1 //===-- ReaderWriter/MachO/LayoutPass.cpp - Layout atoms ------------------===//
2 //
3 // The LLVM Linker
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9
10 #include "LayoutPass.h"
11 #include "lld/Core/Instrumentation.h"
12 #include "lld/Core/PassManager.h"
13 #include "lld/ReaderWriter/MachOLinkingContext.h"
14 #include "llvm/ADT/STLExtras.h"
15 #include "llvm/ADT/Twine.h"
16 #include "llvm/Support/Debug.h"
17 #include "llvm/Support/Parallel.h"
18 #include <algorithm>
19 #include <set>
20 #include <utility>
21
22 using namespace lld;
23
24 #define DEBUG_TYPE "LayoutPass"
25
26 namespace lld {
27 namespace mach_o {
28
29 static bool compareAtoms(const LayoutPass::SortKey &,
30 const LayoutPass::SortKey &,
31 LayoutPass::SortOverride customSorter);
32
33 #ifndef NDEBUG
34 // Return "reason (leftval, rightval)"
formatReason(StringRef reason,int leftVal,int rightVal)35 static std::string formatReason(StringRef reason, int leftVal, int rightVal) {
36 return (Twine(reason) + " (" + Twine(leftVal) + ", " + Twine(rightVal) + ")")
37 .str();
38 }
39
40 // Less-than relationship of two atoms must be transitive, which is, if a < b
41 // and b < c, a < c must be true. This function checks the transitivity by
42 // checking the sort results.
checkTransitivity(std::vector<LayoutPass::SortKey> & vec,LayoutPass::SortOverride customSorter)43 static void checkTransitivity(std::vector<LayoutPass::SortKey> &vec,
44 LayoutPass::SortOverride customSorter) {
45 for (auto i = vec.begin(), e = vec.end(); (i + 1) != e; ++i) {
46 for (auto j = i + 1; j != e; ++j) {
47 assert(compareAtoms(*i, *j, customSorter));
48 assert(!compareAtoms(*j, *i, customSorter));
49 }
50 }
51 }
52
53 // Helper functions to check follow-on graph.
54 typedef llvm::DenseMap<const DefinedAtom *, const DefinedAtom *> AtomToAtomT;
55
atomToDebugString(const Atom * atom)56 static std::string atomToDebugString(const Atom *atom) {
57 const DefinedAtom *definedAtom = dyn_cast<DefinedAtom>(atom);
58 std::string str;
59 llvm::raw_string_ostream s(str);
60 if (definedAtom->name().empty())
61 s << "<anonymous " << definedAtom << ">";
62 else
63 s << definedAtom->name();
64 s << " in ";
65 if (definedAtom->customSectionName().empty())
66 s << "<anonymous>";
67 else
68 s << definedAtom->customSectionName();
69 s.flush();
70 return str;
71 }
72
showCycleDetectedError(const Registry & registry,AtomToAtomT & followOnNexts,const DefinedAtom * atom)73 static void showCycleDetectedError(const Registry ®istry,
74 AtomToAtomT &followOnNexts,
75 const DefinedAtom *atom) {
76 const DefinedAtom *start = atom;
77 llvm::dbgs() << "There's a cycle in a follow-on chain!\n";
78 do {
79 llvm::dbgs() << " " << atomToDebugString(atom) << "\n";
80 for (const Reference *ref : *atom) {
81 StringRef kindValStr;
82 if (!registry.referenceKindToString(ref->kindNamespace(), ref->kindArch(),
83 ref->kindValue(), kindValStr)) {
84 kindValStr = "<unknown>";
85 }
86 llvm::dbgs() << " " << kindValStr
87 << ": " << atomToDebugString(ref->target()) << "\n";
88 }
89 atom = followOnNexts[atom];
90 } while (atom != start);
91 llvm::report_fatal_error("Cycle detected");
92 }
93
94 /// Exit if there's a cycle in a followon chain reachable from the
95 /// given root atom. Uses the tortoise and hare algorithm to detect a
96 /// cycle.
checkNoCycleInFollowonChain(const Registry & registry,AtomToAtomT & followOnNexts,const DefinedAtom * root)97 static void checkNoCycleInFollowonChain(const Registry ®istry,
98 AtomToAtomT &followOnNexts,
99 const DefinedAtom *root) {
100 const DefinedAtom *tortoise = root;
101 const DefinedAtom *hare = followOnNexts[root];
102 while (true) {
103 if (!tortoise || !hare)
104 return;
105 if (tortoise == hare)
106 showCycleDetectedError(registry, followOnNexts, tortoise);
107 tortoise = followOnNexts[tortoise];
108 hare = followOnNexts[followOnNexts[hare]];
109 }
110 }
111
checkReachabilityFromRoot(AtomToAtomT & followOnRoots,const DefinedAtom * atom)112 static void checkReachabilityFromRoot(AtomToAtomT &followOnRoots,
113 const DefinedAtom *atom) {
114 if (!atom) return;
115 auto i = followOnRoots.find(atom);
116 if (i == followOnRoots.end()) {
117 llvm_unreachable(((Twine("Atom <") + atomToDebugString(atom) +
118 "> has no follow-on root!"))
119 .str()
120 .c_str());
121 }
122 const DefinedAtom *ap = i->second;
123 while (true) {
124 const DefinedAtom *next = followOnRoots[ap];
125 if (!next) {
126 llvm_unreachable((Twine("Atom <" + atomToDebugString(atom) +
127 "> is not reachable from its root!"))
128 .str()
129 .c_str());
130 }
131 if (next == ap)
132 return;
133 ap = next;
134 }
135 }
136
printDefinedAtoms(const File::AtomRange<DefinedAtom> & atomRange)137 static void printDefinedAtoms(const File::AtomRange<DefinedAtom> &atomRange) {
138 for (const DefinedAtom *atom : atomRange) {
139 llvm::dbgs() << " file=" << atom->file().path()
140 << ", name=" << atom->name()
141 << ", size=" << atom->size()
142 << ", type=" << atom->contentType()
143 << ", ordinal=" << atom->ordinal()
144 << "\n";
145 }
146 }
147
148 /// Verify that the followon chain is sane. Should not be called in
149 /// release binary.
checkFollowonChain(const File::AtomRange<DefinedAtom> & range)150 void LayoutPass::checkFollowonChain(const File::AtomRange<DefinedAtom> &range) {
151 ScopedTask task(getDefaultDomain(), "LayoutPass::checkFollowonChain");
152
153 // Verify that there's no cycle in follow-on chain.
154 std::set<const DefinedAtom *> roots;
155 for (const auto &ai : _followOnRoots)
156 roots.insert(ai.second);
157 for (const DefinedAtom *root : roots)
158 checkNoCycleInFollowonChain(_registry, _followOnNexts, root);
159
160 // Verify that all the atoms in followOnNexts have references to
161 // their roots.
162 for (const auto &ai : _followOnNexts) {
163 checkReachabilityFromRoot(_followOnRoots, ai.first);
164 checkReachabilityFromRoot(_followOnRoots, ai.second);
165 }
166 }
167 #endif // #ifndef NDEBUG
168
169 /// The function compares atoms by sorting atoms in the following order
170 /// a) Sorts atoms by their ordinal overrides (layout-after/ingroup)
171 /// b) Sorts atoms by their permissions
172 /// c) Sorts atoms by their content
173 /// d) Sorts atoms by custom sorter
174 /// e) Sorts atoms on how they appear using File Ordinality
175 /// f) Sorts atoms on how they appear within the File
compareAtomsSub(const LayoutPass::SortKey & lc,const LayoutPass::SortKey & rc,LayoutPass::SortOverride customSorter,std::string & reason)176 static bool compareAtomsSub(const LayoutPass::SortKey &lc,
177 const LayoutPass::SortKey &rc,
178 LayoutPass::SortOverride customSorter,
179 std::string &reason) {
180 const DefinedAtom *left = lc._atom.get();
181 const DefinedAtom *right = rc._atom.get();
182 if (left == right) {
183 reason = "same";
184 return false;
185 }
186
187 // Find the root of the chain if it is a part of a follow-on chain.
188 const DefinedAtom *leftRoot = lc._root;
189 const DefinedAtom *rightRoot = rc._root;
190
191 // Sort atoms by their ordinal overrides only if they fall in the same
192 // chain.
193 if (leftRoot == rightRoot) {
194 LLVM_DEBUG(reason = formatReason("override", lc._override, rc._override));
195 return lc._override < rc._override;
196 }
197
198 // Sort same permissions together.
199 DefinedAtom::ContentPermissions leftPerms = leftRoot->permissions();
200 DefinedAtom::ContentPermissions rightPerms = rightRoot->permissions();
201
202 if (leftPerms != rightPerms) {
203 LLVM_DEBUG(
204 reason = formatReason("contentPerms", (int)leftPerms, (int)rightPerms));
205 return leftPerms < rightPerms;
206 }
207
208 // Sort same content types together.
209 DefinedAtom::ContentType leftType = leftRoot->contentType();
210 DefinedAtom::ContentType rightType = rightRoot->contentType();
211
212 if (leftType != rightType) {
213 LLVM_DEBUG(reason =
214 formatReason("contentType", (int)leftType, (int)rightType));
215 return leftType < rightType;
216 }
217
218 // Use custom sorter if supplied.
219 if (customSorter) {
220 bool leftBeforeRight;
221 if (customSorter(leftRoot, rightRoot, leftBeforeRight))
222 return leftBeforeRight;
223 }
224
225 // Sort by .o order.
226 const File *leftFile = &leftRoot->file();
227 const File *rightFile = &rightRoot->file();
228
229 if (leftFile != rightFile) {
230 LLVM_DEBUG(reason = formatReason(".o order", (int)leftFile->ordinal(),
231 (int)rightFile->ordinal()));
232 return leftFile->ordinal() < rightFile->ordinal();
233 }
234
235 // Sort by atom order with .o file.
236 uint64_t leftOrdinal = leftRoot->ordinal();
237 uint64_t rightOrdinal = rightRoot->ordinal();
238
239 if (leftOrdinal != rightOrdinal) {
240 LLVM_DEBUG(reason = formatReason("ordinal", (int)leftRoot->ordinal(),
241 (int)rightRoot->ordinal()));
242 return leftOrdinal < rightOrdinal;
243 }
244
245 llvm::errs() << "Unordered: <" << left->name() << "> <"
246 << right->name() << ">\n";
247 llvm_unreachable("Atoms with Same Ordinal!");
248 }
249
compareAtoms(const LayoutPass::SortKey & lc,const LayoutPass::SortKey & rc,LayoutPass::SortOverride customSorter)250 static bool compareAtoms(const LayoutPass::SortKey &lc,
251 const LayoutPass::SortKey &rc,
252 LayoutPass::SortOverride customSorter) {
253 std::string reason;
254 bool result = compareAtomsSub(lc, rc, customSorter, reason);
255 LLVM_DEBUG({
256 StringRef comp = result ? "<" : ">=";
257 llvm::dbgs() << "Layout: '" << lc._atom.get()->name()
258 << "' " << comp << " '"
259 << rc._atom.get()->name() << "' (" << reason << ")\n";
260 });
261 return result;
262 }
263
LayoutPass(const Registry & registry,SortOverride sorter)264 LayoutPass::LayoutPass(const Registry ®istry, SortOverride sorter)
265 : _registry(registry), _customSorter(std::move(sorter)) {}
266
267 // Returns the atom immediately followed by the given atom in the followon
268 // chain.
findAtomFollowedBy(const DefinedAtom * targetAtom)269 const DefinedAtom *LayoutPass::findAtomFollowedBy(
270 const DefinedAtom *targetAtom) {
271 // Start from the beginning of the chain and follow the chain until
272 // we find the targetChain.
273 const DefinedAtom *atom = _followOnRoots[targetAtom];
274 while (true) {
275 const DefinedAtom *prevAtom = atom;
276 AtomToAtomT::iterator targetFollowOnAtomsIter = _followOnNexts.find(atom);
277 // The target atom must be in the chain of its root.
278 assert(targetFollowOnAtomsIter != _followOnNexts.end());
279 atom = targetFollowOnAtomsIter->second;
280 if (atom == targetAtom)
281 return prevAtom;
282 }
283 }
284
285 // Check if all the atoms followed by the given target atom are of size zero.
286 // When this method is called, an atom being added is not of size zero and
287 // will be added to the head of the followon chain. All the atoms between the
288 // atom and the targetAtom (specified by layout-after) need to be of size zero
289 // in this case. Otherwise the desired layout is impossible.
checkAllPrevAtomsZeroSize(const DefinedAtom * targetAtom)290 bool LayoutPass::checkAllPrevAtomsZeroSize(const DefinedAtom *targetAtom) {
291 const DefinedAtom *atom = _followOnRoots[targetAtom];
292 while (true) {
293 if (atom == targetAtom)
294 return true;
295 if (atom->size() != 0)
296 // TODO: print warning that an impossible layout is being desired by the
297 // user.
298 return false;
299 AtomToAtomT::iterator targetFollowOnAtomsIter = _followOnNexts.find(atom);
300 // The target atom must be in the chain of its root.
301 assert(targetFollowOnAtomsIter != _followOnNexts.end());
302 atom = targetFollowOnAtomsIter->second;
303 }
304 }
305
306 // Set the root of all atoms in targetAtom's chain to the given root.
setChainRoot(const DefinedAtom * targetAtom,const DefinedAtom * root)307 void LayoutPass::setChainRoot(const DefinedAtom *targetAtom,
308 const DefinedAtom *root) {
309 // Walk through the followon chain and override each node's root.
310 while (true) {
311 _followOnRoots[targetAtom] = root;
312 AtomToAtomT::iterator targetFollowOnAtomsIter =
313 _followOnNexts.find(targetAtom);
314 if (targetFollowOnAtomsIter == _followOnNexts.end())
315 return;
316 targetAtom = targetFollowOnAtomsIter->second;
317 }
318 }
319
320 /// This pass builds the followon tables described by two DenseMaps
321 /// followOnRoots and followonNexts.
322 /// The followOnRoots map contains a mapping of a DefinedAtom to its root
323 /// The followOnNexts map contains a mapping of what DefinedAtom follows the
324 /// current Atom
325 /// The algorithm follows a very simple approach
326 /// a) If the atom is first seen, then make that as the root atom
327 /// b) The targetAtom which this Atom contains, has the root thats set to the
328 /// root of the current atom
329 /// c) If the targetAtom is part of a different tree and the root of the
330 /// targetAtom is itself, Chain all the atoms that are contained in the tree
331 /// to the current Tree
332 /// d) If the targetAtom is part of a different chain and the root of the
333 /// targetAtom until the targetAtom has all atoms of size 0, then chain the
334 /// targetAtoms and its tree to the current chain
buildFollowOnTable(const File::AtomRange<DefinedAtom> & range)335 void LayoutPass::buildFollowOnTable(const File::AtomRange<DefinedAtom> &range) {
336 ScopedTask task(getDefaultDomain(), "LayoutPass::buildFollowOnTable");
337 // Set the initial size of the followon and the followonNext hash to the
338 // number of atoms that we have.
339 _followOnRoots.reserve(range.size());
340 _followOnNexts.reserve(range.size());
341 for (const DefinedAtom *ai : range) {
342 for (const Reference *r : *ai) {
343 if (r->kindNamespace() != lld::Reference::KindNamespace::all ||
344 r->kindValue() != lld::Reference::kindLayoutAfter)
345 continue;
346 const DefinedAtom *targetAtom = dyn_cast<DefinedAtom>(r->target());
347 _followOnNexts[ai] = targetAtom;
348
349 // If we find a followon for the first time, let's make that atom as the
350 // root atom.
351 if (_followOnRoots.count(ai) == 0)
352 _followOnRoots[ai] = ai;
353
354 auto iter = _followOnRoots.find(targetAtom);
355 if (iter == _followOnRoots.end()) {
356 // If the targetAtom is not a root of any chain, let's make the root of
357 // the targetAtom to the root of the current chain.
358
359 // The expression m[i] = m[j] where m is a DenseMap and i != j is not
360 // safe. m[j] returns a reference, which would be invalidated when a
361 // rehashing occurs. If rehashing occurs to make room for m[i], m[j]
362 // becomes invalid, and that invalid reference would be used as the RHS
363 // value of the expression.
364 // Copy the value to workaround.
365 const DefinedAtom *tmp = _followOnRoots[ai];
366 _followOnRoots[targetAtom] = tmp;
367 continue;
368 }
369 if (iter->second == targetAtom) {
370 // If the targetAtom is the root of a chain, the chain becomes part of
371 // the current chain. Rewrite the subchain's root to the current
372 // chain's root.
373 setChainRoot(targetAtom, _followOnRoots[ai]);
374 continue;
375 }
376 // The targetAtom is already a part of a chain. If the current atom is
377 // of size zero, we can insert it in the middle of the chain just
378 // before the target atom, while not breaking other atom's followon
379 // relationships. If it's not, we can only insert the current atom at
380 // the beginning of the chain. All the atoms followed by the target
381 // atom must be of size zero in that case to satisfy the followon
382 // relationships.
383 size_t currentAtomSize = ai->size();
384 if (currentAtomSize == 0) {
385 const DefinedAtom *targetPrevAtom = findAtomFollowedBy(targetAtom);
386 _followOnNexts[targetPrevAtom] = ai;
387 const DefinedAtom *tmp = _followOnRoots[targetPrevAtom];
388 _followOnRoots[ai] = tmp;
389 continue;
390 }
391 if (!checkAllPrevAtomsZeroSize(targetAtom))
392 break;
393 _followOnNexts[ai] = _followOnRoots[targetAtom];
394 setChainRoot(_followOnRoots[targetAtom], _followOnRoots[ai]);
395 }
396 }
397 }
398
399 /// Build an ordinal override map by traversing the followon chain, and
400 /// assigning ordinals to each atom, if the atoms have their ordinals
401 /// already assigned skip the atom and move to the next. This is the
402 /// main map thats used to sort the atoms while comparing two atoms together
403 void
buildOrdinalOverrideMap(const File::AtomRange<DefinedAtom> & range)404 LayoutPass::buildOrdinalOverrideMap(const File::AtomRange<DefinedAtom> &range) {
405 ScopedTask task(getDefaultDomain(), "LayoutPass::buildOrdinalOverrideMap");
406 uint64_t index = 0;
407 for (const DefinedAtom *ai : range) {
408 const DefinedAtom *atom = ai;
409 if (_ordinalOverrideMap.find(atom) != _ordinalOverrideMap.end())
410 continue;
411 AtomToAtomT::iterator start = _followOnRoots.find(atom);
412 if (start == _followOnRoots.end())
413 continue;
414 for (const DefinedAtom *nextAtom = start->second; nextAtom;
415 nextAtom = _followOnNexts[nextAtom]) {
416 AtomToOrdinalT::iterator pos = _ordinalOverrideMap.find(nextAtom);
417 if (pos == _ordinalOverrideMap.end())
418 _ordinalOverrideMap[nextAtom] = index++;
419 }
420 }
421 }
422
423 std::vector<LayoutPass::SortKey>
decorate(File::AtomRange<DefinedAtom> & atomRange) const424 LayoutPass::decorate(File::AtomRange<DefinedAtom> &atomRange) const {
425 std::vector<SortKey> ret;
426 for (OwningAtomPtr<DefinedAtom> &atom : atomRange.owning_ptrs()) {
427 auto ri = _followOnRoots.find(atom.get());
428 auto oi = _ordinalOverrideMap.find(atom.get());
429 const auto *root = (ri == _followOnRoots.end()) ? atom.get() : ri->second;
430 uint64_t override = (oi == _ordinalOverrideMap.end()) ? 0 : oi->second;
431 ret.push_back(SortKey(std::move(atom), root, override));
432 }
433 return ret;
434 }
435
undecorate(File::AtomRange<DefinedAtom> & atomRange,std::vector<SortKey> & keys) const436 void LayoutPass::undecorate(File::AtomRange<DefinedAtom> &atomRange,
437 std::vector<SortKey> &keys) const {
438 size_t i = 0;
439 for (SortKey &k : keys)
440 atomRange[i++] = std::move(k._atom);
441 }
442
443 /// Perform the actual pass
perform(SimpleFile & mergedFile)444 llvm::Error LayoutPass::perform(SimpleFile &mergedFile) {
445 LLVM_DEBUG(llvm::dbgs() << "******** Laying out atoms:\n");
446 // sort the atoms
447 ScopedTask task(getDefaultDomain(), "LayoutPass");
448 File::AtomRange<DefinedAtom> atomRange = mergedFile.defined();
449
450 // Build follow on tables
451 buildFollowOnTable(atomRange);
452
453 // Check the structure of followon graph if running in debug mode.
454 LLVM_DEBUG(checkFollowonChain(atomRange));
455
456 // Build override maps
457 buildOrdinalOverrideMap(atomRange);
458
459 LLVM_DEBUG({
460 llvm::dbgs() << "unsorted atoms:\n";
461 printDefinedAtoms(atomRange);
462 });
463
464 std::vector<LayoutPass::SortKey> vec = decorate(atomRange);
465 sort(llvm::parallel::par, vec.begin(), vec.end(),
466 [&](const LayoutPass::SortKey &l, const LayoutPass::SortKey &r) -> bool {
467 return compareAtoms(l, r, _customSorter);
468 });
469 LLVM_DEBUG(checkTransitivity(vec, _customSorter));
470 undecorate(atomRange, vec);
471
472 LLVM_DEBUG({
473 llvm::dbgs() << "sorted atoms:\n";
474 printDefinedAtoms(atomRange);
475 });
476
477 LLVM_DEBUG(llvm::dbgs() << "******** Finished laying out atoms\n");
478 return llvm::Error::success();
479 }
480
addLayoutPass(PassManager & pm,const MachOLinkingContext & ctx)481 void addLayoutPass(PassManager &pm, const MachOLinkingContext &ctx) {
482 pm.add(llvm::make_unique<LayoutPass>(
483 ctx.registry(), [&](const DefinedAtom * left, const DefinedAtom * right,
484 bool & leftBeforeRight) ->bool {
485 return ctx.customAtomOrderer(left, right, leftBeforeRight);
486 }));
487 }
488
489 } // namespace mach_o
490 } // namespace lld
491