1 //===- ARM.cpp ------------------------------------------------------------===//
2 //
3 // The LLVM Linker
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9
10 #include "InputFiles.h"
11 #include "Symbols.h"
12 #include "SyntheticSections.h"
13 #include "Target.h"
14 #include "Thunks.h"
15 #include "lld/Common/ErrorHandler.h"
16 #include "llvm/Object/ELF.h"
17 #include "llvm/Support/Endian.h"
18
19 using namespace llvm;
20 using namespace llvm::support::endian;
21 using namespace llvm::ELF;
22 using namespace lld;
23 using namespace lld::elf;
24
25 namespace {
26 class ARM final : public TargetInfo {
27 public:
28 ARM();
29 uint32_t calcEFlags() const override;
30 RelExpr getRelExpr(RelType Type, const Symbol &S,
31 const uint8_t *Loc) const override;
32 RelType getDynRel(RelType Type) const override;
33 int64_t getImplicitAddend(const uint8_t *Buf, RelType Type) const override;
34 void writeGotPlt(uint8_t *Buf, const Symbol &S) const override;
35 void writeIgotPlt(uint8_t *Buf, const Symbol &S) const override;
36 void writePltHeader(uint8_t *Buf) const override;
37 void writePlt(uint8_t *Buf, uint64_t GotPltEntryAddr, uint64_t PltEntryAddr,
38 int32_t Index, unsigned RelOff) const override;
39 void addPltSymbols(InputSection &IS, uint64_t Off) const override;
40 void addPltHeaderSymbols(InputSection &ISD) const override;
41 bool needsThunk(RelExpr Expr, RelType Type, const InputFile *File,
42 uint64_t BranchAddr, const Symbol &S) const override;
43 uint32_t getThunkSectionSpacing() const override;
44 bool inBranchRange(RelType Type, uint64_t Src, uint64_t Dst) const override;
45 void relocateOne(uint8_t *Loc, RelType Type, uint64_t Val) const override;
46 };
47 } // namespace
48
ARM()49 ARM::ARM() {
50 CopyRel = R_ARM_COPY;
51 RelativeRel = R_ARM_RELATIVE;
52 IRelativeRel = R_ARM_IRELATIVE;
53 GotRel = R_ARM_GLOB_DAT;
54 NoneRel = R_ARM_NONE;
55 PltRel = R_ARM_JUMP_SLOT;
56 TlsGotRel = R_ARM_TLS_TPOFF32;
57 TlsModuleIndexRel = R_ARM_TLS_DTPMOD32;
58 TlsOffsetRel = R_ARM_TLS_DTPOFF32;
59 GotBaseSymInGotPlt = false;
60 GotEntrySize = 4;
61 GotPltEntrySize = 4;
62 PltEntrySize = 16;
63 PltHeaderSize = 32;
64 TrapInstr = {0xd4, 0xd4, 0xd4, 0xd4};
65 NeedsThunks = true;
66 }
67
calcEFlags() const68 uint32_t ARM::calcEFlags() const {
69 // The ABIFloatType is used by loaders to detect the floating point calling
70 // convention.
71 uint32_t ABIFloatType = 0;
72 if (Config->ARMVFPArgs == ARMVFPArgKind::Base ||
73 Config->ARMVFPArgs == ARMVFPArgKind::Default)
74 ABIFloatType = EF_ARM_ABI_FLOAT_SOFT;
75 else if (Config->ARMVFPArgs == ARMVFPArgKind::VFP)
76 ABIFloatType = EF_ARM_ABI_FLOAT_HARD;
77
78 // We don't currently use any features incompatible with EF_ARM_EABI_VER5,
79 // but we don't have any firm guarantees of conformance. Linux AArch64
80 // kernels (as of 2016) require an EABI version to be set.
81 return EF_ARM_EABI_VER5 | ABIFloatType;
82 }
83
getRelExpr(RelType Type,const Symbol & S,const uint8_t * Loc) const84 RelExpr ARM::getRelExpr(RelType Type, const Symbol &S,
85 const uint8_t *Loc) const {
86 switch (Type) {
87 case R_ARM_THM_JUMP11:
88 return R_PC;
89 case R_ARM_CALL:
90 case R_ARM_JUMP24:
91 case R_ARM_PC24:
92 case R_ARM_PLT32:
93 case R_ARM_PREL31:
94 case R_ARM_THM_JUMP19:
95 case R_ARM_THM_JUMP24:
96 case R_ARM_THM_CALL:
97 return R_PLT_PC;
98 case R_ARM_GOTOFF32:
99 // (S + A) - GOT_ORG
100 return R_GOTREL;
101 case R_ARM_GOT_BREL:
102 // GOT(S) + A - GOT_ORG
103 return R_GOT_OFF;
104 case R_ARM_GOT_PREL:
105 case R_ARM_TLS_IE32:
106 // GOT(S) + A - P
107 return R_GOT_PC;
108 case R_ARM_SBREL32:
109 return R_ARM_SBREL;
110 case R_ARM_TARGET1:
111 return Config->Target1Rel ? R_PC : R_ABS;
112 case R_ARM_TARGET2:
113 if (Config->Target2 == Target2Policy::Rel)
114 return R_PC;
115 if (Config->Target2 == Target2Policy::Abs)
116 return R_ABS;
117 return R_GOT_PC;
118 case R_ARM_TLS_GD32:
119 return R_TLSGD_PC;
120 case R_ARM_TLS_LDM32:
121 return R_TLSLD_PC;
122 case R_ARM_BASE_PREL:
123 // B(S) + A - P
124 // FIXME: currently B(S) assumed to be .got, this may not hold for all
125 // platforms.
126 return R_GOTONLY_PC;
127 case R_ARM_MOVW_PREL_NC:
128 case R_ARM_MOVT_PREL:
129 case R_ARM_REL32:
130 case R_ARM_THM_MOVW_PREL_NC:
131 case R_ARM_THM_MOVT_PREL:
132 return R_PC;
133 case R_ARM_NONE:
134 return R_NONE;
135 case R_ARM_TLS_LE32:
136 return R_TLS;
137 case R_ARM_V4BX:
138 // V4BX is just a marker to indicate there's a "bx rN" instruction at the
139 // given address. It can be used to implement a special linker mode which
140 // rewrites ARMv4T inputs to ARMv4. Since we support only ARMv4 input and
141 // not ARMv4 output, we can just ignore it.
142 return R_HINT;
143 default:
144 return R_ABS;
145 }
146 }
147
getDynRel(RelType Type) const148 RelType ARM::getDynRel(RelType Type) const {
149 if ((Type == R_ARM_ABS32) || (Type == R_ARM_TARGET1 && !Config->Target1Rel))
150 return R_ARM_ABS32;
151 return R_ARM_NONE;
152 }
153
writeGotPlt(uint8_t * Buf,const Symbol &) const154 void ARM::writeGotPlt(uint8_t *Buf, const Symbol &) const {
155 write32le(Buf, In.Plt->getVA());
156 }
157
writeIgotPlt(uint8_t * Buf,const Symbol & S) const158 void ARM::writeIgotPlt(uint8_t *Buf, const Symbol &S) const {
159 // An ARM entry is the address of the ifunc resolver function.
160 write32le(Buf, S.getVA());
161 }
162
163 // Long form PLT Header that does not have any restrictions on the displacement
164 // of the .plt from the .plt.got.
writePltHeaderLong(uint8_t * Buf)165 static void writePltHeaderLong(uint8_t *Buf) {
166 const uint8_t PltData[] = {
167 0x04, 0xe0, 0x2d, 0xe5, // str lr, [sp,#-4]!
168 0x04, 0xe0, 0x9f, 0xe5, // ldr lr, L2
169 0x0e, 0xe0, 0x8f, 0xe0, // L1: add lr, pc, lr
170 0x08, 0xf0, 0xbe, 0xe5, // ldr pc, [lr, #8]
171 0x00, 0x00, 0x00, 0x00, // L2: .word &(.got.plt) - L1 - 8
172 0xd4, 0xd4, 0xd4, 0xd4, // Pad to 32-byte boundary
173 0xd4, 0xd4, 0xd4, 0xd4, // Pad to 32-byte boundary
174 0xd4, 0xd4, 0xd4, 0xd4};
175 memcpy(Buf, PltData, sizeof(PltData));
176 uint64_t GotPlt = In.GotPlt->getVA();
177 uint64_t L1 = In.Plt->getVA() + 8;
178 write32le(Buf + 16, GotPlt - L1 - 8);
179 }
180
181 // The default PLT header requires the .plt.got to be within 128 Mb of the
182 // .plt in the positive direction.
writePltHeader(uint8_t * Buf) const183 void ARM::writePltHeader(uint8_t *Buf) const {
184 // Use a similar sequence to that in writePlt(), the difference is the calling
185 // conventions mean we use lr instead of ip. The PLT entry is responsible for
186 // saving lr on the stack, the dynamic loader is responsible for reloading
187 // it.
188 const uint32_t PltData[] = {
189 0xe52de004, // L1: str lr, [sp,#-4]!
190 0xe28fe600, // add lr, pc, #0x0NN00000 &(.got.plt - L1 - 4)
191 0xe28eea00, // add lr, lr, #0x000NN000 &(.got.plt - L1 - 4)
192 0xe5bef000, // ldr pc, [lr, #0x00000NNN] &(.got.plt -L1 - 4)
193 };
194
195 uint64_t Offset = In.GotPlt->getVA() - In.Plt->getVA() - 4;
196 if (!llvm::isUInt<27>(Offset)) {
197 // We cannot encode the Offset, use the long form.
198 writePltHeaderLong(Buf);
199 return;
200 }
201 write32le(Buf + 0, PltData[0]);
202 write32le(Buf + 4, PltData[1] | ((Offset >> 20) & 0xff));
203 write32le(Buf + 8, PltData[2] | ((Offset >> 12) & 0xff));
204 write32le(Buf + 12, PltData[3] | (Offset & 0xfff));
205 memcpy(Buf + 16, TrapInstr.data(), 4); // Pad to 32-byte boundary
206 memcpy(Buf + 20, TrapInstr.data(), 4);
207 memcpy(Buf + 24, TrapInstr.data(), 4);
208 memcpy(Buf + 28, TrapInstr.data(), 4);
209 }
210
addPltHeaderSymbols(InputSection & IS) const211 void ARM::addPltHeaderSymbols(InputSection &IS) const {
212 addSyntheticLocal("$a", STT_NOTYPE, 0, 0, IS);
213 addSyntheticLocal("$d", STT_NOTYPE, 16, 0, IS);
214 }
215
216 // Long form PLT entries that do not have any restrictions on the displacement
217 // of the .plt from the .plt.got.
writePltLong(uint8_t * Buf,uint64_t GotPltEntryAddr,uint64_t PltEntryAddr,int32_t Index,unsigned RelOff)218 static void writePltLong(uint8_t *Buf, uint64_t GotPltEntryAddr,
219 uint64_t PltEntryAddr, int32_t Index,
220 unsigned RelOff) {
221 const uint8_t PltData[] = {
222 0x04, 0xc0, 0x9f, 0xe5, // ldr ip, L2
223 0x0f, 0xc0, 0x8c, 0xe0, // L1: add ip, ip, pc
224 0x00, 0xf0, 0x9c, 0xe5, // ldr pc, [ip]
225 0x00, 0x00, 0x00, 0x00, // L2: .word Offset(&(.plt.got) - L1 - 8
226 };
227 memcpy(Buf, PltData, sizeof(PltData));
228 uint64_t L1 = PltEntryAddr + 4;
229 write32le(Buf + 12, GotPltEntryAddr - L1 - 8);
230 }
231
232 // The default PLT entries require the .plt.got to be within 128 Mb of the
233 // .plt in the positive direction.
writePlt(uint8_t * Buf,uint64_t GotPltEntryAddr,uint64_t PltEntryAddr,int32_t Index,unsigned RelOff) const234 void ARM::writePlt(uint8_t *Buf, uint64_t GotPltEntryAddr,
235 uint64_t PltEntryAddr, int32_t Index,
236 unsigned RelOff) const {
237 // The PLT entry is similar to the example given in Appendix A of ELF for
238 // the Arm Architecture. Instead of using the Group Relocations to find the
239 // optimal rotation for the 8-bit immediate used in the add instructions we
240 // hard code the most compact rotations for simplicity. This saves a load
241 // instruction over the long plt sequences.
242 const uint32_t PltData[] = {
243 0xe28fc600, // L1: add ip, pc, #0x0NN00000 Offset(&(.plt.got) - L1 - 8
244 0xe28cca00, // add ip, ip, #0x000NN000 Offset(&(.plt.got) - L1 - 8
245 0xe5bcf000, // ldr pc, [ip, #0x00000NNN] Offset(&(.plt.got) - L1 - 8
246 };
247
248 uint64_t Offset = GotPltEntryAddr - PltEntryAddr - 8;
249 if (!llvm::isUInt<27>(Offset)) {
250 // We cannot encode the Offset, use the long form.
251 writePltLong(Buf, GotPltEntryAddr, PltEntryAddr, Index, RelOff);
252 return;
253 }
254 write32le(Buf + 0, PltData[0] | ((Offset >> 20) & 0xff));
255 write32le(Buf + 4, PltData[1] | ((Offset >> 12) & 0xff));
256 write32le(Buf + 8, PltData[2] | (Offset & 0xfff));
257 memcpy(Buf + 12, TrapInstr.data(), 4); // Pad to 16-byte boundary
258 }
259
addPltSymbols(InputSection & IS,uint64_t Off) const260 void ARM::addPltSymbols(InputSection &IS, uint64_t Off) const {
261 addSyntheticLocal("$a", STT_NOTYPE, Off, 0, IS);
262 addSyntheticLocal("$d", STT_NOTYPE, Off + 12, 0, IS);
263 }
264
needsThunk(RelExpr Expr,RelType Type,const InputFile * File,uint64_t BranchAddr,const Symbol & S) const265 bool ARM::needsThunk(RelExpr Expr, RelType Type, const InputFile *File,
266 uint64_t BranchAddr, const Symbol &S) const {
267 // If S is an undefined weak symbol and does not have a PLT entry then it
268 // will be resolved as a branch to the next instruction.
269 if (S.isUndefWeak() && !S.isInPlt())
270 return false;
271 // A state change from ARM to Thumb and vice versa must go through an
272 // interworking thunk if the relocation type is not R_ARM_CALL or
273 // R_ARM_THM_CALL.
274 switch (Type) {
275 case R_ARM_PC24:
276 case R_ARM_PLT32:
277 case R_ARM_JUMP24:
278 // Source is ARM, all PLT entries are ARM so no interworking required.
279 // Otherwise we need to interwork if Symbol has bit 0 set (Thumb).
280 if (Expr == R_PC && ((S.getVA() & 1) == 1))
281 return true;
282 LLVM_FALLTHROUGH;
283 case R_ARM_CALL: {
284 uint64_t Dst = (Expr == R_PLT_PC) ? S.getPltVA() : S.getVA();
285 return !inBranchRange(Type, BranchAddr, Dst);
286 }
287 case R_ARM_THM_JUMP19:
288 case R_ARM_THM_JUMP24:
289 // Source is Thumb, all PLT entries are ARM so interworking is required.
290 // Otherwise we need to interwork if Symbol has bit 0 clear (ARM).
291 if (Expr == R_PLT_PC || ((S.getVA() & 1) == 0))
292 return true;
293 LLVM_FALLTHROUGH;
294 case R_ARM_THM_CALL: {
295 uint64_t Dst = (Expr == R_PLT_PC) ? S.getPltVA() : S.getVA();
296 return !inBranchRange(Type, BranchAddr, Dst);
297 }
298 }
299 return false;
300 }
301
getThunkSectionSpacing() const302 uint32_t ARM::getThunkSectionSpacing() const {
303 // The placing of pre-created ThunkSections is controlled by the value
304 // ThunkSectionSpacing returned by getThunkSectionSpacing(). The aim is to
305 // place the ThunkSection such that all branches from the InputSections
306 // prior to the ThunkSection can reach a Thunk placed at the end of the
307 // ThunkSection. Graphically:
308 // | up to ThunkSectionSpacing .text input sections |
309 // | ThunkSection |
310 // | up to ThunkSectionSpacing .text input sections |
311 // | ThunkSection |
312
313 // Pre-created ThunkSections are spaced roughly 16MiB apart on ARMv7. This
314 // is to match the most common expected case of a Thumb 2 encoded BL, BLX or
315 // B.W:
316 // ARM B, BL, BLX range +/- 32MiB
317 // Thumb B.W, BL, BLX range +/- 16MiB
318 // Thumb B<cc>.W range +/- 1MiB
319 // If a branch cannot reach a pre-created ThunkSection a new one will be
320 // created so we can handle the rare cases of a Thumb 2 conditional branch.
321 // We intentionally use a lower size for ThunkSectionSpacing than the maximum
322 // branch range so the end of the ThunkSection is more likely to be within
323 // range of the branch instruction that is furthest away. The value we shorten
324 // ThunkSectionSpacing by is set conservatively to allow us to create 16,384
325 // 12 byte Thunks at any offset in a ThunkSection without risk of a branch to
326 // one of the Thunks going out of range.
327
328 // On Arm the ThunkSectionSpacing depends on the range of the Thumb Branch
329 // range. On earlier Architectures such as ARMv4, ARMv5 and ARMv6 (except
330 // ARMv6T2) the range is +/- 4MiB.
331
332 return (Config->ARMJ1J2BranchEncoding) ? 0x1000000 - 0x30000
333 : 0x400000 - 0x7500;
334 }
335
inBranchRange(RelType Type,uint64_t Src,uint64_t Dst) const336 bool ARM::inBranchRange(RelType Type, uint64_t Src, uint64_t Dst) const {
337 uint64_t Range;
338 uint64_t InstrSize;
339
340 switch (Type) {
341 case R_ARM_PC24:
342 case R_ARM_PLT32:
343 case R_ARM_JUMP24:
344 case R_ARM_CALL:
345 Range = 0x2000000;
346 InstrSize = 4;
347 break;
348 case R_ARM_THM_JUMP19:
349 Range = 0x100000;
350 InstrSize = 2;
351 break;
352 case R_ARM_THM_JUMP24:
353 case R_ARM_THM_CALL:
354 Range = Config->ARMJ1J2BranchEncoding ? 0x1000000 : 0x400000;
355 InstrSize = 2;
356 break;
357 default:
358 return true;
359 }
360 // PC at Src is 2 instructions ahead, immediate of branch is signed
361 if (Src > Dst)
362 Range -= 2 * InstrSize;
363 else
364 Range += InstrSize;
365
366 if ((Dst & 0x1) == 0)
367 // Destination is ARM, if ARM caller then Src is already 4-byte aligned.
368 // If Thumb Caller (BLX) the Src address has bottom 2 bits cleared to ensure
369 // destination will be 4 byte aligned.
370 Src &= ~0x3;
371 else
372 // Bit 0 == 1 denotes Thumb state, it is not part of the range
373 Dst &= ~0x1;
374
375 uint64_t Distance = (Src > Dst) ? Src - Dst : Dst - Src;
376 return Distance <= Range;
377 }
378
relocateOne(uint8_t * Loc,RelType Type,uint64_t Val) const379 void ARM::relocateOne(uint8_t *Loc, RelType Type, uint64_t Val) const {
380 switch (Type) {
381 case R_ARM_ABS32:
382 case R_ARM_BASE_PREL:
383 case R_ARM_GLOB_DAT:
384 case R_ARM_GOTOFF32:
385 case R_ARM_GOT_BREL:
386 case R_ARM_GOT_PREL:
387 case R_ARM_REL32:
388 case R_ARM_RELATIVE:
389 case R_ARM_SBREL32:
390 case R_ARM_TARGET1:
391 case R_ARM_TARGET2:
392 case R_ARM_TLS_GD32:
393 case R_ARM_TLS_IE32:
394 case R_ARM_TLS_LDM32:
395 case R_ARM_TLS_LDO32:
396 case R_ARM_TLS_LE32:
397 case R_ARM_TLS_TPOFF32:
398 case R_ARM_TLS_DTPOFF32:
399 write32le(Loc, Val);
400 break;
401 case R_ARM_TLS_DTPMOD32:
402 write32le(Loc, 1);
403 break;
404 case R_ARM_PREL31:
405 checkInt(Loc, Val, 31, Type);
406 write32le(Loc, (read32le(Loc) & 0x80000000) | (Val & ~0x80000000));
407 break;
408 case R_ARM_CALL:
409 // R_ARM_CALL is used for BL and BLX instructions, depending on the
410 // value of bit 0 of Val, we must select a BL or BLX instruction
411 if (Val & 1) {
412 // If bit 0 of Val is 1 the target is Thumb, we must select a BLX.
413 // The BLX encoding is 0xfa:H:imm24 where Val = imm24:H:'1'
414 checkInt(Loc, Val, 26, Type);
415 write32le(Loc, 0xfa000000 | // opcode
416 ((Val & 2) << 23) | // H
417 ((Val >> 2) & 0x00ffffff)); // imm24
418 break;
419 }
420 if ((read32le(Loc) & 0xfe000000) == 0xfa000000)
421 // BLX (always unconditional) instruction to an ARM Target, select an
422 // unconditional BL.
423 write32le(Loc, 0xeb000000 | (read32le(Loc) & 0x00ffffff));
424 // fall through as BL encoding is shared with B
425 LLVM_FALLTHROUGH;
426 case R_ARM_JUMP24:
427 case R_ARM_PC24:
428 case R_ARM_PLT32:
429 checkInt(Loc, Val, 26, Type);
430 write32le(Loc, (read32le(Loc) & ~0x00ffffff) | ((Val >> 2) & 0x00ffffff));
431 break;
432 case R_ARM_THM_JUMP11:
433 checkInt(Loc, Val, 12, Type);
434 write16le(Loc, (read32le(Loc) & 0xf800) | ((Val >> 1) & 0x07ff));
435 break;
436 case R_ARM_THM_JUMP19:
437 // Encoding T3: Val = S:J2:J1:imm6:imm11:0
438 checkInt(Loc, Val, 21, Type);
439 write16le(Loc,
440 (read16le(Loc) & 0xfbc0) | // opcode cond
441 ((Val >> 10) & 0x0400) | // S
442 ((Val >> 12) & 0x003f)); // imm6
443 write16le(Loc + 2,
444 0x8000 | // opcode
445 ((Val >> 8) & 0x0800) | // J2
446 ((Val >> 5) & 0x2000) | // J1
447 ((Val >> 1) & 0x07ff)); // imm11
448 break;
449 case R_ARM_THM_CALL:
450 // R_ARM_THM_CALL is used for BL and BLX instructions, depending on the
451 // value of bit 0 of Val, we must select a BL or BLX instruction
452 if ((Val & 1) == 0) {
453 // Ensure BLX destination is 4-byte aligned. As BLX instruction may
454 // only be two byte aligned. This must be done before overflow check
455 Val = alignTo(Val, 4);
456 }
457 // Bit 12 is 0 for BLX, 1 for BL
458 write16le(Loc + 2, (read16le(Loc + 2) & ~0x1000) | (Val & 1) << 12);
459 if (!Config->ARMJ1J2BranchEncoding) {
460 // Older Arm architectures do not support R_ARM_THM_JUMP24 and have
461 // different encoding rules and range due to J1 and J2 always being 1.
462 checkInt(Loc, Val, 23, Type);
463 write16le(Loc,
464 0xf000 | // opcode
465 ((Val >> 12) & 0x07ff)); // imm11
466 write16le(Loc + 2,
467 (read16le(Loc + 2) & 0xd000) | // opcode
468 0x2800 | // J1 == J2 == 1
469 ((Val >> 1) & 0x07ff)); // imm11
470 break;
471 }
472 // Fall through as rest of encoding is the same as B.W
473 LLVM_FALLTHROUGH;
474 case R_ARM_THM_JUMP24:
475 // Encoding B T4, BL T1, BLX T2: Val = S:I1:I2:imm10:imm11:0
476 checkInt(Loc, Val, 25, Type);
477 write16le(Loc,
478 0xf000 | // opcode
479 ((Val >> 14) & 0x0400) | // S
480 ((Val >> 12) & 0x03ff)); // imm10
481 write16le(Loc + 2,
482 (read16le(Loc + 2) & 0xd000) | // opcode
483 (((~(Val >> 10)) ^ (Val >> 11)) & 0x2000) | // J1
484 (((~(Val >> 11)) ^ (Val >> 13)) & 0x0800) | // J2
485 ((Val >> 1) & 0x07ff)); // imm11
486 break;
487 case R_ARM_MOVW_ABS_NC:
488 case R_ARM_MOVW_PREL_NC:
489 write32le(Loc, (read32le(Loc) & ~0x000f0fff) | ((Val & 0xf000) << 4) |
490 (Val & 0x0fff));
491 break;
492 case R_ARM_MOVT_ABS:
493 case R_ARM_MOVT_PREL:
494 write32le(Loc, (read32le(Loc) & ~0x000f0fff) |
495 (((Val >> 16) & 0xf000) << 4) | ((Val >> 16) & 0xfff));
496 break;
497 case R_ARM_THM_MOVT_ABS:
498 case R_ARM_THM_MOVT_PREL:
499 // Encoding T1: A = imm4:i:imm3:imm8
500 write16le(Loc,
501 0xf2c0 | // opcode
502 ((Val >> 17) & 0x0400) | // i
503 ((Val >> 28) & 0x000f)); // imm4
504 write16le(Loc + 2,
505 (read16le(Loc + 2) & 0x8f00) | // opcode
506 ((Val >> 12) & 0x7000) | // imm3
507 ((Val >> 16) & 0x00ff)); // imm8
508 break;
509 case R_ARM_THM_MOVW_ABS_NC:
510 case R_ARM_THM_MOVW_PREL_NC:
511 // Encoding T3: A = imm4:i:imm3:imm8
512 write16le(Loc,
513 0xf240 | // opcode
514 ((Val >> 1) & 0x0400) | // i
515 ((Val >> 12) & 0x000f)); // imm4
516 write16le(Loc + 2,
517 (read16le(Loc + 2) & 0x8f00) | // opcode
518 ((Val << 4) & 0x7000) | // imm3
519 (Val & 0x00ff)); // imm8
520 break;
521 default:
522 error(getErrorLocation(Loc) + "unrecognized reloc " + Twine(Type));
523 }
524 }
525
getImplicitAddend(const uint8_t * Buf,RelType Type) const526 int64_t ARM::getImplicitAddend(const uint8_t *Buf, RelType Type) const {
527 switch (Type) {
528 default:
529 return 0;
530 case R_ARM_ABS32:
531 case R_ARM_BASE_PREL:
532 case R_ARM_GOTOFF32:
533 case R_ARM_GOT_BREL:
534 case R_ARM_GOT_PREL:
535 case R_ARM_REL32:
536 case R_ARM_TARGET1:
537 case R_ARM_TARGET2:
538 case R_ARM_TLS_GD32:
539 case R_ARM_TLS_LDM32:
540 case R_ARM_TLS_LDO32:
541 case R_ARM_TLS_IE32:
542 case R_ARM_TLS_LE32:
543 return SignExtend64<32>(read32le(Buf));
544 case R_ARM_PREL31:
545 return SignExtend64<31>(read32le(Buf));
546 case R_ARM_CALL:
547 case R_ARM_JUMP24:
548 case R_ARM_PC24:
549 case R_ARM_PLT32:
550 return SignExtend64<26>(read32le(Buf) << 2);
551 case R_ARM_THM_JUMP11:
552 return SignExtend64<12>(read16le(Buf) << 1);
553 case R_ARM_THM_JUMP19: {
554 // Encoding T3: A = S:J2:J1:imm10:imm6:0
555 uint16_t Hi = read16le(Buf);
556 uint16_t Lo = read16le(Buf + 2);
557 return SignExtend64<20>(((Hi & 0x0400) << 10) | // S
558 ((Lo & 0x0800) << 8) | // J2
559 ((Lo & 0x2000) << 5) | // J1
560 ((Hi & 0x003f) << 12) | // imm6
561 ((Lo & 0x07ff) << 1)); // imm11:0
562 }
563 case R_ARM_THM_CALL:
564 if (!Config->ARMJ1J2BranchEncoding) {
565 // Older Arm architectures do not support R_ARM_THM_JUMP24 and have
566 // different encoding rules and range due to J1 and J2 always being 1.
567 uint16_t Hi = read16le(Buf);
568 uint16_t Lo = read16le(Buf + 2);
569 return SignExtend64<22>(((Hi & 0x7ff) << 12) | // imm11
570 ((Lo & 0x7ff) << 1)); // imm11:0
571 break;
572 }
573 LLVM_FALLTHROUGH;
574 case R_ARM_THM_JUMP24: {
575 // Encoding B T4, BL T1, BLX T2: A = S:I1:I2:imm10:imm11:0
576 // I1 = NOT(J1 EOR S), I2 = NOT(J2 EOR S)
577 uint16_t Hi = read16le(Buf);
578 uint16_t Lo = read16le(Buf + 2);
579 return SignExtend64<24>(((Hi & 0x0400) << 14) | // S
580 (~((Lo ^ (Hi << 3)) << 10) & 0x00800000) | // I1
581 (~((Lo ^ (Hi << 1)) << 11) & 0x00400000) | // I2
582 ((Hi & 0x003ff) << 12) | // imm0
583 ((Lo & 0x007ff) << 1)); // imm11:0
584 }
585 // ELF for the ARM Architecture 4.6.1.1 the implicit addend for MOVW and
586 // MOVT is in the range -32768 <= A < 32768
587 case R_ARM_MOVW_ABS_NC:
588 case R_ARM_MOVT_ABS:
589 case R_ARM_MOVW_PREL_NC:
590 case R_ARM_MOVT_PREL: {
591 uint64_t Val = read32le(Buf) & 0x000f0fff;
592 return SignExtend64<16>(((Val & 0x000f0000) >> 4) | (Val & 0x00fff));
593 }
594 case R_ARM_THM_MOVW_ABS_NC:
595 case R_ARM_THM_MOVT_ABS:
596 case R_ARM_THM_MOVW_PREL_NC:
597 case R_ARM_THM_MOVT_PREL: {
598 // Encoding T3: A = imm4:i:imm3:imm8
599 uint16_t Hi = read16le(Buf);
600 uint16_t Lo = read16le(Buf + 2);
601 return SignExtend64<16>(((Hi & 0x000f) << 12) | // imm4
602 ((Hi & 0x0400) << 1) | // i
603 ((Lo & 0x7000) >> 4) | // imm3
604 (Lo & 0x00ff)); // imm8
605 }
606 }
607 }
608
getARMTargetInfo()609 TargetInfo *elf::getARMTargetInfo() {
610 static ARM Target;
611 return &Target;
612 }
613