1 ///===- FastISelEmitter.cpp - Generate an instruction selector -------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This tablegen backend emits code for use by the "fast" instruction
11 // selection algorithm. See the comments at the top of
12 // lib/CodeGen/SelectionDAG/FastISel.cpp for background.
13 //
14 // This file scans through the target's tablegen instruction-info files
15 // and extracts instructions with obvious-looking patterns, and it emits
16 // code to look up these instructions by type and operator.
17 //
18 //===----------------------------------------------------------------------===//
19
20 #include "CodeGenDAGPatterns.h"
21 #include "llvm/ADT/StringSwitch.h"
22 #include "llvm/Support/Debug.h"
23 #include "llvm/Support/ErrorHandling.h"
24 #include "llvm/TableGen/Error.h"
25 #include "llvm/TableGen/Record.h"
26 #include "llvm/TableGen/TableGenBackend.h"
27 #include <utility>
28 using namespace llvm;
29
30
31 /// InstructionMemo - This class holds additional information about an
32 /// instruction needed to emit code for it.
33 ///
34 namespace {
35 struct InstructionMemo {
36 std::string Name;
37 const CodeGenRegisterClass *RC;
38 std::string SubRegNo;
39 std::vector<std::string> PhysRegs;
40 std::string PredicateCheck;
41
InstructionMemo__anond0ef0c150111::InstructionMemo42 InstructionMemo(StringRef Name, const CodeGenRegisterClass *RC,
43 std::string SubRegNo, std::vector<std::string> PhysRegs,
44 std::string PredicateCheck)
45 : Name(Name), RC(RC), SubRegNo(std::move(SubRegNo)),
46 PhysRegs(std::move(PhysRegs)),
47 PredicateCheck(std::move(PredicateCheck)) {}
48
49 // Make sure we do not copy InstructionMemo.
50 InstructionMemo(const InstructionMemo &Other) = delete;
51 InstructionMemo(InstructionMemo &&Other) = default;
52 };
53 } // End anonymous namespace
54
55 /// ImmPredicateSet - This uniques predicates (represented as a string) and
56 /// gives them unique (small) integer ID's that start at 0.
57 namespace {
58 class ImmPredicateSet {
59 DenseMap<TreePattern *, unsigned> ImmIDs;
60 std::vector<TreePredicateFn> PredsByName;
61 public:
62
getIDFor(TreePredicateFn Pred)63 unsigned getIDFor(TreePredicateFn Pred) {
64 unsigned &Entry = ImmIDs[Pred.getOrigPatFragRecord()];
65 if (Entry == 0) {
66 PredsByName.push_back(Pred);
67 Entry = PredsByName.size();
68 }
69 return Entry-1;
70 }
71
getPredicate(unsigned i)72 const TreePredicateFn &getPredicate(unsigned i) {
73 assert(i < PredsByName.size());
74 return PredsByName[i];
75 }
76
77 typedef std::vector<TreePredicateFn>::const_iterator iterator;
begin() const78 iterator begin() const { return PredsByName.begin(); }
end() const79 iterator end() const { return PredsByName.end(); }
80
81 };
82 } // End anonymous namespace
83
84 /// OperandsSignature - This class holds a description of a list of operand
85 /// types. It has utility methods for emitting text based on the operands.
86 ///
87 namespace {
88 struct OperandsSignature {
89 class OpKind {
90 enum { OK_Reg, OK_FP, OK_Imm, OK_Invalid = -1 };
91 char Repr;
92 public:
93
OpKind()94 OpKind() : Repr(OK_Invalid) {}
95
operator <(OpKind RHS) const96 bool operator<(OpKind RHS) const { return Repr < RHS.Repr; }
operator ==(OpKind RHS) const97 bool operator==(OpKind RHS) const { return Repr == RHS.Repr; }
98
getReg()99 static OpKind getReg() { OpKind K; K.Repr = OK_Reg; return K; }
getFP()100 static OpKind getFP() { OpKind K; K.Repr = OK_FP; return K; }
getImm(unsigned V)101 static OpKind getImm(unsigned V) {
102 assert((unsigned)OK_Imm+V < 128 &&
103 "Too many integer predicates for the 'Repr' char");
104 OpKind K; K.Repr = OK_Imm+V; return K;
105 }
106
isReg() const107 bool isReg() const { return Repr == OK_Reg; }
isFP() const108 bool isFP() const { return Repr == OK_FP; }
isImm() const109 bool isImm() const { return Repr >= OK_Imm; }
110
getImmCode() const111 unsigned getImmCode() const { assert(isImm()); return Repr-OK_Imm; }
112
printManglingSuffix(raw_ostream & OS,ImmPredicateSet & ImmPredicates,bool StripImmCodes) const113 void printManglingSuffix(raw_ostream &OS, ImmPredicateSet &ImmPredicates,
114 bool StripImmCodes) const {
115 if (isReg())
116 OS << 'r';
117 else if (isFP())
118 OS << 'f';
119 else {
120 OS << 'i';
121 if (!StripImmCodes)
122 if (unsigned Code = getImmCode())
123 OS << "_" << ImmPredicates.getPredicate(Code-1).getFnName();
124 }
125 }
126 };
127
128
129 SmallVector<OpKind, 3> Operands;
130
operator <__anond0ef0c150311::OperandsSignature131 bool operator<(const OperandsSignature &O) const {
132 return Operands < O.Operands;
133 }
operator ==__anond0ef0c150311::OperandsSignature134 bool operator==(const OperandsSignature &O) const {
135 return Operands == O.Operands;
136 }
137
empty__anond0ef0c150311::OperandsSignature138 bool empty() const { return Operands.empty(); }
139
hasAnyImmediateCodes__anond0ef0c150311::OperandsSignature140 bool hasAnyImmediateCodes() const {
141 for (unsigned i = 0, e = Operands.size(); i != e; ++i)
142 if (Operands[i].isImm() && Operands[i].getImmCode() != 0)
143 return true;
144 return false;
145 }
146
147 /// getWithoutImmCodes - Return a copy of this with any immediate codes forced
148 /// to zero.
getWithoutImmCodes__anond0ef0c150311::OperandsSignature149 OperandsSignature getWithoutImmCodes() const {
150 OperandsSignature Result;
151 for (unsigned i = 0, e = Operands.size(); i != e; ++i)
152 if (!Operands[i].isImm())
153 Result.Operands.push_back(Operands[i]);
154 else
155 Result.Operands.push_back(OpKind::getImm(0));
156 return Result;
157 }
158
emitImmediatePredicate__anond0ef0c150311::OperandsSignature159 void emitImmediatePredicate(raw_ostream &OS, ImmPredicateSet &ImmPredicates) {
160 bool EmittedAnything = false;
161 for (unsigned i = 0, e = Operands.size(); i != e; ++i) {
162 if (!Operands[i].isImm()) continue;
163
164 unsigned Code = Operands[i].getImmCode();
165 if (Code == 0) continue;
166
167 if (EmittedAnything)
168 OS << " &&\n ";
169
170 TreePredicateFn PredFn = ImmPredicates.getPredicate(Code-1);
171
172 // Emit the type check.
173 TreePattern *TP = PredFn.getOrigPatFragRecord();
174 ValueTypeByHwMode VVT = TP->getTree(0)->getType(0);
175 assert(VVT.isSimple() &&
176 "Cannot use variable value types with fast isel");
177 OS << "VT == " << getEnumName(VVT.getSimple().SimpleTy) << " && ";
178
179 OS << PredFn.getFnName() << "(imm" << i <<')';
180 EmittedAnything = true;
181 }
182 }
183
184 /// initialize - Examine the given pattern and initialize the contents
185 /// of the Operands array accordingly. Return true if all the operands
186 /// are supported, false otherwise.
187 ///
initialize__anond0ef0c150311::OperandsSignature188 bool initialize(TreePatternNode *InstPatNode, const CodeGenTarget &Target,
189 MVT::SimpleValueType VT,
190 ImmPredicateSet &ImmediatePredicates,
191 const CodeGenRegisterClass *OrigDstRC) {
192 if (InstPatNode->isLeaf())
193 return false;
194
195 if (InstPatNode->getOperator()->getName() == "imm") {
196 Operands.push_back(OpKind::getImm(0));
197 return true;
198 }
199
200 if (InstPatNode->getOperator()->getName() == "fpimm") {
201 Operands.push_back(OpKind::getFP());
202 return true;
203 }
204
205 const CodeGenRegisterClass *DstRC = nullptr;
206
207 for (unsigned i = 0, e = InstPatNode->getNumChildren(); i != e; ++i) {
208 TreePatternNode *Op = InstPatNode->getChild(i);
209
210 // Handle imm operands specially.
211 if (!Op->isLeaf() && Op->getOperator()->getName() == "imm") {
212 unsigned PredNo = 0;
213 if (!Op->getPredicateCalls().empty()) {
214 TreePredicateFn PredFn = Op->getPredicateCalls()[0].Fn;
215 // If there is more than one predicate weighing in on this operand
216 // then we don't handle it. This doesn't typically happen for
217 // immediates anyway.
218 if (Op->getPredicateCalls().size() > 1 ||
219 !PredFn.isImmediatePattern() || PredFn.usesOperands())
220 return false;
221 // Ignore any instruction with 'FastIselShouldIgnore', these are
222 // not needed and just bloat the fast instruction selector. For
223 // example, X86 doesn't need to generate code to match ADD16ri8 since
224 // ADD16ri will do just fine.
225 Record *Rec = PredFn.getOrigPatFragRecord()->getRecord();
226 if (Rec->getValueAsBit("FastIselShouldIgnore"))
227 return false;
228
229 PredNo = ImmediatePredicates.getIDFor(PredFn)+1;
230 }
231
232 Operands.push_back(OpKind::getImm(PredNo));
233 continue;
234 }
235
236
237 // For now, filter out any operand with a predicate.
238 // For now, filter out any operand with multiple values.
239 if (!Op->getPredicateCalls().empty() || Op->getNumTypes() != 1)
240 return false;
241
242 if (!Op->isLeaf()) {
243 if (Op->getOperator()->getName() == "fpimm") {
244 Operands.push_back(OpKind::getFP());
245 continue;
246 }
247 // For now, ignore other non-leaf nodes.
248 return false;
249 }
250
251 assert(Op->hasConcreteType(0) && "Type infererence not done?");
252
253 // For now, all the operands must have the same type (if they aren't
254 // immediates). Note that this causes us to reject variable sized shifts
255 // on X86.
256 if (Op->getSimpleType(0) != VT)
257 return false;
258
259 DefInit *OpDI = dyn_cast<DefInit>(Op->getLeafValue());
260 if (!OpDI)
261 return false;
262 Record *OpLeafRec = OpDI->getDef();
263
264 // For now, the only other thing we accept is register operands.
265 const CodeGenRegisterClass *RC = nullptr;
266 if (OpLeafRec->isSubClassOf("RegisterOperand"))
267 OpLeafRec = OpLeafRec->getValueAsDef("RegClass");
268 if (OpLeafRec->isSubClassOf("RegisterClass"))
269 RC = &Target.getRegisterClass(OpLeafRec);
270 else if (OpLeafRec->isSubClassOf("Register"))
271 RC = Target.getRegBank().getRegClassForRegister(OpLeafRec);
272 else if (OpLeafRec->isSubClassOf("ValueType")) {
273 RC = OrigDstRC;
274 } else
275 return false;
276
277 // For now, this needs to be a register class of some sort.
278 if (!RC)
279 return false;
280
281 // For now, all the operands must have the same register class or be
282 // a strict subclass of the destination.
283 if (DstRC) {
284 if (DstRC != RC && !DstRC->hasSubClass(RC))
285 return false;
286 } else
287 DstRC = RC;
288 Operands.push_back(OpKind::getReg());
289 }
290 return true;
291 }
292
PrintParameters__anond0ef0c150311::OperandsSignature293 void PrintParameters(raw_ostream &OS) const {
294 for (unsigned i = 0, e = Operands.size(); i != e; ++i) {
295 if (Operands[i].isReg()) {
296 OS << "unsigned Op" << i << ", bool Op" << i << "IsKill";
297 } else if (Operands[i].isImm()) {
298 OS << "uint64_t imm" << i;
299 } else if (Operands[i].isFP()) {
300 OS << "const ConstantFP *f" << i;
301 } else {
302 llvm_unreachable("Unknown operand kind!");
303 }
304 if (i + 1 != e)
305 OS << ", ";
306 }
307 }
308
PrintArguments__anond0ef0c150311::OperandsSignature309 void PrintArguments(raw_ostream &OS,
310 const std::vector<std::string> &PR) const {
311 assert(PR.size() == Operands.size());
312 bool PrintedArg = false;
313 for (unsigned i = 0, e = Operands.size(); i != e; ++i) {
314 if (PR[i] != "")
315 // Implicit physical register operand.
316 continue;
317
318 if (PrintedArg)
319 OS << ", ";
320 if (Operands[i].isReg()) {
321 OS << "Op" << i << ", Op" << i << "IsKill";
322 PrintedArg = true;
323 } else if (Operands[i].isImm()) {
324 OS << "imm" << i;
325 PrintedArg = true;
326 } else if (Operands[i].isFP()) {
327 OS << "f" << i;
328 PrintedArg = true;
329 } else {
330 llvm_unreachable("Unknown operand kind!");
331 }
332 }
333 }
334
PrintArguments__anond0ef0c150311::OperandsSignature335 void PrintArguments(raw_ostream &OS) const {
336 for (unsigned i = 0, e = Operands.size(); i != e; ++i) {
337 if (Operands[i].isReg()) {
338 OS << "Op" << i << ", Op" << i << "IsKill";
339 } else if (Operands[i].isImm()) {
340 OS << "imm" << i;
341 } else if (Operands[i].isFP()) {
342 OS << "f" << i;
343 } else {
344 llvm_unreachable("Unknown operand kind!");
345 }
346 if (i + 1 != e)
347 OS << ", ";
348 }
349 }
350
351
PrintManglingSuffix__anond0ef0c150311::OperandsSignature352 void PrintManglingSuffix(raw_ostream &OS, const std::vector<std::string> &PR,
353 ImmPredicateSet &ImmPredicates,
354 bool StripImmCodes = false) const {
355 for (unsigned i = 0, e = Operands.size(); i != e; ++i) {
356 if (PR[i] != "")
357 // Implicit physical register operand. e.g. Instruction::Mul expect to
358 // select to a binary op. On x86, mul may take a single operand with
359 // the other operand being implicit. We must emit something that looks
360 // like a binary instruction except for the very inner fastEmitInst_*
361 // call.
362 continue;
363 Operands[i].printManglingSuffix(OS, ImmPredicates, StripImmCodes);
364 }
365 }
366
PrintManglingSuffix__anond0ef0c150311::OperandsSignature367 void PrintManglingSuffix(raw_ostream &OS, ImmPredicateSet &ImmPredicates,
368 bool StripImmCodes = false) const {
369 for (unsigned i = 0, e = Operands.size(); i != e; ++i)
370 Operands[i].printManglingSuffix(OS, ImmPredicates, StripImmCodes);
371 }
372 };
373 } // End anonymous namespace
374
375 namespace {
376 class FastISelMap {
377 // A multimap is needed instead of a "plain" map because the key is
378 // the instruction's complexity (an int) and they are not unique.
379 typedef std::multimap<int, InstructionMemo> PredMap;
380 typedef std::map<MVT::SimpleValueType, PredMap> RetPredMap;
381 typedef std::map<MVT::SimpleValueType, RetPredMap> TypeRetPredMap;
382 typedef std::map<std::string, TypeRetPredMap> OpcodeTypeRetPredMap;
383 typedef std::map<OperandsSignature, OpcodeTypeRetPredMap>
384 OperandsOpcodeTypeRetPredMap;
385
386 OperandsOpcodeTypeRetPredMap SimplePatterns;
387
388 // This is used to check that there are no duplicate predicates
389 typedef std::multimap<std::string, bool> PredCheckMap;
390 typedef std::map<MVT::SimpleValueType, PredCheckMap> RetPredCheckMap;
391 typedef std::map<MVT::SimpleValueType, RetPredCheckMap> TypeRetPredCheckMap;
392 typedef std::map<std::string, TypeRetPredCheckMap> OpcodeTypeRetPredCheckMap;
393 typedef std::map<OperandsSignature, OpcodeTypeRetPredCheckMap>
394 OperandsOpcodeTypeRetPredCheckMap;
395
396 OperandsOpcodeTypeRetPredCheckMap SimplePatternsCheck;
397
398 std::map<OperandsSignature, std::vector<OperandsSignature> >
399 SignaturesWithConstantForms;
400
401 StringRef InstNS;
402 ImmPredicateSet ImmediatePredicates;
403 public:
404 explicit FastISelMap(StringRef InstNS);
405
406 void collectPatterns(CodeGenDAGPatterns &CGP);
407 void printImmediatePredicates(raw_ostream &OS);
408 void printFunctionDefinitions(raw_ostream &OS);
409 private:
410 void emitInstructionCode(raw_ostream &OS,
411 const OperandsSignature &Operands,
412 const PredMap &PM,
413 const std::string &RetVTName);
414 };
415 } // End anonymous namespace
416
getOpcodeName(Record * Op,CodeGenDAGPatterns & CGP)417 static std::string getOpcodeName(Record *Op, CodeGenDAGPatterns &CGP) {
418 return CGP.getSDNodeInfo(Op).getEnumName();
419 }
420
getLegalCName(std::string OpName)421 static std::string getLegalCName(std::string OpName) {
422 std::string::size_type pos = OpName.find("::");
423 if (pos != std::string::npos)
424 OpName.replace(pos, 2, "_");
425 return OpName;
426 }
427
FastISelMap(StringRef instns)428 FastISelMap::FastISelMap(StringRef instns) : InstNS(instns) {}
429
PhyRegForNode(TreePatternNode * Op,const CodeGenTarget & Target)430 static std::string PhyRegForNode(TreePatternNode *Op,
431 const CodeGenTarget &Target) {
432 std::string PhysReg;
433
434 if (!Op->isLeaf())
435 return PhysReg;
436
437 Record *OpLeafRec = cast<DefInit>(Op->getLeafValue())->getDef();
438 if (!OpLeafRec->isSubClassOf("Register"))
439 return PhysReg;
440
441 PhysReg += cast<StringInit>(OpLeafRec->getValue("Namespace")->getValue())
442 ->getValue();
443 PhysReg += "::";
444 PhysReg += Target.getRegBank().getReg(OpLeafRec)->getName();
445 return PhysReg;
446 }
447
collectPatterns(CodeGenDAGPatterns & CGP)448 void FastISelMap::collectPatterns(CodeGenDAGPatterns &CGP) {
449 const CodeGenTarget &Target = CGP.getTargetInfo();
450
451 // Scan through all the patterns and record the simple ones.
452 for (CodeGenDAGPatterns::ptm_iterator I = CGP.ptm_begin(),
453 E = CGP.ptm_end(); I != E; ++I) {
454 const PatternToMatch &Pattern = *I;
455
456 // For now, just look at Instructions, so that we don't have to worry
457 // about emitting multiple instructions for a pattern.
458 TreePatternNode *Dst = Pattern.getDstPattern();
459 if (Dst->isLeaf()) continue;
460 Record *Op = Dst->getOperator();
461 if (!Op->isSubClassOf("Instruction"))
462 continue;
463 CodeGenInstruction &II = CGP.getTargetInfo().getInstruction(Op);
464 if (II.Operands.empty())
465 continue;
466
467 // Allow instructions to be marked as unavailable for FastISel for
468 // certain cases, i.e. an ISA has two 'and' instruction which differ
469 // by what registers they can use but are otherwise identical for
470 // codegen purposes.
471 if (II.FastISelShouldIgnore)
472 continue;
473
474 // For now, ignore multi-instruction patterns.
475 bool MultiInsts = false;
476 for (unsigned i = 0, e = Dst->getNumChildren(); i != e; ++i) {
477 TreePatternNode *ChildOp = Dst->getChild(i);
478 if (ChildOp->isLeaf())
479 continue;
480 if (ChildOp->getOperator()->isSubClassOf("Instruction")) {
481 MultiInsts = true;
482 break;
483 }
484 }
485 if (MultiInsts)
486 continue;
487
488 // For now, ignore instructions where the first operand is not an
489 // output register.
490 const CodeGenRegisterClass *DstRC = nullptr;
491 std::string SubRegNo;
492 if (Op->getName() != "EXTRACT_SUBREG") {
493 Record *Op0Rec = II.Operands[0].Rec;
494 if (Op0Rec->isSubClassOf("RegisterOperand"))
495 Op0Rec = Op0Rec->getValueAsDef("RegClass");
496 if (!Op0Rec->isSubClassOf("RegisterClass"))
497 continue;
498 DstRC = &Target.getRegisterClass(Op0Rec);
499 if (!DstRC)
500 continue;
501 } else {
502 // If this isn't a leaf, then continue since the register classes are
503 // a bit too complicated for now.
504 if (!Dst->getChild(1)->isLeaf()) continue;
505
506 DefInit *SR = dyn_cast<DefInit>(Dst->getChild(1)->getLeafValue());
507 if (SR)
508 SubRegNo = getQualifiedName(SR->getDef());
509 else
510 SubRegNo = Dst->getChild(1)->getLeafValue()->getAsString();
511 }
512
513 // Inspect the pattern.
514 TreePatternNode *InstPatNode = Pattern.getSrcPattern();
515 if (!InstPatNode) continue;
516 if (InstPatNode->isLeaf()) continue;
517
518 // Ignore multiple result nodes for now.
519 if (InstPatNode->getNumTypes() > 1) continue;
520
521 Record *InstPatOp = InstPatNode->getOperator();
522 std::string OpcodeName = getOpcodeName(InstPatOp, CGP);
523 MVT::SimpleValueType RetVT = MVT::isVoid;
524 if (InstPatNode->getNumTypes()) RetVT = InstPatNode->getSimpleType(0);
525 MVT::SimpleValueType VT = RetVT;
526 if (InstPatNode->getNumChildren()) {
527 assert(InstPatNode->getChild(0)->getNumTypes() == 1);
528 VT = InstPatNode->getChild(0)->getSimpleType(0);
529 }
530
531 // For now, filter out any instructions with predicates.
532 if (!InstPatNode->getPredicateCalls().empty())
533 continue;
534
535 // Check all the operands.
536 OperandsSignature Operands;
537 if (!Operands.initialize(InstPatNode, Target, VT, ImmediatePredicates,
538 DstRC))
539 continue;
540
541 std::vector<std::string> PhysRegInputs;
542 if (InstPatNode->getOperator()->getName() == "imm" ||
543 InstPatNode->getOperator()->getName() == "fpimm")
544 PhysRegInputs.push_back("");
545 else {
546 // Compute the PhysRegs used by the given pattern, and check that
547 // the mapping from the src to dst patterns is simple.
548 bool FoundNonSimplePattern = false;
549 unsigned DstIndex = 0;
550 for (unsigned i = 0, e = InstPatNode->getNumChildren(); i != e; ++i) {
551 std::string PhysReg = PhyRegForNode(InstPatNode->getChild(i), Target);
552 if (PhysReg.empty()) {
553 if (DstIndex >= Dst->getNumChildren() ||
554 Dst->getChild(DstIndex)->getName() !=
555 InstPatNode->getChild(i)->getName()) {
556 FoundNonSimplePattern = true;
557 break;
558 }
559 ++DstIndex;
560 }
561
562 PhysRegInputs.push_back(PhysReg);
563 }
564
565 if (Op->getName() != "EXTRACT_SUBREG" && DstIndex < Dst->getNumChildren())
566 FoundNonSimplePattern = true;
567
568 if (FoundNonSimplePattern)
569 continue;
570 }
571
572 // Check if the operands match one of the patterns handled by FastISel.
573 std::string ManglingSuffix;
574 raw_string_ostream SuffixOS(ManglingSuffix);
575 Operands.PrintManglingSuffix(SuffixOS, ImmediatePredicates, true);
576 SuffixOS.flush();
577 if (!StringSwitch<bool>(ManglingSuffix)
578 .Cases("", "r", "rr", "ri", "i", "f", true)
579 .Default(false))
580 continue;
581
582 // Get the predicate that guards this pattern.
583 std::string PredicateCheck = Pattern.getPredicateCheck();
584
585 // Ok, we found a pattern that we can handle. Remember it.
586 InstructionMemo Memo(
587 Pattern.getDstPattern()->getOperator()->getName(),
588 DstRC,
589 SubRegNo,
590 PhysRegInputs,
591 PredicateCheck
592 );
593
594 int complexity = Pattern.getPatternComplexity(CGP);
595
596 if (SimplePatternsCheck[Operands][OpcodeName][VT]
597 [RetVT].count(PredicateCheck)) {
598 PrintFatalError(Pattern.getSrcRecord()->getLoc(),
599 "Duplicate predicate in FastISel table!");
600 }
601 SimplePatternsCheck[Operands][OpcodeName][VT][RetVT].insert(
602 std::make_pair(PredicateCheck, true));
603
604 // Note: Instructions with the same complexity will appear in the order
605 // that they are encountered.
606 SimplePatterns[Operands][OpcodeName][VT][RetVT].emplace(complexity,
607 std::move(Memo));
608
609 // If any of the operands were immediates with predicates on them, strip
610 // them down to a signature that doesn't have predicates so that we can
611 // associate them with the stripped predicate version.
612 if (Operands.hasAnyImmediateCodes()) {
613 SignaturesWithConstantForms[Operands.getWithoutImmCodes()]
614 .push_back(Operands);
615 }
616 }
617 }
618
printImmediatePredicates(raw_ostream & OS)619 void FastISelMap::printImmediatePredicates(raw_ostream &OS) {
620 if (ImmediatePredicates.begin() == ImmediatePredicates.end())
621 return;
622
623 OS << "\n// FastEmit Immediate Predicate functions.\n";
624 for (ImmPredicateSet::iterator I = ImmediatePredicates.begin(),
625 E = ImmediatePredicates.end(); I != E; ++I) {
626 OS << "static bool " << I->getFnName() << "(int64_t Imm) {\n";
627 OS << I->getImmediatePredicateCode() << "\n}\n";
628 }
629
630 OS << "\n\n";
631 }
632
emitInstructionCode(raw_ostream & OS,const OperandsSignature & Operands,const PredMap & PM,const std::string & RetVTName)633 void FastISelMap::emitInstructionCode(raw_ostream &OS,
634 const OperandsSignature &Operands,
635 const PredMap &PM,
636 const std::string &RetVTName) {
637 // Emit code for each possible instruction. There may be
638 // multiple if there are subtarget concerns. A reverse iterator
639 // is used to produce the ones with highest complexity first.
640
641 bool OneHadNoPredicate = false;
642 for (PredMap::const_reverse_iterator PI = PM.rbegin(), PE = PM.rend();
643 PI != PE; ++PI) {
644 const InstructionMemo &Memo = PI->second;
645 std::string PredicateCheck = Memo.PredicateCheck;
646
647 if (PredicateCheck.empty()) {
648 assert(!OneHadNoPredicate &&
649 "Multiple instructions match and more than one had "
650 "no predicate!");
651 OneHadNoPredicate = true;
652 } else {
653 if (OneHadNoPredicate) {
654 PrintFatalError("Multiple instructions match and one with no "
655 "predicate came before one with a predicate! "
656 "name:" + Memo.Name + " predicate: " + PredicateCheck);
657 }
658 OS << " if (" + PredicateCheck + ") {\n";
659 OS << " ";
660 }
661
662 for (unsigned i = 0; i < Memo.PhysRegs.size(); ++i) {
663 if (Memo.PhysRegs[i] != "")
664 OS << " BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, "
665 << "TII.get(TargetOpcode::COPY), " << Memo.PhysRegs[i]
666 << ").addReg(Op" << i << ");\n";
667 }
668
669 OS << " return fastEmitInst_";
670 if (Memo.SubRegNo.empty()) {
671 Operands.PrintManglingSuffix(OS, Memo.PhysRegs, ImmediatePredicates,
672 true);
673 OS << "(" << InstNS << "::" << Memo.Name << ", ";
674 OS << "&" << InstNS << "::" << Memo.RC->getName() << "RegClass";
675 if (!Operands.empty())
676 OS << ", ";
677 Operands.PrintArguments(OS, Memo.PhysRegs);
678 OS << ");\n";
679 } else {
680 OS << "extractsubreg(" << RetVTName
681 << ", Op0, Op0IsKill, " << Memo.SubRegNo << ");\n";
682 }
683
684 if (!PredicateCheck.empty()) {
685 OS << " }\n";
686 }
687 }
688 // Return 0 if all of the possibilities had predicates but none
689 // were satisfied.
690 if (!OneHadNoPredicate)
691 OS << " return 0;\n";
692 OS << "}\n";
693 OS << "\n";
694 }
695
696
printFunctionDefinitions(raw_ostream & OS)697 void FastISelMap::printFunctionDefinitions(raw_ostream &OS) {
698 // Now emit code for all the patterns that we collected.
699 for (OperandsOpcodeTypeRetPredMap::const_iterator OI = SimplePatterns.begin(),
700 OE = SimplePatterns.end(); OI != OE; ++OI) {
701 const OperandsSignature &Operands = OI->first;
702 const OpcodeTypeRetPredMap &OTM = OI->second;
703
704 for (OpcodeTypeRetPredMap::const_iterator I = OTM.begin(), E = OTM.end();
705 I != E; ++I) {
706 const std::string &Opcode = I->first;
707 const TypeRetPredMap &TM = I->second;
708
709 OS << "// FastEmit functions for " << Opcode << ".\n";
710 OS << "\n";
711
712 // Emit one function for each opcode,type pair.
713 for (TypeRetPredMap::const_iterator TI = TM.begin(), TE = TM.end();
714 TI != TE; ++TI) {
715 MVT::SimpleValueType VT = TI->first;
716 const RetPredMap &RM = TI->second;
717 if (RM.size() != 1) {
718 for (RetPredMap::const_iterator RI = RM.begin(), RE = RM.end();
719 RI != RE; ++RI) {
720 MVT::SimpleValueType RetVT = RI->first;
721 const PredMap &PM = RI->second;
722
723 OS << "unsigned fastEmit_"
724 << getLegalCName(Opcode)
725 << "_" << getLegalCName(getName(VT))
726 << "_" << getLegalCName(getName(RetVT)) << "_";
727 Operands.PrintManglingSuffix(OS, ImmediatePredicates);
728 OS << "(";
729 Operands.PrintParameters(OS);
730 OS << ") {\n";
731
732 emitInstructionCode(OS, Operands, PM, getName(RetVT));
733 }
734
735 // Emit one function for the type that demultiplexes on return type.
736 OS << "unsigned fastEmit_"
737 << getLegalCName(Opcode) << "_"
738 << getLegalCName(getName(VT)) << "_";
739 Operands.PrintManglingSuffix(OS, ImmediatePredicates);
740 OS << "(MVT RetVT";
741 if (!Operands.empty())
742 OS << ", ";
743 Operands.PrintParameters(OS);
744 OS << ") {\nswitch (RetVT.SimpleTy) {\n";
745 for (RetPredMap::const_iterator RI = RM.begin(), RE = RM.end();
746 RI != RE; ++RI) {
747 MVT::SimpleValueType RetVT = RI->first;
748 OS << " case " << getName(RetVT) << ": return fastEmit_"
749 << getLegalCName(Opcode) << "_" << getLegalCName(getName(VT))
750 << "_" << getLegalCName(getName(RetVT)) << "_";
751 Operands.PrintManglingSuffix(OS, ImmediatePredicates);
752 OS << "(";
753 Operands.PrintArguments(OS);
754 OS << ");\n";
755 }
756 OS << " default: return 0;\n}\n}\n\n";
757
758 } else {
759 // Non-variadic return type.
760 OS << "unsigned fastEmit_"
761 << getLegalCName(Opcode) << "_"
762 << getLegalCName(getName(VT)) << "_";
763 Operands.PrintManglingSuffix(OS, ImmediatePredicates);
764 OS << "(MVT RetVT";
765 if (!Operands.empty())
766 OS << ", ";
767 Operands.PrintParameters(OS);
768 OS << ") {\n";
769
770 OS << " if (RetVT.SimpleTy != " << getName(RM.begin()->first)
771 << ")\n return 0;\n";
772
773 const PredMap &PM = RM.begin()->second;
774
775 emitInstructionCode(OS, Operands, PM, "RetVT");
776 }
777 }
778
779 // Emit one function for the opcode that demultiplexes based on the type.
780 OS << "unsigned fastEmit_"
781 << getLegalCName(Opcode) << "_";
782 Operands.PrintManglingSuffix(OS, ImmediatePredicates);
783 OS << "(MVT VT, MVT RetVT";
784 if (!Operands.empty())
785 OS << ", ";
786 Operands.PrintParameters(OS);
787 OS << ") {\n";
788 OS << " switch (VT.SimpleTy) {\n";
789 for (TypeRetPredMap::const_iterator TI = TM.begin(), TE = TM.end();
790 TI != TE; ++TI) {
791 MVT::SimpleValueType VT = TI->first;
792 std::string TypeName = getName(VT);
793 OS << " case " << TypeName << ": return fastEmit_"
794 << getLegalCName(Opcode) << "_" << getLegalCName(TypeName) << "_";
795 Operands.PrintManglingSuffix(OS, ImmediatePredicates);
796 OS << "(RetVT";
797 if (!Operands.empty())
798 OS << ", ";
799 Operands.PrintArguments(OS);
800 OS << ");\n";
801 }
802 OS << " default: return 0;\n";
803 OS << " }\n";
804 OS << "}\n";
805 OS << "\n";
806 }
807
808 OS << "// Top-level FastEmit function.\n";
809 OS << "\n";
810
811 // Emit one function for the operand signature that demultiplexes based
812 // on opcode and type.
813 OS << "unsigned fastEmit_";
814 Operands.PrintManglingSuffix(OS, ImmediatePredicates);
815 OS << "(MVT VT, MVT RetVT, unsigned Opcode";
816 if (!Operands.empty())
817 OS << ", ";
818 Operands.PrintParameters(OS);
819 OS << ") ";
820 if (!Operands.hasAnyImmediateCodes())
821 OS << "override ";
822 OS << "{\n";
823
824 // If there are any forms of this signature available that operate on
825 // constrained forms of the immediate (e.g., 32-bit sext immediate in a
826 // 64-bit operand), check them first.
827
828 std::map<OperandsSignature, std::vector<OperandsSignature> >::iterator MI
829 = SignaturesWithConstantForms.find(Operands);
830 if (MI != SignaturesWithConstantForms.end()) {
831 // Unique any duplicates out of the list.
832 llvm::sort(MI->second);
833 MI->second.erase(std::unique(MI->second.begin(), MI->second.end()),
834 MI->second.end());
835
836 // Check each in order it was seen. It would be nice to have a good
837 // relative ordering between them, but we're not going for optimality
838 // here.
839 for (unsigned i = 0, e = MI->second.size(); i != e; ++i) {
840 OS << " if (";
841 MI->second[i].emitImmediatePredicate(OS, ImmediatePredicates);
842 OS << ")\n if (unsigned Reg = fastEmit_";
843 MI->second[i].PrintManglingSuffix(OS, ImmediatePredicates);
844 OS << "(VT, RetVT, Opcode";
845 if (!MI->second[i].empty())
846 OS << ", ";
847 MI->second[i].PrintArguments(OS);
848 OS << "))\n return Reg;\n\n";
849 }
850
851 // Done with this, remove it.
852 SignaturesWithConstantForms.erase(MI);
853 }
854
855 OS << " switch (Opcode) {\n";
856 for (OpcodeTypeRetPredMap::const_iterator I = OTM.begin(), E = OTM.end();
857 I != E; ++I) {
858 const std::string &Opcode = I->first;
859
860 OS << " case " << Opcode << ": return fastEmit_"
861 << getLegalCName(Opcode) << "_";
862 Operands.PrintManglingSuffix(OS, ImmediatePredicates);
863 OS << "(VT, RetVT";
864 if (!Operands.empty())
865 OS << ", ";
866 Operands.PrintArguments(OS);
867 OS << ");\n";
868 }
869 OS << " default: return 0;\n";
870 OS << " }\n";
871 OS << "}\n";
872 OS << "\n";
873 }
874
875 // TODO: SignaturesWithConstantForms should be empty here.
876 }
877
878 namespace llvm {
879
EmitFastISel(RecordKeeper & RK,raw_ostream & OS)880 void EmitFastISel(RecordKeeper &RK, raw_ostream &OS) {
881 CodeGenDAGPatterns CGP(RK);
882 const CodeGenTarget &Target = CGP.getTargetInfo();
883 emitSourceFileHeader("\"Fast\" Instruction Selector for the " +
884 Target.getName().str() + " target", OS);
885
886 // Determine the target's namespace name.
887 StringRef InstNS = Target.getInstNamespace();
888 assert(!InstNS.empty() && "Can't determine target-specific namespace!");
889
890 FastISelMap F(InstNS);
891 F.collectPatterns(CGP);
892 F.printImmediatePredicates(OS);
893 F.printFunctionDefinitions(OS);
894 }
895
896 } // End llvm namespace
897