1 //===-- ClangExpressionParser.cpp -------------------------------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include <cctype> 11 #include "clang/AST/ASTContext.h" 12 #include "clang/AST/ASTDiagnostic.h" 13 #include "clang/AST/ExternalASTSource.h" 14 #include "clang/AST/PrettyPrinter.h" 15 #include "clang/Basic/DiagnosticIDs.h" 16 #include "clang/Basic/FileManager.h" 17 #include "clang/Basic/SourceLocation.h" 18 #include "clang/Basic/TargetInfo.h" 19 #include "clang/Basic/Version.h" 20 #include "clang/CodeGen/CodeGenAction.h" 21 #include "clang/CodeGen/ModuleBuilder.h" 22 #include "clang/Edit/Commit.h" 23 #include "clang/Edit/EditedSource.h" 24 #include "clang/Edit/EditsReceiver.h" 25 #include "clang/Frontend/CompilerInstance.h" 26 #include "clang/Frontend/CompilerInvocation.h" 27 #include "clang/Frontend/FrontendActions.h" 28 #include "clang/Frontend/FrontendDiagnostic.h" 29 #include "clang/Frontend/FrontendPluginRegistry.h" 30 #include "clang/Frontend/TextDiagnosticBuffer.h" 31 #include "clang/Frontend/TextDiagnosticPrinter.h" 32 #include "clang/Lex/Preprocessor.h" 33 #include "clang/Parse/ParseAST.h" 34 #include "clang/Rewrite/Core/Rewriter.h" 35 #include "clang/Rewrite/Frontend/FrontendActions.h" 36 #include "clang/Sema/CodeCompleteConsumer.h" 37 #include "clang/Sema/Sema.h" 38 #include "clang/Sema/SemaConsumer.h" 39 40 #include "llvm/ADT/StringRef.h" 41 #include "llvm/ExecutionEngine/ExecutionEngine.h" 42 #include "llvm/Support/Debug.h" 43 #include "llvm/Support/FileSystem.h" 44 #include "llvm/Support/TargetSelect.h" 45 46 #pragma clang diagnostic push 47 #pragma clang diagnostic ignored "-Wglobal-constructors" 48 #include "llvm/ExecutionEngine/MCJIT.h" 49 #pragma clang diagnostic pop 50 51 #include "llvm/IR/LLVMContext.h" 52 #include "llvm/IR/Module.h" 53 #include "llvm/Support/DynamicLibrary.h" 54 #include "llvm/Support/ErrorHandling.h" 55 #include "llvm/Support/Host.h" 56 #include "llvm/Support/MemoryBuffer.h" 57 #include "llvm/Support/Signals.h" 58 59 #include "ClangDiagnostic.h" 60 #include "ClangExpressionParser.h" 61 62 #include "ClangASTSource.h" 63 #include "ClangExpressionDeclMap.h" 64 #include "ClangExpressionHelper.h" 65 #include "ClangModulesDeclVendor.h" 66 #include "ClangPersistentVariables.h" 67 #include "IRForTarget.h" 68 69 #include "lldb/Core/Debugger.h" 70 #include "lldb/Core/Disassembler.h" 71 #include "lldb/Core/Module.h" 72 #include "lldb/Core/StreamFile.h" 73 #include "lldb/Expression/IRDynamicChecks.h" 74 #include "lldb/Expression/IRExecutionUnit.h" 75 #include "lldb/Expression/IRInterpreter.h" 76 #include "lldb/Host/File.h" 77 #include "lldb/Host/HostInfo.h" 78 #include "lldb/Symbol/ClangASTContext.h" 79 #include "lldb/Symbol/SymbolVendor.h" 80 #include "lldb/Target/ExecutionContext.h" 81 #include "lldb/Target/Language.h" 82 #include "lldb/Target/ObjCLanguageRuntime.h" 83 #include "lldb/Target/Process.h" 84 #include "lldb/Target/Target.h" 85 #include "lldb/Target/ThreadPlanCallFunction.h" 86 #include "lldb/Utility/DataBufferHeap.h" 87 #include "lldb/Utility/LLDBAssert.h" 88 #include "lldb/Utility/Log.h" 89 #include "lldb/Utility/Stream.h" 90 #include "lldb/Utility/StreamString.h" 91 #include "lldb/Utility/StringList.h" 92 93 using namespace clang; 94 using namespace llvm; 95 using namespace lldb_private; 96 97 //===----------------------------------------------------------------------===// 98 // Utility Methods for Clang 99 //===----------------------------------------------------------------------===// 100 101 class ClangExpressionParser::LLDBPreprocessorCallbacks : public PPCallbacks { 102 ClangModulesDeclVendor &m_decl_vendor; 103 ClangPersistentVariables &m_persistent_vars; 104 StreamString m_error_stream; 105 bool m_has_errors = false; 106 107 public: 108 LLDBPreprocessorCallbacks(ClangModulesDeclVendor &decl_vendor, 109 ClangPersistentVariables &persistent_vars) 110 : m_decl_vendor(decl_vendor), m_persistent_vars(persistent_vars) {} 111 112 void moduleImport(SourceLocation import_location, clang::ModuleIdPath path, 113 const clang::Module * /*null*/) override { 114 std::vector<ConstString> string_path; 115 116 for (const std::pair<IdentifierInfo *, SourceLocation> &component : path) { 117 string_path.push_back(ConstString(component.first->getName())); 118 } 119 120 StreamString error_stream; 121 122 ClangModulesDeclVendor::ModuleVector exported_modules; 123 124 if (!m_decl_vendor.AddModule(string_path, &exported_modules, 125 m_error_stream)) { 126 m_has_errors = true; 127 } 128 129 for (ClangModulesDeclVendor::ModuleID module : exported_modules) { 130 m_persistent_vars.AddHandLoadedClangModule(module); 131 } 132 } 133 134 bool hasErrors() { return m_has_errors; } 135 136 llvm::StringRef getErrorString() { return m_error_stream.GetString(); } 137 }; 138 139 class ClangDiagnosticManagerAdapter : public clang::DiagnosticConsumer { 140 public: 141 ClangDiagnosticManagerAdapter() 142 : m_passthrough(new clang::TextDiagnosticBuffer) {} 143 144 ClangDiagnosticManagerAdapter( 145 const std::shared_ptr<clang::TextDiagnosticBuffer> &passthrough) 146 : m_passthrough(passthrough) {} 147 148 void ResetManager(DiagnosticManager *manager = nullptr) { 149 m_manager = manager; 150 } 151 152 void HandleDiagnostic(DiagnosticsEngine::Level DiagLevel, 153 const clang::Diagnostic &Info) { 154 if (m_manager) { 155 llvm::SmallVector<char, 32> diag_str; 156 Info.FormatDiagnostic(diag_str); 157 diag_str.push_back('\0'); 158 const char *data = diag_str.data(); 159 160 lldb_private::DiagnosticSeverity severity; 161 bool make_new_diagnostic = true; 162 163 switch (DiagLevel) { 164 case DiagnosticsEngine::Level::Fatal: 165 case DiagnosticsEngine::Level::Error: 166 severity = eDiagnosticSeverityError; 167 break; 168 case DiagnosticsEngine::Level::Warning: 169 severity = eDiagnosticSeverityWarning; 170 break; 171 case DiagnosticsEngine::Level::Remark: 172 case DiagnosticsEngine::Level::Ignored: 173 severity = eDiagnosticSeverityRemark; 174 break; 175 case DiagnosticsEngine::Level::Note: 176 m_manager->AppendMessageToDiagnostic(data); 177 make_new_diagnostic = false; 178 } 179 if (make_new_diagnostic) { 180 ClangDiagnostic *new_diagnostic = 181 new ClangDiagnostic(data, severity, Info.getID()); 182 m_manager->AddDiagnostic(new_diagnostic); 183 184 // Don't store away warning fixits, since the compiler doesn't have 185 // enough context in an expression for the warning to be useful. 186 // FIXME: Should we try to filter out FixIts that apply to our generated 187 // code, and not the user's expression? 188 if (severity == eDiagnosticSeverityError) { 189 size_t num_fixit_hints = Info.getNumFixItHints(); 190 for (size_t i = 0; i < num_fixit_hints; i++) { 191 const clang::FixItHint &fixit = Info.getFixItHint(i); 192 if (!fixit.isNull()) 193 new_diagnostic->AddFixitHint(fixit); 194 } 195 } 196 } 197 } 198 199 m_passthrough->HandleDiagnostic(DiagLevel, Info); 200 } 201 202 void FlushDiagnostics(DiagnosticsEngine &Diags) { 203 m_passthrough->FlushDiagnostics(Diags); 204 } 205 206 DiagnosticConsumer *clone(DiagnosticsEngine &Diags) const { 207 return new ClangDiagnosticManagerAdapter(m_passthrough); 208 } 209 210 clang::TextDiagnosticBuffer *GetPassthrough() { return m_passthrough.get(); } 211 212 private: 213 DiagnosticManager *m_manager = nullptr; 214 std::shared_ptr<clang::TextDiagnosticBuffer> m_passthrough; 215 }; 216 217 //===----------------------------------------------------------------------===// 218 // Implementation of ClangExpressionParser 219 //===----------------------------------------------------------------------===// 220 221 ClangExpressionParser::ClangExpressionParser(ExecutionContextScope *exe_scope, 222 Expression &expr, 223 bool generate_debug_info) 224 : ExpressionParser(exe_scope, expr, generate_debug_info), m_compiler(), 225 m_pp_callbacks(nullptr) { 226 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_EXPRESSIONS)); 227 228 // We can't compile expressions without a target. So if the exe_scope is 229 // null or doesn't have a target, then we just need to get out of here. I'll 230 // lldb_assert and not make any of the compiler objects since 231 // I can't return errors directly from the constructor. Further calls will 232 // check if the compiler was made and 233 // bag out if it wasn't. 234 235 if (!exe_scope) { 236 lldb_assert(exe_scope, "Can't make an expression parser with a null scope.", 237 __FUNCTION__, __FILE__, __LINE__); 238 return; 239 } 240 241 lldb::TargetSP target_sp; 242 target_sp = exe_scope->CalculateTarget(); 243 if (!target_sp) { 244 lldb_assert(target_sp.get(), 245 "Can't make an expression parser with a null target.", 246 __FUNCTION__, __FILE__, __LINE__); 247 return; 248 } 249 250 // 1. Create a new compiler instance. 251 m_compiler.reset(new CompilerInstance()); 252 lldb::LanguageType frame_lang = 253 expr.Language(); // defaults to lldb::eLanguageTypeUnknown 254 bool overridden_target_opts = false; 255 lldb_private::LanguageRuntime *lang_rt = nullptr; 256 257 std::string abi; 258 ArchSpec target_arch; 259 target_arch = target_sp->GetArchitecture(); 260 261 const auto target_machine = target_arch.GetMachine(); 262 263 // If the expression is being evaluated in the context of an existing stack 264 // frame, we introspect to see if the language runtime is available. 265 266 lldb::StackFrameSP frame_sp = exe_scope->CalculateStackFrame(); 267 lldb::ProcessSP process_sp = exe_scope->CalculateProcess(); 268 269 // Make sure the user hasn't provided a preferred execution language with 270 // `expression --language X -- ...` 271 if (frame_sp && frame_lang == lldb::eLanguageTypeUnknown) 272 frame_lang = frame_sp->GetLanguage(); 273 274 if (process_sp && frame_lang != lldb::eLanguageTypeUnknown) { 275 lang_rt = process_sp->GetLanguageRuntime(frame_lang); 276 if (log) 277 log->Printf("Frame has language of type %s", 278 Language::GetNameForLanguageType(frame_lang)); 279 } 280 281 // 2. Configure the compiler with a set of default options that are 282 // appropriate for most situations. 283 if (target_arch.IsValid()) { 284 std::string triple = target_arch.GetTriple().str(); 285 m_compiler->getTargetOpts().Triple = triple; 286 if (log) 287 log->Printf("Using %s as the target triple", 288 m_compiler->getTargetOpts().Triple.c_str()); 289 } else { 290 // If we get here we don't have a valid target and just have to guess. 291 // Sometimes this will be ok to just use the host target triple (when we 292 // evaluate say "2+3", but other expressions like breakpoint conditions and 293 // other things that _are_ target specific really shouldn't just be using 294 // the host triple. In such a case the language runtime should expose an 295 // overridden options set (3), below. 296 m_compiler->getTargetOpts().Triple = llvm::sys::getDefaultTargetTriple(); 297 if (log) 298 log->Printf("Using default target triple of %s", 299 m_compiler->getTargetOpts().Triple.c_str()); 300 } 301 // Now add some special fixes for known architectures: Any arm32 iOS 302 // environment, but not on arm64 303 if (m_compiler->getTargetOpts().Triple.find("arm64") == std::string::npos && 304 m_compiler->getTargetOpts().Triple.find("arm") != std::string::npos && 305 m_compiler->getTargetOpts().Triple.find("ios") != std::string::npos) { 306 m_compiler->getTargetOpts().ABI = "apcs-gnu"; 307 } 308 // Supported subsets of x86 309 if (target_machine == llvm::Triple::x86 || 310 target_machine == llvm::Triple::x86_64) { 311 m_compiler->getTargetOpts().Features.push_back("+sse"); 312 m_compiler->getTargetOpts().Features.push_back("+sse2"); 313 } 314 315 // Set the target CPU to generate code for. This will be empty for any CPU 316 // that doesn't really need to make a special 317 // CPU string. 318 m_compiler->getTargetOpts().CPU = target_arch.GetClangTargetCPU(); 319 320 // Set the target ABI 321 abi = GetClangTargetABI(target_arch); 322 if (!abi.empty()) 323 m_compiler->getTargetOpts().ABI = abi; 324 325 // 3. Now allow the runtime to provide custom configuration options for the 326 // target. In this case, a specialized language runtime is available and we 327 // can query it for extra options. For 99% of use cases, this will not be 328 // needed and should be provided when basic platform detection is not enough. 329 if (lang_rt) 330 overridden_target_opts = 331 lang_rt->GetOverrideExprOptions(m_compiler->getTargetOpts()); 332 333 if (overridden_target_opts) 334 if (log && log->GetVerbose()) { 335 LLDB_LOGV( 336 log, "Using overridden target options for the expression evaluation"); 337 338 auto opts = m_compiler->getTargetOpts(); 339 LLDB_LOGV(log, "Triple: '{0}'", opts.Triple); 340 LLDB_LOGV(log, "CPU: '{0}'", opts.CPU); 341 LLDB_LOGV(log, "FPMath: '{0}'", opts.FPMath); 342 LLDB_LOGV(log, "ABI: '{0}'", opts.ABI); 343 LLDB_LOGV(log, "LinkerVersion: '{0}'", opts.LinkerVersion); 344 StringList::LogDump(log, opts.FeaturesAsWritten, "FeaturesAsWritten"); 345 StringList::LogDump(log, opts.Features, "Features"); 346 } 347 348 // 4. Create and install the target on the compiler. 349 m_compiler->createDiagnostics(); 350 auto target_info = TargetInfo::CreateTargetInfo( 351 m_compiler->getDiagnostics(), m_compiler->getInvocation().TargetOpts); 352 if (log) { 353 log->Printf("Using SIMD alignment: %d", target_info->getSimdDefaultAlign()); 354 log->Printf("Target datalayout string: '%s'", 355 target_info->getDataLayout().getStringRepresentation().c_str()); 356 log->Printf("Target ABI: '%s'", target_info->getABI().str().c_str()); 357 log->Printf("Target vector alignment: %d", 358 target_info->getMaxVectorAlign()); 359 } 360 m_compiler->setTarget(target_info); 361 362 assert(m_compiler->hasTarget()); 363 364 // 5. Set language options. 365 lldb::LanguageType language = expr.Language(); 366 367 switch (language) { 368 case lldb::eLanguageTypeC: 369 case lldb::eLanguageTypeC89: 370 case lldb::eLanguageTypeC99: 371 case lldb::eLanguageTypeC11: 372 // FIXME: the following language option is a temporary workaround, 373 // to "ask for C, get C++." 374 // For now, the expression parser must use C++ anytime the language is a C 375 // family language, because the expression parser uses features of C++ to 376 // capture values. 377 m_compiler->getLangOpts().CPlusPlus = true; 378 break; 379 case lldb::eLanguageTypeObjC: 380 m_compiler->getLangOpts().ObjC = true; 381 // FIXME: the following language option is a temporary workaround, 382 // to "ask for ObjC, get ObjC++" (see comment above). 383 m_compiler->getLangOpts().CPlusPlus = true; 384 385 // Clang now sets as default C++14 as the default standard (with 386 // GNU extensions), so we do the same here to avoid mismatches that 387 // cause compiler error when evaluating expressions (e.g. nullptr not found 388 // as it's a C++11 feature). Currently lldb evaluates C++14 as C++11 (see 389 // two lines below) so we decide to be consistent with that, but this could 390 // be re-evaluated in the future. 391 m_compiler->getLangOpts().CPlusPlus11 = true; 392 break; 393 case lldb::eLanguageTypeC_plus_plus: 394 case lldb::eLanguageTypeC_plus_plus_11: 395 case lldb::eLanguageTypeC_plus_plus_14: 396 m_compiler->getLangOpts().CPlusPlus11 = true; 397 m_compiler->getHeaderSearchOpts().UseLibcxx = true; 398 LLVM_FALLTHROUGH; 399 case lldb::eLanguageTypeC_plus_plus_03: 400 m_compiler->getLangOpts().CPlusPlus = true; 401 if (process_sp) 402 m_compiler->getLangOpts().ObjC = 403 process_sp->GetLanguageRuntime(lldb::eLanguageTypeObjC) != nullptr; 404 break; 405 case lldb::eLanguageTypeObjC_plus_plus: 406 case lldb::eLanguageTypeUnknown: 407 default: 408 m_compiler->getLangOpts().ObjC = true; 409 m_compiler->getLangOpts().CPlusPlus = true; 410 m_compiler->getLangOpts().CPlusPlus11 = true; 411 m_compiler->getHeaderSearchOpts().UseLibcxx = true; 412 break; 413 } 414 415 m_compiler->getLangOpts().Bool = true; 416 m_compiler->getLangOpts().WChar = true; 417 m_compiler->getLangOpts().Blocks = true; 418 m_compiler->getLangOpts().DebuggerSupport = 419 true; // Features specifically for debugger clients 420 if (expr.DesiredResultType() == Expression::eResultTypeId) 421 m_compiler->getLangOpts().DebuggerCastResultToId = true; 422 423 m_compiler->getLangOpts().CharIsSigned = 424 ArchSpec(m_compiler->getTargetOpts().Triple.c_str()) 425 .CharIsSignedByDefault(); 426 427 // Spell checking is a nice feature, but it ends up completing a lot of types 428 // that we didn't strictly speaking need to complete. As a result, we spend a 429 // long time parsing and importing debug information. 430 m_compiler->getLangOpts().SpellChecking = false; 431 432 if (process_sp && m_compiler->getLangOpts().ObjC) { 433 if (process_sp->GetObjCLanguageRuntime()) { 434 if (process_sp->GetObjCLanguageRuntime()->GetRuntimeVersion() == 435 ObjCLanguageRuntime::ObjCRuntimeVersions::eAppleObjC_V2) 436 m_compiler->getLangOpts().ObjCRuntime.set(ObjCRuntime::MacOSX, 437 VersionTuple(10, 7)); 438 else 439 m_compiler->getLangOpts().ObjCRuntime.set(ObjCRuntime::FragileMacOSX, 440 VersionTuple(10, 7)); 441 442 if (process_sp->GetObjCLanguageRuntime()->HasNewLiteralsAndIndexing()) 443 m_compiler->getLangOpts().DebuggerObjCLiteral = true; 444 } 445 } 446 447 m_compiler->getLangOpts().ThreadsafeStatics = false; 448 m_compiler->getLangOpts().AccessControl = 449 false; // Debuggers get universal access 450 m_compiler->getLangOpts().DollarIdents = 451 true; // $ indicates a persistent variable name 452 // We enable all builtin functions beside the builtins from libc/libm (e.g. 453 // 'fopen'). Those libc functions are already correctly handled by LLDB, and 454 // additionally enabling them as expandable builtins is breaking Clang. 455 m_compiler->getLangOpts().NoBuiltin = true; 456 457 // Set CodeGen options 458 m_compiler->getCodeGenOpts().EmitDeclMetadata = true; 459 m_compiler->getCodeGenOpts().InstrumentFunctions = false; 460 m_compiler->getCodeGenOpts().DisableFPElim = true; 461 m_compiler->getCodeGenOpts().OmitLeafFramePointer = false; 462 if (generate_debug_info) 463 m_compiler->getCodeGenOpts().setDebugInfo(codegenoptions::FullDebugInfo); 464 else 465 m_compiler->getCodeGenOpts().setDebugInfo(codegenoptions::NoDebugInfo); 466 467 // Disable some warnings. 468 m_compiler->getDiagnostics().setSeverityForGroup( 469 clang::diag::Flavor::WarningOrError, "unused-value", 470 clang::diag::Severity::Ignored, SourceLocation()); 471 m_compiler->getDiagnostics().setSeverityForGroup( 472 clang::diag::Flavor::WarningOrError, "odr", 473 clang::diag::Severity::Ignored, SourceLocation()); 474 475 // Inform the target of the language options 476 // 477 // FIXME: We shouldn't need to do this, the target should be immutable once 478 // created. This complexity should be lifted elsewhere. 479 m_compiler->getTarget().adjust(m_compiler->getLangOpts()); 480 481 // 6. Set up the diagnostic buffer for reporting errors 482 483 m_compiler->getDiagnostics().setClient(new ClangDiagnosticManagerAdapter); 484 485 // 7. Set up the source management objects inside the compiler 486 487 clang::FileSystemOptions file_system_options; 488 m_file_manager.reset(new clang::FileManager(file_system_options)); 489 490 if (!m_compiler->hasSourceManager()) 491 m_compiler->createSourceManager(*m_file_manager.get()); 492 493 m_compiler->createFileManager(); 494 m_compiler->createPreprocessor(TU_Complete); 495 496 if (ClangModulesDeclVendor *decl_vendor = 497 target_sp->GetClangModulesDeclVendor()) { 498 ClangPersistentVariables *clang_persistent_vars = 499 llvm::cast<ClangPersistentVariables>( 500 target_sp->GetPersistentExpressionStateForLanguage( 501 lldb::eLanguageTypeC)); 502 std::unique_ptr<PPCallbacks> pp_callbacks( 503 new LLDBPreprocessorCallbacks(*decl_vendor, *clang_persistent_vars)); 504 m_pp_callbacks = 505 static_cast<LLDBPreprocessorCallbacks *>(pp_callbacks.get()); 506 m_compiler->getPreprocessor().addPPCallbacks(std::move(pp_callbacks)); 507 } 508 509 // 8. Most of this we get from the CompilerInstance, but we also want to give 510 // the context an ExternalASTSource. 511 512 auto &PP = m_compiler->getPreprocessor(); 513 auto &builtin_context = PP.getBuiltinInfo(); 514 builtin_context.initializeBuiltins(PP.getIdentifierTable(), 515 m_compiler->getLangOpts()); 516 517 m_compiler->createASTContext(); 518 clang::ASTContext &ast_context = m_compiler->getASTContext(); 519 520 ClangExpressionHelper *type_system_helper = 521 dyn_cast<ClangExpressionHelper>(m_expr.GetTypeSystemHelper()); 522 ClangExpressionDeclMap *decl_map = type_system_helper->DeclMap(); 523 524 if (decl_map) { 525 llvm::IntrusiveRefCntPtr<clang::ExternalASTSource> ast_source( 526 decl_map->CreateProxy()); 527 decl_map->InstallASTContext(ast_context, m_compiler->getFileManager()); 528 ast_context.setExternalSource(ast_source); 529 } 530 531 m_ast_context.reset( 532 new ClangASTContext(m_compiler->getTargetOpts().Triple.c_str())); 533 m_ast_context->setASTContext(&ast_context); 534 535 std::string module_name("$__lldb_module"); 536 537 m_llvm_context.reset(new LLVMContext()); 538 m_code_generator.reset(CreateLLVMCodeGen( 539 m_compiler->getDiagnostics(), module_name, 540 m_compiler->getHeaderSearchOpts(), m_compiler->getPreprocessorOpts(), 541 m_compiler->getCodeGenOpts(), *m_llvm_context)); 542 } 543 544 ClangExpressionParser::~ClangExpressionParser() {} 545 546 namespace { 547 548 //---------------------------------------------------------------------- 549 /// @class CodeComplete 550 /// 551 /// A code completion consumer for the clang Sema that is responsible for 552 /// creating the completion suggestions when a user requests completion 553 /// of an incomplete `expr` invocation. 554 //---------------------------------------------------------------------- 555 class CodeComplete : public CodeCompleteConsumer { 556 CodeCompletionTUInfo m_info; 557 558 std::string m_expr; 559 unsigned m_position = 0; 560 CompletionRequest &m_request; 561 /// The printing policy we use when printing declarations for our completion 562 /// descriptions. 563 clang::PrintingPolicy m_desc_policy; 564 565 /// Returns true if the given character can be used in an identifier. 566 /// This also returns true for numbers because for completion we usually 567 /// just iterate backwards over iterators. 568 /// 569 /// Note: lldb uses '$' in its internal identifiers, so we also allow this. 570 static bool IsIdChar(char c) { 571 return c == '_' || std::isalnum(c) || c == '$'; 572 } 573 574 /// Returns true if the given character is used to separate arguments 575 /// in the command line of lldb. 576 static bool IsTokenSeparator(char c) { return c == ' ' || c == '\t'; } 577 578 /// Drops all tokens in front of the expression that are unrelated for 579 /// the completion of the cmd line. 'unrelated' means here that the token 580 /// is not interested for the lldb completion API result. 581 StringRef dropUnrelatedFrontTokens(StringRef cmd) { 582 if (cmd.empty()) 583 return cmd; 584 585 // If we are at the start of a word, then all tokens are unrelated to 586 // the current completion logic. 587 if (IsTokenSeparator(cmd.back())) 588 return StringRef(); 589 590 // Remove all previous tokens from the string as they are unrelated 591 // to completing the current token. 592 StringRef to_remove = cmd; 593 while (!to_remove.empty() && !IsTokenSeparator(to_remove.back())) { 594 to_remove = to_remove.drop_back(); 595 } 596 cmd = cmd.drop_front(to_remove.size()); 597 598 return cmd; 599 } 600 601 /// Removes the last identifier token from the given cmd line. 602 StringRef removeLastToken(StringRef cmd) { 603 while (!cmd.empty() && IsIdChar(cmd.back())) { 604 cmd = cmd.drop_back(); 605 } 606 return cmd; 607 } 608 609 /// Attemps to merge the given completion from the given position into the 610 /// existing command. Returns the completion string that can be returned to 611 /// the lldb completion API. 612 std::string mergeCompletion(StringRef existing, unsigned pos, 613 StringRef completion) { 614 StringRef existing_command = existing.substr(0, pos); 615 // We rewrite the last token with the completion, so let's drop that 616 // token from the command. 617 existing_command = removeLastToken(existing_command); 618 // We also should remove all previous tokens from the command as they 619 // would otherwise be added to the completion that already has the 620 // completion. 621 existing_command = dropUnrelatedFrontTokens(existing_command); 622 return existing_command.str() + completion.str(); 623 } 624 625 public: 626 /// Constructs a CodeComplete consumer that can be attached to a Sema. 627 /// @param[out] matches 628 /// The list of matches that the lldb completion API expects as a result. 629 /// This may already contain matches, so it's only allowed to append 630 /// to this variable. 631 /// @param[out] expr 632 /// The whole expression string that we are currently parsing. This 633 /// string needs to be equal to the input the user typed, and NOT the 634 /// final code that Clang is parsing. 635 /// @param[out] position 636 /// The character position of the user cursor in the `expr` parameter. 637 /// 638 CodeComplete(CompletionRequest &request, clang::LangOptions ops, 639 std::string expr, unsigned position) 640 : CodeCompleteConsumer(CodeCompleteOptions(), false), 641 m_info(std::make_shared<GlobalCodeCompletionAllocator>()), m_expr(expr), 642 m_position(position), m_request(request), m_desc_policy(ops) { 643 644 // Ensure that the printing policy is producing a description that is as 645 // short as possible. 646 m_desc_policy.SuppressScope = true; 647 m_desc_policy.SuppressTagKeyword = true; 648 m_desc_policy.FullyQualifiedName = false; 649 m_desc_policy.TerseOutput = true; 650 m_desc_policy.IncludeNewlines = false; 651 m_desc_policy.UseVoidForZeroParams = false; 652 m_desc_policy.Bool = true; 653 } 654 655 /// Deregisters and destroys this code-completion consumer. 656 virtual ~CodeComplete() {} 657 658 /// \name Code-completion filtering 659 /// Check if the result should be filtered out. 660 bool isResultFilteredOut(StringRef Filter, 661 CodeCompletionResult Result) override { 662 // This code is mostly copied from CodeCompleteConsumer. 663 switch (Result.Kind) { 664 case CodeCompletionResult::RK_Declaration: 665 return !( 666 Result.Declaration->getIdentifier() && 667 Result.Declaration->getIdentifier()->getName().startswith(Filter)); 668 case CodeCompletionResult::RK_Keyword: 669 return !StringRef(Result.Keyword).startswith(Filter); 670 case CodeCompletionResult::RK_Macro: 671 return !Result.Macro->getName().startswith(Filter); 672 case CodeCompletionResult::RK_Pattern: 673 return !StringRef(Result.Pattern->getAsString()).startswith(Filter); 674 } 675 // If we trigger this assert or the above switch yields a warning, then 676 // CodeCompletionResult has been enhanced with more kinds of completion 677 // results. Expand the switch above in this case. 678 assert(false && "Unknown completion result type?"); 679 // If we reach this, then we should just ignore whatever kind of unknown 680 // result we got back. We probably can't turn it into any kind of useful 681 // completion suggestion with the existing code. 682 return true; 683 } 684 685 /// \name Code-completion callbacks 686 /// Process the finalized code-completion results. 687 void ProcessCodeCompleteResults(Sema &SemaRef, CodeCompletionContext Context, 688 CodeCompletionResult *Results, 689 unsigned NumResults) override { 690 691 // The Sema put the incomplete token we try to complete in here during 692 // lexing, so we need to retrieve it here to know what we are completing. 693 StringRef Filter = SemaRef.getPreprocessor().getCodeCompletionFilter(); 694 695 // Iterate over all the results. Filter out results we don't want and 696 // process the rest. 697 for (unsigned I = 0; I != NumResults; ++I) { 698 // Filter the results with the information from the Sema. 699 if (!Filter.empty() && isResultFilteredOut(Filter, Results[I])) 700 continue; 701 702 CodeCompletionResult &R = Results[I]; 703 std::string ToInsert; 704 std::string Description; 705 // Handle the different completion kinds that come from the Sema. 706 switch (R.Kind) { 707 case CodeCompletionResult::RK_Declaration: { 708 const NamedDecl *D = R.Declaration; 709 ToInsert = R.Declaration->getNameAsString(); 710 // If we have a function decl that has no arguments we want to 711 // complete the empty parantheses for the user. If the function has 712 // arguments, we at least complete the opening bracket. 713 if (const FunctionDecl *F = dyn_cast<FunctionDecl>(D)) { 714 if (F->getNumParams() == 0) 715 ToInsert += "()"; 716 else 717 ToInsert += "("; 718 raw_string_ostream OS(Description); 719 F->print(OS, m_desc_policy, false); 720 OS.flush(); 721 } else if (const VarDecl *V = dyn_cast<VarDecl>(D)) { 722 Description = V->getType().getAsString(m_desc_policy); 723 } else if (const FieldDecl *F = dyn_cast<FieldDecl>(D)) { 724 Description = F->getType().getAsString(m_desc_policy); 725 } else if (const NamespaceDecl *N = dyn_cast<NamespaceDecl>(D)) { 726 // If we try to complete a namespace, then we can directly append 727 // the '::'. 728 if (!N->isAnonymousNamespace()) 729 ToInsert += "::"; 730 } 731 break; 732 } 733 case CodeCompletionResult::RK_Keyword: 734 ToInsert = R.Keyword; 735 break; 736 case CodeCompletionResult::RK_Macro: 737 ToInsert = R.Macro->getName().str(); 738 break; 739 case CodeCompletionResult::RK_Pattern: 740 ToInsert = R.Pattern->getTypedText(); 741 break; 742 } 743 // At this point all information is in the ToInsert string. 744 745 // We also filter some internal lldb identifiers here. The user 746 // shouldn't see these. 747 if (StringRef(ToInsert).startswith("$__lldb_")) 748 continue; 749 if (!ToInsert.empty()) { 750 // Merge the suggested Token into the existing command line to comply 751 // with the kind of result the lldb API expects. 752 std::string CompletionSuggestion = 753 mergeCompletion(m_expr, m_position, ToInsert); 754 m_request.AddCompletion(CompletionSuggestion, Description); 755 } 756 } 757 } 758 759 /// \param S the semantic-analyzer object for which code-completion is being 760 /// done. 761 /// 762 /// \param CurrentArg the index of the current argument. 763 /// 764 /// \param Candidates an array of overload candidates. 765 /// 766 /// \param NumCandidates the number of overload candidates 767 void ProcessOverloadCandidates(Sema &S, unsigned CurrentArg, 768 OverloadCandidate *Candidates, 769 unsigned NumCandidates, 770 SourceLocation OpenParLoc) override { 771 // At the moment we don't filter out any overloaded candidates. 772 } 773 774 CodeCompletionAllocator &getAllocator() override { 775 return m_info.getAllocator(); 776 } 777 778 CodeCompletionTUInfo &getCodeCompletionTUInfo() override { return m_info; } 779 }; 780 } // namespace 781 782 bool ClangExpressionParser::Complete(CompletionRequest &request, unsigned line, 783 unsigned pos, unsigned typed_pos) { 784 DiagnosticManager mgr; 785 // We need the raw user expression here because that's what the CodeComplete 786 // class uses to provide completion suggestions. 787 // However, the `Text` method only gives us the transformed expression here. 788 // To actually get the raw user input here, we have to cast our expression to 789 // the LLVMUserExpression which exposes the right API. This should never fail 790 // as we always have a ClangUserExpression whenever we call this. 791 LLVMUserExpression &llvm_expr = *static_cast<LLVMUserExpression *>(&m_expr); 792 CodeComplete CC(request, m_compiler->getLangOpts(), llvm_expr.GetUserText(), 793 typed_pos); 794 // We don't need a code generator for parsing. 795 m_code_generator.reset(); 796 // Start parsing the expression with our custom code completion consumer. 797 ParseInternal(mgr, &CC, line, pos); 798 return true; 799 } 800 801 unsigned ClangExpressionParser::Parse(DiagnosticManager &diagnostic_manager) { 802 return ParseInternal(diagnostic_manager); 803 } 804 805 unsigned 806 ClangExpressionParser::ParseInternal(DiagnosticManager &diagnostic_manager, 807 CodeCompleteConsumer *completion_consumer, 808 unsigned completion_line, 809 unsigned completion_column) { 810 ClangDiagnosticManagerAdapter *adapter = 811 static_cast<ClangDiagnosticManagerAdapter *>( 812 m_compiler->getDiagnostics().getClient()); 813 clang::TextDiagnosticBuffer *diag_buf = adapter->GetPassthrough(); 814 diag_buf->FlushDiagnostics(m_compiler->getDiagnostics()); 815 816 adapter->ResetManager(&diagnostic_manager); 817 818 const char *expr_text = m_expr.Text(); 819 820 clang::SourceManager &source_mgr = m_compiler->getSourceManager(); 821 bool created_main_file = false; 822 823 // Clang wants to do completion on a real file known by Clang's file manager, 824 // so we have to create one to make this work. 825 // TODO: We probably could also simulate to Clang's file manager that there 826 // is a real file that contains our code. 827 bool should_create_file = completion_consumer != nullptr; 828 829 // We also want a real file on disk if we generate full debug info. 830 should_create_file |= m_compiler->getCodeGenOpts().getDebugInfo() == 831 codegenoptions::FullDebugInfo; 832 833 if (should_create_file) { 834 int temp_fd = -1; 835 llvm::SmallString<128> result_path; 836 if (FileSpec tmpdir_file_spec = HostInfo::GetProcessTempDir()) { 837 tmpdir_file_spec.AppendPathComponent("lldb-%%%%%%.expr"); 838 std::string temp_source_path = tmpdir_file_spec.GetPath(); 839 llvm::sys::fs::createUniqueFile(temp_source_path, temp_fd, result_path); 840 } else { 841 llvm::sys::fs::createTemporaryFile("lldb", "expr", temp_fd, result_path); 842 } 843 844 if (temp_fd != -1) { 845 lldb_private::File file(temp_fd, true); 846 const size_t expr_text_len = strlen(expr_text); 847 size_t bytes_written = expr_text_len; 848 if (file.Write(expr_text, bytes_written).Success()) { 849 if (bytes_written == expr_text_len) { 850 file.Close(); 851 source_mgr.setMainFileID( 852 source_mgr.createFileID(m_file_manager->getFile(result_path), 853 SourceLocation(), SrcMgr::C_User)); 854 created_main_file = true; 855 } 856 } 857 } 858 } 859 860 if (!created_main_file) { 861 std::unique_ptr<MemoryBuffer> memory_buffer = 862 MemoryBuffer::getMemBufferCopy(expr_text, __FUNCTION__); 863 source_mgr.setMainFileID(source_mgr.createFileID(std::move(memory_buffer))); 864 } 865 866 diag_buf->BeginSourceFile(m_compiler->getLangOpts(), 867 &m_compiler->getPreprocessor()); 868 869 ClangExpressionHelper *type_system_helper = 870 dyn_cast<ClangExpressionHelper>(m_expr.GetTypeSystemHelper()); 871 872 ASTConsumer *ast_transformer = 873 type_system_helper->ASTTransformer(m_code_generator.get()); 874 875 if (ClangExpressionDeclMap *decl_map = type_system_helper->DeclMap()) 876 decl_map->InstallCodeGenerator(m_code_generator.get()); 877 878 // If we want to parse for code completion, we need to attach our code 879 // completion consumer to the Sema and specify a completion position. 880 // While parsing the Sema will call this consumer with the provided 881 // completion suggestions. 882 if (completion_consumer) { 883 auto main_file = source_mgr.getFileEntryForID(source_mgr.getMainFileID()); 884 auto &PP = m_compiler->getPreprocessor(); 885 // Lines and columns start at 1 in Clang, but code completion positions are 886 // indexed from 0, so we need to add 1 to the line and column here. 887 ++completion_line; 888 ++completion_column; 889 PP.SetCodeCompletionPoint(main_file, completion_line, completion_column); 890 } 891 892 if (ast_transformer) { 893 ast_transformer->Initialize(m_compiler->getASTContext()); 894 ParseAST(m_compiler->getPreprocessor(), ast_transformer, 895 m_compiler->getASTContext(), false, TU_Complete, 896 completion_consumer); 897 } else { 898 m_code_generator->Initialize(m_compiler->getASTContext()); 899 ParseAST(m_compiler->getPreprocessor(), m_code_generator.get(), 900 m_compiler->getASTContext(), false, TU_Complete, 901 completion_consumer); 902 } 903 904 diag_buf->EndSourceFile(); 905 906 unsigned num_errors = diag_buf->getNumErrors(); 907 908 if (m_pp_callbacks && m_pp_callbacks->hasErrors()) { 909 num_errors++; 910 diagnostic_manager.PutString(eDiagnosticSeverityError, 911 "while importing modules:"); 912 diagnostic_manager.AppendMessageToDiagnostic( 913 m_pp_callbacks->getErrorString()); 914 } 915 916 if (!num_errors) { 917 if (type_system_helper->DeclMap() && 918 !type_system_helper->DeclMap()->ResolveUnknownTypes()) { 919 diagnostic_manager.Printf(eDiagnosticSeverityError, 920 "Couldn't infer the type of a variable"); 921 num_errors++; 922 } 923 } 924 925 if (!num_errors) { 926 type_system_helper->CommitPersistentDecls(); 927 } 928 929 adapter->ResetManager(); 930 931 return num_errors; 932 } 933 934 std::string 935 ClangExpressionParser::GetClangTargetABI(const ArchSpec &target_arch) { 936 std::string abi; 937 938 if (target_arch.IsMIPS()) { 939 switch (target_arch.GetFlags() & ArchSpec::eMIPSABI_mask) { 940 case ArchSpec::eMIPSABI_N64: 941 abi = "n64"; 942 break; 943 case ArchSpec::eMIPSABI_N32: 944 abi = "n32"; 945 break; 946 case ArchSpec::eMIPSABI_O32: 947 abi = "o32"; 948 break; 949 default: 950 break; 951 } 952 } 953 return abi; 954 } 955 956 bool ClangExpressionParser::RewriteExpression( 957 DiagnosticManager &diagnostic_manager) { 958 clang::SourceManager &source_manager = m_compiler->getSourceManager(); 959 clang::edit::EditedSource editor(source_manager, m_compiler->getLangOpts(), 960 nullptr); 961 clang::edit::Commit commit(editor); 962 clang::Rewriter rewriter(source_manager, m_compiler->getLangOpts()); 963 964 class RewritesReceiver : public edit::EditsReceiver { 965 Rewriter &rewrite; 966 967 public: 968 RewritesReceiver(Rewriter &in_rewrite) : rewrite(in_rewrite) {} 969 970 void insert(SourceLocation loc, StringRef text) override { 971 rewrite.InsertText(loc, text); 972 } 973 void replace(CharSourceRange range, StringRef text) override { 974 rewrite.ReplaceText(range.getBegin(), rewrite.getRangeSize(range), text); 975 } 976 }; 977 978 RewritesReceiver rewrites_receiver(rewriter); 979 980 const DiagnosticList &diagnostics = diagnostic_manager.Diagnostics(); 981 size_t num_diags = diagnostics.size(); 982 if (num_diags == 0) 983 return false; 984 985 for (const Diagnostic *diag : diagnostic_manager.Diagnostics()) { 986 const ClangDiagnostic *diagnostic = llvm::dyn_cast<ClangDiagnostic>(diag); 987 if (diagnostic && diagnostic->HasFixIts()) { 988 for (const FixItHint &fixit : diagnostic->FixIts()) { 989 // This is cobbed from clang::Rewrite::FixItRewriter. 990 if (fixit.CodeToInsert.empty()) { 991 if (fixit.InsertFromRange.isValid()) { 992 commit.insertFromRange(fixit.RemoveRange.getBegin(), 993 fixit.InsertFromRange, /*afterToken=*/false, 994 fixit.BeforePreviousInsertions); 995 } else 996 commit.remove(fixit.RemoveRange); 997 } else { 998 if (fixit.RemoveRange.isTokenRange() || 999 fixit.RemoveRange.getBegin() != fixit.RemoveRange.getEnd()) 1000 commit.replace(fixit.RemoveRange, fixit.CodeToInsert); 1001 else 1002 commit.insert(fixit.RemoveRange.getBegin(), fixit.CodeToInsert, 1003 /*afterToken=*/false, fixit.BeforePreviousInsertions); 1004 } 1005 } 1006 } 1007 } 1008 1009 // FIXME - do we want to try to propagate specific errors here? 1010 if (!commit.isCommitable()) 1011 return false; 1012 else if (!editor.commit(commit)) 1013 return false; 1014 1015 // Now play all the edits, and stash the result in the diagnostic manager. 1016 editor.applyRewrites(rewrites_receiver); 1017 RewriteBuffer &main_file_buffer = 1018 rewriter.getEditBuffer(source_manager.getMainFileID()); 1019 1020 std::string fixed_expression; 1021 llvm::raw_string_ostream out_stream(fixed_expression); 1022 1023 main_file_buffer.write(out_stream); 1024 out_stream.flush(); 1025 diagnostic_manager.SetFixedExpression(fixed_expression); 1026 1027 return true; 1028 } 1029 1030 static bool FindFunctionInModule(ConstString &mangled_name, 1031 llvm::Module *module, const char *orig_name) { 1032 for (const auto &func : module->getFunctionList()) { 1033 const StringRef &name = func.getName(); 1034 if (name.find(orig_name) != StringRef::npos) { 1035 mangled_name.SetString(name); 1036 return true; 1037 } 1038 } 1039 1040 return false; 1041 } 1042 1043 lldb_private::Status ClangExpressionParser::PrepareForExecution( 1044 lldb::addr_t &func_addr, lldb::addr_t &func_end, 1045 lldb::IRExecutionUnitSP &execution_unit_sp, ExecutionContext &exe_ctx, 1046 bool &can_interpret, ExecutionPolicy execution_policy) { 1047 func_addr = LLDB_INVALID_ADDRESS; 1048 func_end = LLDB_INVALID_ADDRESS; 1049 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_EXPRESSIONS)); 1050 1051 lldb_private::Status err; 1052 1053 std::unique_ptr<llvm::Module> llvm_module_ap( 1054 m_code_generator->ReleaseModule()); 1055 1056 if (!llvm_module_ap.get()) { 1057 err.SetErrorToGenericError(); 1058 err.SetErrorString("IR doesn't contain a module"); 1059 return err; 1060 } 1061 1062 ConstString function_name; 1063 1064 if (execution_policy != eExecutionPolicyTopLevel) { 1065 // Find the actual name of the function (it's often mangled somehow) 1066 1067 if (!FindFunctionInModule(function_name, llvm_module_ap.get(), 1068 m_expr.FunctionName())) { 1069 err.SetErrorToGenericError(); 1070 err.SetErrorStringWithFormat("Couldn't find %s() in the module", 1071 m_expr.FunctionName()); 1072 return err; 1073 } else { 1074 if (log) 1075 log->Printf("Found function %s for %s", function_name.AsCString(), 1076 m_expr.FunctionName()); 1077 } 1078 } 1079 1080 SymbolContext sc; 1081 1082 if (lldb::StackFrameSP frame_sp = exe_ctx.GetFrameSP()) { 1083 sc = frame_sp->GetSymbolContext(lldb::eSymbolContextEverything); 1084 } else if (lldb::TargetSP target_sp = exe_ctx.GetTargetSP()) { 1085 sc.target_sp = target_sp; 1086 } 1087 1088 LLVMUserExpression::IRPasses custom_passes; 1089 { 1090 auto lang = m_expr.Language(); 1091 if (log) 1092 log->Printf("%s - Current expression language is %s\n", __FUNCTION__, 1093 Language::GetNameForLanguageType(lang)); 1094 lldb::ProcessSP process_sp = exe_ctx.GetProcessSP(); 1095 if (process_sp && lang != lldb::eLanguageTypeUnknown) { 1096 auto runtime = process_sp->GetLanguageRuntime(lang); 1097 if (runtime) 1098 runtime->GetIRPasses(custom_passes); 1099 } 1100 } 1101 1102 if (custom_passes.EarlyPasses) { 1103 if (log) 1104 log->Printf("%s - Running Early IR Passes from LanguageRuntime on " 1105 "expression module '%s'", 1106 __FUNCTION__, m_expr.FunctionName()); 1107 1108 custom_passes.EarlyPasses->run(*llvm_module_ap); 1109 } 1110 1111 execution_unit_sp.reset( 1112 new IRExecutionUnit(m_llvm_context, // handed off here 1113 llvm_module_ap, // handed off here 1114 function_name, exe_ctx.GetTargetSP(), sc, 1115 m_compiler->getTargetOpts().Features)); 1116 1117 ClangExpressionHelper *type_system_helper = 1118 dyn_cast<ClangExpressionHelper>(m_expr.GetTypeSystemHelper()); 1119 ClangExpressionDeclMap *decl_map = 1120 type_system_helper->DeclMap(); // result can be NULL 1121 1122 if (decl_map) { 1123 Stream *error_stream = NULL; 1124 Target *target = exe_ctx.GetTargetPtr(); 1125 error_stream = target->GetDebugger().GetErrorFile().get(); 1126 1127 IRForTarget ir_for_target(decl_map, m_expr.NeedsVariableResolution(), 1128 *execution_unit_sp, *error_stream, 1129 function_name.AsCString()); 1130 1131 bool ir_can_run = 1132 ir_for_target.runOnModule(*execution_unit_sp->GetModule()); 1133 1134 if (!ir_can_run) { 1135 err.SetErrorString( 1136 "The expression could not be prepared to run in the target"); 1137 return err; 1138 } 1139 1140 Process *process = exe_ctx.GetProcessPtr(); 1141 1142 if (execution_policy != eExecutionPolicyAlways && 1143 execution_policy != eExecutionPolicyTopLevel) { 1144 lldb_private::Status interpret_error; 1145 1146 bool interpret_function_calls = 1147 !process ? false : process->CanInterpretFunctionCalls(); 1148 can_interpret = IRInterpreter::CanInterpret( 1149 *execution_unit_sp->GetModule(), *execution_unit_sp->GetFunction(), 1150 interpret_error, interpret_function_calls); 1151 1152 if (!can_interpret && execution_policy == eExecutionPolicyNever) { 1153 err.SetErrorStringWithFormat("Can't run the expression locally: %s", 1154 interpret_error.AsCString()); 1155 return err; 1156 } 1157 } 1158 1159 if (!process && execution_policy == eExecutionPolicyAlways) { 1160 err.SetErrorString("Expression needed to run in the target, but the " 1161 "target can't be run"); 1162 return err; 1163 } 1164 1165 if (!process && execution_policy == eExecutionPolicyTopLevel) { 1166 err.SetErrorString("Top-level code needs to be inserted into a runnable " 1167 "target, but the target can't be run"); 1168 return err; 1169 } 1170 1171 if (execution_policy == eExecutionPolicyAlways || 1172 (execution_policy != eExecutionPolicyTopLevel && !can_interpret)) { 1173 if (m_expr.NeedsValidation() && process) { 1174 if (!process->GetDynamicCheckers()) { 1175 DynamicCheckerFunctions *dynamic_checkers = 1176 new DynamicCheckerFunctions(); 1177 1178 DiagnosticManager install_diagnostics; 1179 1180 if (!dynamic_checkers->Install(install_diagnostics, exe_ctx)) { 1181 if (install_diagnostics.Diagnostics().size()) 1182 err.SetErrorString(install_diagnostics.GetString().c_str()); 1183 else 1184 err.SetErrorString("couldn't install checkers, unknown error"); 1185 1186 return err; 1187 } 1188 1189 process->SetDynamicCheckers(dynamic_checkers); 1190 1191 if (log) 1192 log->Printf("== [ClangUserExpression::Evaluate] Finished " 1193 "installing dynamic checkers =="); 1194 } 1195 1196 IRDynamicChecks ir_dynamic_checks(*process->GetDynamicCheckers(), 1197 function_name.AsCString()); 1198 1199 llvm::Module *module = execution_unit_sp->GetModule(); 1200 if (!module || !ir_dynamic_checks.runOnModule(*module)) { 1201 err.SetErrorToGenericError(); 1202 err.SetErrorString("Couldn't add dynamic checks to the expression"); 1203 return err; 1204 } 1205 1206 if (custom_passes.LatePasses) { 1207 if (log) 1208 log->Printf("%s - Running Late IR Passes from LanguageRuntime on " 1209 "expression module '%s'", 1210 __FUNCTION__, m_expr.FunctionName()); 1211 1212 custom_passes.LatePasses->run(*module); 1213 } 1214 } 1215 } 1216 1217 if (execution_policy == eExecutionPolicyAlways || 1218 execution_policy == eExecutionPolicyTopLevel || !can_interpret) { 1219 execution_unit_sp->GetRunnableInfo(err, func_addr, func_end); 1220 } 1221 } else { 1222 execution_unit_sp->GetRunnableInfo(err, func_addr, func_end); 1223 } 1224 1225 return err; 1226 } 1227 1228 lldb_private::Status ClangExpressionParser::RunStaticInitializers( 1229 lldb::IRExecutionUnitSP &execution_unit_sp, ExecutionContext &exe_ctx) { 1230 lldb_private::Status err; 1231 1232 lldbassert(execution_unit_sp.get()); 1233 lldbassert(exe_ctx.HasThreadScope()); 1234 1235 if (!execution_unit_sp.get()) { 1236 err.SetErrorString( 1237 "can't run static initializers for a NULL execution unit"); 1238 return err; 1239 } 1240 1241 if (!exe_ctx.HasThreadScope()) { 1242 err.SetErrorString("can't run static initializers without a thread"); 1243 return err; 1244 } 1245 1246 std::vector<lldb::addr_t> static_initializers; 1247 1248 execution_unit_sp->GetStaticInitializers(static_initializers); 1249 1250 for (lldb::addr_t static_initializer : static_initializers) { 1251 EvaluateExpressionOptions options; 1252 1253 lldb::ThreadPlanSP call_static_initializer(new ThreadPlanCallFunction( 1254 exe_ctx.GetThreadRef(), Address(static_initializer), CompilerType(), 1255 llvm::ArrayRef<lldb::addr_t>(), options)); 1256 1257 DiagnosticManager execution_errors; 1258 lldb::ExpressionResults results = 1259 exe_ctx.GetThreadRef().GetProcess()->RunThreadPlan( 1260 exe_ctx, call_static_initializer, options, execution_errors); 1261 1262 if (results != lldb::eExpressionCompleted) { 1263 err.SetErrorStringWithFormat("couldn't run static initializer: %s", 1264 execution_errors.GetString().c_str()); 1265 return err; 1266 } 1267 } 1268 1269 return err; 1270 } 1271