1 /*
2 * kmp_affinity.cpp -- affinity management
3 */
4
5 //===----------------------------------------------------------------------===//
6 //
7 // The LLVM Compiler Infrastructure
8 //
9 // This file is dual licensed under the MIT and the University of Illinois Open
10 // Source Licenses. See LICENSE.txt for details.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "kmp.h"
15 #include "kmp_affinity.h"
16 #include "kmp_i18n.h"
17 #include "kmp_io.h"
18 #include "kmp_str.h"
19 #include "kmp_wrapper_getpid.h"
20 #if KMP_USE_HIER_SCHED
21 #include "kmp_dispatch_hier.h"
22 #endif
23
24 // Store the real or imagined machine hierarchy here
25 static hierarchy_info machine_hierarchy;
26
__kmp_cleanup_hierarchy()27 void __kmp_cleanup_hierarchy() { machine_hierarchy.fini(); }
28
__kmp_get_hierarchy(kmp_uint32 nproc,kmp_bstate_t * thr_bar)29 void __kmp_get_hierarchy(kmp_uint32 nproc, kmp_bstate_t *thr_bar) {
30 kmp_uint32 depth;
31 // The test below is true if affinity is available, but set to "none". Need to
32 // init on first use of hierarchical barrier.
33 if (TCR_1(machine_hierarchy.uninitialized))
34 machine_hierarchy.init(NULL, nproc);
35
36 // Adjust the hierarchy in case num threads exceeds original
37 if (nproc > machine_hierarchy.base_num_threads)
38 machine_hierarchy.resize(nproc);
39
40 depth = machine_hierarchy.depth;
41 KMP_DEBUG_ASSERT(depth > 0);
42
43 thr_bar->depth = depth;
44 thr_bar->base_leaf_kids = (kmp_uint8)machine_hierarchy.numPerLevel[0] - 1;
45 thr_bar->skip_per_level = machine_hierarchy.skipPerLevel;
46 }
47
48 #if KMP_AFFINITY_SUPPORTED
49
50 bool KMPAffinity::picked_api = false;
51
operator new(size_t n)52 void *KMPAffinity::Mask::operator new(size_t n) { return __kmp_allocate(n); }
operator new[](size_t n)53 void *KMPAffinity::Mask::operator new[](size_t n) { return __kmp_allocate(n); }
operator delete(void * p)54 void KMPAffinity::Mask::operator delete(void *p) { __kmp_free(p); }
operator delete[](void * p)55 void KMPAffinity::Mask::operator delete[](void *p) { __kmp_free(p); }
operator new(size_t n)56 void *KMPAffinity::operator new(size_t n) { return __kmp_allocate(n); }
operator delete(void * p)57 void KMPAffinity::operator delete(void *p) { __kmp_free(p); }
58
pick_api()59 void KMPAffinity::pick_api() {
60 KMPAffinity *affinity_dispatch;
61 if (picked_api)
62 return;
63 #if KMP_USE_HWLOC
64 // Only use Hwloc if affinity isn't explicitly disabled and
65 // user requests Hwloc topology method
66 if (__kmp_affinity_top_method == affinity_top_method_hwloc &&
67 __kmp_affinity_type != affinity_disabled) {
68 affinity_dispatch = new KMPHwlocAffinity();
69 } else
70 #endif
71 {
72 affinity_dispatch = new KMPNativeAffinity();
73 }
74 __kmp_affinity_dispatch = affinity_dispatch;
75 picked_api = true;
76 }
77
destroy_api()78 void KMPAffinity::destroy_api() {
79 if (__kmp_affinity_dispatch != NULL) {
80 delete __kmp_affinity_dispatch;
81 __kmp_affinity_dispatch = NULL;
82 picked_api = false;
83 }
84 }
85
86 #define KMP_ADVANCE_SCAN(scan) \
87 while (*scan != '\0') { \
88 scan++; \
89 }
90
91 // Print the affinity mask to the character array in a pretty format.
92 // The format is a comma separated list of non-negative integers or integer
93 // ranges: e.g., 1,2,3-5,7,9-15
94 // The format can also be the string "{<empty>}" if no bits are set in mask
__kmp_affinity_print_mask(char * buf,int buf_len,kmp_affin_mask_t * mask)95 char *__kmp_affinity_print_mask(char *buf, int buf_len,
96 kmp_affin_mask_t *mask) {
97 int start = 0, finish = 0, previous = 0;
98 bool first_range;
99 KMP_ASSERT(buf);
100 KMP_ASSERT(buf_len >= 40);
101 KMP_ASSERT(mask);
102 char *scan = buf;
103 char *end = buf + buf_len - 1;
104
105 // Check for empty set.
106 if (mask->begin() == mask->end()) {
107 KMP_SNPRINTF(scan, end - scan + 1, "{<empty>}");
108 KMP_ADVANCE_SCAN(scan);
109 KMP_ASSERT(scan <= end);
110 return buf;
111 }
112
113 first_range = true;
114 start = mask->begin();
115 while (1) {
116 // Find next range
117 // [start, previous] is inclusive range of contiguous bits in mask
118 for (finish = mask->next(start), previous = start;
119 finish == previous + 1 && finish != mask->end();
120 finish = mask->next(finish)) {
121 previous = finish;
122 }
123
124 // The first range does not need a comma printed before it, but the rest
125 // of the ranges do need a comma beforehand
126 if (!first_range) {
127 KMP_SNPRINTF(scan, end - scan + 1, "%s", ",");
128 KMP_ADVANCE_SCAN(scan);
129 } else {
130 first_range = false;
131 }
132 // Range with three or more contiguous bits in the affinity mask
133 if (previous - start > 1) {
134 KMP_SNPRINTF(scan, end - scan + 1, "%d-%d", static_cast<int>(start),
135 static_cast<int>(previous));
136 } else {
137 // Range with one or two contiguous bits in the affinity mask
138 KMP_SNPRINTF(scan, end - scan + 1, "%d", static_cast<int>(start));
139 KMP_ADVANCE_SCAN(scan);
140 if (previous - start > 0) {
141 KMP_SNPRINTF(scan, end - scan + 1, ",%d", static_cast<int>(previous));
142 }
143 }
144 KMP_ADVANCE_SCAN(scan);
145 // Start over with new start point
146 start = finish;
147 if (start == mask->end())
148 break;
149 // Check for overflow
150 if (end - scan < 2)
151 break;
152 }
153
154 // Check for overflow
155 KMP_ASSERT(scan <= end);
156 return buf;
157 }
158 #undef KMP_ADVANCE_SCAN
159
160 // Print the affinity mask to the string buffer object in a pretty format
161 // The format is a comma separated list of non-negative integers or integer
162 // ranges: e.g., 1,2,3-5,7,9-15
163 // The format can also be the string "{<empty>}" if no bits are set in mask
__kmp_affinity_str_buf_mask(kmp_str_buf_t * buf,kmp_affin_mask_t * mask)164 kmp_str_buf_t *__kmp_affinity_str_buf_mask(kmp_str_buf_t *buf,
165 kmp_affin_mask_t *mask) {
166 int start = 0, finish = 0, previous = 0;
167 bool first_range;
168 KMP_ASSERT(buf);
169 KMP_ASSERT(mask);
170
171 __kmp_str_buf_clear(buf);
172
173 // Check for empty set.
174 if (mask->begin() == mask->end()) {
175 __kmp_str_buf_print(buf, "%s", "{<empty>}");
176 return buf;
177 }
178
179 first_range = true;
180 start = mask->begin();
181 while (1) {
182 // Find next range
183 // [start, previous] is inclusive range of contiguous bits in mask
184 for (finish = mask->next(start), previous = start;
185 finish == previous + 1 && finish != mask->end();
186 finish = mask->next(finish)) {
187 previous = finish;
188 }
189
190 // The first range does not need a comma printed before it, but the rest
191 // of the ranges do need a comma beforehand
192 if (!first_range) {
193 __kmp_str_buf_print(buf, "%s", ",");
194 } else {
195 first_range = false;
196 }
197 // Range with three or more contiguous bits in the affinity mask
198 if (previous - start > 1) {
199 __kmp_str_buf_print(buf, "%d-%d", static_cast<int>(start),
200 static_cast<int>(previous));
201 } else {
202 // Range with one or two contiguous bits in the affinity mask
203 __kmp_str_buf_print(buf, "%d", static_cast<int>(start));
204 if (previous - start > 0) {
205 __kmp_str_buf_print(buf, ",%d", static_cast<int>(previous));
206 }
207 }
208 // Start over with new start point
209 start = finish;
210 if (start == mask->end())
211 break;
212 }
213 return buf;
214 }
215
__kmp_affinity_entire_machine_mask(kmp_affin_mask_t * mask)216 void __kmp_affinity_entire_machine_mask(kmp_affin_mask_t *mask) {
217 KMP_CPU_ZERO(mask);
218
219 #if KMP_GROUP_AFFINITY
220
221 if (__kmp_num_proc_groups > 1) {
222 int group;
223 KMP_DEBUG_ASSERT(__kmp_GetActiveProcessorCount != NULL);
224 for (group = 0; group < __kmp_num_proc_groups; group++) {
225 int i;
226 int num = __kmp_GetActiveProcessorCount(group);
227 for (i = 0; i < num; i++) {
228 KMP_CPU_SET(i + group * (CHAR_BIT * sizeof(DWORD_PTR)), mask);
229 }
230 }
231 } else
232
233 #endif /* KMP_GROUP_AFFINITY */
234
235 {
236 int proc;
237 for (proc = 0; proc < __kmp_xproc; proc++) {
238 KMP_CPU_SET(proc, mask);
239 }
240 }
241 }
242
243 // When sorting by labels, __kmp_affinity_assign_child_nums() must first be
244 // called to renumber the labels from [0..n] and place them into the child_num
245 // vector of the address object. This is done in case the labels used for
246 // the children at one node of the hierarchy differ from those used for
247 // another node at the same level. Example: suppose the machine has 2 nodes
248 // with 2 packages each. The first node contains packages 601 and 602, and
249 // second node contains packages 603 and 604. If we try to sort the table
250 // for "scatter" affinity, the table will still be sorted 601, 602, 603, 604
251 // because we are paying attention to the labels themselves, not the ordinal
252 // child numbers. By using the child numbers in the sort, the result is
253 // {0,0}=601, {0,1}=603, {1,0}=602, {1,1}=604.
__kmp_affinity_assign_child_nums(AddrUnsPair * address2os,int numAddrs)254 static void __kmp_affinity_assign_child_nums(AddrUnsPair *address2os,
255 int numAddrs) {
256 KMP_DEBUG_ASSERT(numAddrs > 0);
257 int depth = address2os->first.depth;
258 unsigned *counts = (unsigned *)__kmp_allocate(depth * sizeof(unsigned));
259 unsigned *lastLabel = (unsigned *)__kmp_allocate(depth * sizeof(unsigned));
260 int labCt;
261 for (labCt = 0; labCt < depth; labCt++) {
262 address2os[0].first.childNums[labCt] = counts[labCt] = 0;
263 lastLabel[labCt] = address2os[0].first.labels[labCt];
264 }
265 int i;
266 for (i = 1; i < numAddrs; i++) {
267 for (labCt = 0; labCt < depth; labCt++) {
268 if (address2os[i].first.labels[labCt] != lastLabel[labCt]) {
269 int labCt2;
270 for (labCt2 = labCt + 1; labCt2 < depth; labCt2++) {
271 counts[labCt2] = 0;
272 lastLabel[labCt2] = address2os[i].first.labels[labCt2];
273 }
274 counts[labCt]++;
275 lastLabel[labCt] = address2os[i].first.labels[labCt];
276 break;
277 }
278 }
279 for (labCt = 0; labCt < depth; labCt++) {
280 address2os[i].first.childNums[labCt] = counts[labCt];
281 }
282 for (; labCt < (int)Address::maxDepth; labCt++) {
283 address2os[i].first.childNums[labCt] = 0;
284 }
285 }
286 __kmp_free(lastLabel);
287 __kmp_free(counts);
288 }
289
290 // All of the __kmp_affinity_create_*_map() routines should set
291 // __kmp_affinity_masks to a vector of affinity mask objects of length
292 // __kmp_affinity_num_masks, if __kmp_affinity_type != affinity_none, and return
293 // the number of levels in the machine topology tree (zero if
294 // __kmp_affinity_type == affinity_none).
295 //
296 // All of the __kmp_affinity_create_*_map() routines should set
297 // *__kmp_affin_fullMask to the affinity mask for the initialization thread.
298 // They need to save and restore the mask, and it could be needed later, so
299 // saving it is just an optimization to avoid calling kmp_get_system_affinity()
300 // again.
301 kmp_affin_mask_t *__kmp_affin_fullMask = NULL;
302
303 static int nCoresPerPkg, nPackages;
304 static int __kmp_nThreadsPerCore;
305 #ifndef KMP_DFLT_NTH_CORES
306 static int __kmp_ncores;
307 #endif
308 static int *__kmp_pu_os_idx = NULL;
309
310 // __kmp_affinity_uniform_topology() doesn't work when called from
311 // places which support arbitrarily many levels in the machine topology
312 // map, i.e. the non-default cases in __kmp_affinity_create_cpuinfo_map()
313 // __kmp_affinity_create_x2apicid_map().
__kmp_affinity_uniform_topology()314 inline static bool __kmp_affinity_uniform_topology() {
315 return __kmp_avail_proc == (__kmp_nThreadsPerCore * nCoresPerPkg * nPackages);
316 }
317
318 // Print out the detailed machine topology map, i.e. the physical locations
319 // of each OS proc.
__kmp_affinity_print_topology(AddrUnsPair * address2os,int len,int depth,int pkgLevel,int coreLevel,int threadLevel)320 static void __kmp_affinity_print_topology(AddrUnsPair *address2os, int len,
321 int depth, int pkgLevel,
322 int coreLevel, int threadLevel) {
323 int proc;
324
325 KMP_INFORM(OSProcToPhysicalThreadMap, "KMP_AFFINITY");
326 for (proc = 0; proc < len; proc++) {
327 int level;
328 kmp_str_buf_t buf;
329 __kmp_str_buf_init(&buf);
330 for (level = 0; level < depth; level++) {
331 if (level == threadLevel) {
332 __kmp_str_buf_print(&buf, "%s ", KMP_I18N_STR(Thread));
333 } else if (level == coreLevel) {
334 __kmp_str_buf_print(&buf, "%s ", KMP_I18N_STR(Core));
335 } else if (level == pkgLevel) {
336 __kmp_str_buf_print(&buf, "%s ", KMP_I18N_STR(Package));
337 } else if (level > pkgLevel) {
338 __kmp_str_buf_print(&buf, "%s_%d ", KMP_I18N_STR(Node),
339 level - pkgLevel - 1);
340 } else {
341 __kmp_str_buf_print(&buf, "L%d ", level);
342 }
343 __kmp_str_buf_print(&buf, "%d ", address2os[proc].first.labels[level]);
344 }
345 KMP_INFORM(OSProcMapToPack, "KMP_AFFINITY", address2os[proc].second,
346 buf.str);
347 __kmp_str_buf_free(&buf);
348 }
349 }
350
351 #if KMP_USE_HWLOC
352
__kmp_affinity_print_hwloc_tp(AddrUnsPair * addrP,int len,int depth,int * levels)353 static void __kmp_affinity_print_hwloc_tp(AddrUnsPair *addrP, int len,
354 int depth, int *levels) {
355 int proc;
356 kmp_str_buf_t buf;
357 __kmp_str_buf_init(&buf);
358 KMP_INFORM(OSProcToPhysicalThreadMap, "KMP_AFFINITY");
359 for (proc = 0; proc < len; proc++) {
360 __kmp_str_buf_print(&buf, "%s %d ", KMP_I18N_STR(Package),
361 addrP[proc].first.labels[0]);
362 if (depth > 1) {
363 int level = 1; // iterate over levels
364 int label = 1; // iterate over labels
365 if (__kmp_numa_detected)
366 // node level follows package
367 if (levels[level++] > 0)
368 __kmp_str_buf_print(&buf, "%s %d ", KMP_I18N_STR(Node),
369 addrP[proc].first.labels[label++]);
370 if (__kmp_tile_depth > 0)
371 // tile level follows node if any, or package
372 if (levels[level++] > 0)
373 __kmp_str_buf_print(&buf, "%s %d ", KMP_I18N_STR(Tile),
374 addrP[proc].first.labels[label++]);
375 if (levels[level++] > 0)
376 // core level follows
377 __kmp_str_buf_print(&buf, "%s %d ", KMP_I18N_STR(Core),
378 addrP[proc].first.labels[label++]);
379 if (levels[level++] > 0)
380 // thread level is the latest
381 __kmp_str_buf_print(&buf, "%s %d ", KMP_I18N_STR(Thread),
382 addrP[proc].first.labels[label++]);
383 KMP_DEBUG_ASSERT(label == depth);
384 }
385 KMP_INFORM(OSProcMapToPack, "KMP_AFFINITY", addrP[proc].second, buf.str);
386 __kmp_str_buf_clear(&buf);
387 }
388 __kmp_str_buf_free(&buf);
389 }
390
391 static int nNodePerPkg, nTilePerPkg, nTilePerNode, nCorePerNode, nCorePerTile;
392
393 // This function removes the topology levels that are radix 1 and don't offer
394 // further information about the topology. The most common example is when you
395 // have one thread context per core, we don't want the extra thread context
396 // level if it offers no unique labels. So they are removed.
397 // return value: the new depth of address2os
__kmp_affinity_remove_radix_one_levels(AddrUnsPair * addrP,int nTh,int depth,int * levels)398 static int __kmp_affinity_remove_radix_one_levels(AddrUnsPair *addrP, int nTh,
399 int depth, int *levels) {
400 int level;
401 int i;
402 int radix1_detected;
403 int new_depth = depth;
404 for (level = depth - 1; level > 0; --level) {
405 // Detect if this level is radix 1
406 radix1_detected = 1;
407 for (i = 1; i < nTh; ++i) {
408 if (addrP[0].first.labels[level] != addrP[i].first.labels[level]) {
409 // There are differing label values for this level so it stays
410 radix1_detected = 0;
411 break;
412 }
413 }
414 if (!radix1_detected)
415 continue;
416 // Radix 1 was detected
417 --new_depth;
418 levels[level] = -1; // mark level as not present in address2os array
419 if (level == new_depth) {
420 // "turn off" deepest level, just decrement the depth that removes
421 // the level from address2os array
422 for (i = 0; i < nTh; ++i) {
423 addrP[i].first.depth--;
424 }
425 } else {
426 // For other levels, we move labels over and also reduce the depth
427 int j;
428 for (j = level; j < new_depth; ++j) {
429 for (i = 0; i < nTh; ++i) {
430 addrP[i].first.labels[j] = addrP[i].first.labels[j + 1];
431 addrP[i].first.depth--;
432 }
433 levels[j + 1] -= 1;
434 }
435 }
436 }
437 return new_depth;
438 }
439
440 // Returns the number of objects of type 'type' below 'obj' within the topology
441 // tree structure. e.g., if obj is a HWLOC_OBJ_PACKAGE object, and type is
442 // HWLOC_OBJ_PU, then this will return the number of PU's under the SOCKET
443 // object.
__kmp_hwloc_get_nobjs_under_obj(hwloc_obj_t obj,hwloc_obj_type_t type)444 static int __kmp_hwloc_get_nobjs_under_obj(hwloc_obj_t obj,
445 hwloc_obj_type_t type) {
446 int retval = 0;
447 hwloc_obj_t first;
448 for (first = hwloc_get_obj_below_by_type(__kmp_hwloc_topology, obj->type,
449 obj->logical_index, type, 0);
450 first != NULL &&
451 hwloc_get_ancestor_obj_by_type(__kmp_hwloc_topology, obj->type, first) ==
452 obj;
453 first = hwloc_get_next_obj_by_type(__kmp_hwloc_topology, first->type,
454 first)) {
455 ++retval;
456 }
457 return retval;
458 }
459
__kmp_hwloc_count_children_by_depth(hwloc_topology_t t,hwloc_obj_t o,unsigned depth,hwloc_obj_t * f)460 static int __kmp_hwloc_count_children_by_depth(hwloc_topology_t t,
461 hwloc_obj_t o, unsigned depth,
462 hwloc_obj_t *f) {
463 if (o->depth == depth) {
464 if (*f == NULL)
465 *f = o; // output first descendant found
466 return 1;
467 }
468 int sum = 0;
469 for (unsigned i = 0; i < o->arity; i++)
470 sum += __kmp_hwloc_count_children_by_depth(t, o->children[i], depth, f);
471 return sum; // will be 0 if no one found (as PU arity is 0)
472 }
473
__kmp_hwloc_count_children_by_type(hwloc_topology_t t,hwloc_obj_t o,hwloc_obj_type_t type,hwloc_obj_t * f)474 static int __kmp_hwloc_count_children_by_type(hwloc_topology_t t, hwloc_obj_t o,
475 hwloc_obj_type_t type,
476 hwloc_obj_t *f) {
477 if (!hwloc_compare_types(o->type, type)) {
478 if (*f == NULL)
479 *f = o; // output first descendant found
480 return 1;
481 }
482 int sum = 0;
483 for (unsigned i = 0; i < o->arity; i++)
484 sum += __kmp_hwloc_count_children_by_type(t, o->children[i], type, f);
485 return sum; // will be 0 if no one found (as PU arity is 0)
486 }
487
__kmp_hwloc_process_obj_core_pu(AddrUnsPair * addrPair,int & nActiveThreads,int & num_active_cores,hwloc_obj_t obj,int depth,int * labels)488 static int __kmp_hwloc_process_obj_core_pu(AddrUnsPair *addrPair,
489 int &nActiveThreads,
490 int &num_active_cores,
491 hwloc_obj_t obj, int depth,
492 int *labels) {
493 hwloc_obj_t core = NULL;
494 hwloc_topology_t &tp = __kmp_hwloc_topology;
495 int NC = __kmp_hwloc_count_children_by_type(tp, obj, HWLOC_OBJ_CORE, &core);
496 for (int core_id = 0; core_id < NC; ++core_id, core = core->next_cousin) {
497 hwloc_obj_t pu = NULL;
498 KMP_DEBUG_ASSERT(core != NULL);
499 int num_active_threads = 0;
500 int NT = __kmp_hwloc_count_children_by_type(tp, core, HWLOC_OBJ_PU, &pu);
501 // int NT = core->arity; pu = core->first_child; // faster?
502 for (int pu_id = 0; pu_id < NT; ++pu_id, pu = pu->next_cousin) {
503 KMP_DEBUG_ASSERT(pu != NULL);
504 if (!KMP_CPU_ISSET(pu->os_index, __kmp_affin_fullMask))
505 continue; // skip inactive (inaccessible) unit
506 Address addr(depth + 2);
507 KA_TRACE(20, ("Hwloc inserting %d (%d) %d (%d) %d (%d) into address2os\n",
508 obj->os_index, obj->logical_index, core->os_index,
509 core->logical_index, pu->os_index, pu->logical_index));
510 for (int i = 0; i < depth; ++i)
511 addr.labels[i] = labels[i]; // package, etc.
512 addr.labels[depth] = core_id; // core
513 addr.labels[depth + 1] = pu_id; // pu
514 addrPair[nActiveThreads] = AddrUnsPair(addr, pu->os_index);
515 __kmp_pu_os_idx[nActiveThreads] = pu->os_index;
516 nActiveThreads++;
517 ++num_active_threads; // count active threads per core
518 }
519 if (num_active_threads) { // were there any active threads on the core?
520 ++__kmp_ncores; // count total active cores
521 ++num_active_cores; // count active cores per socket
522 if (num_active_threads > __kmp_nThreadsPerCore)
523 __kmp_nThreadsPerCore = num_active_threads; // calc maximum
524 }
525 }
526 return 0;
527 }
528
529 // Check if NUMA node detected below the package,
530 // and if tile object is detected and return its depth
__kmp_hwloc_check_numa()531 static int __kmp_hwloc_check_numa() {
532 hwloc_topology_t &tp = __kmp_hwloc_topology;
533 hwloc_obj_t hT, hC, hL, hN, hS; // hwloc objects (pointers to)
534 int depth;
535
536 // Get some PU
537 hT = hwloc_get_obj_by_type(tp, HWLOC_OBJ_PU, 0);
538 if (hT == NULL) // something has gone wrong
539 return 1;
540
541 // check NUMA node below PACKAGE
542 hN = hwloc_get_ancestor_obj_by_type(tp, HWLOC_OBJ_NUMANODE, hT);
543 hS = hwloc_get_ancestor_obj_by_type(tp, HWLOC_OBJ_PACKAGE, hT);
544 KMP_DEBUG_ASSERT(hS != NULL);
545 if (hN != NULL && hN->depth > hS->depth) {
546 __kmp_numa_detected = TRUE; // socket includes node(s)
547 if (__kmp_affinity_gran == affinity_gran_node) {
548 __kmp_affinity_gran == affinity_gran_numa;
549 }
550 }
551
552 // check tile, get object by depth because of multiple caches possible
553 depth = hwloc_get_cache_type_depth(tp, 2, HWLOC_OBJ_CACHE_UNIFIED);
554 hL = hwloc_get_ancestor_obj_by_depth(tp, depth, hT);
555 hC = NULL; // not used, but reset it here just in case
556 if (hL != NULL &&
557 __kmp_hwloc_count_children_by_type(tp, hL, HWLOC_OBJ_CORE, &hC) > 1)
558 __kmp_tile_depth = depth; // tile consists of multiple cores
559 return 0;
560 }
561
__kmp_affinity_create_hwloc_map(AddrUnsPair ** address2os,kmp_i18n_id_t * const msg_id)562 static int __kmp_affinity_create_hwloc_map(AddrUnsPair **address2os,
563 kmp_i18n_id_t *const msg_id) {
564 hwloc_topology_t &tp = __kmp_hwloc_topology; // shortcut of a long name
565 *address2os = NULL;
566 *msg_id = kmp_i18n_null;
567
568 // Save the affinity mask for the current thread.
569 kmp_affin_mask_t *oldMask;
570 KMP_CPU_ALLOC(oldMask);
571 __kmp_get_system_affinity(oldMask, TRUE);
572 __kmp_hwloc_check_numa();
573
574 if (!KMP_AFFINITY_CAPABLE()) {
575 // Hack to try and infer the machine topology using only the data
576 // available from cpuid on the current thread, and __kmp_xproc.
577 KMP_ASSERT(__kmp_affinity_type == affinity_none);
578
579 nCoresPerPkg = __kmp_hwloc_get_nobjs_under_obj(
580 hwloc_get_obj_by_type(tp, HWLOC_OBJ_PACKAGE, 0), HWLOC_OBJ_CORE);
581 __kmp_nThreadsPerCore = __kmp_hwloc_get_nobjs_under_obj(
582 hwloc_get_obj_by_type(tp, HWLOC_OBJ_CORE, 0), HWLOC_OBJ_PU);
583 __kmp_ncores = __kmp_xproc / __kmp_nThreadsPerCore;
584 nPackages = (__kmp_xproc + nCoresPerPkg - 1) / nCoresPerPkg;
585 if (__kmp_affinity_verbose) {
586 KMP_INFORM(AffNotCapableUseLocCpuidL11, "KMP_AFFINITY");
587 KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc);
588 if (__kmp_affinity_uniform_topology()) {
589 KMP_INFORM(Uniform, "KMP_AFFINITY");
590 } else {
591 KMP_INFORM(NonUniform, "KMP_AFFINITY");
592 }
593 KMP_INFORM(Topology, "KMP_AFFINITY", nPackages, nCoresPerPkg,
594 __kmp_nThreadsPerCore, __kmp_ncores);
595 }
596 KMP_CPU_FREE(oldMask);
597 return 0;
598 }
599
600 int depth = 3;
601 int levels[5] = {0, 1, 2, 3, 4}; // package, [node,] [tile,] core, thread
602 int labels[3] = {0}; // package [,node] [,tile] - head of lables array
603 if (__kmp_numa_detected)
604 ++depth;
605 if (__kmp_tile_depth)
606 ++depth;
607
608 // Allocate the data structure to be returned.
609 AddrUnsPair *retval =
610 (AddrUnsPair *)__kmp_allocate(sizeof(AddrUnsPair) * __kmp_avail_proc);
611 KMP_DEBUG_ASSERT(__kmp_pu_os_idx == NULL);
612 __kmp_pu_os_idx = (int *)__kmp_allocate(sizeof(int) * __kmp_avail_proc);
613
614 // When affinity is off, this routine will still be called to set
615 // __kmp_ncores, as well as __kmp_nThreadsPerCore,
616 // nCoresPerPkg, & nPackages. Make sure all these vars are set
617 // correctly, and return if affinity is not enabled.
618
619 hwloc_obj_t socket, node, tile;
620 int nActiveThreads = 0;
621 int socket_id = 0;
622 // re-calculate globals to count only accessible resources
623 __kmp_ncores = nPackages = nCoresPerPkg = __kmp_nThreadsPerCore = 0;
624 nNodePerPkg = nTilePerPkg = nTilePerNode = nCorePerNode = nCorePerTile = 0;
625 for (socket = hwloc_get_obj_by_type(tp, HWLOC_OBJ_PACKAGE, 0); socket != NULL;
626 socket = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_PACKAGE, socket),
627 socket_id++) {
628 labels[0] = socket_id;
629 if (__kmp_numa_detected) {
630 int NN;
631 int n_active_nodes = 0;
632 node = NULL;
633 NN = __kmp_hwloc_count_children_by_type(tp, socket, HWLOC_OBJ_NUMANODE,
634 &node);
635 for (int node_id = 0; node_id < NN; ++node_id, node = node->next_cousin) {
636 labels[1] = node_id;
637 if (__kmp_tile_depth) {
638 // NUMA + tiles
639 int NT;
640 int n_active_tiles = 0;
641 tile = NULL;
642 NT = __kmp_hwloc_count_children_by_depth(tp, node, __kmp_tile_depth,
643 &tile);
644 for (int tl_id = 0; tl_id < NT; ++tl_id, tile = tile->next_cousin) {
645 labels[2] = tl_id;
646 int n_active_cores = 0;
647 __kmp_hwloc_process_obj_core_pu(retval, nActiveThreads,
648 n_active_cores, tile, 3, labels);
649 if (n_active_cores) { // were there any active cores on the socket?
650 ++n_active_tiles; // count active tiles per node
651 if (n_active_cores > nCorePerTile)
652 nCorePerTile = n_active_cores; // calc maximum
653 }
654 }
655 if (n_active_tiles) { // were there any active tiles on the socket?
656 ++n_active_nodes; // count active nodes per package
657 if (n_active_tiles > nTilePerNode)
658 nTilePerNode = n_active_tiles; // calc maximum
659 }
660 } else {
661 // NUMA, no tiles
662 int n_active_cores = 0;
663 __kmp_hwloc_process_obj_core_pu(retval, nActiveThreads,
664 n_active_cores, node, 2, labels);
665 if (n_active_cores) { // were there any active cores on the socket?
666 ++n_active_nodes; // count active nodes per package
667 if (n_active_cores > nCorePerNode)
668 nCorePerNode = n_active_cores; // calc maximum
669 }
670 }
671 }
672 if (n_active_nodes) { // were there any active nodes on the socket?
673 ++nPackages; // count total active packages
674 if (n_active_nodes > nNodePerPkg)
675 nNodePerPkg = n_active_nodes; // calc maximum
676 }
677 } else {
678 if (__kmp_tile_depth) {
679 // no NUMA, tiles
680 int NT;
681 int n_active_tiles = 0;
682 tile = NULL;
683 NT = __kmp_hwloc_count_children_by_depth(tp, socket, __kmp_tile_depth,
684 &tile);
685 for (int tl_id = 0; tl_id < NT; ++tl_id, tile = tile->next_cousin) {
686 labels[1] = tl_id;
687 int n_active_cores = 0;
688 __kmp_hwloc_process_obj_core_pu(retval, nActiveThreads,
689 n_active_cores, tile, 2, labels);
690 if (n_active_cores) { // were there any active cores on the socket?
691 ++n_active_tiles; // count active tiles per package
692 if (n_active_cores > nCorePerTile)
693 nCorePerTile = n_active_cores; // calc maximum
694 }
695 }
696 if (n_active_tiles) { // were there any active tiles on the socket?
697 ++nPackages; // count total active packages
698 if (n_active_tiles > nTilePerPkg)
699 nTilePerPkg = n_active_tiles; // calc maximum
700 }
701 } else {
702 // no NUMA, no tiles
703 int n_active_cores = 0;
704 __kmp_hwloc_process_obj_core_pu(retval, nActiveThreads, n_active_cores,
705 socket, 1, labels);
706 if (n_active_cores) { // were there any active cores on the socket?
707 ++nPackages; // count total active packages
708 if (n_active_cores > nCoresPerPkg)
709 nCoresPerPkg = n_active_cores; // calc maximum
710 }
711 }
712 }
713 }
714
715 // If there's only one thread context to bind to, return now.
716 KMP_DEBUG_ASSERT(nActiveThreads == __kmp_avail_proc);
717 KMP_ASSERT(nActiveThreads > 0);
718 if (nActiveThreads == 1) {
719 __kmp_ncores = nPackages = 1;
720 __kmp_nThreadsPerCore = nCoresPerPkg = 1;
721 if (__kmp_affinity_verbose) {
722 char buf[KMP_AFFIN_MASK_PRINT_LEN];
723 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, oldMask);
724
725 KMP_INFORM(AffUsingHwloc, "KMP_AFFINITY");
726 if (__kmp_affinity_respect_mask) {
727 KMP_INFORM(InitOSProcSetRespect, "KMP_AFFINITY", buf);
728 } else {
729 KMP_INFORM(InitOSProcSetNotRespect, "KMP_AFFINITY", buf);
730 }
731 KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc);
732 KMP_INFORM(Uniform, "KMP_AFFINITY");
733 KMP_INFORM(Topology, "KMP_AFFINITY", nPackages, nCoresPerPkg,
734 __kmp_nThreadsPerCore, __kmp_ncores);
735 }
736
737 if (__kmp_affinity_type == affinity_none) {
738 __kmp_free(retval);
739 KMP_CPU_FREE(oldMask);
740 return 0;
741 }
742
743 // Form an Address object which only includes the package level.
744 Address addr(1);
745 addr.labels[0] = retval[0].first.labels[0];
746 retval[0].first = addr;
747
748 if (__kmp_affinity_gran_levels < 0) {
749 __kmp_affinity_gran_levels = 0;
750 }
751
752 if (__kmp_affinity_verbose) {
753 __kmp_affinity_print_topology(retval, 1, 1, 0, -1, -1);
754 }
755
756 *address2os = retval;
757 KMP_CPU_FREE(oldMask);
758 return 1;
759 }
760
761 // Sort the table by physical Id.
762 qsort(retval, nActiveThreads, sizeof(*retval),
763 __kmp_affinity_cmp_Address_labels);
764
765 // Check to see if the machine topology is uniform
766 int nPUs = nPackages * __kmp_nThreadsPerCore;
767 if (__kmp_numa_detected) {
768 if (__kmp_tile_depth) { // NUMA + tiles
769 nPUs *= (nNodePerPkg * nTilePerNode * nCorePerTile);
770 } else { // NUMA, no tiles
771 nPUs *= (nNodePerPkg * nCorePerNode);
772 }
773 } else {
774 if (__kmp_tile_depth) { // no NUMA, tiles
775 nPUs *= (nTilePerPkg * nCorePerTile);
776 } else { // no NUMA, no tiles
777 nPUs *= nCoresPerPkg;
778 }
779 }
780 unsigned uniform = (nPUs == nActiveThreads);
781
782 // Print the machine topology summary.
783 if (__kmp_affinity_verbose) {
784 char mask[KMP_AFFIN_MASK_PRINT_LEN];
785 __kmp_affinity_print_mask(mask, KMP_AFFIN_MASK_PRINT_LEN, oldMask);
786 if (__kmp_affinity_respect_mask) {
787 KMP_INFORM(InitOSProcSetRespect, "KMP_AFFINITY", mask);
788 } else {
789 KMP_INFORM(InitOSProcSetNotRespect, "KMP_AFFINITY", mask);
790 }
791 KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc);
792 if (uniform) {
793 KMP_INFORM(Uniform, "KMP_AFFINITY");
794 } else {
795 KMP_INFORM(NonUniform, "KMP_AFFINITY");
796 }
797 if (__kmp_numa_detected) {
798 if (__kmp_tile_depth) { // NUMA + tiles
799 KMP_INFORM(TopologyExtraNoTi, "KMP_AFFINITY", nPackages, nNodePerPkg,
800 nTilePerNode, nCorePerTile, __kmp_nThreadsPerCore,
801 __kmp_ncores);
802 } else { // NUMA, no tiles
803 KMP_INFORM(TopologyExtraNode, "KMP_AFFINITY", nPackages, nNodePerPkg,
804 nCorePerNode, __kmp_nThreadsPerCore, __kmp_ncores);
805 nPUs *= (nNodePerPkg * nCorePerNode);
806 }
807 } else {
808 if (__kmp_tile_depth) { // no NUMA, tiles
809 KMP_INFORM(TopologyExtraTile, "KMP_AFFINITY", nPackages, nTilePerPkg,
810 nCorePerTile, __kmp_nThreadsPerCore, __kmp_ncores);
811 } else { // no NUMA, no tiles
812 kmp_str_buf_t buf;
813 __kmp_str_buf_init(&buf);
814 __kmp_str_buf_print(&buf, "%d", nPackages);
815 KMP_INFORM(TopologyExtra, "KMP_AFFINITY", buf.str, nCoresPerPkg,
816 __kmp_nThreadsPerCore, __kmp_ncores);
817 __kmp_str_buf_free(&buf);
818 }
819 }
820 }
821
822 if (__kmp_affinity_type == affinity_none) {
823 __kmp_free(retval);
824 KMP_CPU_FREE(oldMask);
825 return 0;
826 }
827
828 int depth_full = depth; // number of levels before compressing
829 // Find any levels with radiix 1, and remove them from the map
830 // (except for the package level).
831 depth = __kmp_affinity_remove_radix_one_levels(retval, nActiveThreads, depth,
832 levels);
833 KMP_DEBUG_ASSERT(__kmp_affinity_gran != affinity_gran_default);
834 if (__kmp_affinity_gran_levels < 0) {
835 // Set the granularity level based on what levels are modeled
836 // in the machine topology map.
837 __kmp_affinity_gran_levels = 0; // lowest level (e.g. fine)
838 if (__kmp_affinity_gran > affinity_gran_thread) {
839 for (int i = 1; i <= depth_full; ++i) {
840 if (__kmp_affinity_gran <= i) // only count deeper levels
841 break;
842 if (levels[depth_full - i] > 0)
843 __kmp_affinity_gran_levels++;
844 }
845 }
846 if (__kmp_affinity_gran > affinity_gran_package)
847 __kmp_affinity_gran_levels++; // e.g. granularity = group
848 }
849
850 if (__kmp_affinity_verbose)
851 __kmp_affinity_print_hwloc_tp(retval, nActiveThreads, depth, levels);
852
853 KMP_CPU_FREE(oldMask);
854 *address2os = retval;
855 return depth;
856 }
857 #endif // KMP_USE_HWLOC
858
859 // If we don't know how to retrieve the machine's processor topology, or
860 // encounter an error in doing so, this routine is called to form a "flat"
861 // mapping of os thread id's <-> processor id's.
__kmp_affinity_create_flat_map(AddrUnsPair ** address2os,kmp_i18n_id_t * const msg_id)862 static int __kmp_affinity_create_flat_map(AddrUnsPair **address2os,
863 kmp_i18n_id_t *const msg_id) {
864 *address2os = NULL;
865 *msg_id = kmp_i18n_null;
866
867 // Even if __kmp_affinity_type == affinity_none, this routine might still
868 // called to set __kmp_ncores, as well as
869 // __kmp_nThreadsPerCore, nCoresPerPkg, & nPackages.
870 if (!KMP_AFFINITY_CAPABLE()) {
871 KMP_ASSERT(__kmp_affinity_type == affinity_none);
872 __kmp_ncores = nPackages = __kmp_xproc;
873 __kmp_nThreadsPerCore = nCoresPerPkg = 1;
874 if (__kmp_affinity_verbose) {
875 KMP_INFORM(AffFlatTopology, "KMP_AFFINITY");
876 KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc);
877 KMP_INFORM(Uniform, "KMP_AFFINITY");
878 KMP_INFORM(Topology, "KMP_AFFINITY", nPackages, nCoresPerPkg,
879 __kmp_nThreadsPerCore, __kmp_ncores);
880 }
881 return 0;
882 }
883
884 // When affinity is off, this routine will still be called to set
885 // __kmp_ncores, as well as __kmp_nThreadsPerCore, nCoresPerPkg, & nPackages.
886 // Make sure all these vars are set correctly, and return now if affinity is
887 // not enabled.
888 __kmp_ncores = nPackages = __kmp_avail_proc;
889 __kmp_nThreadsPerCore = nCoresPerPkg = 1;
890 if (__kmp_affinity_verbose) {
891 char buf[KMP_AFFIN_MASK_PRINT_LEN];
892 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN,
893 __kmp_affin_fullMask);
894
895 KMP_INFORM(AffCapableUseFlat, "KMP_AFFINITY");
896 if (__kmp_affinity_respect_mask) {
897 KMP_INFORM(InitOSProcSetRespect, "KMP_AFFINITY", buf);
898 } else {
899 KMP_INFORM(InitOSProcSetNotRespect, "KMP_AFFINITY", buf);
900 }
901 KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc);
902 KMP_INFORM(Uniform, "KMP_AFFINITY");
903 KMP_INFORM(Topology, "KMP_AFFINITY", nPackages, nCoresPerPkg,
904 __kmp_nThreadsPerCore, __kmp_ncores);
905 }
906 KMP_DEBUG_ASSERT(__kmp_pu_os_idx == NULL);
907 __kmp_pu_os_idx = (int *)__kmp_allocate(sizeof(int) * __kmp_avail_proc);
908 if (__kmp_affinity_type == affinity_none) {
909 int avail_ct = 0;
910 int i;
911 KMP_CPU_SET_ITERATE(i, __kmp_affin_fullMask) {
912 if (!KMP_CPU_ISSET(i, __kmp_affin_fullMask))
913 continue;
914 __kmp_pu_os_idx[avail_ct++] = i; // suppose indices are flat
915 }
916 return 0;
917 }
918
919 // Contruct the data structure to be returned.
920 *address2os =
921 (AddrUnsPair *)__kmp_allocate(sizeof(**address2os) * __kmp_avail_proc);
922 int avail_ct = 0;
923 int i;
924 KMP_CPU_SET_ITERATE(i, __kmp_affin_fullMask) {
925 // Skip this proc if it is not included in the machine model.
926 if (!KMP_CPU_ISSET(i, __kmp_affin_fullMask)) {
927 continue;
928 }
929 __kmp_pu_os_idx[avail_ct] = i; // suppose indices are flat
930 Address addr(1);
931 addr.labels[0] = i;
932 (*address2os)[avail_ct++] = AddrUnsPair(addr, i);
933 }
934 if (__kmp_affinity_verbose) {
935 KMP_INFORM(OSProcToPackage, "KMP_AFFINITY");
936 }
937
938 if (__kmp_affinity_gran_levels < 0) {
939 // Only the package level is modeled in the machine topology map,
940 // so the #levels of granularity is either 0 or 1.
941 if (__kmp_affinity_gran > affinity_gran_package) {
942 __kmp_affinity_gran_levels = 1;
943 } else {
944 __kmp_affinity_gran_levels = 0;
945 }
946 }
947 return 1;
948 }
949
950 #if KMP_GROUP_AFFINITY
951
952 // If multiple Windows* OS processor groups exist, we can create a 2-level
953 // topology map with the groups at level 0 and the individual procs at level 1.
954 // This facilitates letting the threads float among all procs in a group,
955 // if granularity=group (the default when there are multiple groups).
__kmp_affinity_create_proc_group_map(AddrUnsPair ** address2os,kmp_i18n_id_t * const msg_id)956 static int __kmp_affinity_create_proc_group_map(AddrUnsPair **address2os,
957 kmp_i18n_id_t *const msg_id) {
958 *address2os = NULL;
959 *msg_id = kmp_i18n_null;
960
961 // If we aren't affinity capable, then return now.
962 // The flat mapping will be used.
963 if (!KMP_AFFINITY_CAPABLE()) {
964 // FIXME set *msg_id
965 return -1;
966 }
967
968 // Contruct the data structure to be returned.
969 *address2os =
970 (AddrUnsPair *)__kmp_allocate(sizeof(**address2os) * __kmp_avail_proc);
971 KMP_DEBUG_ASSERT(__kmp_pu_os_idx == NULL);
972 __kmp_pu_os_idx = (int *)__kmp_allocate(sizeof(int) * __kmp_avail_proc);
973 int avail_ct = 0;
974 int i;
975 KMP_CPU_SET_ITERATE(i, __kmp_affin_fullMask) {
976 // Skip this proc if it is not included in the machine model.
977 if (!KMP_CPU_ISSET(i, __kmp_affin_fullMask)) {
978 continue;
979 }
980 __kmp_pu_os_idx[avail_ct] = i; // suppose indices are flat
981 Address addr(2);
982 addr.labels[0] = i / (CHAR_BIT * sizeof(DWORD_PTR));
983 addr.labels[1] = i % (CHAR_BIT * sizeof(DWORD_PTR));
984 (*address2os)[avail_ct++] = AddrUnsPair(addr, i);
985
986 if (__kmp_affinity_verbose) {
987 KMP_INFORM(AffOSProcToGroup, "KMP_AFFINITY", i, addr.labels[0],
988 addr.labels[1]);
989 }
990 }
991
992 if (__kmp_affinity_gran_levels < 0) {
993 if (__kmp_affinity_gran == affinity_gran_group) {
994 __kmp_affinity_gran_levels = 1;
995 } else if ((__kmp_affinity_gran == affinity_gran_fine) ||
996 (__kmp_affinity_gran == affinity_gran_thread)) {
997 __kmp_affinity_gran_levels = 0;
998 } else {
999 const char *gran_str = NULL;
1000 if (__kmp_affinity_gran == affinity_gran_core) {
1001 gran_str = "core";
1002 } else if (__kmp_affinity_gran == affinity_gran_package) {
1003 gran_str = "package";
1004 } else if (__kmp_affinity_gran == affinity_gran_node) {
1005 gran_str = "node";
1006 } else {
1007 KMP_ASSERT(0);
1008 }
1009
1010 // Warning: can't use affinity granularity \"gran\" with group topology
1011 // method, using "thread"
1012 __kmp_affinity_gran_levels = 0;
1013 }
1014 }
1015 return 2;
1016 }
1017
1018 #endif /* KMP_GROUP_AFFINITY */
1019
1020 #if KMP_ARCH_X86 || KMP_ARCH_X86_64
1021
__kmp_cpuid_mask_width(int count)1022 static int __kmp_cpuid_mask_width(int count) {
1023 int r = 0;
1024
1025 while ((1 << r) < count)
1026 ++r;
1027 return r;
1028 }
1029
1030 class apicThreadInfo {
1031 public:
1032 unsigned osId; // param to __kmp_affinity_bind_thread
1033 unsigned apicId; // from cpuid after binding
1034 unsigned maxCoresPerPkg; // ""
1035 unsigned maxThreadsPerPkg; // ""
1036 unsigned pkgId; // inferred from above values
1037 unsigned coreId; // ""
1038 unsigned threadId; // ""
1039 };
1040
__kmp_affinity_cmp_apicThreadInfo_phys_id(const void * a,const void * b)1041 static int __kmp_affinity_cmp_apicThreadInfo_phys_id(const void *a,
1042 const void *b) {
1043 const apicThreadInfo *aa = (const apicThreadInfo *)a;
1044 const apicThreadInfo *bb = (const apicThreadInfo *)b;
1045 if (aa->pkgId < bb->pkgId)
1046 return -1;
1047 if (aa->pkgId > bb->pkgId)
1048 return 1;
1049 if (aa->coreId < bb->coreId)
1050 return -1;
1051 if (aa->coreId > bb->coreId)
1052 return 1;
1053 if (aa->threadId < bb->threadId)
1054 return -1;
1055 if (aa->threadId > bb->threadId)
1056 return 1;
1057 return 0;
1058 }
1059
1060 // On IA-32 architecture and Intel(R) 64 architecture, we attempt to use
1061 // an algorithm which cycles through the available os threads, setting
1062 // the current thread's affinity mask to that thread, and then retrieves
1063 // the Apic Id for each thread context using the cpuid instruction.
__kmp_affinity_create_apicid_map(AddrUnsPair ** address2os,kmp_i18n_id_t * const msg_id)1064 static int __kmp_affinity_create_apicid_map(AddrUnsPair **address2os,
1065 kmp_i18n_id_t *const msg_id) {
1066 kmp_cpuid buf;
1067 *address2os = NULL;
1068 *msg_id = kmp_i18n_null;
1069
1070 // Check if cpuid leaf 4 is supported.
1071 __kmp_x86_cpuid(0, 0, &buf);
1072 if (buf.eax < 4) {
1073 *msg_id = kmp_i18n_str_NoLeaf4Support;
1074 return -1;
1075 }
1076
1077 // The algorithm used starts by setting the affinity to each available thread
1078 // and retrieving info from the cpuid instruction, so if we are not capable of
1079 // calling __kmp_get_system_affinity() and _kmp_get_system_affinity(), then we
1080 // need to do something else - use the defaults that we calculated from
1081 // issuing cpuid without binding to each proc.
1082 if (!KMP_AFFINITY_CAPABLE()) {
1083 // Hack to try and infer the machine topology using only the data
1084 // available from cpuid on the current thread, and __kmp_xproc.
1085 KMP_ASSERT(__kmp_affinity_type == affinity_none);
1086
1087 // Get an upper bound on the number of threads per package using cpuid(1).
1088 // On some OS/chps combinations where HT is supported by the chip but is
1089 // disabled, this value will be 2 on a single core chip. Usually, it will be
1090 // 2 if HT is enabled and 1 if HT is disabled.
1091 __kmp_x86_cpuid(1, 0, &buf);
1092 int maxThreadsPerPkg = (buf.ebx >> 16) & 0xff;
1093 if (maxThreadsPerPkg == 0) {
1094 maxThreadsPerPkg = 1;
1095 }
1096
1097 // The num cores per pkg comes from cpuid(4). 1 must be added to the encoded
1098 // value.
1099 //
1100 // The author of cpu_count.cpp treated this only an upper bound on the
1101 // number of cores, but I haven't seen any cases where it was greater than
1102 // the actual number of cores, so we will treat it as exact in this block of
1103 // code.
1104 //
1105 // First, we need to check if cpuid(4) is supported on this chip. To see if
1106 // cpuid(n) is supported, issue cpuid(0) and check if eax has the value n or
1107 // greater.
1108 __kmp_x86_cpuid(0, 0, &buf);
1109 if (buf.eax >= 4) {
1110 __kmp_x86_cpuid(4, 0, &buf);
1111 nCoresPerPkg = ((buf.eax >> 26) & 0x3f) + 1;
1112 } else {
1113 nCoresPerPkg = 1;
1114 }
1115
1116 // There is no way to reliably tell if HT is enabled without issuing the
1117 // cpuid instruction from every thread, can correlating the cpuid info, so
1118 // if the machine is not affinity capable, we assume that HT is off. We have
1119 // seen quite a few machines where maxThreadsPerPkg is 2, yet the machine
1120 // does not support HT.
1121 //
1122 // - Older OSes are usually found on machines with older chips, which do not
1123 // support HT.
1124 // - The performance penalty for mistakenly identifying a machine as HT when
1125 // it isn't (which results in blocktime being incorrecly set to 0) is
1126 // greater than the penalty when for mistakenly identifying a machine as
1127 // being 1 thread/core when it is really HT enabled (which results in
1128 // blocktime being incorrectly set to a positive value).
1129 __kmp_ncores = __kmp_xproc;
1130 nPackages = (__kmp_xproc + nCoresPerPkg - 1) / nCoresPerPkg;
1131 __kmp_nThreadsPerCore = 1;
1132 if (__kmp_affinity_verbose) {
1133 KMP_INFORM(AffNotCapableUseLocCpuid, "KMP_AFFINITY");
1134 KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc);
1135 if (__kmp_affinity_uniform_topology()) {
1136 KMP_INFORM(Uniform, "KMP_AFFINITY");
1137 } else {
1138 KMP_INFORM(NonUniform, "KMP_AFFINITY");
1139 }
1140 KMP_INFORM(Topology, "KMP_AFFINITY", nPackages, nCoresPerPkg,
1141 __kmp_nThreadsPerCore, __kmp_ncores);
1142 }
1143 return 0;
1144 }
1145
1146 // From here on, we can assume that it is safe to call
1147 // __kmp_get_system_affinity() and __kmp_set_system_affinity(), even if
1148 // __kmp_affinity_type = affinity_none.
1149
1150 // Save the affinity mask for the current thread.
1151 kmp_affin_mask_t *oldMask;
1152 KMP_CPU_ALLOC(oldMask);
1153 KMP_ASSERT(oldMask != NULL);
1154 __kmp_get_system_affinity(oldMask, TRUE);
1155
1156 // Run through each of the available contexts, binding the current thread
1157 // to it, and obtaining the pertinent information using the cpuid instr.
1158 //
1159 // The relevant information is:
1160 // - Apic Id: Bits 24:31 of ebx after issuing cpuid(1) - each thread context
1161 // has a uniqie Apic Id, which is of the form pkg# : core# : thread#.
1162 // - Max Threads Per Pkg: Bits 16:23 of ebx after issuing cpuid(1). The value
1163 // of this field determines the width of the core# + thread# fields in the
1164 // Apic Id. It is also an upper bound on the number of threads per
1165 // package, but it has been verified that situations happen were it is not
1166 // exact. In particular, on certain OS/chip combinations where Intel(R)
1167 // Hyper-Threading Technology is supported by the chip but has been
1168 // disabled, the value of this field will be 2 (for a single core chip).
1169 // On other OS/chip combinations supporting Intel(R) Hyper-Threading
1170 // Technology, the value of this field will be 1 when Intel(R)
1171 // Hyper-Threading Technology is disabled and 2 when it is enabled.
1172 // - Max Cores Per Pkg: Bits 26:31 of eax after issuing cpuid(4). The value
1173 // of this field (+1) determines the width of the core# field in the Apic
1174 // Id. The comments in "cpucount.cpp" say that this value is an upper
1175 // bound, but the IA-32 architecture manual says that it is exactly the
1176 // number of cores per package, and I haven't seen any case where it
1177 // wasn't.
1178 //
1179 // From this information, deduce the package Id, core Id, and thread Id,
1180 // and set the corresponding fields in the apicThreadInfo struct.
1181 unsigned i;
1182 apicThreadInfo *threadInfo = (apicThreadInfo *)__kmp_allocate(
1183 __kmp_avail_proc * sizeof(apicThreadInfo));
1184 unsigned nApics = 0;
1185 KMP_CPU_SET_ITERATE(i, __kmp_affin_fullMask) {
1186 // Skip this proc if it is not included in the machine model.
1187 if (!KMP_CPU_ISSET(i, __kmp_affin_fullMask)) {
1188 continue;
1189 }
1190 KMP_DEBUG_ASSERT((int)nApics < __kmp_avail_proc);
1191
1192 __kmp_affinity_dispatch->bind_thread(i);
1193 threadInfo[nApics].osId = i;
1194
1195 // The apic id and max threads per pkg come from cpuid(1).
1196 __kmp_x86_cpuid(1, 0, &buf);
1197 if (((buf.edx >> 9) & 1) == 0) {
1198 __kmp_set_system_affinity(oldMask, TRUE);
1199 __kmp_free(threadInfo);
1200 KMP_CPU_FREE(oldMask);
1201 *msg_id = kmp_i18n_str_ApicNotPresent;
1202 return -1;
1203 }
1204 threadInfo[nApics].apicId = (buf.ebx >> 24) & 0xff;
1205 threadInfo[nApics].maxThreadsPerPkg = (buf.ebx >> 16) & 0xff;
1206 if (threadInfo[nApics].maxThreadsPerPkg == 0) {
1207 threadInfo[nApics].maxThreadsPerPkg = 1;
1208 }
1209
1210 // Max cores per pkg comes from cpuid(4). 1 must be added to the encoded
1211 // value.
1212 //
1213 // First, we need to check if cpuid(4) is supported on this chip. To see if
1214 // cpuid(n) is supported, issue cpuid(0) and check if eax has the value n
1215 // or greater.
1216 __kmp_x86_cpuid(0, 0, &buf);
1217 if (buf.eax >= 4) {
1218 __kmp_x86_cpuid(4, 0, &buf);
1219 threadInfo[nApics].maxCoresPerPkg = ((buf.eax >> 26) & 0x3f) + 1;
1220 } else {
1221 threadInfo[nApics].maxCoresPerPkg = 1;
1222 }
1223
1224 // Infer the pkgId / coreId / threadId using only the info obtained locally.
1225 int widthCT = __kmp_cpuid_mask_width(threadInfo[nApics].maxThreadsPerPkg);
1226 threadInfo[nApics].pkgId = threadInfo[nApics].apicId >> widthCT;
1227
1228 int widthC = __kmp_cpuid_mask_width(threadInfo[nApics].maxCoresPerPkg);
1229 int widthT = widthCT - widthC;
1230 if (widthT < 0) {
1231 // I've never seen this one happen, but I suppose it could, if the cpuid
1232 // instruction on a chip was really screwed up. Make sure to restore the
1233 // affinity mask before the tail call.
1234 __kmp_set_system_affinity(oldMask, TRUE);
1235 __kmp_free(threadInfo);
1236 KMP_CPU_FREE(oldMask);
1237 *msg_id = kmp_i18n_str_InvalidCpuidInfo;
1238 return -1;
1239 }
1240
1241 int maskC = (1 << widthC) - 1;
1242 threadInfo[nApics].coreId = (threadInfo[nApics].apicId >> widthT) & maskC;
1243
1244 int maskT = (1 << widthT) - 1;
1245 threadInfo[nApics].threadId = threadInfo[nApics].apicId & maskT;
1246
1247 nApics++;
1248 }
1249
1250 // We've collected all the info we need.
1251 // Restore the old affinity mask for this thread.
1252 __kmp_set_system_affinity(oldMask, TRUE);
1253
1254 // If there's only one thread context to bind to, form an Address object
1255 // with depth 1 and return immediately (or, if affinity is off, set
1256 // address2os to NULL and return).
1257 //
1258 // If it is configured to omit the package level when there is only a single
1259 // package, the logic at the end of this routine won't work if there is only
1260 // a single thread - it would try to form an Address object with depth 0.
1261 KMP_ASSERT(nApics > 0);
1262 if (nApics == 1) {
1263 __kmp_ncores = nPackages = 1;
1264 __kmp_nThreadsPerCore = nCoresPerPkg = 1;
1265 if (__kmp_affinity_verbose) {
1266 char buf[KMP_AFFIN_MASK_PRINT_LEN];
1267 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, oldMask);
1268
1269 KMP_INFORM(AffUseGlobCpuid, "KMP_AFFINITY");
1270 if (__kmp_affinity_respect_mask) {
1271 KMP_INFORM(InitOSProcSetRespect, "KMP_AFFINITY", buf);
1272 } else {
1273 KMP_INFORM(InitOSProcSetNotRespect, "KMP_AFFINITY", buf);
1274 }
1275 KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc);
1276 KMP_INFORM(Uniform, "KMP_AFFINITY");
1277 KMP_INFORM(Topology, "KMP_AFFINITY", nPackages, nCoresPerPkg,
1278 __kmp_nThreadsPerCore, __kmp_ncores);
1279 }
1280
1281 if (__kmp_affinity_type == affinity_none) {
1282 __kmp_free(threadInfo);
1283 KMP_CPU_FREE(oldMask);
1284 return 0;
1285 }
1286
1287 *address2os = (AddrUnsPair *)__kmp_allocate(sizeof(AddrUnsPair));
1288 Address addr(1);
1289 addr.labels[0] = threadInfo[0].pkgId;
1290 (*address2os)[0] = AddrUnsPair(addr, threadInfo[0].osId);
1291
1292 if (__kmp_affinity_gran_levels < 0) {
1293 __kmp_affinity_gran_levels = 0;
1294 }
1295
1296 if (__kmp_affinity_verbose) {
1297 __kmp_affinity_print_topology(*address2os, 1, 1, 0, -1, -1);
1298 }
1299
1300 __kmp_free(threadInfo);
1301 KMP_CPU_FREE(oldMask);
1302 return 1;
1303 }
1304
1305 // Sort the threadInfo table by physical Id.
1306 qsort(threadInfo, nApics, sizeof(*threadInfo),
1307 __kmp_affinity_cmp_apicThreadInfo_phys_id);
1308
1309 // The table is now sorted by pkgId / coreId / threadId, but we really don't
1310 // know the radix of any of the fields. pkgId's may be sparsely assigned among
1311 // the chips on a system. Although coreId's are usually assigned
1312 // [0 .. coresPerPkg-1] and threadId's are usually assigned
1313 // [0..threadsPerCore-1], we don't want to make any such assumptions.
1314 //
1315 // For that matter, we don't know what coresPerPkg and threadsPerCore (or the
1316 // total # packages) are at this point - we want to determine that now. We
1317 // only have an upper bound on the first two figures.
1318 //
1319 // We also perform a consistency check at this point: the values returned by
1320 // the cpuid instruction for any thread bound to a given package had better
1321 // return the same info for maxThreadsPerPkg and maxCoresPerPkg.
1322 nPackages = 1;
1323 nCoresPerPkg = 1;
1324 __kmp_nThreadsPerCore = 1;
1325 unsigned nCores = 1;
1326
1327 unsigned pkgCt = 1; // to determine radii
1328 unsigned lastPkgId = threadInfo[0].pkgId;
1329 unsigned coreCt = 1;
1330 unsigned lastCoreId = threadInfo[0].coreId;
1331 unsigned threadCt = 1;
1332 unsigned lastThreadId = threadInfo[0].threadId;
1333
1334 // intra-pkg consist checks
1335 unsigned prevMaxCoresPerPkg = threadInfo[0].maxCoresPerPkg;
1336 unsigned prevMaxThreadsPerPkg = threadInfo[0].maxThreadsPerPkg;
1337
1338 for (i = 1; i < nApics; i++) {
1339 if (threadInfo[i].pkgId != lastPkgId) {
1340 nCores++;
1341 pkgCt++;
1342 lastPkgId = threadInfo[i].pkgId;
1343 if ((int)coreCt > nCoresPerPkg)
1344 nCoresPerPkg = coreCt;
1345 coreCt = 1;
1346 lastCoreId = threadInfo[i].coreId;
1347 if ((int)threadCt > __kmp_nThreadsPerCore)
1348 __kmp_nThreadsPerCore = threadCt;
1349 threadCt = 1;
1350 lastThreadId = threadInfo[i].threadId;
1351
1352 // This is a different package, so go on to the next iteration without
1353 // doing any consistency checks. Reset the consistency check vars, though.
1354 prevMaxCoresPerPkg = threadInfo[i].maxCoresPerPkg;
1355 prevMaxThreadsPerPkg = threadInfo[i].maxThreadsPerPkg;
1356 continue;
1357 }
1358
1359 if (threadInfo[i].coreId != lastCoreId) {
1360 nCores++;
1361 coreCt++;
1362 lastCoreId = threadInfo[i].coreId;
1363 if ((int)threadCt > __kmp_nThreadsPerCore)
1364 __kmp_nThreadsPerCore = threadCt;
1365 threadCt = 1;
1366 lastThreadId = threadInfo[i].threadId;
1367 } else if (threadInfo[i].threadId != lastThreadId) {
1368 threadCt++;
1369 lastThreadId = threadInfo[i].threadId;
1370 } else {
1371 __kmp_free(threadInfo);
1372 KMP_CPU_FREE(oldMask);
1373 *msg_id = kmp_i18n_str_LegacyApicIDsNotUnique;
1374 return -1;
1375 }
1376
1377 // Check to make certain that the maxCoresPerPkg and maxThreadsPerPkg
1378 // fields agree between all the threads bounds to a given package.
1379 if ((prevMaxCoresPerPkg != threadInfo[i].maxCoresPerPkg) ||
1380 (prevMaxThreadsPerPkg != threadInfo[i].maxThreadsPerPkg)) {
1381 __kmp_free(threadInfo);
1382 KMP_CPU_FREE(oldMask);
1383 *msg_id = kmp_i18n_str_InconsistentCpuidInfo;
1384 return -1;
1385 }
1386 }
1387 nPackages = pkgCt;
1388 if ((int)coreCt > nCoresPerPkg)
1389 nCoresPerPkg = coreCt;
1390 if ((int)threadCt > __kmp_nThreadsPerCore)
1391 __kmp_nThreadsPerCore = threadCt;
1392
1393 // When affinity is off, this routine will still be called to set
1394 // __kmp_ncores, as well as __kmp_nThreadsPerCore, nCoresPerPkg, & nPackages.
1395 // Make sure all these vars are set correctly, and return now if affinity is
1396 // not enabled.
1397 __kmp_ncores = nCores;
1398 if (__kmp_affinity_verbose) {
1399 char buf[KMP_AFFIN_MASK_PRINT_LEN];
1400 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, oldMask);
1401
1402 KMP_INFORM(AffUseGlobCpuid, "KMP_AFFINITY");
1403 if (__kmp_affinity_respect_mask) {
1404 KMP_INFORM(InitOSProcSetRespect, "KMP_AFFINITY", buf);
1405 } else {
1406 KMP_INFORM(InitOSProcSetNotRespect, "KMP_AFFINITY", buf);
1407 }
1408 KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc);
1409 if (__kmp_affinity_uniform_topology()) {
1410 KMP_INFORM(Uniform, "KMP_AFFINITY");
1411 } else {
1412 KMP_INFORM(NonUniform, "KMP_AFFINITY");
1413 }
1414 KMP_INFORM(Topology, "KMP_AFFINITY", nPackages, nCoresPerPkg,
1415 __kmp_nThreadsPerCore, __kmp_ncores);
1416 }
1417 KMP_DEBUG_ASSERT(__kmp_pu_os_idx == NULL);
1418 KMP_DEBUG_ASSERT(nApics == (unsigned)__kmp_avail_proc);
1419 __kmp_pu_os_idx = (int *)__kmp_allocate(sizeof(int) * __kmp_avail_proc);
1420 for (i = 0; i < nApics; ++i) {
1421 __kmp_pu_os_idx[i] = threadInfo[i].osId;
1422 }
1423 if (__kmp_affinity_type == affinity_none) {
1424 __kmp_free(threadInfo);
1425 KMP_CPU_FREE(oldMask);
1426 return 0;
1427 }
1428
1429 // Now that we've determined the number of packages, the number of cores per
1430 // package, and the number of threads per core, we can construct the data
1431 // structure that is to be returned.
1432 int pkgLevel = 0;
1433 int coreLevel = (nCoresPerPkg <= 1) ? -1 : 1;
1434 int threadLevel =
1435 (__kmp_nThreadsPerCore <= 1) ? -1 : ((coreLevel >= 0) ? 2 : 1);
1436 unsigned depth = (pkgLevel >= 0) + (coreLevel >= 0) + (threadLevel >= 0);
1437
1438 KMP_ASSERT(depth > 0);
1439 *address2os = (AddrUnsPair *)__kmp_allocate(sizeof(AddrUnsPair) * nApics);
1440
1441 for (i = 0; i < nApics; ++i) {
1442 Address addr(depth);
1443 unsigned os = threadInfo[i].osId;
1444 int d = 0;
1445
1446 if (pkgLevel >= 0) {
1447 addr.labels[d++] = threadInfo[i].pkgId;
1448 }
1449 if (coreLevel >= 0) {
1450 addr.labels[d++] = threadInfo[i].coreId;
1451 }
1452 if (threadLevel >= 0) {
1453 addr.labels[d++] = threadInfo[i].threadId;
1454 }
1455 (*address2os)[i] = AddrUnsPair(addr, os);
1456 }
1457
1458 if (__kmp_affinity_gran_levels < 0) {
1459 // Set the granularity level based on what levels are modeled in the machine
1460 // topology map.
1461 __kmp_affinity_gran_levels = 0;
1462 if ((threadLevel >= 0) && (__kmp_affinity_gran > affinity_gran_thread)) {
1463 __kmp_affinity_gran_levels++;
1464 }
1465 if ((coreLevel >= 0) && (__kmp_affinity_gran > affinity_gran_core)) {
1466 __kmp_affinity_gran_levels++;
1467 }
1468 if ((pkgLevel >= 0) && (__kmp_affinity_gran > affinity_gran_package)) {
1469 __kmp_affinity_gran_levels++;
1470 }
1471 }
1472
1473 if (__kmp_affinity_verbose) {
1474 __kmp_affinity_print_topology(*address2os, nApics, depth, pkgLevel,
1475 coreLevel, threadLevel);
1476 }
1477
1478 __kmp_free(threadInfo);
1479 KMP_CPU_FREE(oldMask);
1480 return depth;
1481 }
1482
1483 // Intel(R) microarchitecture code name Nehalem, Dunnington and later
1484 // architectures support a newer interface for specifying the x2APIC Ids,
1485 // based on cpuid leaf 11.
__kmp_affinity_create_x2apicid_map(AddrUnsPair ** address2os,kmp_i18n_id_t * const msg_id)1486 static int __kmp_affinity_create_x2apicid_map(AddrUnsPair **address2os,
1487 kmp_i18n_id_t *const msg_id) {
1488 kmp_cpuid buf;
1489 *address2os = NULL;
1490 *msg_id = kmp_i18n_null;
1491
1492 // Check to see if cpuid leaf 11 is supported.
1493 __kmp_x86_cpuid(0, 0, &buf);
1494 if (buf.eax < 11) {
1495 *msg_id = kmp_i18n_str_NoLeaf11Support;
1496 return -1;
1497 }
1498 __kmp_x86_cpuid(11, 0, &buf);
1499 if (buf.ebx == 0) {
1500 *msg_id = kmp_i18n_str_NoLeaf11Support;
1501 return -1;
1502 }
1503
1504 // Find the number of levels in the machine topology. While we're at it, get
1505 // the default values for __kmp_nThreadsPerCore & nCoresPerPkg. We will try to
1506 // get more accurate values later by explicitly counting them, but get
1507 // reasonable defaults now, in case we return early.
1508 int level;
1509 int threadLevel = -1;
1510 int coreLevel = -1;
1511 int pkgLevel = -1;
1512 __kmp_nThreadsPerCore = nCoresPerPkg = nPackages = 1;
1513
1514 for (level = 0;; level++) {
1515 if (level > 31) {
1516 // FIXME: Hack for DPD200163180
1517 //
1518 // If level is big then something went wrong -> exiting
1519 //
1520 // There could actually be 32 valid levels in the machine topology, but so
1521 // far, the only machine we have seen which does not exit this loop before
1522 // iteration 32 has fubar x2APIC settings.
1523 //
1524 // For now, just reject this case based upon loop trip count.
1525 *msg_id = kmp_i18n_str_InvalidCpuidInfo;
1526 return -1;
1527 }
1528 __kmp_x86_cpuid(11, level, &buf);
1529 if (buf.ebx == 0) {
1530 if (pkgLevel < 0) {
1531 // Will infer nPackages from __kmp_xproc
1532 pkgLevel = level;
1533 level++;
1534 }
1535 break;
1536 }
1537 int kind = (buf.ecx >> 8) & 0xff;
1538 if (kind == 1) {
1539 // SMT level
1540 threadLevel = level;
1541 coreLevel = -1;
1542 pkgLevel = -1;
1543 __kmp_nThreadsPerCore = buf.ebx & 0xffff;
1544 if (__kmp_nThreadsPerCore == 0) {
1545 *msg_id = kmp_i18n_str_InvalidCpuidInfo;
1546 return -1;
1547 }
1548 } else if (kind == 2) {
1549 // core level
1550 coreLevel = level;
1551 pkgLevel = -1;
1552 nCoresPerPkg = buf.ebx & 0xffff;
1553 if (nCoresPerPkg == 0) {
1554 *msg_id = kmp_i18n_str_InvalidCpuidInfo;
1555 return -1;
1556 }
1557 } else {
1558 if (level <= 0) {
1559 *msg_id = kmp_i18n_str_InvalidCpuidInfo;
1560 return -1;
1561 }
1562 if (pkgLevel >= 0) {
1563 continue;
1564 }
1565 pkgLevel = level;
1566 nPackages = buf.ebx & 0xffff;
1567 if (nPackages == 0) {
1568 *msg_id = kmp_i18n_str_InvalidCpuidInfo;
1569 return -1;
1570 }
1571 }
1572 }
1573 int depth = level;
1574
1575 // In the above loop, "level" was counted from the finest level (usually
1576 // thread) to the coarsest. The caller expects that we will place the labels
1577 // in (*address2os)[].first.labels[] in the inverse order, so we need to
1578 // invert the vars saying which level means what.
1579 if (threadLevel >= 0) {
1580 threadLevel = depth - threadLevel - 1;
1581 }
1582 if (coreLevel >= 0) {
1583 coreLevel = depth - coreLevel - 1;
1584 }
1585 KMP_DEBUG_ASSERT(pkgLevel >= 0);
1586 pkgLevel = depth - pkgLevel - 1;
1587
1588 // The algorithm used starts by setting the affinity to each available thread
1589 // and retrieving info from the cpuid instruction, so if we are not capable of
1590 // calling __kmp_get_system_affinity() and _kmp_get_system_affinity(), then we
1591 // need to do something else - use the defaults that we calculated from
1592 // issuing cpuid without binding to each proc.
1593 if (!KMP_AFFINITY_CAPABLE()) {
1594 // Hack to try and infer the machine topology using only the data
1595 // available from cpuid on the current thread, and __kmp_xproc.
1596 KMP_ASSERT(__kmp_affinity_type == affinity_none);
1597
1598 __kmp_ncores = __kmp_xproc / __kmp_nThreadsPerCore;
1599 nPackages = (__kmp_xproc + nCoresPerPkg - 1) / nCoresPerPkg;
1600 if (__kmp_affinity_verbose) {
1601 KMP_INFORM(AffNotCapableUseLocCpuidL11, "KMP_AFFINITY");
1602 KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc);
1603 if (__kmp_affinity_uniform_topology()) {
1604 KMP_INFORM(Uniform, "KMP_AFFINITY");
1605 } else {
1606 KMP_INFORM(NonUniform, "KMP_AFFINITY");
1607 }
1608 KMP_INFORM(Topology, "KMP_AFFINITY", nPackages, nCoresPerPkg,
1609 __kmp_nThreadsPerCore, __kmp_ncores);
1610 }
1611 return 0;
1612 }
1613
1614 // From here on, we can assume that it is safe to call
1615 // __kmp_get_system_affinity() and __kmp_set_system_affinity(), even if
1616 // __kmp_affinity_type = affinity_none.
1617
1618 // Save the affinity mask for the current thread.
1619 kmp_affin_mask_t *oldMask;
1620 KMP_CPU_ALLOC(oldMask);
1621 __kmp_get_system_affinity(oldMask, TRUE);
1622
1623 // Allocate the data structure to be returned.
1624 AddrUnsPair *retval =
1625 (AddrUnsPair *)__kmp_allocate(sizeof(AddrUnsPair) * __kmp_avail_proc);
1626
1627 // Run through each of the available contexts, binding the current thread
1628 // to it, and obtaining the pertinent information using the cpuid instr.
1629 unsigned int proc;
1630 int nApics = 0;
1631 KMP_CPU_SET_ITERATE(proc, __kmp_affin_fullMask) {
1632 // Skip this proc if it is not included in the machine model.
1633 if (!KMP_CPU_ISSET(proc, __kmp_affin_fullMask)) {
1634 continue;
1635 }
1636 KMP_DEBUG_ASSERT(nApics < __kmp_avail_proc);
1637
1638 __kmp_affinity_dispatch->bind_thread(proc);
1639
1640 // Extract labels for each level in the machine topology map from Apic ID.
1641 Address addr(depth);
1642 int prev_shift = 0;
1643
1644 for (level = 0; level < depth; level++) {
1645 __kmp_x86_cpuid(11, level, &buf);
1646 unsigned apicId = buf.edx;
1647 if (buf.ebx == 0) {
1648 if (level != depth - 1) {
1649 KMP_CPU_FREE(oldMask);
1650 *msg_id = kmp_i18n_str_InconsistentCpuidInfo;
1651 return -1;
1652 }
1653 addr.labels[depth - level - 1] = apicId >> prev_shift;
1654 level++;
1655 break;
1656 }
1657 int shift = buf.eax & 0x1f;
1658 int mask = (1 << shift) - 1;
1659 addr.labels[depth - level - 1] = (apicId & mask) >> prev_shift;
1660 prev_shift = shift;
1661 }
1662 if (level != depth) {
1663 KMP_CPU_FREE(oldMask);
1664 *msg_id = kmp_i18n_str_InconsistentCpuidInfo;
1665 return -1;
1666 }
1667
1668 retval[nApics] = AddrUnsPair(addr, proc);
1669 nApics++;
1670 }
1671
1672 // We've collected all the info we need.
1673 // Restore the old affinity mask for this thread.
1674 __kmp_set_system_affinity(oldMask, TRUE);
1675
1676 // If there's only one thread context to bind to, return now.
1677 KMP_ASSERT(nApics > 0);
1678 if (nApics == 1) {
1679 __kmp_ncores = nPackages = 1;
1680 __kmp_nThreadsPerCore = nCoresPerPkg = 1;
1681 if (__kmp_affinity_verbose) {
1682 char buf[KMP_AFFIN_MASK_PRINT_LEN];
1683 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, oldMask);
1684
1685 KMP_INFORM(AffUseGlobCpuidL11, "KMP_AFFINITY");
1686 if (__kmp_affinity_respect_mask) {
1687 KMP_INFORM(InitOSProcSetRespect, "KMP_AFFINITY", buf);
1688 } else {
1689 KMP_INFORM(InitOSProcSetNotRespect, "KMP_AFFINITY", buf);
1690 }
1691 KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc);
1692 KMP_INFORM(Uniform, "KMP_AFFINITY");
1693 KMP_INFORM(Topology, "KMP_AFFINITY", nPackages, nCoresPerPkg,
1694 __kmp_nThreadsPerCore, __kmp_ncores);
1695 }
1696
1697 if (__kmp_affinity_type == affinity_none) {
1698 __kmp_free(retval);
1699 KMP_CPU_FREE(oldMask);
1700 return 0;
1701 }
1702
1703 // Form an Address object which only includes the package level.
1704 Address addr(1);
1705 addr.labels[0] = retval[0].first.labels[pkgLevel];
1706 retval[0].first = addr;
1707
1708 if (__kmp_affinity_gran_levels < 0) {
1709 __kmp_affinity_gran_levels = 0;
1710 }
1711
1712 if (__kmp_affinity_verbose) {
1713 __kmp_affinity_print_topology(retval, 1, 1, 0, -1, -1);
1714 }
1715
1716 *address2os = retval;
1717 KMP_CPU_FREE(oldMask);
1718 return 1;
1719 }
1720
1721 // Sort the table by physical Id.
1722 qsort(retval, nApics, sizeof(*retval), __kmp_affinity_cmp_Address_labels);
1723
1724 // Find the radix at each of the levels.
1725 unsigned *totals = (unsigned *)__kmp_allocate(depth * sizeof(unsigned));
1726 unsigned *counts = (unsigned *)__kmp_allocate(depth * sizeof(unsigned));
1727 unsigned *maxCt = (unsigned *)__kmp_allocate(depth * sizeof(unsigned));
1728 unsigned *last = (unsigned *)__kmp_allocate(depth * sizeof(unsigned));
1729 for (level = 0; level < depth; level++) {
1730 totals[level] = 1;
1731 maxCt[level] = 1;
1732 counts[level] = 1;
1733 last[level] = retval[0].first.labels[level];
1734 }
1735
1736 // From here on, the iteration variable "level" runs from the finest level to
1737 // the coarsest, i.e. we iterate forward through
1738 // (*address2os)[].first.labels[] - in the previous loops, we iterated
1739 // backwards.
1740 for (proc = 1; (int)proc < nApics; proc++) {
1741 int level;
1742 for (level = 0; level < depth; level++) {
1743 if (retval[proc].first.labels[level] != last[level]) {
1744 int j;
1745 for (j = level + 1; j < depth; j++) {
1746 totals[j]++;
1747 counts[j] = 1;
1748 // The line below causes printing incorrect topology information in
1749 // case the max value for some level (maxCt[level]) is encountered
1750 // earlier than some less value while going through the array. For
1751 // example, let pkg0 has 4 cores and pkg1 has 2 cores. Then
1752 // maxCt[1] == 2
1753 // whereas it must be 4.
1754 // TODO!!! Check if it can be commented safely
1755 // maxCt[j] = 1;
1756 last[j] = retval[proc].first.labels[j];
1757 }
1758 totals[level]++;
1759 counts[level]++;
1760 if (counts[level] > maxCt[level]) {
1761 maxCt[level] = counts[level];
1762 }
1763 last[level] = retval[proc].first.labels[level];
1764 break;
1765 } else if (level == depth - 1) {
1766 __kmp_free(last);
1767 __kmp_free(maxCt);
1768 __kmp_free(counts);
1769 __kmp_free(totals);
1770 __kmp_free(retval);
1771 KMP_CPU_FREE(oldMask);
1772 *msg_id = kmp_i18n_str_x2ApicIDsNotUnique;
1773 return -1;
1774 }
1775 }
1776 }
1777
1778 // When affinity is off, this routine will still be called to set
1779 // __kmp_ncores, as well as __kmp_nThreadsPerCore, nCoresPerPkg, & nPackages.
1780 // Make sure all these vars are set correctly, and return if affinity is not
1781 // enabled.
1782 if (threadLevel >= 0) {
1783 __kmp_nThreadsPerCore = maxCt[threadLevel];
1784 } else {
1785 __kmp_nThreadsPerCore = 1;
1786 }
1787 nPackages = totals[pkgLevel];
1788
1789 if (coreLevel >= 0) {
1790 __kmp_ncores = totals[coreLevel];
1791 nCoresPerPkg = maxCt[coreLevel];
1792 } else {
1793 __kmp_ncores = nPackages;
1794 nCoresPerPkg = 1;
1795 }
1796
1797 // Check to see if the machine topology is uniform
1798 unsigned prod = maxCt[0];
1799 for (level = 1; level < depth; level++) {
1800 prod *= maxCt[level];
1801 }
1802 bool uniform = (prod == totals[level - 1]);
1803
1804 // Print the machine topology summary.
1805 if (__kmp_affinity_verbose) {
1806 char mask[KMP_AFFIN_MASK_PRINT_LEN];
1807 __kmp_affinity_print_mask(mask, KMP_AFFIN_MASK_PRINT_LEN, oldMask);
1808
1809 KMP_INFORM(AffUseGlobCpuidL11, "KMP_AFFINITY");
1810 if (__kmp_affinity_respect_mask) {
1811 KMP_INFORM(InitOSProcSetRespect, "KMP_AFFINITY", mask);
1812 } else {
1813 KMP_INFORM(InitOSProcSetNotRespect, "KMP_AFFINITY", mask);
1814 }
1815 KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc);
1816 if (uniform) {
1817 KMP_INFORM(Uniform, "KMP_AFFINITY");
1818 } else {
1819 KMP_INFORM(NonUniform, "KMP_AFFINITY");
1820 }
1821
1822 kmp_str_buf_t buf;
1823 __kmp_str_buf_init(&buf);
1824
1825 __kmp_str_buf_print(&buf, "%d", totals[0]);
1826 for (level = 1; level <= pkgLevel; level++) {
1827 __kmp_str_buf_print(&buf, " x %d", maxCt[level]);
1828 }
1829 KMP_INFORM(TopologyExtra, "KMP_AFFINITY", buf.str, nCoresPerPkg,
1830 __kmp_nThreadsPerCore, __kmp_ncores);
1831
1832 __kmp_str_buf_free(&buf);
1833 }
1834 KMP_DEBUG_ASSERT(__kmp_pu_os_idx == NULL);
1835 KMP_DEBUG_ASSERT(nApics == __kmp_avail_proc);
1836 __kmp_pu_os_idx = (int *)__kmp_allocate(sizeof(int) * __kmp_avail_proc);
1837 for (proc = 0; (int)proc < nApics; ++proc) {
1838 __kmp_pu_os_idx[proc] = retval[proc].second;
1839 }
1840 if (__kmp_affinity_type == affinity_none) {
1841 __kmp_free(last);
1842 __kmp_free(maxCt);
1843 __kmp_free(counts);
1844 __kmp_free(totals);
1845 __kmp_free(retval);
1846 KMP_CPU_FREE(oldMask);
1847 return 0;
1848 }
1849
1850 // Find any levels with radiix 1, and remove them from the map
1851 // (except for the package level).
1852 int new_depth = 0;
1853 for (level = 0; level < depth; level++) {
1854 if ((maxCt[level] == 1) && (level != pkgLevel)) {
1855 continue;
1856 }
1857 new_depth++;
1858 }
1859
1860 // If we are removing any levels, allocate a new vector to return,
1861 // and copy the relevant information to it.
1862 if (new_depth != depth) {
1863 AddrUnsPair *new_retval =
1864 (AddrUnsPair *)__kmp_allocate(sizeof(AddrUnsPair) * nApics);
1865 for (proc = 0; (int)proc < nApics; proc++) {
1866 Address addr(new_depth);
1867 new_retval[proc] = AddrUnsPair(addr, retval[proc].second);
1868 }
1869 int new_level = 0;
1870 int newPkgLevel = -1;
1871 int newCoreLevel = -1;
1872 int newThreadLevel = -1;
1873 for (level = 0; level < depth; level++) {
1874 if ((maxCt[level] == 1) && (level != pkgLevel)) {
1875 // Remove this level. Never remove the package level
1876 continue;
1877 }
1878 if (level == pkgLevel) {
1879 newPkgLevel = new_level;
1880 }
1881 if (level == coreLevel) {
1882 newCoreLevel = new_level;
1883 }
1884 if (level == threadLevel) {
1885 newThreadLevel = new_level;
1886 }
1887 for (proc = 0; (int)proc < nApics; proc++) {
1888 new_retval[proc].first.labels[new_level] =
1889 retval[proc].first.labels[level];
1890 }
1891 new_level++;
1892 }
1893
1894 __kmp_free(retval);
1895 retval = new_retval;
1896 depth = new_depth;
1897 pkgLevel = newPkgLevel;
1898 coreLevel = newCoreLevel;
1899 threadLevel = newThreadLevel;
1900 }
1901
1902 if (__kmp_affinity_gran_levels < 0) {
1903 // Set the granularity level based on what levels are modeled
1904 // in the machine topology map.
1905 __kmp_affinity_gran_levels = 0;
1906 if ((threadLevel >= 0) && (__kmp_affinity_gran > affinity_gran_thread)) {
1907 __kmp_affinity_gran_levels++;
1908 }
1909 if ((coreLevel >= 0) && (__kmp_affinity_gran > affinity_gran_core)) {
1910 __kmp_affinity_gran_levels++;
1911 }
1912 if (__kmp_affinity_gran > affinity_gran_package) {
1913 __kmp_affinity_gran_levels++;
1914 }
1915 }
1916
1917 if (__kmp_affinity_verbose) {
1918 __kmp_affinity_print_topology(retval, nApics, depth, pkgLevel, coreLevel,
1919 threadLevel);
1920 }
1921
1922 __kmp_free(last);
1923 __kmp_free(maxCt);
1924 __kmp_free(counts);
1925 __kmp_free(totals);
1926 KMP_CPU_FREE(oldMask);
1927 *address2os = retval;
1928 return depth;
1929 }
1930
1931 #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */
1932
1933 #define osIdIndex 0
1934 #define threadIdIndex 1
1935 #define coreIdIndex 2
1936 #define pkgIdIndex 3
1937 #define nodeIdIndex 4
1938
1939 typedef unsigned *ProcCpuInfo;
1940 static unsigned maxIndex = pkgIdIndex;
1941
__kmp_affinity_cmp_ProcCpuInfo_phys_id(const void * a,const void * b)1942 static int __kmp_affinity_cmp_ProcCpuInfo_phys_id(const void *a,
1943 const void *b) {
1944 unsigned i;
1945 const unsigned *aa = *(unsigned *const *)a;
1946 const unsigned *bb = *(unsigned *const *)b;
1947 for (i = maxIndex;; i--) {
1948 if (aa[i] < bb[i])
1949 return -1;
1950 if (aa[i] > bb[i])
1951 return 1;
1952 if (i == osIdIndex)
1953 break;
1954 }
1955 return 0;
1956 }
1957
1958 #if KMP_USE_HIER_SCHED
1959 // Set the array sizes for the hierarchy layers
__kmp_dispatch_set_hierarchy_values()1960 static void __kmp_dispatch_set_hierarchy_values() {
1961 // Set the maximum number of L1's to number of cores
1962 // Set the maximum number of L2's to to either number of cores / 2 for
1963 // Intel(R) Xeon Phi(TM) coprocessor formally codenamed Knights Landing
1964 // Or the number of cores for Intel(R) Xeon(R) processors
1965 // Set the maximum number of NUMA nodes and L3's to number of packages
1966 __kmp_hier_max_units[kmp_hier_layer_e::LAYER_THREAD + 1] =
1967 nPackages * nCoresPerPkg * __kmp_nThreadsPerCore;
1968 __kmp_hier_max_units[kmp_hier_layer_e::LAYER_L1 + 1] = __kmp_ncores;
1969 #if KMP_ARCH_X86_64 && (KMP_OS_LINUX || KMP_OS_WINDOWS)
1970 if (__kmp_mic_type >= mic3)
1971 __kmp_hier_max_units[kmp_hier_layer_e::LAYER_L2 + 1] = __kmp_ncores / 2;
1972 else
1973 #endif // KMP_ARCH_X86_64 && (KMP_OS_LINUX || KMP_OS_WINDOWS)
1974 __kmp_hier_max_units[kmp_hier_layer_e::LAYER_L2 + 1] = __kmp_ncores;
1975 __kmp_hier_max_units[kmp_hier_layer_e::LAYER_L3 + 1] = nPackages;
1976 __kmp_hier_max_units[kmp_hier_layer_e::LAYER_NUMA + 1] = nPackages;
1977 __kmp_hier_max_units[kmp_hier_layer_e::LAYER_LOOP + 1] = 1;
1978 // Set the number of threads per unit
1979 // Number of hardware threads per L1/L2/L3/NUMA/LOOP
1980 __kmp_hier_threads_per[kmp_hier_layer_e::LAYER_THREAD + 1] = 1;
1981 __kmp_hier_threads_per[kmp_hier_layer_e::LAYER_L1 + 1] =
1982 __kmp_nThreadsPerCore;
1983 #if KMP_ARCH_X86_64 && (KMP_OS_LINUX || KMP_OS_WINDOWS)
1984 if (__kmp_mic_type >= mic3)
1985 __kmp_hier_threads_per[kmp_hier_layer_e::LAYER_L2 + 1] =
1986 2 * __kmp_nThreadsPerCore;
1987 else
1988 #endif // KMP_ARCH_X86_64 && (KMP_OS_LINUX || KMP_OS_WINDOWS)
1989 __kmp_hier_threads_per[kmp_hier_layer_e::LAYER_L2 + 1] =
1990 __kmp_nThreadsPerCore;
1991 __kmp_hier_threads_per[kmp_hier_layer_e::LAYER_L3 + 1] =
1992 nCoresPerPkg * __kmp_nThreadsPerCore;
1993 __kmp_hier_threads_per[kmp_hier_layer_e::LAYER_NUMA + 1] =
1994 nCoresPerPkg * __kmp_nThreadsPerCore;
1995 __kmp_hier_threads_per[kmp_hier_layer_e::LAYER_LOOP + 1] =
1996 nPackages * nCoresPerPkg * __kmp_nThreadsPerCore;
1997 }
1998
1999 // Return the index into the hierarchy for this tid and layer type (L1, L2, etc)
2000 // i.e., this thread's L1 or this thread's L2, etc.
__kmp_dispatch_get_index(int tid,kmp_hier_layer_e type)2001 int __kmp_dispatch_get_index(int tid, kmp_hier_layer_e type) {
2002 int index = type + 1;
2003 int num_hw_threads = __kmp_hier_max_units[kmp_hier_layer_e::LAYER_THREAD + 1];
2004 KMP_DEBUG_ASSERT(type != kmp_hier_layer_e::LAYER_LAST);
2005 if (type == kmp_hier_layer_e::LAYER_THREAD)
2006 return tid;
2007 else if (type == kmp_hier_layer_e::LAYER_LOOP)
2008 return 0;
2009 KMP_DEBUG_ASSERT(__kmp_hier_max_units[index] != 0);
2010 if (tid >= num_hw_threads)
2011 tid = tid % num_hw_threads;
2012 return (tid / __kmp_hier_threads_per[index]) % __kmp_hier_max_units[index];
2013 }
2014
2015 // Return the number of t1's per t2
__kmp_dispatch_get_t1_per_t2(kmp_hier_layer_e t1,kmp_hier_layer_e t2)2016 int __kmp_dispatch_get_t1_per_t2(kmp_hier_layer_e t1, kmp_hier_layer_e t2) {
2017 int i1 = t1 + 1;
2018 int i2 = t2 + 1;
2019 KMP_DEBUG_ASSERT(i1 <= i2);
2020 KMP_DEBUG_ASSERT(t1 != kmp_hier_layer_e::LAYER_LAST);
2021 KMP_DEBUG_ASSERT(t2 != kmp_hier_layer_e::LAYER_LAST);
2022 KMP_DEBUG_ASSERT(__kmp_hier_threads_per[i1] != 0);
2023 // (nthreads/t2) / (nthreads/t1) = t1 / t2
2024 return __kmp_hier_threads_per[i2] / __kmp_hier_threads_per[i1];
2025 }
2026 #endif // KMP_USE_HIER_SCHED
2027
2028 // Parse /proc/cpuinfo (or an alternate file in the same format) to obtain the
2029 // affinity map.
__kmp_affinity_create_cpuinfo_map(AddrUnsPair ** address2os,int * line,kmp_i18n_id_t * const msg_id,FILE * f)2030 static int __kmp_affinity_create_cpuinfo_map(AddrUnsPair **address2os,
2031 int *line,
2032 kmp_i18n_id_t *const msg_id,
2033 FILE *f) {
2034 *address2os = NULL;
2035 *msg_id = kmp_i18n_null;
2036
2037 // Scan of the file, and count the number of "processor" (osId) fields,
2038 // and find the highest value of <n> for a node_<n> field.
2039 char buf[256];
2040 unsigned num_records = 0;
2041 while (!feof(f)) {
2042 buf[sizeof(buf) - 1] = 1;
2043 if (!fgets(buf, sizeof(buf), f)) {
2044 // Read errors presumably because of EOF
2045 break;
2046 }
2047
2048 char s1[] = "processor";
2049 if (strncmp(buf, s1, sizeof(s1) - 1) == 0) {
2050 num_records++;
2051 continue;
2052 }
2053
2054 // FIXME - this will match "node_<n> <garbage>"
2055 unsigned level;
2056 if (KMP_SSCANF(buf, "node_%u id", &level) == 1) {
2057 if (nodeIdIndex + level >= maxIndex) {
2058 maxIndex = nodeIdIndex + level;
2059 }
2060 continue;
2061 }
2062 }
2063
2064 // Check for empty file / no valid processor records, or too many. The number
2065 // of records can't exceed the number of valid bits in the affinity mask.
2066 if (num_records == 0) {
2067 *line = 0;
2068 *msg_id = kmp_i18n_str_NoProcRecords;
2069 return -1;
2070 }
2071 if (num_records > (unsigned)__kmp_xproc) {
2072 *line = 0;
2073 *msg_id = kmp_i18n_str_TooManyProcRecords;
2074 return -1;
2075 }
2076
2077 // Set the file pointer back to the begginning, so that we can scan the file
2078 // again, this time performing a full parse of the data. Allocate a vector of
2079 // ProcCpuInfo object, where we will place the data. Adding an extra element
2080 // at the end allows us to remove a lot of extra checks for termination
2081 // conditions.
2082 if (fseek(f, 0, SEEK_SET) != 0) {
2083 *line = 0;
2084 *msg_id = kmp_i18n_str_CantRewindCpuinfo;
2085 return -1;
2086 }
2087
2088 // Allocate the array of records to store the proc info in. The dummy
2089 // element at the end makes the logic in filling them out easier to code.
2090 unsigned **threadInfo =
2091 (unsigned **)__kmp_allocate((num_records + 1) * sizeof(unsigned *));
2092 unsigned i;
2093 for (i = 0; i <= num_records; i++) {
2094 threadInfo[i] =
2095 (unsigned *)__kmp_allocate((maxIndex + 1) * sizeof(unsigned));
2096 }
2097
2098 #define CLEANUP_THREAD_INFO \
2099 for (i = 0; i <= num_records; i++) { \
2100 __kmp_free(threadInfo[i]); \
2101 } \
2102 __kmp_free(threadInfo);
2103
2104 // A value of UINT_MAX means that we didn't find the field
2105 unsigned __index;
2106
2107 #define INIT_PROC_INFO(p) \
2108 for (__index = 0; __index <= maxIndex; __index++) { \
2109 (p)[__index] = UINT_MAX; \
2110 }
2111
2112 for (i = 0; i <= num_records; i++) {
2113 INIT_PROC_INFO(threadInfo[i]);
2114 }
2115
2116 unsigned num_avail = 0;
2117 *line = 0;
2118 while (!feof(f)) {
2119 // Create an inner scoping level, so that all the goto targets at the end of
2120 // the loop appear in an outer scoping level. This avoids warnings about
2121 // jumping past an initialization to a target in the same block.
2122 {
2123 buf[sizeof(buf) - 1] = 1;
2124 bool long_line = false;
2125 if (!fgets(buf, sizeof(buf), f)) {
2126 // Read errors presumably because of EOF
2127 // If there is valid data in threadInfo[num_avail], then fake
2128 // a blank line in ensure that the last address gets parsed.
2129 bool valid = false;
2130 for (i = 0; i <= maxIndex; i++) {
2131 if (threadInfo[num_avail][i] != UINT_MAX) {
2132 valid = true;
2133 }
2134 }
2135 if (!valid) {
2136 break;
2137 }
2138 buf[0] = 0;
2139 } else if (!buf[sizeof(buf) - 1]) {
2140 // The line is longer than the buffer. Set a flag and don't
2141 // emit an error if we were going to ignore the line, anyway.
2142 long_line = true;
2143
2144 #define CHECK_LINE \
2145 if (long_line) { \
2146 CLEANUP_THREAD_INFO; \
2147 *msg_id = kmp_i18n_str_LongLineCpuinfo; \
2148 return -1; \
2149 }
2150 }
2151 (*line)++;
2152
2153 char s1[] = "processor";
2154 if (strncmp(buf, s1, sizeof(s1) - 1) == 0) {
2155 CHECK_LINE;
2156 char *p = strchr(buf + sizeof(s1) - 1, ':');
2157 unsigned val;
2158 if ((p == NULL) || (KMP_SSCANF(p + 1, "%u\n", &val) != 1))
2159 goto no_val;
2160 if (threadInfo[num_avail][osIdIndex] != UINT_MAX)
2161 #if KMP_ARCH_AARCH64
2162 // Handle the old AArch64 /proc/cpuinfo layout differently,
2163 // it contains all of the 'processor' entries listed in a
2164 // single 'Processor' section, therefore the normal looking
2165 // for duplicates in that section will always fail.
2166 num_avail++;
2167 #else
2168 goto dup_field;
2169 #endif
2170 threadInfo[num_avail][osIdIndex] = val;
2171 #if KMP_OS_LINUX && !(KMP_ARCH_X86 || KMP_ARCH_X86_64)
2172 char path[256];
2173 KMP_SNPRINTF(
2174 path, sizeof(path),
2175 "/sys/devices/system/cpu/cpu%u/topology/physical_package_id",
2176 threadInfo[num_avail][osIdIndex]);
2177 __kmp_read_from_file(path, "%u", &threadInfo[num_avail][pkgIdIndex]);
2178
2179 KMP_SNPRINTF(path, sizeof(path),
2180 "/sys/devices/system/cpu/cpu%u/topology/core_id",
2181 threadInfo[num_avail][osIdIndex]);
2182 __kmp_read_from_file(path, "%u", &threadInfo[num_avail][coreIdIndex]);
2183 continue;
2184 #else
2185 }
2186 char s2[] = "physical id";
2187 if (strncmp(buf, s2, sizeof(s2) - 1) == 0) {
2188 CHECK_LINE;
2189 char *p = strchr(buf + sizeof(s2) - 1, ':');
2190 unsigned val;
2191 if ((p == NULL) || (KMP_SSCANF(p + 1, "%u\n", &val) != 1))
2192 goto no_val;
2193 if (threadInfo[num_avail][pkgIdIndex] != UINT_MAX)
2194 goto dup_field;
2195 threadInfo[num_avail][pkgIdIndex] = val;
2196 continue;
2197 }
2198 char s3[] = "core id";
2199 if (strncmp(buf, s3, sizeof(s3) - 1) == 0) {
2200 CHECK_LINE;
2201 char *p = strchr(buf + sizeof(s3) - 1, ':');
2202 unsigned val;
2203 if ((p == NULL) || (KMP_SSCANF(p + 1, "%u\n", &val) != 1))
2204 goto no_val;
2205 if (threadInfo[num_avail][coreIdIndex] != UINT_MAX)
2206 goto dup_field;
2207 threadInfo[num_avail][coreIdIndex] = val;
2208 continue;
2209 #endif // KMP_OS_LINUX && USE_SYSFS_INFO
2210 }
2211 char s4[] = "thread id";
2212 if (strncmp(buf, s4, sizeof(s4) - 1) == 0) {
2213 CHECK_LINE;
2214 char *p = strchr(buf + sizeof(s4) - 1, ':');
2215 unsigned val;
2216 if ((p == NULL) || (KMP_SSCANF(p + 1, "%u\n", &val) != 1))
2217 goto no_val;
2218 if (threadInfo[num_avail][threadIdIndex] != UINT_MAX)
2219 goto dup_field;
2220 threadInfo[num_avail][threadIdIndex] = val;
2221 continue;
2222 }
2223 unsigned level;
2224 if (KMP_SSCANF(buf, "node_%u id", &level) == 1) {
2225 CHECK_LINE;
2226 char *p = strchr(buf + sizeof(s4) - 1, ':');
2227 unsigned val;
2228 if ((p == NULL) || (KMP_SSCANF(p + 1, "%u\n", &val) != 1))
2229 goto no_val;
2230 KMP_ASSERT(nodeIdIndex + level <= maxIndex);
2231 if (threadInfo[num_avail][nodeIdIndex + level] != UINT_MAX)
2232 goto dup_field;
2233 threadInfo[num_avail][nodeIdIndex + level] = val;
2234 continue;
2235 }
2236
2237 // We didn't recognize the leading token on the line. There are lots of
2238 // leading tokens that we don't recognize - if the line isn't empty, go on
2239 // to the next line.
2240 if ((*buf != 0) && (*buf != '\n')) {
2241 // If the line is longer than the buffer, read characters
2242 // until we find a newline.
2243 if (long_line) {
2244 int ch;
2245 while (((ch = fgetc(f)) != EOF) && (ch != '\n'))
2246 ;
2247 }
2248 continue;
2249 }
2250
2251 // A newline has signalled the end of the processor record.
2252 // Check that there aren't too many procs specified.
2253 if ((int)num_avail == __kmp_xproc) {
2254 CLEANUP_THREAD_INFO;
2255 *msg_id = kmp_i18n_str_TooManyEntries;
2256 return -1;
2257 }
2258
2259 // Check for missing fields. The osId field must be there, and we
2260 // currently require that the physical id field is specified, also.
2261 if (threadInfo[num_avail][osIdIndex] == UINT_MAX) {
2262 CLEANUP_THREAD_INFO;
2263 *msg_id = kmp_i18n_str_MissingProcField;
2264 return -1;
2265 }
2266 if (threadInfo[0][pkgIdIndex] == UINT_MAX) {
2267 CLEANUP_THREAD_INFO;
2268 *msg_id = kmp_i18n_str_MissingPhysicalIDField;
2269 return -1;
2270 }
2271
2272 // Skip this proc if it is not included in the machine model.
2273 if (!KMP_CPU_ISSET(threadInfo[num_avail][osIdIndex],
2274 __kmp_affin_fullMask)) {
2275 INIT_PROC_INFO(threadInfo[num_avail]);
2276 continue;
2277 }
2278
2279 // We have a successful parse of this proc's info.
2280 // Increment the counter, and prepare for the next proc.
2281 num_avail++;
2282 KMP_ASSERT(num_avail <= num_records);
2283 INIT_PROC_INFO(threadInfo[num_avail]);
2284 }
2285 continue;
2286
2287 no_val:
2288 CLEANUP_THREAD_INFO;
2289 *msg_id = kmp_i18n_str_MissingValCpuinfo;
2290 return -1;
2291
2292 dup_field:
2293 CLEANUP_THREAD_INFO;
2294 *msg_id = kmp_i18n_str_DuplicateFieldCpuinfo;
2295 return -1;
2296 }
2297 *line = 0;
2298
2299 #if KMP_MIC && REDUCE_TEAM_SIZE
2300 unsigned teamSize = 0;
2301 #endif // KMP_MIC && REDUCE_TEAM_SIZE
2302
2303 // check for num_records == __kmp_xproc ???
2304
2305 // If there's only one thread context to bind to, form an Address object with
2306 // depth 1 and return immediately (or, if affinity is off, set address2os to
2307 // NULL and return).
2308 //
2309 // If it is configured to omit the package level when there is only a single
2310 // package, the logic at the end of this routine won't work if there is only a
2311 // single thread - it would try to form an Address object with depth 0.
2312 KMP_ASSERT(num_avail > 0);
2313 KMP_ASSERT(num_avail <= num_records);
2314 if (num_avail == 1) {
2315 __kmp_ncores = 1;
2316 __kmp_nThreadsPerCore = nCoresPerPkg = nPackages = 1;
2317 if (__kmp_affinity_verbose) {
2318 if (!KMP_AFFINITY_CAPABLE()) {
2319 KMP_INFORM(AffNotCapableUseCpuinfo, "KMP_AFFINITY");
2320 KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc);
2321 KMP_INFORM(Uniform, "KMP_AFFINITY");
2322 } else {
2323 char buf[KMP_AFFIN_MASK_PRINT_LEN];
2324 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN,
2325 __kmp_affin_fullMask);
2326 KMP_INFORM(AffCapableUseCpuinfo, "KMP_AFFINITY");
2327 if (__kmp_affinity_respect_mask) {
2328 KMP_INFORM(InitOSProcSetRespect, "KMP_AFFINITY", buf);
2329 } else {
2330 KMP_INFORM(InitOSProcSetNotRespect, "KMP_AFFINITY", buf);
2331 }
2332 KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc);
2333 KMP_INFORM(Uniform, "KMP_AFFINITY");
2334 }
2335 int index;
2336 kmp_str_buf_t buf;
2337 __kmp_str_buf_init(&buf);
2338 __kmp_str_buf_print(&buf, "1");
2339 for (index = maxIndex - 1; index > pkgIdIndex; index--) {
2340 __kmp_str_buf_print(&buf, " x 1");
2341 }
2342 KMP_INFORM(TopologyExtra, "KMP_AFFINITY", buf.str, 1, 1, 1);
2343 __kmp_str_buf_free(&buf);
2344 }
2345
2346 if (__kmp_affinity_type == affinity_none) {
2347 CLEANUP_THREAD_INFO;
2348 return 0;
2349 }
2350
2351 *address2os = (AddrUnsPair *)__kmp_allocate(sizeof(AddrUnsPair));
2352 Address addr(1);
2353 addr.labels[0] = threadInfo[0][pkgIdIndex];
2354 (*address2os)[0] = AddrUnsPair(addr, threadInfo[0][osIdIndex]);
2355
2356 if (__kmp_affinity_gran_levels < 0) {
2357 __kmp_affinity_gran_levels = 0;
2358 }
2359
2360 if (__kmp_affinity_verbose) {
2361 __kmp_affinity_print_topology(*address2os, 1, 1, 0, -1, -1);
2362 }
2363
2364 CLEANUP_THREAD_INFO;
2365 return 1;
2366 }
2367
2368 // Sort the threadInfo table by physical Id.
2369 qsort(threadInfo, num_avail, sizeof(*threadInfo),
2370 __kmp_affinity_cmp_ProcCpuInfo_phys_id);
2371
2372 // The table is now sorted by pkgId / coreId / threadId, but we really don't
2373 // know the radix of any of the fields. pkgId's may be sparsely assigned among
2374 // the chips on a system. Although coreId's are usually assigned
2375 // [0 .. coresPerPkg-1] and threadId's are usually assigned
2376 // [0..threadsPerCore-1], we don't want to make any such assumptions.
2377 //
2378 // For that matter, we don't know what coresPerPkg and threadsPerCore (or the
2379 // total # packages) are at this point - we want to determine that now. We
2380 // only have an upper bound on the first two figures.
2381 unsigned *counts =
2382 (unsigned *)__kmp_allocate((maxIndex + 1) * sizeof(unsigned));
2383 unsigned *maxCt =
2384 (unsigned *)__kmp_allocate((maxIndex + 1) * sizeof(unsigned));
2385 unsigned *totals =
2386 (unsigned *)__kmp_allocate((maxIndex + 1) * sizeof(unsigned));
2387 unsigned *lastId =
2388 (unsigned *)__kmp_allocate((maxIndex + 1) * sizeof(unsigned));
2389
2390 bool assign_thread_ids = false;
2391 unsigned threadIdCt;
2392 unsigned index;
2393
2394 restart_radix_check:
2395 threadIdCt = 0;
2396
2397 // Initialize the counter arrays with data from threadInfo[0].
2398 if (assign_thread_ids) {
2399 if (threadInfo[0][threadIdIndex] == UINT_MAX) {
2400 threadInfo[0][threadIdIndex] = threadIdCt++;
2401 } else if (threadIdCt <= threadInfo[0][threadIdIndex]) {
2402 threadIdCt = threadInfo[0][threadIdIndex] + 1;
2403 }
2404 }
2405 for (index = 0; index <= maxIndex; index++) {
2406 counts[index] = 1;
2407 maxCt[index] = 1;
2408 totals[index] = 1;
2409 lastId[index] = threadInfo[0][index];
2410 ;
2411 }
2412
2413 // Run through the rest of the OS procs.
2414 for (i = 1; i < num_avail; i++) {
2415 // Find the most significant index whose id differs from the id for the
2416 // previous OS proc.
2417 for (index = maxIndex; index >= threadIdIndex; index--) {
2418 if (assign_thread_ids && (index == threadIdIndex)) {
2419 // Auto-assign the thread id field if it wasn't specified.
2420 if (threadInfo[i][threadIdIndex] == UINT_MAX) {
2421 threadInfo[i][threadIdIndex] = threadIdCt++;
2422 }
2423 // Apparently the thread id field was specified for some entries and not
2424 // others. Start the thread id counter off at the next higher thread id.
2425 else if (threadIdCt <= threadInfo[i][threadIdIndex]) {
2426 threadIdCt = threadInfo[i][threadIdIndex] + 1;
2427 }
2428 }
2429 if (threadInfo[i][index] != lastId[index]) {
2430 // Run through all indices which are less significant, and reset the
2431 // counts to 1. At all levels up to and including index, we need to
2432 // increment the totals and record the last id.
2433 unsigned index2;
2434 for (index2 = threadIdIndex; index2 < index; index2++) {
2435 totals[index2]++;
2436 if (counts[index2] > maxCt[index2]) {
2437 maxCt[index2] = counts[index2];
2438 }
2439 counts[index2] = 1;
2440 lastId[index2] = threadInfo[i][index2];
2441 }
2442 counts[index]++;
2443 totals[index]++;
2444 lastId[index] = threadInfo[i][index];
2445
2446 if (assign_thread_ids && (index > threadIdIndex)) {
2447
2448 #if KMP_MIC && REDUCE_TEAM_SIZE
2449 // The default team size is the total #threads in the machine
2450 // minus 1 thread for every core that has 3 or more threads.
2451 teamSize += (threadIdCt <= 2) ? (threadIdCt) : (threadIdCt - 1);
2452 #endif // KMP_MIC && REDUCE_TEAM_SIZE
2453
2454 // Restart the thread counter, as we are on a new core.
2455 threadIdCt = 0;
2456
2457 // Auto-assign the thread id field if it wasn't specified.
2458 if (threadInfo[i][threadIdIndex] == UINT_MAX) {
2459 threadInfo[i][threadIdIndex] = threadIdCt++;
2460 }
2461
2462 // Aparrently the thread id field was specified for some entries and
2463 // not others. Start the thread id counter off at the next higher
2464 // thread id.
2465 else if (threadIdCt <= threadInfo[i][threadIdIndex]) {
2466 threadIdCt = threadInfo[i][threadIdIndex] + 1;
2467 }
2468 }
2469 break;
2470 }
2471 }
2472 if (index < threadIdIndex) {
2473 // If thread ids were specified, it is an error if they are not unique.
2474 // Also, check that we waven't already restarted the loop (to be safe -
2475 // shouldn't need to).
2476 if ((threadInfo[i][threadIdIndex] != UINT_MAX) || assign_thread_ids) {
2477 __kmp_free(lastId);
2478 __kmp_free(totals);
2479 __kmp_free(maxCt);
2480 __kmp_free(counts);
2481 CLEANUP_THREAD_INFO;
2482 *msg_id = kmp_i18n_str_PhysicalIDsNotUnique;
2483 return -1;
2484 }
2485
2486 // If the thread ids were not specified and we see entries entries that
2487 // are duplicates, start the loop over and assign the thread ids manually.
2488 assign_thread_ids = true;
2489 goto restart_radix_check;
2490 }
2491 }
2492
2493 #if KMP_MIC && REDUCE_TEAM_SIZE
2494 // The default team size is the total #threads in the machine
2495 // minus 1 thread for every core that has 3 or more threads.
2496 teamSize += (threadIdCt <= 2) ? (threadIdCt) : (threadIdCt - 1);
2497 #endif // KMP_MIC && REDUCE_TEAM_SIZE
2498
2499 for (index = threadIdIndex; index <= maxIndex; index++) {
2500 if (counts[index] > maxCt[index]) {
2501 maxCt[index] = counts[index];
2502 }
2503 }
2504
2505 __kmp_nThreadsPerCore = maxCt[threadIdIndex];
2506 nCoresPerPkg = maxCt[coreIdIndex];
2507 nPackages = totals[pkgIdIndex];
2508
2509 // Check to see if the machine topology is uniform
2510 unsigned prod = totals[maxIndex];
2511 for (index = threadIdIndex; index < maxIndex; index++) {
2512 prod *= maxCt[index];
2513 }
2514 bool uniform = (prod == totals[threadIdIndex]);
2515
2516 // When affinity is off, this routine will still be called to set
2517 // __kmp_ncores, as well as __kmp_nThreadsPerCore, nCoresPerPkg, & nPackages.
2518 // Make sure all these vars are set correctly, and return now if affinity is
2519 // not enabled.
2520 __kmp_ncores = totals[coreIdIndex];
2521
2522 if (__kmp_affinity_verbose) {
2523 if (!KMP_AFFINITY_CAPABLE()) {
2524 KMP_INFORM(AffNotCapableUseCpuinfo, "KMP_AFFINITY");
2525 KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc);
2526 if (uniform) {
2527 KMP_INFORM(Uniform, "KMP_AFFINITY");
2528 } else {
2529 KMP_INFORM(NonUniform, "KMP_AFFINITY");
2530 }
2531 } else {
2532 char buf[KMP_AFFIN_MASK_PRINT_LEN];
2533 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN,
2534 __kmp_affin_fullMask);
2535 KMP_INFORM(AffCapableUseCpuinfo, "KMP_AFFINITY");
2536 if (__kmp_affinity_respect_mask) {
2537 KMP_INFORM(InitOSProcSetRespect, "KMP_AFFINITY", buf);
2538 } else {
2539 KMP_INFORM(InitOSProcSetNotRespect, "KMP_AFFINITY", buf);
2540 }
2541 KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc);
2542 if (uniform) {
2543 KMP_INFORM(Uniform, "KMP_AFFINITY");
2544 } else {
2545 KMP_INFORM(NonUniform, "KMP_AFFINITY");
2546 }
2547 }
2548 kmp_str_buf_t buf;
2549 __kmp_str_buf_init(&buf);
2550
2551 __kmp_str_buf_print(&buf, "%d", totals[maxIndex]);
2552 for (index = maxIndex - 1; index >= pkgIdIndex; index--) {
2553 __kmp_str_buf_print(&buf, " x %d", maxCt[index]);
2554 }
2555 KMP_INFORM(TopologyExtra, "KMP_AFFINITY", buf.str, maxCt[coreIdIndex],
2556 maxCt[threadIdIndex], __kmp_ncores);
2557
2558 __kmp_str_buf_free(&buf);
2559 }
2560
2561 #if KMP_MIC && REDUCE_TEAM_SIZE
2562 // Set the default team size.
2563 if ((__kmp_dflt_team_nth == 0) && (teamSize > 0)) {
2564 __kmp_dflt_team_nth = teamSize;
2565 KA_TRACE(20, ("__kmp_affinity_create_cpuinfo_map: setting "
2566 "__kmp_dflt_team_nth = %d\n",
2567 __kmp_dflt_team_nth));
2568 }
2569 #endif // KMP_MIC && REDUCE_TEAM_SIZE
2570
2571 KMP_DEBUG_ASSERT(__kmp_pu_os_idx == NULL);
2572 KMP_DEBUG_ASSERT(num_avail == (unsigned)__kmp_avail_proc);
2573 __kmp_pu_os_idx = (int *)__kmp_allocate(sizeof(int) * __kmp_avail_proc);
2574 for (i = 0; i < num_avail; ++i) { // fill the os indices
2575 __kmp_pu_os_idx[i] = threadInfo[i][osIdIndex];
2576 }
2577
2578 if (__kmp_affinity_type == affinity_none) {
2579 __kmp_free(lastId);
2580 __kmp_free(totals);
2581 __kmp_free(maxCt);
2582 __kmp_free(counts);
2583 CLEANUP_THREAD_INFO;
2584 return 0;
2585 }
2586
2587 // Count the number of levels which have more nodes at that level than at the
2588 // parent's level (with there being an implicit root node of the top level).
2589 // This is equivalent to saying that there is at least one node at this level
2590 // which has a sibling. These levels are in the map, and the package level is
2591 // always in the map.
2592 bool *inMap = (bool *)__kmp_allocate((maxIndex + 1) * sizeof(bool));
2593 for (index = threadIdIndex; index < maxIndex; index++) {
2594 KMP_ASSERT(totals[index] >= totals[index + 1]);
2595 inMap[index] = (totals[index] > totals[index + 1]);
2596 }
2597 inMap[maxIndex] = (totals[maxIndex] > 1);
2598 inMap[pkgIdIndex] = true;
2599
2600 int depth = 0;
2601 for (index = threadIdIndex; index <= maxIndex; index++) {
2602 if (inMap[index]) {
2603 depth++;
2604 }
2605 }
2606 KMP_ASSERT(depth > 0);
2607
2608 // Construct the data structure that is to be returned.
2609 *address2os = (AddrUnsPair *)__kmp_allocate(sizeof(AddrUnsPair) * num_avail);
2610 int pkgLevel = -1;
2611 int coreLevel = -1;
2612 int threadLevel = -1;
2613
2614 for (i = 0; i < num_avail; ++i) {
2615 Address addr(depth);
2616 unsigned os = threadInfo[i][osIdIndex];
2617 int src_index;
2618 int dst_index = 0;
2619
2620 for (src_index = maxIndex; src_index >= threadIdIndex; src_index--) {
2621 if (!inMap[src_index]) {
2622 continue;
2623 }
2624 addr.labels[dst_index] = threadInfo[i][src_index];
2625 if (src_index == pkgIdIndex) {
2626 pkgLevel = dst_index;
2627 } else if (src_index == coreIdIndex) {
2628 coreLevel = dst_index;
2629 } else if (src_index == threadIdIndex) {
2630 threadLevel = dst_index;
2631 }
2632 dst_index++;
2633 }
2634 (*address2os)[i] = AddrUnsPair(addr, os);
2635 }
2636
2637 if (__kmp_affinity_gran_levels < 0) {
2638 // Set the granularity level based on what levels are modeled
2639 // in the machine topology map.
2640 unsigned src_index;
2641 __kmp_affinity_gran_levels = 0;
2642 for (src_index = threadIdIndex; src_index <= maxIndex; src_index++) {
2643 if (!inMap[src_index]) {
2644 continue;
2645 }
2646 switch (src_index) {
2647 case threadIdIndex:
2648 if (__kmp_affinity_gran > affinity_gran_thread) {
2649 __kmp_affinity_gran_levels++;
2650 }
2651
2652 break;
2653 case coreIdIndex:
2654 if (__kmp_affinity_gran > affinity_gran_core) {
2655 __kmp_affinity_gran_levels++;
2656 }
2657 break;
2658
2659 case pkgIdIndex:
2660 if (__kmp_affinity_gran > affinity_gran_package) {
2661 __kmp_affinity_gran_levels++;
2662 }
2663 break;
2664 }
2665 }
2666 }
2667
2668 if (__kmp_affinity_verbose) {
2669 __kmp_affinity_print_topology(*address2os, num_avail, depth, pkgLevel,
2670 coreLevel, threadLevel);
2671 }
2672
2673 __kmp_free(inMap);
2674 __kmp_free(lastId);
2675 __kmp_free(totals);
2676 __kmp_free(maxCt);
2677 __kmp_free(counts);
2678 CLEANUP_THREAD_INFO;
2679 return depth;
2680 }
2681
2682 // Create and return a table of affinity masks, indexed by OS thread ID.
2683 // This routine handles OR'ing together all the affinity masks of threads
2684 // that are sufficiently close, if granularity > fine.
__kmp_create_masks(unsigned * maxIndex,unsigned * numUnique,AddrUnsPair * address2os,unsigned numAddrs)2685 static kmp_affin_mask_t *__kmp_create_masks(unsigned *maxIndex,
2686 unsigned *numUnique,
2687 AddrUnsPair *address2os,
2688 unsigned numAddrs) {
2689 // First form a table of affinity masks in order of OS thread id.
2690 unsigned depth;
2691 unsigned maxOsId;
2692 unsigned i;
2693
2694 KMP_ASSERT(numAddrs > 0);
2695 depth = address2os[0].first.depth;
2696
2697 maxOsId = 0;
2698 for (i = numAddrs - 1;; --i) {
2699 unsigned osId = address2os[i].second;
2700 if (osId > maxOsId) {
2701 maxOsId = osId;
2702 }
2703 if (i == 0)
2704 break;
2705 }
2706 kmp_affin_mask_t *osId2Mask;
2707 KMP_CPU_ALLOC_ARRAY(osId2Mask, (maxOsId + 1));
2708
2709 // Sort the address2os table according to physical order. Doing so will put
2710 // all threads on the same core/package/node in consecutive locations.
2711 qsort(address2os, numAddrs, sizeof(*address2os),
2712 __kmp_affinity_cmp_Address_labels);
2713
2714 KMP_ASSERT(__kmp_affinity_gran_levels >= 0);
2715 if (__kmp_affinity_verbose && (__kmp_affinity_gran_levels > 0)) {
2716 KMP_INFORM(ThreadsMigrate, "KMP_AFFINITY", __kmp_affinity_gran_levels);
2717 }
2718 if (__kmp_affinity_gran_levels >= (int)depth) {
2719 if (__kmp_affinity_verbose ||
2720 (__kmp_affinity_warnings && (__kmp_affinity_type != affinity_none))) {
2721 KMP_WARNING(AffThreadsMayMigrate);
2722 }
2723 }
2724
2725 // Run through the table, forming the masks for all threads on each core.
2726 // Threads on the same core will have identical "Address" objects, not
2727 // considering the last level, which must be the thread id. All threads on a
2728 // core will appear consecutively.
2729 unsigned unique = 0;
2730 unsigned j = 0; // index of 1st thread on core
2731 unsigned leader = 0;
2732 Address *leaderAddr = &(address2os[0].first);
2733 kmp_affin_mask_t *sum;
2734 KMP_CPU_ALLOC_ON_STACK(sum);
2735 KMP_CPU_ZERO(sum);
2736 KMP_CPU_SET(address2os[0].second, sum);
2737 for (i = 1; i < numAddrs; i++) {
2738 // If this thread is sufficiently close to the leader (within the
2739 // granularity setting), then set the bit for this os thread in the
2740 // affinity mask for this group, and go on to the next thread.
2741 if (leaderAddr->isClose(address2os[i].first, __kmp_affinity_gran_levels)) {
2742 KMP_CPU_SET(address2os[i].second, sum);
2743 continue;
2744 }
2745
2746 // For every thread in this group, copy the mask to the thread's entry in
2747 // the osId2Mask table. Mark the first address as a leader.
2748 for (; j < i; j++) {
2749 unsigned osId = address2os[j].second;
2750 KMP_DEBUG_ASSERT(osId <= maxOsId);
2751 kmp_affin_mask_t *mask = KMP_CPU_INDEX(osId2Mask, osId);
2752 KMP_CPU_COPY(mask, sum);
2753 address2os[j].first.leader = (j == leader);
2754 }
2755 unique++;
2756
2757 // Start a new mask.
2758 leader = i;
2759 leaderAddr = &(address2os[i].first);
2760 KMP_CPU_ZERO(sum);
2761 KMP_CPU_SET(address2os[i].second, sum);
2762 }
2763
2764 // For every thread in last group, copy the mask to the thread's
2765 // entry in the osId2Mask table.
2766 for (; j < i; j++) {
2767 unsigned osId = address2os[j].second;
2768 KMP_DEBUG_ASSERT(osId <= maxOsId);
2769 kmp_affin_mask_t *mask = KMP_CPU_INDEX(osId2Mask, osId);
2770 KMP_CPU_COPY(mask, sum);
2771 address2os[j].first.leader = (j == leader);
2772 }
2773 unique++;
2774 KMP_CPU_FREE_FROM_STACK(sum);
2775
2776 *maxIndex = maxOsId;
2777 *numUnique = unique;
2778 return osId2Mask;
2779 }
2780
2781 // Stuff for the affinity proclist parsers. It's easier to declare these vars
2782 // as file-static than to try and pass them through the calling sequence of
2783 // the recursive-descent OMP_PLACES parser.
2784 static kmp_affin_mask_t *newMasks;
2785 static int numNewMasks;
2786 static int nextNewMask;
2787
2788 #define ADD_MASK(_mask) \
2789 { \
2790 if (nextNewMask >= numNewMasks) { \
2791 int i; \
2792 numNewMasks *= 2; \
2793 kmp_affin_mask_t *temp; \
2794 KMP_CPU_INTERNAL_ALLOC_ARRAY(temp, numNewMasks); \
2795 for (i = 0; i < numNewMasks / 2; i++) { \
2796 kmp_affin_mask_t *src = KMP_CPU_INDEX(newMasks, i); \
2797 kmp_affin_mask_t *dest = KMP_CPU_INDEX(temp, i); \
2798 KMP_CPU_COPY(dest, src); \
2799 } \
2800 KMP_CPU_INTERNAL_FREE_ARRAY(newMasks, numNewMasks / 2); \
2801 newMasks = temp; \
2802 } \
2803 KMP_CPU_COPY(KMP_CPU_INDEX(newMasks, nextNewMask), (_mask)); \
2804 nextNewMask++; \
2805 }
2806
2807 #define ADD_MASK_OSID(_osId, _osId2Mask, _maxOsId) \
2808 { \
2809 if (((_osId) > _maxOsId) || \
2810 (!KMP_CPU_ISSET((_osId), KMP_CPU_INDEX((_osId2Mask), (_osId))))) { \
2811 if (__kmp_affinity_verbose || \
2812 (__kmp_affinity_warnings && \
2813 (__kmp_affinity_type != affinity_none))) { \
2814 KMP_WARNING(AffIgnoreInvalidProcID, _osId); \
2815 } \
2816 } else { \
2817 ADD_MASK(KMP_CPU_INDEX(_osId2Mask, (_osId))); \
2818 } \
2819 }
2820
2821 // Re-parse the proclist (for the explicit affinity type), and form the list
2822 // of affinity newMasks indexed by gtid.
__kmp_affinity_process_proclist(kmp_affin_mask_t ** out_masks,unsigned int * out_numMasks,const char * proclist,kmp_affin_mask_t * osId2Mask,int maxOsId)2823 static void __kmp_affinity_process_proclist(kmp_affin_mask_t **out_masks,
2824 unsigned int *out_numMasks,
2825 const char *proclist,
2826 kmp_affin_mask_t *osId2Mask,
2827 int maxOsId) {
2828 int i;
2829 const char *scan = proclist;
2830 const char *next = proclist;
2831
2832 // We use malloc() for the temporary mask vector, so that we can use
2833 // realloc() to extend it.
2834 numNewMasks = 2;
2835 KMP_CPU_INTERNAL_ALLOC_ARRAY(newMasks, numNewMasks);
2836 nextNewMask = 0;
2837 kmp_affin_mask_t *sumMask;
2838 KMP_CPU_ALLOC(sumMask);
2839 int setSize = 0;
2840
2841 for (;;) {
2842 int start, end, stride;
2843
2844 SKIP_WS(scan);
2845 next = scan;
2846 if (*next == '\0') {
2847 break;
2848 }
2849
2850 if (*next == '{') {
2851 int num;
2852 setSize = 0;
2853 next++; // skip '{'
2854 SKIP_WS(next);
2855 scan = next;
2856
2857 // Read the first integer in the set.
2858 KMP_ASSERT2((*next >= '0') && (*next <= '9'), "bad proclist");
2859 SKIP_DIGITS(next);
2860 num = __kmp_str_to_int(scan, *next);
2861 KMP_ASSERT2(num >= 0, "bad explicit proc list");
2862
2863 // Copy the mask for that osId to the sum (union) mask.
2864 if ((num > maxOsId) ||
2865 (!KMP_CPU_ISSET(num, KMP_CPU_INDEX(osId2Mask, num)))) {
2866 if (__kmp_affinity_verbose ||
2867 (__kmp_affinity_warnings &&
2868 (__kmp_affinity_type != affinity_none))) {
2869 KMP_WARNING(AffIgnoreInvalidProcID, num);
2870 }
2871 KMP_CPU_ZERO(sumMask);
2872 } else {
2873 KMP_CPU_COPY(sumMask, KMP_CPU_INDEX(osId2Mask, num));
2874 setSize = 1;
2875 }
2876
2877 for (;;) {
2878 // Check for end of set.
2879 SKIP_WS(next);
2880 if (*next == '}') {
2881 next++; // skip '}'
2882 break;
2883 }
2884
2885 // Skip optional comma.
2886 if (*next == ',') {
2887 next++;
2888 }
2889 SKIP_WS(next);
2890
2891 // Read the next integer in the set.
2892 scan = next;
2893 KMP_ASSERT2((*next >= '0') && (*next <= '9'), "bad explicit proc list");
2894
2895 SKIP_DIGITS(next);
2896 num = __kmp_str_to_int(scan, *next);
2897 KMP_ASSERT2(num >= 0, "bad explicit proc list");
2898
2899 // Add the mask for that osId to the sum mask.
2900 if ((num > maxOsId) ||
2901 (!KMP_CPU_ISSET(num, KMP_CPU_INDEX(osId2Mask, num)))) {
2902 if (__kmp_affinity_verbose ||
2903 (__kmp_affinity_warnings &&
2904 (__kmp_affinity_type != affinity_none))) {
2905 KMP_WARNING(AffIgnoreInvalidProcID, num);
2906 }
2907 } else {
2908 KMP_CPU_UNION(sumMask, KMP_CPU_INDEX(osId2Mask, num));
2909 setSize++;
2910 }
2911 }
2912 if (setSize > 0) {
2913 ADD_MASK(sumMask);
2914 }
2915
2916 SKIP_WS(next);
2917 if (*next == ',') {
2918 next++;
2919 }
2920 scan = next;
2921 continue;
2922 }
2923
2924 // Read the first integer.
2925 KMP_ASSERT2((*next >= '0') && (*next <= '9'), "bad explicit proc list");
2926 SKIP_DIGITS(next);
2927 start = __kmp_str_to_int(scan, *next);
2928 KMP_ASSERT2(start >= 0, "bad explicit proc list");
2929 SKIP_WS(next);
2930
2931 // If this isn't a range, then add a mask to the list and go on.
2932 if (*next != '-') {
2933 ADD_MASK_OSID(start, osId2Mask, maxOsId);
2934
2935 // Skip optional comma.
2936 if (*next == ',') {
2937 next++;
2938 }
2939 scan = next;
2940 continue;
2941 }
2942
2943 // This is a range. Skip over the '-' and read in the 2nd int.
2944 next++; // skip '-'
2945 SKIP_WS(next);
2946 scan = next;
2947 KMP_ASSERT2((*next >= '0') && (*next <= '9'), "bad explicit proc list");
2948 SKIP_DIGITS(next);
2949 end = __kmp_str_to_int(scan, *next);
2950 KMP_ASSERT2(end >= 0, "bad explicit proc list");
2951
2952 // Check for a stride parameter
2953 stride = 1;
2954 SKIP_WS(next);
2955 if (*next == ':') {
2956 // A stride is specified. Skip over the ':" and read the 3rd int.
2957 int sign = +1;
2958 next++; // skip ':'
2959 SKIP_WS(next);
2960 scan = next;
2961 if (*next == '-') {
2962 sign = -1;
2963 next++;
2964 SKIP_WS(next);
2965 scan = next;
2966 }
2967 KMP_ASSERT2((*next >= '0') && (*next <= '9'), "bad explicit proc list");
2968 SKIP_DIGITS(next);
2969 stride = __kmp_str_to_int(scan, *next);
2970 KMP_ASSERT2(stride >= 0, "bad explicit proc list");
2971 stride *= sign;
2972 }
2973
2974 // Do some range checks.
2975 KMP_ASSERT2(stride != 0, "bad explicit proc list");
2976 if (stride > 0) {
2977 KMP_ASSERT2(start <= end, "bad explicit proc list");
2978 } else {
2979 KMP_ASSERT2(start >= end, "bad explicit proc list");
2980 }
2981 KMP_ASSERT2((end - start) / stride <= 65536, "bad explicit proc list");
2982
2983 // Add the mask for each OS proc # to the list.
2984 if (stride > 0) {
2985 do {
2986 ADD_MASK_OSID(start, osId2Mask, maxOsId);
2987 start += stride;
2988 } while (start <= end);
2989 } else {
2990 do {
2991 ADD_MASK_OSID(start, osId2Mask, maxOsId);
2992 start += stride;
2993 } while (start >= end);
2994 }
2995
2996 // Skip optional comma.
2997 SKIP_WS(next);
2998 if (*next == ',') {
2999 next++;
3000 }
3001 scan = next;
3002 }
3003
3004 *out_numMasks = nextNewMask;
3005 if (nextNewMask == 0) {
3006 *out_masks = NULL;
3007 KMP_CPU_INTERNAL_FREE_ARRAY(newMasks, numNewMasks);
3008 return;
3009 }
3010 KMP_CPU_ALLOC_ARRAY((*out_masks), nextNewMask);
3011 for (i = 0; i < nextNewMask; i++) {
3012 kmp_affin_mask_t *src = KMP_CPU_INDEX(newMasks, i);
3013 kmp_affin_mask_t *dest = KMP_CPU_INDEX((*out_masks), i);
3014 KMP_CPU_COPY(dest, src);
3015 }
3016 KMP_CPU_INTERNAL_FREE_ARRAY(newMasks, numNewMasks);
3017 KMP_CPU_FREE(sumMask);
3018 }
3019
3020 #if OMP_40_ENABLED
3021
3022 /*-----------------------------------------------------------------------------
3023 Re-parse the OMP_PLACES proc id list, forming the newMasks for the different
3024 places. Again, Here is the grammar:
3025
3026 place_list := place
3027 place_list := place , place_list
3028 place := num
3029 place := place : num
3030 place := place : num : signed
3031 place := { subplacelist }
3032 place := ! place // (lowest priority)
3033 subplace_list := subplace
3034 subplace_list := subplace , subplace_list
3035 subplace := num
3036 subplace := num : num
3037 subplace := num : num : signed
3038 signed := num
3039 signed := + signed
3040 signed := - signed
3041 -----------------------------------------------------------------------------*/
3042
__kmp_process_subplace_list(const char ** scan,kmp_affin_mask_t * osId2Mask,int maxOsId,kmp_affin_mask_t * tempMask,int * setSize)3043 static void __kmp_process_subplace_list(const char **scan,
3044 kmp_affin_mask_t *osId2Mask,
3045 int maxOsId, kmp_affin_mask_t *tempMask,
3046 int *setSize) {
3047 const char *next;
3048
3049 for (;;) {
3050 int start, count, stride, i;
3051
3052 // Read in the starting proc id
3053 SKIP_WS(*scan);
3054 KMP_ASSERT2((**scan >= '0') && (**scan <= '9'), "bad explicit places list");
3055 next = *scan;
3056 SKIP_DIGITS(next);
3057 start = __kmp_str_to_int(*scan, *next);
3058 KMP_ASSERT(start >= 0);
3059 *scan = next;
3060
3061 // valid follow sets are ',' ':' and '}'
3062 SKIP_WS(*scan);
3063 if (**scan == '}' || **scan == ',') {
3064 if ((start > maxOsId) ||
3065 (!KMP_CPU_ISSET(start, KMP_CPU_INDEX(osId2Mask, start)))) {
3066 if (__kmp_affinity_verbose ||
3067 (__kmp_affinity_warnings &&
3068 (__kmp_affinity_type != affinity_none))) {
3069 KMP_WARNING(AffIgnoreInvalidProcID, start);
3070 }
3071 } else {
3072 KMP_CPU_UNION(tempMask, KMP_CPU_INDEX(osId2Mask, start));
3073 (*setSize)++;
3074 }
3075 if (**scan == '}') {
3076 break;
3077 }
3078 (*scan)++; // skip ','
3079 continue;
3080 }
3081 KMP_ASSERT2(**scan == ':', "bad explicit places list");
3082 (*scan)++; // skip ':'
3083
3084 // Read count parameter
3085 SKIP_WS(*scan);
3086 KMP_ASSERT2((**scan >= '0') && (**scan <= '9'), "bad explicit places list");
3087 next = *scan;
3088 SKIP_DIGITS(next);
3089 count = __kmp_str_to_int(*scan, *next);
3090 KMP_ASSERT(count >= 0);
3091 *scan = next;
3092
3093 // valid follow sets are ',' ':' and '}'
3094 SKIP_WS(*scan);
3095 if (**scan == '}' || **scan == ',') {
3096 for (i = 0; i < count; i++) {
3097 if ((start > maxOsId) ||
3098 (!KMP_CPU_ISSET(start, KMP_CPU_INDEX(osId2Mask, start)))) {
3099 if (__kmp_affinity_verbose ||
3100 (__kmp_affinity_warnings &&
3101 (__kmp_affinity_type != affinity_none))) {
3102 KMP_WARNING(AffIgnoreInvalidProcID, start);
3103 }
3104 break; // don't proliferate warnings for large count
3105 } else {
3106 KMP_CPU_UNION(tempMask, KMP_CPU_INDEX(osId2Mask, start));
3107 start++;
3108 (*setSize)++;
3109 }
3110 }
3111 if (**scan == '}') {
3112 break;
3113 }
3114 (*scan)++; // skip ','
3115 continue;
3116 }
3117 KMP_ASSERT2(**scan == ':', "bad explicit places list");
3118 (*scan)++; // skip ':'
3119
3120 // Read stride parameter
3121 int sign = +1;
3122 for (;;) {
3123 SKIP_WS(*scan);
3124 if (**scan == '+') {
3125 (*scan)++; // skip '+'
3126 continue;
3127 }
3128 if (**scan == '-') {
3129 sign *= -1;
3130 (*scan)++; // skip '-'
3131 continue;
3132 }
3133 break;
3134 }
3135 SKIP_WS(*scan);
3136 KMP_ASSERT2((**scan >= '0') && (**scan <= '9'), "bad explicit places list");
3137 next = *scan;
3138 SKIP_DIGITS(next);
3139 stride = __kmp_str_to_int(*scan, *next);
3140 KMP_ASSERT(stride >= 0);
3141 *scan = next;
3142 stride *= sign;
3143
3144 // valid follow sets are ',' and '}'
3145 SKIP_WS(*scan);
3146 if (**scan == '}' || **scan == ',') {
3147 for (i = 0; i < count; i++) {
3148 if ((start > maxOsId) ||
3149 (!KMP_CPU_ISSET(start, KMP_CPU_INDEX(osId2Mask, start)))) {
3150 if (__kmp_affinity_verbose ||
3151 (__kmp_affinity_warnings &&
3152 (__kmp_affinity_type != affinity_none))) {
3153 KMP_WARNING(AffIgnoreInvalidProcID, start);
3154 }
3155 break; // don't proliferate warnings for large count
3156 } else {
3157 KMP_CPU_UNION(tempMask, KMP_CPU_INDEX(osId2Mask, start));
3158 start += stride;
3159 (*setSize)++;
3160 }
3161 }
3162 if (**scan == '}') {
3163 break;
3164 }
3165 (*scan)++; // skip ','
3166 continue;
3167 }
3168
3169 KMP_ASSERT2(0, "bad explicit places list");
3170 }
3171 }
3172
__kmp_process_place(const char ** scan,kmp_affin_mask_t * osId2Mask,int maxOsId,kmp_affin_mask_t * tempMask,int * setSize)3173 static void __kmp_process_place(const char **scan, kmp_affin_mask_t *osId2Mask,
3174 int maxOsId, kmp_affin_mask_t *tempMask,
3175 int *setSize) {
3176 const char *next;
3177
3178 // valid follow sets are '{' '!' and num
3179 SKIP_WS(*scan);
3180 if (**scan == '{') {
3181 (*scan)++; // skip '{'
3182 __kmp_process_subplace_list(scan, osId2Mask, maxOsId, tempMask, setSize);
3183 KMP_ASSERT2(**scan == '}', "bad explicit places list");
3184 (*scan)++; // skip '}'
3185 } else if (**scan == '!') {
3186 (*scan)++; // skip '!'
3187 __kmp_process_place(scan, osId2Mask, maxOsId, tempMask, setSize);
3188 KMP_CPU_COMPLEMENT(maxOsId, tempMask);
3189 } else if ((**scan >= '0') && (**scan <= '9')) {
3190 next = *scan;
3191 SKIP_DIGITS(next);
3192 int num = __kmp_str_to_int(*scan, *next);
3193 KMP_ASSERT(num >= 0);
3194 if ((num > maxOsId) ||
3195 (!KMP_CPU_ISSET(num, KMP_CPU_INDEX(osId2Mask, num)))) {
3196 if (__kmp_affinity_verbose ||
3197 (__kmp_affinity_warnings && (__kmp_affinity_type != affinity_none))) {
3198 KMP_WARNING(AffIgnoreInvalidProcID, num);
3199 }
3200 } else {
3201 KMP_CPU_UNION(tempMask, KMP_CPU_INDEX(osId2Mask, num));
3202 (*setSize)++;
3203 }
3204 *scan = next; // skip num
3205 } else {
3206 KMP_ASSERT2(0, "bad explicit places list");
3207 }
3208 }
3209
3210 // static void
__kmp_affinity_process_placelist(kmp_affin_mask_t ** out_masks,unsigned int * out_numMasks,const char * placelist,kmp_affin_mask_t * osId2Mask,int maxOsId)3211 void __kmp_affinity_process_placelist(kmp_affin_mask_t **out_masks,
3212 unsigned int *out_numMasks,
3213 const char *placelist,
3214 kmp_affin_mask_t *osId2Mask,
3215 int maxOsId) {
3216 int i, j, count, stride, sign;
3217 const char *scan = placelist;
3218 const char *next = placelist;
3219
3220 numNewMasks = 2;
3221 KMP_CPU_INTERNAL_ALLOC_ARRAY(newMasks, numNewMasks);
3222 nextNewMask = 0;
3223
3224 // tempMask is modified based on the previous or initial
3225 // place to form the current place
3226 // previousMask contains the previous place
3227 kmp_affin_mask_t *tempMask;
3228 kmp_affin_mask_t *previousMask;
3229 KMP_CPU_ALLOC(tempMask);
3230 KMP_CPU_ZERO(tempMask);
3231 KMP_CPU_ALLOC(previousMask);
3232 KMP_CPU_ZERO(previousMask);
3233 int setSize = 0;
3234
3235 for (;;) {
3236 __kmp_process_place(&scan, osId2Mask, maxOsId, tempMask, &setSize);
3237
3238 // valid follow sets are ',' ':' and EOL
3239 SKIP_WS(scan);
3240 if (*scan == '\0' || *scan == ',') {
3241 if (setSize > 0) {
3242 ADD_MASK(tempMask);
3243 }
3244 KMP_CPU_ZERO(tempMask);
3245 setSize = 0;
3246 if (*scan == '\0') {
3247 break;
3248 }
3249 scan++; // skip ','
3250 continue;
3251 }
3252
3253 KMP_ASSERT2(*scan == ':', "bad explicit places list");
3254 scan++; // skip ':'
3255
3256 // Read count parameter
3257 SKIP_WS(scan);
3258 KMP_ASSERT2((*scan >= '0') && (*scan <= '9'), "bad explicit places list");
3259 next = scan;
3260 SKIP_DIGITS(next);
3261 count = __kmp_str_to_int(scan, *next);
3262 KMP_ASSERT(count >= 0);
3263 scan = next;
3264
3265 // valid follow sets are ',' ':' and EOL
3266 SKIP_WS(scan);
3267 if (*scan == '\0' || *scan == ',') {
3268 stride = +1;
3269 } else {
3270 KMP_ASSERT2(*scan == ':', "bad explicit places list");
3271 scan++; // skip ':'
3272
3273 // Read stride parameter
3274 sign = +1;
3275 for (;;) {
3276 SKIP_WS(scan);
3277 if (*scan == '+') {
3278 scan++; // skip '+'
3279 continue;
3280 }
3281 if (*scan == '-') {
3282 sign *= -1;
3283 scan++; // skip '-'
3284 continue;
3285 }
3286 break;
3287 }
3288 SKIP_WS(scan);
3289 KMP_ASSERT2((*scan >= '0') && (*scan <= '9'), "bad explicit places list");
3290 next = scan;
3291 SKIP_DIGITS(next);
3292 stride = __kmp_str_to_int(scan, *next);
3293 KMP_DEBUG_ASSERT(stride >= 0);
3294 scan = next;
3295 stride *= sign;
3296 }
3297
3298 // Add places determined by initial_place : count : stride
3299 for (i = 0; i < count; i++) {
3300 if (setSize == 0) {
3301 break;
3302 }
3303 // Add the current place, then build the next place (tempMask) from that
3304 KMP_CPU_COPY(previousMask, tempMask);
3305 ADD_MASK(previousMask);
3306 KMP_CPU_ZERO(tempMask);
3307 setSize = 0;
3308 KMP_CPU_SET_ITERATE(j, previousMask) {
3309 if (!KMP_CPU_ISSET(j, previousMask)) {
3310 continue;
3311 }
3312 if ((j + stride > maxOsId) || (j + stride < 0) ||
3313 (!KMP_CPU_ISSET(j, __kmp_affin_fullMask)) ||
3314 (!KMP_CPU_ISSET(j + stride,
3315 KMP_CPU_INDEX(osId2Mask, j + stride)))) {
3316 if ((__kmp_affinity_verbose ||
3317 (__kmp_affinity_warnings &&
3318 (__kmp_affinity_type != affinity_none))) &&
3319 i < count - 1) {
3320 KMP_WARNING(AffIgnoreInvalidProcID, j + stride);
3321 }
3322 continue;
3323 }
3324 KMP_CPU_SET(j + stride, tempMask);
3325 setSize++;
3326 }
3327 }
3328 KMP_CPU_ZERO(tempMask);
3329 setSize = 0;
3330
3331 // valid follow sets are ',' and EOL
3332 SKIP_WS(scan);
3333 if (*scan == '\0') {
3334 break;
3335 }
3336 if (*scan == ',') {
3337 scan++; // skip ','
3338 continue;
3339 }
3340
3341 KMP_ASSERT2(0, "bad explicit places list");
3342 }
3343
3344 *out_numMasks = nextNewMask;
3345 if (nextNewMask == 0) {
3346 *out_masks = NULL;
3347 KMP_CPU_INTERNAL_FREE_ARRAY(newMasks, numNewMasks);
3348 return;
3349 }
3350 KMP_CPU_ALLOC_ARRAY((*out_masks), nextNewMask);
3351 KMP_CPU_FREE(tempMask);
3352 KMP_CPU_FREE(previousMask);
3353 for (i = 0; i < nextNewMask; i++) {
3354 kmp_affin_mask_t *src = KMP_CPU_INDEX(newMasks, i);
3355 kmp_affin_mask_t *dest = KMP_CPU_INDEX((*out_masks), i);
3356 KMP_CPU_COPY(dest, src);
3357 }
3358 KMP_CPU_INTERNAL_FREE_ARRAY(newMasks, numNewMasks);
3359 }
3360
3361 #endif /* OMP_40_ENABLED */
3362
3363 #undef ADD_MASK
3364 #undef ADD_MASK_OSID
3365
3366 #if KMP_USE_HWLOC
__kmp_hwloc_skip_PUs_obj(hwloc_topology_t t,hwloc_obj_t o)3367 static int __kmp_hwloc_skip_PUs_obj(hwloc_topology_t t, hwloc_obj_t o) {
3368 // skip PUs descendants of the object o
3369 int skipped = 0;
3370 hwloc_obj_t hT = NULL;
3371 int N = __kmp_hwloc_count_children_by_type(t, o, HWLOC_OBJ_PU, &hT);
3372 for (int i = 0; i < N; ++i) {
3373 KMP_DEBUG_ASSERT(hT);
3374 unsigned idx = hT->os_index;
3375 if (KMP_CPU_ISSET(idx, __kmp_affin_fullMask)) {
3376 KMP_CPU_CLR(idx, __kmp_affin_fullMask);
3377 KC_TRACE(200, ("KMP_HW_SUBSET: skipped proc %d\n", idx));
3378 ++skipped;
3379 }
3380 hT = hwloc_get_next_obj_by_type(t, HWLOC_OBJ_PU, hT);
3381 }
3382 return skipped; // count number of skipped units
3383 }
3384
__kmp_hwloc_obj_has_PUs(hwloc_topology_t t,hwloc_obj_t o)3385 static int __kmp_hwloc_obj_has_PUs(hwloc_topology_t t, hwloc_obj_t o) {
3386 // check if obj has PUs present in fullMask
3387 hwloc_obj_t hT = NULL;
3388 int N = __kmp_hwloc_count_children_by_type(t, o, HWLOC_OBJ_PU, &hT);
3389 for (int i = 0; i < N; ++i) {
3390 KMP_DEBUG_ASSERT(hT);
3391 unsigned idx = hT->os_index;
3392 if (KMP_CPU_ISSET(idx, __kmp_affin_fullMask))
3393 return 1; // found PU
3394 hT = hwloc_get_next_obj_by_type(t, HWLOC_OBJ_PU, hT);
3395 }
3396 return 0; // no PUs found
3397 }
3398 #endif // KMP_USE_HWLOC
3399
__kmp_apply_thread_places(AddrUnsPair ** pAddr,int depth)3400 static void __kmp_apply_thread_places(AddrUnsPair **pAddr, int depth) {
3401 AddrUnsPair *newAddr;
3402 if (__kmp_hws_requested == 0)
3403 goto _exit; // no topology limiting actions requested, exit
3404 #if KMP_USE_HWLOC
3405 if (__kmp_affinity_dispatch->get_api_type() == KMPAffinity::HWLOC) {
3406 // Number of subobjects calculated dynamically, this works fine for
3407 // any non-uniform topology.
3408 // L2 cache objects are determined by depth, other objects - by type.
3409 hwloc_topology_t tp = __kmp_hwloc_topology;
3410 int nS = 0, nN = 0, nL = 0, nC = 0,
3411 nT = 0; // logical index including skipped
3412 int nCr = 0, nTr = 0; // number of requested units
3413 int nPkg = 0, nCo = 0, n_new = 0, n_old = 0, nCpP = 0, nTpC = 0; // counters
3414 hwloc_obj_t hT, hC, hL, hN, hS; // hwloc objects (pointers to)
3415 int L2depth, idx;
3416
3417 // check support of extensions ----------------------------------
3418 int numa_support = 0, tile_support = 0;
3419 if (__kmp_pu_os_idx)
3420 hT = hwloc_get_pu_obj_by_os_index(tp,
3421 __kmp_pu_os_idx[__kmp_avail_proc - 1]);
3422 else
3423 hT = hwloc_get_obj_by_type(tp, HWLOC_OBJ_PU, __kmp_avail_proc - 1);
3424 if (hT == NULL) { // something's gone wrong
3425 KMP_WARNING(AffHWSubsetUnsupported);
3426 goto _exit;
3427 }
3428 // check NUMA node
3429 hN = hwloc_get_ancestor_obj_by_type(tp, HWLOC_OBJ_NUMANODE, hT);
3430 hS = hwloc_get_ancestor_obj_by_type(tp, HWLOC_OBJ_PACKAGE, hT);
3431 if (hN != NULL && hN->depth > hS->depth) {
3432 numa_support = 1; // 1 in case socket includes node(s)
3433 } else if (__kmp_hws_node.num > 0) {
3434 // don't support sockets inside NUMA node (no such HW found for testing)
3435 KMP_WARNING(AffHWSubsetUnsupported);
3436 goto _exit;
3437 }
3438 // check L2 cahce, get object by depth because of multiple caches
3439 L2depth = hwloc_get_cache_type_depth(tp, 2, HWLOC_OBJ_CACHE_UNIFIED);
3440 hL = hwloc_get_ancestor_obj_by_depth(tp, L2depth, hT);
3441 if (hL != NULL &&
3442 __kmp_hwloc_count_children_by_type(tp, hL, HWLOC_OBJ_CORE, &hC) > 1) {
3443 tile_support = 1; // no sense to count L2 if it includes single core
3444 } else if (__kmp_hws_tile.num > 0) {
3445 if (__kmp_hws_core.num == 0) {
3446 __kmp_hws_core = __kmp_hws_tile; // replace L2 with core
3447 __kmp_hws_tile.num = 0;
3448 } else {
3449 // L2 and core are both requested, but represent same object
3450 KMP_WARNING(AffHWSubsetInvalid);
3451 goto _exit;
3452 }
3453 }
3454 // end of check of extensions -----------------------------------
3455
3456 // fill in unset items, validate settings -----------------------
3457 if (__kmp_hws_socket.num == 0)
3458 __kmp_hws_socket.num = nPackages; // use all available sockets
3459 if (__kmp_hws_socket.offset >= nPackages) {
3460 KMP_WARNING(AffHWSubsetManySockets);
3461 goto _exit;
3462 }
3463 if (numa_support) {
3464 hN = NULL;
3465 int NN = __kmp_hwloc_count_children_by_type(tp, hS, HWLOC_OBJ_NUMANODE,
3466 &hN); // num nodes in socket
3467 if (__kmp_hws_node.num == 0)
3468 __kmp_hws_node.num = NN; // use all available nodes
3469 if (__kmp_hws_node.offset >= NN) {
3470 KMP_WARNING(AffHWSubsetManyNodes);
3471 goto _exit;
3472 }
3473 if (tile_support) {
3474 // get num tiles in node
3475 int NL = __kmp_hwloc_count_children_by_depth(tp, hN, L2depth, &hL);
3476 if (__kmp_hws_tile.num == 0) {
3477 __kmp_hws_tile.num = NL + 1;
3478 } // use all available tiles, some node may have more tiles, thus +1
3479 if (__kmp_hws_tile.offset >= NL) {
3480 KMP_WARNING(AffHWSubsetManyTiles);
3481 goto _exit;
3482 }
3483 int NC = __kmp_hwloc_count_children_by_type(tp, hL, HWLOC_OBJ_CORE,
3484 &hC); // num cores in tile
3485 if (__kmp_hws_core.num == 0)
3486 __kmp_hws_core.num = NC; // use all available cores
3487 if (__kmp_hws_core.offset >= NC) {
3488 KMP_WARNING(AffHWSubsetManyCores);
3489 goto _exit;
3490 }
3491 } else { // tile_support
3492 int NC = __kmp_hwloc_count_children_by_type(tp, hN, HWLOC_OBJ_CORE,
3493 &hC); // num cores in node
3494 if (__kmp_hws_core.num == 0)
3495 __kmp_hws_core.num = NC; // use all available cores
3496 if (__kmp_hws_core.offset >= NC) {
3497 KMP_WARNING(AffHWSubsetManyCores);
3498 goto _exit;
3499 }
3500 } // tile_support
3501 } else { // numa_support
3502 if (tile_support) {
3503 // get num tiles in socket
3504 int NL = __kmp_hwloc_count_children_by_depth(tp, hS, L2depth, &hL);
3505 if (__kmp_hws_tile.num == 0)
3506 __kmp_hws_tile.num = NL; // use all available tiles
3507 if (__kmp_hws_tile.offset >= NL) {
3508 KMP_WARNING(AffHWSubsetManyTiles);
3509 goto _exit;
3510 }
3511 int NC = __kmp_hwloc_count_children_by_type(tp, hL, HWLOC_OBJ_CORE,
3512 &hC); // num cores in tile
3513 if (__kmp_hws_core.num == 0)
3514 __kmp_hws_core.num = NC; // use all available cores
3515 if (__kmp_hws_core.offset >= NC) {
3516 KMP_WARNING(AffHWSubsetManyCores);
3517 goto _exit;
3518 }
3519 } else { // tile_support
3520 int NC = __kmp_hwloc_count_children_by_type(tp, hS, HWLOC_OBJ_CORE,
3521 &hC); // num cores in socket
3522 if (__kmp_hws_core.num == 0)
3523 __kmp_hws_core.num = NC; // use all available cores
3524 if (__kmp_hws_core.offset >= NC) {
3525 KMP_WARNING(AffHWSubsetManyCores);
3526 goto _exit;
3527 }
3528 } // tile_support
3529 }
3530 if (__kmp_hws_proc.num == 0)
3531 __kmp_hws_proc.num = __kmp_nThreadsPerCore; // use all available procs
3532 if (__kmp_hws_proc.offset >= __kmp_nThreadsPerCore) {
3533 KMP_WARNING(AffHWSubsetManyProcs);
3534 goto _exit;
3535 }
3536 // end of validation --------------------------------------------
3537
3538 if (pAddr) // pAddr is NULL in case of affinity_none
3539 newAddr = (AddrUnsPair *)__kmp_allocate(sizeof(AddrUnsPair) *
3540 __kmp_avail_proc); // max size
3541 // main loop to form HW subset ----------------------------------
3542 hS = NULL;
3543 int NP = hwloc_get_nbobjs_by_type(tp, HWLOC_OBJ_PACKAGE);
3544 for (int s = 0; s < NP; ++s) {
3545 // Check Socket -----------------------------------------------
3546 hS = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_PACKAGE, hS);
3547 if (!__kmp_hwloc_obj_has_PUs(tp, hS))
3548 continue; // skip socket if all PUs are out of fullMask
3549 ++nS; // only count objects those have PUs in affinity mask
3550 if (nS <= __kmp_hws_socket.offset ||
3551 nS > __kmp_hws_socket.num + __kmp_hws_socket.offset) {
3552 n_old += __kmp_hwloc_skip_PUs_obj(tp, hS); // skip socket
3553 continue; // move to next socket
3554 }
3555 nCr = 0; // count number of cores per socket
3556 // socket requested, go down the topology tree
3557 // check 4 cases: (+NUMA+Tile), (+NUMA-Tile), (-NUMA+Tile), (-NUMA-Tile)
3558 if (numa_support) {
3559 nN = 0;
3560 hN = NULL;
3561 // num nodes in current socket
3562 int NN =
3563 __kmp_hwloc_count_children_by_type(tp, hS, HWLOC_OBJ_NUMANODE, &hN);
3564 for (int n = 0; n < NN; ++n) {
3565 // Check NUMA Node ----------------------------------------
3566 if (!__kmp_hwloc_obj_has_PUs(tp, hN)) {
3567 hN = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_NUMANODE, hN);
3568 continue; // skip node if all PUs are out of fullMask
3569 }
3570 ++nN;
3571 if (nN <= __kmp_hws_node.offset ||
3572 nN > __kmp_hws_node.num + __kmp_hws_node.offset) {
3573 // skip node as not requested
3574 n_old += __kmp_hwloc_skip_PUs_obj(tp, hN); // skip node
3575 hN = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_NUMANODE, hN);
3576 continue; // move to next node
3577 }
3578 // node requested, go down the topology tree
3579 if (tile_support) {
3580 nL = 0;
3581 hL = NULL;
3582 int NL = __kmp_hwloc_count_children_by_depth(tp, hN, L2depth, &hL);
3583 for (int l = 0; l < NL; ++l) {
3584 // Check L2 (tile) ------------------------------------
3585 if (!__kmp_hwloc_obj_has_PUs(tp, hL)) {
3586 hL = hwloc_get_next_obj_by_depth(tp, L2depth, hL);
3587 continue; // skip tile if all PUs are out of fullMask
3588 }
3589 ++nL;
3590 if (nL <= __kmp_hws_tile.offset ||
3591 nL > __kmp_hws_tile.num + __kmp_hws_tile.offset) {
3592 // skip tile as not requested
3593 n_old += __kmp_hwloc_skip_PUs_obj(tp, hL); // skip tile
3594 hL = hwloc_get_next_obj_by_depth(tp, L2depth, hL);
3595 continue; // move to next tile
3596 }
3597 // tile requested, go down the topology tree
3598 nC = 0;
3599 hC = NULL;
3600 // num cores in current tile
3601 int NC = __kmp_hwloc_count_children_by_type(tp, hL,
3602 HWLOC_OBJ_CORE, &hC);
3603 for (int c = 0; c < NC; ++c) {
3604 // Check Core ---------------------------------------
3605 if (!__kmp_hwloc_obj_has_PUs(tp, hC)) {
3606 hC = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_CORE, hC);
3607 continue; // skip core if all PUs are out of fullMask
3608 }
3609 ++nC;
3610 if (nC <= __kmp_hws_core.offset ||
3611 nC > __kmp_hws_core.num + __kmp_hws_core.offset) {
3612 // skip node as not requested
3613 n_old += __kmp_hwloc_skip_PUs_obj(tp, hC); // skip core
3614 hC = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_CORE, hC);
3615 continue; // move to next node
3616 }
3617 // core requested, go down to PUs
3618 nT = 0;
3619 nTr = 0;
3620 hT = NULL;
3621 // num procs in current core
3622 int NT = __kmp_hwloc_count_children_by_type(tp, hC,
3623 HWLOC_OBJ_PU, &hT);
3624 for (int t = 0; t < NT; ++t) {
3625 // Check PU ---------------------------------------
3626 idx = hT->os_index;
3627 if (!KMP_CPU_ISSET(idx, __kmp_affin_fullMask)) {
3628 hT = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_PU, hT);
3629 continue; // skip PU if not in fullMask
3630 }
3631 ++nT;
3632 if (nT <= __kmp_hws_proc.offset ||
3633 nT > __kmp_hws_proc.num + __kmp_hws_proc.offset) {
3634 // skip PU
3635 KMP_CPU_CLR(idx, __kmp_affin_fullMask);
3636 ++n_old;
3637 KC_TRACE(200, ("KMP_HW_SUBSET: skipped proc %d\n", idx));
3638 hT = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_PU, hT);
3639 continue; // move to next node
3640 }
3641 ++nTr;
3642 if (pAddr) // collect requested thread's data
3643 newAddr[n_new] = (*pAddr)[n_old];
3644 ++n_new;
3645 ++n_old;
3646 hT = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_PU, hT);
3647 } // threads loop
3648 if (nTr > 0) {
3649 ++nCr; // num cores per socket
3650 ++nCo; // total num cores
3651 if (nTr > nTpC)
3652 nTpC = nTr; // calc max threads per core
3653 }
3654 hC = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_CORE, hC);
3655 } // cores loop
3656 hL = hwloc_get_next_obj_by_depth(tp, L2depth, hL);
3657 } // tiles loop
3658 } else { // tile_support
3659 // no tiles, check cores
3660 nC = 0;
3661 hC = NULL;
3662 // num cores in current node
3663 int NC =
3664 __kmp_hwloc_count_children_by_type(tp, hN, HWLOC_OBJ_CORE, &hC);
3665 for (int c = 0; c < NC; ++c) {
3666 // Check Core ---------------------------------------
3667 if (!__kmp_hwloc_obj_has_PUs(tp, hC)) {
3668 hC = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_CORE, hC);
3669 continue; // skip core if all PUs are out of fullMask
3670 }
3671 ++nC;
3672 if (nC <= __kmp_hws_core.offset ||
3673 nC > __kmp_hws_core.num + __kmp_hws_core.offset) {
3674 // skip node as not requested
3675 n_old += __kmp_hwloc_skip_PUs_obj(tp, hC); // skip core
3676 hC = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_CORE, hC);
3677 continue; // move to next node
3678 }
3679 // core requested, go down to PUs
3680 nT = 0;
3681 nTr = 0;
3682 hT = NULL;
3683 int NT =
3684 __kmp_hwloc_count_children_by_type(tp, hC, HWLOC_OBJ_PU, &hT);
3685 for (int t = 0; t < NT; ++t) {
3686 // Check PU ---------------------------------------
3687 idx = hT->os_index;
3688 if (!KMP_CPU_ISSET(idx, __kmp_affin_fullMask)) {
3689 hT = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_PU, hT);
3690 continue; // skip PU if not in fullMask
3691 }
3692 ++nT;
3693 if (nT <= __kmp_hws_proc.offset ||
3694 nT > __kmp_hws_proc.num + __kmp_hws_proc.offset) {
3695 // skip PU
3696 KMP_CPU_CLR(idx, __kmp_affin_fullMask);
3697 ++n_old;
3698 KC_TRACE(200, ("KMP_HW_SUBSET: skipped proc %d\n", idx));
3699 hT = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_PU, hT);
3700 continue; // move to next node
3701 }
3702 ++nTr;
3703 if (pAddr) // collect requested thread's data
3704 newAddr[n_new] = (*pAddr)[n_old];
3705 ++n_new;
3706 ++n_old;
3707 hT = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_PU, hT);
3708 } // threads loop
3709 if (nTr > 0) {
3710 ++nCr; // num cores per socket
3711 ++nCo; // total num cores
3712 if (nTr > nTpC)
3713 nTpC = nTr; // calc max threads per core
3714 }
3715 hC = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_CORE, hC);
3716 } // cores loop
3717 } // tiles support
3718 hN = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_NUMANODE, hN);
3719 } // nodes loop
3720 } else { // numa_support
3721 // no NUMA support
3722 if (tile_support) {
3723 nL = 0;
3724 hL = NULL;
3725 // num tiles in current socket
3726 int NL = __kmp_hwloc_count_children_by_depth(tp, hS, L2depth, &hL);
3727 for (int l = 0; l < NL; ++l) {
3728 // Check L2 (tile) ------------------------------------
3729 if (!__kmp_hwloc_obj_has_PUs(tp, hL)) {
3730 hL = hwloc_get_next_obj_by_depth(tp, L2depth, hL);
3731 continue; // skip tile if all PUs are out of fullMask
3732 }
3733 ++nL;
3734 if (nL <= __kmp_hws_tile.offset ||
3735 nL > __kmp_hws_tile.num + __kmp_hws_tile.offset) {
3736 // skip tile as not requested
3737 n_old += __kmp_hwloc_skip_PUs_obj(tp, hL); // skip tile
3738 hL = hwloc_get_next_obj_by_depth(tp, L2depth, hL);
3739 continue; // move to next tile
3740 }
3741 // tile requested, go down the topology tree
3742 nC = 0;
3743 hC = NULL;
3744 // num cores per tile
3745 int NC =
3746 __kmp_hwloc_count_children_by_type(tp, hL, HWLOC_OBJ_CORE, &hC);
3747 for (int c = 0; c < NC; ++c) {
3748 // Check Core ---------------------------------------
3749 if (!__kmp_hwloc_obj_has_PUs(tp, hC)) {
3750 hC = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_CORE, hC);
3751 continue; // skip core if all PUs are out of fullMask
3752 }
3753 ++nC;
3754 if (nC <= __kmp_hws_core.offset ||
3755 nC > __kmp_hws_core.num + __kmp_hws_core.offset) {
3756 // skip node as not requested
3757 n_old += __kmp_hwloc_skip_PUs_obj(tp, hC); // skip core
3758 hC = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_CORE, hC);
3759 continue; // move to next node
3760 }
3761 // core requested, go down to PUs
3762 nT = 0;
3763 nTr = 0;
3764 hT = NULL;
3765 // num procs per core
3766 int NT =
3767 __kmp_hwloc_count_children_by_type(tp, hC, HWLOC_OBJ_PU, &hT);
3768 for (int t = 0; t < NT; ++t) {
3769 // Check PU ---------------------------------------
3770 idx = hT->os_index;
3771 if (!KMP_CPU_ISSET(idx, __kmp_affin_fullMask)) {
3772 hT = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_PU, hT);
3773 continue; // skip PU if not in fullMask
3774 }
3775 ++nT;
3776 if (nT <= __kmp_hws_proc.offset ||
3777 nT > __kmp_hws_proc.num + __kmp_hws_proc.offset) {
3778 // skip PU
3779 KMP_CPU_CLR(idx, __kmp_affin_fullMask);
3780 ++n_old;
3781 KC_TRACE(200, ("KMP_HW_SUBSET: skipped proc %d\n", idx));
3782 hT = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_PU, hT);
3783 continue; // move to next node
3784 }
3785 ++nTr;
3786 if (pAddr) // collect requested thread's data
3787 newAddr[n_new] = (*pAddr)[n_old];
3788 ++n_new;
3789 ++n_old;
3790 hT = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_PU, hT);
3791 } // threads loop
3792 if (nTr > 0) {
3793 ++nCr; // num cores per socket
3794 ++nCo; // total num cores
3795 if (nTr > nTpC)
3796 nTpC = nTr; // calc max threads per core
3797 }
3798 hC = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_CORE, hC);
3799 } // cores loop
3800 hL = hwloc_get_next_obj_by_depth(tp, L2depth, hL);
3801 } // tiles loop
3802 } else { // tile_support
3803 // no tiles, check cores
3804 nC = 0;
3805 hC = NULL;
3806 // num cores in socket
3807 int NC =
3808 __kmp_hwloc_count_children_by_type(tp, hS, HWLOC_OBJ_CORE, &hC);
3809 for (int c = 0; c < NC; ++c) {
3810 // Check Core -------------------------------------------
3811 if (!__kmp_hwloc_obj_has_PUs(tp, hC)) {
3812 hC = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_CORE, hC);
3813 continue; // skip core if all PUs are out of fullMask
3814 }
3815 ++nC;
3816 if (nC <= __kmp_hws_core.offset ||
3817 nC > __kmp_hws_core.num + __kmp_hws_core.offset) {
3818 // skip node as not requested
3819 n_old += __kmp_hwloc_skip_PUs_obj(tp, hC); // skip core
3820 hC = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_CORE, hC);
3821 continue; // move to next node
3822 }
3823 // core requested, go down to PUs
3824 nT = 0;
3825 nTr = 0;
3826 hT = NULL;
3827 // num procs per core
3828 int NT =
3829 __kmp_hwloc_count_children_by_type(tp, hC, HWLOC_OBJ_PU, &hT);
3830 for (int t = 0; t < NT; ++t) {
3831 // Check PU ---------------------------------------
3832 idx = hT->os_index;
3833 if (!KMP_CPU_ISSET(idx, __kmp_affin_fullMask)) {
3834 hT = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_PU, hT);
3835 continue; // skip PU if not in fullMask
3836 }
3837 ++nT;
3838 if (nT <= __kmp_hws_proc.offset ||
3839 nT > __kmp_hws_proc.num + __kmp_hws_proc.offset) {
3840 // skip PU
3841 KMP_CPU_CLR(idx, __kmp_affin_fullMask);
3842 ++n_old;
3843 KC_TRACE(200, ("KMP_HW_SUBSET: skipped proc %d\n", idx));
3844 hT = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_PU, hT);
3845 continue; // move to next node
3846 }
3847 ++nTr;
3848 if (pAddr) // collect requested thread's data
3849 newAddr[n_new] = (*pAddr)[n_old];
3850 ++n_new;
3851 ++n_old;
3852 hT = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_PU, hT);
3853 } // threads loop
3854 if (nTr > 0) {
3855 ++nCr; // num cores per socket
3856 ++nCo; // total num cores
3857 if (nTr > nTpC)
3858 nTpC = nTr; // calc max threads per core
3859 }
3860 hC = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_CORE, hC);
3861 } // cores loop
3862 } // tiles support
3863 } // numa_support
3864 if (nCr > 0) { // found cores?
3865 ++nPkg; // num sockets
3866 if (nCr > nCpP)
3867 nCpP = nCr; // calc max cores per socket
3868 }
3869 } // sockets loop
3870
3871 // check the subset is valid
3872 KMP_DEBUG_ASSERT(n_old == __kmp_avail_proc);
3873 KMP_DEBUG_ASSERT(nPkg > 0);
3874 KMP_DEBUG_ASSERT(nCpP > 0);
3875 KMP_DEBUG_ASSERT(nTpC > 0);
3876 KMP_DEBUG_ASSERT(nCo > 0);
3877 KMP_DEBUG_ASSERT(nPkg <= nPackages);
3878 KMP_DEBUG_ASSERT(nCpP <= nCoresPerPkg);
3879 KMP_DEBUG_ASSERT(nTpC <= __kmp_nThreadsPerCore);
3880 KMP_DEBUG_ASSERT(nCo <= __kmp_ncores);
3881
3882 nPackages = nPkg; // correct num sockets
3883 nCoresPerPkg = nCpP; // correct num cores per socket
3884 __kmp_nThreadsPerCore = nTpC; // correct num threads per core
3885 __kmp_avail_proc = n_new; // correct num procs
3886 __kmp_ncores = nCo; // correct num cores
3887 // hwloc topology method end
3888 } else
3889 #endif // KMP_USE_HWLOC
3890 {
3891 int n_old = 0, n_new = 0, proc_num = 0;
3892 if (__kmp_hws_node.num > 0 || __kmp_hws_tile.num > 0) {
3893 KMP_WARNING(AffHWSubsetNoHWLOC);
3894 goto _exit;
3895 }
3896 if (__kmp_hws_socket.num == 0)
3897 __kmp_hws_socket.num = nPackages; // use all available sockets
3898 if (__kmp_hws_core.num == 0)
3899 __kmp_hws_core.num = nCoresPerPkg; // use all available cores
3900 if (__kmp_hws_proc.num == 0 || __kmp_hws_proc.num > __kmp_nThreadsPerCore)
3901 __kmp_hws_proc.num = __kmp_nThreadsPerCore; // use all HW contexts
3902 if (!__kmp_affinity_uniform_topology()) {
3903 KMP_WARNING(AffHWSubsetNonUniform);
3904 goto _exit; // don't support non-uniform topology
3905 }
3906 if (depth > 3) {
3907 KMP_WARNING(AffHWSubsetNonThreeLevel);
3908 goto _exit; // don't support not-3-level topology
3909 }
3910 if (__kmp_hws_socket.offset + __kmp_hws_socket.num > nPackages) {
3911 KMP_WARNING(AffHWSubsetManySockets);
3912 goto _exit;
3913 }
3914 if (__kmp_hws_core.offset + __kmp_hws_core.num > nCoresPerPkg) {
3915 KMP_WARNING(AffHWSubsetManyCores);
3916 goto _exit;
3917 }
3918 // Form the requested subset
3919 if (pAddr) // pAddr is NULL in case of affinity_none
3920 newAddr = (AddrUnsPair *)__kmp_allocate(
3921 sizeof(AddrUnsPair) * __kmp_hws_socket.num * __kmp_hws_core.num *
3922 __kmp_hws_proc.num);
3923 for (int i = 0; i < nPackages; ++i) {
3924 if (i < __kmp_hws_socket.offset ||
3925 i >= __kmp_hws_socket.offset + __kmp_hws_socket.num) {
3926 // skip not-requested socket
3927 n_old += nCoresPerPkg * __kmp_nThreadsPerCore;
3928 if (__kmp_pu_os_idx != NULL) {
3929 // walk through skipped socket
3930 for (int j = 0; j < nCoresPerPkg; ++j) {
3931 for (int k = 0; k < __kmp_nThreadsPerCore; ++k) {
3932 KMP_CPU_CLR(__kmp_pu_os_idx[proc_num], __kmp_affin_fullMask);
3933 ++proc_num;
3934 }
3935 }
3936 }
3937 } else {
3938 // walk through requested socket
3939 for (int j = 0; j < nCoresPerPkg; ++j) {
3940 if (j < __kmp_hws_core.offset ||
3941 j >= __kmp_hws_core.offset +
3942 __kmp_hws_core.num) { // skip not-requested core
3943 n_old += __kmp_nThreadsPerCore;
3944 if (__kmp_pu_os_idx != NULL) {
3945 for (int k = 0; k < __kmp_nThreadsPerCore; ++k) {
3946 KMP_CPU_CLR(__kmp_pu_os_idx[proc_num], __kmp_affin_fullMask);
3947 ++proc_num;
3948 }
3949 }
3950 } else {
3951 // walk through requested core
3952 for (int k = 0; k < __kmp_nThreadsPerCore; ++k) {
3953 if (k < __kmp_hws_proc.num) {
3954 if (pAddr) // collect requested thread's data
3955 newAddr[n_new] = (*pAddr)[n_old];
3956 n_new++;
3957 } else {
3958 if (__kmp_pu_os_idx != NULL)
3959 KMP_CPU_CLR(__kmp_pu_os_idx[proc_num], __kmp_affin_fullMask);
3960 }
3961 n_old++;
3962 ++proc_num;
3963 }
3964 }
3965 }
3966 }
3967 }
3968 KMP_DEBUG_ASSERT(n_old == nPackages * nCoresPerPkg * __kmp_nThreadsPerCore);
3969 KMP_DEBUG_ASSERT(n_new ==
3970 __kmp_hws_socket.num * __kmp_hws_core.num *
3971 __kmp_hws_proc.num);
3972 nPackages = __kmp_hws_socket.num; // correct nPackages
3973 nCoresPerPkg = __kmp_hws_core.num; // correct nCoresPerPkg
3974 __kmp_nThreadsPerCore = __kmp_hws_proc.num; // correct __kmp_nThreadsPerCore
3975 __kmp_avail_proc = n_new; // correct avail_proc
3976 __kmp_ncores = nPackages * __kmp_hws_core.num; // correct ncores
3977 } // non-hwloc topology method
3978 if (pAddr) {
3979 __kmp_free(*pAddr);
3980 *pAddr = newAddr; // replace old topology with new one
3981 }
3982 if (__kmp_affinity_verbose) {
3983 char m[KMP_AFFIN_MASK_PRINT_LEN];
3984 __kmp_affinity_print_mask(m, KMP_AFFIN_MASK_PRINT_LEN,
3985 __kmp_affin_fullMask);
3986 if (__kmp_affinity_respect_mask) {
3987 KMP_INFORM(InitOSProcSetRespect, "KMP_HW_SUBSET", m);
3988 } else {
3989 KMP_INFORM(InitOSProcSetNotRespect, "KMP_HW_SUBSET", m);
3990 }
3991 KMP_INFORM(AvailableOSProc, "KMP_HW_SUBSET", __kmp_avail_proc);
3992 kmp_str_buf_t buf;
3993 __kmp_str_buf_init(&buf);
3994 __kmp_str_buf_print(&buf, "%d", nPackages);
3995 KMP_INFORM(TopologyExtra, "KMP_HW_SUBSET", buf.str, nCoresPerPkg,
3996 __kmp_nThreadsPerCore, __kmp_ncores);
3997 __kmp_str_buf_free(&buf);
3998 }
3999 _exit:
4000 if (__kmp_pu_os_idx != NULL) {
4001 __kmp_free(__kmp_pu_os_idx);
4002 __kmp_pu_os_idx = NULL;
4003 }
4004 }
4005
4006 // This function figures out the deepest level at which there is at least one
4007 // cluster/core with more than one processing unit bound to it.
__kmp_affinity_find_core_level(const AddrUnsPair * address2os,int nprocs,int bottom_level)4008 static int __kmp_affinity_find_core_level(const AddrUnsPair *address2os,
4009 int nprocs, int bottom_level) {
4010 int core_level = 0;
4011
4012 for (int i = 0; i < nprocs; i++) {
4013 for (int j = bottom_level; j > 0; j--) {
4014 if (address2os[i].first.labels[j] > 0) {
4015 if (core_level < (j - 1)) {
4016 core_level = j - 1;
4017 }
4018 }
4019 }
4020 }
4021 return core_level;
4022 }
4023
4024 // This function counts number of clusters/cores at given level.
__kmp_affinity_compute_ncores(const AddrUnsPair * address2os,int nprocs,int bottom_level,int core_level)4025 static int __kmp_affinity_compute_ncores(const AddrUnsPair *address2os,
4026 int nprocs, int bottom_level,
4027 int core_level) {
4028 int ncores = 0;
4029 int i, j;
4030
4031 j = bottom_level;
4032 for (i = 0; i < nprocs; i++) {
4033 for (j = bottom_level; j > core_level; j--) {
4034 if ((i + 1) < nprocs) {
4035 if (address2os[i + 1].first.labels[j] > 0) {
4036 break;
4037 }
4038 }
4039 }
4040 if (j == core_level) {
4041 ncores++;
4042 }
4043 }
4044 if (j > core_level) {
4045 // In case of ( nprocs < __kmp_avail_proc ) we may end too deep and miss one
4046 // core. May occur when called from __kmp_affinity_find_core().
4047 ncores++;
4048 }
4049 return ncores;
4050 }
4051
4052 // This function finds to which cluster/core given processing unit is bound.
__kmp_affinity_find_core(const AddrUnsPair * address2os,int proc,int bottom_level,int core_level)4053 static int __kmp_affinity_find_core(const AddrUnsPair *address2os, int proc,
4054 int bottom_level, int core_level) {
4055 return __kmp_affinity_compute_ncores(address2os, proc + 1, bottom_level,
4056 core_level) -
4057 1;
4058 }
4059
4060 // This function finds maximal number of processing units bound to a
4061 // cluster/core at given level.
__kmp_affinity_max_proc_per_core(const AddrUnsPair * address2os,int nprocs,int bottom_level,int core_level)4062 static int __kmp_affinity_max_proc_per_core(const AddrUnsPair *address2os,
4063 int nprocs, int bottom_level,
4064 int core_level) {
4065 int maxprocpercore = 0;
4066
4067 if (core_level < bottom_level) {
4068 for (int i = 0; i < nprocs; i++) {
4069 int percore = address2os[i].first.labels[core_level + 1] + 1;
4070
4071 if (percore > maxprocpercore) {
4072 maxprocpercore = percore;
4073 }
4074 }
4075 } else {
4076 maxprocpercore = 1;
4077 }
4078 return maxprocpercore;
4079 }
4080
4081 static AddrUnsPair *address2os = NULL;
4082 static int *procarr = NULL;
4083 static int __kmp_aff_depth = 0;
4084
4085 #if KMP_USE_HIER_SCHED
4086 #define KMP_EXIT_AFF_NONE \
4087 KMP_ASSERT(__kmp_affinity_type == affinity_none); \
4088 KMP_ASSERT(address2os == NULL); \
4089 __kmp_apply_thread_places(NULL, 0); \
4090 __kmp_create_affinity_none_places(); \
4091 __kmp_dispatch_set_hierarchy_values(); \
4092 return;
4093 #else
4094 #define KMP_EXIT_AFF_NONE \
4095 KMP_ASSERT(__kmp_affinity_type == affinity_none); \
4096 KMP_ASSERT(address2os == NULL); \
4097 __kmp_apply_thread_places(NULL, 0); \
4098 __kmp_create_affinity_none_places(); \
4099 return;
4100 #endif
4101
4102 // Create a one element mask array (set of places) which only contains the
4103 // initial process's affinity mask
__kmp_create_affinity_none_places()4104 static void __kmp_create_affinity_none_places() {
4105 KMP_ASSERT(__kmp_affin_fullMask != NULL);
4106 KMP_ASSERT(__kmp_affinity_type == affinity_none);
4107 __kmp_affinity_num_masks = 1;
4108 KMP_CPU_ALLOC_ARRAY(__kmp_affinity_masks, __kmp_affinity_num_masks);
4109 kmp_affin_mask_t *dest = KMP_CPU_INDEX(__kmp_affinity_masks, 0);
4110 KMP_CPU_COPY(dest, __kmp_affin_fullMask);
4111 }
4112
__kmp_affinity_cmp_Address_child_num(const void * a,const void * b)4113 static int __kmp_affinity_cmp_Address_child_num(const void *a, const void *b) {
4114 const Address *aa = &(((const AddrUnsPair *)a)->first);
4115 const Address *bb = &(((const AddrUnsPair *)b)->first);
4116 unsigned depth = aa->depth;
4117 unsigned i;
4118 KMP_DEBUG_ASSERT(depth == bb->depth);
4119 KMP_DEBUG_ASSERT((unsigned)__kmp_affinity_compact <= depth);
4120 KMP_DEBUG_ASSERT(__kmp_affinity_compact >= 0);
4121 for (i = 0; i < (unsigned)__kmp_affinity_compact; i++) {
4122 int j = depth - i - 1;
4123 if (aa->childNums[j] < bb->childNums[j])
4124 return -1;
4125 if (aa->childNums[j] > bb->childNums[j])
4126 return 1;
4127 }
4128 for (; i < depth; i++) {
4129 int j = i - __kmp_affinity_compact;
4130 if (aa->childNums[j] < bb->childNums[j])
4131 return -1;
4132 if (aa->childNums[j] > bb->childNums[j])
4133 return 1;
4134 }
4135 return 0;
4136 }
4137
__kmp_aux_affinity_initialize(void)4138 static void __kmp_aux_affinity_initialize(void) {
4139 if (__kmp_affinity_masks != NULL) {
4140 KMP_ASSERT(__kmp_affin_fullMask != NULL);
4141 return;
4142 }
4143
4144 // Create the "full" mask - this defines all of the processors that we
4145 // consider to be in the machine model. If respect is set, then it is the
4146 // initialization thread's affinity mask. Otherwise, it is all processors that
4147 // we know about on the machine.
4148 if (__kmp_affin_fullMask == NULL) {
4149 KMP_CPU_ALLOC(__kmp_affin_fullMask);
4150 }
4151 if (KMP_AFFINITY_CAPABLE()) {
4152 if (__kmp_affinity_respect_mask) {
4153 __kmp_get_system_affinity(__kmp_affin_fullMask, TRUE);
4154
4155 // Count the number of available processors.
4156 unsigned i;
4157 __kmp_avail_proc = 0;
4158 KMP_CPU_SET_ITERATE(i, __kmp_affin_fullMask) {
4159 if (!KMP_CPU_ISSET(i, __kmp_affin_fullMask)) {
4160 continue;
4161 }
4162 __kmp_avail_proc++;
4163 }
4164 if (__kmp_avail_proc > __kmp_xproc) {
4165 if (__kmp_affinity_verbose ||
4166 (__kmp_affinity_warnings &&
4167 (__kmp_affinity_type != affinity_none))) {
4168 KMP_WARNING(ErrorInitializeAffinity);
4169 }
4170 __kmp_affinity_type = affinity_none;
4171 KMP_AFFINITY_DISABLE();
4172 return;
4173 }
4174 } else {
4175 __kmp_affinity_entire_machine_mask(__kmp_affin_fullMask);
4176 __kmp_avail_proc = __kmp_xproc;
4177 }
4178 }
4179
4180 if (__kmp_affinity_gran == affinity_gran_tile &&
4181 // check if user's request is valid
4182 __kmp_affinity_dispatch->get_api_type() == KMPAffinity::NATIVE_OS) {
4183 KMP_WARNING(AffTilesNoHWLOC, "KMP_AFFINITY");
4184 __kmp_affinity_gran = affinity_gran_package;
4185 }
4186
4187 int depth = -1;
4188 kmp_i18n_id_t msg_id = kmp_i18n_null;
4189
4190 // For backward compatibility, setting KMP_CPUINFO_FILE =>
4191 // KMP_TOPOLOGY_METHOD=cpuinfo
4192 if ((__kmp_cpuinfo_file != NULL) &&
4193 (__kmp_affinity_top_method == affinity_top_method_all)) {
4194 __kmp_affinity_top_method = affinity_top_method_cpuinfo;
4195 }
4196
4197 if (__kmp_affinity_top_method == affinity_top_method_all) {
4198 // In the default code path, errors are not fatal - we just try using
4199 // another method. We only emit a warning message if affinity is on, or the
4200 // verbose flag is set, an the nowarnings flag was not set.
4201 const char *file_name = NULL;
4202 int line = 0;
4203 #if KMP_USE_HWLOC
4204 if (depth < 0 &&
4205 __kmp_affinity_dispatch->get_api_type() == KMPAffinity::HWLOC) {
4206 if (__kmp_affinity_verbose) {
4207 KMP_INFORM(AffUsingHwloc, "KMP_AFFINITY");
4208 }
4209 if (!__kmp_hwloc_error) {
4210 depth = __kmp_affinity_create_hwloc_map(&address2os, &msg_id);
4211 if (depth == 0) {
4212 KMP_EXIT_AFF_NONE;
4213 } else if (depth < 0 && __kmp_affinity_verbose) {
4214 KMP_INFORM(AffIgnoringHwloc, "KMP_AFFINITY");
4215 }
4216 } else if (__kmp_affinity_verbose) {
4217 KMP_INFORM(AffIgnoringHwloc, "KMP_AFFINITY");
4218 }
4219 }
4220 #endif
4221
4222 #if KMP_ARCH_X86 || KMP_ARCH_X86_64
4223
4224 if (depth < 0) {
4225 if (__kmp_affinity_verbose) {
4226 KMP_INFORM(AffInfoStr, "KMP_AFFINITY", KMP_I18N_STR(Decodingx2APIC));
4227 }
4228
4229 file_name = NULL;
4230 depth = __kmp_affinity_create_x2apicid_map(&address2os, &msg_id);
4231 if (depth == 0) {
4232 KMP_EXIT_AFF_NONE;
4233 }
4234
4235 if (depth < 0) {
4236 if (__kmp_affinity_verbose) {
4237 if (msg_id != kmp_i18n_null) {
4238 KMP_INFORM(AffInfoStrStr, "KMP_AFFINITY",
4239 __kmp_i18n_catgets(msg_id),
4240 KMP_I18N_STR(DecodingLegacyAPIC));
4241 } else {
4242 KMP_INFORM(AffInfoStr, "KMP_AFFINITY",
4243 KMP_I18N_STR(DecodingLegacyAPIC));
4244 }
4245 }
4246
4247 file_name = NULL;
4248 depth = __kmp_affinity_create_apicid_map(&address2os, &msg_id);
4249 if (depth == 0) {
4250 KMP_EXIT_AFF_NONE;
4251 }
4252 }
4253 }
4254
4255 #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */
4256
4257 #if KMP_OS_LINUX
4258
4259 if (depth < 0) {
4260 if (__kmp_affinity_verbose) {
4261 if (msg_id != kmp_i18n_null) {
4262 KMP_INFORM(AffStrParseFilename, "KMP_AFFINITY",
4263 __kmp_i18n_catgets(msg_id), "/proc/cpuinfo");
4264 } else {
4265 KMP_INFORM(AffParseFilename, "KMP_AFFINITY", "/proc/cpuinfo");
4266 }
4267 }
4268
4269 FILE *f = fopen("/proc/cpuinfo", "r");
4270 if (f == NULL) {
4271 msg_id = kmp_i18n_str_CantOpenCpuinfo;
4272 } else {
4273 file_name = "/proc/cpuinfo";
4274 depth =
4275 __kmp_affinity_create_cpuinfo_map(&address2os, &line, &msg_id, f);
4276 fclose(f);
4277 if (depth == 0) {
4278 KMP_EXIT_AFF_NONE;
4279 }
4280 }
4281 }
4282
4283 #endif /* KMP_OS_LINUX */
4284
4285 #if KMP_GROUP_AFFINITY
4286
4287 if ((depth < 0) && (__kmp_num_proc_groups > 1)) {
4288 if (__kmp_affinity_verbose) {
4289 KMP_INFORM(AffWindowsProcGroupMap, "KMP_AFFINITY");
4290 }
4291
4292 depth = __kmp_affinity_create_proc_group_map(&address2os, &msg_id);
4293 KMP_ASSERT(depth != 0);
4294 }
4295
4296 #endif /* KMP_GROUP_AFFINITY */
4297
4298 if (depth < 0) {
4299 if (__kmp_affinity_verbose && (msg_id != kmp_i18n_null)) {
4300 if (file_name == NULL) {
4301 KMP_INFORM(UsingFlatOS, __kmp_i18n_catgets(msg_id));
4302 } else if (line == 0) {
4303 KMP_INFORM(UsingFlatOSFile, file_name, __kmp_i18n_catgets(msg_id));
4304 } else {
4305 KMP_INFORM(UsingFlatOSFileLine, file_name, line,
4306 __kmp_i18n_catgets(msg_id));
4307 }
4308 }
4309 // FIXME - print msg if msg_id = kmp_i18n_null ???
4310
4311 file_name = "";
4312 depth = __kmp_affinity_create_flat_map(&address2os, &msg_id);
4313 if (depth == 0) {
4314 KMP_EXIT_AFF_NONE;
4315 }
4316 KMP_ASSERT(depth > 0);
4317 KMP_ASSERT(address2os != NULL);
4318 }
4319 }
4320
4321 #if KMP_USE_HWLOC
4322 else if (__kmp_affinity_top_method == affinity_top_method_hwloc) {
4323 KMP_ASSERT(__kmp_affinity_dispatch->get_api_type() == KMPAffinity::HWLOC);
4324 if (__kmp_affinity_verbose) {
4325 KMP_INFORM(AffUsingHwloc, "KMP_AFFINITY");
4326 }
4327 depth = __kmp_affinity_create_hwloc_map(&address2os, &msg_id);
4328 if (depth == 0) {
4329 KMP_EXIT_AFF_NONE;
4330 }
4331 }
4332 #endif // KMP_USE_HWLOC
4333
4334 // If the user has specified that a paricular topology discovery method is to be
4335 // used, then we abort if that method fails. The exception is group affinity,
4336 // which might have been implicitly set.
4337
4338 #if KMP_ARCH_X86 || KMP_ARCH_X86_64
4339
4340 else if (__kmp_affinity_top_method == affinity_top_method_x2apicid) {
4341 if (__kmp_affinity_verbose) {
4342 KMP_INFORM(AffInfoStr, "KMP_AFFINITY", KMP_I18N_STR(Decodingx2APIC));
4343 }
4344
4345 depth = __kmp_affinity_create_x2apicid_map(&address2os, &msg_id);
4346 if (depth == 0) {
4347 KMP_EXIT_AFF_NONE;
4348 }
4349 if (depth < 0) {
4350 KMP_ASSERT(msg_id != kmp_i18n_null);
4351 KMP_FATAL(MsgExiting, __kmp_i18n_catgets(msg_id));
4352 }
4353 } else if (__kmp_affinity_top_method == affinity_top_method_apicid) {
4354 if (__kmp_affinity_verbose) {
4355 KMP_INFORM(AffInfoStr, "KMP_AFFINITY", KMP_I18N_STR(DecodingLegacyAPIC));
4356 }
4357
4358 depth = __kmp_affinity_create_apicid_map(&address2os, &msg_id);
4359 if (depth == 0) {
4360 KMP_EXIT_AFF_NONE;
4361 }
4362 if (depth < 0) {
4363 KMP_ASSERT(msg_id != kmp_i18n_null);
4364 KMP_FATAL(MsgExiting, __kmp_i18n_catgets(msg_id));
4365 }
4366 }
4367
4368 #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */
4369
4370 else if (__kmp_affinity_top_method == affinity_top_method_cpuinfo) {
4371 const char *filename;
4372 if (__kmp_cpuinfo_file != NULL) {
4373 filename = __kmp_cpuinfo_file;
4374 } else {
4375 filename = "/proc/cpuinfo";
4376 }
4377
4378 if (__kmp_affinity_verbose) {
4379 KMP_INFORM(AffParseFilename, "KMP_AFFINITY", filename);
4380 }
4381
4382 FILE *f = fopen(filename, "r");
4383 if (f == NULL) {
4384 int code = errno;
4385 if (__kmp_cpuinfo_file != NULL) {
4386 __kmp_fatal(KMP_MSG(CantOpenFileForReading, filename), KMP_ERR(code),
4387 KMP_HNT(NameComesFrom_CPUINFO_FILE), __kmp_msg_null);
4388 } else {
4389 __kmp_fatal(KMP_MSG(CantOpenFileForReading, filename), KMP_ERR(code),
4390 __kmp_msg_null);
4391 }
4392 }
4393 int line = 0;
4394 depth = __kmp_affinity_create_cpuinfo_map(&address2os, &line, &msg_id, f);
4395 fclose(f);
4396 if (depth < 0) {
4397 KMP_ASSERT(msg_id != kmp_i18n_null);
4398 if (line > 0) {
4399 KMP_FATAL(FileLineMsgExiting, filename, line,
4400 __kmp_i18n_catgets(msg_id));
4401 } else {
4402 KMP_FATAL(FileMsgExiting, filename, __kmp_i18n_catgets(msg_id));
4403 }
4404 }
4405 if (__kmp_affinity_type == affinity_none) {
4406 KMP_ASSERT(depth == 0);
4407 KMP_EXIT_AFF_NONE;
4408 }
4409 }
4410
4411 #if KMP_GROUP_AFFINITY
4412
4413 else if (__kmp_affinity_top_method == affinity_top_method_group) {
4414 if (__kmp_affinity_verbose) {
4415 KMP_INFORM(AffWindowsProcGroupMap, "KMP_AFFINITY");
4416 }
4417
4418 depth = __kmp_affinity_create_proc_group_map(&address2os, &msg_id);
4419 KMP_ASSERT(depth != 0);
4420 if (depth < 0) {
4421 KMP_ASSERT(msg_id != kmp_i18n_null);
4422 KMP_FATAL(MsgExiting, __kmp_i18n_catgets(msg_id));
4423 }
4424 }
4425
4426 #endif /* KMP_GROUP_AFFINITY */
4427
4428 else if (__kmp_affinity_top_method == affinity_top_method_flat) {
4429 if (__kmp_affinity_verbose) {
4430 KMP_INFORM(AffUsingFlatOS, "KMP_AFFINITY");
4431 }
4432
4433 depth = __kmp_affinity_create_flat_map(&address2os, &msg_id);
4434 if (depth == 0) {
4435 KMP_EXIT_AFF_NONE;
4436 }
4437 // should not fail
4438 KMP_ASSERT(depth > 0);
4439 KMP_ASSERT(address2os != NULL);
4440 }
4441
4442 #if KMP_USE_HIER_SCHED
4443 __kmp_dispatch_set_hierarchy_values();
4444 #endif
4445
4446 if (address2os == NULL) {
4447 if (KMP_AFFINITY_CAPABLE() &&
4448 (__kmp_affinity_verbose ||
4449 (__kmp_affinity_warnings && (__kmp_affinity_type != affinity_none)))) {
4450 KMP_WARNING(ErrorInitializeAffinity);
4451 }
4452 __kmp_affinity_type = affinity_none;
4453 __kmp_create_affinity_none_places();
4454 KMP_AFFINITY_DISABLE();
4455 return;
4456 }
4457
4458 if (__kmp_affinity_gran == affinity_gran_tile
4459 #if KMP_USE_HWLOC
4460 && __kmp_tile_depth == 0
4461 #endif
4462 ) {
4463 // tiles requested but not detected, warn user on this
4464 KMP_WARNING(AffTilesNoTiles, "KMP_AFFINITY");
4465 }
4466
4467 __kmp_apply_thread_places(&address2os, depth);
4468
4469 // Create the table of masks, indexed by thread Id.
4470 unsigned maxIndex;
4471 unsigned numUnique;
4472 kmp_affin_mask_t *osId2Mask =
4473 __kmp_create_masks(&maxIndex, &numUnique, address2os, __kmp_avail_proc);
4474 if (__kmp_affinity_gran_levels == 0) {
4475 KMP_DEBUG_ASSERT((int)numUnique == __kmp_avail_proc);
4476 }
4477
4478 // Set the childNums vector in all Address objects. This must be done before
4479 // we can sort using __kmp_affinity_cmp_Address_child_num(), which takes into
4480 // account the setting of __kmp_affinity_compact.
4481 __kmp_affinity_assign_child_nums(address2os, __kmp_avail_proc);
4482
4483 switch (__kmp_affinity_type) {
4484
4485 case affinity_explicit:
4486 KMP_DEBUG_ASSERT(__kmp_affinity_proclist != NULL);
4487 #if OMP_40_ENABLED
4488 if (__kmp_nested_proc_bind.bind_types[0] == proc_bind_intel)
4489 #endif
4490 {
4491 __kmp_affinity_process_proclist(
4492 &__kmp_affinity_masks, &__kmp_affinity_num_masks,
4493 __kmp_affinity_proclist, osId2Mask, maxIndex);
4494 }
4495 #if OMP_40_ENABLED
4496 else {
4497 __kmp_affinity_process_placelist(
4498 &__kmp_affinity_masks, &__kmp_affinity_num_masks,
4499 __kmp_affinity_proclist, osId2Mask, maxIndex);
4500 }
4501 #endif
4502 if (__kmp_affinity_num_masks == 0) {
4503 if (__kmp_affinity_verbose ||
4504 (__kmp_affinity_warnings && (__kmp_affinity_type != affinity_none))) {
4505 KMP_WARNING(AffNoValidProcID);
4506 }
4507 __kmp_affinity_type = affinity_none;
4508 __kmp_create_affinity_none_places();
4509 return;
4510 }
4511 break;
4512
4513 // The other affinity types rely on sorting the Addresses according to some
4514 // permutation of the machine topology tree. Set __kmp_affinity_compact and
4515 // __kmp_affinity_offset appropriately, then jump to a common code fragment
4516 // to do the sort and create the array of affinity masks.
4517
4518 case affinity_logical:
4519 __kmp_affinity_compact = 0;
4520 if (__kmp_affinity_offset) {
4521 __kmp_affinity_offset =
4522 __kmp_nThreadsPerCore * __kmp_affinity_offset % __kmp_avail_proc;
4523 }
4524 goto sortAddresses;
4525
4526 case affinity_physical:
4527 if (__kmp_nThreadsPerCore > 1) {
4528 __kmp_affinity_compact = 1;
4529 if (__kmp_affinity_compact >= depth) {
4530 __kmp_affinity_compact = 0;
4531 }
4532 } else {
4533 __kmp_affinity_compact = 0;
4534 }
4535 if (__kmp_affinity_offset) {
4536 __kmp_affinity_offset =
4537 __kmp_nThreadsPerCore * __kmp_affinity_offset % __kmp_avail_proc;
4538 }
4539 goto sortAddresses;
4540
4541 case affinity_scatter:
4542 if (__kmp_affinity_compact >= depth) {
4543 __kmp_affinity_compact = 0;
4544 } else {
4545 __kmp_affinity_compact = depth - 1 - __kmp_affinity_compact;
4546 }
4547 goto sortAddresses;
4548
4549 case affinity_compact:
4550 if (__kmp_affinity_compact >= depth) {
4551 __kmp_affinity_compact = depth - 1;
4552 }
4553 goto sortAddresses;
4554
4555 case affinity_balanced:
4556 if (depth <= 1) {
4557 if (__kmp_affinity_verbose || __kmp_affinity_warnings) {
4558 KMP_WARNING(AffBalancedNotAvail, "KMP_AFFINITY");
4559 }
4560 __kmp_affinity_type = affinity_none;
4561 __kmp_create_affinity_none_places();
4562 return;
4563 } else if (!__kmp_affinity_uniform_topology()) {
4564 // Save the depth for further usage
4565 __kmp_aff_depth = depth;
4566
4567 int core_level = __kmp_affinity_find_core_level(
4568 address2os, __kmp_avail_proc, depth - 1);
4569 int ncores = __kmp_affinity_compute_ncores(address2os, __kmp_avail_proc,
4570 depth - 1, core_level);
4571 int maxprocpercore = __kmp_affinity_max_proc_per_core(
4572 address2os, __kmp_avail_proc, depth - 1, core_level);
4573
4574 int nproc = ncores * maxprocpercore;
4575 if ((nproc < 2) || (nproc < __kmp_avail_proc)) {
4576 if (__kmp_affinity_verbose || __kmp_affinity_warnings) {
4577 KMP_WARNING(AffBalancedNotAvail, "KMP_AFFINITY");
4578 }
4579 __kmp_affinity_type = affinity_none;
4580 return;
4581 }
4582
4583 procarr = (int *)__kmp_allocate(sizeof(int) * nproc);
4584 for (int i = 0; i < nproc; i++) {
4585 procarr[i] = -1;
4586 }
4587
4588 int lastcore = -1;
4589 int inlastcore = 0;
4590 for (int i = 0; i < __kmp_avail_proc; i++) {
4591 int proc = address2os[i].second;
4592 int core =
4593 __kmp_affinity_find_core(address2os, i, depth - 1, core_level);
4594
4595 if (core == lastcore) {
4596 inlastcore++;
4597 } else {
4598 inlastcore = 0;
4599 }
4600 lastcore = core;
4601
4602 procarr[core * maxprocpercore + inlastcore] = proc;
4603 }
4604 }
4605 if (__kmp_affinity_compact >= depth) {
4606 __kmp_affinity_compact = depth - 1;
4607 }
4608
4609 sortAddresses:
4610 // Allocate the gtid->affinity mask table.
4611 if (__kmp_affinity_dups) {
4612 __kmp_affinity_num_masks = __kmp_avail_proc;
4613 } else {
4614 __kmp_affinity_num_masks = numUnique;
4615 }
4616
4617 #if OMP_40_ENABLED
4618 if ((__kmp_nested_proc_bind.bind_types[0] != proc_bind_intel) &&
4619 (__kmp_affinity_num_places > 0) &&
4620 ((unsigned)__kmp_affinity_num_places < __kmp_affinity_num_masks)) {
4621 __kmp_affinity_num_masks = __kmp_affinity_num_places;
4622 }
4623 #endif
4624
4625 KMP_CPU_ALLOC_ARRAY(__kmp_affinity_masks, __kmp_affinity_num_masks);
4626
4627 // Sort the address2os table according to the current setting of
4628 // __kmp_affinity_compact, then fill out __kmp_affinity_masks.
4629 qsort(address2os, __kmp_avail_proc, sizeof(*address2os),
4630 __kmp_affinity_cmp_Address_child_num);
4631 {
4632 int i;
4633 unsigned j;
4634 for (i = 0, j = 0; i < __kmp_avail_proc; i++) {
4635 if ((!__kmp_affinity_dups) && (!address2os[i].first.leader)) {
4636 continue;
4637 }
4638 unsigned osId = address2os[i].second;
4639 kmp_affin_mask_t *src = KMP_CPU_INDEX(osId2Mask, osId);
4640 kmp_affin_mask_t *dest = KMP_CPU_INDEX(__kmp_affinity_masks, j);
4641 KMP_ASSERT(KMP_CPU_ISSET(osId, src));
4642 KMP_CPU_COPY(dest, src);
4643 if (++j >= __kmp_affinity_num_masks) {
4644 break;
4645 }
4646 }
4647 KMP_DEBUG_ASSERT(j == __kmp_affinity_num_masks);
4648 }
4649 break;
4650
4651 default:
4652 KMP_ASSERT2(0, "Unexpected affinity setting");
4653 }
4654
4655 KMP_CPU_FREE_ARRAY(osId2Mask, maxIndex + 1);
4656 machine_hierarchy.init(address2os, __kmp_avail_proc);
4657 }
4658 #undef KMP_EXIT_AFF_NONE
4659
__kmp_affinity_initialize(void)4660 void __kmp_affinity_initialize(void) {
4661 // Much of the code above was written assumming that if a machine was not
4662 // affinity capable, then __kmp_affinity_type == affinity_none. We now
4663 // explicitly represent this as __kmp_affinity_type == affinity_disabled.
4664 // There are too many checks for __kmp_affinity_type == affinity_none
4665 // in this code. Instead of trying to change them all, check if
4666 // __kmp_affinity_type == affinity_disabled, and if so, slam it with
4667 // affinity_none, call the real initialization routine, then restore
4668 // __kmp_affinity_type to affinity_disabled.
4669 int disabled = (__kmp_affinity_type == affinity_disabled);
4670 if (!KMP_AFFINITY_CAPABLE()) {
4671 KMP_ASSERT(disabled);
4672 }
4673 if (disabled) {
4674 __kmp_affinity_type = affinity_none;
4675 }
4676 __kmp_aux_affinity_initialize();
4677 if (disabled) {
4678 __kmp_affinity_type = affinity_disabled;
4679 }
4680 }
4681
__kmp_affinity_uninitialize(void)4682 void __kmp_affinity_uninitialize(void) {
4683 if (__kmp_affinity_masks != NULL) {
4684 KMP_CPU_FREE_ARRAY(__kmp_affinity_masks, __kmp_affinity_num_masks);
4685 __kmp_affinity_masks = NULL;
4686 }
4687 if (__kmp_affin_fullMask != NULL) {
4688 KMP_CPU_FREE(__kmp_affin_fullMask);
4689 __kmp_affin_fullMask = NULL;
4690 }
4691 __kmp_affinity_num_masks = 0;
4692 __kmp_affinity_type = affinity_default;
4693 #if OMP_40_ENABLED
4694 __kmp_affinity_num_places = 0;
4695 #endif
4696 if (__kmp_affinity_proclist != NULL) {
4697 __kmp_free(__kmp_affinity_proclist);
4698 __kmp_affinity_proclist = NULL;
4699 }
4700 if (address2os != NULL) {
4701 __kmp_free(address2os);
4702 address2os = NULL;
4703 }
4704 if (procarr != NULL) {
4705 __kmp_free(procarr);
4706 procarr = NULL;
4707 }
4708 #if KMP_USE_HWLOC
4709 if (__kmp_hwloc_topology != NULL) {
4710 hwloc_topology_destroy(__kmp_hwloc_topology);
4711 __kmp_hwloc_topology = NULL;
4712 }
4713 #endif
4714 KMPAffinity::destroy_api();
4715 }
4716
__kmp_affinity_set_init_mask(int gtid,int isa_root)4717 void __kmp_affinity_set_init_mask(int gtid, int isa_root) {
4718 if (!KMP_AFFINITY_CAPABLE()) {
4719 return;
4720 }
4721
4722 kmp_info_t *th = (kmp_info_t *)TCR_SYNC_PTR(__kmp_threads[gtid]);
4723 if (th->th.th_affin_mask == NULL) {
4724 KMP_CPU_ALLOC(th->th.th_affin_mask);
4725 } else {
4726 KMP_CPU_ZERO(th->th.th_affin_mask);
4727 }
4728
4729 // Copy the thread mask to the kmp_info_t strucuture. If
4730 // __kmp_affinity_type == affinity_none, copy the "full" mask, i.e. one that
4731 // has all of the OS proc ids set, or if __kmp_affinity_respect_mask is set,
4732 // then the full mask is the same as the mask of the initialization thread.
4733 kmp_affin_mask_t *mask;
4734 int i;
4735
4736 #if OMP_40_ENABLED
4737 if (KMP_AFFINITY_NON_PROC_BIND)
4738 #endif
4739 {
4740 if ((__kmp_affinity_type == affinity_none) ||
4741 (__kmp_affinity_type == affinity_balanced)) {
4742 #if KMP_GROUP_AFFINITY
4743 if (__kmp_num_proc_groups > 1) {
4744 return;
4745 }
4746 #endif
4747 KMP_ASSERT(__kmp_affin_fullMask != NULL);
4748 i = 0;
4749 mask = __kmp_affin_fullMask;
4750 } else {
4751 KMP_DEBUG_ASSERT(__kmp_affinity_num_masks > 0);
4752 i = (gtid + __kmp_affinity_offset) % __kmp_affinity_num_masks;
4753 mask = KMP_CPU_INDEX(__kmp_affinity_masks, i);
4754 }
4755 }
4756 #if OMP_40_ENABLED
4757 else {
4758 if ((!isa_root) ||
4759 (__kmp_nested_proc_bind.bind_types[0] == proc_bind_false)) {
4760 #if KMP_GROUP_AFFINITY
4761 if (__kmp_num_proc_groups > 1) {
4762 return;
4763 }
4764 #endif
4765 KMP_ASSERT(__kmp_affin_fullMask != NULL);
4766 i = KMP_PLACE_ALL;
4767 mask = __kmp_affin_fullMask;
4768 } else {
4769 // int i = some hash function or just a counter that doesn't
4770 // always start at 0. Use gtid for now.
4771 KMP_DEBUG_ASSERT(__kmp_affinity_num_masks > 0);
4772 i = (gtid + __kmp_affinity_offset) % __kmp_affinity_num_masks;
4773 mask = KMP_CPU_INDEX(__kmp_affinity_masks, i);
4774 }
4775 }
4776 #endif
4777
4778 #if OMP_40_ENABLED
4779 th->th.th_current_place = i;
4780 if (isa_root) {
4781 th->th.th_new_place = i;
4782 th->th.th_first_place = 0;
4783 th->th.th_last_place = __kmp_affinity_num_masks - 1;
4784 } else if (KMP_AFFINITY_NON_PROC_BIND) {
4785 // When using a Non-OMP_PROC_BIND affinity method,
4786 // set all threads' place-partition-var to the entire place list
4787 th->th.th_first_place = 0;
4788 th->th.th_last_place = __kmp_affinity_num_masks - 1;
4789 }
4790
4791 if (i == KMP_PLACE_ALL) {
4792 KA_TRACE(100, ("__kmp_affinity_set_init_mask: binding T#%d to all places\n",
4793 gtid));
4794 } else {
4795 KA_TRACE(100, ("__kmp_affinity_set_init_mask: binding T#%d to place %d\n",
4796 gtid, i));
4797 }
4798 #else
4799 if (i == -1) {
4800 KA_TRACE(
4801 100,
4802 ("__kmp_affinity_set_init_mask: binding T#%d to __kmp_affin_fullMask\n",
4803 gtid));
4804 } else {
4805 KA_TRACE(100, ("__kmp_affinity_set_init_mask: binding T#%d to mask %d\n",
4806 gtid, i));
4807 }
4808 #endif /* OMP_40_ENABLED */
4809
4810 KMP_CPU_COPY(th->th.th_affin_mask, mask);
4811
4812 if (__kmp_affinity_verbose
4813 /* to avoid duplicate printing (will be correctly printed on barrier) */
4814 && (__kmp_affinity_type == affinity_none ||
4815 (i != KMP_PLACE_ALL && __kmp_affinity_type != affinity_balanced))) {
4816 char buf[KMP_AFFIN_MASK_PRINT_LEN];
4817 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN,
4818 th->th.th_affin_mask);
4819 KMP_INFORM(BoundToOSProcSet, "KMP_AFFINITY", (kmp_int32)getpid(),
4820 __kmp_gettid(), gtid, buf);
4821 }
4822
4823 #if KMP_OS_WINDOWS
4824 // On Windows* OS, the process affinity mask might have changed. If the user
4825 // didn't request affinity and this call fails, just continue silently.
4826 // See CQ171393.
4827 if (__kmp_affinity_type == affinity_none) {
4828 __kmp_set_system_affinity(th->th.th_affin_mask, FALSE);
4829 } else
4830 #endif
4831 __kmp_set_system_affinity(th->th.th_affin_mask, TRUE);
4832 }
4833
4834 #if OMP_40_ENABLED
4835
__kmp_affinity_set_place(int gtid)4836 void __kmp_affinity_set_place(int gtid) {
4837 if (!KMP_AFFINITY_CAPABLE()) {
4838 return;
4839 }
4840
4841 kmp_info_t *th = (kmp_info_t *)TCR_SYNC_PTR(__kmp_threads[gtid]);
4842
4843 KA_TRACE(100, ("__kmp_affinity_set_place: binding T#%d to place %d (current "
4844 "place = %d)\n",
4845 gtid, th->th.th_new_place, th->th.th_current_place));
4846
4847 // Check that the new place is within this thread's partition.
4848 KMP_DEBUG_ASSERT(th->th.th_affin_mask != NULL);
4849 KMP_ASSERT(th->th.th_new_place >= 0);
4850 KMP_ASSERT((unsigned)th->th.th_new_place <= __kmp_affinity_num_masks);
4851 if (th->th.th_first_place <= th->th.th_last_place) {
4852 KMP_ASSERT((th->th.th_new_place >= th->th.th_first_place) &&
4853 (th->th.th_new_place <= th->th.th_last_place));
4854 } else {
4855 KMP_ASSERT((th->th.th_new_place <= th->th.th_first_place) ||
4856 (th->th.th_new_place >= th->th.th_last_place));
4857 }
4858
4859 // Copy the thread mask to the kmp_info_t strucuture,
4860 // and set this thread's affinity.
4861 kmp_affin_mask_t *mask =
4862 KMP_CPU_INDEX(__kmp_affinity_masks, th->th.th_new_place);
4863 KMP_CPU_COPY(th->th.th_affin_mask, mask);
4864 th->th.th_current_place = th->th.th_new_place;
4865
4866 if (__kmp_affinity_verbose) {
4867 char buf[KMP_AFFIN_MASK_PRINT_LEN];
4868 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN,
4869 th->th.th_affin_mask);
4870 KMP_INFORM(BoundToOSProcSet, "OMP_PROC_BIND", (kmp_int32)getpid(),
4871 __kmp_gettid(), gtid, buf);
4872 }
4873 __kmp_set_system_affinity(th->th.th_affin_mask, TRUE);
4874 }
4875
4876 #endif /* OMP_40_ENABLED */
4877
__kmp_aux_set_affinity(void ** mask)4878 int __kmp_aux_set_affinity(void **mask) {
4879 int gtid;
4880 kmp_info_t *th;
4881 int retval;
4882
4883 if (!KMP_AFFINITY_CAPABLE()) {
4884 return -1;
4885 }
4886
4887 gtid = __kmp_entry_gtid();
4888 KA_TRACE(1000, ; {
4889 char buf[KMP_AFFIN_MASK_PRINT_LEN];
4890 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN,
4891 (kmp_affin_mask_t *)(*mask));
4892 __kmp_debug_printf(
4893 "kmp_set_affinity: setting affinity mask for thread %d = %s\n", gtid,
4894 buf);
4895 });
4896
4897 if (__kmp_env_consistency_check) {
4898 if ((mask == NULL) || (*mask == NULL)) {
4899 KMP_FATAL(AffinityInvalidMask, "kmp_set_affinity");
4900 } else {
4901 unsigned proc;
4902 int num_procs = 0;
4903
4904 KMP_CPU_SET_ITERATE(proc, ((kmp_affin_mask_t *)(*mask))) {
4905 if (!KMP_CPU_ISSET(proc, __kmp_affin_fullMask)) {
4906 KMP_FATAL(AffinityInvalidMask, "kmp_set_affinity");
4907 }
4908 if (!KMP_CPU_ISSET(proc, (kmp_affin_mask_t *)(*mask))) {
4909 continue;
4910 }
4911 num_procs++;
4912 }
4913 if (num_procs == 0) {
4914 KMP_FATAL(AffinityInvalidMask, "kmp_set_affinity");
4915 }
4916
4917 #if KMP_GROUP_AFFINITY
4918 if (__kmp_get_proc_group((kmp_affin_mask_t *)(*mask)) < 0) {
4919 KMP_FATAL(AffinityInvalidMask, "kmp_set_affinity");
4920 }
4921 #endif /* KMP_GROUP_AFFINITY */
4922 }
4923 }
4924
4925 th = __kmp_threads[gtid];
4926 KMP_DEBUG_ASSERT(th->th.th_affin_mask != NULL);
4927 retval = __kmp_set_system_affinity((kmp_affin_mask_t *)(*mask), FALSE);
4928 if (retval == 0) {
4929 KMP_CPU_COPY(th->th.th_affin_mask, (kmp_affin_mask_t *)(*mask));
4930 }
4931
4932 #if OMP_40_ENABLED
4933 th->th.th_current_place = KMP_PLACE_UNDEFINED;
4934 th->th.th_new_place = KMP_PLACE_UNDEFINED;
4935 th->th.th_first_place = 0;
4936 th->th.th_last_place = __kmp_affinity_num_masks - 1;
4937
4938 // Turn off 4.0 affinity for the current tread at this parallel level.
4939 th->th.th_current_task->td_icvs.proc_bind = proc_bind_false;
4940 #endif
4941
4942 return retval;
4943 }
4944
__kmp_aux_get_affinity(void ** mask)4945 int __kmp_aux_get_affinity(void **mask) {
4946 int gtid;
4947 int retval;
4948 kmp_info_t *th;
4949
4950 if (!KMP_AFFINITY_CAPABLE()) {
4951 return -1;
4952 }
4953
4954 gtid = __kmp_entry_gtid();
4955 th = __kmp_threads[gtid];
4956 KMP_DEBUG_ASSERT(th->th.th_affin_mask != NULL);
4957
4958 KA_TRACE(1000, ; {
4959 char buf[KMP_AFFIN_MASK_PRINT_LEN];
4960 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN,
4961 th->th.th_affin_mask);
4962 __kmp_printf("kmp_get_affinity: stored affinity mask for thread %d = %s\n",
4963 gtid, buf);
4964 });
4965
4966 if (__kmp_env_consistency_check) {
4967 if ((mask == NULL) || (*mask == NULL)) {
4968 KMP_FATAL(AffinityInvalidMask, "kmp_get_affinity");
4969 }
4970 }
4971
4972 #if !KMP_OS_WINDOWS
4973
4974 retval = __kmp_get_system_affinity((kmp_affin_mask_t *)(*mask), FALSE);
4975 KA_TRACE(1000, ; {
4976 char buf[KMP_AFFIN_MASK_PRINT_LEN];
4977 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN,
4978 (kmp_affin_mask_t *)(*mask));
4979 __kmp_printf("kmp_get_affinity: system affinity mask for thread %d = %s\n",
4980 gtid, buf);
4981 });
4982 return retval;
4983
4984 #else
4985
4986 KMP_CPU_COPY((kmp_affin_mask_t *)(*mask), th->th.th_affin_mask);
4987 return 0;
4988
4989 #endif /* KMP_OS_WINDOWS */
4990 }
4991
__kmp_aux_get_affinity_max_proc()4992 int __kmp_aux_get_affinity_max_proc() {
4993 if (!KMP_AFFINITY_CAPABLE()) {
4994 return 0;
4995 }
4996 #if KMP_GROUP_AFFINITY
4997 if (__kmp_num_proc_groups > 1) {
4998 return (int)(__kmp_num_proc_groups * sizeof(DWORD_PTR) * CHAR_BIT);
4999 }
5000 #endif
5001 return __kmp_xproc;
5002 }
5003
__kmp_aux_set_affinity_mask_proc(int proc,void ** mask)5004 int __kmp_aux_set_affinity_mask_proc(int proc, void **mask) {
5005 if (!KMP_AFFINITY_CAPABLE()) {
5006 return -1;
5007 }
5008
5009 KA_TRACE(1000, ; {
5010 int gtid = __kmp_entry_gtid();
5011 char buf[KMP_AFFIN_MASK_PRINT_LEN];
5012 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN,
5013 (kmp_affin_mask_t *)(*mask));
5014 __kmp_debug_printf("kmp_set_affinity_mask_proc: setting proc %d in "
5015 "affinity mask for thread %d = %s\n",
5016 proc, gtid, buf);
5017 });
5018
5019 if (__kmp_env_consistency_check) {
5020 if ((mask == NULL) || (*mask == NULL)) {
5021 KMP_FATAL(AffinityInvalidMask, "kmp_set_affinity_mask_proc");
5022 }
5023 }
5024
5025 if ((proc < 0) || (proc >= __kmp_aux_get_affinity_max_proc())) {
5026 return -1;
5027 }
5028 if (!KMP_CPU_ISSET(proc, __kmp_affin_fullMask)) {
5029 return -2;
5030 }
5031
5032 KMP_CPU_SET(proc, (kmp_affin_mask_t *)(*mask));
5033 return 0;
5034 }
5035
__kmp_aux_unset_affinity_mask_proc(int proc,void ** mask)5036 int __kmp_aux_unset_affinity_mask_proc(int proc, void **mask) {
5037 if (!KMP_AFFINITY_CAPABLE()) {
5038 return -1;
5039 }
5040
5041 KA_TRACE(1000, ; {
5042 int gtid = __kmp_entry_gtid();
5043 char buf[KMP_AFFIN_MASK_PRINT_LEN];
5044 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN,
5045 (kmp_affin_mask_t *)(*mask));
5046 __kmp_debug_printf("kmp_unset_affinity_mask_proc: unsetting proc %d in "
5047 "affinity mask for thread %d = %s\n",
5048 proc, gtid, buf);
5049 });
5050
5051 if (__kmp_env_consistency_check) {
5052 if ((mask == NULL) || (*mask == NULL)) {
5053 KMP_FATAL(AffinityInvalidMask, "kmp_unset_affinity_mask_proc");
5054 }
5055 }
5056
5057 if ((proc < 0) || (proc >= __kmp_aux_get_affinity_max_proc())) {
5058 return -1;
5059 }
5060 if (!KMP_CPU_ISSET(proc, __kmp_affin_fullMask)) {
5061 return -2;
5062 }
5063
5064 KMP_CPU_CLR(proc, (kmp_affin_mask_t *)(*mask));
5065 return 0;
5066 }
5067
__kmp_aux_get_affinity_mask_proc(int proc,void ** mask)5068 int __kmp_aux_get_affinity_mask_proc(int proc, void **mask) {
5069 if (!KMP_AFFINITY_CAPABLE()) {
5070 return -1;
5071 }
5072
5073 KA_TRACE(1000, ; {
5074 int gtid = __kmp_entry_gtid();
5075 char buf[KMP_AFFIN_MASK_PRINT_LEN];
5076 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN,
5077 (kmp_affin_mask_t *)(*mask));
5078 __kmp_debug_printf("kmp_get_affinity_mask_proc: getting proc %d in "
5079 "affinity mask for thread %d = %s\n",
5080 proc, gtid, buf);
5081 });
5082
5083 if (__kmp_env_consistency_check) {
5084 if ((mask == NULL) || (*mask == NULL)) {
5085 KMP_FATAL(AffinityInvalidMask, "kmp_get_affinity_mask_proc");
5086 }
5087 }
5088
5089 if ((proc < 0) || (proc >= __kmp_aux_get_affinity_max_proc())) {
5090 return -1;
5091 }
5092 if (!KMP_CPU_ISSET(proc, __kmp_affin_fullMask)) {
5093 return 0;
5094 }
5095
5096 return KMP_CPU_ISSET(proc, (kmp_affin_mask_t *)(*mask));
5097 }
5098
5099 // Dynamic affinity settings - Affinity balanced
__kmp_balanced_affinity(kmp_info_t * th,int nthreads)5100 void __kmp_balanced_affinity(kmp_info_t *th, int nthreads) {
5101 KMP_DEBUG_ASSERT(th);
5102 bool fine_gran = true;
5103 int tid = th->th.th_info.ds.ds_tid;
5104
5105 switch (__kmp_affinity_gran) {
5106 case affinity_gran_fine:
5107 case affinity_gran_thread:
5108 break;
5109 case affinity_gran_core:
5110 if (__kmp_nThreadsPerCore > 1) {
5111 fine_gran = false;
5112 }
5113 break;
5114 case affinity_gran_package:
5115 if (nCoresPerPkg > 1) {
5116 fine_gran = false;
5117 }
5118 break;
5119 default:
5120 fine_gran = false;
5121 }
5122
5123 if (__kmp_affinity_uniform_topology()) {
5124 int coreID;
5125 int threadID;
5126 // Number of hyper threads per core in HT machine
5127 int __kmp_nth_per_core = __kmp_avail_proc / __kmp_ncores;
5128 // Number of cores
5129 int ncores = __kmp_ncores;
5130 if ((nPackages > 1) && (__kmp_nth_per_core <= 1)) {
5131 __kmp_nth_per_core = __kmp_avail_proc / nPackages;
5132 ncores = nPackages;
5133 }
5134 // How many threads will be bound to each core
5135 int chunk = nthreads / ncores;
5136 // How many cores will have an additional thread bound to it - "big cores"
5137 int big_cores = nthreads % ncores;
5138 // Number of threads on the big cores
5139 int big_nth = (chunk + 1) * big_cores;
5140 if (tid < big_nth) {
5141 coreID = tid / (chunk + 1);
5142 threadID = (tid % (chunk + 1)) % __kmp_nth_per_core;
5143 } else { // tid >= big_nth
5144 coreID = (tid - big_cores) / chunk;
5145 threadID = ((tid - big_cores) % chunk) % __kmp_nth_per_core;
5146 }
5147
5148 KMP_DEBUG_ASSERT2(KMP_AFFINITY_CAPABLE(),
5149 "Illegal set affinity operation when not capable");
5150
5151 kmp_affin_mask_t *mask = th->th.th_affin_mask;
5152 KMP_CPU_ZERO(mask);
5153
5154 if (fine_gran) {
5155 int osID = address2os[coreID * __kmp_nth_per_core + threadID].second;
5156 KMP_CPU_SET(osID, mask);
5157 } else {
5158 for (int i = 0; i < __kmp_nth_per_core; i++) {
5159 int osID;
5160 osID = address2os[coreID * __kmp_nth_per_core + i].second;
5161 KMP_CPU_SET(osID, mask);
5162 }
5163 }
5164 if (__kmp_affinity_verbose) {
5165 char buf[KMP_AFFIN_MASK_PRINT_LEN];
5166 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, mask);
5167 KMP_INFORM(BoundToOSProcSet, "KMP_AFFINITY", (kmp_int32)getpid(),
5168 __kmp_gettid(), tid, buf);
5169 }
5170 __kmp_set_system_affinity(mask, TRUE);
5171 } else { // Non-uniform topology
5172
5173 kmp_affin_mask_t *mask = th->th.th_affin_mask;
5174 KMP_CPU_ZERO(mask);
5175
5176 int core_level = __kmp_affinity_find_core_level(
5177 address2os, __kmp_avail_proc, __kmp_aff_depth - 1);
5178 int ncores = __kmp_affinity_compute_ncores(address2os, __kmp_avail_proc,
5179 __kmp_aff_depth - 1, core_level);
5180 int nth_per_core = __kmp_affinity_max_proc_per_core(
5181 address2os, __kmp_avail_proc, __kmp_aff_depth - 1, core_level);
5182
5183 // For performance gain consider the special case nthreads ==
5184 // __kmp_avail_proc
5185 if (nthreads == __kmp_avail_proc) {
5186 if (fine_gran) {
5187 int osID = address2os[tid].second;
5188 KMP_CPU_SET(osID, mask);
5189 } else {
5190 int core = __kmp_affinity_find_core(address2os, tid,
5191 __kmp_aff_depth - 1, core_level);
5192 for (int i = 0; i < __kmp_avail_proc; i++) {
5193 int osID = address2os[i].second;
5194 if (__kmp_affinity_find_core(address2os, i, __kmp_aff_depth - 1,
5195 core_level) == core) {
5196 KMP_CPU_SET(osID, mask);
5197 }
5198 }
5199 }
5200 } else if (nthreads <= ncores) {
5201
5202 int core = 0;
5203 for (int i = 0; i < ncores; i++) {
5204 // Check if this core from procarr[] is in the mask
5205 int in_mask = 0;
5206 for (int j = 0; j < nth_per_core; j++) {
5207 if (procarr[i * nth_per_core + j] != -1) {
5208 in_mask = 1;
5209 break;
5210 }
5211 }
5212 if (in_mask) {
5213 if (tid == core) {
5214 for (int j = 0; j < nth_per_core; j++) {
5215 int osID = procarr[i * nth_per_core + j];
5216 if (osID != -1) {
5217 KMP_CPU_SET(osID, mask);
5218 // For fine granularity it is enough to set the first available
5219 // osID for this core
5220 if (fine_gran) {
5221 break;
5222 }
5223 }
5224 }
5225 break;
5226 } else {
5227 core++;
5228 }
5229 }
5230 }
5231 } else { // nthreads > ncores
5232 // Array to save the number of processors at each core
5233 int *nproc_at_core = (int *)KMP_ALLOCA(sizeof(int) * ncores);
5234 // Array to save the number of cores with "x" available processors;
5235 int *ncores_with_x_procs =
5236 (int *)KMP_ALLOCA(sizeof(int) * (nth_per_core + 1));
5237 // Array to save the number of cores with # procs from x to nth_per_core
5238 int *ncores_with_x_to_max_procs =
5239 (int *)KMP_ALLOCA(sizeof(int) * (nth_per_core + 1));
5240
5241 for (int i = 0; i <= nth_per_core; i++) {
5242 ncores_with_x_procs[i] = 0;
5243 ncores_with_x_to_max_procs[i] = 0;
5244 }
5245
5246 for (int i = 0; i < ncores; i++) {
5247 int cnt = 0;
5248 for (int j = 0; j < nth_per_core; j++) {
5249 if (procarr[i * nth_per_core + j] != -1) {
5250 cnt++;
5251 }
5252 }
5253 nproc_at_core[i] = cnt;
5254 ncores_with_x_procs[cnt]++;
5255 }
5256
5257 for (int i = 0; i <= nth_per_core; i++) {
5258 for (int j = i; j <= nth_per_core; j++) {
5259 ncores_with_x_to_max_procs[i] += ncores_with_x_procs[j];
5260 }
5261 }
5262
5263 // Max number of processors
5264 int nproc = nth_per_core * ncores;
5265 // An array to keep number of threads per each context
5266 int *newarr = (int *)__kmp_allocate(sizeof(int) * nproc);
5267 for (int i = 0; i < nproc; i++) {
5268 newarr[i] = 0;
5269 }
5270
5271 int nth = nthreads;
5272 int flag = 0;
5273 while (nth > 0) {
5274 for (int j = 1; j <= nth_per_core; j++) {
5275 int cnt = ncores_with_x_to_max_procs[j];
5276 for (int i = 0; i < ncores; i++) {
5277 // Skip the core with 0 processors
5278 if (nproc_at_core[i] == 0) {
5279 continue;
5280 }
5281 for (int k = 0; k < nth_per_core; k++) {
5282 if (procarr[i * nth_per_core + k] != -1) {
5283 if (newarr[i * nth_per_core + k] == 0) {
5284 newarr[i * nth_per_core + k] = 1;
5285 cnt--;
5286 nth--;
5287 break;
5288 } else {
5289 if (flag != 0) {
5290 newarr[i * nth_per_core + k]++;
5291 cnt--;
5292 nth--;
5293 break;
5294 }
5295 }
5296 }
5297 }
5298 if (cnt == 0 || nth == 0) {
5299 break;
5300 }
5301 }
5302 if (nth == 0) {
5303 break;
5304 }
5305 }
5306 flag = 1;
5307 }
5308 int sum = 0;
5309 for (int i = 0; i < nproc; i++) {
5310 sum += newarr[i];
5311 if (sum > tid) {
5312 if (fine_gran) {
5313 int osID = procarr[i];
5314 KMP_CPU_SET(osID, mask);
5315 } else {
5316 int coreID = i / nth_per_core;
5317 for (int ii = 0; ii < nth_per_core; ii++) {
5318 int osID = procarr[coreID * nth_per_core + ii];
5319 if (osID != -1) {
5320 KMP_CPU_SET(osID, mask);
5321 }
5322 }
5323 }
5324 break;
5325 }
5326 }
5327 __kmp_free(newarr);
5328 }
5329
5330 if (__kmp_affinity_verbose) {
5331 char buf[KMP_AFFIN_MASK_PRINT_LEN];
5332 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, mask);
5333 KMP_INFORM(BoundToOSProcSet, "KMP_AFFINITY", (kmp_int32)getpid(),
5334 __kmp_gettid(), tid, buf);
5335 }
5336 __kmp_set_system_affinity(mask, TRUE);
5337 }
5338 }
5339
5340 #if KMP_OS_LINUX
5341 // We don't need this entry for Windows because
5342 // there is GetProcessAffinityMask() api
5343 //
5344 // The intended usage is indicated by these steps:
5345 // 1) The user gets the current affinity mask
5346 // 2) Then sets the affinity by calling this function
5347 // 3) Error check the return value
5348 // 4) Use non-OpenMP parallelization
5349 // 5) Reset the affinity to what was stored in step 1)
5350 #ifdef __cplusplus
5351 extern "C"
5352 #endif
5353 int
kmp_set_thread_affinity_mask_initial()5354 kmp_set_thread_affinity_mask_initial()
5355 // the function returns 0 on success,
5356 // -1 if we cannot bind thread
5357 // >0 (errno) if an error happened during binding
5358 {
5359 int gtid = __kmp_get_gtid();
5360 if (gtid < 0) {
5361 // Do not touch non-omp threads
5362 KA_TRACE(30, ("kmp_set_thread_affinity_mask_initial: "
5363 "non-omp thread, returning\n"));
5364 return -1;
5365 }
5366 if (!KMP_AFFINITY_CAPABLE() || !__kmp_init_middle) {
5367 KA_TRACE(30, ("kmp_set_thread_affinity_mask_initial: "
5368 "affinity not initialized, returning\n"));
5369 return -1;
5370 }
5371 KA_TRACE(30, ("kmp_set_thread_affinity_mask_initial: "
5372 "set full mask for thread %d\n",
5373 gtid));
5374 KMP_DEBUG_ASSERT(__kmp_affin_fullMask != NULL);
5375 return __kmp_set_system_affinity(__kmp_affin_fullMask, FALSE);
5376 }
5377 #endif
5378
5379 #endif // KMP_AFFINITY_SUPPORTED
5380