1 //===-- ClangExpressionParser.cpp -------------------------------*- C++ -*-===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9
10 #include <cctype>
11 #include "clang/AST/ASTContext.h"
12 #include "clang/AST/ASTDiagnostic.h"
13 #include "clang/AST/ExternalASTSource.h"
14 #include "clang/AST/PrettyPrinter.h"
15 #include "clang/Basic/DiagnosticIDs.h"
16 #include "clang/Basic/FileManager.h"
17 #include "clang/Basic/SourceLocation.h"
18 #include "clang/Basic/TargetInfo.h"
19 #include "clang/Basic/Version.h"
20 #include "clang/CodeGen/CodeGenAction.h"
21 #include "clang/CodeGen/ModuleBuilder.h"
22 #include "clang/Edit/Commit.h"
23 #include "clang/Edit/EditedSource.h"
24 #include "clang/Edit/EditsReceiver.h"
25 #include "clang/Frontend/CompilerInstance.h"
26 #include "clang/Frontend/CompilerInvocation.h"
27 #include "clang/Frontend/FrontendActions.h"
28 #include "clang/Frontend/FrontendDiagnostic.h"
29 #include "clang/Frontend/FrontendPluginRegistry.h"
30 #include "clang/Frontend/TextDiagnosticBuffer.h"
31 #include "clang/Frontend/TextDiagnosticPrinter.h"
32 #include "clang/Lex/Preprocessor.h"
33 #include "clang/Parse/ParseAST.h"
34 #include "clang/Rewrite/Core/Rewriter.h"
35 #include "clang/Rewrite/Frontend/FrontendActions.h"
36 #include "clang/Sema/CodeCompleteConsumer.h"
37 #include "clang/Sema/Sema.h"
38 #include "clang/Sema/SemaConsumer.h"
39
40 #include "llvm/ADT/StringRef.h"
41 #include "llvm/ExecutionEngine/ExecutionEngine.h"
42 #include "llvm/Support/Debug.h"
43 #include "llvm/Support/FileSystem.h"
44 #include "llvm/Support/TargetSelect.h"
45
46 #pragma clang diagnostic push
47 #pragma clang diagnostic ignored "-Wglobal-constructors"
48 #include "llvm/ExecutionEngine/MCJIT.h"
49 #pragma clang diagnostic pop
50
51 #include "llvm/IR/LLVMContext.h"
52 #include "llvm/IR/Module.h"
53 #include "llvm/Support/DynamicLibrary.h"
54 #include "llvm/Support/ErrorHandling.h"
55 #include "llvm/Support/Host.h"
56 #include "llvm/Support/MemoryBuffer.h"
57 #include "llvm/Support/Signals.h"
58
59 #include "ClangDiagnostic.h"
60 #include "ClangExpressionParser.h"
61
62 #include "ClangASTSource.h"
63 #include "ClangExpressionDeclMap.h"
64 #include "ClangExpressionHelper.h"
65 #include "ClangModulesDeclVendor.h"
66 #include "ClangPersistentVariables.h"
67 #include "IRForTarget.h"
68
69 #include "lldb/Core/Debugger.h"
70 #include "lldb/Core/Disassembler.h"
71 #include "lldb/Core/Module.h"
72 #include "lldb/Core/StreamFile.h"
73 #include "lldb/Expression/IRDynamicChecks.h"
74 #include "lldb/Expression/IRExecutionUnit.h"
75 #include "lldb/Expression/IRInterpreter.h"
76 #include "lldb/Host/File.h"
77 #include "lldb/Host/HostInfo.h"
78 #include "lldb/Symbol/ClangASTContext.h"
79 #include "lldb/Symbol/SymbolVendor.h"
80 #include "lldb/Target/ExecutionContext.h"
81 #include "lldb/Target/Language.h"
82 #include "lldb/Target/ObjCLanguageRuntime.h"
83 #include "lldb/Target/Process.h"
84 #include "lldb/Target/Target.h"
85 #include "lldb/Target/ThreadPlanCallFunction.h"
86 #include "lldb/Utility/DataBufferHeap.h"
87 #include "lldb/Utility/LLDBAssert.h"
88 #include "lldb/Utility/Log.h"
89 #include "lldb/Utility/Stream.h"
90 #include "lldb/Utility/StreamString.h"
91 #include "lldb/Utility/StringList.h"
92
93 using namespace clang;
94 using namespace llvm;
95 using namespace lldb_private;
96
97 //===----------------------------------------------------------------------===//
98 // Utility Methods for Clang
99 //===----------------------------------------------------------------------===//
100
101 class ClangExpressionParser::LLDBPreprocessorCallbacks : public PPCallbacks {
102 ClangModulesDeclVendor &m_decl_vendor;
103 ClangPersistentVariables &m_persistent_vars;
104 StreamString m_error_stream;
105 bool m_has_errors = false;
106
107 public:
LLDBPreprocessorCallbacks(ClangModulesDeclVendor & decl_vendor,ClangPersistentVariables & persistent_vars)108 LLDBPreprocessorCallbacks(ClangModulesDeclVendor &decl_vendor,
109 ClangPersistentVariables &persistent_vars)
110 : m_decl_vendor(decl_vendor), m_persistent_vars(persistent_vars) {}
111
moduleImport(SourceLocation import_location,clang::ModuleIdPath path,const clang::Module *)112 void moduleImport(SourceLocation import_location, clang::ModuleIdPath path,
113 const clang::Module * /*null*/) override {
114 std::vector<ConstString> string_path;
115
116 for (const std::pair<IdentifierInfo *, SourceLocation> &component : path) {
117 string_path.push_back(ConstString(component.first->getName()));
118 }
119
120 StreamString error_stream;
121
122 ClangModulesDeclVendor::ModuleVector exported_modules;
123
124 if (!m_decl_vendor.AddModule(string_path, &exported_modules,
125 m_error_stream)) {
126 m_has_errors = true;
127 }
128
129 for (ClangModulesDeclVendor::ModuleID module : exported_modules) {
130 m_persistent_vars.AddHandLoadedClangModule(module);
131 }
132 }
133
hasErrors()134 bool hasErrors() { return m_has_errors; }
135
getErrorString()136 llvm::StringRef getErrorString() { return m_error_stream.GetString(); }
137 };
138
139 class ClangDiagnosticManagerAdapter : public clang::DiagnosticConsumer {
140 public:
ClangDiagnosticManagerAdapter()141 ClangDiagnosticManagerAdapter()
142 : m_passthrough(new clang::TextDiagnosticBuffer) {}
143
ClangDiagnosticManagerAdapter(const std::shared_ptr<clang::TextDiagnosticBuffer> & passthrough)144 ClangDiagnosticManagerAdapter(
145 const std::shared_ptr<clang::TextDiagnosticBuffer> &passthrough)
146 : m_passthrough(passthrough) {}
147
ResetManager(DiagnosticManager * manager=nullptr)148 void ResetManager(DiagnosticManager *manager = nullptr) {
149 m_manager = manager;
150 }
151
HandleDiagnostic(DiagnosticsEngine::Level DiagLevel,const clang::Diagnostic & Info)152 void HandleDiagnostic(DiagnosticsEngine::Level DiagLevel,
153 const clang::Diagnostic &Info) {
154 if (m_manager) {
155 llvm::SmallVector<char, 32> diag_str;
156 Info.FormatDiagnostic(diag_str);
157 diag_str.push_back('\0');
158 const char *data = diag_str.data();
159
160 lldb_private::DiagnosticSeverity severity;
161 bool make_new_diagnostic = true;
162
163 switch (DiagLevel) {
164 case DiagnosticsEngine::Level::Fatal:
165 case DiagnosticsEngine::Level::Error:
166 severity = eDiagnosticSeverityError;
167 break;
168 case DiagnosticsEngine::Level::Warning:
169 severity = eDiagnosticSeverityWarning;
170 break;
171 case DiagnosticsEngine::Level::Remark:
172 case DiagnosticsEngine::Level::Ignored:
173 severity = eDiagnosticSeverityRemark;
174 break;
175 case DiagnosticsEngine::Level::Note:
176 m_manager->AppendMessageToDiagnostic(data);
177 make_new_diagnostic = false;
178 }
179 if (make_new_diagnostic) {
180 ClangDiagnostic *new_diagnostic =
181 new ClangDiagnostic(data, severity, Info.getID());
182 m_manager->AddDiagnostic(new_diagnostic);
183
184 // Don't store away warning fixits, since the compiler doesn't have
185 // enough context in an expression for the warning to be useful.
186 // FIXME: Should we try to filter out FixIts that apply to our generated
187 // code, and not the user's expression?
188 if (severity == eDiagnosticSeverityError) {
189 size_t num_fixit_hints = Info.getNumFixItHints();
190 for (size_t i = 0; i < num_fixit_hints; i++) {
191 const clang::FixItHint &fixit = Info.getFixItHint(i);
192 if (!fixit.isNull())
193 new_diagnostic->AddFixitHint(fixit);
194 }
195 }
196 }
197 }
198
199 m_passthrough->HandleDiagnostic(DiagLevel, Info);
200 }
201
FlushDiagnostics(DiagnosticsEngine & Diags)202 void FlushDiagnostics(DiagnosticsEngine &Diags) {
203 m_passthrough->FlushDiagnostics(Diags);
204 }
205
clone(DiagnosticsEngine & Diags) const206 DiagnosticConsumer *clone(DiagnosticsEngine &Diags) const {
207 return new ClangDiagnosticManagerAdapter(m_passthrough);
208 }
209
GetPassthrough()210 clang::TextDiagnosticBuffer *GetPassthrough() { return m_passthrough.get(); }
211
212 private:
213 DiagnosticManager *m_manager = nullptr;
214 std::shared_ptr<clang::TextDiagnosticBuffer> m_passthrough;
215 };
216
217 //===----------------------------------------------------------------------===//
218 // Implementation of ClangExpressionParser
219 //===----------------------------------------------------------------------===//
220
ClangExpressionParser(ExecutionContextScope * exe_scope,Expression & expr,bool generate_debug_info)221 ClangExpressionParser::ClangExpressionParser(ExecutionContextScope *exe_scope,
222 Expression &expr,
223 bool generate_debug_info)
224 : ExpressionParser(exe_scope, expr, generate_debug_info), m_compiler(),
225 m_pp_callbacks(nullptr) {
226 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_EXPRESSIONS));
227
228 // We can't compile expressions without a target. So if the exe_scope is
229 // null or doesn't have a target, then we just need to get out of here. I'll
230 // lldb_assert and not make any of the compiler objects since
231 // I can't return errors directly from the constructor. Further calls will
232 // check if the compiler was made and
233 // bag out if it wasn't.
234
235 if (!exe_scope) {
236 lldb_assert(exe_scope, "Can't make an expression parser with a null scope.",
237 __FUNCTION__, __FILE__, __LINE__);
238 return;
239 }
240
241 lldb::TargetSP target_sp;
242 target_sp = exe_scope->CalculateTarget();
243 if (!target_sp) {
244 lldb_assert(target_sp.get(),
245 "Can't make an expression parser with a null target.",
246 __FUNCTION__, __FILE__, __LINE__);
247 return;
248 }
249
250 // 1. Create a new compiler instance.
251 m_compiler.reset(new CompilerInstance());
252 lldb::LanguageType frame_lang =
253 expr.Language(); // defaults to lldb::eLanguageTypeUnknown
254 bool overridden_target_opts = false;
255 lldb_private::LanguageRuntime *lang_rt = nullptr;
256
257 std::string abi;
258 ArchSpec target_arch;
259 target_arch = target_sp->GetArchitecture();
260
261 const auto target_machine = target_arch.GetMachine();
262
263 // If the expression is being evaluated in the context of an existing stack
264 // frame, we introspect to see if the language runtime is available.
265
266 lldb::StackFrameSP frame_sp = exe_scope->CalculateStackFrame();
267 lldb::ProcessSP process_sp = exe_scope->CalculateProcess();
268
269 // Make sure the user hasn't provided a preferred execution language with
270 // `expression --language X -- ...`
271 if (frame_sp && frame_lang == lldb::eLanguageTypeUnknown)
272 frame_lang = frame_sp->GetLanguage();
273
274 if (process_sp && frame_lang != lldb::eLanguageTypeUnknown) {
275 lang_rt = process_sp->GetLanguageRuntime(frame_lang);
276 if (log)
277 log->Printf("Frame has language of type %s",
278 Language::GetNameForLanguageType(frame_lang));
279 }
280
281 // 2. Configure the compiler with a set of default options that are
282 // appropriate for most situations.
283 if (target_arch.IsValid()) {
284 std::string triple = target_arch.GetTriple().str();
285 m_compiler->getTargetOpts().Triple = triple;
286 if (log)
287 log->Printf("Using %s as the target triple",
288 m_compiler->getTargetOpts().Triple.c_str());
289 } else {
290 // If we get here we don't have a valid target and just have to guess.
291 // Sometimes this will be ok to just use the host target triple (when we
292 // evaluate say "2+3", but other expressions like breakpoint conditions and
293 // other things that _are_ target specific really shouldn't just be using
294 // the host triple. In such a case the language runtime should expose an
295 // overridden options set (3), below.
296 m_compiler->getTargetOpts().Triple = llvm::sys::getDefaultTargetTriple();
297 if (log)
298 log->Printf("Using default target triple of %s",
299 m_compiler->getTargetOpts().Triple.c_str());
300 }
301 // Now add some special fixes for known architectures: Any arm32 iOS
302 // environment, but not on arm64
303 if (m_compiler->getTargetOpts().Triple.find("arm64") == std::string::npos &&
304 m_compiler->getTargetOpts().Triple.find("arm") != std::string::npos &&
305 m_compiler->getTargetOpts().Triple.find("ios") != std::string::npos) {
306 m_compiler->getTargetOpts().ABI = "apcs-gnu";
307 }
308 // Supported subsets of x86
309 if (target_machine == llvm::Triple::x86 ||
310 target_machine == llvm::Triple::x86_64) {
311 m_compiler->getTargetOpts().Features.push_back("+sse");
312 m_compiler->getTargetOpts().Features.push_back("+sse2");
313 }
314
315 // Set the target CPU to generate code for. This will be empty for any CPU
316 // that doesn't really need to make a special
317 // CPU string.
318 m_compiler->getTargetOpts().CPU = target_arch.GetClangTargetCPU();
319
320 // Set the target ABI
321 abi = GetClangTargetABI(target_arch);
322 if (!abi.empty())
323 m_compiler->getTargetOpts().ABI = abi;
324
325 // 3. Now allow the runtime to provide custom configuration options for the
326 // target. In this case, a specialized language runtime is available and we
327 // can query it for extra options. For 99% of use cases, this will not be
328 // needed and should be provided when basic platform detection is not enough.
329 if (lang_rt)
330 overridden_target_opts =
331 lang_rt->GetOverrideExprOptions(m_compiler->getTargetOpts());
332
333 if (overridden_target_opts)
334 if (log && log->GetVerbose()) {
335 LLDB_LOGV(
336 log, "Using overridden target options for the expression evaluation");
337
338 auto opts = m_compiler->getTargetOpts();
339 LLDB_LOGV(log, "Triple: '{0}'", opts.Triple);
340 LLDB_LOGV(log, "CPU: '{0}'", opts.CPU);
341 LLDB_LOGV(log, "FPMath: '{0}'", opts.FPMath);
342 LLDB_LOGV(log, "ABI: '{0}'", opts.ABI);
343 LLDB_LOGV(log, "LinkerVersion: '{0}'", opts.LinkerVersion);
344 StringList::LogDump(log, opts.FeaturesAsWritten, "FeaturesAsWritten");
345 StringList::LogDump(log, opts.Features, "Features");
346 }
347
348 // 4. Create and install the target on the compiler.
349 m_compiler->createDiagnostics();
350 auto target_info = TargetInfo::CreateTargetInfo(
351 m_compiler->getDiagnostics(), m_compiler->getInvocation().TargetOpts);
352 if (log) {
353 log->Printf("Using SIMD alignment: %d", target_info->getSimdDefaultAlign());
354 log->Printf("Target datalayout string: '%s'",
355 target_info->getDataLayout().getStringRepresentation().c_str());
356 log->Printf("Target ABI: '%s'", target_info->getABI().str().c_str());
357 log->Printf("Target vector alignment: %d",
358 target_info->getMaxVectorAlign());
359 }
360 m_compiler->setTarget(target_info);
361
362 assert(m_compiler->hasTarget());
363
364 // 5. Set language options.
365 lldb::LanguageType language = expr.Language();
366
367 switch (language) {
368 case lldb::eLanguageTypeC:
369 case lldb::eLanguageTypeC89:
370 case lldb::eLanguageTypeC99:
371 case lldb::eLanguageTypeC11:
372 // FIXME: the following language option is a temporary workaround,
373 // to "ask for C, get C++."
374 // For now, the expression parser must use C++ anytime the language is a C
375 // family language, because the expression parser uses features of C++ to
376 // capture values.
377 m_compiler->getLangOpts().CPlusPlus = true;
378 break;
379 case lldb::eLanguageTypeObjC:
380 m_compiler->getLangOpts().ObjC = true;
381 // FIXME: the following language option is a temporary workaround,
382 // to "ask for ObjC, get ObjC++" (see comment above).
383 m_compiler->getLangOpts().CPlusPlus = true;
384
385 // Clang now sets as default C++14 as the default standard (with
386 // GNU extensions), so we do the same here to avoid mismatches that
387 // cause compiler error when evaluating expressions (e.g. nullptr not found
388 // as it's a C++11 feature). Currently lldb evaluates C++14 as C++11 (see
389 // two lines below) so we decide to be consistent with that, but this could
390 // be re-evaluated in the future.
391 m_compiler->getLangOpts().CPlusPlus11 = true;
392 break;
393 case lldb::eLanguageTypeC_plus_plus:
394 case lldb::eLanguageTypeC_plus_plus_11:
395 case lldb::eLanguageTypeC_plus_plus_14:
396 m_compiler->getLangOpts().CPlusPlus11 = true;
397 m_compiler->getHeaderSearchOpts().UseLibcxx = true;
398 LLVM_FALLTHROUGH;
399 case lldb::eLanguageTypeC_plus_plus_03:
400 m_compiler->getLangOpts().CPlusPlus = true;
401 if (process_sp)
402 m_compiler->getLangOpts().ObjC =
403 process_sp->GetLanguageRuntime(lldb::eLanguageTypeObjC) != nullptr;
404 break;
405 case lldb::eLanguageTypeObjC_plus_plus:
406 case lldb::eLanguageTypeUnknown:
407 default:
408 m_compiler->getLangOpts().ObjC = true;
409 m_compiler->getLangOpts().CPlusPlus = true;
410 m_compiler->getLangOpts().CPlusPlus11 = true;
411 m_compiler->getHeaderSearchOpts().UseLibcxx = true;
412 break;
413 }
414
415 m_compiler->getLangOpts().Bool = true;
416 m_compiler->getLangOpts().WChar = true;
417 m_compiler->getLangOpts().Blocks = true;
418 m_compiler->getLangOpts().DebuggerSupport =
419 true; // Features specifically for debugger clients
420 if (expr.DesiredResultType() == Expression::eResultTypeId)
421 m_compiler->getLangOpts().DebuggerCastResultToId = true;
422
423 m_compiler->getLangOpts().CharIsSigned =
424 ArchSpec(m_compiler->getTargetOpts().Triple.c_str())
425 .CharIsSignedByDefault();
426
427 // Spell checking is a nice feature, but it ends up completing a lot of types
428 // that we didn't strictly speaking need to complete. As a result, we spend a
429 // long time parsing and importing debug information.
430 m_compiler->getLangOpts().SpellChecking = false;
431
432 if (process_sp && m_compiler->getLangOpts().ObjC) {
433 if (process_sp->GetObjCLanguageRuntime()) {
434 if (process_sp->GetObjCLanguageRuntime()->GetRuntimeVersion() ==
435 ObjCLanguageRuntime::ObjCRuntimeVersions::eAppleObjC_V2)
436 m_compiler->getLangOpts().ObjCRuntime.set(ObjCRuntime::MacOSX,
437 VersionTuple(10, 7));
438 else
439 m_compiler->getLangOpts().ObjCRuntime.set(ObjCRuntime::FragileMacOSX,
440 VersionTuple(10, 7));
441
442 if (process_sp->GetObjCLanguageRuntime()->HasNewLiteralsAndIndexing())
443 m_compiler->getLangOpts().DebuggerObjCLiteral = true;
444 }
445 }
446
447 m_compiler->getLangOpts().ThreadsafeStatics = false;
448 m_compiler->getLangOpts().AccessControl =
449 false; // Debuggers get universal access
450 m_compiler->getLangOpts().DollarIdents =
451 true; // $ indicates a persistent variable name
452 // We enable all builtin functions beside the builtins from libc/libm (e.g.
453 // 'fopen'). Those libc functions are already correctly handled by LLDB, and
454 // additionally enabling them as expandable builtins is breaking Clang.
455 m_compiler->getLangOpts().NoBuiltin = true;
456
457 // Set CodeGen options
458 m_compiler->getCodeGenOpts().EmitDeclMetadata = true;
459 m_compiler->getCodeGenOpts().InstrumentFunctions = false;
460 m_compiler->getCodeGenOpts().DisableFPElim = true;
461 m_compiler->getCodeGenOpts().OmitLeafFramePointer = false;
462 if (generate_debug_info)
463 m_compiler->getCodeGenOpts().setDebugInfo(codegenoptions::FullDebugInfo);
464 else
465 m_compiler->getCodeGenOpts().setDebugInfo(codegenoptions::NoDebugInfo);
466
467 // Disable some warnings.
468 m_compiler->getDiagnostics().setSeverityForGroup(
469 clang::diag::Flavor::WarningOrError, "unused-value",
470 clang::diag::Severity::Ignored, SourceLocation());
471 m_compiler->getDiagnostics().setSeverityForGroup(
472 clang::diag::Flavor::WarningOrError, "odr",
473 clang::diag::Severity::Ignored, SourceLocation());
474
475 // Inform the target of the language options
476 //
477 // FIXME: We shouldn't need to do this, the target should be immutable once
478 // created. This complexity should be lifted elsewhere.
479 m_compiler->getTarget().adjust(m_compiler->getLangOpts());
480
481 // 6. Set up the diagnostic buffer for reporting errors
482
483 m_compiler->getDiagnostics().setClient(new ClangDiagnosticManagerAdapter);
484
485 // 7. Set up the source management objects inside the compiler
486
487 clang::FileSystemOptions file_system_options;
488 m_file_manager.reset(new clang::FileManager(file_system_options));
489
490 if (!m_compiler->hasSourceManager())
491 m_compiler->createSourceManager(*m_file_manager.get());
492
493 m_compiler->createFileManager();
494 m_compiler->createPreprocessor(TU_Complete);
495
496 if (ClangModulesDeclVendor *decl_vendor =
497 target_sp->GetClangModulesDeclVendor()) {
498 ClangPersistentVariables *clang_persistent_vars =
499 llvm::cast<ClangPersistentVariables>(
500 target_sp->GetPersistentExpressionStateForLanguage(
501 lldb::eLanguageTypeC));
502 std::unique_ptr<PPCallbacks> pp_callbacks(
503 new LLDBPreprocessorCallbacks(*decl_vendor, *clang_persistent_vars));
504 m_pp_callbacks =
505 static_cast<LLDBPreprocessorCallbacks *>(pp_callbacks.get());
506 m_compiler->getPreprocessor().addPPCallbacks(std::move(pp_callbacks));
507 }
508
509 // 8. Most of this we get from the CompilerInstance, but we also want to give
510 // the context an ExternalASTSource.
511
512 auto &PP = m_compiler->getPreprocessor();
513 auto &builtin_context = PP.getBuiltinInfo();
514 builtin_context.initializeBuiltins(PP.getIdentifierTable(),
515 m_compiler->getLangOpts());
516
517 m_compiler->createASTContext();
518 clang::ASTContext &ast_context = m_compiler->getASTContext();
519
520 ClangExpressionHelper *type_system_helper =
521 dyn_cast<ClangExpressionHelper>(m_expr.GetTypeSystemHelper());
522 ClangExpressionDeclMap *decl_map = type_system_helper->DeclMap();
523
524 if (decl_map) {
525 llvm::IntrusiveRefCntPtr<clang::ExternalASTSource> ast_source(
526 decl_map->CreateProxy());
527 decl_map->InstallASTContext(ast_context, m_compiler->getFileManager());
528 ast_context.setExternalSource(ast_source);
529 }
530
531 m_ast_context.reset(
532 new ClangASTContext(m_compiler->getTargetOpts().Triple.c_str()));
533 m_ast_context->setASTContext(&ast_context);
534
535 std::string module_name("$__lldb_module");
536
537 m_llvm_context.reset(new LLVMContext());
538 m_code_generator.reset(CreateLLVMCodeGen(
539 m_compiler->getDiagnostics(), module_name,
540 m_compiler->getHeaderSearchOpts(), m_compiler->getPreprocessorOpts(),
541 m_compiler->getCodeGenOpts(), *m_llvm_context));
542 }
543
~ClangExpressionParser()544 ClangExpressionParser::~ClangExpressionParser() {}
545
546 namespace {
547
548 //----------------------------------------------------------------------
549 /// @class CodeComplete
550 ///
551 /// A code completion consumer for the clang Sema that is responsible for
552 /// creating the completion suggestions when a user requests completion
553 /// of an incomplete `expr` invocation.
554 //----------------------------------------------------------------------
555 class CodeComplete : public CodeCompleteConsumer {
556 CodeCompletionTUInfo m_info;
557
558 std::string m_expr;
559 unsigned m_position = 0;
560 CompletionRequest &m_request;
561 /// The printing policy we use when printing declarations for our completion
562 /// descriptions.
563 clang::PrintingPolicy m_desc_policy;
564
565 /// Returns true if the given character can be used in an identifier.
566 /// This also returns true for numbers because for completion we usually
567 /// just iterate backwards over iterators.
568 ///
569 /// Note: lldb uses '$' in its internal identifiers, so we also allow this.
IsIdChar(char c)570 static bool IsIdChar(char c) {
571 return c == '_' || std::isalnum(c) || c == '$';
572 }
573
574 /// Returns true if the given character is used to separate arguments
575 /// in the command line of lldb.
IsTokenSeparator(char c)576 static bool IsTokenSeparator(char c) { return c == ' ' || c == '\t'; }
577
578 /// Drops all tokens in front of the expression that are unrelated for
579 /// the completion of the cmd line. 'unrelated' means here that the token
580 /// is not interested for the lldb completion API result.
dropUnrelatedFrontTokens(StringRef cmd)581 StringRef dropUnrelatedFrontTokens(StringRef cmd) {
582 if (cmd.empty())
583 return cmd;
584
585 // If we are at the start of a word, then all tokens are unrelated to
586 // the current completion logic.
587 if (IsTokenSeparator(cmd.back()))
588 return StringRef();
589
590 // Remove all previous tokens from the string as they are unrelated
591 // to completing the current token.
592 StringRef to_remove = cmd;
593 while (!to_remove.empty() && !IsTokenSeparator(to_remove.back())) {
594 to_remove = to_remove.drop_back();
595 }
596 cmd = cmd.drop_front(to_remove.size());
597
598 return cmd;
599 }
600
601 /// Removes the last identifier token from the given cmd line.
removeLastToken(StringRef cmd)602 StringRef removeLastToken(StringRef cmd) {
603 while (!cmd.empty() && IsIdChar(cmd.back())) {
604 cmd = cmd.drop_back();
605 }
606 return cmd;
607 }
608
609 /// Attemps to merge the given completion from the given position into the
610 /// existing command. Returns the completion string that can be returned to
611 /// the lldb completion API.
mergeCompletion(StringRef existing,unsigned pos,StringRef completion)612 std::string mergeCompletion(StringRef existing, unsigned pos,
613 StringRef completion) {
614 StringRef existing_command = existing.substr(0, pos);
615 // We rewrite the last token with the completion, so let's drop that
616 // token from the command.
617 existing_command = removeLastToken(existing_command);
618 // We also should remove all previous tokens from the command as they
619 // would otherwise be added to the completion that already has the
620 // completion.
621 existing_command = dropUnrelatedFrontTokens(existing_command);
622 return existing_command.str() + completion.str();
623 }
624
625 public:
626 /// Constructs a CodeComplete consumer that can be attached to a Sema.
627 /// @param[out] matches
628 /// The list of matches that the lldb completion API expects as a result.
629 /// This may already contain matches, so it's only allowed to append
630 /// to this variable.
631 /// @param[out] expr
632 /// The whole expression string that we are currently parsing. This
633 /// string needs to be equal to the input the user typed, and NOT the
634 /// final code that Clang is parsing.
635 /// @param[out] position
636 /// The character position of the user cursor in the `expr` parameter.
637 ///
CodeComplete(CompletionRequest & request,clang::LangOptions ops,std::string expr,unsigned position)638 CodeComplete(CompletionRequest &request, clang::LangOptions ops,
639 std::string expr, unsigned position)
640 : CodeCompleteConsumer(CodeCompleteOptions(), false),
641 m_info(std::make_shared<GlobalCodeCompletionAllocator>()), m_expr(expr),
642 m_position(position), m_request(request), m_desc_policy(ops) {
643
644 // Ensure that the printing policy is producing a description that is as
645 // short as possible.
646 m_desc_policy.SuppressScope = true;
647 m_desc_policy.SuppressTagKeyword = true;
648 m_desc_policy.FullyQualifiedName = false;
649 m_desc_policy.TerseOutput = true;
650 m_desc_policy.IncludeNewlines = false;
651 m_desc_policy.UseVoidForZeroParams = false;
652 m_desc_policy.Bool = true;
653 }
654
655 /// Deregisters and destroys this code-completion consumer.
~CodeComplete()656 virtual ~CodeComplete() {}
657
658 /// \name Code-completion filtering
659 /// Check if the result should be filtered out.
isResultFilteredOut(StringRef Filter,CodeCompletionResult Result)660 bool isResultFilteredOut(StringRef Filter,
661 CodeCompletionResult Result) override {
662 // This code is mostly copied from CodeCompleteConsumer.
663 switch (Result.Kind) {
664 case CodeCompletionResult::RK_Declaration:
665 return !(
666 Result.Declaration->getIdentifier() &&
667 Result.Declaration->getIdentifier()->getName().startswith(Filter));
668 case CodeCompletionResult::RK_Keyword:
669 return !StringRef(Result.Keyword).startswith(Filter);
670 case CodeCompletionResult::RK_Macro:
671 return !Result.Macro->getName().startswith(Filter);
672 case CodeCompletionResult::RK_Pattern:
673 return !StringRef(Result.Pattern->getAsString()).startswith(Filter);
674 }
675 // If we trigger this assert or the above switch yields a warning, then
676 // CodeCompletionResult has been enhanced with more kinds of completion
677 // results. Expand the switch above in this case.
678 assert(false && "Unknown completion result type?");
679 // If we reach this, then we should just ignore whatever kind of unknown
680 // result we got back. We probably can't turn it into any kind of useful
681 // completion suggestion with the existing code.
682 return true;
683 }
684
685 /// \name Code-completion callbacks
686 /// Process the finalized code-completion results.
ProcessCodeCompleteResults(Sema & SemaRef,CodeCompletionContext Context,CodeCompletionResult * Results,unsigned NumResults)687 void ProcessCodeCompleteResults(Sema &SemaRef, CodeCompletionContext Context,
688 CodeCompletionResult *Results,
689 unsigned NumResults) override {
690
691 // The Sema put the incomplete token we try to complete in here during
692 // lexing, so we need to retrieve it here to know what we are completing.
693 StringRef Filter = SemaRef.getPreprocessor().getCodeCompletionFilter();
694
695 // Iterate over all the results. Filter out results we don't want and
696 // process the rest.
697 for (unsigned I = 0; I != NumResults; ++I) {
698 // Filter the results with the information from the Sema.
699 if (!Filter.empty() && isResultFilteredOut(Filter, Results[I]))
700 continue;
701
702 CodeCompletionResult &R = Results[I];
703 std::string ToInsert;
704 std::string Description;
705 // Handle the different completion kinds that come from the Sema.
706 switch (R.Kind) {
707 case CodeCompletionResult::RK_Declaration: {
708 const NamedDecl *D = R.Declaration;
709 ToInsert = R.Declaration->getNameAsString();
710 // If we have a function decl that has no arguments we want to
711 // complete the empty parantheses for the user. If the function has
712 // arguments, we at least complete the opening bracket.
713 if (const FunctionDecl *F = dyn_cast<FunctionDecl>(D)) {
714 if (F->getNumParams() == 0)
715 ToInsert += "()";
716 else
717 ToInsert += "(";
718 raw_string_ostream OS(Description);
719 F->print(OS, m_desc_policy, false);
720 OS.flush();
721 } else if (const VarDecl *V = dyn_cast<VarDecl>(D)) {
722 Description = V->getType().getAsString(m_desc_policy);
723 } else if (const FieldDecl *F = dyn_cast<FieldDecl>(D)) {
724 Description = F->getType().getAsString(m_desc_policy);
725 } else if (const NamespaceDecl *N = dyn_cast<NamespaceDecl>(D)) {
726 // If we try to complete a namespace, then we can directly append
727 // the '::'.
728 if (!N->isAnonymousNamespace())
729 ToInsert += "::";
730 }
731 break;
732 }
733 case CodeCompletionResult::RK_Keyword:
734 ToInsert = R.Keyword;
735 break;
736 case CodeCompletionResult::RK_Macro:
737 ToInsert = R.Macro->getName().str();
738 break;
739 case CodeCompletionResult::RK_Pattern:
740 ToInsert = R.Pattern->getTypedText();
741 break;
742 }
743 // At this point all information is in the ToInsert string.
744
745 // We also filter some internal lldb identifiers here. The user
746 // shouldn't see these.
747 if (StringRef(ToInsert).startswith("$__lldb_"))
748 continue;
749 if (!ToInsert.empty()) {
750 // Merge the suggested Token into the existing command line to comply
751 // with the kind of result the lldb API expects.
752 std::string CompletionSuggestion =
753 mergeCompletion(m_expr, m_position, ToInsert);
754 m_request.AddCompletion(CompletionSuggestion, Description);
755 }
756 }
757 }
758
759 /// \param S the semantic-analyzer object for which code-completion is being
760 /// done.
761 ///
762 /// \param CurrentArg the index of the current argument.
763 ///
764 /// \param Candidates an array of overload candidates.
765 ///
766 /// \param NumCandidates the number of overload candidates
ProcessOverloadCandidates(Sema & S,unsigned CurrentArg,OverloadCandidate * Candidates,unsigned NumCandidates,SourceLocation OpenParLoc)767 void ProcessOverloadCandidates(Sema &S, unsigned CurrentArg,
768 OverloadCandidate *Candidates,
769 unsigned NumCandidates,
770 SourceLocation OpenParLoc) override {
771 // At the moment we don't filter out any overloaded candidates.
772 }
773
getAllocator()774 CodeCompletionAllocator &getAllocator() override {
775 return m_info.getAllocator();
776 }
777
getCodeCompletionTUInfo()778 CodeCompletionTUInfo &getCodeCompletionTUInfo() override { return m_info; }
779 };
780 } // namespace
781
Complete(CompletionRequest & request,unsigned line,unsigned pos,unsigned typed_pos)782 bool ClangExpressionParser::Complete(CompletionRequest &request, unsigned line,
783 unsigned pos, unsigned typed_pos) {
784 DiagnosticManager mgr;
785 // We need the raw user expression here because that's what the CodeComplete
786 // class uses to provide completion suggestions.
787 // However, the `Text` method only gives us the transformed expression here.
788 // To actually get the raw user input here, we have to cast our expression to
789 // the LLVMUserExpression which exposes the right API. This should never fail
790 // as we always have a ClangUserExpression whenever we call this.
791 LLVMUserExpression &llvm_expr = *static_cast<LLVMUserExpression *>(&m_expr);
792 CodeComplete CC(request, m_compiler->getLangOpts(), llvm_expr.GetUserText(),
793 typed_pos);
794 // We don't need a code generator for parsing.
795 m_code_generator.reset();
796 // Start parsing the expression with our custom code completion consumer.
797 ParseInternal(mgr, &CC, line, pos);
798 return true;
799 }
800
Parse(DiagnosticManager & diagnostic_manager)801 unsigned ClangExpressionParser::Parse(DiagnosticManager &diagnostic_manager) {
802 return ParseInternal(diagnostic_manager);
803 }
804
805 unsigned
ParseInternal(DiagnosticManager & diagnostic_manager,CodeCompleteConsumer * completion_consumer,unsigned completion_line,unsigned completion_column)806 ClangExpressionParser::ParseInternal(DiagnosticManager &diagnostic_manager,
807 CodeCompleteConsumer *completion_consumer,
808 unsigned completion_line,
809 unsigned completion_column) {
810 ClangDiagnosticManagerAdapter *adapter =
811 static_cast<ClangDiagnosticManagerAdapter *>(
812 m_compiler->getDiagnostics().getClient());
813 clang::TextDiagnosticBuffer *diag_buf = adapter->GetPassthrough();
814 diag_buf->FlushDiagnostics(m_compiler->getDiagnostics());
815
816 adapter->ResetManager(&diagnostic_manager);
817
818 const char *expr_text = m_expr.Text();
819
820 clang::SourceManager &source_mgr = m_compiler->getSourceManager();
821 bool created_main_file = false;
822
823 // Clang wants to do completion on a real file known by Clang's file manager,
824 // so we have to create one to make this work.
825 // TODO: We probably could also simulate to Clang's file manager that there
826 // is a real file that contains our code.
827 bool should_create_file = completion_consumer != nullptr;
828
829 // We also want a real file on disk if we generate full debug info.
830 should_create_file |= m_compiler->getCodeGenOpts().getDebugInfo() ==
831 codegenoptions::FullDebugInfo;
832
833 if (should_create_file) {
834 int temp_fd = -1;
835 llvm::SmallString<128> result_path;
836 if (FileSpec tmpdir_file_spec = HostInfo::GetProcessTempDir()) {
837 tmpdir_file_spec.AppendPathComponent("lldb-%%%%%%.expr");
838 std::string temp_source_path = tmpdir_file_spec.GetPath();
839 llvm::sys::fs::createUniqueFile(temp_source_path, temp_fd, result_path);
840 } else {
841 llvm::sys::fs::createTemporaryFile("lldb", "expr", temp_fd, result_path);
842 }
843
844 if (temp_fd != -1) {
845 lldb_private::File file(temp_fd, true);
846 const size_t expr_text_len = strlen(expr_text);
847 size_t bytes_written = expr_text_len;
848 if (file.Write(expr_text, bytes_written).Success()) {
849 if (bytes_written == expr_text_len) {
850 file.Close();
851 source_mgr.setMainFileID(
852 source_mgr.createFileID(m_file_manager->getFile(result_path),
853 SourceLocation(), SrcMgr::C_User));
854 created_main_file = true;
855 }
856 }
857 }
858 }
859
860 if (!created_main_file) {
861 std::unique_ptr<MemoryBuffer> memory_buffer =
862 MemoryBuffer::getMemBufferCopy(expr_text, __FUNCTION__);
863 source_mgr.setMainFileID(source_mgr.createFileID(std::move(memory_buffer)));
864 }
865
866 diag_buf->BeginSourceFile(m_compiler->getLangOpts(),
867 &m_compiler->getPreprocessor());
868
869 ClangExpressionHelper *type_system_helper =
870 dyn_cast<ClangExpressionHelper>(m_expr.GetTypeSystemHelper());
871
872 ASTConsumer *ast_transformer =
873 type_system_helper->ASTTransformer(m_code_generator.get());
874
875 if (ClangExpressionDeclMap *decl_map = type_system_helper->DeclMap())
876 decl_map->InstallCodeGenerator(m_code_generator.get());
877
878 // If we want to parse for code completion, we need to attach our code
879 // completion consumer to the Sema and specify a completion position.
880 // While parsing the Sema will call this consumer with the provided
881 // completion suggestions.
882 if (completion_consumer) {
883 auto main_file = source_mgr.getFileEntryForID(source_mgr.getMainFileID());
884 auto &PP = m_compiler->getPreprocessor();
885 // Lines and columns start at 1 in Clang, but code completion positions are
886 // indexed from 0, so we need to add 1 to the line and column here.
887 ++completion_line;
888 ++completion_column;
889 PP.SetCodeCompletionPoint(main_file, completion_line, completion_column);
890 }
891
892 if (ast_transformer) {
893 ast_transformer->Initialize(m_compiler->getASTContext());
894 ParseAST(m_compiler->getPreprocessor(), ast_transformer,
895 m_compiler->getASTContext(), false, TU_Complete,
896 completion_consumer);
897 } else {
898 m_code_generator->Initialize(m_compiler->getASTContext());
899 ParseAST(m_compiler->getPreprocessor(), m_code_generator.get(),
900 m_compiler->getASTContext(), false, TU_Complete,
901 completion_consumer);
902 }
903
904 diag_buf->EndSourceFile();
905
906 unsigned num_errors = diag_buf->getNumErrors();
907
908 if (m_pp_callbacks && m_pp_callbacks->hasErrors()) {
909 num_errors++;
910 diagnostic_manager.PutString(eDiagnosticSeverityError,
911 "while importing modules:");
912 diagnostic_manager.AppendMessageToDiagnostic(
913 m_pp_callbacks->getErrorString());
914 }
915
916 if (!num_errors) {
917 if (type_system_helper->DeclMap() &&
918 !type_system_helper->DeclMap()->ResolveUnknownTypes()) {
919 diagnostic_manager.Printf(eDiagnosticSeverityError,
920 "Couldn't infer the type of a variable");
921 num_errors++;
922 }
923 }
924
925 if (!num_errors) {
926 type_system_helper->CommitPersistentDecls();
927 }
928
929 adapter->ResetManager();
930
931 return num_errors;
932 }
933
934 std::string
GetClangTargetABI(const ArchSpec & target_arch)935 ClangExpressionParser::GetClangTargetABI(const ArchSpec &target_arch) {
936 std::string abi;
937
938 if (target_arch.IsMIPS()) {
939 switch (target_arch.GetFlags() & ArchSpec::eMIPSABI_mask) {
940 case ArchSpec::eMIPSABI_N64:
941 abi = "n64";
942 break;
943 case ArchSpec::eMIPSABI_N32:
944 abi = "n32";
945 break;
946 case ArchSpec::eMIPSABI_O32:
947 abi = "o32";
948 break;
949 default:
950 break;
951 }
952 }
953 return abi;
954 }
955
RewriteExpression(DiagnosticManager & diagnostic_manager)956 bool ClangExpressionParser::RewriteExpression(
957 DiagnosticManager &diagnostic_manager) {
958 clang::SourceManager &source_manager = m_compiler->getSourceManager();
959 clang::edit::EditedSource editor(source_manager, m_compiler->getLangOpts(),
960 nullptr);
961 clang::edit::Commit commit(editor);
962 clang::Rewriter rewriter(source_manager, m_compiler->getLangOpts());
963
964 class RewritesReceiver : public edit::EditsReceiver {
965 Rewriter &rewrite;
966
967 public:
968 RewritesReceiver(Rewriter &in_rewrite) : rewrite(in_rewrite) {}
969
970 void insert(SourceLocation loc, StringRef text) override {
971 rewrite.InsertText(loc, text);
972 }
973 void replace(CharSourceRange range, StringRef text) override {
974 rewrite.ReplaceText(range.getBegin(), rewrite.getRangeSize(range), text);
975 }
976 };
977
978 RewritesReceiver rewrites_receiver(rewriter);
979
980 const DiagnosticList &diagnostics = diagnostic_manager.Diagnostics();
981 size_t num_diags = diagnostics.size();
982 if (num_diags == 0)
983 return false;
984
985 for (const Diagnostic *diag : diagnostic_manager.Diagnostics()) {
986 const ClangDiagnostic *diagnostic = llvm::dyn_cast<ClangDiagnostic>(diag);
987 if (diagnostic && diagnostic->HasFixIts()) {
988 for (const FixItHint &fixit : diagnostic->FixIts()) {
989 // This is cobbed from clang::Rewrite::FixItRewriter.
990 if (fixit.CodeToInsert.empty()) {
991 if (fixit.InsertFromRange.isValid()) {
992 commit.insertFromRange(fixit.RemoveRange.getBegin(),
993 fixit.InsertFromRange, /*afterToken=*/false,
994 fixit.BeforePreviousInsertions);
995 } else
996 commit.remove(fixit.RemoveRange);
997 } else {
998 if (fixit.RemoveRange.isTokenRange() ||
999 fixit.RemoveRange.getBegin() != fixit.RemoveRange.getEnd())
1000 commit.replace(fixit.RemoveRange, fixit.CodeToInsert);
1001 else
1002 commit.insert(fixit.RemoveRange.getBegin(), fixit.CodeToInsert,
1003 /*afterToken=*/false, fixit.BeforePreviousInsertions);
1004 }
1005 }
1006 }
1007 }
1008
1009 // FIXME - do we want to try to propagate specific errors here?
1010 if (!commit.isCommitable())
1011 return false;
1012 else if (!editor.commit(commit))
1013 return false;
1014
1015 // Now play all the edits, and stash the result in the diagnostic manager.
1016 editor.applyRewrites(rewrites_receiver);
1017 RewriteBuffer &main_file_buffer =
1018 rewriter.getEditBuffer(source_manager.getMainFileID());
1019
1020 std::string fixed_expression;
1021 llvm::raw_string_ostream out_stream(fixed_expression);
1022
1023 main_file_buffer.write(out_stream);
1024 out_stream.flush();
1025 diagnostic_manager.SetFixedExpression(fixed_expression);
1026
1027 return true;
1028 }
1029
FindFunctionInModule(ConstString & mangled_name,llvm::Module * module,const char * orig_name)1030 static bool FindFunctionInModule(ConstString &mangled_name,
1031 llvm::Module *module, const char *orig_name) {
1032 for (const auto &func : module->getFunctionList()) {
1033 const StringRef &name = func.getName();
1034 if (name.find(orig_name) != StringRef::npos) {
1035 mangled_name.SetString(name);
1036 return true;
1037 }
1038 }
1039
1040 return false;
1041 }
1042
PrepareForExecution(lldb::addr_t & func_addr,lldb::addr_t & func_end,lldb::IRExecutionUnitSP & execution_unit_sp,ExecutionContext & exe_ctx,bool & can_interpret,ExecutionPolicy execution_policy)1043 lldb_private::Status ClangExpressionParser::PrepareForExecution(
1044 lldb::addr_t &func_addr, lldb::addr_t &func_end,
1045 lldb::IRExecutionUnitSP &execution_unit_sp, ExecutionContext &exe_ctx,
1046 bool &can_interpret, ExecutionPolicy execution_policy) {
1047 func_addr = LLDB_INVALID_ADDRESS;
1048 func_end = LLDB_INVALID_ADDRESS;
1049 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_EXPRESSIONS));
1050
1051 lldb_private::Status err;
1052
1053 std::unique_ptr<llvm::Module> llvm_module_ap(
1054 m_code_generator->ReleaseModule());
1055
1056 if (!llvm_module_ap.get()) {
1057 err.SetErrorToGenericError();
1058 err.SetErrorString("IR doesn't contain a module");
1059 return err;
1060 }
1061
1062 ConstString function_name;
1063
1064 if (execution_policy != eExecutionPolicyTopLevel) {
1065 // Find the actual name of the function (it's often mangled somehow)
1066
1067 if (!FindFunctionInModule(function_name, llvm_module_ap.get(),
1068 m_expr.FunctionName())) {
1069 err.SetErrorToGenericError();
1070 err.SetErrorStringWithFormat("Couldn't find %s() in the module",
1071 m_expr.FunctionName());
1072 return err;
1073 } else {
1074 if (log)
1075 log->Printf("Found function %s for %s", function_name.AsCString(),
1076 m_expr.FunctionName());
1077 }
1078 }
1079
1080 SymbolContext sc;
1081
1082 if (lldb::StackFrameSP frame_sp = exe_ctx.GetFrameSP()) {
1083 sc = frame_sp->GetSymbolContext(lldb::eSymbolContextEverything);
1084 } else if (lldb::TargetSP target_sp = exe_ctx.GetTargetSP()) {
1085 sc.target_sp = target_sp;
1086 }
1087
1088 LLVMUserExpression::IRPasses custom_passes;
1089 {
1090 auto lang = m_expr.Language();
1091 if (log)
1092 log->Printf("%s - Current expression language is %s\n", __FUNCTION__,
1093 Language::GetNameForLanguageType(lang));
1094 lldb::ProcessSP process_sp = exe_ctx.GetProcessSP();
1095 if (process_sp && lang != lldb::eLanguageTypeUnknown) {
1096 auto runtime = process_sp->GetLanguageRuntime(lang);
1097 if (runtime)
1098 runtime->GetIRPasses(custom_passes);
1099 }
1100 }
1101
1102 if (custom_passes.EarlyPasses) {
1103 if (log)
1104 log->Printf("%s - Running Early IR Passes from LanguageRuntime on "
1105 "expression module '%s'",
1106 __FUNCTION__, m_expr.FunctionName());
1107
1108 custom_passes.EarlyPasses->run(*llvm_module_ap);
1109 }
1110
1111 execution_unit_sp.reset(
1112 new IRExecutionUnit(m_llvm_context, // handed off here
1113 llvm_module_ap, // handed off here
1114 function_name, exe_ctx.GetTargetSP(), sc,
1115 m_compiler->getTargetOpts().Features));
1116
1117 ClangExpressionHelper *type_system_helper =
1118 dyn_cast<ClangExpressionHelper>(m_expr.GetTypeSystemHelper());
1119 ClangExpressionDeclMap *decl_map =
1120 type_system_helper->DeclMap(); // result can be NULL
1121
1122 if (decl_map) {
1123 Stream *error_stream = NULL;
1124 Target *target = exe_ctx.GetTargetPtr();
1125 error_stream = target->GetDebugger().GetErrorFile().get();
1126
1127 IRForTarget ir_for_target(decl_map, m_expr.NeedsVariableResolution(),
1128 *execution_unit_sp, *error_stream,
1129 function_name.AsCString());
1130
1131 bool ir_can_run =
1132 ir_for_target.runOnModule(*execution_unit_sp->GetModule());
1133
1134 if (!ir_can_run) {
1135 err.SetErrorString(
1136 "The expression could not be prepared to run in the target");
1137 return err;
1138 }
1139
1140 Process *process = exe_ctx.GetProcessPtr();
1141
1142 if (execution_policy != eExecutionPolicyAlways &&
1143 execution_policy != eExecutionPolicyTopLevel) {
1144 lldb_private::Status interpret_error;
1145
1146 bool interpret_function_calls =
1147 !process ? false : process->CanInterpretFunctionCalls();
1148 can_interpret = IRInterpreter::CanInterpret(
1149 *execution_unit_sp->GetModule(), *execution_unit_sp->GetFunction(),
1150 interpret_error, interpret_function_calls);
1151
1152 if (!can_interpret && execution_policy == eExecutionPolicyNever) {
1153 err.SetErrorStringWithFormat("Can't run the expression locally: %s",
1154 interpret_error.AsCString());
1155 return err;
1156 }
1157 }
1158
1159 if (!process && execution_policy == eExecutionPolicyAlways) {
1160 err.SetErrorString("Expression needed to run in the target, but the "
1161 "target can't be run");
1162 return err;
1163 }
1164
1165 if (!process && execution_policy == eExecutionPolicyTopLevel) {
1166 err.SetErrorString("Top-level code needs to be inserted into a runnable "
1167 "target, but the target can't be run");
1168 return err;
1169 }
1170
1171 if (execution_policy == eExecutionPolicyAlways ||
1172 (execution_policy != eExecutionPolicyTopLevel && !can_interpret)) {
1173 if (m_expr.NeedsValidation() && process) {
1174 if (!process->GetDynamicCheckers()) {
1175 DynamicCheckerFunctions *dynamic_checkers =
1176 new DynamicCheckerFunctions();
1177
1178 DiagnosticManager install_diagnostics;
1179
1180 if (!dynamic_checkers->Install(install_diagnostics, exe_ctx)) {
1181 if (install_diagnostics.Diagnostics().size())
1182 err.SetErrorString(install_diagnostics.GetString().c_str());
1183 else
1184 err.SetErrorString("couldn't install checkers, unknown error");
1185
1186 return err;
1187 }
1188
1189 process->SetDynamicCheckers(dynamic_checkers);
1190
1191 if (log)
1192 log->Printf("== [ClangUserExpression::Evaluate] Finished "
1193 "installing dynamic checkers ==");
1194 }
1195
1196 IRDynamicChecks ir_dynamic_checks(*process->GetDynamicCheckers(),
1197 function_name.AsCString());
1198
1199 llvm::Module *module = execution_unit_sp->GetModule();
1200 if (!module || !ir_dynamic_checks.runOnModule(*module)) {
1201 err.SetErrorToGenericError();
1202 err.SetErrorString("Couldn't add dynamic checks to the expression");
1203 return err;
1204 }
1205
1206 if (custom_passes.LatePasses) {
1207 if (log)
1208 log->Printf("%s - Running Late IR Passes from LanguageRuntime on "
1209 "expression module '%s'",
1210 __FUNCTION__, m_expr.FunctionName());
1211
1212 custom_passes.LatePasses->run(*module);
1213 }
1214 }
1215 }
1216
1217 if (execution_policy == eExecutionPolicyAlways ||
1218 execution_policy == eExecutionPolicyTopLevel || !can_interpret) {
1219 execution_unit_sp->GetRunnableInfo(err, func_addr, func_end);
1220 }
1221 } else {
1222 execution_unit_sp->GetRunnableInfo(err, func_addr, func_end);
1223 }
1224
1225 return err;
1226 }
1227
RunStaticInitializers(lldb::IRExecutionUnitSP & execution_unit_sp,ExecutionContext & exe_ctx)1228 lldb_private::Status ClangExpressionParser::RunStaticInitializers(
1229 lldb::IRExecutionUnitSP &execution_unit_sp, ExecutionContext &exe_ctx) {
1230 lldb_private::Status err;
1231
1232 lldbassert(execution_unit_sp.get());
1233 lldbassert(exe_ctx.HasThreadScope());
1234
1235 if (!execution_unit_sp.get()) {
1236 err.SetErrorString(
1237 "can't run static initializers for a NULL execution unit");
1238 return err;
1239 }
1240
1241 if (!exe_ctx.HasThreadScope()) {
1242 err.SetErrorString("can't run static initializers without a thread");
1243 return err;
1244 }
1245
1246 std::vector<lldb::addr_t> static_initializers;
1247
1248 execution_unit_sp->GetStaticInitializers(static_initializers);
1249
1250 for (lldb::addr_t static_initializer : static_initializers) {
1251 EvaluateExpressionOptions options;
1252
1253 lldb::ThreadPlanSP call_static_initializer(new ThreadPlanCallFunction(
1254 exe_ctx.GetThreadRef(), Address(static_initializer), CompilerType(),
1255 llvm::ArrayRef<lldb::addr_t>(), options));
1256
1257 DiagnosticManager execution_errors;
1258 lldb::ExpressionResults results =
1259 exe_ctx.GetThreadRef().GetProcess()->RunThreadPlan(
1260 exe_ctx, call_static_initializer, options, execution_errors);
1261
1262 if (results != lldb::eExpressionCompleted) {
1263 err.SetErrorStringWithFormat("couldn't run static initializer: %s",
1264 execution_errors.GetString().c_str());
1265 return err;
1266 }
1267 }
1268
1269 return err;
1270 }
1271