0; (int)proc < nApics; proc++) {
1888         new_retval[proc].first.labels[new_level] =
1889             retval[proc].first.labels[level];
1890       }
1891       new_level++;
1892     }
1893 
1894     __kmp_free(retval);
1895     retval = new_retval;
1896     depth = new_depth;
1897     pkgLevel = newPkgLevel;
1898     coreLevel = newCoreLevel;
1899     threadLevel = newThreadLevel;
1900   }
1901 
1902   if (__kmp_affinity_gran_levels < 0) {
1903     // Set the granularity level based on what levels are modeled
1904     // in the machine topology map.
1905     __kmp_affinity_gran_levels = 0;
1906     if ((threadLevel >= 0) && (__kmp_affinity_gran > affinity_gran_thread)) {
1907       __kmp_affinity_gran_levels++;
1908     }
1909     if ((coreLevel >= 0) && (__kmp_affinity_gran > affinity_gran_core)) {
1910       __kmp_affinity_gran_levels++;
1911     }
1912     if (__kmp_affinity_gran > affinity_gran_package) {
1913       __kmp_affinity_gran_levels++;
1914     }
1915   }
1916 
1917   if (__kmp_affinity_verbose) {
1918     __kmp_affinity_print_topology(retval, nApics, depth, pkgLevel, coreLevel,
1919                                   threadLevel);
1920   }
1921 
1922   __kmp_free(last);
1923   __kmp_free(maxCt);
1924   __kmp_free(counts);
1925   __kmp_free(totals);
1926   KMP_CPU_FREE(oldMask);
1927   *address2os = retval;
1928   return depth;
1929 }
1930 
1931 #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */
1932 
1933 #define osIdIndex 0
1934 #define threadIdIndex 1
1935 #define coreIdIndex 2
1936 #define pkgIdIndex 3
1937 #define nodeIdIndex 4
1938 
1939 typedef unsigned *ProcCpuInfo;
1940 static unsigned maxIndex = pkgIdIndex;
1941 
__kmp_affinity_cmp_ProcCpuInfo_phys_id(const void * a,const void * b)1942 static int __kmp_affinity_cmp_ProcCpuInfo_phys_id(const void *a,
1943                                                   const void *b) {
1944   unsigned i;
1945   const unsigned *aa = *(unsigned *const *)a;
1946   const unsigned *bb = *(unsigned *const *)b;
1947   for (i = maxIndex;; i--) {
1948     if (aa[i] < bb[i])
1949       return -1;
1950     if (aa[i] > bb[i])
1951       return 1;
1952     if (i == osIdIndex)
1953       break;
1954   }
1955   return 0;
1956 }
1957 
1958 #if KMP_USE_HIER_SCHED
1959 // Set the array sizes for the hierarchy layers
__kmp_dispatch_set_hierarchy_values()1960 static void __kmp_dispatch_set_hierarchy_values() {
1961   // Set the maximum number of L1's to number of cores
1962   // Set the maximum number of L2's to to either number of cores / 2 for
1963   // Intel(R) Xeon Phi(TM) coprocessor formally codenamed Knights Landing
1964   // Or the number of cores for Intel(R) Xeon(R) processors
1965   // Set the maximum number of NUMA nodes and L3's to number of packages
1966   __kmp_hier_max_units[kmp_hier_layer_e::LAYER_THREAD + 1] =
1967       nPackages * nCoresPerPkg * __kmp_nThreadsPerCore;
1968   __kmp_hier_max_units[kmp_hier_layer_e::LAYER_L1 + 1] = __kmp_ncores;
1969 #if KMP_ARCH_X86_64 && (KMP_OS_LINUX || KMP_OS_WINDOWS)
1970   if (__kmp_mic_type >= mic3)
1971     __kmp_hier_max_units[kmp_hier_layer_e::LAYER_L2 + 1] = __kmp_ncores / 2;
1972   else
1973 #endif // KMP_ARCH_X86_64 && (KMP_OS_LINUX || KMP_OS_WINDOWS)
1974     __kmp_hier_max_units[kmp_hier_layer_e::LAYER_L2 + 1] = __kmp_ncores;
1975   __kmp_hier_max_units[kmp_hier_layer_e::LAYER_L3 + 1] = nPackages;
1976   __kmp_hier_max_units[kmp_hier_layer_e::LAYER_NUMA + 1] = nPackages;
1977   __kmp_hier_max_units[kmp_hier_layer_e::LAYER_LOOP + 1] = 1;
1978   // Set the number of threads per unit
1979   // Number of hardware threads per L1/L2/L3/NUMA/LOOP
1980   __kmp_hier_threads_per[kmp_hier_layer_e::LAYER_THREAD + 1] = 1;
1981   __kmp_hier_threads_per[kmp_hier_layer_e::LAYER_L1 + 1] =
1982       __kmp_nThreadsPerCore;
1983 #if KMP_ARCH_X86_64 && (KMP_OS_LINUX || KMP_OS_WINDOWS)
1984   if (__kmp_mic_type >= mic3)
1985     __kmp_hier_threads_per[kmp_hier_layer_e::LAYER_L2 + 1] =
1986         2 * __kmp_nThreadsPerCore;
1987   else
1988 #endif // KMP_ARCH_X86_64 && (KMP_OS_LINUX || KMP_OS_WINDOWS)
1989     __kmp_hier_threads_per[kmp_hier_layer_e::LAYER_L2 + 1] =
1990         __kmp_nThreadsPerCore;
1991   __kmp_hier_threads_per[kmp_hier_layer_e::LAYER_L3 + 1] =
1992       nCoresPerPkg * __kmp_nThreadsPerCore;
1993   __kmp_hier_threads_per[kmp_hier_layer_e::LAYER_NUMA + 1] =
1994       nCoresPerPkg * __kmp_nThreadsPerCore;
1995   __kmp_hier_threads_per[kmp_hier_layer_e::LAYER_LOOP + 1] =
1996       nPackages * nCoresPerPkg * __kmp_nThreadsPerCore;
1997 }
1998 
1999 // Return the index into the hierarchy for this tid and layer type (L1, L2, etc)
2000 // i.e., this thread's L1 or this thread's L2, etc.
__kmp_dispatch_get_index(int tid,kmp_hier_layer_e type)2001 int __kmp_dispatch_get_index(int tid, kmp_hier_layer_e type) {
2002   int index = type + 1;
2003   int num_hw_threads = __kmp_hier_max_units[kmp_hier_layer_e::LAYER_THREAD + 1];
2004   KMP_DEBUG_ASSERT(type != kmp_hier_layer_e::LAYER_LAST);
2005   if (type == kmp_hier_layer_e::LAYER_THREAD)
2006     return tid;
2007   else if (type == kmp_hier_layer_e::LAYER_LOOP)
2008     return 0;
2009   KMP_DEBUG_ASSERT(__kmp_hier_max_units[index] != 0);
2010   if (tid >= num_hw_threads)
2011     tid = tid % num_hw_threads;
2012   return (tid / __kmp_hier_threads_per[index]) % __kmp_hier_max_units[index];
2013 }
2014 
2015 // Return the number of t1's per t2
__kmp_dispatch_get_t1_per_t2(kmp_hier_layer_e t1,kmp_hier_layer_e t2)2016 int __kmp_dispatch_get_t1_per_t2(kmp_hier_layer_e t1, kmp_hier_layer_e t2) {
2017   int i1 = t1 + 1;
2018   int i2 = t2 + 1;
2019   KMP_DEBUG_ASSERT(i1 <= i2);
2020   KMP_DEBUG_ASSERT(t1 != kmp_hier_layer_e::LAYER_LAST);
2021   KMP_DEBUG_ASSERT(t2 != kmp_hier_layer_e::LAYER_LAST);
2022   KMP_DEBUG_ASSERT(__kmp_hier_threads_per[i1] != 0);
2023   // (nthreads/t2) / (nthreads/t1) = t1 / t2
2024   return __kmp_hier_threads_per[i2] / __kmp_hier_threads_per[i1];
2025 }
2026 #endif // KMP_USE_HIER_SCHED
2027 
2028 // Parse /proc/cpuinfo (or an alternate file in the same format) to obtain the
2029 // affinity map.
__kmp_affinity_create_cpuinfo_map(AddrUnsPair ** address2os,int * line,kmp_i18n_id_t * const msg_id,FILE * f)2030 static int __kmp_affinity_create_cpuinfo_map(AddrUnsPair **address2os,
2031                                              int *line,
2032                                              kmp_i18n_id_t *const msg_id,
2033                                              FILE *f) {
2034   *address2os = NULL;
2035   *msg_id = kmp_i18n_null;
2036 
2037   // Scan of the file, and count the number of "processor" (osId) fields,
2038   // and find the highest value of <n> for a node_<n> field.
2039   char buf[256];
2040   unsigned num_records = 0;
2041   while (!feof(f)) {
2042     buf[sizeof(buf) - 1] = 1;
2043     if (!fgets(buf, sizeof(buf), f)) {
2044       // Read errors presumably because of EOF
2045       break;
2046     }
2047 
2048     char s1[] = "processor";
2049     if (strncmp(buf, s1, sizeof(s1) - 1) == 0) {
2050       num_records++;
2051       continue;
2052     }
2053 
2054     // FIXME - this will match "node_<n> <garbage>"
2055     unsigned level;
2056     if (KMP_SSCANF(buf, "node_%u id", &level) == 1) {
2057       if (nodeIdIndex + level >= maxIndex) {
2058         maxIndex = nodeIdIndex + level;
2059       }
2060       continue;
2061     }
2062   }
2063 
2064   // Check for empty file / no valid processor records, or too many. The number
2065   // of records can't exceed the number of valid bits in the affinity mask.
2066   if (num_records == 0) {
2067     *line = 0;
2068     *msg_id = kmp_i18n_str_NoProcRecords;
2069     return -1;
2070   }
2071   if (num_records > (unsigned)__kmp_xproc) {
2072     *line = 0;
2073     *msg_id = kmp_i18n_str_TooManyProcRecords;
2074     return -1;
2075   }
2076 
2077   // Set the file pointer back to the begginning, so that we can scan the file
2078   // again, this time performing a full parse of the data. Allocate a vector of
2079   // ProcCpuInfo object, where we will place the data. Adding an extra element
2080   // at the end allows us to remove a lot of extra checks for termination
2081   // conditions.
2082   if (fseek(f, 0, SEEK_SET) != 0) {
2083     *line = 0;
2084     *msg_id = kmp_i18n_str_CantRewindCpuinfo;
2085     return -1;
2086   }
2087 
2088   // Allocate the array of records to store the proc info in.  The dummy
2089   // element at the end makes the logic in filling them out easier to code.
2090   unsigned **threadInfo =
2091       (unsigned **)__kmp_allocate((num_records + 1) * sizeof(unsigned *));
2092   unsigned i;
2093   for (i = 0; i <= num_records; i++) {
2094     threadInfo[i] =
2095         (unsigned *)__kmp_allocate((maxIndex + 1) * sizeof(unsigned));
2096   }
2097 
2098 #define CLEANUP_THREAD_INFO                                                    \
2099   for (i = 0; i <= num_records; i++) {                                         \
2100     __kmp_free(threadInfo[i]);                                                 \
2101   }                                                                            \
2102   __kmp_free(threadInfo);
2103 
2104   // A value of UINT_MAX means that we didn't find the field
2105   unsigned __index;
2106 
2107 #define INIT_PROC_INFO(p)                                                      \
2108   for (__index = 0; __index <= maxIndex; __index++) {                          \
2109     (p)[__index] = UINT_MAX;                                                   \
2110   }
2111 
2112   for (i = 0; i <= num_records; i++) {
2113     INIT_PROC_INFO(threadInfo[i]);
2114   }
2115 
2116   unsigned num_avail = 0;
2117   *line = 0;
2118   while (!feof(f)) {
2119     // Create an inner scoping level, so that all the goto targets at the end of
2120     // the loop appear in an outer scoping level. This avoids warnings about
2121     // jumping past an initialization to a target in the same block.
2122     {
2123       buf[sizeof(buf) - 1] = 1;
2124       bool long_line = false;
2125       if (!fgets(buf, sizeof(buf), f)) {
2126         // Read errors presumably because of EOF
2127         // If there is valid data in threadInfo[num_avail], then fake
2128         // a blank line in ensure that the last address gets parsed.
2129         bool valid = false;
2130         for (i = 0; i <= maxIndex; i++) {
2131           if (threadInfo[num_avail][i] != UINT_MAX) {
2132             valid = true;
2133           }
2134         }
2135         if (!valid) {
2136           break;
2137         }
2138         buf[0] = 0;
2139       } else if (!buf[sizeof(buf) - 1]) {
2140         // The line is longer than the buffer.  Set a flag and don't
2141         // emit an error if we were going to ignore the line, anyway.
2142         long_line = true;
2143 
2144 #define CHECK_LINE                                                             \
2145   if (long_line) {                                                             \
2146     CLEANUP_THREAD_INFO;                                                       \
2147     *msg_id = kmp_i18n_str_LongLineCpuinfo;                                    \
2148     return -1;                                                                 \
2149   }
2150       }
2151       (*line)++;
2152 
2153       char s1[] = "processor";
2154       if (strncmp(buf, s1, sizeof(s1) - 1) == 0) {
2155         CHECK_LINE;
2156         char *p = strchr(buf + sizeof(s1) - 1, ':');
2157         unsigned val;
2158         if ((p == NULL) || (KMP_SSCANF(p + 1, "%u\n", &val) != 1))
2159           goto no_val;
2160         if (threadInfo[num_avail][osIdIndex] != UINT_MAX)
2161 #if KMP_ARCH_AARCH64
2162           // Handle the old AArch64 /proc/cpuinfo layout differently,
2163           // it contains all of the 'processor' entries listed in a
2164           // single 'Processor' section, therefore the normal looking
2165           // for duplicates in that section will always fail.
2166           num_avail++;
2167 #else
2168           goto dup_field;
2169 #endif
2170         threadInfo[num_avail][osIdIndex] = val;
2171 #if KMP_OS_LINUX && !(KMP_ARCH_X86 || KMP_ARCH_X86_64)
2172         char path[256];
2173         KMP_SNPRINTF(
2174             path, sizeof(path),
2175             "/sys/devices/system/cpu/cpu%u/topology/physical_package_id",
2176             threadInfo[num_avail][osIdIndex]);
2177         __kmp_read_from_file(path, "%u", &threadInfo[num_avail][pkgIdIndex]);
2178 
2179         KMP_SNPRINTF(path, sizeof(path),
2180                      "/sys/devices/system/cpu/cpu%u/topology/core_id",
2181                      threadInfo[num_avail][osIdIndex]);
2182         __kmp_read_from_file(path, "%u", &threadInfo[num_avail][coreIdIndex]);
2183         continue;
2184 #else
2185       }
2186       char s2[] = "physical id";
2187       if (strncmp(buf, s2, sizeof(s2) - 1) == 0) {
2188         CHECK_LINE;
2189         char *p = strchr(buf + sizeof(s2) - 1, ':');
2190         unsigned val;
2191         if ((p == NULL) || (KMP_SSCANF(p + 1, "%u\n", &val) != 1))
2192           goto no_val;
2193         if (threadInfo[num_avail][pkgIdIndex] != UINT_MAX)
2194           goto dup_field;
2195         threadInfo[num_avail][pkgIdIndex] = val;
2196         continue;
2197       }
2198       char s3[] = "core id";
2199       if (strncmp(buf, s3, sizeof(s3) - 1) == 0) {
2200         CHECK_LINE;
2201         char *p = strchr(buf + sizeof(s3) - 1, ':');
2202         unsigned val;
2203         if ((p == NULL) || (KMP_SSCANF(p + 1, "%u\n", &val) != 1))
2204           goto no_val;
2205         if (threadInfo[num_avail][coreIdIndex] != UINT_MAX)
2206           goto dup_field;
2207         threadInfo[num_avail][coreIdIndex] = val;
2208         continue;
2209 #endif // KMP_OS_LINUX && USE_SYSFS_INFO
2210       }
2211       char s4[] = "thread id";
2212       if (strncmp(buf, s4, sizeof(s4) - 1) == 0) {
2213         CHECK_LINE;
2214         char *p = strchr(buf + sizeof(s4) - 1, ':');
2215         unsigned val;
2216         if ((p == NULL) || (KMP_SSCANF(p + 1, "%u\n", &val) != 1))
2217           goto no_val;
2218         if (threadInfo[num_avail][threadIdIndex] != UINT_MAX)
2219           goto dup_field;
2220         threadInfo[num_avail][threadIdIndex] = val;
2221         continue;
2222       }
2223       unsigned level;
2224       if (KMP_SSCANF(buf, "node_%u id", &level) == 1) {
2225         CHECK_LINE;
2226         char *p = strchr(buf + sizeof(s4) - 1, ':');
2227         unsigned val;
2228         if ((p == NULL) || (KMP_SSCANF(p + 1, "%u\n", &val) != 1))
2229           goto no_val;
2230         KMP_ASSERT(nodeIdIndex + level <= maxIndex);
2231         if (threadInfo[num_avail][nodeIdIndex + level] != UINT_MAX)
2232           goto dup_field;
2233         threadInfo[num_avail][nodeIdIndex + level] = val;
2234         continue;
2235       }
2236 
2237       // We didn't recognize the leading token on the line. There are lots of
2238       // leading tokens that we don't recognize - if the line isn't empty, go on
2239       // to the next line.
2240       if ((*buf != 0) && (*buf != '\n')) {
2241         // If the line is longer than the buffer, read characters
2242         // until we find a newline.
2243         if (long_line) {
2244           int ch;
2245           while (((ch = fgetc(f)) != EOF) && (ch != '\n'))
2246             ;
2247         }
2248         continue;
2249       }
2250 
2251       // A newline has signalled the end of the processor record.
2252       // Check that there aren't too many procs specified.
2253       if ((int)num_avail == __kmp_xproc) {
2254         CLEANUP_THREAD_INFO;
2255         *msg_id = kmp_i18n_str_TooManyEntries;
2256         return -1;
2257       }
2258 
2259       // Check for missing fields.  The osId field must be there, and we
2260       // currently require that the physical id field is specified, also.
2261       if (threadInfo[num_avail][osIdIndex] == UINT_MAX) {
2262         CLEANUP_THREAD_INFO;
2263         *msg_id = kmp_i18n_str_MissingProcField;
2264         return -1;
2265       }
2266       if (threadInfo[0][pkgIdIndex] == UINT_MAX) {
2267         CLEANUP_THREAD_INFO;
2268         *msg_id = kmp_i18n_str_MissingPhysicalIDField;
2269         return -1;
2270       }
2271 
2272       // Skip this proc if it is not included in the machine model.
2273       if (!KMP_CPU_ISSET(threadInfo[num_avail][osIdIndex],
2274                          __kmp_affin_fullMask)) {
2275         INIT_PROC_INFO(threadInfo[num_avail]);
2276         continue;
2277       }
2278 
2279       // We have a successful parse of this proc's info.
2280       // Increment the counter, and prepare for the next proc.
2281       num_avail++;
2282       KMP_ASSERT(num_avail <= num_records);
2283       INIT_PROC_INFO(threadInfo[num_avail]);
2284     }
2285     continue;
2286 
2287   no_val:
2288     CLEANUP_THREAD_INFO;
2289     *msg_id = kmp_i18n_str_MissingValCpuinfo;
2290     return -1;
2291 
2292   dup_field:
2293     CLEANUP_THREAD_INFO;
2294     *msg_id = kmp_i18n_str_DuplicateFieldCpuinfo;
2295     return -1;
2296   }
2297   *line = 0;
2298 
2299 #if KMP_MIC && REDUCE_TEAM_SIZE
2300   unsigned teamSize = 0;
2301 #endif // KMP_MIC && REDUCE_TEAM_SIZE
2302 
2303   // check for num_records == __kmp_xproc ???
2304 
2305   // If there's only one thread context to bind to, form an Address object with
2306   // depth 1 and return immediately (or, if affinity is off, set address2os to
2307   // NULL and return).
2308   //
2309   // If it is configured to omit the package level when there is only a single
2310   // package, the logic at the end of this routine won't work if there is only a
2311   // single thread - it would try to form an Address object with depth 0.
2312   KMP_ASSERT(num_avail > 0);
2313   KMP_ASSERT(num_avail <= num_records);
2314   if (num_avail == 1) {
2315     __kmp_ncores = 1;
2316     __kmp_nThreadsPerCore = nCoresPerPkg = nPackages = 1;
2317     if (__kmp_affinity_verbose) {
2318       if (!KMP_AFFINITY_CAPABLE()) {
2319         KMP_INFORM(AffNotCapableUseCpuinfo, "KMP_AFFINITY");
2320         KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc);
2321         KMP_INFORM(Uniform, "KMP_AFFINITY");
2322       } else {
2323         char buf[KMP_AFFIN_MASK_PRINT_LEN];
2324         __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN,
2325                                   __kmp_affin_fullMask);
2326         KMP_INFORM(AffCapableUseCpuinfo, "KMP_AFFINITY");
2327         if (__kmp_affinity_respect_mask) {
2328           KMP_INFORM(InitOSProcSetRespect, "KMP_AFFINITY", buf);
2329         } else {
2330           KMP_INFORM(InitOSProcSetNotRespect, "KMP_AFFINITY", buf);
2331         }
2332         KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc);
2333         KMP_INFORM(Uniform, "KMP_AFFINITY");
2334       }
2335       int index;
2336       kmp_str_buf_t buf;
2337       __kmp_str_buf_init(&buf);
2338       __kmp_str_buf_print(&buf, "1");
2339       for (index = maxIndex - 1; index > pkgIdIndex; index--) {
2340         __kmp_str_buf_print(&buf, " x 1");
2341       }
2342       KMP_INFORM(TopologyExtra, "KMP_AFFINITY", buf.str, 1, 1, 1);
2343       __kmp_str_buf_free(&buf);
2344     }
2345 
2346     if (__kmp_affinity_type == affinity_none) {
2347       CLEANUP_THREAD_INFO;
2348       return 0;
2349     }
2350 
2351     *address2os = (AddrUnsPair *)__kmp_allocate(sizeof(AddrUnsPair));
2352     Address addr(1);
2353     addr.labels[0] = threadInfo[0][pkgIdIndex];
2354     (*address2os)[0] = AddrUnsPair(addr, threadInfo[0][osIdIndex]);
2355 
2356     if (__kmp_affinity_gran_levels < 0) {
2357       __kmp_affinity_gran_levels = 0;
2358     }
2359 
2360     if (__kmp_affinity_verbose) {
2361       __kmp_affinity_print_topology(*address2os, 1, 1, 0, -1, -1);
2362     }
2363 
2364     CLEANUP_THREAD_INFO;
2365     return 1;
2366   }
2367 
2368   // Sort the threadInfo table by physical Id.
2369   qsort(threadInfo, num_avail, sizeof(*threadInfo),
2370         __kmp_affinity_cmp_ProcCpuInfo_phys_id);
2371 
2372   // The table is now sorted by pkgId / coreId / threadId, but we really don't
2373   // know the radix of any of the fields. pkgId's may be sparsely assigned among
2374   // the chips on a system. Although coreId's are usually assigned
2375   // [0 .. coresPerPkg-1] and threadId's are usually assigned
2376   // [0..threadsPerCore-1], we don't want to make any such assumptions.
2377   //
2378   // For that matter, we don't know what coresPerPkg and threadsPerCore (or the
2379   // total # packages) are at this point - we want to determine that now. We
2380   // only have an upper bound on the first two figures.
2381   unsigned *counts =
2382       (unsigned *)__kmp_allocate((maxIndex + 1) * sizeof(unsigned));
2383   unsigned *maxCt =
2384       (unsigned *)__kmp_allocate((maxIndex + 1) * sizeof(unsigned));
2385   unsigned *totals =
2386       (unsigned *)__kmp_allocate((maxIndex + 1) * sizeof(unsigned));
2387   unsigned *lastId =
2388       (unsigned *)__kmp_allocate((maxIndex + 1) * sizeof(unsigned));
2389 
2390   bool assign_thread_ids = false;
2391   unsigned threadIdCt;
2392   unsigned index;
2393 
2394 restart_radix_check:
2395   threadIdCt = 0;
2396 
2397   // Initialize the counter arrays with data from threadInfo[0].
2398   if (assign_thread_ids) {
2399     if (threadInfo[0][threadIdIndex] == UINT_MAX) {
2400       threadInfo[0][threadIdIndex] = threadIdCt++;
2401     } else if (threadIdCt <= threadInfo[0][threadIdIndex]) {
2402       threadIdCt = threadInfo[0][threadIdIndex] + 1;
2403     }
2404   }
2405   for (index = 0; index <= maxIndex; index++) {
2406     counts[index] = 1;
2407     maxCt[index] = 1;
2408     totals[index] = 1;
2409     lastId[index] = threadInfo[0][index];
2410     ;
2411   }
2412 
2413   // Run through the rest of the OS procs.
2414   for (i = 1; i < num_avail; i++) {
2415     // Find the most significant index whose id differs from the id for the
2416     // previous OS proc.
2417     for (index = maxIndex; index >= threadIdIndex; index--) {
2418       if (assign_thread_ids && (index == threadIdIndex)) {
2419         // Auto-assign the thread id field if it wasn't specified.
2420         if (threadInfo[i][threadIdIndex] == UINT_MAX) {
2421           threadInfo[i][threadIdIndex] = threadIdCt++;
2422         }
2423         // Apparently the thread id field was specified for some entries and not
2424         // others. Start the thread id counter off at the next higher thread id.
2425         else if (threadIdCt <= threadInfo[i][threadIdIndex]) {
2426           threadIdCt = threadInfo[i][threadIdIndex] + 1;
2427         }
2428       }
2429       if (threadInfo[i][index] != lastId[index]) {
2430         // Run through all indices which are less significant, and reset the
2431         // counts to 1. At all levels up to and including index, we need to
2432         // increment the totals and record the last id.
2433         unsigned index2;
2434         for (index2 = threadIdIndex; index2 < index; index2++) {
2435           totals[index2]++;
2436           if (counts[index2] > maxCt[index2]) {
2437             maxCt[index2] = counts[index2];
2438           }
2439           counts[index2] = 1;
2440           lastId[index2] = threadInfo[i][index2];
2441         }
2442         counts[index]++;
2443         totals[index]++;
2444         lastId[index] = threadInfo[i][index];
2445 
2446         if (assign_thread_ids && (index > threadIdIndex)) {
2447 
2448 #if KMP_MIC && REDUCE_TEAM_SIZE
2449           // The default team size is the total #threads in the machine
2450           // minus 1 thread for every core that has 3 or more threads.
2451           teamSize += (threadIdCt <= 2) ? (threadIdCt) : (threadIdCt - 1);
2452 #endif // KMP_MIC && REDUCE_TEAM_SIZE
2453 
2454           // Restart the thread counter, as we are on a new core.
2455           threadIdCt = 0;
2456 
2457           // Auto-assign the thread id field if it wasn't specified.
2458           if (threadInfo[i][threadIdIndex] == UINT_MAX) {
2459             threadInfo[i][threadIdIndex] = threadIdCt++;
2460           }
2461 
2462           // Aparrently the thread id field was specified for some entries and
2463           // not others. Start the thread id counter off at the next higher
2464           // thread id.
2465           else if (threadIdCt <= threadInfo[i][threadIdIndex]) {
2466             threadIdCt = threadInfo[i][threadIdIndex] + 1;
2467           }
2468         }
2469         break;
2470       }
2471     }
2472     if (index < threadIdIndex) {
2473       // If thread ids were specified, it is an error if they are not unique.
2474       // Also, check that we waven't already restarted the loop (to be safe -
2475       // shouldn't need to).
2476       if ((threadInfo[i][threadIdIndex] != UINT_MAX) || assign_thread_ids) {
2477         __kmp_free(lastId);
2478         __kmp_free(totals);
2479         __kmp_free(maxCt);
2480         __kmp_free(counts);
2481         CLEANUP_THREAD_INFO;
2482         *msg_id = kmp_i18n_str_PhysicalIDsNotUnique;
2483         return -1;
2484       }
2485 
2486       // If the thread ids were not specified and we see entries entries that
2487       // are duplicates, start the loop over and assign the thread ids manually.
2488       assign_thread_ids = true;
2489       goto restart_radix_check;
2490     }
2491   }
2492 
2493 #if KMP_MIC && REDUCE_TEAM_SIZE
2494   // The default team size is the total #threads in the machine
2495   // minus 1 thread for every core that has 3 or more threads.
2496   teamSize += (threadIdCt <= 2) ? (threadIdCt) : (threadIdCt - 1);
2497 #endif // KMP_MIC && REDUCE_TEAM_SIZE
2498 
2499   for (index = threadIdIndex; index <= maxIndex; index++) {
2500     if (counts[index] > maxCt[index]) {
2501       maxCt[index] = counts[index];
2502     }
2503   }
2504 
2505   __kmp_nThreadsPerCore = maxCt[threadIdIndex];
2506   nCoresPerPkg = maxCt[coreIdIndex];
2507   nPackages = totals[pkgIdIndex];
2508 
2509   // Check to see if the machine topology is uniform
2510   unsigned prod = totals[maxIndex];
2511   for (index = threadIdIndex; index < maxIndex; index++) {
2512     prod *= maxCt[index];
2513   }
2514   bool uniform = (prod == totals[threadIdIndex]);
2515 
2516   // When affinity is off, this routine will still be called to set
2517   // __kmp_ncores, as well as __kmp_nThreadsPerCore, nCoresPerPkg, & nPackages.
2518   // Make sure all these vars are set correctly, and return now if affinity is
2519   // not enabled.
2520   __kmp_ncores = totals[coreIdIndex];
2521 
2522   if (__kmp_affinity_verbose) {
2523     if (!KMP_AFFINITY_CAPABLE()) {
2524       KMP_INFORM(AffNotCapableUseCpuinfo, "KMP_AFFINITY");
2525       KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc);
2526       if (uniform) {
2527         KMP_INFORM(Uniform, "KMP_AFFINITY");
2528       } else {
2529         KMP_INFORM(NonUniform, "KMP_AFFINITY");
2530       }
2531     } else {
2532       char buf[KMP_AFFIN_MASK_PRINT_LEN];
2533       __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN,
2534                                 __kmp_affin_fullMask);
2535       KMP_INFORM(AffCapableUseCpuinfo, "KMP_AFFINITY");
2536       if (__kmp_affinity_respect_mask) {
2537         KMP_INFORM(InitOSProcSetRespect, "KMP_AFFINITY", buf);
2538       } else {
2539         KMP_INFORM(InitOSProcSetNotRespect, "KMP_AFFINITY", buf);
2540       }
2541       KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc);
2542       if (uniform) {
2543         KMP_INFORM(Uniform, "KMP_AFFINITY");
2544       } else {
2545         KMP_INFORM(NonUniform, "KMP_AFFINITY");
2546       }
2547     }
2548     kmp_str_buf_t buf;
2549     __kmp_str_buf_init(&buf);
2550 
2551     __kmp_str_buf_print(&buf, "%d", totals[maxIndex]);
2552     for (index = maxIndex - 1; index >= pkgIdIndex; index--) {
2553       __kmp_str_buf_print(&buf, " x %d", maxCt[index]);
2554     }
2555     KMP_INFORM(TopologyExtra, "KMP_AFFINITY", buf.str, maxCt[coreIdIndex],
2556                maxCt[threadIdIndex], __kmp_ncores);
2557 
2558     __kmp_str_buf_free(&buf);
2559   }
2560 
2561 #if KMP_MIC && REDUCE_TEAM_SIZE
2562   // Set the default team size.
2563   if ((__kmp_dflt_team_nth == 0) && (teamSize > 0)) {
2564     __kmp_dflt_team_nth = teamSize;
2565     KA_TRACE(20, ("__kmp_affinity_create_cpuinfo_map: setting "
2566                   "__kmp_dflt_team_nth = %d\n",
2567                   __kmp_dflt_team_nth));
2568   }
2569 #endif // KMP_MIC && REDUCE_TEAM_SIZE
2570 
2571   KMP_DEBUG_ASSERT(__kmp_pu_os_idx == NULL);
2572   KMP_DEBUG_ASSERT(num_avail == (unsigned)__kmp_avail_proc);
2573   __kmp_pu_os_idx = (int *)__kmp_allocate(sizeof(int) * __kmp_avail_proc);
2574   for (i = 0; i < num_avail; ++i) { // fill the os indices
2575     __kmp_pu_os_idx[i] = threadInfo[i][osIdIndex];
2576   }
2577 
2578   if (__kmp_affinity_type == affinity_none) {
2579     __kmp_free(lastId);
2580     __kmp_free(totals);
2581     __kmp_free(maxCt);
2582     __kmp_free(counts);
2583     CLEANUP_THREAD_INFO;
2584     return 0;
2585   }
2586 
2587   // Count the number of levels which have more nodes at that level than at the
2588   // parent's level (with there being an implicit root node of the top level).
2589   // This is equivalent to saying that there is at least one node at this level
2590   // which has a sibling. These levels are in the map, and the package level is
2591   // always in the map.
2592   bool *inMap = (bool *)__kmp_allocate((maxIndex + 1) * sizeof(bool));
2593   for (index = threadIdIndex; index < maxIndex; index++) {
2594     KMP_ASSERT(totals[index] >= totals[index + 1]);
2595     inMap[index] = (totals[index] > totals[index + 1]);
2596   }
2597   inMap[maxIndex] = (totals[maxIndex] > 1);
2598   inMap[pkgIdIndex] = true;
2599 
2600   int depth = 0;
2601   for (index = threadIdIndex; index <= maxIndex; index++) {
2602     if (inMap[index]) {
2603       depth++;
2604     }
2605   }
2606   KMP_ASSERT(depth > 0);
2607 
2608   // Construct the data structure that is to be returned.
2609   *address2os = (AddrUnsPair *)__kmp_allocate(sizeof(AddrUnsPair) * num_avail);
2610   int pkgLevel = -1;
2611   int coreLevel = -1;
2612   int threadLevel = -1;
2613 
2614   for (i = 0; i < num_avail; ++i) {
2615     Address addr(depth);
2616     unsigned os = threadInfo[i][osIdIndex];
2617     int src_index;
2618     int dst_index = 0;
2619 
2620     for (src_index = maxIndex; src_index >= threadIdIndex; src_index--) {
2621       if (!inMap[src_index]) {
2622         continue;
2623       }
2624       addr.labels[dst_index] = threadInfo[i][src_index];
2625       if (src_index == pkgIdIndex) {
2626         pkgLevel = dst_index;
2627       } else if (src_index == coreIdIndex) {
2628         coreLevel = dst_index;
2629       } else if (src_index == threadIdIndex) {
2630         threadLevel = dst_index;
2631       }
2632       dst_index++;
2633     }
2634     (*address2os)[i] = AddrUnsPair(addr, os);
2635   }
2636 
2637   if (__kmp_affinity_gran_levels < 0) {
2638     // Set the granularity level based on what levels are modeled
2639     // in the machine topology map.
2640     unsigned src_index;
2641     __kmp_affinity_gran_levels = 0;
2642     for (src_index = threadIdIndex; src_index <= maxIndex; src_index++) {
2643       if (!inMap[src_index]) {
2644         continue;
2645       }
2646       switch (src_index) {
2647       case threadIdIndex:
2648         if (__kmp_affinity_gran > affinity_gran_thread) {
2649           __kmp_affinity_gran_levels++;
2650         }
2651 
2652         break;
2653       case coreIdIndex:
2654         if (__kmp_affinity_gran > affinity_gran_core) {
2655           __kmp_affinity_gran_levels++;
2656         }
2657         break;
2658 
2659       case pkgIdIndex:
2660         if (__kmp_affinity_gran > affinity_gran_package) {
2661           __kmp_affinity_gran_levels++;
2662         }
2663         break;
2664       }
2665     }
2666   }
2667 
2668   if (__kmp_affinity_verbose) {
2669     __kmp_affinity_print_topology(*address2os, num_avail, depth, pkgLevel,
2670                                   coreLevel, threadLevel);
2671   }
2672 
2673   __kmp_free(inMap);
2674   __kmp_free(lastId);
2675   __kmp_free(totals);
2676   __kmp_free(maxCt);
2677   __kmp_free(counts);
2678   CLEANUP_THREAD_INFO;
2679   return depth;
2680 }
2681 
2682 // Create and return a table of affinity masks, indexed by OS thread ID.
2683 // This routine handles OR'ing together all the affinity masks of threads
2684 // that are sufficiently close, if granularity > fine.
__kmp_create_masks(unsigned * maxIndex,unsigned * numUnique,AddrUnsPair * address2os,unsigned numAddrs)2685 static kmp_affin_mask_t *__kmp_create_masks(unsigned *maxIndex,
2686                                             unsigned *numUnique,
2687                                             AddrUnsPair *address2os,
2688                                             unsigned numAddrs) {
2689   // First form a table of affinity masks in order of OS thread id.
2690   unsigned depth;
2691   unsigned maxOsId;
2692   unsigned i;
2693 
2694   KMP_ASSERT(numAddrs > 0);
2695   depth = address2os[0].first.depth;
2696 
2697   maxOsId = 0;
2698   for (i = numAddrs - 1;; --i) {
2699     unsigned osId = address2os[i].second;
2700     if (osId > maxOsId) {
2701       maxOsId = osId;
2702     }
2703     if (i == 0)
2704       break;
2705   }
2706   kmp_affin_mask_t *osId2Mask;
2707   KMP_CPU_ALLOC_ARRAY(osId2Mask, (maxOsId + 1));
2708 
2709   // Sort the address2os table according to physical order. Doing so will put
2710   // all threads on the same core/package/node in consecutive locations.
2711   qsort(address2os, numAddrs, sizeof(*address2os),
2712         __kmp_affinity_cmp_Address_labels);
2713 
2714   KMP_ASSERT(__kmp_affinity_gran_levels >= 0);
2715   if (__kmp_affinity_verbose && (__kmp_affinity_gran_levels > 0)) {
2716     KMP_INFORM(ThreadsMigrate, "KMP_AFFINITY", __kmp_affinity_gran_levels);
2717   }
2718   if (__kmp_affinity_gran_levels >= (int)depth) {
2719     if (__kmp_affinity_verbose ||
2720         (__kmp_affinity_warnings && (__kmp_affinity_type != affinity_none))) {
2721       KMP_WARNING(AffThreadsMayMigrate);
2722     }
2723   }
2724 
2725   // Run through the table, forming the masks for all threads on each core.
2726   // Threads on the same core will have identical "Address" objects, not
2727   // considering the last level, which must be the thread id. All threads on a
2728   // core will appear consecutively.
2729   unsigned unique = 0;
2730   unsigned j = 0; // index of 1st thread on core
2731   unsigned leader = 0;
2732   Address *leaderAddr = &(address2os[0].first);
2733   kmp_affin_mask_t *sum;
2734   KMP_CPU_ALLOC_ON_STACK(sum);
2735   KMP_CPU_ZERO(sum);
2736   KMP_CPU_SET(address2os[0].second, sum);
2737   for (i = 1; i < numAddrs; i++) {
2738     // If this thread is sufficiently close to the leader (within the
2739     // granularity setting), then set the bit for this os thread in the
2740     // affinity mask for this group, and go on to the next thread.
2741     if (leaderAddr->isClose(address2os[i].first, __kmp_affinity_gran_levels)) {
2742       KMP_CPU_SET(address2os[i].second, sum);
2743       continue;
2744     }
2745 
2746     // For every thread in this group, copy the mask to the thread's entry in
2747     // the osId2Mask table.  Mark the first address as a leader.
2748     for (; j < i; j++) {
2749       unsigned osId = address2os[j].second;
2750       KMP_DEBUG_ASSERT(osId <= maxOsId);
2751       kmp_affin_mask_t *mask = KMP_CPU_INDEX(osId2Mask, osId);
2752       KMP_CPU_COPY(mask, sum);
2753       address2os[j].first.leader = (j == leader);
2754     }
2755     unique++;
2756 
2757     // Start a new mask.
2758     leader = i;
2759     leaderAddr = &(address2os[i].first);
2760     KMP_CPU_ZERO(sum);
2761     KMP_CPU_SET(address2os[i].second, sum);
2762   }
2763 
2764   // For every thread in last group, copy the mask to the thread's
2765   // entry in the osId2Mask table.
2766   for (; j < i; j++) {
2767     unsigned osId = address2os[j].second;
2768     KMP_DEBUG_ASSERT(osId <= maxOsId);
2769     kmp_affin_mask_t *mask = KMP_CPU_INDEX(osId2Mask, osId);
2770     KMP_CPU_COPY(mask, sum);
2771     address2os[j].first.leader = (j == leader);
2772   }
2773   unique++;
2774   KMP_CPU_FREE_FROM_STACK(sum);
2775 
2776   *maxIndex = maxOsId;
2777   *numUnique = unique;
2778   return osId2Mask;
2779 }
2780 
2781 // Stuff for the affinity proclist parsers.  It's easier to declare these vars
2782 // as file-static than to try and pass them through the calling sequence of
2783 // the recursive-descent OMP_PLACES parser.
2784 static kmp_affin_mask_t *newMasks;
2785 static int numNewMasks;
2786 static int nextNewMask;
2787 
2788 #define ADD_MASK(_mask)                                                        \
2789   {                                                                            \
2790     if (nextNewMask >= numNewMasks) {                                          \
2791       int i;                                                                   \
2792       numNewMasks *= 2;                                                        \
2793       kmp_affin_mask_t *temp;                                                  \
2794       KMP_CPU_INTERNAL_ALLOC_ARRAY(temp, numNewMasks);                         \
2795       for (i = 0; i < numNewMasks / 2; i++) {                                  \
2796         kmp_affin_mask_t *src = KMP_CPU_INDEX(newMasks, i);                    \
2797         kmp_affin_mask_t *dest = KMP_CPU_INDEX(temp, i);                       \
2798         KMP_CPU_COPY(dest, src);                                               \
2799       }                                                                        \
2800       KMP_CPU_INTERNAL_FREE_ARRAY(newMasks, numNewMasks / 2);                  \
2801       newMasks = temp;                                                         \
2802     }                                                                          \
2803     KMP_CPU_COPY(KMP_CPU_INDEX(newMasks, nextNewMask), (_mask));               \
2804     nextNewMask++;                                                             \
2805   }
2806 
2807 #define ADD_MASK_OSID(_osId, _osId2Mask, _maxOsId)                             \
2808   {                                                                            \
2809     if (((_osId) > _maxOsId) ||                                                \
2810         (!KMP_CPU_ISSET((_osId), KMP_CPU_INDEX((_osId2Mask), (_osId))))) {     \
2811       if (__kmp_affinity_verbose ||                                            \
2812           (__kmp_affinity_warnings &&                                          \
2813            (__kmp_affinity_type != affinity_none))) {                          \
2814         KMP_WARNING(AffIgnoreInvalidProcID, _osId);                            \
2815       }                                                                        \
2816     } else {                                                                   \
2817       ADD_MASK(KMP_CPU_INDEX(_osId2Mask, (_osId)));                            \
2818     }                                                                          \
2819   }
2820 
2821 // Re-parse the proclist (for the explicit affinity type), and form the list
2822 // of affinity newMasks indexed by gtid.
__kmp_affinity_process_proclist(kmp_affin_mask_t ** out_masks,unsigned int * out_numMasks,const char * proclist,kmp_affin_mask_t * osId2Mask,int maxOsId)2823 static void __kmp_affinity_process_proclist(kmp_affin_mask_t **out_masks,
2824                                             unsigned int *out_numMasks,
2825                                             const char *proclist,
2826                                             kmp_affin_mask_t *osId2Mask,
2827                                             int maxOsId) {
2828   int i;
2829   const char *scan = proclist;
2830   const char *next = proclist;
2831 
2832   // We use malloc() for the temporary mask vector, so that we can use
2833   // realloc() to extend it.
2834   numNewMasks = 2;
2835   KMP_CPU_INTERNAL_ALLOC_ARRAY(newMasks, numNewMasks);
2836   nextNewMask = 0;
2837   kmp_affin_mask_t *sumMask;
2838   KMP_CPU_ALLOC(sumMask);
2839   int setSize = 0;
2840 
2841   for (;;) {
2842     int start, end, stride;
2843 
2844     SKIP_WS(scan);
2845     next = scan;
2846     if (*next == '\0') {
2847       break;
2848     }
2849 
2850     if (*next == '{') {
2851       int num;
2852       setSize = 0;
2853       next++; // skip '{'
2854       SKIP_WS(next);
2855       scan = next;
2856 
2857       // Read the first integer in the set.
2858       KMP_ASSERT2((*next >= '0') && (*next <= '9'), "bad proclist");
2859       SKIP_DIGITS(next);
2860       num = __kmp_str_to_int(scan, *next);
2861       KMP_ASSERT2(num >= 0, "bad explicit proc list");
2862 
2863       // Copy the mask for that osId to the sum (union) mask.
2864       if ((num > maxOsId) ||
2865           (!KMP_CPU_ISSET(num, KMP_CPU_INDEX(osId2Mask, num)))) {
2866         if (__kmp_affinity_verbose ||
2867             (__kmp_affinity_warnings &&
2868              (__kmp_affinity_type != affinity_none))) {
2869           KMP_WARNING(AffIgnoreInvalidProcID, num);
2870         }
2871         KMP_CPU_ZERO(sumMask);
2872       } else {
2873         KMP_CPU_COPY(sumMask, KMP_CPU_INDEX(osId2Mask, num));
2874         setSize = 1;
2875       }
2876 
2877       for (;;) {
2878         // Check for end of set.
2879         SKIP_WS(next);
2880         if (*next == '}') {
2881           next++; // skip '}'
2882           break;
2883         }
2884 
2885         // Skip optional comma.
2886         if (*next == ',') {
2887           next++;
2888         }
2889         SKIP_WS(next);
2890 
2891         // Read the next integer in the set.
2892         scan = next;
2893         KMP_ASSERT2((*next >= '0') && (*next <= '9'), "bad explicit proc list");
2894 
2895         SKIP_DIGITS(next);
2896         num = __kmp_str_to_int(scan, *next);
2897         KMP_ASSERT2(num >= 0, "bad explicit proc list");
2898 
2899         // Add the mask for that osId to the sum mask.
2900         if ((num > maxOsId) ||
2901             (!KMP_CPU_ISSET(num, KMP_CPU_INDEX(osId2Mask, num)))) {
2902           if (__kmp_affinity_verbose ||
2903               (__kmp_affinity_warnings &&
2904                (__kmp_affinity_type != affinity_none))) {
2905             KMP_WARNING(AffIgnoreInvalidProcID, num);
2906           }
2907         } else {
2908           KMP_CPU_UNION(sumMask, KMP_CPU_INDEX(osId2Mask, num));
2909           setSize++;
2910         }
2911       }
2912       if (setSize > 0) {
2913         ADD_MASK(sumMask);
2914       }
2915 
2916       SKIP_WS(next);
2917       if (*next == ',') {
2918         next++;
2919       }
2920       scan = next;
2921       continue;
2922     }
2923 
2924     // Read the first integer.
2925     KMP_ASSERT2((*next >= '0') && (*next <= '9'), "bad explicit proc list");
2926     SKIP_DIGITS(next);
2927     start = __kmp_str_to_int(scan, *next);
2928     KMP_ASSERT2(start >= 0, "bad explicit proc list");
2929     SKIP_WS(next);
2930 
2931     // If this isn't a range, then add a mask to the list and go on.
2932     if (*next != '-') {
2933       ADD_MASK_OSID(start, osId2Mask, maxOsId);
2934 
2935       // Skip optional comma.
2936       if (*next == ',') {
2937         next++;
2938       }
2939       scan = next;
2940       continue;
2941     }
2942 
2943     // This is a range.  Skip over the '-' and read in the 2nd int.
2944     next++; // skip '-'
2945     SKIP_WS(next);
2946     scan = next;
2947     KMP_ASSERT2((*next >= '0') && (*next <= '9'), "bad explicit proc list");
2948     SKIP_DIGITS(next);
2949     end = __kmp_str_to_int(scan, *next);
2950     KMP_ASSERT2(end >= 0, "bad explicit proc list");
2951 
2952     // Check for a stride parameter
2953     stride = 1;
2954     SKIP_WS(next);
2955     if (*next == ':') {
2956       // A stride is specified.  Skip over the ':" and read the 3rd int.
2957       int sign = +1;
2958       next++; // skip ':'
2959       SKIP_WS(next);
2960       scan = next;
2961       if (*next == '-') {
2962         sign = -1;
2963         next++;
2964         SKIP_WS(next);
2965         scan = next;
2966       }
2967       KMP_ASSERT2((*next >= '0') && (*next <= '9'), "bad explicit proc list");
2968       SKIP_DIGITS(next);
2969       stride = __kmp_str_to_int(scan, *next);
2970       KMP_ASSERT2(stride >= 0, "bad explicit proc list");
2971       stride *= sign;
2972     }
2973 
2974     // Do some range checks.
2975     KMP_ASSERT2(stride != 0, "bad explicit proc list");
2976     if (stride > 0) {
2977       KMP_ASSERT2(start <= end, "bad explicit proc list");
2978     } else {
2979       KMP_ASSERT2(start >= end, "bad explicit proc list");
2980     }
2981     KMP_ASSERT2((end - start) / stride <= 65536, "bad explicit proc list");
2982 
2983     // Add the mask for each OS proc # to the list.
2984     if (stride > 0) {
2985       do {
2986         ADD_MASK_OSID(start, osId2Mask, maxOsId);
2987         start += stride;
2988       } while (start <= end);
2989     } else {
2990       do {
2991         ADD_MASK_OSID(start, osId2Mask, maxOsId);
2992         start += stride;
2993       } while (start >= end);
2994     }
2995 
2996     // Skip optional comma.
2997     SKIP_WS(next);
2998     if (*next == ',') {
2999       next++;
3000     }
3001     scan = next;
3002   }
3003 
3004   *out_numMasks = nextNewMask;
3005   if (nextNewMask == 0) {
3006     *out_masks = NULL;
3007     KMP_CPU_INTERNAL_FREE_ARRAY(newMasks, numNewMasks);
3008     return;
3009   }
3010   KMP_CPU_ALLOC_ARRAY((*out_masks), nextNewMask);
3011   for (i = 0; i < nextNewMask; i++) {
3012     kmp_affin_mask_t *src = KMP_CPU_INDEX(newMasks, i);
3013     kmp_affin_mask_t *dest = KMP_CPU_INDEX((*out_masks), i);
3014     KMP_CPU_COPY(dest, src);
3015   }
3016   KMP_CPU_INTERNAL_FREE_ARRAY(newMasks, numNewMasks);
3017   KMP_CPU_FREE(sumMask);
3018 }
3019 
3020 #if OMP_40_ENABLED
3021 
3022 /*-----------------------------------------------------------------------------
3023 Re-parse the OMP_PLACES proc id list, forming the newMasks for the different
3024 places.  Again, Here is the grammar:
3025 
3026 place_list := place
3027 place_list := place , place_list
3028 place := num
3029 place := place : num
3030 place := place : num : signed
3031 place := { subplacelist }
3032 place := ! place                  // (lowest priority)
3033 subplace_list := subplace
3034 subplace_list := subplace , subplace_list
3035 subplace := num
3036 subplace := num : num
3037 subplace := num : num : signed
3038 signed := num
3039 signed := + signed
3040 signed := - signed
3041 -----------------------------------------------------------------------------*/
3042 
__kmp_process_subplace_list(const char ** scan,kmp_affin_mask_t * osId2Mask,int maxOsId,kmp_affin_mask_t * tempMask,int * setSize)3043 static void __kmp_process_subplace_list(const char **scan,
3044                                         kmp_affin_mask_t *osId2Mask,
3045                                         int maxOsId, kmp_affin_mask_t *tempMask,
3046                                         int *setSize) {
3047   const char *next;
3048 
3049   for (;;) {
3050     int start, count, stride, i;
3051 
3052     // Read in the starting proc id
3053     SKIP_WS(*scan);
3054     KMP_ASSERT2((**scan >= '0') && (**scan <= '9'), "bad explicit places list");
3055     next = *scan;
3056     SKIP_DIGITS(next);
3057     start = __kmp_str_to_int(*scan, *next);
3058     KMP_ASSERT(start >= 0);
3059     *scan = next;
3060 
3061     // valid follow sets are ',' ':' and '}'
3062     SKIP_WS(*scan);
3063     if (**scan == '}' || **scan == ',') {
3064       if ((start > maxOsId) ||
3065           (!KMP_CPU_ISSET(start, KMP_CPU_INDEX(osId2Mask, start)))) {
3066         if (__kmp_affinity_verbose ||
3067             (__kmp_affinity_warnings &&
3068              (__kmp_affinity_type != affinity_none))) {
3069           KMP_WARNING(AffIgnoreInvalidProcID, start);
3070         }
3071       } else {
3072         KMP_CPU_UNION(tempMask, KMP_CPU_INDEX(osId2Mask, start));
3073         (*setSize)++;
3074       }
3075       if (**scan == '}') {
3076         break;
3077       }
3078       (*scan)++; // skip ','
3079       continue;
3080     }
3081     KMP_ASSERT2(**scan == ':', "bad explicit places list");
3082     (*scan)++; // skip ':'
3083 
3084     // Read count parameter
3085     SKIP_WS(*scan);
3086     KMP_ASSERT2((**scan >= '0') && (**scan <= '9'), "bad explicit places list");
3087     next = *scan;
3088     SKIP_DIGITS(next);
3089     count = __kmp_str_to_int(*scan, *next);
3090     KMP_ASSERT(count >= 0);
3091     *scan = next;
3092 
3093     // valid follow sets are ',' ':' and '}'
3094     SKIP_WS(*scan);
3095     if (**scan == '}' || **scan == ',') {
3096       for (i = 0; i < count; i++) {
3097         if ((start > maxOsId) ||
3098             (!KMP_CPU_ISSET(start, KMP_CPU_INDEX(osId2Mask, start)))) {
3099           if (__kmp_affinity_verbose ||
3100               (__kmp_affinity_warnings &&
3101                (__kmp_affinity_type != affinity_none))) {
3102             KMP_WARNING(AffIgnoreInvalidProcID, start);
3103           }
3104           break; // don't proliferate warnings for large count
3105         } else {
3106           KMP_CPU_UNION(tempMask, KMP_CPU_INDEX(osId2Mask, start));
3107           start++;
3108           (*setSize)++;
3109         }
3110       }
3111       if (**scan == '}') {
3112         break;
3113       }
3114       (*scan)++; // skip ','
3115       continue;
3116     }
3117     KMP_ASSERT2(**scan == ':', "bad explicit places list");
3118     (*scan)++; // skip ':'
3119 
3120     // Read stride parameter
3121     int sign = +1;
3122     for (;;) {
3123       SKIP_WS(*scan);
3124       if (**scan == '+') {
3125         (*scan)++; // skip '+'
3126         continue;
3127       }
3128       if (**scan == '-') {
3129         sign *= -1;
3130         (*scan)++; // skip '-'
3131         continue;
3132       }
3133       break;
3134     }
3135     SKIP_WS(*scan);
3136     KMP_ASSERT2((**scan >= '0') && (**scan <= '9'), "bad explicit places list");
3137     next = *scan;
3138     SKIP_DIGITS(next);
3139     stride = __kmp_str_to_int(*scan, *next);
3140     KMP_ASSERT(stride >= 0);
3141     *scan = next;
3142     stride *= sign;
3143 
3144     // valid follow sets are ',' and '}'
3145     SKIP_WS(*scan);
3146     if (**scan == '}' || **scan == ',') {
3147       for (i = 0; i < count; i++) {
3148         if ((start > maxOsId) ||
3149             (!KMP_CPU_ISSET(start, KMP_CPU_INDEX(osId2Mask, start)))) {
3150           if (__kmp_affinity_verbose ||
3151               (__kmp_affinity_warnings &&
3152                (__kmp_affinity_type != affinity_none))) {
3153             KMP_WARNING(AffIgnoreInvalidProcID, start);
3154           }
3155           break; // don't proliferate warnings for large count
3156         } else {
3157           KMP_CPU_UNION(tempMask, KMP_CPU_INDEX(osId2Mask, start));
3158           start += stride;
3159           (*setSize)++;
3160         }
3161       }
3162       if (**scan == '}') {
3163         break;
3164       }
3165       (*scan)++; // skip ','
3166       continue;
3167     }
3168 
3169     KMP_ASSERT2(0, "bad explicit places list");
3170   }
3171 }
3172 
__kmp_process_place(const char ** scan,kmp_affin_mask_t * osId2Mask,int maxOsId,kmp_affin_mask_t * tempMask,int * setSize)3173 static void __kmp_process_place(const char **scan, kmp_affin_mask_t *osId2Mask,
3174                                 int maxOsId, kmp_affin_mask_t *tempMask,
3175                                 int *setSize) {
3176   const char *next;
3177 
3178   // valid follow sets are '{' '!' and num
3179   SKIP_WS(*scan);
3180   if (**scan == '{') {
3181     (*scan)++; // skip '{'
3182     __kmp_process_subplace_list(scan, osId2Mask, maxOsId, tempMask, setSize);
3183     KMP_ASSERT2(**scan == '}', "bad explicit places list");
3184     (*scan)++; // skip '}'
3185   } else if (**scan == '!') {
3186     (*scan)++; // skip '!'
3187     __kmp_process_place(scan, osId2Mask, maxOsId, tempMask, setSize);
3188     KMP_CPU_COMPLEMENT(maxOsId, tempMask);
3189   } else if ((**scan >= '0') && (**scan <= '9')) {
3190     next = *scan;
3191     SKIP_DIGITS(next);
3192     int num = __kmp_str_to_int(*scan, *next);
3193     KMP_ASSERT(num >= 0);
3194     if ((num > maxOsId) ||
3195         (!KMP_CPU_ISSET(num, KMP_CPU_INDEX(osId2Mask, num)))) {
3196       if (__kmp_affinity_verbose ||
3197           (__kmp_affinity_warnings && (__kmp_affinity_type != affinity_none))) {
3198         KMP_WARNING(AffIgnoreInvalidProcID, num);
3199       }
3200     } else {
3201       KMP_CPU_UNION(tempMask, KMP_CPU_INDEX(osId2Mask, num));
3202       (*setSize)++;
3203     }
3204     *scan = next; // skip num
3205   } else {
3206     KMP_ASSERT2(0, "bad explicit places list");
3207   }
3208 }
3209 
3210 // static void
__kmp_affinity_process_placelist(kmp_affin_mask_t ** out_masks,unsigned int * out_numMasks,const char * placelist,kmp_affin_mask_t * osId2Mask,int maxOsId)3211 void __kmp_affinity_process_placelist(kmp_affin_mask_t **out_masks,
3212                                       unsigned int *out_numMasks,
3213                                       const char *placelist,
3214                                       kmp_affin_mask_t *osId2Mask,
3215                                       int maxOsId) {
3216   int i, j, count, stride, sign;
3217   const char *scan = placelist;
3218   const char *next = placelist;
3219 
3220   numNewMasks = 2;
3221   KMP_CPU_INTERNAL_ALLOC_ARRAY(newMasks, numNewMasks);
3222   nextNewMask = 0;
3223 
3224   // tempMask is modified based on the previous or initial
3225   //   place to form the current place
3226   // previousMask contains the previous place
3227   kmp_affin_mask_t *tempMask;
3228   kmp_affin_mask_t *previousMask;
3229   KMP_CPU_ALLOC(tempMask);
3230   KMP_CPU_ZERO(tempMask);
3231   KMP_CPU_ALLOC(previousMask);
3232   KMP_CPU_ZERO(previousMask);
3233   int setSize = 0;
3234 
3235   for (;;) {
3236     __kmp_process_place(&scan, osId2Mask, maxOsId, tempMask, &setSize);
3237 
3238     // valid follow sets are ',' ':' and EOL
3239     SKIP_WS(scan);
3240     if (*scan == '\0' || *scan == ',') {
3241       if (setSize > 0) {
3242         ADD_MASK(tempMask);
3243       }
3244       KMP_CPU_ZERO(tempMask);
3245       setSize = 0;
3246       if (*scan == '\0') {
3247         break;
3248       }
3249       scan++; // skip ','
3250       continue;
3251     }
3252 
3253     KMP_ASSERT2(*scan == ':', "bad explicit places list");
3254     scan++; // skip ':'
3255 
3256     // Read count parameter
3257     SKIP_WS(scan);
3258     KMP_ASSERT2((*scan >= '0') && (*scan <= '9'), "bad explicit places list");
3259     next = scan;
3260     SKIP_DIGITS(next);
3261     count = __kmp_str_to_int(scan, *next);
3262     KMP_ASSERT(count >= 0);
3263     scan = next;
3264 
3265     // valid follow sets are ',' ':' and EOL
3266     SKIP_WS(scan);
3267     if (*scan == '\0' || *scan == ',') {
3268       stride = +1;
3269     } else {
3270       KMP_ASSERT2(*scan == ':', "bad explicit places list");
3271       scan++; // skip ':'
3272 
3273       // Read stride parameter
3274       sign = +1;
3275       for (;;) {
3276         SKIP_WS(scan);
3277         if (*scan == '+') {
3278           scan++; // skip '+'
3279           continue;
3280         }
3281         if (*scan == '-') {
3282           sign *= -1;
3283           scan++; // skip '-'
3284           continue;
3285         }
3286         break;
3287       }
3288       SKIP_WS(scan);
3289       KMP_ASSERT2((*scan >= '0') && (*scan <= '9'), "bad explicit places list");
3290       next = scan;
3291       SKIP_DIGITS(next);
3292       stride = __kmp_str_to_int(scan, *next);
3293       KMP_DEBUG_ASSERT(stride >= 0);
3294       scan = next;
3295       stride *= sign;
3296     }
3297 
3298     // Add places determined by initial_place : count : stride
3299     for (i = 0; i < count; i++) {
3300       if (setSize == 0) {
3301         break;
3302       }
3303       // Add the current place, then build the next place (tempMask) from that
3304       KMP_CPU_COPY(previousMask, tempMask);
3305       ADD_MASK(previousMask);
3306       KMP_CPU_ZERO(tempMask);
3307       setSize = 0;
3308       KMP_CPU_SET_ITERATE(j, previousMask) {
3309         if (!KMP_CPU_ISSET(j, previousMask)) {
3310           continue;
3311         }
3312         if ((j + stride > maxOsId) || (j + stride < 0) ||
3313             (!KMP_CPU_ISSET(j, __kmp_affin_fullMask)) ||
3314             (!KMP_CPU_ISSET(j + stride,
3315                             KMP_CPU_INDEX(osId2Mask, j + stride)))) {
3316           if ((__kmp_affinity_verbose ||
3317                (__kmp_affinity_warnings &&
3318                 (__kmp_affinity_type != affinity_none))) &&
3319               i < count - 1) {
3320             KMP_WARNING(AffIgnoreInvalidProcID, j + stride);
3321           }
3322           continue;
3323         }
3324         KMP_CPU_SET(j + stride, tempMask);
3325         setSize++;
3326       }
3327     }
3328     KMP_CPU_ZERO(tempMask);
3329     setSize = 0;
3330 
3331     // valid follow sets are ',' and EOL
3332     SKIP_WS(scan);
3333     if (*scan == '\0') {
3334       break;
3335     }
3336     if (*scan == ',') {
3337       scan++; // skip ','
3338       continue;
3339     }
3340 
3341     KMP_ASSERT2(0, "bad explicit places list");
3342   }
3343 
3344   *out_numMasks = nextNewMask;
3345   if (nextNewMask == 0) {
3346     *out_masks = NULL;
3347     KMP_CPU_INTERNAL_FREE_ARRAY(newMasks, numNewMasks);
3348     return;
3349   }
3350   KMP_CPU_ALLOC_ARRAY((*out_masks), nextNewMask);
3351   KMP_CPU_FREE(tempMask);
3352   KMP_CPU_FREE(previousMask);
3353   for (i = 0; i < nextNewMask; i++) {
3354     kmp_affin_mask_t *src = KMP_CPU_INDEX(newMasks, i);
3355     kmp_affin_mask_t *dest = KMP_CPU_INDEX((*out_masks), i);
3356     KMP_CPU_COPY(dest, src);
3357   }
3358   KMP_CPU_INTERNAL_FREE_ARRAY(newMasks, numNewMasks);
3359 }
3360 
3361 #endif /* OMP_40_ENABLED */
3362 
3363 #undef ADD_MASK
3364 #undef ADD_MASK_OSID
3365 
3366 #if KMP_USE_HWLOC
__kmp_hwloc_skip_PUs_obj(hwloc_topology_t t,hwloc_obj_t o)3367 static int __kmp_hwloc_skip_PUs_obj(hwloc_topology_t t, hwloc_obj_t o) {
3368   // skip PUs descendants of the object o
3369   int skipped = 0;
3370   hwloc_obj_t hT = NULL;
3371   int N = __kmp_hwloc_count_children_by_type(t, o, HWLOC_OBJ_PU, &hT);
3372   for (int i = 0; i < N; ++i) {
3373     KMP_DEBUG_ASSERT(hT);
3374     unsigned idx = hT->os_index;
3375     if (KMP_CPU_ISSET(idx, __kmp_affin_fullMask)) {
3376       KMP_CPU_CLR(idx, __kmp_affin_fullMask);
3377       KC_TRACE(200, ("KMP_HW_SUBSET: skipped proc %d\n", idx));
3378       ++skipped;
3379     }
3380     hT = hwloc_get_next_obj_by_type(t, HWLOC_OBJ_PU, hT);
3381   }
3382   return skipped; // count number of skipped units
3383 }
3384 
__kmp_hwloc_obj_has_PUs(hwloc_topology_t t,hwloc_obj_t o)3385 static int __kmp_hwloc_obj_has_PUs(hwloc_topology_t t, hwloc_obj_t o) {
3386   // check if obj has PUs present in fullMask
3387   hwloc_obj_t hT = NULL;
3388   int N = __kmp_hwloc_count_children_by_type(t, o, HWLOC_OBJ_PU, &hT);
3389   for (int i = 0; i < N; ++i) {
3390     KMP_DEBUG_ASSERT(hT);
3391     unsigned idx = hT->os_index;
3392     if (KMP_CPU_ISSET(idx, __kmp_affin_fullMask))
3393       return 1; // found PU
3394     hT = hwloc_get_next_obj_by_type(t, HWLOC_OBJ_PU, hT);
3395   }
3396   return 0; // no PUs found
3397 }
3398 #endif // KMP_USE_HWLOC
3399 
__kmp_apply_thread_places(AddrUnsPair ** pAddr,int depth)3400 static void __kmp_apply_thread_places(AddrUnsPair **pAddr, int depth) {
3401   AddrUnsPair *newAddr;
3402   if (__kmp_hws_requested == 0)
3403     goto _exit; // no topology limiting actions requested, exit
3404 #if KMP_USE_HWLOC
3405   if (__kmp_affinity_dispatch->get_api_type() == KMPAffinity::HWLOC) {
3406     // Number of subobjects calculated dynamically, this works fine for
3407     // any non-uniform topology.
3408     // L2 cache objects are determined by depth, other objects - by type.
3409     hwloc_topology_t tp = __kmp_hwloc_topology;
3410     int nS = 0, nN = 0, nL = 0, nC = 0,
3411         nT = 0; // logical index including skipped
3412     int nCr = 0, nTr = 0; // number of requested units
3413     int nPkg = 0, nCo = 0, n_new = 0, n_old = 0, nCpP = 0, nTpC = 0; // counters
3414     hwloc_obj_t hT, hC, hL, hN, hS; // hwloc objects (pointers to)
3415     int L2depth, idx;
3416 
3417     // check support of extensions ----------------------------------
3418     int numa_support = 0, tile_support = 0;
3419     if (__kmp_pu_os_idx)
3420       hT = hwloc_get_pu_obj_by_os_index(tp,
3421                                         __kmp_pu_os_idx[__kmp_avail_proc - 1]);
3422     else
3423       hT = hwloc_get_obj_by_type(tp, HWLOC_OBJ_PU, __kmp_avail_proc - 1);
3424     if (hT == NULL) { // something's gone wrong
3425       KMP_WARNING(AffHWSubsetUnsupported);
3426       goto _exit;
3427     }
3428     // check NUMA node
3429     hN = hwloc_get_ancestor_obj_by_type(tp, HWLOC_OBJ_NUMANODE, hT);
3430     hS = hwloc_get_ancestor_obj_by_type(tp, HWLOC_OBJ_PACKAGE, hT);
3431     if (hN != NULL && hN->depth > hS->depth) {
3432       numa_support = 1; // 1 in case socket includes node(s)
3433     } else if (__kmp_hws_node.num > 0) {
3434       // don't support sockets inside NUMA node (no such HW found for testing)
3435       KMP_WARNING(AffHWSubsetUnsupported);
3436       goto _exit;
3437     }
3438     // check L2 cahce, get object by depth because of multiple caches
3439     L2depth = hwloc_get_cache_type_depth(tp, 2, HWLOC_OBJ_CACHE_UNIFIED);
3440     hL = hwloc_get_ancestor_obj_by_depth(tp, L2depth, hT);
3441     if (hL != NULL &&
3442         __kmp_hwloc_count_children_by_type(tp, hL, HWLOC_OBJ_CORE, &hC) > 1) {
3443       tile_support = 1; // no sense to count L2 if it includes single core
3444     } else if (__kmp_hws_tile.num > 0) {
3445       if (__kmp_hws_core.num == 0) {
3446         __kmp_hws_core = __kmp_hws_tile; // replace L2 with core
3447         __kmp_hws_tile.num = 0;
3448       } else {
3449         // L2 and core are both requested, but represent same object
3450         KMP_WARNING(AffHWSubsetInvalid);
3451         goto _exit;
3452       }
3453     }
3454     // end of check of extensions -----------------------------------
3455 
3456     // fill in unset items, validate settings -----------------------
3457     if (__kmp_hws_socket.num == 0)
3458       __kmp_hws_socket.num = nPackages; // use all available sockets
3459     if (__kmp_hws_socket.offset >= nPackages) {
3460       KMP_WARNING(AffHWSubsetManySockets);
3461       goto _exit;
3462     }
3463     if (numa_support) {
3464       hN = NULL;
3465       int NN = __kmp_hwloc_count_children_by_type(tp, hS, HWLOC_OBJ_NUMANODE,
3466                                                   &hN); // num nodes in socket
3467       if (__kmp_hws_node.num == 0)
3468         __kmp_hws_node.num = NN; // use all available nodes
3469       if (__kmp_hws_node.offset >= NN) {
3470         KMP_WARNING(AffHWSubsetManyNodes);
3471         goto _exit;
3472       }
3473       if (tile_support) {
3474         // get num tiles in node
3475         int NL = __kmp_hwloc_count_children_by_depth(tp, hN, L2depth, &hL);
3476         if (__kmp_hws_tile.num == 0) {
3477           __kmp_hws_tile.num = NL + 1;
3478         } // use all available tiles, some node may have more tiles, thus +1
3479         if (__kmp_hws_tile.offset >= NL) {
3480           KMP_WARNING(AffHWSubsetManyTiles);
3481           goto _exit;
3482         }
3483         int NC = __kmp_hwloc_count_children_by_type(tp, hL, HWLOC_OBJ_CORE,
3484                                                     &hC); // num cores in tile
3485         if (__kmp_hws_core.num == 0)
3486           __kmp_hws_core.num = NC; // use all available cores
3487         if (__kmp_hws_core.offset >= NC) {
3488           KMP_WARNING(AffHWSubsetManyCores);
3489           goto _exit;
3490         }
3491       } else { // tile_support
3492         int NC = __kmp_hwloc_count_children_by_type(tp, hN, HWLOC_OBJ_CORE,
3493                                                     &hC); // num cores in node
3494         if (__kmp_hws_core.num == 0)
3495           __kmp_hws_core.num = NC; // use all available cores
3496         if (__kmp_hws_core.offset >= NC) {
3497           KMP_WARNING(AffHWSubsetManyCores);
3498           goto _exit;
3499         }
3500       } // tile_support
3501     } else { // numa_support
3502       if (tile_support) {
3503         // get num tiles in socket
3504         int NL = __kmp_hwloc_count_children_by_depth(tp, hS, L2depth, &hL);
3505         if (__kmp_hws_tile.num == 0)
3506           __kmp_hws_tile.num = NL; // use all available tiles
3507         if (__kmp_hws_tile.offset >= NL) {
3508           KMP_WARNING(AffHWSubsetManyTiles);
3509           goto _exit;
3510         }
3511         int NC = __kmp_hwloc_count_children_by_type(tp, hL, HWLOC_OBJ_CORE,
3512                                                     &hC); // num cores in tile
3513         if (__kmp_hws_core.num == 0)
3514           __kmp_hws_core.num = NC; // use all available cores
3515         if (__kmp_hws_core.offset >= NC) {
3516           KMP_WARNING(AffHWSubsetManyCores);
3517           goto _exit;
3518         }
3519       } else { // tile_support
3520         int NC = __kmp_hwloc_count_children_by_type(tp, hS, HWLOC_OBJ_CORE,
3521                                                     &hC); // num cores in socket
3522         if (__kmp_hws_core.num == 0)
3523           __kmp_hws_core.num = NC; // use all available cores
3524         if (__kmp_hws_core.offset >= NC) {
3525           KMP_WARNING(AffHWSubsetManyCores);
3526           goto _exit;
3527         }
3528       } // tile_support
3529     }
3530     if (__kmp_hws_proc.num == 0)
3531       __kmp_hws_proc.num = __kmp_nThreadsPerCore; // use all available procs
3532     if (__kmp_hws_proc.offset >= __kmp_nThreadsPerCore) {
3533       KMP_WARNING(AffHWSubsetManyProcs);
3534       goto _exit;
3535     }
3536     // end of validation --------------------------------------------
3537 
3538     if (pAddr) // pAddr is NULL in case of affinity_none
3539       newAddr = (AddrUnsPair *)__kmp_allocate(sizeof(AddrUnsPair) *
3540                                               __kmp_avail_proc); // max size
3541     // main loop to form HW subset ----------------------------------
3542     hS = NULL;
3543     int NP = hwloc_get_nbobjs_by_type(tp, HWLOC_OBJ_PACKAGE);
3544     for (int s = 0; s < NP; ++s) {
3545       // Check Socket -----------------------------------------------
3546       hS = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_PACKAGE, hS);
3547       if (!__kmp_hwloc_obj_has_PUs(tp, hS))
3548         continue; // skip socket if all PUs are out of fullMask
3549       ++nS; // only count objects those have PUs in affinity mask
3550       if (nS <= __kmp_hws_socket.offset ||
3551           nS > __kmp_hws_socket.num + __kmp_hws_socket.offset) {
3552         n_old += __kmp_hwloc_skip_PUs_obj(tp, hS); // skip socket
3553         continue; // move to next socket
3554       }
3555       nCr = 0; // count number of cores per socket
3556       // socket requested, go down the topology tree
3557       // check 4 cases: (+NUMA+Tile), (+NUMA-Tile), (-NUMA+Tile), (-NUMA-Tile)
3558       if (numa_support) {
3559         nN = 0;
3560         hN = NULL;
3561         // num nodes in current socket
3562         int NN =
3563             __kmp_hwloc_count_children_by_type(tp, hS, HWLOC_OBJ_NUMANODE, &hN);
3564         for (int n = 0; n < NN; ++n) {
3565           // Check NUMA Node ----------------------------------------
3566           if (!__kmp_hwloc_obj_has_PUs(tp, hN)) {
3567             hN = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_NUMANODE, hN);
3568             continue; // skip node if all PUs are out of fullMask
3569           }
3570           ++nN;
3571           if (nN <= __kmp_hws_node.offset ||
3572               nN > __kmp_hws_node.num + __kmp_hws_node.offset) {
3573             // skip node as not requested
3574             n_old += __kmp_hwloc_skip_PUs_obj(tp, hN); // skip node
3575             hN = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_NUMANODE, hN);
3576             continue; // move to next node
3577           }
3578           // node requested, go down the topology tree
3579           if (tile_support) {
3580             nL = 0;
3581             hL = NULL;
3582             int NL = __kmp_hwloc_count_children_by_depth(tp, hN, L2depth, &hL);
3583             for (int l = 0; l < NL; ++l) {
3584               // Check L2 (tile) ------------------------------------
3585               if (!__kmp_hwloc_obj_has_PUs(tp, hL)) {
3586                 hL = hwloc_get_next_obj_by_depth(tp, L2depth, hL);
3587                 continue; // skip tile if all PUs are out of fullMask
3588               }
3589               ++nL;
3590               if (nL <= __kmp_hws_tile.offset ||
3591                   nL > __kmp_hws_tile.num + __kmp_hws_tile.offset) {
3592                 // skip tile as not requested
3593                 n_old += __kmp_hwloc_skip_PUs_obj(tp, hL); // skip tile
3594                 hL = hwloc_get_next_obj_by_depth(tp, L2depth, hL);
3595                 continue; // move to next tile
3596               }
3597               // tile requested, go down the topology tree
3598               nC = 0;
3599               hC = NULL;
3600               // num cores in current tile
3601               int NC = __kmp_hwloc_count_children_by_type(tp, hL,
3602                                                           HWLOC_OBJ_CORE, &hC);
3603               for (int c = 0; c < NC; ++c) {
3604                 // Check Core ---------------------------------------
3605                 if (!__kmp_hwloc_obj_has_PUs(tp, hC)) {
3606                   hC = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_CORE, hC);
3607                   continue; // skip core if all PUs are out of fullMask
3608                 }
3609                 ++nC;
3610                 if (nC <= __kmp_hws_core.offset ||
3611                     nC > __kmp_hws_core.num + __kmp_hws_core.offset) {
3612                   // skip node as not requested
3613                   n_old += __kmp_hwloc_skip_PUs_obj(tp, hC); // skip core
3614                   hC = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_CORE, hC);
3615                   continue; // move to next node
3616                 }
3617                 // core requested, go down to PUs
3618                 nT = 0;
3619                 nTr = 0;
3620                 hT = NULL;
3621                 // num procs in current core
3622                 int NT = __kmp_hwloc_count_children_by_type(tp, hC,
3623                                                             HWLOC_OBJ_PU, &hT);
3624                 for (int t = 0; t < NT; ++t) {
3625                   // Check PU ---------------------------------------
3626                   idx = hT->os_index;
3627                   if (!KMP_CPU_ISSET(idx, __kmp_affin_fullMask)) {
3628                     hT = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_PU, hT);
3629                     continue; // skip PU if not in fullMask
3630                   }
3631                   ++nT;
3632                   if (nT <= __kmp_hws_proc.offset ||
3633                       nT > __kmp_hws_proc.num + __kmp_hws_proc.offset) {
3634                     // skip PU
3635                     KMP_CPU_CLR(idx, __kmp_affin_fullMask);
3636                     ++n_old;
3637                     KC_TRACE(200, ("KMP_HW_SUBSET: skipped proc %d\n", idx));
3638                     hT = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_PU, hT);
3639                     continue; // move to next node
3640                   }
3641                   ++nTr;
3642                   if (pAddr) // collect requested thread's data
3643                     newAddr[n_new] = (*pAddr)[n_old];
3644                   ++n_new;
3645                   ++n_old;
3646                   hT = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_PU, hT);
3647                 } // threads loop
3648                 if (nTr > 0) {
3649                   ++nCr; // num cores per socket
3650                   ++nCo; // total num cores
3651                   if (nTr > nTpC)
3652                     nTpC = nTr; // calc max threads per core
3653                 }
3654                 hC = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_CORE, hC);
3655               } // cores loop
3656               hL = hwloc_get_next_obj_by_depth(tp, L2depth, hL);
3657             } // tiles loop
3658           } else { // tile_support
3659             // no tiles, check cores
3660             nC = 0;
3661             hC = NULL;
3662             // num cores in current node
3663             int NC =
3664                 __kmp_hwloc_count_children_by_type(tp, hN, HWLOC_OBJ_CORE, &hC);
3665             for (int c = 0; c < NC; ++c) {
3666               // Check Core ---------------------------------------
3667               if (!__kmp_hwloc_obj_has_PUs(tp, hC)) {
3668                 hC = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_CORE, hC);
3669                 continue; // skip core if all PUs are out of fullMask
3670               }
3671               ++nC;
3672               if (nC <= __kmp_hws_core.offset ||
3673                   nC > __kmp_hws_core.num + __kmp_hws_core.offset) {
3674                 // skip node as not requested
3675                 n_old += __kmp_hwloc_skip_PUs_obj(tp, hC); // skip core
3676                 hC = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_CORE, hC);
3677                 continue; // move to next node
3678               }
3679               // core requested, go down to PUs
3680               nT = 0;
3681               nTr = 0;
3682               hT = NULL;
3683               int NT =
3684                   __kmp_hwloc_count_children_by_type(tp, hC, HWLOC_OBJ_PU, &hT);
3685               for (int t = 0; t < NT; ++t) {
3686                 // Check PU ---------------------------------------
3687                 idx = hT->os_index;
3688                 if (!KMP_CPU_ISSET(idx, __kmp_affin_fullMask)) {
3689                   hT = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_PU, hT);
3690                   continue; // skip PU if not in fullMask
3691                 }
3692                 ++nT;
3693                 if (nT <= __kmp_hws_proc.offset ||
3694                     nT > __kmp_hws_proc.num + __kmp_hws_proc.offset) {
3695                   // skip PU
3696                   KMP_CPU_CLR(idx, __kmp_affin_fullMask);
3697                   ++n_old;
3698                   KC_TRACE(200, ("KMP_HW_SUBSET: skipped proc %d\n", idx));
3699                   hT = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_PU, hT);
3700                   continue; // move to next node
3701                 }
3702                 ++nTr;
3703                 if (pAddr) // collect requested thread's data
3704                   newAddr[n_new] = (*pAddr)[n_old];
3705                 ++n_new;
3706                 ++n_old;
3707                 hT = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_PU, hT);
3708               } // threads loop
3709               if (nTr > 0) {
3710                 ++nCr; // num cores per socket
3711                 ++nCo; // total num cores
3712                 if (nTr > nTpC)
3713                   nTpC = nTr; // calc max threads per core
3714               }
3715               hC = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_CORE, hC);
3716             } // cores loop
3717           } // tiles support
3718           hN = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_NUMANODE, hN);
3719         } // nodes loop
3720       } else { // numa_support
3721         // no NUMA support
3722         if (tile_support) {
3723           nL = 0;
3724           hL = NULL;
3725           // num tiles in current socket
3726           int NL = __kmp_hwloc_count_children_by_depth(tp, hS, L2depth, &hL);
3727           for (int l = 0; l < NL; ++l) {
3728             // Check L2 (tile) ------------------------------------
3729             if (!__kmp_hwloc_obj_has_PUs(tp, hL)) {
3730               hL = hwloc_get_next_obj_by_depth(tp, L2depth, hL);
3731               continue; // skip tile if all PUs are out of fullMask
3732             }
3733             ++nL;
3734             if (nL <= __kmp_hws_tile.offset ||
3735                 nL > __kmp_hws_tile.num + __kmp_hws_tile.offset) {
3736               // skip tile as not requested
3737               n_old += __kmp_hwloc_skip_PUs_obj(tp, hL); // skip tile
3738               hL = hwloc_get_next_obj_by_depth(tp, L2depth, hL);
3739               continue; // move to next tile
3740             }
3741             // tile requested, go down the topology tree
3742             nC = 0;
3743             hC = NULL;
3744             // num cores per tile
3745             int NC =
3746                 __kmp_hwloc_count_children_by_type(tp, hL, HWLOC_OBJ_CORE, &hC);
3747             for (int c = 0; c < NC; ++c) {
3748               // Check Core ---------------------------------------
3749               if (!__kmp_hwloc_obj_has_PUs(tp, hC)) {
3750                 hC = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_CORE, hC);
3751                 continue; // skip core if all PUs are out of fullMask
3752               }
3753               ++nC;
3754               if (nC <= __kmp_hws_core.offset ||
3755                   nC > __kmp_hws_core.num + __kmp_hws_core.offset) {
3756                 // skip node as not requested
3757                 n_old += __kmp_hwloc_skip_PUs_obj(tp, hC); // skip core
3758                 hC = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_CORE, hC);
3759                 continue; // move to next node
3760               }
3761               // core requested, go down to PUs
3762               nT = 0;
3763               nTr = 0;
3764               hT = NULL;
3765               // num procs per core
3766               int NT =
3767                   __kmp_hwloc_count_children_by_type(tp, hC, HWLOC_OBJ_PU, &hT);
3768               for (int t = 0; t < NT; ++t) {
3769                 // Check PU ---------------------------------------
3770                 idx = hT->os_index;
3771                 if (!KMP_CPU_ISSET(idx, __kmp_affin_fullMask)) {
3772                   hT = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_PU, hT);
3773                   continue; // skip PU if not in fullMask
3774                 }
3775                 ++nT;
3776                 if (nT <= __kmp_hws_proc.offset ||
3777                     nT > __kmp_hws_proc.num + __kmp_hws_proc.offset) {
3778                   // skip PU
3779                   KMP_CPU_CLR(idx, __kmp_affin_fullMask);
3780                   ++n_old;
3781                   KC_TRACE(200, ("KMP_HW_SUBSET: skipped proc %d\n", idx));
3782                   hT = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_PU, hT);
3783                   continue; // move to next node
3784                 }
3785                 ++nTr;
3786                 if (pAddr) // collect requested thread's data
3787                   newAddr[n_new] = (*pAddr)[n_old];
3788                 ++n_new;
3789                 ++n_old;
3790                 hT = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_PU, hT);
3791               } // threads loop
3792               if (nTr > 0) {
3793                 ++nCr; // num cores per socket
3794                 ++nCo; // total num cores
3795                 if (nTr > nTpC)
3796                   nTpC = nTr; // calc max threads per core
3797               }
3798               hC = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_CORE, hC);
3799             } // cores loop
3800             hL = hwloc_get_next_obj_by_depth(tp, L2depth, hL);
3801           } // tiles loop
3802         } else { // tile_support
3803           // no tiles, check cores
3804           nC = 0;
3805           hC = NULL;
3806           // num cores in socket
3807           int NC =
3808               __kmp_hwloc_count_children_by_type(tp, hS, HWLOC_OBJ_CORE, &hC);
3809           for (int c = 0; c < NC; ++c) {
3810             // Check Core -------------------------------------------
3811             if (!__kmp_hwloc_obj_has_PUs(tp, hC)) {
3812               hC = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_CORE, hC);
3813               continue; // skip core if all PUs are out of fullMask
3814             }
3815             ++nC;
3816             if (nC <= __kmp_hws_core.offset ||
3817                 nC > __kmp_hws_core.num + __kmp_hws_core.offset) {
3818               // skip node as not requested
3819               n_old += __kmp_hwloc_skip_PUs_obj(tp, hC); // skip core
3820               hC = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_CORE, hC);
3821               continue; // move to next node
3822             }
3823             // core requested, go down to PUs
3824             nT = 0;
3825             nTr = 0;
3826             hT = NULL;
3827             // num procs per core
3828             int NT =
3829                 __kmp_hwloc_count_children_by_type(tp, hC, HWLOC_OBJ_PU, &hT);
3830             for (int t = 0; t < NT; ++t) {
3831               // Check PU ---------------------------------------
3832               idx = hT->os_index;
3833               if (!KMP_CPU_ISSET(idx, __kmp_affin_fullMask)) {
3834                 hT = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_PU, hT);
3835                 continue; // skip PU if not in fullMask
3836               }
3837               ++nT;
3838               if (nT <= __kmp_hws_proc.offset ||
3839                   nT > __kmp_hws_proc.num + __kmp_hws_proc.offset) {
3840                 // skip PU
3841                 KMP_CPU_CLR(idx, __kmp_affin_fullMask);
3842                 ++n_old;
3843                 KC_TRACE(200, ("KMP_HW_SUBSET: skipped proc %d\n", idx));
3844                 hT = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_PU, hT);
3845                 continue; // move to next node
3846               }
3847               ++nTr;
3848               if (pAddr) // collect requested thread's data
3849                 newAddr[n_new] = (*pAddr)[n_old];
3850               ++n_new;
3851               ++n_old;
3852               hT = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_PU, hT);
3853             } // threads loop
3854             if (nTr > 0) {
3855               ++nCr; // num cores per socket
3856               ++nCo; // total num cores
3857               if (nTr > nTpC)
3858                 nTpC = nTr; // calc max threads per core
3859             }
3860             hC = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_CORE, hC);
3861           } // cores loop
3862         } // tiles support
3863       } // numa_support
3864       if (nCr > 0) { // found cores?
3865         ++nPkg; // num sockets
3866         if (nCr > nCpP)
3867           nCpP = nCr; // calc max cores per socket
3868       }
3869     } // sockets loop
3870 
3871     // check the subset is valid
3872     KMP_DEBUG_ASSERT(n_old == __kmp_avail_proc);
3873     KMP_DEBUG_ASSERT(nPkg > 0);
3874     KMP_DEBUG_ASSERT(nCpP > 0);
3875     KMP_DEBUG_ASSERT(nTpC > 0);
3876     KMP_DEBUG_ASSERT(nCo > 0);
3877     KMP_DEBUG_ASSERT(nPkg <= nPackages);
3878     KMP_DEBUG_ASSERT(nCpP <= nCoresPerPkg);
3879     KMP_DEBUG_ASSERT(nTpC <= __kmp_nThreadsPerCore);
3880     KMP_DEBUG_ASSERT(nCo <= __kmp_ncores);
3881 
3882     nPackages = nPkg; // correct num sockets
3883     nCoresPerPkg = nCpP; // correct num cores per socket
3884     __kmp_nThreadsPerCore = nTpC; // correct num threads per core
3885     __kmp_avail_proc = n_new; // correct num procs
3886     __kmp_ncores = nCo; // correct num cores
3887     // hwloc topology method end
3888   } else
3889 #endif // KMP_USE_HWLOC
3890   {
3891     int n_old = 0, n_new = 0, proc_num = 0;
3892     if (__kmp_hws_node.num > 0 || __kmp_hws_tile.num > 0) {
3893       KMP_WARNING(AffHWSubsetNoHWLOC);
3894       goto _exit;
3895     }
3896     if (__kmp_hws_socket.num == 0)
3897       __kmp_hws_socket.num = nPackages; // use all available sockets
3898     if (__kmp_hws_core.num == 0)
3899       __kmp_hws_core.num = nCoresPerPkg; // use all available cores
3900     if (__kmp_hws_proc.num == 0 || __kmp_hws_proc.num > __kmp_nThreadsPerCore)
3901       __kmp_hws_proc.num = __kmp_nThreadsPerCore; // use all HW contexts
3902     if (!__kmp_affinity_uniform_topology()) {
3903       KMP_WARNING(AffHWSubsetNonUniform);
3904       goto _exit; // don't support non-uniform topology
3905     }
3906     if (depth > 3) {
3907       KMP_WARNING(AffHWSubsetNonThreeLevel);
3908       goto _exit; // don't support not-3-level topology
3909     }
3910     if (__kmp_hws_socket.offset + __kmp_hws_socket.num > nPackages) {
3911       KMP_WARNING(AffHWSubsetManySockets);
3912       goto _exit;
3913     }
3914     if (__kmp_hws_core.offset + __kmp_hws_core.num > nCoresPerPkg) {
3915       KMP_WARNING(AffHWSubsetManyCores);
3916       goto _exit;
3917     }
3918     // Form the requested subset
3919     if (pAddr) // pAddr is NULL in case of affinity_none
3920       newAddr = (AddrUnsPair *)__kmp_allocate(
3921           sizeof(AddrUnsPair) * __kmp_hws_socket.num * __kmp_hws_core.num *
3922           __kmp_hws_proc.num);
3923     for (int i = 0; i < nPackages; ++i) {
3924       if (i < __kmp_hws_socket.offset ||
3925           i >= __kmp_hws_socket.offset + __kmp_hws_socket.num) {
3926         // skip not-requested socket
3927         n_old += nCoresPerPkg * __kmp_nThreadsPerCore;
3928         if (__kmp_pu_os_idx != NULL) {
3929           // walk through skipped socket
3930           for (int j = 0; j < nCoresPerPkg; ++j) {
3931             for (int k = 0; k < __kmp_nThreadsPerCore; ++k) {
3932               KMP_CPU_CLR(__kmp_pu_os_idx[proc_num], __kmp_affin_fullMask);
3933               ++proc_num;
3934             }
3935           }
3936         }
3937       } else {
3938         // walk through requested socket
3939         for (int j = 0; j < nCoresPerPkg; ++j) {
3940           if (j < __kmp_hws_core.offset ||
3941               j >= __kmp_hws_core.offset +
3942                        __kmp_hws_core.num) { // skip not-requested core
3943             n_old += __kmp_nThreadsPerCore;
3944             if (__kmp_pu_os_idx != NULL) {
3945               for (int k = 0; k < __kmp_nThreadsPerCore; ++k) {
3946                 KMP_CPU_CLR(__kmp_pu_os_idx[proc_num], __kmp_affin_fullMask);
3947                 ++proc_num;
3948               }
3949             }
3950           } else {
3951             // walk through requested core
3952             for (int k = 0; k < __kmp_nThreadsPerCore; ++k) {
3953               if (k < __kmp_hws_proc.num) {
3954                 if (pAddr) // collect requested thread's data
3955                   newAddr[n_new] = (*pAddr)[n_old];
3956                 n_new++;
3957               } else {
3958                 if (__kmp_pu_os_idx != NULL)
3959                   KMP_CPU_CLR(__kmp_pu_os_idx[proc_num], __kmp_affin_fullMask);
3960               }
3961               n_old++;
3962               ++proc_num;
3963             }
3964           }
3965         }
3966       }
3967     }
3968     KMP_DEBUG_ASSERT(n_old == nPackages * nCoresPerPkg * __kmp_nThreadsPerCore);
3969     KMP_DEBUG_ASSERT(n_new ==
3970                      __kmp_hws_socket.num * __kmp_hws_core.num *
3971                          __kmp_hws_proc.num);
3972     nPackages = __kmp_hws_socket.num; // correct nPackages
3973     nCoresPerPkg = __kmp_hws_core.num; // correct nCoresPerPkg
3974     __kmp_nThreadsPerCore = __kmp_hws_proc.num; // correct __kmp_nThreadsPerCore
3975     __kmp_avail_proc = n_new; // correct avail_proc
3976     __kmp_ncores = nPackages * __kmp_hws_core.num; // correct ncores
3977   } // non-hwloc topology method
3978   if (pAddr) {
3979     __kmp_free(*pAddr);
3980     *pAddr = newAddr; // replace old topology with new one
3981   }
3982   if (__kmp_affinity_verbose) {
3983     char m[KMP_AFFIN_MASK_PRINT_LEN];
3984     __kmp_affinity_print_mask(m, KMP_AFFIN_MASK_PRINT_LEN,
3985                               __kmp_affin_fullMask);
3986     if (__kmp_affinity_respect_mask) {
3987       KMP_INFORM(InitOSProcSetRespect, "KMP_HW_SUBSET", m);
3988     } else {
3989       KMP_INFORM(InitOSProcSetNotRespect, "KMP_HW_SUBSET", m);
3990     }
3991     KMP_INFORM(AvailableOSProc, "KMP_HW_SUBSET", __kmp_avail_proc);
3992     kmp_str_buf_t buf;
3993     __kmp_str_buf_init(&buf);
3994     __kmp_str_buf_print(&buf, "%d", nPackages);
3995     KMP_INFORM(TopologyExtra, "KMP_HW_SUBSET", buf.str, nCoresPerPkg,
3996                __kmp_nThreadsPerCore, __kmp_ncores);
3997     __kmp_str_buf_free(&buf);
3998   }
3999 _exit:
4000   if (__kmp_pu_os_idx != NULL) {
4001     __kmp_free(__kmp_pu_os_idx);
4002     __kmp_pu_os_idx = NULL;
4003   }
4004 }
4005 
4006 // This function figures out the deepest level at which there is at least one
4007 // cluster/core with more than one processing unit bound to it.
__kmp_affinity_find_core_level(const AddrUnsPair * address2os,int nprocs,int bottom_level)4008 static int __kmp_affinity_find_core_level(const AddrUnsPair *address2os,
4009                                           int nprocs, int bottom_level) {
4010   int core_level = 0;
4011 
4012   for (int i = 0; i < nprocs; i++) {
4013     for (int j = bottom_level; j > 0; j--) {
4014       if (address2os[i].first.labels[j] > 0) {
4015         if (core_level < (j - 1)) {
4016           core_level = j - 1;
4017         }
4018       }
4019     }
4020   }
4021   return core_level;
4022 }
4023 
4024 // This function counts number of clusters/cores at given level.
__kmp_affinity_compute_ncores(const AddrUnsPair * address2os,int nprocs,int bottom_level,int core_level)4025 static int __kmp_affinity_compute_ncores(const AddrUnsPair *address2os,
4026                                          int nprocs, int bottom_level,
4027                                          int core_level) {
4028   int ncores = 0;
4029   int i, j;
4030 
4031   j = bottom_level;
4032   for (i = 0; i < nprocs; i++) {
4033     for (j = bottom_level; j > core_level; j--) {
4034       if ((i + 1) < nprocs) {
4035         if (address2os[i + 1].first.labels[j] > 0) {
4036           break;
4037         }
4038       }
4039     }
4040     if (j == core_level) {
4041       ncores++;
4042     }
4043   }
4044   if (j > core_level) {
4045     // In case of ( nprocs < __kmp_avail_proc ) we may end too deep and miss one
4046     // core. May occur when called from __kmp_affinity_find_core().
4047     ncores++;
4048   }
4049   return ncores;
4050 }
4051 
4052 // This function finds to which cluster/core given processing unit is bound.
__kmp_affinity_find_core(const AddrUnsPair * address2os,int proc,int bottom_level,int core_level)4053 static int __kmp_affinity_find_core(const AddrUnsPair *address2os, int proc,
4054                                     int bottom_level, int core_level) {
4055   return __kmp_affinity_compute_ncores(address2os, proc + 1, bottom_level,
4056                                        core_level) -
4057          1;
4058 }
4059 
4060 // This function finds maximal number of processing units bound to a
4061 // cluster/core at given level.
__kmp_affinity_max_proc_per_core(const AddrUnsPair * address2os,int nprocs,int bottom_level,int core_level)4062 static int __kmp_affinity_max_proc_per_core(const AddrUnsPair *address2os,
4063                                             int nprocs, int bottom_level,
4064                                             int core_level) {
4065   int maxprocpercore = 0;
4066 
4067   if (core_level < bottom_level) {
4068     for (int i = 0; i < nprocs; i++) {
4069       int percore = address2os[i].first.labels[core_level + 1] + 1;
4070 
4071       if (percore > maxprocpercore) {
4072         maxprocpercore = percore;
4073       }
4074     }
4075   } else {
4076     maxprocpercore = 1;
4077   }
4078   return maxprocpercore;
4079 }
4080 
4081 static AddrUnsPair *address2os = NULL;
4082 static int *procarr = NULL;
4083 static int __kmp_aff_depth = 0;
4084 
4085 #if KMP_USE_HIER_SCHED
4086 #define KMP_EXIT_AFF_NONE                                                      \
4087   KMP_ASSERT(__kmp_affinity_type == affinity_none);                            \
4088   KMP_ASSERT(address2os == NULL);                                              \
4089   __kmp_apply_thread_places(NULL, 0);                                          \
4090   __kmp_create_affinity_none_places();                                         \
4091   __kmp_dispatch_set_hierarchy_values();                                       \
4092   return;
4093 #else
4094 #define KMP_EXIT_AFF_NONE                                                      \
4095   KMP_ASSERT(__kmp_affinity_type == affinity_none);                            \
4096   KMP_ASSERT(address2os == NULL);                                              \
4097   __kmp_apply_thread_places(NULL, 0);                                          \
4098   __kmp_create_affinity_none_places();                                         \
4099   return;
4100 #endif
4101 
4102 // Create a one element mask array (set of places) which only contains the
4103 // initial process's affinity mask
__kmp_create_affinity_none_places()4104 static void __kmp_create_affinity_none_places() {
4105   KMP_ASSERT(__kmp_affin_fullMask != NULL);
4106   KMP_ASSERT(__kmp_affinity_type == affinity_none);
4107   __kmp_affinity_num_masks = 1;
4108   KMP_CPU_ALLOC_ARRAY(__kmp_affinity_masks, __kmp_affinity_num_masks);
4109   kmp_affin_mask_t *dest = KMP_CPU_INDEX(__kmp_affinity_masks, 0);
4110   KMP_CPU_COPY(dest, __kmp_affin_fullMask);
4111 }
4112 
__kmp_affinity_cmp_Address_child_num(const void * a,const void * b)4113 static int __kmp_affinity_cmp_Address_child_num(const void *a, const void *b) {
4114   const Address *aa = &(((const AddrUnsPair *)a)->first);
4115   const Address *bb = &(((const AddrUnsPair *)b)->first);
4116   unsigned depth = aa->depth;
4117   unsigned i;
4118   KMP_DEBUG_ASSERT(depth == bb->depth);
4119   KMP_DEBUG_ASSERT((unsigned)__kmp_affinity_compact <= depth);
4120   KMP_DEBUG_ASSERT(__kmp_affinity_compact >= 0);
4121   for (i = 0; i < (unsigned)__kmp_affinity_compact; i++) {
4122     int j = depth - i - 1;
4123     if (aa->childNums[j] < bb->childNums[j])
4124       return -1;
4125     if (aa->childNums[j] > bb->childNums[j])
4126       return 1;
4127   }
4128   for (; i < depth; i++) {
4129     int j = i - __kmp_affinity_compact;
4130     if (aa->childNums[j] < bb->childNums[j])
4131       return -1;
4132     if (aa->childNums[j] > bb->childNums[j])
4133       return 1;
4134   }
4135   return 0;
4136 }
4137 
__kmp_aux_affinity_initialize(void)4138 static void __kmp_aux_affinity_initialize(void) {
4139   if (__kmp_affinity_masks != NULL) {
4140     KMP_ASSERT(__kmp_affin_fullMask != NULL);
4141     return;
4142   }
4143 
4144   // Create the "full" mask - this defines all of the processors that we
4145   // consider to be in the machine model. If respect is set, then it is the
4146   // initialization thread's affinity mask. Otherwise, it is all processors that
4147   // we know about on the machine.
4148   if (__kmp_affin_fullMask == NULL) {
4149     KMP_CPU_ALLOC(__kmp_affin_fullMask);
4150   }
4151   if (KMP_AFFINITY_CAPABLE()) {
4152     if (__kmp_affinity_respect_mask) {
4153       __kmp_get_system_affinity(__kmp_affin_fullMask, TRUE);
4154 
4155       // Count the number of available processors.
4156       unsigned i;
4157       __kmp_avail_proc = 0;
4158       KMP_CPU_SET_ITERATE(i, __kmp_affin_fullMask) {
4159         if (!KMP_CPU_ISSET(i, __kmp_affin_fullMask)) {
4160           continue;
4161         }
4162         __kmp_avail_proc++;
4163       }
4164       if (__kmp_avail_proc > __kmp_xproc) {
4165         if (__kmp_affinity_verbose ||
4166             (__kmp_affinity_warnings &&
4167              (__kmp_affinity_type != affinity_none))) {
4168           KMP_WARNING(ErrorInitializeAffinity);
4169         }
4170         __kmp_affinity_type = affinity_none;
4171         KMP_AFFINITY_DISABLE();
4172         return;
4173       }
4174     } else {
4175       __kmp_affinity_entire_machine_mask(__kmp_affin_fullMask);
4176       __kmp_avail_proc = __kmp_xproc;
4177     }
4178   }
4179 
4180   if (__kmp_affinity_gran == affinity_gran_tile &&
4181       // check if user's request is valid
4182       __kmp_affinity_dispatch->get_api_type() == KMPAffinity::NATIVE_OS) {
4183     KMP_WARNING(AffTilesNoHWLOC, "KMP_AFFINITY");
4184     __kmp_affinity_gran = affinity_gran_package;
4185   }
4186 
4187   int depth = -1;
4188   kmp_i18n_id_t msg_id = kmp_i18n_null;
4189 
4190   // For backward compatibility, setting KMP_CPUINFO_FILE =>
4191   // KMP_TOPOLOGY_METHOD=cpuinfo
4192   if ((__kmp_cpuinfo_file != NULL) &&
4193       (__kmp_affinity_top_method == affinity_top_method_all)) {
4194     __kmp_affinity_top_method = affinity_top_method_cpuinfo;
4195   }
4196 
4197   if (__kmp_affinity_top_method == affinity_top_method_all) {
4198     // In the default code path, errors are not fatal - we just try using
4199     // another method. We only emit a warning message if affinity is on, or the
4200     // verbose flag is set, an the nowarnings flag was not set.
4201     const char *file_name = NULL;
4202     int line = 0;
4203 #if KMP_USE_HWLOC
4204     if (depth < 0 &&
4205         __kmp_affinity_dispatch->get_api_type() == KMPAffinity::HWLOC) {
4206       if (__kmp_affinity_verbose) {
4207         KMP_INFORM(AffUsingHwloc, "KMP_AFFINITY");
4208       }
4209       if (!__kmp_hwloc_error) {
4210         depth = __kmp_affinity_create_hwloc_map(&address2os, &msg_id);
4211         if (depth == 0) {
4212           KMP_EXIT_AFF_NONE;
4213         } else if (depth < 0 && __kmp_affinity_verbose) {
4214           KMP_INFORM(AffIgnoringHwloc, "KMP_AFFINITY");
4215         }
4216       } else if (__kmp_affinity_verbose) {
4217         KMP_INFORM(AffIgnoringHwloc, "KMP_AFFINITY");
4218       }
4219     }
4220 #endif
4221 
4222 #if KMP_ARCH_X86 || KMP_ARCH_X86_64
4223 
4224     if (depth < 0) {
4225       if (__kmp_affinity_verbose) {
4226         KMP_INFORM(AffInfoStr, "KMP_AFFINITY", KMP_I18N_STR(Decodingx2APIC));
4227       }
4228 
4229       file_name = NULL;
4230       depth = __kmp_affinity_create_x2apicid_map(&address2os, &msg_id);
4231       if (depth == 0) {
4232         KMP_EXIT_AFF_NONE;
4233       }
4234 
4235       if (depth < 0) {
4236         if (__kmp_affinity_verbose) {
4237           if (msg_id != kmp_i18n_null) {
4238             KMP_INFORM(AffInfoStrStr, "KMP_AFFINITY",
4239                        __kmp_i18n_catgets(msg_id),
4240                        KMP_I18N_STR(DecodingLegacyAPIC));
4241           } else {
4242             KMP_INFORM(AffInfoStr, "KMP_AFFINITY",
4243                        KMP_I18N_STR(DecodingLegacyAPIC));
4244           }
4245         }
4246 
4247         file_name = NULL;
4248         depth = __kmp_affinity_create_apicid_map(&address2os, &msg_id);
4249         if (depth == 0) {
4250           KMP_EXIT_AFF_NONE;
4251         }
4252       }
4253     }
4254 
4255 #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */
4256 
4257 #if KMP_OS_LINUX
4258 
4259     if (depth < 0) {
4260       if (__kmp_affinity_verbose) {
4261         if (msg_id != kmp_i18n_null) {
4262           KMP_INFORM(AffStrParseFilename, "KMP_AFFINITY",
4263                      __kmp_i18n_catgets(msg_id), "/proc/cpuinfo");
4264         } else {
4265           KMP_INFORM(AffParseFilename, "KMP_AFFINITY", "/proc/cpuinfo");
4266         }
4267       }
4268 
4269       FILE *f = fopen("/proc/cpuinfo", "r");
4270       if (f == NULL) {
4271         msg_id = kmp_i18n_str_CantOpenCpuinfo;
4272       } else {
4273         file_name = "/proc/cpuinfo";
4274         depth =
4275             __kmp_affinity_create_cpuinfo_map(&address2os, &line, &msg_id, f);
4276         fclose(f);
4277         if (depth == 0) {
4278           KMP_EXIT_AFF_NONE;
4279         }
4280       }
4281     }
4282 
4283 #endif /* KMP_OS_LINUX */
4284 
4285 #if KMP_GROUP_AFFINITY
4286 
4287     if ((depth < 0) && (__kmp_num_proc_groups > 1)) {
4288       if (__kmp_affinity_verbose) {
4289         KMP_INFORM(AffWindowsProcGroupMap, "KMP_AFFINITY");
4290       }
4291 
4292       depth = __kmp_affinity_create_proc_group_map(&address2os, &msg_id);
4293       KMP_ASSERT(depth != 0);
4294     }
4295 
4296 #endif /* KMP_GROUP_AFFINITY */
4297 
4298     if (depth < 0) {
4299       if (__kmp_affinity_verbose && (msg_id != kmp_i18n_null)) {
4300         if (file_name == NULL) {
4301           KMP_INFORM(UsingFlatOS, __kmp_i18n_catgets(msg_id));
4302         } else if (line == 0) {
4303           KMP_INFORM(UsingFlatOSFile, file_name, __kmp_i18n_catgets(msg_id));
4304         } else {
4305           KMP_INFORM(UsingFlatOSFileLine, file_name, line,
4306                      __kmp_i18n_catgets(msg_id));
4307         }
4308       }
4309       // FIXME - print msg if msg_id = kmp_i18n_null ???
4310 
4311       file_name = "";
4312       depth = __kmp_affinity_create_flat_map(&address2os, &msg_id);
4313       if (depth == 0) {
4314         KMP_EXIT_AFF_NONE;
4315       }
4316       KMP_ASSERT(depth > 0);
4317       KMP_ASSERT(address2os != NULL);
4318     }
4319   }
4320 
4321 #if KMP_USE_HWLOC
4322   else if (__kmp_affinity_top_method == affinity_top_method_hwloc) {
4323     KMP_ASSERT(__kmp_affinity_dispatch->get_api_type() == KMPAffinity::HWLOC);
4324     if (__kmp_affinity_verbose) {
4325       KMP_INFORM(AffUsingHwloc, "KMP_AFFINITY");
4326     }
4327     depth = __kmp_affinity_create_hwloc_map(&address2os, &msg_id);
4328     if (depth == 0) {
4329       KMP_EXIT_AFF_NONE;
4330     }
4331   }
4332 #endif // KMP_USE_HWLOC
4333 
4334 // If the user has specified that a paricular topology discovery method is to be
4335 // used, then we abort if that method fails. The exception is group affinity,
4336 // which might have been implicitly set.
4337 
4338 #if KMP_ARCH_X86 || KMP_ARCH_X86_64
4339 
4340   else if (__kmp_affinity_top_method == affinity_top_method_x2apicid) {
4341     if (__kmp_affinity_verbose) {
4342       KMP_INFORM(AffInfoStr, "KMP_AFFINITY", KMP_I18N_STR(Decodingx2APIC));
4343     }
4344 
4345     depth = __kmp_affinity_create_x2apicid_map(&address2os, &msg_id);
4346     if (depth == 0) {
4347       KMP_EXIT_AFF_NONE;
4348     }
4349     if (depth < 0) {
4350       KMP_ASSERT(msg_id != kmp_i18n_null);
4351       KMP_FATAL(MsgExiting, __kmp_i18n_catgets(msg_id));
4352     }
4353   } else if (__kmp_affinity_top_method == affinity_top_method_apicid) {
4354     if (__kmp_affinity_verbose) {
4355       KMP_INFORM(AffInfoStr, "KMP_AFFINITY", KMP_I18N_STR(DecodingLegacyAPIC));
4356     }
4357 
4358     depth = __kmp_affinity_create_apicid_map(&address2os, &msg_id);
4359     if (depth == 0) {
4360       KMP_EXIT_AFF_NONE;
4361     }
4362     if (depth < 0) {
4363       KMP_ASSERT(msg_id != kmp_i18n_null);
4364       KMP_FATAL(MsgExiting, __kmp_i18n_catgets(msg_id));
4365     }
4366   }
4367 
4368 #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */
4369 
4370   else if (__kmp_affinity_top_method == affinity_top_method_cpuinfo) {
4371     const char *filename;
4372     if (__kmp_cpuinfo_file != NULL) {
4373       filename = __kmp_cpuinfo_file;
4374     } else {
4375       filename = "/proc/cpuinfo";
4376     }
4377 
4378     if (__kmp_affinity_verbose) {
4379       KMP_INFORM(AffParseFilename, "KMP_AFFINITY", filename);
4380     }
4381 
4382     FILE *f = fopen(filename, "r");
4383     if (f == NULL) {
4384       int code = errno;
4385       if (__kmp_cpuinfo_file != NULL) {
4386         __kmp_fatal(KMP_MSG(CantOpenFileForReading, filename), KMP_ERR(code),
4387                     KMP_HNT(NameComesFrom_CPUINFO_FILE), __kmp_msg_null);
4388       } else {
4389         __kmp_fatal(KMP_MSG(CantOpenFileForReading, filename), KMP_ERR(code),
4390                     __kmp_msg_null);
4391       }
4392     }
4393     int line = 0;
4394     depth = __kmp_affinity_create_cpuinfo_map(&address2os, &line, &msg_id, f);
4395     fclose(f);
4396     if (depth < 0) {
4397       KMP_ASSERT(msg_id != kmp_i18n_null);
4398       if (line > 0) {
4399         KMP_FATAL(FileLineMsgExiting, filename, line,
4400                   __kmp_i18n_catgets(msg_id));
4401       } else {
4402         KMP_FATAL(FileMsgExiting, filename, __kmp_i18n_catgets(msg_id));
4403       }
4404     }
4405     if (__kmp_affinity_type == affinity_none) {
4406       KMP_ASSERT(depth == 0);
4407       KMP_EXIT_AFF_NONE;
4408     }
4409   }
4410 
4411 #if KMP_GROUP_AFFINITY
4412 
4413   else if (__kmp_affinity_top_method == affinity_top_method_group) {
4414     if (__kmp_affinity_verbose) {
4415       KMP_INFORM(AffWindowsProcGroupMap, "KMP_AFFINITY");
4416     }
4417 
4418     depth = __kmp_affinity_create_proc_group_map(&address2os, &msg_id);
4419     KMP_ASSERT(depth != 0);
4420     if (depth < 0) {
4421       KMP_ASSERT(msg_id != kmp_i18n_null);
4422       KMP_FATAL(MsgExiting, __kmp_i18n_catgets(msg_id));
4423     }
4424   }
4425 
4426 #endif /* KMP_GROUP_AFFINITY */
4427 
4428   else if (__kmp_affinity_top_method == affinity_top_method_flat) {
4429     if (__kmp_affinity_verbose) {
4430       KMP_INFORM(AffUsingFlatOS, "KMP_AFFINITY");
4431     }
4432 
4433     depth = __kmp_affinity_create_flat_map(&address2os, &msg_id);
4434     if (depth == 0) {
4435       KMP_EXIT_AFF_NONE;
4436     }
4437     // should not fail
4438     KMP_ASSERT(depth > 0);
4439     KMP_ASSERT(address2os != NULL);
4440   }
4441 
4442 #if KMP_USE_HIER_SCHED
4443   __kmp_dispatch_set_hierarchy_values();
4444 #endif
4445 
4446   if (address2os == NULL) {
4447     if (KMP_AFFINITY_CAPABLE() &&
4448         (__kmp_affinity_verbose ||
4449          (__kmp_affinity_warnings && (__kmp_affinity_type != affinity_none)))) {
4450       KMP_WARNING(ErrorInitializeAffinity);
4451     }
4452     __kmp_affinity_type = affinity_none;
4453     __kmp_create_affinity_none_places();
4454     KMP_AFFINITY_DISABLE();
4455     return;
4456   }
4457 
4458   if (__kmp_affinity_gran == affinity_gran_tile
4459 #if KMP_USE_HWLOC
4460       && __kmp_tile_depth == 0
4461 #endif
4462       ) {
4463     // tiles requested but not detected, warn user on this
4464     KMP_WARNING(AffTilesNoTiles, "KMP_AFFINITY");
4465   }
4466 
4467   __kmp_apply_thread_places(&address2os, depth);
4468 
4469   // Create the table of masks, indexed by thread Id.
4470   unsigned maxIndex;
4471   unsigned numUnique;
4472   kmp_affin_mask_t *osId2Mask =
4473       __kmp_create_masks(&maxIndex, &numUnique, address2os, __kmp_avail_proc);
4474   if (__kmp_affinity_gran_levels == 0) {
4475     KMP_DEBUG_ASSERT((int)numUnique == __kmp_avail_proc);
4476   }
4477 
4478   // Set the childNums vector in all Address objects. This must be done before
4479   // we can sort using __kmp_affinity_cmp_Address_child_num(), which takes into
4480   // account the setting of __kmp_affinity_compact.
4481   __kmp_affinity_assign_child_nums(address2os, __kmp_avail_proc);
4482 
4483   switch (__kmp_affinity_type) {
4484 
4485   case affinity_explicit:
4486     KMP_DEBUG_ASSERT(__kmp_affinity_proclist != NULL);
4487 #if OMP_40_ENABLED
4488     if (__kmp_nested_proc_bind.bind_types[0] == proc_bind_intel)
4489 #endif
4490     {
4491       __kmp_affinity_process_proclist(
4492           &__kmp_affinity_masks, &__kmp_affinity_num_masks,
4493           __kmp_affinity_proclist, osId2Mask, maxIndex);
4494     }
4495 #if OMP_40_ENABLED
4496     else {
4497       __kmp_affinity_process_placelist(
4498           &__kmp_affinity_masks, &__kmp_affinity_num_masks,
4499           __kmp_affinity_proclist, osId2Mask, maxIndex);
4500     }
4501 #endif
4502     if (__kmp_affinity_num_masks == 0) {
4503       if (__kmp_affinity_verbose ||
4504           (__kmp_affinity_warnings && (__kmp_affinity_type != affinity_none))) {
4505         KMP_WARNING(AffNoValidProcID);
4506       }
4507       __kmp_affinity_type = affinity_none;
4508       __kmp_create_affinity_none_places();
4509       return;
4510     }
4511     break;
4512 
4513   // The other affinity types rely on sorting the Addresses according to some
4514   // permutation of the machine topology tree. Set __kmp_affinity_compact and
4515   // __kmp_affinity_offset appropriately, then jump to a common code fragment
4516   // to do the sort and create the array of affinity masks.
4517 
4518   case affinity_logical:
4519     __kmp_affinity_compact = 0;
4520     if (__kmp_affinity_offset) {
4521       __kmp_affinity_offset =
4522           __kmp_nThreadsPerCore * __kmp_affinity_offset % __kmp_avail_proc;
4523     }
4524     goto sortAddresses;
4525 
4526   case affinity_physical:
4527     if (__kmp_nThreadsPerCore > 1) {
4528       __kmp_affinity_compact = 1;
4529       if (__kmp_affinity_compact >= depth) {
4530         __kmp_affinity_compact = 0;
4531       }
4532     } else {
4533       __kmp_affinity_compact = 0;
4534     }
4535     if (__kmp_affinity_offset) {
4536       __kmp_affinity_offset =
4537           __kmp_nThreadsPerCore * __kmp_affinity_offset % __kmp_avail_proc;
4538     }
4539     goto sortAddresses;
4540 
4541   case affinity_scatter:
4542     if (__kmp_affinity_compact >= depth) {
4543       __kmp_affinity_compact = 0;
4544     } else {
4545       __kmp_affinity_compact = depth - 1 - __kmp_affinity_compact;
4546     }
4547     goto sortAddresses;
4548 
4549   case affinity_compact:
4550     if (__kmp_affinity_compact >= depth) {
4551       __kmp_affinity_compact = depth - 1;
4552     }
4553     goto sortAddresses;
4554 
4555   case affinity_balanced:
4556     if (depth <= 1) {
4557       if (__kmp_affinity_verbose || __kmp_affinity_warnings) {
4558         KMP_WARNING(AffBalancedNotAvail, "KMP_AFFINITY");
4559       }
4560       __kmp_affinity_type = affinity_none;
4561       __kmp_create_affinity_none_places();
4562       return;
4563     } else if (!__kmp_affinity_uniform_topology()) {
4564       // Save the depth for further usage
4565       __kmp_aff_depth = depth;
4566 
4567       int core_level = __kmp_affinity_find_core_level(
4568           address2os, __kmp_avail_proc, depth - 1);
4569       int ncores = __kmp_affinity_compute_ncores(address2os, __kmp_avail_proc,
4570                                                  depth - 1, core_level);
4571       int maxprocpercore = __kmp_affinity_max_proc_per_core(
4572           address2os, __kmp_avail_proc, depth - 1, core_level);
4573 
4574       int nproc = ncores * maxprocpercore;
4575       if ((nproc < 2) || (nproc < __kmp_avail_proc)) {
4576         if (__kmp_affinity_verbose || __kmp_affinity_warnings) {
4577           KMP_WARNING(AffBalancedNotAvail, "KMP_AFFINITY");
4578         }
4579         __kmp_affinity_type = affinity_none;
4580         return;
4581       }
4582 
4583       procarr = (int *)__kmp_allocate(sizeof(int) * nproc);
4584       for (int i = 0; i < nproc; i++) {
4585         procarr[i] = -1;
4586       }
4587 
4588       int lastcore = -1;
4589       int inlastcore = 0;
4590       for (int i = 0; i < __kmp_avail_proc; i++) {
4591         int proc = address2os[i].second;
4592         int core =
4593             __kmp_affinity_find_core(address2os, i, depth - 1, core_level);
4594 
4595         if (core == lastcore) {
4596           inlastcore++;
4597         } else {
4598           inlastcore = 0;
4599         }
4600         lastcore = core;
4601 
4602         procarr[core * maxprocpercore + inlastcore] = proc;
4603       }
4604     }
4605     if (__kmp_affinity_compact >= depth) {
4606       __kmp_affinity_compact = depth - 1;
4607     }
4608 
4609   sortAddresses:
4610     // Allocate the gtid->affinity mask table.
4611     if (__kmp_affinity_dups) {
4612       __kmp_affinity_num_masks = __kmp_avail_proc;
4613     } else {
4614       __kmp_affinity_num_masks = numUnique;
4615     }
4616 
4617 #if OMP_40_ENABLED
4618     if ((__kmp_nested_proc_bind.bind_types[0] != proc_bind_intel) &&
4619         (__kmp_affinity_num_places > 0) &&
4620         ((unsigned)__kmp_affinity_num_places < __kmp_affinity_num_masks)) {
4621       __kmp_affinity_num_masks = __kmp_affinity_num_places;
4622     }
4623 #endif
4624 
4625     KMP_CPU_ALLOC_ARRAY(__kmp_affinity_masks, __kmp_affinity_num_masks);
4626 
4627     // Sort the address2os table according to the current setting of
4628     // __kmp_affinity_compact, then fill out __kmp_affinity_masks.
4629     qsort(address2os, __kmp_avail_proc, sizeof(*address2os),
4630           __kmp_affinity_cmp_Address_child_num);
4631     {
4632       int i;
4633       unsigned j;
4634       for (i = 0, j = 0; i < __kmp_avail_proc; i++) {
4635         if ((!__kmp_affinity_dups) && (!address2os[i].first.leader)) {
4636           continue;
4637         }
4638         unsigned osId = address2os[i].second;
4639         kmp_affin_mask_t *src = KMP_CPU_INDEX(osId2Mask, osId);
4640         kmp_affin_mask_t *dest = KMP_CPU_INDEX(__kmp_affinity_masks, j);
4641         KMP_ASSERT(KMP_CPU_ISSET(osId, src));
4642         KMP_CPU_COPY(dest, src);
4643         if (++j >= __kmp_affinity_num_masks) {
4644           break;
4645         }
4646       }
4647       KMP_DEBUG_ASSERT(j == __kmp_affinity_num_masks);
4648     }
4649     break;
4650 
4651   default:
4652     KMP_ASSERT2(0, "Unexpected affinity setting");
4653   }
4654 
4655   KMP_CPU_FREE_ARRAY(osId2Mask, maxIndex + 1);
4656   machine_hierarchy.init(address2os, __kmp_avail_proc);
4657 }
4658 #undef KMP_EXIT_AFF_NONE
4659 
__kmp_affinity_initialize(void)4660 void __kmp_affinity_initialize(void) {
4661   // Much of the code above was written assumming that if a machine was not
4662   // affinity capable, then __kmp_affinity_type == affinity_none.  We now
4663   // explicitly represent this as __kmp_affinity_type == affinity_disabled.
4664   // There are too many checks for __kmp_affinity_type == affinity_none
4665   // in this code.  Instead of trying to change them all, check if
4666   // __kmp_affinity_type == affinity_disabled, and if so, slam it with
4667   // affinity_none, call the real initialization routine, then restore
4668   // __kmp_affinity_type to affinity_disabled.
4669   int disabled = (__kmp_affinity_type == affinity_disabled);
4670   if (!KMP_AFFINITY_CAPABLE()) {
4671     KMP_ASSERT(disabled);
4672   }
4673   if (disabled) {
4674     __kmp_affinity_type = affinity_none;
4675   }
4676   __kmp_aux_affinity_initialize();
4677   if (disabled) {
4678     __kmp_affinity_type = affinity_disabled;
4679   }
4680 }
4681 
__kmp_affinity_uninitialize(void)4682 void __kmp_affinity_uninitialize(void) {
4683   if (__kmp_affinity_masks != NULL) {
4684     KMP_CPU_FREE_ARRAY(__kmp_affinity_masks, __kmp_affinity_num_masks);
4685     __kmp_affinity_masks = NULL;
4686   }
4687   if (__kmp_affin_fullMask != NULL) {
4688     KMP_CPU_FREE(__kmp_affin_fullMask);
4689     __kmp_affin_fullMask = NULL;
4690   }
4691   __kmp_affinity_num_masks = 0;
4692   __kmp_affinity_type = affinity_default;
4693 #if OMP_40_ENABLED
4694   __kmp_affinity_num_places = 0;
4695 #endif
4696   if (__kmp_affinity_proclist != NULL) {
4697     __kmp_free(__kmp_affinity_proclist);
4698     __kmp_affinity_proclist = NULL;
4699   }
4700   if (address2os != NULL) {
4701     __kmp_free(address2os);
4702     address2os = NULL;
4703   }
4704   if (procarr != NULL) {
4705     __kmp_free(procarr);
4706     procarr = NULL;
4707   }
4708 #if KMP_USE_HWLOC
4709   if (__kmp_hwloc_topology != NULL) {
4710     hwloc_topology_destroy(__kmp_hwloc_topology);
4711     __kmp_hwloc_topology = NULL;
4712   }
4713 #endif
4714   KMPAffinity::destroy_api();
4715 }
4716 
__kmp_affinity_set_init_mask(int gtid,int isa_root)4717 void __kmp_affinity_set_init_mask(int gtid, int isa_root) {
4718   if (!KMP_AFFINITY_CAPABLE()) {
4719     return;
4720   }
4721 
4722   kmp_info_t *th = (kmp_info_t *)TCR_SYNC_PTR(__kmp_threads[gtid]);
4723   if (th->th.th_affin_mask == NULL) {
4724     KMP_CPU_ALLOC(th->th.th_affin_mask);
4725   } else {
4726     KMP_CPU_ZERO(th->th.th_affin_mask);
4727   }
4728 
4729   // Copy the thread mask to the kmp_info_t strucuture. If
4730   // __kmp_affinity_type == affinity_none, copy the "full" mask, i.e. one that
4731   // has all of the OS proc ids set, or if __kmp_affinity_respect_mask is set,
4732   // then the full mask is the same as the mask of the initialization thread.
4733   kmp_affin_mask_t *mask;
4734   int i;
4735 
4736 #if OMP_40_ENABLED
4737   if (KMP_AFFINITY_NON_PROC_BIND)
4738 #endif
4739   {
4740     if ((__kmp_affinity_type == affinity_none) ||
4741         (__kmp_affinity_type == affinity_balanced)) {
4742 #if KMP_GROUP_AFFINITY
4743       if (__kmp_num_proc_groups > 1) {
4744         return;
4745       }
4746 #endif
4747       KMP_ASSERT(__kmp_affin_fullMask != NULL);
4748       i = 0;
4749       mask = __kmp_affin_fullMask;
4750     } else {
4751       KMP_DEBUG_ASSERT(__kmp_affinity_num_masks > 0);
4752       i = (gtid + __kmp_affinity_offset) % __kmp_affinity_num_masks;
4753       mask = KMP_CPU_INDEX(__kmp_affinity_masks, i);
4754     }
4755   }
4756 #if OMP_40_ENABLED
4757   else {
4758     if ((!isa_root) ||
4759         (__kmp_nested_proc_bind.bind_types[0] == proc_bind_false)) {
4760 #if KMP_GROUP_AFFINITY
4761       if (__kmp_num_proc_groups > 1) {
4762         return;
4763       }
4764 #endif
4765       KMP_ASSERT(__kmp_affin_fullMask != NULL);
4766       i = KMP_PLACE_ALL;
4767       mask = __kmp_affin_fullMask;
4768     } else {
4769       // int i = some hash function or just a counter that doesn't
4770       // always start at 0.  Use gtid for now.
4771       KMP_DEBUG_ASSERT(__kmp_affinity_num_masks > 0);
4772       i = (gtid + __kmp_affinity_offset) % __kmp_affinity_num_masks;
4773       mask = KMP_CPU_INDEX(__kmp_affinity_masks, i);
4774     }
4775   }
4776 #endif
4777 
4778 #if OMP_40_ENABLED
4779   th->th.th_current_place = i;
4780   if (isa_root) {
4781     th->th.th_new_place = i;
4782     th->th.th_first_place = 0;
4783     th->th.th_last_place = __kmp_affinity_num_masks - 1;
4784   } else if (KMP_AFFINITY_NON_PROC_BIND) {
4785     // When using a Non-OMP_PROC_BIND affinity method,
4786     // set all threads' place-partition-var to the entire place list
4787     th->th.th_first_place = 0;
4788     th->th.th_last_place = __kmp_affinity_num_masks - 1;
4789   }
4790 
4791   if (i == KMP_PLACE_ALL) {
4792     KA_TRACE(100, ("__kmp_affinity_set_init_mask: binding T#%d to all places\n",
4793                    gtid));
4794   } else {
4795     KA_TRACE(100, ("__kmp_affinity_set_init_mask: binding T#%d to place %d\n",
4796                    gtid, i));
4797   }
4798 #else
4799   if (i == -1) {
4800     KA_TRACE(
4801         100,
4802         ("__kmp_affinity_set_init_mask: binding T#%d to __kmp_affin_fullMask\n",
4803          gtid));
4804   } else {
4805     KA_TRACE(100, ("__kmp_affinity_set_init_mask: binding T#%d to mask %d\n",
4806                    gtid, i));
4807   }
4808 #endif /* OMP_40_ENABLED */
4809 
4810   KMP_CPU_COPY(th->th.th_affin_mask, mask);
4811 
4812   if (__kmp_affinity_verbose
4813       /* to avoid duplicate printing (will be correctly printed on barrier) */
4814       && (__kmp_affinity_type == affinity_none ||
4815           (i != KMP_PLACE_ALL && __kmp_affinity_type != affinity_balanced))) {
4816     char buf[KMP_AFFIN_MASK_PRINT_LEN];
4817     __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN,
4818                               th->th.th_affin_mask);
4819     KMP_INFORM(BoundToOSProcSet, "KMP_AFFINITY", (kmp_int32)getpid(),
4820                __kmp_gettid(), gtid, buf);
4821   }
4822 
4823 #if KMP_OS_WINDOWS
4824   // On Windows* OS, the process affinity mask might have changed. If the user
4825   // didn't request affinity and this call fails, just continue silently.
4826   // See CQ171393.
4827   if (__kmp_affinity_type == affinity_none) {
4828     __kmp_set_system_affinity(th->th.th_affin_mask, FALSE);
4829   } else
4830 #endif
4831     __kmp_set_system_affinity(th->th.th_affin_mask, TRUE);
4832 }
4833 
4834 #if OMP_40_ENABLED
4835 
__kmp_affinity_set_place(int gtid)4836 void __kmp_affinity_set_place(int gtid) {
4837   if (!KMP_AFFINITY_CAPABLE()) {
4838     return;
4839   }
4840 
4841   kmp_info_t *th = (kmp_info_t *)TCR_SYNC_PTR(__kmp_threads[gtid]);
4842 
4843   KA_TRACE(100, ("__kmp_affinity_set_place: binding T#%d to place %d (current "
4844                  "place = %d)\n",
4845                  gtid, th->th.th_new_place, th->th.th_current_place));
4846 
4847   // Check that the new place is within this thread's partition.
4848   KMP_DEBUG_ASSERT(th->th.th_affin_mask != NULL);
4849   KMP_ASSERT(th->th.th_new_place >= 0);
4850   KMP_ASSERT((unsigned)th->th.th_new_place <= __kmp_affinity_num_masks);
4851   if (th->th.th_first_place <= th->th.th_last_place) {
4852     KMP_ASSERT((th->th.th_new_place >= th->th.th_first_place) &&
4853                (th->th.th_new_place <= th->th.th_last_place));
4854   } else {
4855     KMP_ASSERT((th->th.th_new_place <= th->th.th_first_place) ||
4856                (th->th.th_new_place >= th->th.th_last_place));
4857   }
4858 
4859   // Copy the thread mask to the kmp_info_t strucuture,
4860   // and set this thread's affinity.
4861   kmp_affin_mask_t *mask =
4862       KMP_CPU_INDEX(__kmp_affinity_masks, th->th.th_new_place);
4863   KMP_CPU_COPY(th->th.th_affin_mask, mask);
4864   th->th.th_current_place = th->th.th_new_place;
4865 
4866   if (__kmp_affinity_verbose) {
4867     char buf[KMP_AFFIN_MASK_PRINT_LEN];
4868     __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN,
4869                               th->th.th_affin_mask);
4870     KMP_INFORM(BoundToOSProcSet, "OMP_PROC_BIND", (kmp_int32)getpid(),
4871                __kmp_gettid(), gtid, buf);
4872   }
4873   __kmp_set_system_affinity(th->th.th_affin_mask, TRUE);
4874 }
4875 
4876 #endif /* OMP_40_ENABLED */
4877 
__kmp_aux_set_affinity(void ** mask)4878 int __kmp_aux_set_affinity(void **mask) {
4879   int gtid;
4880   kmp_info_t *th;
4881   int retval;
4882 
4883   if (!KMP_AFFINITY_CAPABLE()) {
4884     return -1;
4885   }
4886 
4887   gtid = __kmp_entry_gtid();
4888   KA_TRACE(1000, ; {
4889     char buf[KMP_AFFIN_MASK_PRINT_LEN];
4890     __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN,
4891                               (kmp_affin_mask_t *)(*mask));
4892     __kmp_debug_printf(
4893         "kmp_set_affinity: setting affinity mask for thread %d = %s\n", gtid,
4894         buf);
4895   });
4896 
4897   if (__kmp_env_consistency_check) {
4898     if ((mask == NULL) || (*mask == NULL)) {
4899       KMP_FATAL(AffinityInvalidMask, "kmp_set_affinity");
4900     } else {
4901       unsigned proc;
4902       int num_procs = 0;
4903 
4904       KMP_CPU_SET_ITERATE(proc, ((kmp_affin_mask_t *)(*mask))) {
4905         if (!KMP_CPU_ISSET(proc, __kmp_affin_fullMask)) {
4906           KMP_FATAL(AffinityInvalidMask, "kmp_set_affinity");
4907         }
4908         if (!KMP_CPU_ISSET(proc, (kmp_affin_mask_t *)(*mask))) {
4909           continue;
4910         }
4911         num_procs++;
4912       }
4913       if (num_procs == 0) {
4914         KMP_FATAL(AffinityInvalidMask, "kmp_set_affinity");
4915       }
4916 
4917 #if KMP_GROUP_AFFINITY
4918       if (__kmp_get_proc_group((kmp_affin_mask_t *)(*mask)) < 0) {
4919         KMP_FATAL(AffinityInvalidMask, "kmp_set_affinity");
4920       }
4921 #endif /* KMP_GROUP_AFFINITY */
4922     }
4923   }
4924 
4925   th = __kmp_threads[gtid];
4926   KMP_DEBUG_ASSERT(th->th.th_affin_mask != NULL);
4927   retval = __kmp_set_system_affinity((kmp_affin_mask_t *)(*mask), FALSE);
4928   if (retval == 0) {
4929     KMP_CPU_COPY(th->th.th_affin_mask, (kmp_affin_mask_t *)(*mask));
4930   }
4931 
4932 #if OMP_40_ENABLED
4933   th->th.th_current_place = KMP_PLACE_UNDEFINED;
4934   th->th.th_new_place = KMP_PLACE_UNDEFINED;
4935   th->th.th_first_place = 0;
4936   th->th.th_last_place = __kmp_affinity_num_masks - 1;
4937 
4938   // Turn off 4.0 affinity for the current tread at this parallel level.
4939   th->th.th_current_task->td_icvs.proc_bind = proc_bind_false;
4940 #endif
4941 
4942   return retval;
4943 }
4944 
__kmp_aux_get_affinity(void ** mask)4945 int __kmp_aux_get_affinity(void **mask) {
4946   int gtid;
4947   int retval;
4948   kmp_info_t *th;
4949 
4950   if (!KMP_AFFINITY_CAPABLE()) {
4951     return -1;
4952   }
4953 
4954   gtid = __kmp_entry_gtid();
4955   th = __kmp_threads[gtid];
4956   KMP_DEBUG_ASSERT(th->th.th_affin_mask != NULL);
4957 
4958   KA_TRACE(1000, ; {
4959     char buf[KMP_AFFIN_MASK_PRINT_LEN];
4960     __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN,
4961                               th->th.th_affin_mask);
4962     __kmp_printf("kmp_get_affinity: stored affinity mask for thread %d = %s\n",
4963                  gtid, buf);
4964   });
4965 
4966   if (__kmp_env_consistency_check) {
4967     if ((mask == NULL) || (*mask == NULL)) {
4968       KMP_FATAL(AffinityInvalidMask, "kmp_get_affinity");
4969     }
4970   }
4971 
4972 #if !KMP_OS_WINDOWS
4973 
4974   retval = __kmp_get_system_affinity((kmp_affin_mask_t *)(*mask), FALSE);
4975   KA_TRACE(1000, ; {
4976     char buf[KMP_AFFIN_MASK_PRINT_LEN];
4977     __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN,
4978                               (kmp_affin_mask_t *)(*mask));
4979     __kmp_printf("kmp_get_affinity: system affinity mask for thread %d = %s\n",
4980                  gtid, buf);
4981   });
4982   return retval;
4983 
4984 #else
4985 
4986   KMP_CPU_COPY((kmp_affin_mask_t *)(*mask), th->th.th_affin_mask);
4987   return 0;
4988 
4989 #endif /* KMP_OS_WINDOWS */
4990 }
4991 
__kmp_aux_get_affinity_max_proc()4992 int __kmp_aux_get_affinity_max_proc() {
4993   if (!KMP_AFFINITY_CAPABLE()) {
4994     return 0;
4995   }
4996 #if KMP_GROUP_AFFINITY
4997   if (__kmp_num_proc_groups > 1) {
4998     return (int)(__kmp_num_proc_groups * sizeof(DWORD_PTR) * CHAR_BIT);
4999   }
5000 #endif
5001   return __kmp_xproc;
5002 }
5003 
__kmp_aux_set_affinity_mask_proc(int proc,void ** mask)5004 int __kmp_aux_set_affinity_mask_proc(int proc, void **mask) {
5005   if (!KMP_AFFINITY_CAPABLE()) {
5006     return -1;
5007   }
5008 
5009   KA_TRACE(1000, ; {
5010     int gtid = __kmp_entry_gtid();
5011     char buf[KMP_AFFIN_MASK_PRINT_LEN];
5012     __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN,
5013                               (kmp_affin_mask_t *)(*mask));
5014     __kmp_debug_printf("kmp_set_affinity_mask_proc: setting proc %d in "
5015                        "affinity mask for thread %d = %s\n",
5016                        proc, gtid, buf);
5017   });
5018 
5019   if (__kmp_env_consistency_check) {
5020     if ((mask == NULL) || (*mask == NULL)) {
5021       KMP_FATAL(AffinityInvalidMask, "kmp_set_affinity_mask_proc");
5022     }
5023   }
5024 
5025   if ((proc < 0) || (proc >= __kmp_aux_get_affinity_max_proc())) {
5026     return -1;
5027   }
5028   if (!KMP_CPU_ISSET(proc, __kmp_affin_fullMask)) {
5029     return -2;
5030   }
5031 
5032   KMP_CPU_SET(proc, (kmp_affin_mask_t *)(*mask));
5033   return 0;
5034 }
5035 
__kmp_aux_unset_affinity_mask_proc(int proc,void ** mask)5036 int __kmp_aux_unset_affinity_mask_proc(int proc, void **mask) {
5037   if (!KMP_AFFINITY_CAPABLE()) {
5038     return -1;
5039   }
5040 
5041   KA_TRACE(1000, ; {
5042     int gtid = __kmp_entry_gtid();
5043     char buf[KMP_AFFIN_MASK_PRINT_LEN];
5044     __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN,
5045                               (kmp_affin_mask_t *)(*mask));
5046     __kmp_debug_printf("kmp_unset_affinity_mask_proc: unsetting proc %d in "
5047                        "affinity mask for thread %d = %s\n",
5048                        proc, gtid, buf);
5049   });
5050 
5051   if (__kmp_env_consistency_check) {
5052     if ((mask == NULL) || (*mask == NULL)) {
5053       KMP_FATAL(AffinityInvalidMask, "kmp_unset_affinity_mask_proc");
5054     }
5055   }
5056 
5057   if ((proc < 0) || (proc >= __kmp_aux_get_affinity_max_proc())) {
5058     return -1;
5059   }
5060   if (!KMP_CPU_ISSET(proc, __kmp_affin_fullMask)) {
5061     return -2;
5062   }
5063 
5064   KMP_CPU_CLR(proc, (kmp_affin_mask_t *)(*mask));
5065   return 0;
5066 }
5067 
__kmp_aux_get_affinity_mask_proc(int proc,void ** mask)5068 int __kmp_aux_get_affinity_mask_proc(int proc, void **mask) {
5069   if (!KMP_AFFINITY_CAPABLE()) {
5070     return -1;
5071   }
5072 
5073   KA_TRACE(1000, ; {
5074     int gtid = __kmp_entry_gtid();
5075     char buf[KMP_AFFIN_MASK_PRINT_LEN];
5076     __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN,
5077                               (kmp_affin_mask_t *)(*mask));
5078     __kmp_debug_printf("kmp_get_affinity_mask_proc: getting proc %d in "
5079                        "affinity mask for thread %d = %s\n",
5080                        proc, gtid, buf);
5081   });
5082 
5083   if (__kmp_env_consistency_check) {
5084     if ((mask == NULL) || (*mask == NULL)) {
5085       KMP_FATAL(AffinityInvalidMask, "kmp_get_affinity_mask_proc");
5086     }
5087   }
5088 
5089   if ((proc < 0) || (proc >= __kmp_aux_get_affinity_max_proc())) {
5090     return -1;
5091   }
5092   if (!KMP_CPU_ISSET(proc, __kmp_affin_fullMask)) {
5093     return 0;
5094   }
5095 
5096   return KMP_CPU_ISSET(proc, (kmp_affin_mask_t *)(*mask));
5097 }
5098 
5099 // Dynamic affinity settings - Affinity balanced
__kmp_balanced_affinity(kmp_info_t * th,int nthreads)5100 void __kmp_balanced_affinity(kmp_info_t *th, int nthreads) {
5101   KMP_DEBUG_ASSERT(th);
5102   bool fine_gran = true;
5103   int tid = th->th.th_info.ds.ds_tid;
5104 
5105   switch (__kmp_affinity_gran) {
5106   case affinity_gran_fine:
5107   case affinity_gran_thread:
5108     break;
5109   case affinity_gran_core:
5110     if (__kmp_nThreadsPerCore > 1) {
5111       fine_gran = false;
5112     }
5113     break;
5114   case affinity_gran_package:
5115     if (nCoresPerPkg > 1) {
5116       fine_gran = false;
5117     }
5118     break;
5119   default:
5120     fine_gran = false;
5121   }
5122 
5123   if (__kmp_affinity_uniform_topology()) {
5124     int coreID;
5125     int threadID;
5126     // Number of hyper threads per core in HT machine
5127     int __kmp_nth_per_core = __kmp_avail_proc / __kmp_ncores;
5128     // Number of cores
5129     int ncores = __kmp_ncores;
5130     if ((nPackages > 1) && (__kmp_nth_per_core <= 1)) {
5131       __kmp_nth_per_core = __kmp_avail_proc / nPackages;
5132       ncores = nPackages;
5133     }
5134     // How many threads will be bound to each core
5135     int chunk = nthreads / ncores;
5136     // How many cores will have an additional thread bound to it - "big cores"
5137     int big_cores = nthreads % ncores;
5138     // Number of threads on the big cores
5139     int big_nth = (chunk + 1) * big_cores;
5140     if (tid < big_nth) {
5141       coreID = tid / (chunk + 1);
5142       threadID = (tid % (chunk + 1)) % __kmp_nth_per_core;
5143     } else { // tid >= big_nth
5144       coreID = (tid - big_cores) / chunk;
5145       threadID = ((tid - big_cores) % chunk) % __kmp_nth_per_core;
5146     }
5147 
5148     KMP_DEBUG_ASSERT2(KMP_AFFINITY_CAPABLE(),
5149                       "Illegal set affinity operation when not capable");
5150 
5151     kmp_affin_mask_t *mask = th->th.th_affin_mask;
5152     KMP_CPU_ZERO(mask);
5153 
5154     if (fine_gran) {
5155       int osID = address2os[coreID * __kmp_nth_per_core + threadID].second;
5156       KMP_CPU_SET(osID, mask);
5157     } else {
5158       for (int i = 0; i < __kmp_nth_per_core; i++) {
5159         int osID;
5160         osID = address2os[coreID * __kmp_nth_per_core + i].second;
5161         KMP_CPU_SET(osID, mask);
5162       }
5163     }
5164     if (__kmp_affinity_verbose) {
5165       char buf[KMP_AFFIN_MASK_PRINT_LEN];
5166       __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, mask);
5167       KMP_INFORM(BoundToOSProcSet, "KMP_AFFINITY", (kmp_int32)getpid(),
5168                  __kmp_gettid(), tid, buf);
5169     }
5170     __kmp_set_system_affinity(mask, TRUE);
5171   } else { // Non-uniform topology
5172 
5173     kmp_affin_mask_t *mask = th->th.th_affin_mask;
5174     KMP_CPU_ZERO(mask);
5175 
5176     int core_level = __kmp_affinity_find_core_level(
5177         address2os, __kmp_avail_proc, __kmp_aff_depth - 1);
5178     int ncores = __kmp_affinity_compute_ncores(address2os, __kmp_avail_proc,
5179                                                __kmp_aff_depth - 1, core_level);
5180     int nth_per_core = __kmp_affinity_max_proc_per_core(
5181         address2os, __kmp_avail_proc, __kmp_aff_depth - 1, core_level);
5182 
5183     // For performance gain consider the special case nthreads ==
5184     // __kmp_avail_proc
5185     if (nthreads == __kmp_avail_proc) {
5186       if (fine_gran) {
5187         int osID = address2os[tid].second;
5188         KMP_CPU_SET(osID, mask);
5189       } else {
5190         int core = __kmp_affinity_find_core(address2os, tid,
5191                                             __kmp_aff_depth - 1, core_level);
5192         for (int i = 0; i < __kmp_avail_proc; i++) {
5193           int osID = address2os[i].second;
5194           if (__kmp_affinity_find_core(address2os, i, __kmp_aff_depth - 1,
5195                                        core_level) == core) {
5196             KMP_CPU_SET(osID, mask);
5197           }
5198         }
5199       }
5200     } else if (nthreads <= ncores) {
5201 
5202       int core = 0;
5203       for (int i = 0; i < ncores; i++) {
5204         // Check if this core from procarr[] is in the mask
5205         int in_mask = 0;
5206         for (int j = 0; j < nth_per_core; j++) {
5207           if (procarr[i * nth_per_core + j] != -1) {
5208             in_mask = 1;
5209             break;
5210           }
5211         }
5212         if (in_mask) {
5213           if (tid == core) {
5214             for (int j = 0; j < nth_per_core; j++) {
5215               int osID = procarr[i * nth_per_core + j];
5216               if (osID != -1) {
5217                 KMP_CPU_SET(osID, mask);
5218                 // For fine granularity it is enough to set the first available
5219                 // osID for this core
5220                 if (fine_gran) {
5221                   break;
5222                 }
5223               }
5224             }
5225             break;
5226           } else {
5227             core++;
5228           }
5229         }
5230       }
5231     } else { // nthreads > ncores
5232       // Array to save the number of processors at each core
5233       int *nproc_at_core = (int *)KMP_ALLOCA(sizeof(int) * ncores);
5234       // Array to save the number of cores with "x" available processors;
5235       int *ncores_with_x_procs =
5236           (int *)KMP_ALLOCA(sizeof(int) * (nth_per_core + 1));
5237       // Array to save the number of cores with # procs from x to nth_per_core
5238       int *ncores_with_x_to_max_procs =
5239           (int *)KMP_ALLOCA(sizeof(int) * (nth_per_core + 1));
5240 
5241       for (int i = 0; i <= nth_per_core; i++) {
5242         ncores_with_x_procs[i] = 0;
5243         ncores_with_x_to_max_procs[i] = 0;
5244       }
5245 
5246       for (int i = 0; i < ncores; i++) {
5247         int cnt = 0;
5248         for (int j = 0; j < nth_per_core; j++) {
5249           if (procarr[i * nth_per_core + j] != -1) {
5250             cnt++;
5251           }
5252         }
5253         nproc_at_core[i] = cnt;
5254         ncores_with_x_procs[cnt]++;
5255       }
5256 
5257       for (int i = 0; i <= nth_per_core; i++) {
5258         for (int j = i; j <= nth_per_core; j++) {
5259           ncores_with_x_to_max_procs[i] += ncores_with_x_procs[j];
5260         }
5261       }
5262 
5263       // Max number of processors
5264       int nproc = nth_per_core * ncores;
5265       // An array to keep number of threads per each context
5266       int *newarr = (int *)__kmp_allocate(sizeof(int) * nproc);
5267       for (int i = 0; i < nproc; i++) {
5268         newarr[i] = 0;
5269       }
5270 
5271       int nth = nthreads;
5272       int flag = 0;
5273       while (nth > 0) {
5274         for (int j = 1; j <= nth_per_core; j++) {
5275           int cnt = ncores_with_x_to_max_procs[j];
5276           for (int i = 0; i < ncores; i++) {
5277             // Skip the core with 0 processors
5278             if (nproc_at_core[i] == 0) {
5279               continue;
5280             }
5281             for (int k = 0; k < nth_per_core; k++) {
5282               if (procarr[i * nth_per_core + k] != -1) {
5283                 if (newarr[i * nth_per_core + k] == 0) {
5284                   newarr[i * nth_per_core + k] = 1;
5285                   cnt--;
5286                   nth--;
5287                   break;
5288                 } else {
5289                   if (flag != 0) {
5290                     newarr[i * nth_per_core + k]++;
5291                     cnt--;
5292                     nth--;
5293                     break;
5294                   }
5295                 }
5296               }
5297             }
5298             if (cnt == 0 || nth == 0) {
5299               break;
5300             }
5301           }
5302           if (nth == 0) {
5303             break;
5304           }
5305         }
5306         flag = 1;
5307       }
5308       int sum = 0;
5309       for (int i = 0; i < nproc; i++) {
5310         sum += newarr[i];
5311         if (sum > tid) {
5312           if (fine_gran) {
5313             int osID = procarr[i];
5314             KMP_CPU_SET(osID, mask);
5315           } else {
5316             int coreID = i / nth_per_core;
5317             for (int ii = 0; ii < nth_per_core; ii++) {
5318               int osID = procarr[coreID * nth_per_core + ii];
5319               if (osID != -1) {
5320                 KMP_CPU_SET(osID, mask);
5321               }
5322             }
5323           }
5324           break;
5325         }
5326       }
5327       __kmp_free(newarr);
5328     }
5329 
5330     if (__kmp_affinity_verbose) {
5331       char buf[KMP_AFFIN_MASK_PRINT_LEN];
5332       __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, mask);
5333       KMP_INFORM(BoundToOSProcSet, "KMP_AFFINITY", (kmp_int32)getpid(),
5334                  __kmp_gettid(), tid, buf);
5335     }
5336     __kmp_set_system_affinity(mask, TRUE);
5337   }
5338 }
5339 
5340 #if KMP_OS_LINUX
5341 // We don't need this entry for Windows because
5342 // there is GetProcessAffinityMask() api
5343 //
5344 // The intended usage is indicated by these steps:
5345 // 1) The user gets the current affinity mask
5346 // 2) Then sets the affinity by calling this function
5347 // 3) Error check the return value
5348 // 4) Use non-OpenMP parallelization
5349 // 5) Reset the affinity to what was stored in step 1)
5350 #ifdef __cplusplus
5351 extern "C"
5352 #endif
5353     int
kmp_set_thread_affinity_mask_initial()5354     kmp_set_thread_affinity_mask_initial()
5355 // the function returns 0 on success,
5356 //   -1 if we cannot bind thread
5357 //   >0 (errno) if an error happened during binding
5358 {
5359   int gtid = __kmp_get_gtid();
5360   if (gtid < 0) {
5361     // Do not touch non-omp threads
5362     KA_TRACE(30, ("kmp_set_thread_affinity_mask_initial: "
5363                   "non-omp thread, returning\n"));
5364     return -1;
5365   }
5366   if (!KMP_AFFINITY_CAPABLE() || !__kmp_init_middle) {
5367     KA_TRACE(30, ("kmp_set_thread_affinity_mask_initial: "
5368                   "affinity not initialized, returning\n"));
5369     return -1;
5370   }
5371   KA_TRACE(30, ("kmp_set_thread_affinity_mask_initial: "
5372                 "set full mask for thread %d\n",
5373                 gtid));
5374   KMP_DEBUG_ASSERT(__kmp_affin_fullMask != NULL);
5375   return __kmp_set_system_affinity(__kmp_affin_fullMask, FALSE);
5376 }
5377 #endif
5378 
5379 #endif // KMP_AFFINITY_SUPPORTED
5380