1 //===-- ReaderWriter/MachO/LayoutPass.cpp - Layout atoms ------------------===//
2 //
3 //                             The LLVM Linker
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 
10 #include "LayoutPass.h"
11 #include "lld/Core/Instrumentation.h"
12 #include "lld/Core/PassManager.h"
13 #include "lld/ReaderWriter/MachOLinkingContext.h"
14 #include "llvm/ADT/STLExtras.h"
15 #include "llvm/ADT/Twine.h"
16 #include "llvm/Support/Debug.h"
17 #include "llvm/Support/Parallel.h"
18 #include <algorithm>
19 #include <set>
20 #include <utility>
21 
22 using namespace lld;
23 
24 #define DEBUG_TYPE "LayoutPass"
25 
26 namespace lld {
27 namespace mach_o {
28 
29 static bool compareAtoms(const LayoutPass::SortKey &,
30                          const LayoutPass::SortKey &,
31                          LayoutPass::SortOverride customSorter);
32 
33 #ifndef NDEBUG
34 // Return "reason (leftval, rightval)"
formatReason(StringRef reason,int leftVal,int rightVal)35 static std::string formatReason(StringRef reason, int leftVal, int rightVal) {
36   return (Twine(reason) + " (" + Twine(leftVal) + ", " + Twine(rightVal) + ")")
37       .str();
38 }
39 
40 // Less-than relationship of two atoms must be transitive, which is, if a < b
41 // and b < c, a < c must be true. This function checks the transitivity by
42 // checking the sort results.
checkTransitivity(std::vector<LayoutPass::SortKey> & vec,LayoutPass::SortOverride customSorter)43 static void checkTransitivity(std::vector<LayoutPass::SortKey> &vec,
44                               LayoutPass::SortOverride customSorter) {
45   for (auto i = vec.begin(), e = vec.end(); (i + 1) != e; ++i) {
46     for (auto j = i + 1; j != e; ++j) {
47       assert(compareAtoms(*i, *j, customSorter));
48       assert(!compareAtoms(*j, *i, customSorter));
49     }
50   }
51 }
52 
53 // Helper functions to check follow-on graph.
54 typedef llvm::DenseMap<const DefinedAtom *, const DefinedAtom *> AtomToAtomT;
55 
atomToDebugString(const Atom * atom)56 static std::string atomToDebugString(const Atom *atom) {
57   const DefinedAtom *definedAtom = dyn_cast<DefinedAtom>(atom);
58   std::string str;
59   llvm::raw_string_ostream s(str);
60   if (definedAtom->name().empty())
61     s << "<anonymous " << definedAtom << ">";
62   else
63     s << definedAtom->name();
64   s << " in ";
65   if (definedAtom->customSectionName().empty())
66     s << "<anonymous>";
67   else
68     s << definedAtom->customSectionName();
69   s.flush();
70   return str;
71 }
72 
showCycleDetectedError(const Registry & registry,AtomToAtomT & followOnNexts,const DefinedAtom * atom)73 static void showCycleDetectedError(const Registry &registry,
74                                    AtomToAtomT &followOnNexts,
75                                    const DefinedAtom *atom) {
76   const DefinedAtom *start = atom;
77   llvm::dbgs() << "There's a cycle in a follow-on chain!\n";
78   do {
79     llvm::dbgs() << "  " << atomToDebugString(atom) << "\n";
80     for (const Reference *ref : *atom) {
81       StringRef kindValStr;
82       if (!registry.referenceKindToString(ref->kindNamespace(), ref->kindArch(),
83                                           ref->kindValue(), kindValStr)) {
84         kindValStr = "<unknown>";
85       }
86       llvm::dbgs() << "    " << kindValStr
87                    << ": " << atomToDebugString(ref->target()) << "\n";
88     }
89     atom = followOnNexts[atom];
90   } while (atom != start);
91   llvm::report_fatal_error("Cycle detected");
92 }
93 
94 /// Exit if there's a cycle in a followon chain reachable from the
95 /// given root atom. Uses the tortoise and hare algorithm to detect a
96 /// cycle.
checkNoCycleInFollowonChain(const Registry & registry,AtomToAtomT & followOnNexts,const DefinedAtom * root)97 static void checkNoCycleInFollowonChain(const Registry &registry,
98                                         AtomToAtomT &followOnNexts,
99                                         const DefinedAtom *root) {
100   const DefinedAtom *tortoise = root;
101   const DefinedAtom *hare = followOnNexts[root];
102   while (true) {
103     if (!tortoise || !hare)
104       return;
105     if (tortoise == hare)
106       showCycleDetectedError(registry, followOnNexts, tortoise);
107     tortoise = followOnNexts[tortoise];
108     hare = followOnNexts[followOnNexts[hare]];
109   }
110 }
111 
checkReachabilityFromRoot(AtomToAtomT & followOnRoots,const DefinedAtom * atom)112 static void checkReachabilityFromRoot(AtomToAtomT &followOnRoots,
113                                       const DefinedAtom *atom) {
114   if (!atom) return;
115   auto i = followOnRoots.find(atom);
116   if (i == followOnRoots.end()) {
117     llvm_unreachable(((Twine("Atom <") + atomToDebugString(atom) +
118                        "> has no follow-on root!"))
119                          .str()
120                          .c_str());
121   }
122   const DefinedAtom *ap = i->second;
123   while (true) {
124     const DefinedAtom *next = followOnRoots[ap];
125     if (!next) {
126       llvm_unreachable((Twine("Atom <" + atomToDebugString(atom) +
127                               "> is not reachable from its root!"))
128                            .str()
129                            .c_str());
130     }
131     if (next == ap)
132       return;
133     ap = next;
134   }
135 }
136 
printDefinedAtoms(const File::AtomRange<DefinedAtom> & atomRange)137 static void printDefinedAtoms(const File::AtomRange<DefinedAtom> &atomRange) {
138   for (const DefinedAtom *atom : atomRange) {
139     llvm::dbgs() << "  file=" << atom->file().path()
140                  << ", name=" << atom->name()
141                  << ", size=" << atom->size()
142                  << ", type=" << atom->contentType()
143                  << ", ordinal=" << atom->ordinal()
144                  << "\n";
145   }
146 }
147 
148 /// Verify that the followon chain is sane. Should not be called in
149 /// release binary.
checkFollowonChain(const File::AtomRange<DefinedAtom> & range)150 void LayoutPass::checkFollowonChain(const File::AtomRange<DefinedAtom> &range) {
151   ScopedTask task(getDefaultDomain(), "LayoutPass::checkFollowonChain");
152 
153   // Verify that there's no cycle in follow-on chain.
154   std::set<const DefinedAtom *> roots;
155   for (const auto &ai : _followOnRoots)
156     roots.insert(ai.second);
157   for (const DefinedAtom *root : roots)
158     checkNoCycleInFollowonChain(_registry, _followOnNexts, root);
159 
160   // Verify that all the atoms in followOnNexts have references to
161   // their roots.
162   for (const auto &ai : _followOnNexts) {
163     checkReachabilityFromRoot(_followOnRoots, ai.first);
164     checkReachabilityFromRoot(_followOnRoots, ai.second);
165   }
166 }
167 #endif // #ifndef NDEBUG
168 
169 /// The function compares atoms by sorting atoms in the following order
170 /// a) Sorts atoms by their ordinal overrides (layout-after/ingroup)
171 /// b) Sorts atoms by their permissions
172 /// c) Sorts atoms by their content
173 /// d) Sorts atoms by custom sorter
174 /// e) Sorts atoms on how they appear using File Ordinality
175 /// f) Sorts atoms on how they appear within the File
compareAtomsSub(const LayoutPass::SortKey & lc,const LayoutPass::SortKey & rc,LayoutPass::SortOverride customSorter,std::string & reason)176 static bool compareAtomsSub(const LayoutPass::SortKey &lc,
177                             const LayoutPass::SortKey &rc,
178                             LayoutPass::SortOverride customSorter,
179                             std::string &reason) {
180   const DefinedAtom *left = lc._atom.get();
181   const DefinedAtom *right = rc._atom.get();
182   if (left == right) {
183     reason = "same";
184     return false;
185   }
186 
187   // Find the root of the chain if it is a part of a follow-on chain.
188   const DefinedAtom *leftRoot = lc._root;
189   const DefinedAtom *rightRoot = rc._root;
190 
191   // Sort atoms by their ordinal overrides only if they fall in the same
192   // chain.
193   if (leftRoot == rightRoot) {
194     LLVM_DEBUG(reason = formatReason("override", lc._override, rc._override));
195     return lc._override < rc._override;
196   }
197 
198   // Sort same permissions together.
199   DefinedAtom::ContentPermissions leftPerms = leftRoot->permissions();
200   DefinedAtom::ContentPermissions rightPerms = rightRoot->permissions();
201 
202   if (leftPerms != rightPerms) {
203     LLVM_DEBUG(
204         reason = formatReason("contentPerms", (int)leftPerms, (int)rightPerms));
205     return leftPerms < rightPerms;
206   }
207 
208   // Sort same content types together.
209   DefinedAtom::ContentType leftType = leftRoot->contentType();
210   DefinedAtom::ContentType rightType = rightRoot->contentType();
211 
212   if (leftType != rightType) {
213     LLVM_DEBUG(reason =
214                    formatReason("contentType", (int)leftType, (int)rightType));
215     return leftType < rightType;
216   }
217 
218   // Use custom sorter if supplied.
219   if (customSorter) {
220     bool leftBeforeRight;
221     if (customSorter(leftRoot, rightRoot, leftBeforeRight))
222       return leftBeforeRight;
223   }
224 
225   // Sort by .o order.
226   const File *leftFile = &leftRoot->file();
227   const File *rightFile = &rightRoot->file();
228 
229   if (leftFile != rightFile) {
230     LLVM_DEBUG(reason = formatReason(".o order", (int)leftFile->ordinal(),
231                                      (int)rightFile->ordinal()));
232     return leftFile->ordinal() < rightFile->ordinal();
233   }
234 
235   // Sort by atom order with .o file.
236   uint64_t leftOrdinal = leftRoot->ordinal();
237   uint64_t rightOrdinal = rightRoot->ordinal();
238 
239   if (leftOrdinal != rightOrdinal) {
240     LLVM_DEBUG(reason = formatReason("ordinal", (int)leftRoot->ordinal(),
241                                      (int)rightRoot->ordinal()));
242     return leftOrdinal < rightOrdinal;
243   }
244 
245   llvm::errs() << "Unordered: <" << left->name() << "> <"
246                << right->name() << ">\n";
247   llvm_unreachable("Atoms with Same Ordinal!");
248 }
249 
compareAtoms(const LayoutPass::SortKey & lc,const LayoutPass::SortKey & rc,LayoutPass::SortOverride customSorter)250 static bool compareAtoms(const LayoutPass::SortKey &lc,
251                          const LayoutPass::SortKey &rc,
252                          LayoutPass::SortOverride customSorter) {
253   std::string reason;
254   bool result = compareAtomsSub(lc, rc, customSorter, reason);
255   LLVM_DEBUG({
256     StringRef comp = result ? "<" : ">=";
257     llvm::dbgs() << "Layout: '" << lc._atom.get()->name()
258                  << "' " << comp << " '"
259                  << rc._atom.get()->name() << "' (" << reason << ")\n";
260   });
261   return result;
262 }
263 
LayoutPass(const Registry & registry,SortOverride sorter)264 LayoutPass::LayoutPass(const Registry &registry, SortOverride sorter)
265     : _registry(registry), _customSorter(std::move(sorter)) {}
266 
267 // Returns the atom immediately followed by the given atom in the followon
268 // chain.
findAtomFollowedBy(const DefinedAtom * targetAtom)269 const DefinedAtom *LayoutPass::findAtomFollowedBy(
270     const DefinedAtom *targetAtom) {
271   // Start from the beginning of the chain and follow the chain until
272   // we find the targetChain.
273   const DefinedAtom *atom = _followOnRoots[targetAtom];
274   while (true) {
275     const DefinedAtom *prevAtom = atom;
276     AtomToAtomT::iterator targetFollowOnAtomsIter = _followOnNexts.find(atom);
277     // The target atom must be in the chain of its root.
278     assert(targetFollowOnAtomsIter != _followOnNexts.end());
279     atom = targetFollowOnAtomsIter->second;
280     if (atom == targetAtom)
281       return prevAtom;
282   }
283 }
284 
285 // Check if all the atoms followed by the given target atom are of size zero.
286 // When this method is called, an atom being added is not of size zero and
287 // will be added to the head of the followon chain. All the atoms between the
288 // atom and the targetAtom (specified by layout-after) need to be of size zero
289 // in this case. Otherwise the desired layout is impossible.
checkAllPrevAtomsZeroSize(const DefinedAtom * targetAtom)290 bool LayoutPass::checkAllPrevAtomsZeroSize(const DefinedAtom *targetAtom) {
291   const DefinedAtom *atom = _followOnRoots[targetAtom];
292   while (true) {
293     if (atom == targetAtom)
294       return true;
295     if (atom->size() != 0)
296       // TODO: print warning that an impossible layout is being desired by the
297       // user.
298       return false;
299     AtomToAtomT::iterator targetFollowOnAtomsIter = _followOnNexts.find(atom);
300     // The target atom must be in the chain of its root.
301     assert(targetFollowOnAtomsIter != _followOnNexts.end());
302     atom = targetFollowOnAtomsIter->second;
303   }
304 }
305 
306 // Set the root of all atoms in targetAtom's chain to the given root.
setChainRoot(const DefinedAtom * targetAtom,const DefinedAtom * root)307 void LayoutPass::setChainRoot(const DefinedAtom *targetAtom,
308                               const DefinedAtom *root) {
309   // Walk through the followon chain and override each node's root.
310   while (true) {
311     _followOnRoots[targetAtom] = root;
312     AtomToAtomT::iterator targetFollowOnAtomsIter =
313         _followOnNexts.find(targetAtom);
314     if (targetFollowOnAtomsIter == _followOnNexts.end())
315       return;
316     targetAtom = targetFollowOnAtomsIter->second;
317   }
318 }
319 
320 /// This pass builds the followon tables described by two DenseMaps
321 /// followOnRoots and followonNexts.
322 /// The followOnRoots map contains a mapping of a DefinedAtom to its root
323 /// The followOnNexts map contains a mapping of what DefinedAtom follows the
324 /// current Atom
325 /// The algorithm follows a very simple approach
326 /// a) If the atom is first seen, then make that as the root atom
327 /// b) The targetAtom which this Atom contains, has the root thats set to the
328 ///    root of the current atom
329 /// c) If the targetAtom is part of a different tree and the root of the
330 ///    targetAtom is itself, Chain all the atoms that are contained in the tree
331 ///    to the current Tree
332 /// d) If the targetAtom is part of a different chain and the root of the
333 ///    targetAtom until the targetAtom has all atoms of size 0, then chain the
334 ///    targetAtoms and its tree to the current chain
buildFollowOnTable(const File::AtomRange<DefinedAtom> & range)335 void LayoutPass::buildFollowOnTable(const File::AtomRange<DefinedAtom> &range) {
336   ScopedTask task(getDefaultDomain(), "LayoutPass::buildFollowOnTable");
337   // Set the initial size of the followon and the followonNext hash to the
338   // number of atoms that we have.
339   _followOnRoots.reserve(range.size());
340   _followOnNexts.reserve(range.size());
341   for (const DefinedAtom *ai : range) {
342     for (const Reference *r : *ai) {
343       if (r->kindNamespace() != lld::Reference::KindNamespace::all ||
344           r->kindValue() != lld::Reference::kindLayoutAfter)
345         continue;
346       const DefinedAtom *targetAtom = dyn_cast<DefinedAtom>(r->target());
347       _followOnNexts[ai] = targetAtom;
348 
349       // If we find a followon for the first time, let's make that atom as the
350       // root atom.
351       if (_followOnRoots.count(ai) == 0)
352         _followOnRoots[ai] = ai;
353 
354       auto iter = _followOnRoots.find(targetAtom);
355       if (iter == _followOnRoots.end()) {
356         // If the targetAtom is not a root of any chain, let's make the root of
357         // the targetAtom to the root of the current chain.
358 
359         // The expression m[i] = m[j] where m is a DenseMap and i != j is not
360         // safe. m[j] returns a reference, which would be invalidated when a
361         // rehashing occurs. If rehashing occurs to make room for m[i], m[j]
362         // becomes invalid, and that invalid reference would be used as the RHS
363         // value of the expression.
364         // Copy the value to workaround.
365         const DefinedAtom *tmp = _followOnRoots[ai];
366         _followOnRoots[targetAtom] = tmp;
367         continue;
368       }
369       if (iter->second == targetAtom) {
370         // If the targetAtom is the root of a chain, the chain becomes part of
371         // the current chain. Rewrite the subchain's root to the current
372         // chain's root.
373         setChainRoot(targetAtom, _followOnRoots[ai]);
374         continue;
375       }
376       // The targetAtom is already a part of a chain. If the current atom is
377       // of size zero, we can insert it in the middle of the chain just
378       // before the target atom, while not breaking other atom's followon
379       // relationships. If it's not, we can only insert the current atom at
380       // the beginning of the chain. All the atoms followed by the target
381       // atom must be of size zero in that case to satisfy the followon
382       // relationships.
383       size_t currentAtomSize = ai->size();
384       if (currentAtomSize == 0) {
385         const DefinedAtom *targetPrevAtom = findAtomFollowedBy(targetAtom);
386         _followOnNexts[targetPrevAtom] = ai;
387         const DefinedAtom *tmp = _followOnRoots[targetPrevAtom];
388         _followOnRoots[ai] = tmp;
389         continue;
390       }
391       if (!checkAllPrevAtomsZeroSize(targetAtom))
392         break;
393       _followOnNexts[ai] = _followOnRoots[targetAtom];
394       setChainRoot(_followOnRoots[targetAtom], _followOnRoots[ai]);
395     }
396   }
397 }
398 
399 /// Build an ordinal override map by traversing the followon chain, and
400 /// assigning ordinals to each atom, if the atoms have their ordinals
401 /// already assigned skip the atom and move to the next. This is the
402 /// main map thats used to sort the atoms while comparing two atoms together
403 void
buildOrdinalOverrideMap(const File::AtomRange<DefinedAtom> & range)404 LayoutPass::buildOrdinalOverrideMap(const File::AtomRange<DefinedAtom> &range) {
405   ScopedTask task(getDefaultDomain(), "LayoutPass::buildOrdinalOverrideMap");
406   uint64_t index = 0;
407   for (const DefinedAtom *ai : range) {
408     const DefinedAtom *atom = ai;
409     if (_ordinalOverrideMap.find(atom) != _ordinalOverrideMap.end())
410       continue;
411     AtomToAtomT::iterator start = _followOnRoots.find(atom);
412     if (start == _followOnRoots.end())
413       continue;
414     for (const DefinedAtom *nextAtom = start->second; nextAtom;
415          nextAtom = _followOnNexts[nextAtom]) {
416       AtomToOrdinalT::iterator pos = _ordinalOverrideMap.find(nextAtom);
417       if (pos == _ordinalOverrideMap.end())
418         _ordinalOverrideMap[nextAtom] = index++;
419     }
420   }
421 }
422 
423 std::vector<LayoutPass::SortKey>
decorate(File::AtomRange<DefinedAtom> & atomRange) const424 LayoutPass::decorate(File::AtomRange<DefinedAtom> &atomRange) const {
425   std::vector<SortKey> ret;
426   for (OwningAtomPtr<DefinedAtom> &atom : atomRange.owning_ptrs()) {
427     auto ri = _followOnRoots.find(atom.get());
428     auto oi = _ordinalOverrideMap.find(atom.get());
429     const auto *root = (ri == _followOnRoots.end()) ? atom.get() : ri->second;
430     uint64_t override = (oi == _ordinalOverrideMap.end()) ? 0 : oi->second;
431     ret.push_back(SortKey(std::move(atom), root, override));
432   }
433   return ret;
434 }
435 
undecorate(File::AtomRange<DefinedAtom> & atomRange,std::vector<SortKey> & keys) const436 void LayoutPass::undecorate(File::AtomRange<DefinedAtom> &atomRange,
437                             std::vector<SortKey> &keys) const {
438   size_t i = 0;
439   for (SortKey &k : keys)
440     atomRange[i++] = std::move(k._atom);
441 }
442 
443 /// Perform the actual pass
perform(SimpleFile & mergedFile)444 llvm::Error LayoutPass::perform(SimpleFile &mergedFile) {
445   LLVM_DEBUG(llvm::dbgs() << "******** Laying out atoms:\n");
446   // sort the atoms
447   ScopedTask task(getDefaultDomain(), "LayoutPass");
448   File::AtomRange<DefinedAtom> atomRange = mergedFile.defined();
449 
450   // Build follow on tables
451   buildFollowOnTable(atomRange);
452 
453   // Check the structure of followon graph if running in debug mode.
454   LLVM_DEBUG(checkFollowonChain(atomRange));
455 
456   // Build override maps
457   buildOrdinalOverrideMap(atomRange);
458 
459   LLVM_DEBUG({
460     llvm::dbgs() << "unsorted atoms:\n";
461     printDefinedAtoms(atomRange);
462   });
463 
464   std::vector<LayoutPass::SortKey> vec = decorate(atomRange);
465   sort(llvm::parallel::par, vec.begin(), vec.end(),
466        [&](const LayoutPass::SortKey &l, const LayoutPass::SortKey &r) -> bool {
467          return compareAtoms(l, r, _customSorter);
468        });
469   LLVM_DEBUG(checkTransitivity(vec, _customSorter));
470   undecorate(atomRange, vec);
471 
472   LLVM_DEBUG({
473     llvm::dbgs() << "sorted atoms:\n";
474     printDefinedAtoms(atomRange);
475   });
476 
477   LLVM_DEBUG(llvm::dbgs() << "******** Finished laying out atoms\n");
478   return llvm::Error::success();
479 }
480 
addLayoutPass(PassManager & pm,const MachOLinkingContext & ctx)481 void addLayoutPass(PassManager &pm, const MachOLinkingContext &ctx) {
482   pm.add(llvm::make_unique<LayoutPass>(
483       ctx.registry(), [&](const DefinedAtom * left, const DefinedAtom * right,
484                           bool & leftBeforeRight) ->bool {
485     return ctx.customAtomOrderer(left, right, leftBeforeRight);
486   }));
487 }
488 
489 } // namespace mach_o
490 } // namespace lld
491