1 //===- IntrinsicEmitter.cpp - Generate intrinsic information --------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This tablegen backend emits information about intrinsic functions.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "CodeGenIntrinsics.h"
15 #include "CodeGenTarget.h"
16 #include "SequenceToOffsetTable.h"
17 #include "TableGenBackends.h"
18 #include "llvm/ADT/StringExtras.h"
19 #include "llvm/TableGen/Error.h"
20 #include "llvm/TableGen/Record.h"
21 #include "llvm/TableGen/StringMatcher.h"
22 #include "llvm/TableGen/TableGenBackend.h"
23 #include "llvm/TableGen/StringToOffsetTable.h"
24 #include <algorithm>
25 using namespace llvm;
26
27 namespace {
28 class IntrinsicEmitter {
29 RecordKeeper &Records;
30 bool TargetOnly;
31 std::string TargetPrefix;
32
33 public:
IntrinsicEmitter(RecordKeeper & R,bool T)34 IntrinsicEmitter(RecordKeeper &R, bool T)
35 : Records(R), TargetOnly(T) {}
36
37 void run(raw_ostream &OS, bool Enums);
38
39 void EmitPrefix(raw_ostream &OS);
40
41 void EmitEnumInfo(const CodeGenIntrinsicTable &Ints, raw_ostream &OS);
42 void EmitTargetInfo(const CodeGenIntrinsicTable &Ints, raw_ostream &OS);
43 void EmitIntrinsicToNameTable(const CodeGenIntrinsicTable &Ints,
44 raw_ostream &OS);
45 void EmitIntrinsicToOverloadTable(const CodeGenIntrinsicTable &Ints,
46 raw_ostream &OS);
47 void EmitGenerator(const CodeGenIntrinsicTable &Ints, raw_ostream &OS);
48 void EmitAttributes(const CodeGenIntrinsicTable &Ints, raw_ostream &OS);
49 void EmitIntrinsicToBuiltinMap(const CodeGenIntrinsicTable &Ints, bool IsGCC,
50 raw_ostream &OS);
51 void EmitSuffix(raw_ostream &OS);
52 };
53 } // End anonymous namespace
54
55 //===----------------------------------------------------------------------===//
56 // IntrinsicEmitter Implementation
57 //===----------------------------------------------------------------------===//
58
run(raw_ostream & OS,bool Enums)59 void IntrinsicEmitter::run(raw_ostream &OS, bool Enums) {
60 emitSourceFileHeader("Intrinsic Function Source Fragment", OS);
61
62 CodeGenIntrinsicTable Ints(Records, TargetOnly);
63
64 if (TargetOnly && !Ints.empty())
65 TargetPrefix = Ints[0].TargetPrefix;
66
67 EmitPrefix(OS);
68
69 if (Enums) {
70 // Emit the enum information.
71 EmitEnumInfo(Ints, OS);
72 } else {
73 // Emit the target metadata.
74 EmitTargetInfo(Ints, OS);
75
76 // Emit the intrinsic ID -> name table.
77 EmitIntrinsicToNameTable(Ints, OS);
78
79 // Emit the intrinsic ID -> overload table.
80 EmitIntrinsicToOverloadTable(Ints, OS);
81
82 // Emit the intrinsic declaration generator.
83 EmitGenerator(Ints, OS);
84
85 // Emit the intrinsic parameter attributes.
86 EmitAttributes(Ints, OS);
87
88 // Emit code to translate GCC builtins into LLVM intrinsics.
89 EmitIntrinsicToBuiltinMap(Ints, true, OS);
90
91 // Emit code to translate MS builtins into LLVM intrinsics.
92 EmitIntrinsicToBuiltinMap(Ints, false, OS);
93 }
94
95 EmitSuffix(OS);
96 }
97
EmitPrefix(raw_ostream & OS)98 void IntrinsicEmitter::EmitPrefix(raw_ostream &OS) {
99 OS << "// VisualStudio defines setjmp as _setjmp\n"
100 "#if defined(_MSC_VER) && defined(setjmp) && \\\n"
101 " !defined(setjmp_undefined_for_msvc)\n"
102 "# pragma push_macro(\"setjmp\")\n"
103 "# undef setjmp\n"
104 "# define setjmp_undefined_for_msvc\n"
105 "#endif\n\n";
106 }
107
EmitSuffix(raw_ostream & OS)108 void IntrinsicEmitter::EmitSuffix(raw_ostream &OS) {
109 OS << "#if defined(_MSC_VER) && defined(setjmp_undefined_for_msvc)\n"
110 "// let's return it to _setjmp state\n"
111 "# pragma pop_macro(\"setjmp\")\n"
112 "# undef setjmp_undefined_for_msvc\n"
113 "#endif\n\n";
114 }
115
EmitEnumInfo(const CodeGenIntrinsicTable & Ints,raw_ostream & OS)116 void IntrinsicEmitter::EmitEnumInfo(const CodeGenIntrinsicTable &Ints,
117 raw_ostream &OS) {
118 OS << "// Enum values for Intrinsics.h\n";
119 OS << "#ifdef GET_INTRINSIC_ENUM_VALUES\n";
120 for (unsigned i = 0, e = Ints.size(); i != e; ++i) {
121 OS << " " << Ints[i].EnumName;
122 OS << ((i != e-1) ? ", " : " ");
123 if (Ints[i].EnumName.size() < 40)
124 OS << std::string(40-Ints[i].EnumName.size(), ' ');
125 OS << " // " << Ints[i].Name << "\n";
126 }
127 OS << "#endif\n\n";
128 }
129
EmitTargetInfo(const CodeGenIntrinsicTable & Ints,raw_ostream & OS)130 void IntrinsicEmitter::EmitTargetInfo(const CodeGenIntrinsicTable &Ints,
131 raw_ostream &OS) {
132 OS << "// Target mapping\n";
133 OS << "#ifdef GET_INTRINSIC_TARGET_DATA\n";
134 OS << "struct IntrinsicTargetInfo {\n"
135 << " llvm::StringLiteral Name;\n"
136 << " size_t Offset;\n"
137 << " size_t Count;\n"
138 << "};\n";
139 OS << "static constexpr IntrinsicTargetInfo TargetInfos[] = {\n";
140 for (auto Target : Ints.Targets)
141 OS << " {llvm::StringLiteral(\"" << Target.Name << "\"), " << Target.Offset
142 << ", " << Target.Count << "},\n";
143 OS << "};\n";
144 OS << "#endif\n\n";
145 }
146
EmitIntrinsicToNameTable(const CodeGenIntrinsicTable & Ints,raw_ostream & OS)147 void IntrinsicEmitter::EmitIntrinsicToNameTable(
148 const CodeGenIntrinsicTable &Ints, raw_ostream &OS) {
149 OS << "// Intrinsic ID to name table\n";
150 OS << "#ifdef GET_INTRINSIC_NAME_TABLE\n";
151 OS << " // Note that entry #0 is the invalid intrinsic!\n";
152 for (unsigned i = 0, e = Ints.size(); i != e; ++i)
153 OS << " \"" << Ints[i].Name << "\",\n";
154 OS << "#endif\n\n";
155 }
156
EmitIntrinsicToOverloadTable(const CodeGenIntrinsicTable & Ints,raw_ostream & OS)157 void IntrinsicEmitter::EmitIntrinsicToOverloadTable(
158 const CodeGenIntrinsicTable &Ints, raw_ostream &OS) {
159 OS << "// Intrinsic ID to overload bitset\n";
160 OS << "#ifdef GET_INTRINSIC_OVERLOAD_TABLE\n";
161 OS << "static const uint8_t OTable[] = {\n";
162 OS << " 0";
163 for (unsigned i = 0, e = Ints.size(); i != e; ++i) {
164 // Add one to the index so we emit a null bit for the invalid #0 intrinsic.
165 if ((i+1)%8 == 0)
166 OS << ",\n 0";
167 if (Ints[i].isOverloaded)
168 OS << " | (1<<" << (i+1)%8 << ')';
169 }
170 OS << "\n};\n\n";
171 // OTable contains a true bit at the position if the intrinsic is overloaded.
172 OS << "return (OTable[id/8] & (1 << (id%8))) != 0;\n";
173 OS << "#endif\n\n";
174 }
175
176
177 // NOTE: This must be kept in synch with the copy in lib/IR/Function.cpp!
178 enum IIT_Info {
179 // Common values should be encoded with 0-15.
180 IIT_Done = 0,
181 IIT_I1 = 1,
182 IIT_I8 = 2,
183 IIT_I16 = 3,
184 IIT_I32 = 4,
185 IIT_I64 = 5,
186 IIT_F16 = 6,
187 IIT_F32 = 7,
188 IIT_F64 = 8,
189 IIT_V2 = 9,
190 IIT_V4 = 10,
191 IIT_V8 = 11,
192 IIT_V16 = 12,
193 IIT_V32 = 13,
194 IIT_PTR = 14,
195 IIT_ARG = 15,
196
197 // Values from 16+ are only encodable with the inefficient encoding.
198 IIT_V64 = 16,
199 IIT_MMX = 17,
200 IIT_TOKEN = 18,
201 IIT_METADATA = 19,
202 IIT_EMPTYSTRUCT = 20,
203 IIT_STRUCT2 = 21,
204 IIT_STRUCT3 = 22,
205 IIT_STRUCT4 = 23,
206 IIT_STRUCT5 = 24,
207 IIT_EXTEND_ARG = 25,
208 IIT_TRUNC_ARG = 26,
209 IIT_ANYPTR = 27,
210 IIT_V1 = 28,
211 IIT_VARARG = 29,
212 IIT_HALF_VEC_ARG = 30,
213 IIT_SAME_VEC_WIDTH_ARG = 31,
214 IIT_PTR_TO_ARG = 32,
215 IIT_PTR_TO_ELT = 33,
216 IIT_VEC_OF_ANYPTRS_TO_ELT = 34,
217 IIT_I128 = 35,
218 IIT_V512 = 36,
219 IIT_V1024 = 37,
220 IIT_STRUCT6 = 38,
221 IIT_STRUCT7 = 39,
222 IIT_STRUCT8 = 40,
223 IIT_F128 = 41
224 };
225
EncodeFixedValueType(MVT::SimpleValueType VT,std::vector<unsigned char> & Sig)226 static void EncodeFixedValueType(MVT::SimpleValueType VT,
227 std::vector<unsigned char> &Sig) {
228 if (MVT(VT).isInteger()) {
229 unsigned BitWidth = MVT(VT).getSizeInBits();
230 switch (BitWidth) {
231 default: PrintFatalError("unhandled integer type width in intrinsic!");
232 case 1: return Sig.push_back(IIT_I1);
233 case 8: return Sig.push_back(IIT_I8);
234 case 16: return Sig.push_back(IIT_I16);
235 case 32: return Sig.push_back(IIT_I32);
236 case 64: return Sig.push_back(IIT_I64);
237 case 128: return Sig.push_back(IIT_I128);
238 }
239 }
240
241 switch (VT) {
242 default: PrintFatalError("unhandled MVT in intrinsic!");
243 case MVT::f16: return Sig.push_back(IIT_F16);
244 case MVT::f32: return Sig.push_back(IIT_F32);
245 case MVT::f64: return Sig.push_back(IIT_F64);
246 case MVT::f128: return Sig.push_back(IIT_F128);
247 case MVT::token: return Sig.push_back(IIT_TOKEN);
248 case MVT::Metadata: return Sig.push_back(IIT_METADATA);
249 case MVT::x86mmx: return Sig.push_back(IIT_MMX);
250 // MVT::OtherVT is used to mean the empty struct type here.
251 case MVT::Other: return Sig.push_back(IIT_EMPTYSTRUCT);
252 // MVT::isVoid is used to represent varargs here.
253 case MVT::isVoid: return Sig.push_back(IIT_VARARG);
254 }
255 }
256
257 #if defined(_MSC_VER) && !defined(__clang__)
258 #pragma optimize("",off) // MSVC 2015 optimizer can't deal with this function.
259 #endif
260
EncodeFixedType(Record * R,std::vector<unsigned char> & ArgCodes,std::vector<unsigned char> & Sig)261 static void EncodeFixedType(Record *R, std::vector<unsigned char> &ArgCodes,
262 std::vector<unsigned char> &Sig) {
263
264 if (R->isSubClassOf("LLVMMatchType")) {
265 unsigned Number = R->getValueAsInt("Number");
266 assert(Number < ArgCodes.size() && "Invalid matching number!");
267 if (R->isSubClassOf("LLVMExtendedType"))
268 Sig.push_back(IIT_EXTEND_ARG);
269 else if (R->isSubClassOf("LLVMTruncatedType"))
270 Sig.push_back(IIT_TRUNC_ARG);
271 else if (R->isSubClassOf("LLVMHalfElementsVectorType"))
272 Sig.push_back(IIT_HALF_VEC_ARG);
273 else if (R->isSubClassOf("LLVMVectorSameWidth")) {
274 Sig.push_back(IIT_SAME_VEC_WIDTH_ARG);
275 Sig.push_back((Number << 3) | ArgCodes[Number]);
276 MVT::SimpleValueType VT = getValueType(R->getValueAsDef("ElTy"));
277 EncodeFixedValueType(VT, Sig);
278 return;
279 }
280 else if (R->isSubClassOf("LLVMPointerTo"))
281 Sig.push_back(IIT_PTR_TO_ARG);
282 else if (R->isSubClassOf("LLVMVectorOfAnyPointersToElt")) {
283 Sig.push_back(IIT_VEC_OF_ANYPTRS_TO_ELT);
284 unsigned ArgNo = ArgCodes.size();
285 ArgCodes.push_back(3 /*vAny*/);
286 // Encode overloaded ArgNo
287 Sig.push_back(ArgNo);
288 // Encode LLVMMatchType<Number> ArgNo
289 Sig.push_back(Number);
290 return;
291 } else if (R->isSubClassOf("LLVMPointerToElt"))
292 Sig.push_back(IIT_PTR_TO_ELT);
293 else
294 Sig.push_back(IIT_ARG);
295 return Sig.push_back((Number << 3) | ArgCodes[Number]);
296 }
297
298 MVT::SimpleValueType VT = getValueType(R->getValueAsDef("VT"));
299
300 unsigned Tmp = 0;
301 switch (VT) {
302 default: break;
303 case MVT::iPTRAny: ++Tmp; LLVM_FALLTHROUGH;
304 case MVT::vAny: ++Tmp; LLVM_FALLTHROUGH;
305 case MVT::fAny: ++Tmp; LLVM_FALLTHROUGH;
306 case MVT::iAny: ++Tmp; LLVM_FALLTHROUGH;
307 case MVT::Any: {
308 // If this is an "any" valuetype, then the type is the type of the next
309 // type in the list specified to getIntrinsic().
310 Sig.push_back(IIT_ARG);
311
312 // Figure out what arg # this is consuming, and remember what kind it was.
313 unsigned ArgNo = ArgCodes.size();
314 ArgCodes.push_back(Tmp);
315
316 // Encode what sort of argument it must be in the low 3 bits of the ArgNo.
317 return Sig.push_back((ArgNo << 3) | Tmp);
318 }
319
320 case MVT::iPTR: {
321 unsigned AddrSpace = 0;
322 if (R->isSubClassOf("LLVMQualPointerType")) {
323 AddrSpace = R->getValueAsInt("AddrSpace");
324 assert(AddrSpace < 256 && "Address space exceeds 255");
325 }
326 if (AddrSpace) {
327 Sig.push_back(IIT_ANYPTR);
328 Sig.push_back(AddrSpace);
329 } else {
330 Sig.push_back(IIT_PTR);
331 }
332 return EncodeFixedType(R->getValueAsDef("ElTy"), ArgCodes, Sig);
333 }
334 }
335
336 if (MVT(VT).isVector()) {
337 MVT VVT = VT;
338 switch (VVT.getVectorNumElements()) {
339 default: PrintFatalError("unhandled vector type width in intrinsic!");
340 case 1: Sig.push_back(IIT_V1); break;
341 case 2: Sig.push_back(IIT_V2); break;
342 case 4: Sig.push_back(IIT_V4); break;
343 case 8: Sig.push_back(IIT_V8); break;
344 case 16: Sig.push_back(IIT_V16); break;
345 case 32: Sig.push_back(IIT_V32); break;
346 case 64: Sig.push_back(IIT_V64); break;
347 case 512: Sig.push_back(IIT_V512); break;
348 case 1024: Sig.push_back(IIT_V1024); break;
349 }
350
351 return EncodeFixedValueType(VVT.getVectorElementType().SimpleTy, Sig);
352 }
353
354 EncodeFixedValueType(VT, Sig);
355 }
356
357 #if defined(_MSC_VER) && !defined(__clang__)
358 #pragma optimize("",on)
359 #endif
360
361 /// ComputeFixedEncoding - If we can encode the type signature for this
362 /// intrinsic into 32 bits, return it. If not, return ~0U.
ComputeFixedEncoding(const CodeGenIntrinsic & Int,std::vector<unsigned char> & TypeSig)363 static void ComputeFixedEncoding(const CodeGenIntrinsic &Int,
364 std::vector<unsigned char> &TypeSig) {
365 std::vector<unsigned char> ArgCodes;
366
367 if (Int.IS.RetVTs.empty())
368 TypeSig.push_back(IIT_Done);
369 else if (Int.IS.RetVTs.size() == 1 &&
370 Int.IS.RetVTs[0] == MVT::isVoid)
371 TypeSig.push_back(IIT_Done);
372 else {
373 switch (Int.IS.RetVTs.size()) {
374 case 1: break;
375 case 2: TypeSig.push_back(IIT_STRUCT2); break;
376 case 3: TypeSig.push_back(IIT_STRUCT3); break;
377 case 4: TypeSig.push_back(IIT_STRUCT4); break;
378 case 5: TypeSig.push_back(IIT_STRUCT5); break;
379 case 6: TypeSig.push_back(IIT_STRUCT6); break;
380 case 7: TypeSig.push_back(IIT_STRUCT7); break;
381 case 8: TypeSig.push_back(IIT_STRUCT8); break;
382 default: llvm_unreachable("Unhandled case in struct");
383 }
384
385 for (unsigned i = 0, e = Int.IS.RetVTs.size(); i != e; ++i)
386 EncodeFixedType(Int.IS.RetTypeDefs[i], ArgCodes, TypeSig);
387 }
388
389 for (unsigned i = 0, e = Int.IS.ParamTypeDefs.size(); i != e; ++i)
390 EncodeFixedType(Int.IS.ParamTypeDefs[i], ArgCodes, TypeSig);
391 }
392
printIITEntry(raw_ostream & OS,unsigned char X)393 static void printIITEntry(raw_ostream &OS, unsigned char X) {
394 OS << (unsigned)X;
395 }
396
EmitGenerator(const CodeGenIntrinsicTable & Ints,raw_ostream & OS)397 void IntrinsicEmitter::EmitGenerator(const CodeGenIntrinsicTable &Ints,
398 raw_ostream &OS) {
399 // If we can compute a 32-bit fixed encoding for this intrinsic, do so and
400 // capture it in this vector, otherwise store a ~0U.
401 std::vector<unsigned> FixedEncodings;
402
403 SequenceToOffsetTable<std::vector<unsigned char> > LongEncodingTable;
404
405 std::vector<unsigned char> TypeSig;
406
407 // Compute the unique argument type info.
408 for (unsigned i = 0, e = Ints.size(); i != e; ++i) {
409 // Get the signature for the intrinsic.
410 TypeSig.clear();
411 ComputeFixedEncoding(Ints[i], TypeSig);
412
413 // Check to see if we can encode it into a 32-bit word. We can only encode
414 // 8 nibbles into a 32-bit word.
415 if (TypeSig.size() <= 8) {
416 bool Failed = false;
417 unsigned Result = 0;
418 for (unsigned i = 0, e = TypeSig.size(); i != e; ++i) {
419 // If we had an unencodable argument, bail out.
420 if (TypeSig[i] > 15) {
421 Failed = true;
422 break;
423 }
424 Result = (Result << 4) | TypeSig[e-i-1];
425 }
426
427 // If this could be encoded into a 31-bit word, return it.
428 if (!Failed && (Result >> 31) == 0) {
429 FixedEncodings.push_back(Result);
430 continue;
431 }
432 }
433
434 // Otherwise, we're going to unique the sequence into the
435 // LongEncodingTable, and use its offset in the 32-bit table instead.
436 LongEncodingTable.add(TypeSig);
437
438 // This is a placehold that we'll replace after the table is laid out.
439 FixedEncodings.push_back(~0U);
440 }
441
442 LongEncodingTable.layout();
443
444 OS << "// Global intrinsic function declaration type table.\n";
445 OS << "#ifdef GET_INTRINSIC_GENERATOR_GLOBAL\n";
446
447 OS << "static const unsigned IIT_Table[] = {\n ";
448
449 for (unsigned i = 0, e = FixedEncodings.size(); i != e; ++i) {
450 if ((i & 7) == 7)
451 OS << "\n ";
452
453 // If the entry fit in the table, just emit it.
454 if (FixedEncodings[i] != ~0U) {
455 OS << "0x" << Twine::utohexstr(FixedEncodings[i]) << ", ";
456 continue;
457 }
458
459 TypeSig.clear();
460 ComputeFixedEncoding(Ints[i], TypeSig);
461
462
463 // Otherwise, emit the offset into the long encoding table. We emit it this
464 // way so that it is easier to read the offset in the .def file.
465 OS << "(1U<<31) | " << LongEncodingTable.get(TypeSig) << ", ";
466 }
467
468 OS << "0\n};\n\n";
469
470 // Emit the shared table of register lists.
471 OS << "static const unsigned char IIT_LongEncodingTable[] = {\n";
472 if (!LongEncodingTable.empty())
473 LongEncodingTable.emit(OS, printIITEntry);
474 OS << " 255\n};\n\n";
475
476 OS << "#endif\n\n"; // End of GET_INTRINSIC_GENERATOR_GLOBAL
477 }
478
479 namespace {
480 struct AttributeComparator {
operator ()__anon8334c62d0211::AttributeComparator481 bool operator()(const CodeGenIntrinsic *L, const CodeGenIntrinsic *R) const {
482 // Sort throwing intrinsics after non-throwing intrinsics.
483 if (L->canThrow != R->canThrow)
484 return R->canThrow;
485
486 if (L->isNoDuplicate != R->isNoDuplicate)
487 return R->isNoDuplicate;
488
489 if (L->isNoReturn != R->isNoReturn)
490 return R->isNoReturn;
491
492 if (L->isCold != R->isCold)
493 return R->isCold;
494
495 if (L->isConvergent != R->isConvergent)
496 return R->isConvergent;
497
498 if (L->isSpeculatable != R->isSpeculatable)
499 return R->isSpeculatable;
500
501 if (L->hasSideEffects != R->hasSideEffects)
502 return R->hasSideEffects;
503
504 // Try to order by readonly/readnone attribute.
505 CodeGenIntrinsic::ModRefBehavior LK = L->ModRef;
506 CodeGenIntrinsic::ModRefBehavior RK = R->ModRef;
507 if (LK != RK) return (LK > RK);
508
509 // Order by argument attributes.
510 // This is reliable because each side is already sorted internally.
511 return (L->ArgumentAttributes < R->ArgumentAttributes);
512 }
513 };
514 } // End anonymous namespace
515
516 /// EmitAttributes - This emits the Intrinsic::getAttributes method.
EmitAttributes(const CodeGenIntrinsicTable & Ints,raw_ostream & OS)517 void IntrinsicEmitter::EmitAttributes(const CodeGenIntrinsicTable &Ints,
518 raw_ostream &OS) {
519 OS << "// Add parameter attributes that are not common to all intrinsics.\n";
520 OS << "#ifdef GET_INTRINSIC_ATTRIBUTES\n";
521 if (TargetOnly)
522 OS << "static AttributeList getAttributes(LLVMContext &C, " << TargetPrefix
523 << "Intrinsic::ID id) {\n";
524 else
525 OS << "AttributeList Intrinsic::getAttributes(LLVMContext &C, ID id) {\n";
526
527 // Compute the maximum number of attribute arguments and the map
528 typedef std::map<const CodeGenIntrinsic*, unsigned,
529 AttributeComparator> UniqAttrMapTy;
530 UniqAttrMapTy UniqAttributes;
531 unsigned maxArgAttrs = 0;
532 unsigned AttrNum = 0;
533 for (unsigned i = 0, e = Ints.size(); i != e; ++i) {
534 const CodeGenIntrinsic &intrinsic = Ints[i];
535 maxArgAttrs =
536 std::max(maxArgAttrs, unsigned(intrinsic.ArgumentAttributes.size()));
537 unsigned &N = UniqAttributes[&intrinsic];
538 if (N) continue;
539 assert(AttrNum < 256 && "Too many unique attributes for table!");
540 N = ++AttrNum;
541 }
542
543 // Emit an array of AttributeList. Most intrinsics will have at least one
544 // entry, for the function itself (index ~1), which is usually nounwind.
545 OS << " static const uint8_t IntrinsicsToAttributesMap[] = {\n";
546
547 for (unsigned i = 0, e = Ints.size(); i != e; ++i) {
548 const CodeGenIntrinsic &intrinsic = Ints[i];
549
550 OS << " " << UniqAttributes[&intrinsic] << ", // "
551 << intrinsic.Name << "\n";
552 }
553 OS << " };\n\n";
554
555 OS << " AttributeList AS[" << maxArgAttrs + 1 << "];\n";
556 OS << " unsigned NumAttrs = 0;\n";
557 OS << " if (id != 0) {\n";
558 OS << " switch(IntrinsicsToAttributesMap[id - ";
559 if (TargetOnly)
560 OS << "Intrinsic::num_intrinsics";
561 else
562 OS << "1";
563 OS << "]) {\n";
564 OS << " default: llvm_unreachable(\"Invalid attribute number\");\n";
565 for (UniqAttrMapTy::const_iterator I = UniqAttributes.begin(),
566 E = UniqAttributes.end(); I != E; ++I) {
567 OS << " case " << I->second << ": {\n";
568
569 const CodeGenIntrinsic &intrinsic = *(I->first);
570
571 // Keep track of the number of attributes we're writing out.
572 unsigned numAttrs = 0;
573
574 // The argument attributes are alreadys sorted by argument index.
575 unsigned ai = 0, ae = intrinsic.ArgumentAttributes.size();
576 if (ae) {
577 while (ai != ae) {
578 unsigned argNo = intrinsic.ArgumentAttributes[ai].first;
579 unsigned attrIdx = argNo + 1; // Must match AttributeList::FirstArgIndex
580
581 OS << " const Attribute::AttrKind AttrParam" << attrIdx << "[]= {";
582 bool addComma = false;
583
584 do {
585 switch (intrinsic.ArgumentAttributes[ai].second) {
586 case CodeGenIntrinsic::NoCapture:
587 if (addComma)
588 OS << ",";
589 OS << "Attribute::NoCapture";
590 addComma = true;
591 break;
592 case CodeGenIntrinsic::Returned:
593 if (addComma)
594 OS << ",";
595 OS << "Attribute::Returned";
596 addComma = true;
597 break;
598 case CodeGenIntrinsic::ReadOnly:
599 if (addComma)
600 OS << ",";
601 OS << "Attribute::ReadOnly";
602 addComma = true;
603 break;
604 case CodeGenIntrinsic::WriteOnly:
605 if (addComma)
606 OS << ",";
607 OS << "Attribute::WriteOnly";
608 addComma = true;
609 break;
610 case CodeGenIntrinsic::ReadNone:
611 if (addComma)
612 OS << ",";
613 OS << "Attribute::ReadNone";
614 addComma = true;
615 break;
616 }
617
618 ++ai;
619 } while (ai != ae && intrinsic.ArgumentAttributes[ai].first == argNo);
620 OS << "};\n";
621 OS << " AS[" << numAttrs++ << "] = AttributeList::get(C, "
622 << attrIdx << ", AttrParam" << attrIdx << ");\n";
623 }
624 }
625
626 if (!intrinsic.canThrow ||
627 intrinsic.ModRef != CodeGenIntrinsic::ReadWriteMem ||
628 intrinsic.isNoReturn || intrinsic.isCold || intrinsic.isNoDuplicate ||
629 intrinsic.isConvergent || intrinsic.isSpeculatable) {
630 OS << " const Attribute::AttrKind Atts[] = {";
631 bool addComma = false;
632 if (!intrinsic.canThrow) {
633 OS << "Attribute::NoUnwind";
634 addComma = true;
635 }
636 if (intrinsic.isNoReturn) {
637 if (addComma)
638 OS << ",";
639 OS << "Attribute::NoReturn";
640 addComma = true;
641 }
642 if (intrinsic.isCold) {
643 if (addComma)
644 OS << ",";
645 OS << "Attribute::Cold";
646 addComma = true;
647 }
648 if (intrinsic.isNoDuplicate) {
649 if (addComma)
650 OS << ",";
651 OS << "Attribute::NoDuplicate";
652 addComma = true;
653 }
654 if (intrinsic.isConvergent) {
655 if (addComma)
656 OS << ",";
657 OS << "Attribute::Convergent";
658 addComma = true;
659 }
660 if (intrinsic.isSpeculatable) {
661 if (addComma)
662 OS << ",";
663 OS << "Attribute::Speculatable";
664 addComma = true;
665 }
666
667 switch (intrinsic.ModRef) {
668 case CodeGenIntrinsic::NoMem:
669 if (addComma)
670 OS << ",";
671 OS << "Attribute::ReadNone";
672 break;
673 case CodeGenIntrinsic::ReadArgMem:
674 if (addComma)
675 OS << ",";
676 OS << "Attribute::ReadOnly,";
677 OS << "Attribute::ArgMemOnly";
678 break;
679 case CodeGenIntrinsic::ReadMem:
680 if (addComma)
681 OS << ",";
682 OS << "Attribute::ReadOnly";
683 break;
684 case CodeGenIntrinsic::ReadInaccessibleMem:
685 if (addComma)
686 OS << ",";
687 OS << "Attribute::ReadOnly,";
688 OS << "Attribute::InaccessibleMemOnly";
689 break;
690 case CodeGenIntrinsic::ReadInaccessibleMemOrArgMem:
691 if (addComma)
692 OS << ",";
693 OS << "Attribute::ReadOnly,";
694 OS << "Attribute::InaccessibleMemOrArgMemOnly";
695 break;
696 case CodeGenIntrinsic::WriteArgMem:
697 if (addComma)
698 OS << ",";
699 OS << "Attribute::WriteOnly,";
700 OS << "Attribute::ArgMemOnly";
701 break;
702 case CodeGenIntrinsic::WriteMem:
703 if (addComma)
704 OS << ",";
705 OS << "Attribute::WriteOnly";
706 break;
707 case CodeGenIntrinsic::WriteInaccessibleMem:
708 if (addComma)
709 OS << ",";
710 OS << "Attribute::WriteOnly,";
711 OS << "Attribute::InaccessibleMemOnly";
712 break;
713 case CodeGenIntrinsic::WriteInaccessibleMemOrArgMem:
714 if (addComma)
715 OS << ",";
716 OS << "Attribute::WriteOnly,";
717 OS << "Attribute::InaccessibleMemOrArgMemOnly";
718 break;
719 case CodeGenIntrinsic::ReadWriteArgMem:
720 if (addComma)
721 OS << ",";
722 OS << "Attribute::ArgMemOnly";
723 break;
724 case CodeGenIntrinsic::ReadWriteInaccessibleMem:
725 if (addComma)
726 OS << ",";
727 OS << "Attribute::InaccessibleMemOnly";
728 break;
729 case CodeGenIntrinsic::ReadWriteInaccessibleMemOrArgMem:
730 if (addComma)
731 OS << ",";
732 OS << "Attribute::InaccessibleMemOrArgMemOnly";
733 break;
734 case CodeGenIntrinsic::ReadWriteMem:
735 break;
736 }
737 OS << "};\n";
738 OS << " AS[" << numAttrs++ << "] = AttributeList::get(C, "
739 << "AttributeList::FunctionIndex, Atts);\n";
740 }
741
742 if (numAttrs) {
743 OS << " NumAttrs = " << numAttrs << ";\n";
744 OS << " break;\n";
745 OS << " }\n";
746 } else {
747 OS << " return AttributeList();\n";
748 OS << " }\n";
749 }
750 }
751
752 OS << " }\n";
753 OS << " }\n";
754 OS << " return AttributeList::get(C, makeArrayRef(AS, NumAttrs));\n";
755 OS << "}\n";
756 OS << "#endif // GET_INTRINSIC_ATTRIBUTES\n\n";
757 }
758
EmitIntrinsicToBuiltinMap(const CodeGenIntrinsicTable & Ints,bool IsGCC,raw_ostream & OS)759 void IntrinsicEmitter::EmitIntrinsicToBuiltinMap(
760 const CodeGenIntrinsicTable &Ints, bool IsGCC, raw_ostream &OS) {
761 StringRef CompilerName = (IsGCC ? "GCC" : "MS");
762 typedef std::map<std::string, std::map<std::string, std::string>> BIMTy;
763 BIMTy BuiltinMap;
764 StringToOffsetTable Table;
765 for (unsigned i = 0, e = Ints.size(); i != e; ++i) {
766 const std::string &BuiltinName =
767 IsGCC ? Ints[i].GCCBuiltinName : Ints[i].MSBuiltinName;
768 if (!BuiltinName.empty()) {
769 // Get the map for this target prefix.
770 std::map<std::string, std::string> &BIM =
771 BuiltinMap[Ints[i].TargetPrefix];
772
773 if (!BIM.insert(std::make_pair(BuiltinName, Ints[i].EnumName)).second)
774 PrintFatalError("Intrinsic '" + Ints[i].TheDef->getName() +
775 "': duplicate " + CompilerName + " builtin name!");
776 Table.GetOrAddStringOffset(BuiltinName);
777 }
778 }
779
780 OS << "// Get the LLVM intrinsic that corresponds to a builtin.\n";
781 OS << "// This is used by the C front-end. The builtin name is passed\n";
782 OS << "// in as BuiltinName, and a target prefix (e.g. 'ppc') is passed\n";
783 OS << "// in as TargetPrefix. The result is assigned to 'IntrinsicID'.\n";
784 OS << "#ifdef GET_LLVM_INTRINSIC_FOR_" << CompilerName << "_BUILTIN\n";
785
786 if (TargetOnly) {
787 OS << "static " << TargetPrefix << "Intrinsic::ID "
788 << "getIntrinsicFor" << CompilerName << "Builtin(const char "
789 << "*TargetPrefixStr, StringRef BuiltinNameStr) {\n";
790 } else {
791 OS << "Intrinsic::ID Intrinsic::getIntrinsicFor" << CompilerName
792 << "Builtin(const char "
793 << "*TargetPrefixStr, StringRef BuiltinNameStr) {\n";
794 }
795
796 if (Table.Empty()) {
797 OS << " return ";
798 if (!TargetPrefix.empty())
799 OS << "(" << TargetPrefix << "Intrinsic::ID)";
800 OS << "Intrinsic::not_intrinsic;\n";
801 OS << "}\n";
802 OS << "#endif\n\n";
803 return;
804 }
805
806 OS << " static const char BuiltinNames[] = {\n";
807 Table.EmitCharArray(OS);
808 OS << " };\n\n";
809
810 OS << " struct BuiltinEntry {\n";
811 OS << " Intrinsic::ID IntrinID;\n";
812 OS << " unsigned StrTabOffset;\n";
813 OS << " const char *getName() const {\n";
814 OS << " return &BuiltinNames[StrTabOffset];\n";
815 OS << " }\n";
816 OS << " bool operator<(StringRef RHS) const {\n";
817 OS << " return strncmp(getName(), RHS.data(), RHS.size()) < 0;\n";
818 OS << " }\n";
819 OS << " };\n";
820
821 OS << " StringRef TargetPrefix(TargetPrefixStr);\n\n";
822
823 // Note: this could emit significantly better code if we cared.
824 for (BIMTy::iterator I = BuiltinMap.begin(), E = BuiltinMap.end();I != E;++I){
825 OS << " ";
826 if (!I->first.empty())
827 OS << "if (TargetPrefix == \"" << I->first << "\") ";
828 else
829 OS << "/* Target Independent Builtins */ ";
830 OS << "{\n";
831
832 // Emit the comparisons for this target prefix.
833 OS << " static const BuiltinEntry " << I->first << "Names[] = {\n";
834 for (const auto &P : I->second) {
835 OS << " {Intrinsic::" << P.second << ", "
836 << Table.GetOrAddStringOffset(P.first) << "}, // " << P.first << "\n";
837 }
838 OS << " };\n";
839 OS << " auto I = std::lower_bound(std::begin(" << I->first << "Names),\n";
840 OS << " std::end(" << I->first << "Names),\n";
841 OS << " BuiltinNameStr);\n";
842 OS << " if (I != std::end(" << I->first << "Names) &&\n";
843 OS << " I->getName() == BuiltinNameStr)\n";
844 OS << " return I->IntrinID;\n";
845 OS << " }\n";
846 }
847 OS << " return ";
848 if (!TargetPrefix.empty())
849 OS << "(" << TargetPrefix << "Intrinsic::ID)";
850 OS << "Intrinsic::not_intrinsic;\n";
851 OS << "}\n";
852 OS << "#endif\n\n";
853 }
854
EmitIntrinsicEnums(RecordKeeper & RK,raw_ostream & OS,bool TargetOnly)855 void llvm::EmitIntrinsicEnums(RecordKeeper &RK, raw_ostream &OS,
856 bool TargetOnly) {
857 IntrinsicEmitter(RK, TargetOnly).run(OS, /*Enums=*/true);
858 }
859
EmitIntrinsicImpl(RecordKeeper & RK,raw_ostream & OS,bool TargetOnly)860 void llvm::EmitIntrinsicImpl(RecordKeeper &RK, raw_ostream &OS,
861 bool TargetOnly) {
862 IntrinsicEmitter(RK, TargetOnly).run(OS, /*Enums=*/false);
863 }
864