1 //===--- SemaInit.cpp - Semantic Analysis for Initializers ----------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements semantic analysis for initializers.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "clang/AST/ASTContext.h"
15 #include "clang/AST/DeclObjC.h"
16 #include "clang/AST/ExprCXX.h"
17 #include "clang/AST/ExprObjC.h"
18 #include "clang/AST/ExprOpenMP.h"
19 #include "clang/AST/TypeLoc.h"
20 #include "clang/Basic/TargetInfo.h"
21 #include "clang/Sema/Designator.h"
22 #include "clang/Sema/Initialization.h"
23 #include "clang/Sema/Lookup.h"
24 #include "clang/Sema/SemaInternal.h"
25 #include "llvm/ADT/APInt.h"
26 #include "llvm/ADT/SmallString.h"
27 #include "llvm/Support/ErrorHandling.h"
28 #include "llvm/Support/raw_ostream.h"
29 
30 using namespace clang;
31 
32 //===----------------------------------------------------------------------===//
33 // Sema Initialization Checking
34 //===----------------------------------------------------------------------===//
35 
36 /// Check whether T is compatible with a wide character type (wchar_t,
37 /// char16_t or char32_t).
IsWideCharCompatible(QualType T,ASTContext & Context)38 static bool IsWideCharCompatible(QualType T, ASTContext &Context) {
39   if (Context.typesAreCompatible(Context.getWideCharType(), T))
40     return true;
41   if (Context.getLangOpts().CPlusPlus || Context.getLangOpts().C11) {
42     return Context.typesAreCompatible(Context.Char16Ty, T) ||
43            Context.typesAreCompatible(Context.Char32Ty, T);
44   }
45   return false;
46 }
47 
48 enum StringInitFailureKind {
49   SIF_None,
50   SIF_NarrowStringIntoWideChar,
51   SIF_WideStringIntoChar,
52   SIF_IncompatWideStringIntoWideChar,
53   SIF_UTF8StringIntoPlainChar,
54   SIF_PlainStringIntoUTF8Char,
55   SIF_Other
56 };
57 
58 /// Check whether the array of type AT can be initialized by the Init
59 /// expression by means of string initialization. Returns SIF_None if so,
60 /// otherwise returns a StringInitFailureKind that describes why the
61 /// initialization would not work.
IsStringInit(Expr * Init,const ArrayType * AT,ASTContext & Context)62 static StringInitFailureKind IsStringInit(Expr *Init, const ArrayType *AT,
63                                           ASTContext &Context) {
64   if (!isa<ConstantArrayType>(AT) && !isa<IncompleteArrayType>(AT))
65     return SIF_Other;
66 
67   // See if this is a string literal or @encode.
68   Init = Init->IgnoreParens();
69 
70   // Handle @encode, which is a narrow string.
71   if (isa<ObjCEncodeExpr>(Init) && AT->getElementType()->isCharType())
72     return SIF_None;
73 
74   // Otherwise we can only handle string literals.
75   StringLiteral *SL = dyn_cast<StringLiteral>(Init);
76   if (!SL)
77     return SIF_Other;
78 
79   const QualType ElemTy =
80       Context.getCanonicalType(AT->getElementType()).getUnqualifiedType();
81 
82   switch (SL->getKind()) {
83   case StringLiteral::UTF8:
84     // char8_t array can be initialized with a UTF-8 string.
85     if (ElemTy->isChar8Type())
86       return SIF_None;
87     LLVM_FALLTHROUGH;
88   case StringLiteral::Ascii:
89     // char array can be initialized with a narrow string.
90     // Only allow char x[] = "foo";  not char x[] = L"foo";
91     if (ElemTy->isCharType())
92       return (SL->getKind() == StringLiteral::UTF8 &&
93               Context.getLangOpts().Char8)
94                  ? SIF_UTF8StringIntoPlainChar
95                  : SIF_None;
96     if (ElemTy->isChar8Type())
97       return SIF_PlainStringIntoUTF8Char;
98     if (IsWideCharCompatible(ElemTy, Context))
99       return SIF_NarrowStringIntoWideChar;
100     return SIF_Other;
101   // C99 6.7.8p15 (with correction from DR343), or C11 6.7.9p15:
102   // "An array with element type compatible with a qualified or unqualified
103   // version of wchar_t, char16_t, or char32_t may be initialized by a wide
104   // string literal with the corresponding encoding prefix (L, u, or U,
105   // respectively), optionally enclosed in braces.
106   case StringLiteral::UTF16:
107     if (Context.typesAreCompatible(Context.Char16Ty, ElemTy))
108       return SIF_None;
109     if (ElemTy->isCharType() || ElemTy->isChar8Type())
110       return SIF_WideStringIntoChar;
111     if (IsWideCharCompatible(ElemTy, Context))
112       return SIF_IncompatWideStringIntoWideChar;
113     return SIF_Other;
114   case StringLiteral::UTF32:
115     if (Context.typesAreCompatible(Context.Char32Ty, ElemTy))
116       return SIF_None;
117     if (ElemTy->isCharType() || ElemTy->isChar8Type())
118       return SIF_WideStringIntoChar;
119     if (IsWideCharCompatible(ElemTy, Context))
120       return SIF_IncompatWideStringIntoWideChar;
121     return SIF_Other;
122   case StringLiteral::Wide:
123     if (Context.typesAreCompatible(Context.getWideCharType(), ElemTy))
124       return SIF_None;
125     if (ElemTy->isCharType() || ElemTy->isChar8Type())
126       return SIF_WideStringIntoChar;
127     if (IsWideCharCompatible(ElemTy, Context))
128       return SIF_IncompatWideStringIntoWideChar;
129     return SIF_Other;
130   }
131 
132   llvm_unreachable("missed a StringLiteral kind?");
133 }
134 
IsStringInit(Expr * init,QualType declType,ASTContext & Context)135 static StringInitFailureKind IsStringInit(Expr *init, QualType declType,
136                                           ASTContext &Context) {
137   const ArrayType *arrayType = Context.getAsArrayType(declType);
138   if (!arrayType)
139     return SIF_Other;
140   return IsStringInit(init, arrayType, Context);
141 }
142 
143 /// Update the type of a string literal, including any surrounding parentheses,
144 /// to match the type of the object which it is initializing.
updateStringLiteralType(Expr * E,QualType Ty)145 static void updateStringLiteralType(Expr *E, QualType Ty) {
146   while (true) {
147     E->setType(Ty);
148     if (isa<StringLiteral>(E) || isa<ObjCEncodeExpr>(E))
149       break;
150     else if (ParenExpr *PE = dyn_cast<ParenExpr>(E))
151       E = PE->getSubExpr();
152     else if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E))
153       E = UO->getSubExpr();
154     else if (GenericSelectionExpr *GSE = dyn_cast<GenericSelectionExpr>(E))
155       E = GSE->getResultExpr();
156     else
157       llvm_unreachable("unexpected expr in string literal init");
158   }
159 }
160 
CheckStringInit(Expr * Str,QualType & DeclT,const ArrayType * AT,Sema & S)161 static void CheckStringInit(Expr *Str, QualType &DeclT, const ArrayType *AT,
162                             Sema &S) {
163   // Get the length of the string as parsed.
164   auto *ConstantArrayTy =
165       cast<ConstantArrayType>(Str->getType()->getAsArrayTypeUnsafe());
166   uint64_t StrLength = ConstantArrayTy->getSize().getZExtValue();
167 
168   if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(AT)) {
169     // C99 6.7.8p14. We have an array of character type with unknown size
170     // being initialized to a string literal.
171     llvm::APInt ConstVal(32, StrLength);
172     // Return a new array type (C99 6.7.8p22).
173     DeclT = S.Context.getConstantArrayType(IAT->getElementType(),
174                                            ConstVal,
175                                            ArrayType::Normal, 0);
176     updateStringLiteralType(Str, DeclT);
177     return;
178   }
179 
180   const ConstantArrayType *CAT = cast<ConstantArrayType>(AT);
181 
182   // We have an array of character type with known size.  However,
183   // the size may be smaller or larger than the string we are initializing.
184   // FIXME: Avoid truncation for 64-bit length strings.
185   if (S.getLangOpts().CPlusPlus) {
186     if (StringLiteral *SL = dyn_cast<StringLiteral>(Str->IgnoreParens())) {
187       // For Pascal strings it's OK to strip off the terminating null character,
188       // so the example below is valid:
189       //
190       // unsigned char a[2] = "\pa";
191       if (SL->isPascal())
192         StrLength--;
193     }
194 
195     // [dcl.init.string]p2
196     if (StrLength > CAT->getSize().getZExtValue())
197       S.Diag(Str->getBeginLoc(),
198              diag::err_initializer_string_for_char_array_too_long)
199           << Str->getSourceRange();
200   } else {
201     // C99 6.7.8p14.
202     if (StrLength-1 > CAT->getSize().getZExtValue())
203       S.Diag(Str->getBeginLoc(),
204              diag::ext_initializer_string_for_char_array_too_long)
205           << Str->getSourceRange();
206   }
207 
208   // Set the type to the actual size that we are initializing.  If we have
209   // something like:
210   //   char x[1] = "foo";
211   // then this will set the string literal's type to char[1].
212   updateStringLiteralType(Str, DeclT);
213 }
214 
215 //===----------------------------------------------------------------------===//
216 // Semantic checking for initializer lists.
217 //===----------------------------------------------------------------------===//
218 
219 namespace {
220 
221 /// Semantic checking for initializer lists.
222 ///
223 /// The InitListChecker class contains a set of routines that each
224 /// handle the initialization of a certain kind of entity, e.g.,
225 /// arrays, vectors, struct/union types, scalars, etc. The
226 /// InitListChecker itself performs a recursive walk of the subobject
227 /// structure of the type to be initialized, while stepping through
228 /// the initializer list one element at a time. The IList and Index
229 /// parameters to each of the Check* routines contain the active
230 /// (syntactic) initializer list and the index into that initializer
231 /// list that represents the current initializer. Each routine is
232 /// responsible for moving that Index forward as it consumes elements.
233 ///
234 /// Each Check* routine also has a StructuredList/StructuredIndex
235 /// arguments, which contains the current "structured" (semantic)
236 /// initializer list and the index into that initializer list where we
237 /// are copying initializers as we map them over to the semantic
238 /// list. Once we have completed our recursive walk of the subobject
239 /// structure, we will have constructed a full semantic initializer
240 /// list.
241 ///
242 /// C99 designators cause changes in the initializer list traversal,
243 /// because they make the initialization "jump" into a specific
244 /// subobject and then continue the initialization from that
245 /// point. CheckDesignatedInitializer() recursively steps into the
246 /// designated subobject and manages backing out the recursion to
247 /// initialize the subobjects after the one designated.
248 class InitListChecker {
249   Sema &SemaRef;
250   bool hadError;
251   bool VerifyOnly; // no diagnostics, no structure building
252   bool TreatUnavailableAsInvalid; // Used only in VerifyOnly mode.
253   llvm::DenseMap<InitListExpr *, InitListExpr *> SyntacticToSemantic;
254   InitListExpr *FullyStructuredList;
255 
256   void CheckImplicitInitList(const InitializedEntity &Entity,
257                              InitListExpr *ParentIList, QualType T,
258                              unsigned &Index, InitListExpr *StructuredList,
259                              unsigned &StructuredIndex);
260   void CheckExplicitInitList(const InitializedEntity &Entity,
261                              InitListExpr *IList, QualType &T,
262                              InitListExpr *StructuredList,
263                              bool TopLevelObject = false);
264   void CheckListElementTypes(const InitializedEntity &Entity,
265                              InitListExpr *IList, QualType &DeclType,
266                              bool SubobjectIsDesignatorContext,
267                              unsigned &Index,
268                              InitListExpr *StructuredList,
269                              unsigned &StructuredIndex,
270                              bool TopLevelObject = false);
271   void CheckSubElementType(const InitializedEntity &Entity,
272                            InitListExpr *IList, QualType ElemType,
273                            unsigned &Index,
274                            InitListExpr *StructuredList,
275                            unsigned &StructuredIndex);
276   void CheckComplexType(const InitializedEntity &Entity,
277                         InitListExpr *IList, QualType DeclType,
278                         unsigned &Index,
279                         InitListExpr *StructuredList,
280                         unsigned &StructuredIndex);
281   void CheckScalarType(const InitializedEntity &Entity,
282                        InitListExpr *IList, QualType DeclType,
283                        unsigned &Index,
284                        InitListExpr *StructuredList,
285                        unsigned &StructuredIndex);
286   void CheckReferenceType(const InitializedEntity &Entity,
287                           InitListExpr *IList, QualType DeclType,
288                           unsigned &Index,
289                           InitListExpr *StructuredList,
290                           unsigned &StructuredIndex);
291   void CheckVectorType(const InitializedEntity &Entity,
292                        InitListExpr *IList, QualType DeclType, unsigned &Index,
293                        InitListExpr *StructuredList,
294                        unsigned &StructuredIndex);
295   void CheckStructUnionTypes(const InitializedEntity &Entity,
296                              InitListExpr *IList, QualType DeclType,
297                              CXXRecordDecl::base_class_range Bases,
298                              RecordDecl::field_iterator Field,
299                              bool SubobjectIsDesignatorContext, unsigned &Index,
300                              InitListExpr *StructuredList,
301                              unsigned &StructuredIndex,
302                              bool TopLevelObject = false);
303   void CheckArrayType(const InitializedEntity &Entity,
304                       InitListExpr *IList, QualType &DeclType,
305                       llvm::APSInt elementIndex,
306                       bool SubobjectIsDesignatorContext, unsigned &Index,
307                       InitListExpr *StructuredList,
308                       unsigned &StructuredIndex);
309   bool CheckDesignatedInitializer(const InitializedEntity &Entity,
310                                   InitListExpr *IList, DesignatedInitExpr *DIE,
311                                   unsigned DesigIdx,
312                                   QualType &CurrentObjectType,
313                                   RecordDecl::field_iterator *NextField,
314                                   llvm::APSInt *NextElementIndex,
315                                   unsigned &Index,
316                                   InitListExpr *StructuredList,
317                                   unsigned &StructuredIndex,
318                                   bool FinishSubobjectInit,
319                                   bool TopLevelObject);
320   InitListExpr *getStructuredSubobjectInit(InitListExpr *IList, unsigned Index,
321                                            QualType CurrentObjectType,
322                                            InitListExpr *StructuredList,
323                                            unsigned StructuredIndex,
324                                            SourceRange InitRange,
325                                            bool IsFullyOverwritten = false);
326   void UpdateStructuredListElement(InitListExpr *StructuredList,
327                                    unsigned &StructuredIndex,
328                                    Expr *expr);
329   int numArrayElements(QualType DeclType);
330   int numStructUnionElements(QualType DeclType);
331 
332   static ExprResult PerformEmptyInit(Sema &SemaRef,
333                                      SourceLocation Loc,
334                                      const InitializedEntity &Entity,
335                                      bool VerifyOnly,
336                                      bool TreatUnavailableAsInvalid);
337 
338   // Explanation on the "FillWithNoInit" mode:
339   //
340   // Assume we have the following definitions (Case#1):
341   // struct P { char x[6][6]; } xp = { .x[1] = "bar" };
342   // struct PP { struct P lp; } l = { .lp = xp, .lp.x[1][2] = 'f' };
343   //
344   // l.lp.x[1][0..1] should not be filled with implicit initializers because the
345   // "base" initializer "xp" will provide values for them; l.lp.x[1] will be "baf".
346   //
347   // But if we have (Case#2):
348   // struct PP l = { .lp = xp, .lp.x[1] = { [2] = 'f' } };
349   //
350   // l.lp.x[1][0..1] are implicitly initialized and do not use values from the
351   // "base" initializer; l.lp.x[1] will be "\0\0f\0\0\0".
352   //
353   // To distinguish Case#1 from Case#2, and also to avoid leaving many "holes"
354   // in the InitListExpr, the "holes" in Case#1 are filled not with empty
355   // initializers but with special "NoInitExpr" place holders, which tells the
356   // CodeGen not to generate any initializers for these parts.
357   void FillInEmptyInitForBase(unsigned Init, const CXXBaseSpecifier &Base,
358                               const InitializedEntity &ParentEntity,
359                               InitListExpr *ILE, bool &RequiresSecondPass,
360                               bool FillWithNoInit);
361   void FillInEmptyInitForField(unsigned Init, FieldDecl *Field,
362                                const InitializedEntity &ParentEntity,
363                                InitListExpr *ILE, bool &RequiresSecondPass,
364                                bool FillWithNoInit = false);
365   void FillInEmptyInitializations(const InitializedEntity &Entity,
366                                   InitListExpr *ILE, bool &RequiresSecondPass,
367                                   InitListExpr *OuterILE, unsigned OuterIndex,
368                                   bool FillWithNoInit = false);
369   bool CheckFlexibleArrayInit(const InitializedEntity &Entity,
370                               Expr *InitExpr, FieldDecl *Field,
371                               bool TopLevelObject);
372   void CheckEmptyInitializable(const InitializedEntity &Entity,
373                                SourceLocation Loc);
374 
375 public:
376   InitListChecker(Sema &S, const InitializedEntity &Entity,
377                   InitListExpr *IL, QualType &T, bool VerifyOnly,
378                   bool TreatUnavailableAsInvalid);
HadError()379   bool HadError() { return hadError; }
380 
381   // Retrieves the fully-structured initializer list used for
382   // semantic analysis and code generation.
getFullyStructuredList() const383   InitListExpr *getFullyStructuredList() const { return FullyStructuredList; }
384 };
385 
386 } // end anonymous namespace
387 
PerformEmptyInit(Sema & SemaRef,SourceLocation Loc,const InitializedEntity & Entity,bool VerifyOnly,bool TreatUnavailableAsInvalid)388 ExprResult InitListChecker::PerformEmptyInit(Sema &SemaRef,
389                                              SourceLocation Loc,
390                                              const InitializedEntity &Entity,
391                                              bool VerifyOnly,
392                                              bool TreatUnavailableAsInvalid) {
393   InitializationKind Kind = InitializationKind::CreateValue(Loc, Loc, Loc,
394                                                             true);
395   MultiExprArg SubInit;
396   Expr *InitExpr;
397   InitListExpr DummyInitList(SemaRef.Context, Loc, None, Loc);
398 
399   // C++ [dcl.init.aggr]p7:
400   //   If there are fewer initializer-clauses in the list than there are
401   //   members in the aggregate, then each member not explicitly initialized
402   //   ...
403   bool EmptyInitList = SemaRef.getLangOpts().CPlusPlus11 &&
404       Entity.getType()->getBaseElementTypeUnsafe()->isRecordType();
405   if (EmptyInitList) {
406     // C++1y / DR1070:
407     //   shall be initialized [...] from an empty initializer list.
408     //
409     // We apply the resolution of this DR to C++11 but not C++98, since C++98
410     // does not have useful semantics for initialization from an init list.
411     // We treat this as copy-initialization, because aggregate initialization
412     // always performs copy-initialization on its elements.
413     //
414     // Only do this if we're initializing a class type, to avoid filling in
415     // the initializer list where possible.
416     InitExpr = VerifyOnly ? &DummyInitList : new (SemaRef.Context)
417                    InitListExpr(SemaRef.Context, Loc, None, Loc);
418     InitExpr->setType(SemaRef.Context.VoidTy);
419     SubInit = InitExpr;
420     Kind = InitializationKind::CreateCopy(Loc, Loc);
421   } else {
422     // C++03:
423     //   shall be value-initialized.
424   }
425 
426   InitializationSequence InitSeq(SemaRef, Entity, Kind, SubInit);
427   // libstdc++4.6 marks the vector default constructor as explicit in
428   // _GLIBCXX_DEBUG mode, so recover using the C++03 logic in that case.
429   // stlport does so too. Look for std::__debug for libstdc++, and for
430   // std:: for stlport.  This is effectively a compiler-side implementation of
431   // LWG2193.
432   if (!InitSeq && EmptyInitList && InitSeq.getFailureKind() ==
433           InitializationSequence::FK_ExplicitConstructor) {
434     OverloadCandidateSet::iterator Best;
435     OverloadingResult O =
436         InitSeq.getFailedCandidateSet()
437             .BestViableFunction(SemaRef, Kind.getLocation(), Best);
438     (void)O;
439     assert(O == OR_Success && "Inconsistent overload resolution");
440     CXXConstructorDecl *CtorDecl = cast<CXXConstructorDecl>(Best->Function);
441     CXXRecordDecl *R = CtorDecl->getParent();
442 
443     if (CtorDecl->getMinRequiredArguments() == 0 &&
444         CtorDecl->isExplicit() && R->getDeclName() &&
445         SemaRef.SourceMgr.isInSystemHeader(CtorDecl->getLocation())) {
446       bool IsInStd = false;
447       for (NamespaceDecl *ND = dyn_cast<NamespaceDecl>(R->getDeclContext());
448            ND && !IsInStd; ND = dyn_cast<NamespaceDecl>(ND->getParent())) {
449         if (SemaRef.getStdNamespace()->InEnclosingNamespaceSetOf(ND))
450           IsInStd = true;
451       }
452 
453       if (IsInStd && llvm::StringSwitch<bool>(R->getName())
454               .Cases("basic_string", "deque", "forward_list", true)
455               .Cases("list", "map", "multimap", "multiset", true)
456               .Cases("priority_queue", "queue", "set", "stack", true)
457               .Cases("unordered_map", "unordered_set", "vector", true)
458               .Default(false)) {
459         InitSeq.InitializeFrom(
460             SemaRef, Entity,
461             InitializationKind::CreateValue(Loc, Loc, Loc, true),
462             MultiExprArg(), /*TopLevelOfInitList=*/false,
463             TreatUnavailableAsInvalid);
464         // Emit a warning for this.  System header warnings aren't shown
465         // by default, but people working on system headers should see it.
466         if (!VerifyOnly) {
467           SemaRef.Diag(CtorDecl->getLocation(),
468                        diag::warn_invalid_initializer_from_system_header);
469           if (Entity.getKind() == InitializedEntity::EK_Member)
470             SemaRef.Diag(Entity.getDecl()->getLocation(),
471                          diag::note_used_in_initialization_here);
472           else if (Entity.getKind() == InitializedEntity::EK_ArrayElement)
473             SemaRef.Diag(Loc, diag::note_used_in_initialization_here);
474         }
475       }
476     }
477   }
478   if (!InitSeq) {
479     if (!VerifyOnly) {
480       InitSeq.Diagnose(SemaRef, Entity, Kind, SubInit);
481       if (Entity.getKind() == InitializedEntity::EK_Member)
482         SemaRef.Diag(Entity.getDecl()->getLocation(),
483                      diag::note_in_omitted_aggregate_initializer)
484           << /*field*/1 << Entity.getDecl();
485       else if (Entity.getKind() == InitializedEntity::EK_ArrayElement) {
486         bool IsTrailingArrayNewMember =
487             Entity.getParent() &&
488             Entity.getParent()->isVariableLengthArrayNew();
489         SemaRef.Diag(Loc, diag::note_in_omitted_aggregate_initializer)
490           << (IsTrailingArrayNewMember ? 2 : /*array element*/0)
491           << Entity.getElementIndex();
492       }
493     }
494     return ExprError();
495   }
496 
497   return VerifyOnly ? ExprResult(static_cast<Expr *>(nullptr))
498                     : InitSeq.Perform(SemaRef, Entity, Kind, SubInit);
499 }
500 
CheckEmptyInitializable(const InitializedEntity & Entity,SourceLocation Loc)501 void InitListChecker::CheckEmptyInitializable(const InitializedEntity &Entity,
502                                               SourceLocation Loc) {
503   assert(VerifyOnly &&
504          "CheckEmptyInitializable is only inteded for verification mode.");
505   if (PerformEmptyInit(SemaRef, Loc, Entity, /*VerifyOnly*/true,
506                        TreatUnavailableAsInvalid).isInvalid())
507     hadError = true;
508 }
509 
FillInEmptyInitForBase(unsigned Init,const CXXBaseSpecifier & Base,const InitializedEntity & ParentEntity,InitListExpr * ILE,bool & RequiresSecondPass,bool FillWithNoInit)510 void InitListChecker::FillInEmptyInitForBase(
511     unsigned Init, const CXXBaseSpecifier &Base,
512     const InitializedEntity &ParentEntity, InitListExpr *ILE,
513     bool &RequiresSecondPass, bool FillWithNoInit) {
514   assert(Init < ILE->getNumInits() && "should have been expanded");
515 
516   InitializedEntity BaseEntity = InitializedEntity::InitializeBase(
517       SemaRef.Context, &Base, false, &ParentEntity);
518 
519   if (!ILE->getInit(Init)) {
520     ExprResult BaseInit =
521         FillWithNoInit
522             ? new (SemaRef.Context) NoInitExpr(Base.getType())
523             : PerformEmptyInit(SemaRef, ILE->getEndLoc(), BaseEntity,
524                                /*VerifyOnly*/ false, TreatUnavailableAsInvalid);
525     if (BaseInit.isInvalid()) {
526       hadError = true;
527       return;
528     }
529 
530     ILE->setInit(Init, BaseInit.getAs<Expr>());
531   } else if (InitListExpr *InnerILE =
532                  dyn_cast<InitListExpr>(ILE->getInit(Init))) {
533     FillInEmptyInitializations(BaseEntity, InnerILE, RequiresSecondPass,
534                                ILE, Init, FillWithNoInit);
535   } else if (DesignatedInitUpdateExpr *InnerDIUE =
536                dyn_cast<DesignatedInitUpdateExpr>(ILE->getInit(Init))) {
537     FillInEmptyInitializations(BaseEntity, InnerDIUE->getUpdater(),
538                                RequiresSecondPass, ILE, Init,
539                                /*FillWithNoInit =*/true);
540   }
541 }
542 
FillInEmptyInitForField(unsigned Init,FieldDecl * Field,const InitializedEntity & ParentEntity,InitListExpr * ILE,bool & RequiresSecondPass,bool FillWithNoInit)543 void InitListChecker::FillInEmptyInitForField(unsigned Init, FieldDecl *Field,
544                                         const InitializedEntity &ParentEntity,
545                                               InitListExpr *ILE,
546                                               bool &RequiresSecondPass,
547                                               bool FillWithNoInit) {
548   SourceLocation Loc = ILE->getEndLoc();
549   unsigned NumInits = ILE->getNumInits();
550   InitializedEntity MemberEntity
551     = InitializedEntity::InitializeMember(Field, &ParentEntity);
552 
553   if (const RecordType *RType = ILE->getType()->getAs<RecordType>())
554     if (!RType->getDecl()->isUnion())
555       assert(Init < NumInits && "This ILE should have been expanded");
556 
557   if (Init >= NumInits || !ILE->getInit(Init)) {
558     if (FillWithNoInit) {
559       Expr *Filler = new (SemaRef.Context) NoInitExpr(Field->getType());
560       if (Init < NumInits)
561         ILE->setInit(Init, Filler);
562       else
563         ILE->updateInit(SemaRef.Context, Init, Filler);
564       return;
565     }
566     // C++1y [dcl.init.aggr]p7:
567     //   If there are fewer initializer-clauses in the list than there are
568     //   members in the aggregate, then each member not explicitly initialized
569     //   shall be initialized from its brace-or-equal-initializer [...]
570     if (Field->hasInClassInitializer()) {
571       ExprResult DIE = SemaRef.BuildCXXDefaultInitExpr(Loc, Field);
572       if (DIE.isInvalid()) {
573         hadError = true;
574         return;
575       }
576       SemaRef.checkInitializerLifetime(MemberEntity, DIE.get());
577       if (Init < NumInits)
578         ILE->setInit(Init, DIE.get());
579       else {
580         ILE->updateInit(SemaRef.Context, Init, DIE.get());
581         RequiresSecondPass = true;
582       }
583       return;
584     }
585 
586     if (Field->getType()->isReferenceType()) {
587       // C++ [dcl.init.aggr]p9:
588       //   If an incomplete or empty initializer-list leaves a
589       //   member of reference type uninitialized, the program is
590       //   ill-formed.
591       SemaRef.Diag(Loc, diag::err_init_reference_member_uninitialized)
592         << Field->getType()
593         << ILE->getSyntacticForm()->getSourceRange();
594       SemaRef.Diag(Field->getLocation(),
595                    diag::note_uninit_reference_member);
596       hadError = true;
597       return;
598     }
599 
600     ExprResult MemberInit = PerformEmptyInit(SemaRef, Loc, MemberEntity,
601                                              /*VerifyOnly*/false,
602                                              TreatUnavailableAsInvalid);
603     if (MemberInit.isInvalid()) {
604       hadError = true;
605       return;
606     }
607 
608     if (hadError) {
609       // Do nothing
610     } else if (Init < NumInits) {
611       ILE->setInit(Init, MemberInit.getAs<Expr>());
612     } else if (!isa<ImplicitValueInitExpr>(MemberInit.get())) {
613       // Empty initialization requires a constructor call, so
614       // extend the initializer list to include the constructor
615       // call and make a note that we'll need to take another pass
616       // through the initializer list.
617       ILE->updateInit(SemaRef.Context, Init, MemberInit.getAs<Expr>());
618       RequiresSecondPass = true;
619     }
620   } else if (InitListExpr *InnerILE
621                = dyn_cast<InitListExpr>(ILE->getInit(Init)))
622     FillInEmptyInitializations(MemberEntity, InnerILE,
623                                RequiresSecondPass, ILE, Init, FillWithNoInit);
624   else if (DesignatedInitUpdateExpr *InnerDIUE
625                = dyn_cast<DesignatedInitUpdateExpr>(ILE->getInit(Init)))
626     FillInEmptyInitializations(MemberEntity, InnerDIUE->getUpdater(),
627                                RequiresSecondPass, ILE, Init,
628                                /*FillWithNoInit =*/true);
629 }
630 
631 /// Recursively replaces NULL values within the given initializer list
632 /// with expressions that perform value-initialization of the
633 /// appropriate type, and finish off the InitListExpr formation.
634 void
FillInEmptyInitializations(const InitializedEntity & Entity,InitListExpr * ILE,bool & RequiresSecondPass,InitListExpr * OuterILE,unsigned OuterIndex,bool FillWithNoInit)635 InitListChecker::FillInEmptyInitializations(const InitializedEntity &Entity,
636                                             InitListExpr *ILE,
637                                             bool &RequiresSecondPass,
638                                             InitListExpr *OuterILE,
639                                             unsigned OuterIndex,
640                                             bool FillWithNoInit) {
641   assert((ILE->getType() != SemaRef.Context.VoidTy) &&
642          "Should not have void type");
643 
644   // If this is a nested initializer list, we might have changed its contents
645   // (and therefore some of its properties, such as instantiation-dependence)
646   // while filling it in. Inform the outer initializer list so that its state
647   // can be updated to match.
648   // FIXME: We should fully build the inner initializers before constructing
649   // the outer InitListExpr instead of mutating AST nodes after they have
650   // been used as subexpressions of other nodes.
651   struct UpdateOuterILEWithUpdatedInit {
652     InitListExpr *Outer;
653     unsigned OuterIndex;
654     ~UpdateOuterILEWithUpdatedInit() {
655       if (Outer)
656         Outer->setInit(OuterIndex, Outer->getInit(OuterIndex));
657     }
658   } UpdateOuterRAII = {OuterILE, OuterIndex};
659 
660   // A transparent ILE is not performing aggregate initialization and should
661   // not be filled in.
662   if (ILE->isTransparent())
663     return;
664 
665   if (const RecordType *RType = ILE->getType()->getAs<RecordType>()) {
666     const RecordDecl *RDecl = RType->getDecl();
667     if (RDecl->isUnion() && ILE->getInitializedFieldInUnion())
668       FillInEmptyInitForField(0, ILE->getInitializedFieldInUnion(),
669                               Entity, ILE, RequiresSecondPass, FillWithNoInit);
670     else if (RDecl->isUnion() && isa<CXXRecordDecl>(RDecl) &&
671              cast<CXXRecordDecl>(RDecl)->hasInClassInitializer()) {
672       for (auto *Field : RDecl->fields()) {
673         if (Field->hasInClassInitializer()) {
674           FillInEmptyInitForField(0, Field, Entity, ILE, RequiresSecondPass,
675                                   FillWithNoInit);
676           break;
677         }
678       }
679     } else {
680       // The fields beyond ILE->getNumInits() are default initialized, so in
681       // order to leave them uninitialized, the ILE is expanded and the extra
682       // fields are then filled with NoInitExpr.
683       unsigned NumElems = numStructUnionElements(ILE->getType());
684       if (RDecl->hasFlexibleArrayMember())
685         ++NumElems;
686       if (ILE->getNumInits() < NumElems)
687         ILE->resizeInits(SemaRef.Context, NumElems);
688 
689       unsigned Init = 0;
690 
691       if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RDecl)) {
692         for (auto &Base : CXXRD->bases()) {
693           if (hadError)
694             return;
695 
696           FillInEmptyInitForBase(Init, Base, Entity, ILE, RequiresSecondPass,
697                                  FillWithNoInit);
698           ++Init;
699         }
700       }
701 
702       for (auto *Field : RDecl->fields()) {
703         if (Field->isUnnamedBitfield())
704           continue;
705 
706         if (hadError)
707           return;
708 
709         FillInEmptyInitForField(Init, Field, Entity, ILE, RequiresSecondPass,
710                                 FillWithNoInit);
711         if (hadError)
712           return;
713 
714         ++Init;
715 
716         // Only look at the first initialization of a union.
717         if (RDecl->isUnion())
718           break;
719       }
720     }
721 
722     return;
723   }
724 
725   QualType ElementType;
726 
727   InitializedEntity ElementEntity = Entity;
728   unsigned NumInits = ILE->getNumInits();
729   unsigned NumElements = NumInits;
730   if (const ArrayType *AType = SemaRef.Context.getAsArrayType(ILE->getType())) {
731     ElementType = AType->getElementType();
732     if (const auto *CAType = dyn_cast<ConstantArrayType>(AType))
733       NumElements = CAType->getSize().getZExtValue();
734     // For an array new with an unknown bound, ask for one additional element
735     // in order to populate the array filler.
736     if (Entity.isVariableLengthArrayNew())
737       ++NumElements;
738     ElementEntity = InitializedEntity::InitializeElement(SemaRef.Context,
739                                                          0, Entity);
740   } else if (const VectorType *VType = ILE->getType()->getAs<VectorType>()) {
741     ElementType = VType->getElementType();
742     NumElements = VType->getNumElements();
743     ElementEntity = InitializedEntity::InitializeElement(SemaRef.Context,
744                                                          0, Entity);
745   } else
746     ElementType = ILE->getType();
747 
748   for (unsigned Init = 0; Init != NumElements; ++Init) {
749     if (hadError)
750       return;
751 
752     if (ElementEntity.getKind() == InitializedEntity::EK_ArrayElement ||
753         ElementEntity.getKind() == InitializedEntity::EK_VectorElement)
754       ElementEntity.setElementIndex(Init);
755 
756     if (Init >= NumInits && ILE->hasArrayFiller())
757       return;
758 
759     Expr *InitExpr = (Init < NumInits ? ILE->getInit(Init) : nullptr);
760     if (!InitExpr && Init < NumInits && ILE->hasArrayFiller())
761       ILE->setInit(Init, ILE->getArrayFiller());
762     else if (!InitExpr && !ILE->hasArrayFiller()) {
763       Expr *Filler = nullptr;
764 
765       if (FillWithNoInit)
766         Filler = new (SemaRef.Context) NoInitExpr(ElementType);
767       else {
768         ExprResult ElementInit =
769             PerformEmptyInit(SemaRef, ILE->getEndLoc(), ElementEntity,
770                              /*VerifyOnly*/ false, TreatUnavailableAsInvalid);
771         if (ElementInit.isInvalid()) {
772           hadError = true;
773           return;
774         }
775 
776         Filler = ElementInit.getAs<Expr>();
777       }
778 
779       if (hadError) {
780         // Do nothing
781       } else if (Init < NumInits) {
782         // For arrays, just set the expression used for value-initialization
783         // of the "holes" in the array.
784         if (ElementEntity.getKind() == InitializedEntity::EK_ArrayElement)
785           ILE->setArrayFiller(Filler);
786         else
787           ILE->setInit(Init, Filler);
788       } else {
789         // For arrays, just set the expression used for value-initialization
790         // of the rest of elements and exit.
791         if (ElementEntity.getKind() == InitializedEntity::EK_ArrayElement) {
792           ILE->setArrayFiller(Filler);
793           return;
794         }
795 
796         if (!isa<ImplicitValueInitExpr>(Filler) && !isa<NoInitExpr>(Filler)) {
797           // Empty initialization requires a constructor call, so
798           // extend the initializer list to include the constructor
799           // call and make a note that we'll need to take another pass
800           // through the initializer list.
801           ILE->updateInit(SemaRef.Context, Init, Filler);
802           RequiresSecondPass = true;
803         }
804       }
805     } else if (InitListExpr *InnerILE
806                  = dyn_cast_or_null<InitListExpr>(InitExpr))
807       FillInEmptyInitializations(ElementEntity, InnerILE, RequiresSecondPass,
808                                  ILE, Init, FillWithNoInit);
809     else if (DesignatedInitUpdateExpr *InnerDIUE
810                  = dyn_cast_or_null<DesignatedInitUpdateExpr>(InitExpr))
811       FillInEmptyInitializations(ElementEntity, InnerDIUE->getUpdater(),
812                                  RequiresSecondPass, ILE, Init,
813                                  /*FillWithNoInit =*/true);
814   }
815 }
816 
InitListChecker(Sema & S,const InitializedEntity & Entity,InitListExpr * IL,QualType & T,bool VerifyOnly,bool TreatUnavailableAsInvalid)817 InitListChecker::InitListChecker(Sema &S, const InitializedEntity &Entity,
818                                  InitListExpr *IL, QualType &T,
819                                  bool VerifyOnly,
820                                  bool TreatUnavailableAsInvalid)
821   : SemaRef(S), VerifyOnly(VerifyOnly),
822     TreatUnavailableAsInvalid(TreatUnavailableAsInvalid) {
823   // FIXME: Check that IL isn't already the semantic form of some other
824   // InitListExpr. If it is, we'd create a broken AST.
825 
826   hadError = false;
827 
828   FullyStructuredList =
829       getStructuredSubobjectInit(IL, 0, T, nullptr, 0, IL->getSourceRange());
830   CheckExplicitInitList(Entity, IL, T, FullyStructuredList,
831                         /*TopLevelObject=*/true);
832 
833   if (!hadError && !VerifyOnly) {
834     bool RequiresSecondPass = false;
835     FillInEmptyInitializations(Entity, FullyStructuredList, RequiresSecondPass,
836                                /*OuterILE=*/nullptr, /*OuterIndex=*/0);
837     if (RequiresSecondPass && !hadError)
838       FillInEmptyInitializations(Entity, FullyStructuredList,
839                                  RequiresSecondPass, nullptr, 0);
840   }
841 }
842 
numArrayElements(QualType DeclType)843 int InitListChecker::numArrayElements(QualType DeclType) {
844   // FIXME: use a proper constant
845   int maxElements = 0x7FFFFFFF;
846   if (const ConstantArrayType *CAT =
847         SemaRef.Context.getAsConstantArrayType(DeclType)) {
848     maxElements = static_cast<int>(CAT->getSize().getZExtValue());
849   }
850   return maxElements;
851 }
852 
numStructUnionElements(QualType DeclType)853 int InitListChecker::numStructUnionElements(QualType DeclType) {
854   RecordDecl *structDecl = DeclType->getAs<RecordType>()->getDecl();
855   int InitializableMembers = 0;
856   if (auto *CXXRD = dyn_cast<CXXRecordDecl>(structDecl))
857     InitializableMembers += CXXRD->getNumBases();
858   for (const auto *Field : structDecl->fields())
859     if (!Field->isUnnamedBitfield())
860       ++InitializableMembers;
861 
862   if (structDecl->isUnion())
863     return std::min(InitializableMembers, 1);
864   return InitializableMembers - structDecl->hasFlexibleArrayMember();
865 }
866 
867 /// Determine whether Entity is an entity for which it is idiomatic to elide
868 /// the braces in aggregate initialization.
isIdiomaticBraceElisionEntity(const InitializedEntity & Entity)869 static bool isIdiomaticBraceElisionEntity(const InitializedEntity &Entity) {
870   // Recursive initialization of the one and only field within an aggregate
871   // class is considered idiomatic. This case arises in particular for
872   // initialization of std::array, where the C++ standard suggests the idiom of
873   //
874   //   std::array<T, N> arr = {1, 2, 3};
875   //
876   // (where std::array is an aggregate struct containing a single array field.
877 
878   // FIXME: Should aggregate initialization of a struct with a single
879   // base class and no members also suppress the warning?
880   if (Entity.getKind() != InitializedEntity::EK_Member || !Entity.getParent())
881     return false;
882 
883   auto *ParentRD =
884       Entity.getParent()->getType()->castAs<RecordType>()->getDecl();
885   if (CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(ParentRD))
886     if (CXXRD->getNumBases())
887       return false;
888 
889   auto FieldIt = ParentRD->field_begin();
890   assert(FieldIt != ParentRD->field_end() &&
891          "no fields but have initializer for member?");
892   return ++FieldIt == ParentRD->field_end();
893 }
894 
895 /// Check whether the range of the initializer \p ParentIList from element
896 /// \p Index onwards can be used to initialize an object of type \p T. Update
897 /// \p Index to indicate how many elements of the list were consumed.
898 ///
899 /// This also fills in \p StructuredList, from element \p StructuredIndex
900 /// onwards, with the fully-braced, desugared form of the initialization.
CheckImplicitInitList(const InitializedEntity & Entity,InitListExpr * ParentIList,QualType T,unsigned & Index,InitListExpr * StructuredList,unsigned & StructuredIndex)901 void InitListChecker::CheckImplicitInitList(const InitializedEntity &Entity,
902                                             InitListExpr *ParentIList,
903                                             QualType T, unsigned &Index,
904                                             InitListExpr *StructuredList,
905                                             unsigned &StructuredIndex) {
906   int maxElements = 0;
907 
908   if (T->isArrayType())
909     maxElements = numArrayElements(T);
910   else if (T->isRecordType())
911     maxElements = numStructUnionElements(T);
912   else if (T->isVectorType())
913     maxElements = T->getAs<VectorType>()->getNumElements();
914   else
915     llvm_unreachable("CheckImplicitInitList(): Illegal type");
916 
917   if (maxElements == 0) {
918     if (!VerifyOnly)
919       SemaRef.Diag(ParentIList->getInit(Index)->getBeginLoc(),
920                    diag::err_implicit_empty_initializer);
921     ++Index;
922     hadError = true;
923     return;
924   }
925 
926   // Build a structured initializer list corresponding to this subobject.
927   InitListExpr *StructuredSubobjectInitList = getStructuredSubobjectInit(
928       ParentIList, Index, T, StructuredList, StructuredIndex,
929       SourceRange(ParentIList->getInit(Index)->getBeginLoc(),
930                   ParentIList->getSourceRange().getEnd()));
931   unsigned StructuredSubobjectInitIndex = 0;
932 
933   // Check the element types and build the structural subobject.
934   unsigned StartIndex = Index;
935   CheckListElementTypes(Entity, ParentIList, T,
936                         /*SubobjectIsDesignatorContext=*/false, Index,
937                         StructuredSubobjectInitList,
938                         StructuredSubobjectInitIndex);
939 
940   if (!VerifyOnly) {
941     StructuredSubobjectInitList->setType(T);
942 
943     unsigned EndIndex = (Index == StartIndex? StartIndex : Index - 1);
944     // Update the structured sub-object initializer so that it's ending
945     // range corresponds with the end of the last initializer it used.
946     if (EndIndex < ParentIList->getNumInits() &&
947         ParentIList->getInit(EndIndex)) {
948       SourceLocation EndLoc
949         = ParentIList->getInit(EndIndex)->getSourceRange().getEnd();
950       StructuredSubobjectInitList->setRBraceLoc(EndLoc);
951     }
952 
953     // Complain about missing braces.
954     if ((T->isArrayType() || T->isRecordType()) &&
955         !ParentIList->isIdiomaticZeroInitializer(SemaRef.getLangOpts()) &&
956         !isIdiomaticBraceElisionEntity(Entity)) {
957       SemaRef.Diag(StructuredSubobjectInitList->getBeginLoc(),
958                    diag::warn_missing_braces)
959           << StructuredSubobjectInitList->getSourceRange()
960           << FixItHint::CreateInsertion(
961                  StructuredSubobjectInitList->getBeginLoc(), "{")
962           << FixItHint::CreateInsertion(
963                  SemaRef.getLocForEndOfToken(
964                      StructuredSubobjectInitList->getEndLoc()),
965                  "}");
966     }
967 
968     // Warn if this type won't be an aggregate in future versions of C++.
969     auto *CXXRD = T->getAsCXXRecordDecl();
970     if (CXXRD && CXXRD->hasUserDeclaredConstructor()) {
971       SemaRef.Diag(StructuredSubobjectInitList->getBeginLoc(),
972                    diag::warn_cxx2a_compat_aggregate_init_with_ctors)
973           << StructuredSubobjectInitList->getSourceRange() << T;
974     }
975   }
976 }
977 
978 /// Warn that \p Entity was of scalar type and was initialized by a
979 /// single-element braced initializer list.
warnBracedScalarInit(Sema & S,const InitializedEntity & Entity,SourceRange Braces)980 static void warnBracedScalarInit(Sema &S, const InitializedEntity &Entity,
981                                  SourceRange Braces) {
982   // Don't warn during template instantiation. If the initialization was
983   // non-dependent, we warned during the initial parse; otherwise, the
984   // type might not be scalar in some uses of the template.
985   if (S.inTemplateInstantiation())
986     return;
987 
988   unsigned DiagID = 0;
989 
990   switch (Entity.getKind()) {
991   case InitializedEntity::EK_VectorElement:
992   case InitializedEntity::EK_ComplexElement:
993   case InitializedEntity::EK_ArrayElement:
994   case InitializedEntity::EK_Parameter:
995   case InitializedEntity::EK_Parameter_CF_Audited:
996   case InitializedEntity::EK_Result:
997     // Extra braces here are suspicious.
998     DiagID = diag::warn_braces_around_scalar_init;
999     break;
1000 
1001   case InitializedEntity::EK_Member:
1002     // Warn on aggregate initialization but not on ctor init list or
1003     // default member initializer.
1004     if (Entity.getParent())
1005       DiagID = diag::warn_braces_around_scalar_init;
1006     break;
1007 
1008   case InitializedEntity::EK_Variable:
1009   case InitializedEntity::EK_LambdaCapture:
1010     // No warning, might be direct-list-initialization.
1011     // FIXME: Should we warn for copy-list-initialization in these cases?
1012     break;
1013 
1014   case InitializedEntity::EK_New:
1015   case InitializedEntity::EK_Temporary:
1016   case InitializedEntity::EK_CompoundLiteralInit:
1017     // No warning, braces are part of the syntax of the underlying construct.
1018     break;
1019 
1020   case InitializedEntity::EK_RelatedResult:
1021     // No warning, we already warned when initializing the result.
1022     break;
1023 
1024   case InitializedEntity::EK_Exception:
1025   case InitializedEntity::EK_Base:
1026   case InitializedEntity::EK_Delegating:
1027   case InitializedEntity::EK_BlockElement:
1028   case InitializedEntity::EK_LambdaToBlockConversionBlockElement:
1029   case InitializedEntity::EK_Binding:
1030   case InitializedEntity::EK_StmtExprResult:
1031     llvm_unreachable("unexpected braced scalar init");
1032   }
1033 
1034   if (DiagID) {
1035     S.Diag(Braces.getBegin(), DiagID)
1036       << Braces
1037       << FixItHint::CreateRemoval(Braces.getBegin())
1038       << FixItHint::CreateRemoval(Braces.getEnd());
1039   }
1040 }
1041 
1042 /// Check whether the initializer \p IList (that was written with explicit
1043 /// braces) can be used to initialize an object of type \p T.
1044 ///
1045 /// This also fills in \p StructuredList with the fully-braced, desugared
1046 /// form of the initialization.
CheckExplicitInitList(const InitializedEntity & Entity,InitListExpr * IList,QualType & T,InitListExpr * StructuredList,bool TopLevelObject)1047 void InitListChecker::CheckExplicitInitList(const InitializedEntity &Entity,
1048                                             InitListExpr *IList, QualType &T,
1049                                             InitListExpr *StructuredList,
1050                                             bool TopLevelObject) {
1051   if (!VerifyOnly) {
1052     SyntacticToSemantic[IList] = StructuredList;
1053     StructuredList->setSyntacticForm(IList);
1054   }
1055 
1056   unsigned Index = 0, StructuredIndex = 0;
1057   CheckListElementTypes(Entity, IList, T, /*SubobjectIsDesignatorContext=*/true,
1058                         Index, StructuredList, StructuredIndex, TopLevelObject);
1059   if (!VerifyOnly) {
1060     QualType ExprTy = T;
1061     if (!ExprTy->isArrayType())
1062       ExprTy = ExprTy.getNonLValueExprType(SemaRef.Context);
1063     IList->setType(ExprTy);
1064     StructuredList->setType(ExprTy);
1065   }
1066   if (hadError)
1067     return;
1068 
1069   if (Index < IList->getNumInits()) {
1070     // We have leftover initializers
1071     if (VerifyOnly) {
1072       if (SemaRef.getLangOpts().CPlusPlus ||
1073           (SemaRef.getLangOpts().OpenCL &&
1074            IList->getType()->isVectorType())) {
1075         hadError = true;
1076       }
1077       return;
1078     }
1079 
1080     if (StructuredIndex == 1 &&
1081         IsStringInit(StructuredList->getInit(0), T, SemaRef.Context) ==
1082             SIF_None) {
1083       unsigned DK = diag::ext_excess_initializers_in_char_array_initializer;
1084       if (SemaRef.getLangOpts().CPlusPlus) {
1085         DK = diag::err_excess_initializers_in_char_array_initializer;
1086         hadError = true;
1087       }
1088       // Special-case
1089       SemaRef.Diag(IList->getInit(Index)->getBeginLoc(), DK)
1090           << IList->getInit(Index)->getSourceRange();
1091     } else if (!T->isIncompleteType()) {
1092       // Don't complain for incomplete types, since we'll get an error
1093       // elsewhere
1094       QualType CurrentObjectType = StructuredList->getType();
1095       int initKind =
1096         CurrentObjectType->isArrayType()? 0 :
1097         CurrentObjectType->isVectorType()? 1 :
1098         CurrentObjectType->isScalarType()? 2 :
1099         CurrentObjectType->isUnionType()? 3 :
1100         4;
1101 
1102       unsigned DK = diag::ext_excess_initializers;
1103       if (SemaRef.getLangOpts().CPlusPlus) {
1104         DK = diag::err_excess_initializers;
1105         hadError = true;
1106       }
1107       if (SemaRef.getLangOpts().OpenCL && initKind == 1) {
1108         DK = diag::err_excess_initializers;
1109         hadError = true;
1110       }
1111 
1112       SemaRef.Diag(IList->getInit(Index)->getBeginLoc(), DK)
1113           << initKind << IList->getInit(Index)->getSourceRange();
1114     }
1115   }
1116 
1117   if (!VerifyOnly) {
1118     if (T->isScalarType() && IList->getNumInits() == 1 &&
1119         !isa<InitListExpr>(IList->getInit(0)))
1120       warnBracedScalarInit(SemaRef, Entity, IList->getSourceRange());
1121 
1122     // Warn if this is a class type that won't be an aggregate in future
1123     // versions of C++.
1124     auto *CXXRD = T->getAsCXXRecordDecl();
1125     if (CXXRD && CXXRD->hasUserDeclaredConstructor()) {
1126       // Don't warn if there's an equivalent default constructor that would be
1127       // used instead.
1128       bool HasEquivCtor = false;
1129       if (IList->getNumInits() == 0) {
1130         auto *CD = SemaRef.LookupDefaultConstructor(CXXRD);
1131         HasEquivCtor = CD && !CD->isDeleted();
1132       }
1133 
1134       if (!HasEquivCtor) {
1135         SemaRef.Diag(IList->getBeginLoc(),
1136                      diag::warn_cxx2a_compat_aggregate_init_with_ctors)
1137             << IList->getSourceRange() << T;
1138       }
1139     }
1140   }
1141 }
1142 
CheckListElementTypes(const InitializedEntity & Entity,InitListExpr * IList,QualType & DeclType,bool SubobjectIsDesignatorContext,unsigned & Index,InitListExpr * StructuredList,unsigned & StructuredIndex,bool TopLevelObject)1143 void InitListChecker::CheckListElementTypes(const InitializedEntity &Entity,
1144                                             InitListExpr *IList,
1145                                             QualType &DeclType,
1146                                             bool SubobjectIsDesignatorContext,
1147                                             unsigned &Index,
1148                                             InitListExpr *StructuredList,
1149                                             unsigned &StructuredIndex,
1150                                             bool TopLevelObject) {
1151   if (DeclType->isAnyComplexType() && SubobjectIsDesignatorContext) {
1152     // Explicitly braced initializer for complex type can be real+imaginary
1153     // parts.
1154     CheckComplexType(Entity, IList, DeclType, Index,
1155                      StructuredList, StructuredIndex);
1156   } else if (DeclType->isScalarType()) {
1157     CheckScalarType(Entity, IList, DeclType, Index,
1158                     StructuredList, StructuredIndex);
1159   } else if (DeclType->isVectorType()) {
1160     CheckVectorType(Entity, IList, DeclType, Index,
1161                     StructuredList, StructuredIndex);
1162   } else if (DeclType->isRecordType()) {
1163     assert(DeclType->isAggregateType() &&
1164            "non-aggregate records should be handed in CheckSubElementType");
1165     RecordDecl *RD = DeclType->getAs<RecordType>()->getDecl();
1166     auto Bases =
1167         CXXRecordDecl::base_class_range(CXXRecordDecl::base_class_iterator(),
1168                                         CXXRecordDecl::base_class_iterator());
1169     if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RD))
1170       Bases = CXXRD->bases();
1171     CheckStructUnionTypes(Entity, IList, DeclType, Bases, RD->field_begin(),
1172                           SubobjectIsDesignatorContext, Index, StructuredList,
1173                           StructuredIndex, TopLevelObject);
1174   } else if (DeclType->isArrayType()) {
1175     llvm::APSInt Zero(
1176                     SemaRef.Context.getTypeSize(SemaRef.Context.getSizeType()),
1177                     false);
1178     CheckArrayType(Entity, IList, DeclType, Zero,
1179                    SubobjectIsDesignatorContext, Index,
1180                    StructuredList, StructuredIndex);
1181   } else if (DeclType->isVoidType() || DeclType->isFunctionType()) {
1182     // This type is invalid, issue a diagnostic.
1183     ++Index;
1184     if (!VerifyOnly)
1185       SemaRef.Diag(IList->getBeginLoc(), diag::err_illegal_initializer_type)
1186           << DeclType;
1187     hadError = true;
1188   } else if (DeclType->isReferenceType()) {
1189     CheckReferenceType(Entity, IList, DeclType, Index,
1190                        StructuredList, StructuredIndex);
1191   } else if (DeclType->isObjCObjectType()) {
1192     if (!VerifyOnly)
1193       SemaRef.Diag(IList->getBeginLoc(), diag::err_init_objc_class) << DeclType;
1194     hadError = true;
1195   } else if (DeclType->isOCLIntelSubgroupAVCType()) {
1196     // Checks for scalar type are sufficient for these types too.
1197     CheckScalarType(Entity, IList, DeclType, Index, StructuredList,
1198                     StructuredIndex);
1199   } else {
1200     if (!VerifyOnly)
1201       SemaRef.Diag(IList->getBeginLoc(), diag::err_illegal_initializer_type)
1202           << DeclType;
1203     hadError = true;
1204   }
1205 }
1206 
CheckSubElementType(const InitializedEntity & Entity,InitListExpr * IList,QualType ElemType,unsigned & Index,InitListExpr * StructuredList,unsigned & StructuredIndex)1207 void InitListChecker::CheckSubElementType(const InitializedEntity &Entity,
1208                                           InitListExpr *IList,
1209                                           QualType ElemType,
1210                                           unsigned &Index,
1211                                           InitListExpr *StructuredList,
1212                                           unsigned &StructuredIndex) {
1213   Expr *expr = IList->getInit(Index);
1214 
1215   if (ElemType->isReferenceType())
1216     return CheckReferenceType(Entity, IList, ElemType, Index,
1217                               StructuredList, StructuredIndex);
1218 
1219   if (InitListExpr *SubInitList = dyn_cast<InitListExpr>(expr)) {
1220     if (SubInitList->getNumInits() == 1 &&
1221         IsStringInit(SubInitList->getInit(0), ElemType, SemaRef.Context) ==
1222         SIF_None) {
1223       expr = SubInitList->getInit(0);
1224     } else if (!SemaRef.getLangOpts().CPlusPlus) {
1225       InitListExpr *InnerStructuredList
1226         = getStructuredSubobjectInit(IList, Index, ElemType,
1227                                      StructuredList, StructuredIndex,
1228                                      SubInitList->getSourceRange(), true);
1229       CheckExplicitInitList(Entity, SubInitList, ElemType,
1230                             InnerStructuredList);
1231 
1232       if (!hadError && !VerifyOnly) {
1233         bool RequiresSecondPass = false;
1234         FillInEmptyInitializations(Entity, InnerStructuredList,
1235                                    RequiresSecondPass, StructuredList,
1236                                    StructuredIndex);
1237         if (RequiresSecondPass && !hadError)
1238           FillInEmptyInitializations(Entity, InnerStructuredList,
1239                                      RequiresSecondPass, StructuredList,
1240                                      StructuredIndex);
1241       }
1242       ++StructuredIndex;
1243       ++Index;
1244       return;
1245     }
1246     // C++ initialization is handled later.
1247   } else if (isa<ImplicitValueInitExpr>(expr)) {
1248     // This happens during template instantiation when we see an InitListExpr
1249     // that we've already checked once.
1250     assert(SemaRef.Context.hasSameType(expr->getType(), ElemType) &&
1251            "found implicit initialization for the wrong type");
1252     if (!VerifyOnly)
1253       UpdateStructuredListElement(StructuredList, StructuredIndex, expr);
1254     ++Index;
1255     return;
1256   }
1257 
1258   if (SemaRef.getLangOpts().CPlusPlus) {
1259     // C++ [dcl.init.aggr]p2:
1260     //   Each member is copy-initialized from the corresponding
1261     //   initializer-clause.
1262 
1263     // FIXME: Better EqualLoc?
1264     InitializationKind Kind =
1265         InitializationKind::CreateCopy(expr->getBeginLoc(), SourceLocation());
1266     InitializationSequence Seq(SemaRef, Entity, Kind, expr,
1267                                /*TopLevelOfInitList*/ true);
1268 
1269     // C++14 [dcl.init.aggr]p13:
1270     //   If the assignment-expression can initialize a member, the member is
1271     //   initialized. Otherwise [...] brace elision is assumed
1272     //
1273     // Brace elision is never performed if the element is not an
1274     // assignment-expression.
1275     if (Seq || isa<InitListExpr>(expr)) {
1276       if (!VerifyOnly) {
1277         ExprResult Result =
1278           Seq.Perform(SemaRef, Entity, Kind, expr);
1279         if (Result.isInvalid())
1280           hadError = true;
1281 
1282         UpdateStructuredListElement(StructuredList, StructuredIndex,
1283                                     Result.getAs<Expr>());
1284       } else if (!Seq)
1285         hadError = true;
1286       ++Index;
1287       return;
1288     }
1289 
1290     // Fall through for subaggregate initialization
1291   } else if (ElemType->isScalarType() || ElemType->isAtomicType()) {
1292     // FIXME: Need to handle atomic aggregate types with implicit init lists.
1293     return CheckScalarType(Entity, IList, ElemType, Index,
1294                            StructuredList, StructuredIndex);
1295   } else if (const ArrayType *arrayType =
1296                  SemaRef.Context.getAsArrayType(ElemType)) {
1297     // arrayType can be incomplete if we're initializing a flexible
1298     // array member.  There's nothing we can do with the completed
1299     // type here, though.
1300 
1301     if (IsStringInit(expr, arrayType, SemaRef.Context) == SIF_None) {
1302       if (!VerifyOnly) {
1303         CheckStringInit(expr, ElemType, arrayType, SemaRef);
1304         UpdateStructuredListElement(StructuredList, StructuredIndex, expr);
1305       }
1306       ++Index;
1307       return;
1308     }
1309 
1310     // Fall through for subaggregate initialization.
1311 
1312   } else {
1313     assert((ElemType->isRecordType() || ElemType->isVectorType() ||
1314             ElemType->isOpenCLSpecificType()) && "Unexpected type");
1315 
1316     // C99 6.7.8p13:
1317     //
1318     //   The initializer for a structure or union object that has
1319     //   automatic storage duration shall be either an initializer
1320     //   list as described below, or a single expression that has
1321     //   compatible structure or union type. In the latter case, the
1322     //   initial value of the object, including unnamed members, is
1323     //   that of the expression.
1324     ExprResult ExprRes = expr;
1325     if (SemaRef.CheckSingleAssignmentConstraints(
1326             ElemType, ExprRes, !VerifyOnly) != Sema::Incompatible) {
1327       if (ExprRes.isInvalid())
1328         hadError = true;
1329       else {
1330         ExprRes = SemaRef.DefaultFunctionArrayLvalueConversion(ExprRes.get());
1331           if (ExprRes.isInvalid())
1332             hadError = true;
1333       }
1334       UpdateStructuredListElement(StructuredList, StructuredIndex,
1335                                   ExprRes.getAs<Expr>());
1336       ++Index;
1337       return;
1338     }
1339     ExprRes.get();
1340     // Fall through for subaggregate initialization
1341   }
1342 
1343   // C++ [dcl.init.aggr]p12:
1344   //
1345   //   [...] Otherwise, if the member is itself a non-empty
1346   //   subaggregate, brace elision is assumed and the initializer is
1347   //   considered for the initialization of the first member of
1348   //   the subaggregate.
1349   // OpenCL vector initializer is handled elsewhere.
1350   if ((!SemaRef.getLangOpts().OpenCL && ElemType->isVectorType()) ||
1351       ElemType->isAggregateType()) {
1352     CheckImplicitInitList(Entity, IList, ElemType, Index, StructuredList,
1353                           StructuredIndex);
1354     ++StructuredIndex;
1355   } else {
1356     if (!VerifyOnly) {
1357       // We cannot initialize this element, so let
1358       // PerformCopyInitialization produce the appropriate diagnostic.
1359       SemaRef.PerformCopyInitialization(Entity, SourceLocation(), expr,
1360                                         /*TopLevelOfInitList=*/true);
1361     }
1362     hadError = true;
1363     ++Index;
1364     ++StructuredIndex;
1365   }
1366 }
1367 
CheckComplexType(const InitializedEntity & Entity,InitListExpr * IList,QualType DeclType,unsigned & Index,InitListExpr * StructuredList,unsigned & StructuredIndex)1368 void InitListChecker::CheckComplexType(const InitializedEntity &Entity,
1369                                        InitListExpr *IList, QualType DeclType,
1370                                        unsigned &Index,
1371                                        InitListExpr *StructuredList,
1372                                        unsigned &StructuredIndex) {
1373   assert(Index == 0 && "Index in explicit init list must be zero");
1374 
1375   // As an extension, clang supports complex initializers, which initialize
1376   // a complex number component-wise.  When an explicit initializer list for
1377   // a complex number contains two two initializers, this extension kicks in:
1378   // it exepcts the initializer list to contain two elements convertible to
1379   // the element type of the complex type. The first element initializes
1380   // the real part, and the second element intitializes the imaginary part.
1381 
1382   if (IList->getNumInits() != 2)
1383     return CheckScalarType(Entity, IList, DeclType, Index, StructuredList,
1384                            StructuredIndex);
1385 
1386   // This is an extension in C.  (The builtin _Complex type does not exist
1387   // in the C++ standard.)
1388   if (!SemaRef.getLangOpts().CPlusPlus && !VerifyOnly)
1389     SemaRef.Diag(IList->getBeginLoc(), diag::ext_complex_component_init)
1390         << IList->getSourceRange();
1391 
1392   // Initialize the complex number.
1393   QualType elementType = DeclType->getAs<ComplexType>()->getElementType();
1394   InitializedEntity ElementEntity =
1395     InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity);
1396 
1397   for (unsigned i = 0; i < 2; ++i) {
1398     ElementEntity.setElementIndex(Index);
1399     CheckSubElementType(ElementEntity, IList, elementType, Index,
1400                         StructuredList, StructuredIndex);
1401   }
1402 }
1403 
CheckScalarType(const InitializedEntity & Entity,InitListExpr * IList,QualType DeclType,unsigned & Index,InitListExpr * StructuredList,unsigned & StructuredIndex)1404 void InitListChecker::CheckScalarType(const InitializedEntity &Entity,
1405                                       InitListExpr *IList, QualType DeclType,
1406                                       unsigned &Index,
1407                                       InitListExpr *StructuredList,
1408                                       unsigned &StructuredIndex) {
1409   if (Index >= IList->getNumInits()) {
1410     if (!VerifyOnly)
1411       SemaRef.Diag(IList->getBeginLoc(),
1412                    SemaRef.getLangOpts().CPlusPlus11
1413                        ? diag::warn_cxx98_compat_empty_scalar_initializer
1414                        : diag::err_empty_scalar_initializer)
1415           << IList->getSourceRange();
1416     hadError = !SemaRef.getLangOpts().CPlusPlus11;
1417     ++Index;
1418     ++StructuredIndex;
1419     return;
1420   }
1421 
1422   Expr *expr = IList->getInit(Index);
1423   if (InitListExpr *SubIList = dyn_cast<InitListExpr>(expr)) {
1424     // FIXME: This is invalid, and accepting it causes overload resolution
1425     // to pick the wrong overload in some corner cases.
1426     if (!VerifyOnly)
1427       SemaRef.Diag(SubIList->getBeginLoc(),
1428                    diag::ext_many_braces_around_scalar_init)
1429           << SubIList->getSourceRange();
1430 
1431     CheckScalarType(Entity, SubIList, DeclType, Index, StructuredList,
1432                     StructuredIndex);
1433     return;
1434   } else if (isa<DesignatedInitExpr>(expr)) {
1435     if (!VerifyOnly)
1436       SemaRef.Diag(expr->getBeginLoc(), diag::err_designator_for_scalar_init)
1437           << DeclType << expr->getSourceRange();
1438     hadError = true;
1439     ++Index;
1440     ++StructuredIndex;
1441     return;
1442   }
1443 
1444   if (VerifyOnly) {
1445     if (!SemaRef.CanPerformCopyInitialization(Entity,expr))
1446       hadError = true;
1447     ++Index;
1448     return;
1449   }
1450 
1451   ExprResult Result =
1452       SemaRef.PerformCopyInitialization(Entity, expr->getBeginLoc(), expr,
1453                                         /*TopLevelOfInitList=*/true);
1454 
1455   Expr *ResultExpr = nullptr;
1456 
1457   if (Result.isInvalid())
1458     hadError = true; // types weren't compatible.
1459   else {
1460     ResultExpr = Result.getAs<Expr>();
1461 
1462     if (ResultExpr != expr) {
1463       // The type was promoted, update initializer list.
1464       IList->setInit(Index, ResultExpr);
1465     }
1466   }
1467   if (hadError)
1468     ++StructuredIndex;
1469   else
1470     UpdateStructuredListElement(StructuredList, StructuredIndex, ResultExpr);
1471   ++Index;
1472 }
1473 
CheckReferenceType(const InitializedEntity & Entity,InitListExpr * IList,QualType DeclType,unsigned & Index,InitListExpr * StructuredList,unsigned & StructuredIndex)1474 void InitListChecker::CheckReferenceType(const InitializedEntity &Entity,
1475                                          InitListExpr *IList, QualType DeclType,
1476                                          unsigned &Index,
1477                                          InitListExpr *StructuredList,
1478                                          unsigned &StructuredIndex) {
1479   if (Index >= IList->getNumInits()) {
1480     // FIXME: It would be wonderful if we could point at the actual member. In
1481     // general, it would be useful to pass location information down the stack,
1482     // so that we know the location (or decl) of the "current object" being
1483     // initialized.
1484     if (!VerifyOnly)
1485       SemaRef.Diag(IList->getBeginLoc(),
1486                    diag::err_init_reference_member_uninitialized)
1487           << DeclType << IList->getSourceRange();
1488     hadError = true;
1489     ++Index;
1490     ++StructuredIndex;
1491     return;
1492   }
1493 
1494   Expr *expr = IList->getInit(Index);
1495   if (isa<InitListExpr>(expr) && !SemaRef.getLangOpts().CPlusPlus11) {
1496     if (!VerifyOnly)
1497       SemaRef.Diag(IList->getBeginLoc(), diag::err_init_non_aggr_init_list)
1498           << DeclType << IList->getSourceRange();
1499     hadError = true;
1500     ++Index;
1501     ++StructuredIndex;
1502     return;
1503   }
1504 
1505   if (VerifyOnly) {
1506     if (!SemaRef.CanPerformCopyInitialization(Entity,expr))
1507       hadError = true;
1508     ++Index;
1509     return;
1510   }
1511 
1512   ExprResult Result =
1513       SemaRef.PerformCopyInitialization(Entity, expr->getBeginLoc(), expr,
1514                                         /*TopLevelOfInitList=*/true);
1515 
1516   if (Result.isInvalid())
1517     hadError = true;
1518 
1519   expr = Result.getAs<Expr>();
1520   IList->setInit(Index, expr);
1521 
1522   if (hadError)
1523     ++StructuredIndex;
1524   else
1525     UpdateStructuredListElement(StructuredList, StructuredIndex, expr);
1526   ++Index;
1527 }
1528 
CheckVectorType(const InitializedEntity & Entity,InitListExpr * IList,QualType DeclType,unsigned & Index,InitListExpr * StructuredList,unsigned & StructuredIndex)1529 void InitListChecker::CheckVectorType(const InitializedEntity &Entity,
1530                                       InitListExpr *IList, QualType DeclType,
1531                                       unsigned &Index,
1532                                       InitListExpr *StructuredList,
1533                                       unsigned &StructuredIndex) {
1534   const VectorType *VT = DeclType->getAs<VectorType>();
1535   unsigned maxElements = VT->getNumElements();
1536   unsigned numEltsInit = 0;
1537   QualType elementType = VT->getElementType();
1538 
1539   if (Index >= IList->getNumInits()) {
1540     // Make sure the element type can be value-initialized.
1541     if (VerifyOnly)
1542       CheckEmptyInitializable(
1543           InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity),
1544           IList->getEndLoc());
1545     return;
1546   }
1547 
1548   if (!SemaRef.getLangOpts().OpenCL) {
1549     // If the initializing element is a vector, try to copy-initialize
1550     // instead of breaking it apart (which is doomed to failure anyway).
1551     Expr *Init = IList->getInit(Index);
1552     if (!isa<InitListExpr>(Init) && Init->getType()->isVectorType()) {
1553       if (VerifyOnly) {
1554         if (!SemaRef.CanPerformCopyInitialization(Entity, Init))
1555           hadError = true;
1556         ++Index;
1557         return;
1558       }
1559 
1560       ExprResult Result =
1561           SemaRef.PerformCopyInitialization(Entity, Init->getBeginLoc(), Init,
1562                                             /*TopLevelOfInitList=*/true);
1563 
1564       Expr *ResultExpr = nullptr;
1565       if (Result.isInvalid())
1566         hadError = true; // types weren't compatible.
1567       else {
1568         ResultExpr = Result.getAs<Expr>();
1569 
1570         if (ResultExpr != Init) {
1571           // The type was promoted, update initializer list.
1572           IList->setInit(Index, ResultExpr);
1573         }
1574       }
1575       if (hadError)
1576         ++StructuredIndex;
1577       else
1578         UpdateStructuredListElement(StructuredList, StructuredIndex,
1579                                     ResultExpr);
1580       ++Index;
1581       return;
1582     }
1583 
1584     InitializedEntity ElementEntity =
1585       InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity);
1586 
1587     for (unsigned i = 0; i < maxElements; ++i, ++numEltsInit) {
1588       // Don't attempt to go past the end of the init list
1589       if (Index >= IList->getNumInits()) {
1590         if (VerifyOnly)
1591           CheckEmptyInitializable(ElementEntity, IList->getEndLoc());
1592         break;
1593       }
1594 
1595       ElementEntity.setElementIndex(Index);
1596       CheckSubElementType(ElementEntity, IList, elementType, Index,
1597                           StructuredList, StructuredIndex);
1598     }
1599 
1600     if (VerifyOnly)
1601       return;
1602 
1603     bool isBigEndian = SemaRef.Context.getTargetInfo().isBigEndian();
1604     const VectorType *T = Entity.getType()->getAs<VectorType>();
1605     if (isBigEndian && (T->getVectorKind() == VectorType::NeonVector ||
1606                         T->getVectorKind() == VectorType::NeonPolyVector)) {
1607       // The ability to use vector initializer lists is a GNU vector extension
1608       // and is unrelated to the NEON intrinsics in arm_neon.h. On little
1609       // endian machines it works fine, however on big endian machines it
1610       // exhibits surprising behaviour:
1611       //
1612       //   uint32x2_t x = {42, 64};
1613       //   return vget_lane_u32(x, 0); // Will return 64.
1614       //
1615       // Because of this, explicitly call out that it is non-portable.
1616       //
1617       SemaRef.Diag(IList->getBeginLoc(),
1618                    diag::warn_neon_vector_initializer_non_portable);
1619 
1620       const char *typeCode;
1621       unsigned typeSize = SemaRef.Context.getTypeSize(elementType);
1622 
1623       if (elementType->isFloatingType())
1624         typeCode = "f";
1625       else if (elementType->isSignedIntegerType())
1626         typeCode = "s";
1627       else if (elementType->isUnsignedIntegerType())
1628         typeCode = "u";
1629       else
1630         llvm_unreachable("Invalid element type!");
1631 
1632       SemaRef.Diag(IList->getBeginLoc(),
1633                    SemaRef.Context.getTypeSize(VT) > 64
1634                        ? diag::note_neon_vector_initializer_non_portable_q
1635                        : diag::note_neon_vector_initializer_non_portable)
1636           << typeCode << typeSize;
1637     }
1638 
1639     return;
1640   }
1641 
1642   InitializedEntity ElementEntity =
1643     InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity);
1644 
1645   // OpenCL initializers allows vectors to be constructed from vectors.
1646   for (unsigned i = 0; i < maxElements; ++i) {
1647     // Don't attempt to go past the end of the init list
1648     if (Index >= IList->getNumInits())
1649       break;
1650 
1651     ElementEntity.setElementIndex(Index);
1652 
1653     QualType IType = IList->getInit(Index)->getType();
1654     if (!IType->isVectorType()) {
1655       CheckSubElementType(ElementEntity, IList, elementType, Index,
1656                           StructuredList, StructuredIndex);
1657       ++numEltsInit;
1658     } else {
1659       QualType VecType;
1660       const VectorType *IVT = IType->getAs<VectorType>();
1661       unsigned numIElts = IVT->getNumElements();
1662 
1663       if (IType->isExtVectorType())
1664         VecType = SemaRef.Context.getExtVectorType(elementType, numIElts);
1665       else
1666         VecType = SemaRef.Context.getVectorType(elementType, numIElts,
1667                                                 IVT->getVectorKind());
1668       CheckSubElementType(ElementEntity, IList, VecType, Index,
1669                           StructuredList, StructuredIndex);
1670       numEltsInit += numIElts;
1671     }
1672   }
1673 
1674   // OpenCL requires all elements to be initialized.
1675   if (numEltsInit != maxElements) {
1676     if (!VerifyOnly)
1677       SemaRef.Diag(IList->getBeginLoc(),
1678                    diag::err_vector_incorrect_num_initializers)
1679           << (numEltsInit < maxElements) << maxElements << numEltsInit;
1680     hadError = true;
1681   }
1682 }
1683 
CheckArrayType(const InitializedEntity & Entity,InitListExpr * IList,QualType & DeclType,llvm::APSInt elementIndex,bool SubobjectIsDesignatorContext,unsigned & Index,InitListExpr * StructuredList,unsigned & StructuredIndex)1684 void InitListChecker::CheckArrayType(const InitializedEntity &Entity,
1685                                      InitListExpr *IList, QualType &DeclType,
1686                                      llvm::APSInt elementIndex,
1687                                      bool SubobjectIsDesignatorContext,
1688                                      unsigned &Index,
1689                                      InitListExpr *StructuredList,
1690                                      unsigned &StructuredIndex) {
1691   const ArrayType *arrayType = SemaRef.Context.getAsArrayType(DeclType);
1692 
1693   // Check for the special-case of initializing an array with a string.
1694   if (Index < IList->getNumInits()) {
1695     if (IsStringInit(IList->getInit(Index), arrayType, SemaRef.Context) ==
1696         SIF_None) {
1697       // We place the string literal directly into the resulting
1698       // initializer list. This is the only place where the structure
1699       // of the structured initializer list doesn't match exactly,
1700       // because doing so would involve allocating one character
1701       // constant for each string.
1702       if (!VerifyOnly) {
1703         CheckStringInit(IList->getInit(Index), DeclType, arrayType, SemaRef);
1704         UpdateStructuredListElement(StructuredList, StructuredIndex,
1705                                     IList->getInit(Index));
1706         StructuredList->resizeInits(SemaRef.Context, StructuredIndex);
1707       }
1708       ++Index;
1709       return;
1710     }
1711   }
1712   if (const VariableArrayType *VAT = dyn_cast<VariableArrayType>(arrayType)) {
1713     // Check for VLAs; in standard C it would be possible to check this
1714     // earlier, but I don't know where clang accepts VLAs (gcc accepts
1715     // them in all sorts of strange places).
1716     if (!VerifyOnly)
1717       SemaRef.Diag(VAT->getSizeExpr()->getBeginLoc(),
1718                    diag::err_variable_object_no_init)
1719           << VAT->getSizeExpr()->getSourceRange();
1720     hadError = true;
1721     ++Index;
1722     ++StructuredIndex;
1723     return;
1724   }
1725 
1726   // We might know the maximum number of elements in advance.
1727   llvm::APSInt maxElements(elementIndex.getBitWidth(),
1728                            elementIndex.isUnsigned());
1729   bool maxElementsKnown = false;
1730   if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(arrayType)) {
1731     maxElements = CAT->getSize();
1732     elementIndex = elementIndex.extOrTrunc(maxElements.getBitWidth());
1733     elementIndex.setIsUnsigned(maxElements.isUnsigned());
1734     maxElementsKnown = true;
1735   }
1736 
1737   QualType elementType = arrayType->getElementType();
1738   while (Index < IList->getNumInits()) {
1739     Expr *Init = IList->getInit(Index);
1740     if (DesignatedInitExpr *DIE = dyn_cast<DesignatedInitExpr>(Init)) {
1741       // If we're not the subobject that matches up with the '{' for
1742       // the designator, we shouldn't be handling the
1743       // designator. Return immediately.
1744       if (!SubobjectIsDesignatorContext)
1745         return;
1746 
1747       // Handle this designated initializer. elementIndex will be
1748       // updated to be the next array element we'll initialize.
1749       if (CheckDesignatedInitializer(Entity, IList, DIE, 0,
1750                                      DeclType, nullptr, &elementIndex, Index,
1751                                      StructuredList, StructuredIndex, true,
1752                                      false)) {
1753         hadError = true;
1754         continue;
1755       }
1756 
1757       if (elementIndex.getBitWidth() > maxElements.getBitWidth())
1758         maxElements = maxElements.extend(elementIndex.getBitWidth());
1759       else if (elementIndex.getBitWidth() < maxElements.getBitWidth())
1760         elementIndex = elementIndex.extend(maxElements.getBitWidth());
1761       elementIndex.setIsUnsigned(maxElements.isUnsigned());
1762 
1763       // If the array is of incomplete type, keep track of the number of
1764       // elements in the initializer.
1765       if (!maxElementsKnown && elementIndex > maxElements)
1766         maxElements = elementIndex;
1767 
1768       continue;
1769     }
1770 
1771     // If we know the maximum number of elements, and we've already
1772     // hit it, stop consuming elements in the initializer list.
1773     if (maxElementsKnown && elementIndex == maxElements)
1774       break;
1775 
1776     InitializedEntity ElementEntity =
1777       InitializedEntity::InitializeElement(SemaRef.Context, StructuredIndex,
1778                                            Entity);
1779     // Check this element.
1780     CheckSubElementType(ElementEntity, IList, elementType, Index,
1781                         StructuredList, StructuredIndex);
1782     ++elementIndex;
1783 
1784     // If the array is of incomplete type, keep track of the number of
1785     // elements in the initializer.
1786     if (!maxElementsKnown && elementIndex > maxElements)
1787       maxElements = elementIndex;
1788   }
1789   if (!hadError && DeclType->isIncompleteArrayType() && !VerifyOnly) {
1790     // If this is an incomplete array type, the actual type needs to
1791     // be calculated here.
1792     llvm::APSInt Zero(maxElements.getBitWidth(), maxElements.isUnsigned());
1793     if (maxElements == Zero && !Entity.isVariableLengthArrayNew()) {
1794       // Sizing an array implicitly to zero is not allowed by ISO C,
1795       // but is supported by GNU.
1796       SemaRef.Diag(IList->getBeginLoc(), diag::ext_typecheck_zero_array_size);
1797     }
1798 
1799     DeclType = SemaRef.Context.getConstantArrayType(elementType, maxElements,
1800                                                      ArrayType::Normal, 0);
1801   }
1802   if (!hadError && VerifyOnly) {
1803     // If there are any members of the array that get value-initialized, check
1804     // that is possible. That happens if we know the bound and don't have
1805     // enough elements, or if we're performing an array new with an unknown
1806     // bound.
1807     // FIXME: This needs to detect holes left by designated initializers too.
1808     if ((maxElementsKnown && elementIndex < maxElements) ||
1809         Entity.isVariableLengthArrayNew())
1810       CheckEmptyInitializable(
1811           InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity),
1812           IList->getEndLoc());
1813   }
1814 }
1815 
CheckFlexibleArrayInit(const InitializedEntity & Entity,Expr * InitExpr,FieldDecl * Field,bool TopLevelObject)1816 bool InitListChecker::CheckFlexibleArrayInit(const InitializedEntity &Entity,
1817                                              Expr *InitExpr,
1818                                              FieldDecl *Field,
1819                                              bool TopLevelObject) {
1820   // Handle GNU flexible array initializers.
1821   unsigned FlexArrayDiag;
1822   if (isa<InitListExpr>(InitExpr) &&
1823       cast<InitListExpr>(InitExpr)->getNumInits() == 0) {
1824     // Empty flexible array init always allowed as an extension
1825     FlexArrayDiag = diag::ext_flexible_array_init;
1826   } else if (SemaRef.getLangOpts().CPlusPlus) {
1827     // Disallow flexible array init in C++; it is not required for gcc
1828     // compatibility, and it needs work to IRGen correctly in general.
1829     FlexArrayDiag = diag::err_flexible_array_init;
1830   } else if (!TopLevelObject) {
1831     // Disallow flexible array init on non-top-level object
1832     FlexArrayDiag = diag::err_flexible_array_init;
1833   } else if (Entity.getKind() != InitializedEntity::EK_Variable) {
1834     // Disallow flexible array init on anything which is not a variable.
1835     FlexArrayDiag = diag::err_flexible_array_init;
1836   } else if (cast<VarDecl>(Entity.getDecl())->hasLocalStorage()) {
1837     // Disallow flexible array init on local variables.
1838     FlexArrayDiag = diag::err_flexible_array_init;
1839   } else {
1840     // Allow other cases.
1841     FlexArrayDiag = diag::ext_flexible_array_init;
1842   }
1843 
1844   if (!VerifyOnly) {
1845     SemaRef.Diag(InitExpr->getBeginLoc(), FlexArrayDiag)
1846         << InitExpr->getBeginLoc();
1847     SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member)
1848       << Field;
1849   }
1850 
1851   return FlexArrayDiag != diag::ext_flexible_array_init;
1852 }
1853 
1854 /// Check if the type of a class element has an accessible destructor.
1855 ///
1856 /// Aggregate initialization requires a class element's destructor be
1857 /// accessible per 11.6.1 [dcl.init.aggr]:
1858 ///
1859 /// The destructor for each element of class type is potentially invoked
1860 /// (15.4 [class.dtor]) from the context where the aggregate initialization
1861 /// occurs.
hasAccessibleDestructor(QualType ElementType,SourceLocation Loc,Sema & SemaRef)1862 static bool hasAccessibleDestructor(QualType ElementType, SourceLocation Loc,
1863                                     Sema &SemaRef) {
1864   auto *CXXRD = ElementType->getAsCXXRecordDecl();
1865   if (!CXXRD)
1866     return false;
1867 
1868   CXXDestructorDecl *Destructor = SemaRef.LookupDestructor(CXXRD);
1869   SemaRef.CheckDestructorAccess(Loc, Destructor,
1870                                 SemaRef.PDiag(diag::err_access_dtor_temp)
1871                                     << ElementType);
1872   SemaRef.MarkFunctionReferenced(Loc, Destructor);
1873   if (SemaRef.DiagnoseUseOfDecl(Destructor, Loc))
1874     return true;
1875   return false;
1876 }
1877 
CheckStructUnionTypes(const InitializedEntity & Entity,InitListExpr * IList,QualType DeclType,CXXRecordDecl::base_class_range Bases,RecordDecl::field_iterator Field,bool SubobjectIsDesignatorContext,unsigned & Index,InitListExpr * StructuredList,unsigned & StructuredIndex,bool TopLevelObject)1878 void InitListChecker::CheckStructUnionTypes(
1879     const InitializedEntity &Entity, InitListExpr *IList, QualType DeclType,
1880     CXXRecordDecl::base_class_range Bases, RecordDecl::field_iterator Field,
1881     bool SubobjectIsDesignatorContext, unsigned &Index,
1882     InitListExpr *StructuredList, unsigned &StructuredIndex,
1883     bool TopLevelObject) {
1884   RecordDecl *structDecl = DeclType->getAs<RecordType>()->getDecl();
1885 
1886   // If the record is invalid, some of it's members are invalid. To avoid
1887   // confusion, we forgo checking the intializer for the entire record.
1888   if (structDecl->isInvalidDecl()) {
1889     // Assume it was supposed to consume a single initializer.
1890     ++Index;
1891     hadError = true;
1892     return;
1893   }
1894 
1895   if (DeclType->isUnionType() && IList->getNumInits() == 0) {
1896     RecordDecl *RD = DeclType->getAs<RecordType>()->getDecl();
1897 
1898     if (!VerifyOnly)
1899       for (FieldDecl *FD : RD->fields()) {
1900         QualType ET = SemaRef.Context.getBaseElementType(FD->getType());
1901         if (hasAccessibleDestructor(ET, IList->getEndLoc(), SemaRef)) {
1902           hadError = true;
1903           return;
1904         }
1905       }
1906 
1907     // If there's a default initializer, use it.
1908     if (isa<CXXRecordDecl>(RD) && cast<CXXRecordDecl>(RD)->hasInClassInitializer()) {
1909       if (VerifyOnly)
1910         return;
1911       for (RecordDecl::field_iterator FieldEnd = RD->field_end();
1912            Field != FieldEnd; ++Field) {
1913         if (Field->hasInClassInitializer()) {
1914           StructuredList->setInitializedFieldInUnion(*Field);
1915           // FIXME: Actually build a CXXDefaultInitExpr?
1916           return;
1917         }
1918       }
1919     }
1920 
1921     // Value-initialize the first member of the union that isn't an unnamed
1922     // bitfield.
1923     for (RecordDecl::field_iterator FieldEnd = RD->field_end();
1924          Field != FieldEnd; ++Field) {
1925       if (!Field->isUnnamedBitfield()) {
1926         if (VerifyOnly)
1927           CheckEmptyInitializable(
1928               InitializedEntity::InitializeMember(*Field, &Entity),
1929               IList->getEndLoc());
1930         else
1931           StructuredList->setInitializedFieldInUnion(*Field);
1932         break;
1933       }
1934     }
1935     return;
1936   }
1937 
1938   bool InitializedSomething = false;
1939 
1940   // If we have any base classes, they are initialized prior to the fields.
1941   for (auto &Base : Bases) {
1942     Expr *Init = Index < IList->getNumInits() ? IList->getInit(Index) : nullptr;
1943 
1944     // Designated inits always initialize fields, so if we see one, all
1945     // remaining base classes have no explicit initializer.
1946     if (Init && isa<DesignatedInitExpr>(Init))
1947       Init = nullptr;
1948 
1949     SourceLocation InitLoc = Init ? Init->getBeginLoc() : IList->getEndLoc();
1950     InitializedEntity BaseEntity = InitializedEntity::InitializeBase(
1951         SemaRef.Context, &Base, false, &Entity);
1952     if (Init) {
1953       CheckSubElementType(BaseEntity, IList, Base.getType(), Index,
1954                           StructuredList, StructuredIndex);
1955       InitializedSomething = true;
1956     } else if (VerifyOnly) {
1957       CheckEmptyInitializable(BaseEntity, InitLoc);
1958     }
1959 
1960     if (!VerifyOnly)
1961       if (hasAccessibleDestructor(Base.getType(), InitLoc, SemaRef)) {
1962         hadError = true;
1963         return;
1964       }
1965   }
1966 
1967   // If structDecl is a forward declaration, this loop won't do
1968   // anything except look at designated initializers; That's okay,
1969   // because an error should get printed out elsewhere. It might be
1970   // worthwhile to skip over the rest of the initializer, though.
1971   RecordDecl *RD = DeclType->getAs<RecordType>()->getDecl();
1972   RecordDecl::field_iterator FieldEnd = RD->field_end();
1973   bool CheckForMissingFields =
1974     !IList->isIdiomaticZeroInitializer(SemaRef.getLangOpts());
1975   bool HasDesignatedInit = false;
1976 
1977   while (Index < IList->getNumInits()) {
1978     Expr *Init = IList->getInit(Index);
1979     SourceLocation InitLoc = Init->getBeginLoc();
1980 
1981     if (DesignatedInitExpr *DIE = dyn_cast<DesignatedInitExpr>(Init)) {
1982       // If we're not the subobject that matches up with the '{' for
1983       // the designator, we shouldn't be handling the
1984       // designator. Return immediately.
1985       if (!SubobjectIsDesignatorContext)
1986         return;
1987 
1988       HasDesignatedInit = true;
1989 
1990       // Handle this designated initializer. Field will be updated to
1991       // the next field that we'll be initializing.
1992       if (CheckDesignatedInitializer(Entity, IList, DIE, 0,
1993                                      DeclType, &Field, nullptr, Index,
1994                                      StructuredList, StructuredIndex,
1995                                      true, TopLevelObject))
1996         hadError = true;
1997       else if (!VerifyOnly) {
1998         // Find the field named by the designated initializer.
1999         RecordDecl::field_iterator F = RD->field_begin();
2000         while (std::next(F) != Field)
2001           ++F;
2002         QualType ET = SemaRef.Context.getBaseElementType(F->getType());
2003         if (hasAccessibleDestructor(ET, InitLoc, SemaRef)) {
2004           hadError = true;
2005           return;
2006         }
2007       }
2008 
2009       InitializedSomething = true;
2010 
2011       // Disable check for missing fields when designators are used.
2012       // This matches gcc behaviour.
2013       CheckForMissingFields = false;
2014       continue;
2015     }
2016 
2017     if (Field == FieldEnd) {
2018       // We've run out of fields. We're done.
2019       break;
2020     }
2021 
2022     // We've already initialized a member of a union. We're done.
2023     if (InitializedSomething && DeclType->isUnionType())
2024       break;
2025 
2026     // If we've hit the flexible array member at the end, we're done.
2027     if (Field->getType()->isIncompleteArrayType())
2028       break;
2029 
2030     if (Field->isUnnamedBitfield()) {
2031       // Don't initialize unnamed bitfields, e.g. "int : 20;"
2032       ++Field;
2033       continue;
2034     }
2035 
2036     // Make sure we can use this declaration.
2037     bool InvalidUse;
2038     if (VerifyOnly)
2039       InvalidUse = !SemaRef.CanUseDecl(*Field, TreatUnavailableAsInvalid);
2040     else
2041       InvalidUse = SemaRef.DiagnoseUseOfDecl(
2042           *Field, IList->getInit(Index)->getBeginLoc());
2043     if (InvalidUse) {
2044       ++Index;
2045       ++Field;
2046       hadError = true;
2047       continue;
2048     }
2049 
2050     if (!VerifyOnly) {
2051       QualType ET = SemaRef.Context.getBaseElementType(Field->getType());
2052       if (hasAccessibleDestructor(ET, InitLoc, SemaRef)) {
2053         hadError = true;
2054         return;
2055       }
2056     }
2057 
2058     InitializedEntity MemberEntity =
2059       InitializedEntity::InitializeMember(*Field, &Entity);
2060     CheckSubElementType(MemberEntity, IList, Field->getType(), Index,
2061                         StructuredList, StructuredIndex);
2062     InitializedSomething = true;
2063 
2064     if (DeclType->isUnionType() && !VerifyOnly) {
2065       // Initialize the first field within the union.
2066       StructuredList->setInitializedFieldInUnion(*Field);
2067     }
2068 
2069     ++Field;
2070   }
2071 
2072   // Emit warnings for missing struct field initializers.
2073   if (!VerifyOnly && InitializedSomething && CheckForMissingFields &&
2074       Field != FieldEnd && !Field->getType()->isIncompleteArrayType() &&
2075       !DeclType->isUnionType()) {
2076     // It is possible we have one or more unnamed bitfields remaining.
2077     // Find first (if any) named field and emit warning.
2078     for (RecordDecl::field_iterator it = Field, end = RD->field_end();
2079          it != end; ++it) {
2080       if (!it->isUnnamedBitfield() && !it->hasInClassInitializer()) {
2081         SemaRef.Diag(IList->getSourceRange().getEnd(),
2082                      diag::warn_missing_field_initializers) << *it;
2083         break;
2084       }
2085     }
2086   }
2087 
2088   // Check that any remaining fields can be value-initialized.
2089   if (VerifyOnly && Field != FieldEnd && !DeclType->isUnionType() &&
2090       !Field->getType()->isIncompleteArrayType()) {
2091     // FIXME: Should check for holes left by designated initializers too.
2092     for (; Field != FieldEnd && !hadError; ++Field) {
2093       if (!Field->isUnnamedBitfield() && !Field->hasInClassInitializer())
2094         CheckEmptyInitializable(
2095             InitializedEntity::InitializeMember(*Field, &Entity),
2096             IList->getEndLoc());
2097     }
2098   }
2099 
2100   // Check that the types of the remaining fields have accessible destructors.
2101   if (!VerifyOnly) {
2102     // If the initializer expression has a designated initializer, check the
2103     // elements for which a designated initializer is not provided too.
2104     RecordDecl::field_iterator I = HasDesignatedInit ? RD->field_begin()
2105                                                      : Field;
2106     for (RecordDecl::field_iterator E = RD->field_end(); I != E; ++I) {
2107       QualType ET = SemaRef.Context.getBaseElementType(I->getType());
2108       if (hasAccessibleDestructor(ET, IList->getEndLoc(), SemaRef)) {
2109         hadError = true;
2110         return;
2111       }
2112     }
2113   }
2114 
2115   if (Field == FieldEnd || !Field->getType()->isIncompleteArrayType() ||
2116       Index >= IList->getNumInits())
2117     return;
2118 
2119   if (CheckFlexibleArrayInit(Entity, IList->getInit(Index), *Field,
2120                              TopLevelObject)) {
2121     hadError = true;
2122     ++Index;
2123     return;
2124   }
2125 
2126   InitializedEntity MemberEntity =
2127     InitializedEntity::InitializeMember(*Field, &Entity);
2128 
2129   if (isa<InitListExpr>(IList->getInit(Index)))
2130     CheckSubElementType(MemberEntity, IList, Field->getType(), Index,
2131                         StructuredList, StructuredIndex);
2132   else
2133     CheckImplicitInitList(MemberEntity, IList, Field->getType(), Index,
2134                           StructuredList, StructuredIndex);
2135 }
2136 
2137 /// Expand a field designator that refers to a member of an
2138 /// anonymous struct or union into a series of field designators that
2139 /// refers to the field within the appropriate subobject.
2140 ///
ExpandAnonymousFieldDesignator(Sema & SemaRef,DesignatedInitExpr * DIE,unsigned DesigIdx,IndirectFieldDecl * IndirectField)2141 static void ExpandAnonymousFieldDesignator(Sema &SemaRef,
2142                                            DesignatedInitExpr *DIE,
2143                                            unsigned DesigIdx,
2144                                            IndirectFieldDecl *IndirectField) {
2145   typedef DesignatedInitExpr::Designator Designator;
2146 
2147   // Build the replacement designators.
2148   SmallVector<Designator, 4> Replacements;
2149   for (IndirectFieldDecl::chain_iterator PI = IndirectField->chain_begin(),
2150        PE = IndirectField->chain_end(); PI != PE; ++PI) {
2151     if (PI + 1 == PE)
2152       Replacements.push_back(Designator((IdentifierInfo *)nullptr,
2153                                     DIE->getDesignator(DesigIdx)->getDotLoc(),
2154                                 DIE->getDesignator(DesigIdx)->getFieldLoc()));
2155     else
2156       Replacements.push_back(Designator((IdentifierInfo *)nullptr,
2157                                         SourceLocation(), SourceLocation()));
2158     assert(isa<FieldDecl>(*PI));
2159     Replacements.back().setField(cast<FieldDecl>(*PI));
2160   }
2161 
2162   // Expand the current designator into the set of replacement
2163   // designators, so we have a full subobject path down to where the
2164   // member of the anonymous struct/union is actually stored.
2165   DIE->ExpandDesignator(SemaRef.Context, DesigIdx, &Replacements[0],
2166                         &Replacements[0] + Replacements.size());
2167 }
2168 
CloneDesignatedInitExpr(Sema & SemaRef,DesignatedInitExpr * DIE)2169 static DesignatedInitExpr *CloneDesignatedInitExpr(Sema &SemaRef,
2170                                                    DesignatedInitExpr *DIE) {
2171   unsigned NumIndexExprs = DIE->getNumSubExprs() - 1;
2172   SmallVector<Expr*, 4> IndexExprs(NumIndexExprs);
2173   for (unsigned I = 0; I < NumIndexExprs; ++I)
2174     IndexExprs[I] = DIE->getSubExpr(I + 1);
2175   return DesignatedInitExpr::Create(SemaRef.Context, DIE->designators(),
2176                                     IndexExprs,
2177                                     DIE->getEqualOrColonLoc(),
2178                                     DIE->usesGNUSyntax(), DIE->getInit());
2179 }
2180 
2181 namespace {
2182 
2183 // Callback to only accept typo corrections that are for field members of
2184 // the given struct or union.
2185 class FieldInitializerValidatorCCC : public CorrectionCandidateCallback {
2186  public:
FieldInitializerValidatorCCC(RecordDecl * RD)2187   explicit FieldInitializerValidatorCCC(RecordDecl *RD)
2188       : Record(RD) {}
2189 
ValidateCandidate(const TypoCorrection & candidate)2190   bool ValidateCandidate(const TypoCorrection &candidate) override {
2191     FieldDecl *FD = candidate.getCorrectionDeclAs<FieldDecl>();
2192     return FD && FD->getDeclContext()->getRedeclContext()->Equals(Record);
2193   }
2194 
2195  private:
2196   RecordDecl *Record;
2197 };
2198 
2199 } // end anonymous namespace
2200 
2201 /// Check the well-formedness of a C99 designated initializer.
2202 ///
2203 /// Determines whether the designated initializer @p DIE, which
2204 /// resides at the given @p Index within the initializer list @p
2205 /// IList, is well-formed for a current object of type @p DeclType
2206 /// (C99 6.7.8). The actual subobject that this designator refers to
2207 /// within the current subobject is returned in either
2208 /// @p NextField or @p NextElementIndex (whichever is appropriate).
2209 ///
2210 /// @param IList  The initializer list in which this designated
2211 /// initializer occurs.
2212 ///
2213 /// @param DIE The designated initializer expression.
2214 ///
2215 /// @param DesigIdx  The index of the current designator.
2216 ///
2217 /// @param CurrentObjectType The type of the "current object" (C99 6.7.8p17),
2218 /// into which the designation in @p DIE should refer.
2219 ///
2220 /// @param NextField  If non-NULL and the first designator in @p DIE is
2221 /// a field, this will be set to the field declaration corresponding
2222 /// to the field named by the designator.
2223 ///
2224 /// @param NextElementIndex  If non-NULL and the first designator in @p
2225 /// DIE is an array designator or GNU array-range designator, this
2226 /// will be set to the last index initialized by this designator.
2227 ///
2228 /// @param Index  Index into @p IList where the designated initializer
2229 /// @p DIE occurs.
2230 ///
2231 /// @param StructuredList  The initializer list expression that
2232 /// describes all of the subobject initializers in the order they'll
2233 /// actually be initialized.
2234 ///
2235 /// @returns true if there was an error, false otherwise.
2236 bool
CheckDesignatedInitializer(const InitializedEntity & Entity,InitListExpr * IList,DesignatedInitExpr * DIE,unsigned DesigIdx,QualType & CurrentObjectType,RecordDecl::field_iterator * NextField,llvm::APSInt * NextElementIndex,unsigned & Index,InitListExpr * StructuredList,unsigned & StructuredIndex,bool FinishSubobjectInit,bool TopLevelObject)2237 InitListChecker::CheckDesignatedInitializer(const InitializedEntity &Entity,
2238                                             InitListExpr *IList,
2239                                             DesignatedInitExpr *DIE,
2240                                             unsigned DesigIdx,
2241                                             QualType &CurrentObjectType,
2242                                           RecordDecl::field_iterator *NextField,
2243                                             llvm::APSInt *NextElementIndex,
2244                                             unsigned &Index,
2245                                             InitListExpr *StructuredList,
2246                                             unsigned &StructuredIndex,
2247                                             bool FinishSubobjectInit,
2248                                             bool TopLevelObject) {
2249   if (DesigIdx == DIE->size()) {
2250     // Check the actual initialization for the designated object type.
2251     bool prevHadError = hadError;
2252 
2253     // Temporarily remove the designator expression from the
2254     // initializer list that the child calls see, so that we don't try
2255     // to re-process the designator.
2256     unsigned OldIndex = Index;
2257     IList->setInit(OldIndex, DIE->getInit());
2258 
2259     CheckSubElementType(Entity, IList, CurrentObjectType, Index,
2260                         StructuredList, StructuredIndex);
2261 
2262     // Restore the designated initializer expression in the syntactic
2263     // form of the initializer list.
2264     if (IList->getInit(OldIndex) != DIE->getInit())
2265       DIE->setInit(IList->getInit(OldIndex));
2266     IList->setInit(OldIndex, DIE);
2267 
2268     return hadError && !prevHadError;
2269   }
2270 
2271   DesignatedInitExpr::Designator *D = DIE->getDesignator(DesigIdx);
2272   bool IsFirstDesignator = (DesigIdx == 0);
2273   if (!VerifyOnly) {
2274     assert((IsFirstDesignator || StructuredList) &&
2275            "Need a non-designated initializer list to start from");
2276 
2277     // Determine the structural initializer list that corresponds to the
2278     // current subobject.
2279     if (IsFirstDesignator)
2280       StructuredList = SyntacticToSemantic.lookup(IList);
2281     else {
2282       Expr *ExistingInit = StructuredIndex < StructuredList->getNumInits() ?
2283           StructuredList->getInit(StructuredIndex) : nullptr;
2284       if (!ExistingInit && StructuredList->hasArrayFiller())
2285         ExistingInit = StructuredList->getArrayFiller();
2286 
2287       if (!ExistingInit)
2288         StructuredList = getStructuredSubobjectInit(
2289             IList, Index, CurrentObjectType, StructuredList, StructuredIndex,
2290             SourceRange(D->getBeginLoc(), DIE->getEndLoc()));
2291       else if (InitListExpr *Result = dyn_cast<InitListExpr>(ExistingInit))
2292         StructuredList = Result;
2293       else {
2294         if (DesignatedInitUpdateExpr *E =
2295                 dyn_cast<DesignatedInitUpdateExpr>(ExistingInit))
2296           StructuredList = E->getUpdater();
2297         else {
2298           DesignatedInitUpdateExpr *DIUE = new (SemaRef.Context)
2299               DesignatedInitUpdateExpr(SemaRef.Context, D->getBeginLoc(),
2300                                        ExistingInit, DIE->getEndLoc());
2301           StructuredList->updateInit(SemaRef.Context, StructuredIndex, DIUE);
2302           StructuredList = DIUE->getUpdater();
2303         }
2304 
2305         // We need to check on source range validity because the previous
2306         // initializer does not have to be an explicit initializer. e.g.,
2307         //
2308         // struct P { int a, b; };
2309         // struct PP { struct P p } l = { { .a = 2 }, .p.b = 3 };
2310         //
2311         // There is an overwrite taking place because the first braced initializer
2312         // list "{ .a = 2 }" already provides value for .p.b (which is zero).
2313         if (ExistingInit->getSourceRange().isValid()) {
2314           // We are creating an initializer list that initializes the
2315           // subobjects of the current object, but there was already an
2316           // initialization that completely initialized the current
2317           // subobject, e.g., by a compound literal:
2318           //
2319           // struct X { int a, b; };
2320           // struct X xs[] = { [0] = (struct X) { 1, 2 }, [0].b = 3 };
2321           //
2322           // Here, xs[0].a == 0 and xs[0].b == 3, since the second,
2323           // designated initializer re-initializes the whole
2324           // subobject [0], overwriting previous initializers.
2325           SemaRef.Diag(D->getBeginLoc(),
2326                        diag::warn_subobject_initializer_overrides)
2327               << SourceRange(D->getBeginLoc(), DIE->getEndLoc());
2328 
2329           SemaRef.Diag(ExistingInit->getBeginLoc(),
2330                        diag::note_previous_initializer)
2331               << /*FIXME:has side effects=*/0 << ExistingInit->getSourceRange();
2332         }
2333       }
2334     }
2335     assert(StructuredList && "Expected a structured initializer list");
2336   }
2337 
2338   if (D->isFieldDesignator()) {
2339     // C99 6.7.8p7:
2340     //
2341     //   If a designator has the form
2342     //
2343     //      . identifier
2344     //
2345     //   then the current object (defined below) shall have
2346     //   structure or union type and the identifier shall be the
2347     //   name of a member of that type.
2348     const RecordType *RT = CurrentObjectType->getAs<RecordType>();
2349     if (!RT) {
2350       SourceLocation Loc = D->getDotLoc();
2351       if (Loc.isInvalid())
2352         Loc = D->getFieldLoc();
2353       if (!VerifyOnly)
2354         SemaRef.Diag(Loc, diag::err_field_designator_non_aggr)
2355           << SemaRef.getLangOpts().CPlusPlus << CurrentObjectType;
2356       ++Index;
2357       return true;
2358     }
2359 
2360     FieldDecl *KnownField = D->getField();
2361     if (!KnownField) {
2362       IdentifierInfo *FieldName = D->getFieldName();
2363       DeclContext::lookup_result Lookup = RT->getDecl()->lookup(FieldName);
2364       for (NamedDecl *ND : Lookup) {
2365         if (auto *FD = dyn_cast<FieldDecl>(ND)) {
2366           KnownField = FD;
2367           break;
2368         }
2369         if (auto *IFD = dyn_cast<IndirectFieldDecl>(ND)) {
2370           // In verify mode, don't modify the original.
2371           if (VerifyOnly)
2372             DIE = CloneDesignatedInitExpr(SemaRef, DIE);
2373           ExpandAnonymousFieldDesignator(SemaRef, DIE, DesigIdx, IFD);
2374           D = DIE->getDesignator(DesigIdx);
2375           KnownField = cast<FieldDecl>(*IFD->chain_begin());
2376           break;
2377         }
2378       }
2379       if (!KnownField) {
2380         if (VerifyOnly) {
2381           ++Index;
2382           return true;  // No typo correction when just trying this out.
2383         }
2384 
2385         // Name lookup found something, but it wasn't a field.
2386         if (!Lookup.empty()) {
2387           SemaRef.Diag(D->getFieldLoc(), diag::err_field_designator_nonfield)
2388             << FieldName;
2389           SemaRef.Diag(Lookup.front()->getLocation(),
2390                        diag::note_field_designator_found);
2391           ++Index;
2392           return true;
2393         }
2394 
2395         // Name lookup didn't find anything.
2396         // Determine whether this was a typo for another field name.
2397         if (TypoCorrection Corrected = SemaRef.CorrectTypo(
2398                 DeclarationNameInfo(FieldName, D->getFieldLoc()),
2399                 Sema::LookupMemberName, /*Scope=*/nullptr, /*SS=*/nullptr,
2400                 llvm::make_unique<FieldInitializerValidatorCCC>(RT->getDecl()),
2401                 Sema::CTK_ErrorRecovery, RT->getDecl())) {
2402           SemaRef.diagnoseTypo(
2403               Corrected,
2404               SemaRef.PDiag(diag::err_field_designator_unknown_suggest)
2405                 << FieldName << CurrentObjectType);
2406           KnownField = Corrected.getCorrectionDeclAs<FieldDecl>();
2407           hadError = true;
2408         } else {
2409           // Typo correction didn't find anything.
2410           SemaRef.Diag(D->getFieldLoc(), diag::err_field_designator_unknown)
2411             << FieldName << CurrentObjectType;
2412           ++Index;
2413           return true;
2414         }
2415       }
2416     }
2417 
2418     unsigned FieldIndex = 0;
2419 
2420     if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RT->getDecl()))
2421       FieldIndex = CXXRD->getNumBases();
2422 
2423     for (auto *FI : RT->getDecl()->fields()) {
2424       if (FI->isUnnamedBitfield())
2425         continue;
2426       if (declaresSameEntity(KnownField, FI)) {
2427         KnownField = FI;
2428         break;
2429       }
2430       ++FieldIndex;
2431     }
2432 
2433     RecordDecl::field_iterator Field =
2434         RecordDecl::field_iterator(DeclContext::decl_iterator(KnownField));
2435 
2436     // All of the fields of a union are located at the same place in
2437     // the initializer list.
2438     if (RT->getDecl()->isUnion()) {
2439       FieldIndex = 0;
2440       if (!VerifyOnly) {
2441         FieldDecl *CurrentField = StructuredList->getInitializedFieldInUnion();
2442         if (CurrentField && !declaresSameEntity(CurrentField, *Field)) {
2443           assert(StructuredList->getNumInits() == 1
2444                  && "A union should never have more than one initializer!");
2445 
2446           Expr *ExistingInit = StructuredList->getInit(0);
2447           if (ExistingInit) {
2448             // We're about to throw away an initializer, emit warning.
2449             SemaRef.Diag(D->getFieldLoc(),
2450                          diag::warn_initializer_overrides)
2451               << D->getSourceRange();
2452             SemaRef.Diag(ExistingInit->getBeginLoc(),
2453                          diag::note_previous_initializer)
2454                 << /*FIXME:has side effects=*/0
2455                 << ExistingInit->getSourceRange();
2456           }
2457 
2458           // remove existing initializer
2459           StructuredList->resizeInits(SemaRef.Context, 0);
2460           StructuredList->setInitializedFieldInUnion(nullptr);
2461         }
2462 
2463         StructuredList->setInitializedFieldInUnion(*Field);
2464       }
2465     }
2466 
2467     // Make sure we can use this declaration.
2468     bool InvalidUse;
2469     if (VerifyOnly)
2470       InvalidUse = !SemaRef.CanUseDecl(*Field, TreatUnavailableAsInvalid);
2471     else
2472       InvalidUse = SemaRef.DiagnoseUseOfDecl(*Field, D->getFieldLoc());
2473     if (InvalidUse) {
2474       ++Index;
2475       return true;
2476     }
2477 
2478     if (!VerifyOnly) {
2479       // Update the designator with the field declaration.
2480       D->setField(*Field);
2481 
2482       // Make sure that our non-designated initializer list has space
2483       // for a subobject corresponding to this field.
2484       if (FieldIndex >= StructuredList->getNumInits())
2485         StructuredList->resizeInits(SemaRef.Context, FieldIndex + 1);
2486     }
2487 
2488     // This designator names a flexible array member.
2489     if (Field->getType()->isIncompleteArrayType()) {
2490       bool Invalid = false;
2491       if ((DesigIdx + 1) != DIE->size()) {
2492         // We can't designate an object within the flexible array
2493         // member (because GCC doesn't allow it).
2494         if (!VerifyOnly) {
2495           DesignatedInitExpr::Designator *NextD
2496             = DIE->getDesignator(DesigIdx + 1);
2497           SemaRef.Diag(NextD->getBeginLoc(),
2498                        diag::err_designator_into_flexible_array_member)
2499               << SourceRange(NextD->getBeginLoc(), DIE->getEndLoc());
2500           SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member)
2501             << *Field;
2502         }
2503         Invalid = true;
2504       }
2505 
2506       if (!hadError && !isa<InitListExpr>(DIE->getInit()) &&
2507           !isa<StringLiteral>(DIE->getInit())) {
2508         // The initializer is not an initializer list.
2509         if (!VerifyOnly) {
2510           SemaRef.Diag(DIE->getInit()->getBeginLoc(),
2511                        diag::err_flexible_array_init_needs_braces)
2512               << DIE->getInit()->getSourceRange();
2513           SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member)
2514             << *Field;
2515         }
2516         Invalid = true;
2517       }
2518 
2519       // Check GNU flexible array initializer.
2520       if (!Invalid && CheckFlexibleArrayInit(Entity, DIE->getInit(), *Field,
2521                                              TopLevelObject))
2522         Invalid = true;
2523 
2524       if (Invalid) {
2525         ++Index;
2526         return true;
2527       }
2528 
2529       // Initialize the array.
2530       bool prevHadError = hadError;
2531       unsigned newStructuredIndex = FieldIndex;
2532       unsigned OldIndex = Index;
2533       IList->setInit(Index, DIE->getInit());
2534 
2535       InitializedEntity MemberEntity =
2536         InitializedEntity::InitializeMember(*Field, &Entity);
2537       CheckSubElementType(MemberEntity, IList, Field->getType(), Index,
2538                           StructuredList, newStructuredIndex);
2539 
2540       IList->setInit(OldIndex, DIE);
2541       if (hadError && !prevHadError) {
2542         ++Field;
2543         ++FieldIndex;
2544         if (NextField)
2545           *NextField = Field;
2546         StructuredIndex = FieldIndex;
2547         return true;
2548       }
2549     } else {
2550       // Recurse to check later designated subobjects.
2551       QualType FieldType = Field->getType();
2552       unsigned newStructuredIndex = FieldIndex;
2553 
2554       InitializedEntity MemberEntity =
2555         InitializedEntity::InitializeMember(*Field, &Entity);
2556       if (CheckDesignatedInitializer(MemberEntity, IList, DIE, DesigIdx + 1,
2557                                      FieldType, nullptr, nullptr, Index,
2558                                      StructuredList, newStructuredIndex,
2559                                      FinishSubobjectInit, false))
2560         return true;
2561     }
2562 
2563     // Find the position of the next field to be initialized in this
2564     // subobject.
2565     ++Field;
2566     ++FieldIndex;
2567 
2568     // If this the first designator, our caller will continue checking
2569     // the rest of this struct/class/union subobject.
2570     if (IsFirstDesignator) {
2571       if (NextField)
2572         *NextField = Field;
2573       StructuredIndex = FieldIndex;
2574       return false;
2575     }
2576 
2577     if (!FinishSubobjectInit)
2578       return false;
2579 
2580     // We've already initialized something in the union; we're done.
2581     if (RT->getDecl()->isUnion())
2582       return hadError;
2583 
2584     // Check the remaining fields within this class/struct/union subobject.
2585     bool prevHadError = hadError;
2586 
2587     auto NoBases =
2588         CXXRecordDecl::base_class_range(CXXRecordDecl::base_class_iterator(),
2589                                         CXXRecordDecl::base_class_iterator());
2590     CheckStructUnionTypes(Entity, IList, CurrentObjectType, NoBases, Field,
2591                           false, Index, StructuredList, FieldIndex);
2592     return hadError && !prevHadError;
2593   }
2594 
2595   // C99 6.7.8p6:
2596   //
2597   //   If a designator has the form
2598   //
2599   //      [ constant-expression ]
2600   //
2601   //   then the current object (defined below) shall have array
2602   //   type and the expression shall be an integer constant
2603   //   expression. If the array is of unknown size, any
2604   //   nonnegative value is valid.
2605   //
2606   // Additionally, cope with the GNU extension that permits
2607   // designators of the form
2608   //
2609   //      [ constant-expression ... constant-expression ]
2610   const ArrayType *AT = SemaRef.Context.getAsArrayType(CurrentObjectType);
2611   if (!AT) {
2612     if (!VerifyOnly)
2613       SemaRef.Diag(D->getLBracketLoc(), diag::err_array_designator_non_array)
2614         << CurrentObjectType;
2615     ++Index;
2616     return true;
2617   }
2618 
2619   Expr *IndexExpr = nullptr;
2620   llvm::APSInt DesignatedStartIndex, DesignatedEndIndex;
2621   if (D->isArrayDesignator()) {
2622     IndexExpr = DIE->getArrayIndex(*D);
2623     DesignatedStartIndex = IndexExpr->EvaluateKnownConstInt(SemaRef.Context);
2624     DesignatedEndIndex = DesignatedStartIndex;
2625   } else {
2626     assert(D->isArrayRangeDesignator() && "Need array-range designator");
2627 
2628     DesignatedStartIndex =
2629       DIE->getArrayRangeStart(*D)->EvaluateKnownConstInt(SemaRef.Context);
2630     DesignatedEndIndex =
2631       DIE->getArrayRangeEnd(*D)->EvaluateKnownConstInt(SemaRef.Context);
2632     IndexExpr = DIE->getArrayRangeEnd(*D);
2633 
2634     // Codegen can't handle evaluating array range designators that have side
2635     // effects, because we replicate the AST value for each initialized element.
2636     // As such, set the sawArrayRangeDesignator() bit if we initialize multiple
2637     // elements with something that has a side effect, so codegen can emit an
2638     // "error unsupported" error instead of miscompiling the app.
2639     if (DesignatedStartIndex.getZExtValue()!=DesignatedEndIndex.getZExtValue()&&
2640         DIE->getInit()->HasSideEffects(SemaRef.Context) && !VerifyOnly)
2641       FullyStructuredList->sawArrayRangeDesignator();
2642   }
2643 
2644   if (isa<ConstantArrayType>(AT)) {
2645     llvm::APSInt MaxElements(cast<ConstantArrayType>(AT)->getSize(), false);
2646     DesignatedStartIndex
2647       = DesignatedStartIndex.extOrTrunc(MaxElements.getBitWidth());
2648     DesignatedStartIndex.setIsUnsigned(MaxElements.isUnsigned());
2649     DesignatedEndIndex
2650       = DesignatedEndIndex.extOrTrunc(MaxElements.getBitWidth());
2651     DesignatedEndIndex.setIsUnsigned(MaxElements.isUnsigned());
2652     if (DesignatedEndIndex >= MaxElements) {
2653       if (!VerifyOnly)
2654         SemaRef.Diag(IndexExpr->getBeginLoc(),
2655                      diag::err_array_designator_too_large)
2656             << DesignatedEndIndex.toString(10) << MaxElements.toString(10)
2657             << IndexExpr->getSourceRange();
2658       ++Index;
2659       return true;
2660     }
2661   } else {
2662     unsigned DesignatedIndexBitWidth =
2663       ConstantArrayType::getMaxSizeBits(SemaRef.Context);
2664     DesignatedStartIndex =
2665       DesignatedStartIndex.extOrTrunc(DesignatedIndexBitWidth);
2666     DesignatedEndIndex =
2667       DesignatedEndIndex.extOrTrunc(DesignatedIndexBitWidth);
2668     DesignatedStartIndex.setIsUnsigned(true);
2669     DesignatedEndIndex.setIsUnsigned(true);
2670   }
2671 
2672   if (!VerifyOnly && StructuredList->isStringLiteralInit()) {
2673     // We're modifying a string literal init; we have to decompose the string
2674     // so we can modify the individual characters.
2675     ASTContext &Context = SemaRef.Context;
2676     Expr *SubExpr = StructuredList->getInit(0)->IgnoreParens();
2677 
2678     // Compute the character type
2679     QualType CharTy = AT->getElementType();
2680 
2681     // Compute the type of the integer literals.
2682     QualType PromotedCharTy = CharTy;
2683     if (CharTy->isPromotableIntegerType())
2684       PromotedCharTy = Context.getPromotedIntegerType(CharTy);
2685     unsigned PromotedCharTyWidth = Context.getTypeSize(PromotedCharTy);
2686 
2687     if (StringLiteral *SL = dyn_cast<StringLiteral>(SubExpr)) {
2688       // Get the length of the string.
2689       uint64_t StrLen = SL->getLength();
2690       if (cast<ConstantArrayType>(AT)->getSize().ult(StrLen))
2691         StrLen = cast<ConstantArrayType>(AT)->getSize().getZExtValue();
2692       StructuredList->resizeInits(Context, StrLen);
2693 
2694       // Build a literal for each character in the string, and put them into
2695       // the init list.
2696       for (unsigned i = 0, e = StrLen; i != e; ++i) {
2697         llvm::APInt CodeUnit(PromotedCharTyWidth, SL->getCodeUnit(i));
2698         Expr *Init = new (Context) IntegerLiteral(
2699             Context, CodeUnit, PromotedCharTy, SubExpr->getExprLoc());
2700         if (CharTy != PromotedCharTy)
2701           Init = ImplicitCastExpr::Create(Context, CharTy, CK_IntegralCast,
2702                                           Init, nullptr, VK_RValue);
2703         StructuredList->updateInit(Context, i, Init);
2704       }
2705     } else {
2706       ObjCEncodeExpr *E = cast<ObjCEncodeExpr>(SubExpr);
2707       std::string Str;
2708       Context.getObjCEncodingForType(E->getEncodedType(), Str);
2709 
2710       // Get the length of the string.
2711       uint64_t StrLen = Str.size();
2712       if (cast<ConstantArrayType>(AT)->getSize().ult(StrLen))
2713         StrLen = cast<ConstantArrayType>(AT)->getSize().getZExtValue();
2714       StructuredList->resizeInits(Context, StrLen);
2715 
2716       // Build a literal for each character in the string, and put them into
2717       // the init list.
2718       for (unsigned i = 0, e = StrLen; i != e; ++i) {
2719         llvm::APInt CodeUnit(PromotedCharTyWidth, Str[i]);
2720         Expr *Init = new (Context) IntegerLiteral(
2721             Context, CodeUnit, PromotedCharTy, SubExpr->getExprLoc());
2722         if (CharTy != PromotedCharTy)
2723           Init = ImplicitCastExpr::Create(Context, CharTy, CK_IntegralCast,
2724                                           Init, nullptr, VK_RValue);
2725         StructuredList->updateInit(Context, i, Init);
2726       }
2727     }
2728   }
2729 
2730   // Make sure that our non-designated initializer list has space
2731   // for a subobject corresponding to this array element.
2732   if (!VerifyOnly &&
2733       DesignatedEndIndex.getZExtValue() >= StructuredList->getNumInits())
2734     StructuredList->resizeInits(SemaRef.Context,
2735                                 DesignatedEndIndex.getZExtValue() + 1);
2736 
2737   // Repeatedly perform subobject initializations in the range
2738   // [DesignatedStartIndex, DesignatedEndIndex].
2739 
2740   // Move to the next designator
2741   unsigned ElementIndex = DesignatedStartIndex.getZExtValue();
2742   unsigned OldIndex = Index;
2743 
2744   InitializedEntity ElementEntity =
2745     InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity);
2746 
2747   while (DesignatedStartIndex <= DesignatedEndIndex) {
2748     // Recurse to check later designated subobjects.
2749     QualType ElementType = AT->getElementType();
2750     Index = OldIndex;
2751 
2752     ElementEntity.setElementIndex(ElementIndex);
2753     if (CheckDesignatedInitializer(
2754             ElementEntity, IList, DIE, DesigIdx + 1, ElementType, nullptr,
2755             nullptr, Index, StructuredList, ElementIndex,
2756             FinishSubobjectInit && (DesignatedStartIndex == DesignatedEndIndex),
2757             false))
2758       return true;
2759 
2760     // Move to the next index in the array that we'll be initializing.
2761     ++DesignatedStartIndex;
2762     ElementIndex = DesignatedStartIndex.getZExtValue();
2763   }
2764 
2765   // If this the first designator, our caller will continue checking
2766   // the rest of this array subobject.
2767   if (IsFirstDesignator) {
2768     if (NextElementIndex)
2769       *NextElementIndex = DesignatedStartIndex;
2770     StructuredIndex = ElementIndex;
2771     return false;
2772   }
2773 
2774   if (!FinishSubobjectInit)
2775     return false;
2776 
2777   // Check the remaining elements within this array subobject.
2778   bool prevHadError = hadError;
2779   CheckArrayType(Entity, IList, CurrentObjectType, DesignatedStartIndex,
2780                  /*SubobjectIsDesignatorContext=*/false, Index,
2781                  StructuredList, ElementIndex);
2782   return hadError && !prevHadError;
2783 }
2784 
2785 // Get the structured initializer list for a subobject of type
2786 // @p CurrentObjectType.
2787 InitListExpr *
getStructuredSubobjectInit(InitListExpr * IList,unsigned Index,QualType CurrentObjectType,InitListExpr * StructuredList,unsigned StructuredIndex,SourceRange InitRange,bool IsFullyOverwritten)2788 InitListChecker::getStructuredSubobjectInit(InitListExpr *IList, unsigned Index,
2789                                             QualType CurrentObjectType,
2790                                             InitListExpr *StructuredList,
2791                                             unsigned StructuredIndex,
2792                                             SourceRange InitRange,
2793                                             bool IsFullyOverwritten) {
2794   if (VerifyOnly)
2795     return nullptr; // No structured list in verification-only mode.
2796   Expr *ExistingInit = nullptr;
2797   if (!StructuredList)
2798     ExistingInit = SyntacticToSemantic.lookup(IList);
2799   else if (StructuredIndex < StructuredList->getNumInits())
2800     ExistingInit = StructuredList->getInit(StructuredIndex);
2801 
2802   if (InitListExpr *Result = dyn_cast_or_null<InitListExpr>(ExistingInit))
2803     // There might have already been initializers for subobjects of the current
2804     // object, but a subsequent initializer list will overwrite the entirety
2805     // of the current object. (See DR 253 and C99 6.7.8p21). e.g.,
2806     //
2807     // struct P { char x[6]; };
2808     // struct P l = { .x[2] = 'x', .x = { [0] = 'f' } };
2809     //
2810     // The first designated initializer is ignored, and l.x is just "f".
2811     if (!IsFullyOverwritten)
2812       return Result;
2813 
2814   if (ExistingInit) {
2815     // We are creating an initializer list that initializes the
2816     // subobjects of the current object, but there was already an
2817     // initialization that completely initialized the current
2818     // subobject, e.g., by a compound literal:
2819     //
2820     // struct X { int a, b; };
2821     // struct X xs[] = { [0] = (struct X) { 1, 2 }, [0].b = 3 };
2822     //
2823     // Here, xs[0].a == 0 and xs[0].b == 3, since the second,
2824     // designated initializer re-initializes the whole
2825     // subobject [0], overwriting previous initializers.
2826     SemaRef.Diag(InitRange.getBegin(),
2827                  diag::warn_subobject_initializer_overrides)
2828       << InitRange;
2829     SemaRef.Diag(ExistingInit->getBeginLoc(), diag::note_previous_initializer)
2830         << /*FIXME:has side effects=*/0 << ExistingInit->getSourceRange();
2831   }
2832 
2833   InitListExpr *Result
2834     = new (SemaRef.Context) InitListExpr(SemaRef.Context,
2835                                          InitRange.getBegin(), None,
2836                                          InitRange.getEnd());
2837 
2838   QualType ResultType = CurrentObjectType;
2839   if (!ResultType->isArrayType())
2840     ResultType = ResultType.getNonLValueExprType(SemaRef.Context);
2841   Result->setType(ResultType);
2842 
2843   // Pre-allocate storage for the structured initializer list.
2844   unsigned NumElements = 0;
2845   unsigned NumInits = 0;
2846   bool GotNumInits = false;
2847   if (!StructuredList) {
2848     NumInits = IList->getNumInits();
2849     GotNumInits = true;
2850   } else if (Index < IList->getNumInits()) {
2851     if (InitListExpr *SubList = dyn_cast<InitListExpr>(IList->getInit(Index))) {
2852       NumInits = SubList->getNumInits();
2853       GotNumInits = true;
2854     }
2855   }
2856 
2857   if (const ArrayType *AType
2858       = SemaRef.Context.getAsArrayType(CurrentObjectType)) {
2859     if (const ConstantArrayType *CAType = dyn_cast<ConstantArrayType>(AType)) {
2860       NumElements = CAType->getSize().getZExtValue();
2861       // Simple heuristic so that we don't allocate a very large
2862       // initializer with many empty entries at the end.
2863       if (GotNumInits && NumElements > NumInits)
2864         NumElements = 0;
2865     }
2866   } else if (const VectorType *VType = CurrentObjectType->getAs<VectorType>())
2867     NumElements = VType->getNumElements();
2868   else if (const RecordType *RType = CurrentObjectType->getAs<RecordType>()) {
2869     RecordDecl *RDecl = RType->getDecl();
2870     if (RDecl->isUnion())
2871       NumElements = 1;
2872     else
2873       NumElements = std::distance(RDecl->field_begin(), RDecl->field_end());
2874   }
2875 
2876   Result->reserveInits(SemaRef.Context, NumElements);
2877 
2878   // Link this new initializer list into the structured initializer
2879   // lists.
2880   if (StructuredList)
2881     StructuredList->updateInit(SemaRef.Context, StructuredIndex, Result);
2882   else {
2883     Result->setSyntacticForm(IList);
2884     SyntacticToSemantic[IList] = Result;
2885   }
2886 
2887   return Result;
2888 }
2889 
2890 /// Update the initializer at index @p StructuredIndex within the
2891 /// structured initializer list to the value @p expr.
UpdateStructuredListElement(InitListExpr * StructuredList,unsigned & StructuredIndex,Expr * expr)2892 void InitListChecker::UpdateStructuredListElement(InitListExpr *StructuredList,
2893                                                   unsigned &StructuredIndex,
2894                                                   Expr *expr) {
2895   // No structured initializer list to update
2896   if (!StructuredList)
2897     return;
2898 
2899   if (Expr *PrevInit = StructuredList->updateInit(SemaRef.Context,
2900                                                   StructuredIndex, expr)) {
2901     // This initializer overwrites a previous initializer. Warn.
2902     // We need to check on source range validity because the previous
2903     // initializer does not have to be an explicit initializer.
2904     // struct P { int a, b; };
2905     // struct PP { struct P p } l = { { .a = 2 }, .p.b = 3 };
2906     // There is an overwrite taking place because the first braced initializer
2907     // list "{ .a = 2 }' already provides value for .p.b (which is zero).
2908     if (PrevInit->getSourceRange().isValid()) {
2909       SemaRef.Diag(expr->getBeginLoc(), diag::warn_initializer_overrides)
2910           << expr->getSourceRange();
2911 
2912       SemaRef.Diag(PrevInit->getBeginLoc(), diag::note_previous_initializer)
2913           << /*FIXME:has side effects=*/0 << PrevInit->getSourceRange();
2914     }
2915   }
2916 
2917   ++StructuredIndex;
2918 }
2919 
2920 /// Check that the given Index expression is a valid array designator
2921 /// value. This is essentially just a wrapper around
2922 /// VerifyIntegerConstantExpression that also checks for negative values
2923 /// and produces a reasonable diagnostic if there is a
2924 /// failure. Returns the index expression, possibly with an implicit cast
2925 /// added, on success.  If everything went okay, Value will receive the
2926 /// value of the constant expression.
2927 static ExprResult
CheckArrayDesignatorExpr(Sema & S,Expr * Index,llvm::APSInt & Value)2928 CheckArrayDesignatorExpr(Sema &S, Expr *Index, llvm::APSInt &Value) {
2929   SourceLocation Loc = Index->getBeginLoc();
2930 
2931   // Make sure this is an integer constant expression.
2932   ExprResult Result = S.VerifyIntegerConstantExpression(Index, &Value);
2933   if (Result.isInvalid())
2934     return Result;
2935 
2936   if (Value.isSigned() && Value.isNegative())
2937     return S.Diag(Loc, diag::err_array_designator_negative)
2938       << Value.toString(10) << Index->getSourceRange();
2939 
2940   Value.setIsUnsigned(true);
2941   return Result;
2942 }
2943 
ActOnDesignatedInitializer(Designation & Desig,SourceLocation Loc,bool GNUSyntax,ExprResult Init)2944 ExprResult Sema::ActOnDesignatedInitializer(Designation &Desig,
2945                                             SourceLocation Loc,
2946                                             bool GNUSyntax,
2947                                             ExprResult Init) {
2948   typedef DesignatedInitExpr::Designator ASTDesignator;
2949 
2950   bool Invalid = false;
2951   SmallVector<ASTDesignator, 32> Designators;
2952   SmallVector<Expr *, 32> InitExpressions;
2953 
2954   // Build designators and check array designator expressions.
2955   for (unsigned Idx = 0; Idx < Desig.getNumDesignators(); ++Idx) {
2956     const Designator &D = Desig.getDesignator(Idx);
2957     switch (D.getKind()) {
2958     case Designator::FieldDesignator:
2959       Designators.push_back(ASTDesignator(D.getField(), D.getDotLoc(),
2960                                           D.getFieldLoc()));
2961       break;
2962 
2963     case Designator::ArrayDesignator: {
2964       Expr *Index = static_cast<Expr *>(D.getArrayIndex());
2965       llvm::APSInt IndexValue;
2966       if (!Index->isTypeDependent() && !Index->isValueDependent())
2967         Index = CheckArrayDesignatorExpr(*this, Index, IndexValue).get();
2968       if (!Index)
2969         Invalid = true;
2970       else {
2971         Designators.push_back(ASTDesignator(InitExpressions.size(),
2972                                             D.getLBracketLoc(),
2973                                             D.getRBracketLoc()));
2974         InitExpressions.push_back(Index);
2975       }
2976       break;
2977     }
2978 
2979     case Designator::ArrayRangeDesignator: {
2980       Expr *StartIndex = static_cast<Expr *>(D.getArrayRangeStart());
2981       Expr *EndIndex = static_cast<Expr *>(D.getArrayRangeEnd());
2982       llvm::APSInt StartValue;
2983       llvm::APSInt EndValue;
2984       bool StartDependent = StartIndex->isTypeDependent() ||
2985                             StartIndex->isValueDependent();
2986       bool EndDependent = EndIndex->isTypeDependent() ||
2987                           EndIndex->isValueDependent();
2988       if (!StartDependent)
2989         StartIndex =
2990             CheckArrayDesignatorExpr(*this, StartIndex, StartValue).get();
2991       if (!EndDependent)
2992         EndIndex = CheckArrayDesignatorExpr(*this, EndIndex, EndValue).get();
2993 
2994       if (!StartIndex || !EndIndex)
2995         Invalid = true;
2996       else {
2997         // Make sure we're comparing values with the same bit width.
2998         if (StartDependent || EndDependent) {
2999           // Nothing to compute.
3000         } else if (StartValue.getBitWidth() > EndValue.getBitWidth())
3001           EndValue = EndValue.extend(StartValue.getBitWidth());
3002         else if (StartValue.getBitWidth() < EndValue.getBitWidth())
3003           StartValue = StartValue.extend(EndValue.getBitWidth());
3004 
3005         if (!StartDependent && !EndDependent && EndValue < StartValue) {
3006           Diag(D.getEllipsisLoc(), diag::err_array_designator_empty_range)
3007             << StartValue.toString(10) << EndValue.toString(10)
3008             << StartIndex->getSourceRange() << EndIndex->getSourceRange();
3009           Invalid = true;
3010         } else {
3011           Designators.push_back(ASTDesignator(InitExpressions.size(),
3012                                               D.getLBracketLoc(),
3013                                               D.getEllipsisLoc(),
3014                                               D.getRBracketLoc()));
3015           InitExpressions.push_back(StartIndex);
3016           InitExpressions.push_back(EndIndex);
3017         }
3018       }
3019       break;
3020     }
3021     }
3022   }
3023 
3024   if (Invalid || Init.isInvalid())
3025     return ExprError();
3026 
3027   // Clear out the expressions within the designation.
3028   Desig.ClearExprs(*this);
3029 
3030   DesignatedInitExpr *DIE
3031     = DesignatedInitExpr::Create(Context,
3032                                  Designators,
3033                                  InitExpressions, Loc, GNUSyntax,
3034                                  Init.getAs<Expr>());
3035 
3036   if (!getLangOpts().C99)
3037     Diag(DIE->getBeginLoc(), diag::ext_designated_init)
3038         << DIE->getSourceRange();
3039 
3040   return DIE;
3041 }
3042 
3043 //===----------------------------------------------------------------------===//
3044 // Initialization entity
3045 //===----------------------------------------------------------------------===//
3046 
InitializedEntity(ASTContext & Context,unsigned Index,const InitializedEntity & Parent)3047 InitializedEntity::InitializedEntity(ASTContext &Context, unsigned Index,
3048                                      const InitializedEntity &Parent)
3049   : Parent(&Parent), Index(Index)
3050 {
3051   if (const ArrayType *AT = Context.getAsArrayType(Parent.getType())) {
3052     Kind = EK_ArrayElement;
3053     Type = AT->getElementType();
3054   } else if (const VectorType *VT = Parent.getType()->getAs<VectorType>()) {
3055     Kind = EK_VectorElement;
3056     Type = VT->getElementType();
3057   } else {
3058     const ComplexType *CT = Parent.getType()->getAs<ComplexType>();
3059     assert(CT && "Unexpected type");
3060     Kind = EK_ComplexElement;
3061     Type = CT->getElementType();
3062   }
3063 }
3064 
3065 InitializedEntity
InitializeBase(ASTContext & Context,const CXXBaseSpecifier * Base,bool IsInheritedVirtualBase,const InitializedEntity * Parent)3066 InitializedEntity::InitializeBase(ASTContext &Context,
3067                                   const CXXBaseSpecifier *Base,
3068                                   bool IsInheritedVirtualBase,
3069                                   const InitializedEntity *Parent) {
3070   InitializedEntity Result;
3071   Result.Kind = EK_Base;
3072   Result.Parent = Parent;
3073   Result.Base = reinterpret_cast<uintptr_t>(Base);
3074   if (IsInheritedVirtualBase)
3075     Result.Base |= 0x01;
3076 
3077   Result.Type = Base->getType();
3078   return Result;
3079 }
3080 
getName() const3081 DeclarationName InitializedEntity::getName() const {
3082   switch (getKind()) {
3083   case EK_Parameter:
3084   case EK_Parameter_CF_Audited: {
3085     ParmVarDecl *D = reinterpret_cast<ParmVarDecl*>(Parameter & ~0x1);
3086     return (D ? D->getDeclName() : DeclarationName());
3087   }
3088 
3089   case EK_Variable:
3090   case EK_Member:
3091   case EK_Binding:
3092     return Variable.VariableOrMember->getDeclName();
3093 
3094   case EK_LambdaCapture:
3095     return DeclarationName(Capture.VarID);
3096 
3097   case EK_Result:
3098   case EK_StmtExprResult:
3099   case EK_Exception:
3100   case EK_New:
3101   case EK_Temporary:
3102   case EK_Base:
3103   case EK_Delegating:
3104   case EK_ArrayElement:
3105   case EK_VectorElement:
3106   case EK_ComplexElement:
3107   case EK_BlockElement:
3108   case EK_LambdaToBlockConversionBlockElement:
3109   case EK_CompoundLiteralInit:
3110   case EK_RelatedResult:
3111     return DeclarationName();
3112   }
3113 
3114   llvm_unreachable("Invalid EntityKind!");
3115 }
3116 
getDecl() const3117 ValueDecl *InitializedEntity::getDecl() const {
3118   switch (getKind()) {
3119   case EK_Variable:
3120   case EK_Member:
3121   case EK_Binding:
3122     return Variable.VariableOrMember;
3123 
3124   case EK_Parameter:
3125   case EK_Parameter_CF_Audited:
3126     return reinterpret_cast<ParmVarDecl*>(Parameter & ~0x1);
3127 
3128   case EK_Result:
3129   case EK_StmtExprResult:
3130   case EK_Exception:
3131   case EK_New:
3132   case EK_Temporary:
3133   case EK_Base:
3134   case EK_Delegating:
3135   case EK_ArrayElement:
3136   case EK_VectorElement:
3137   case EK_ComplexElement:
3138   case EK_BlockElement:
3139   case EK_LambdaToBlockConversionBlockElement:
3140   case EK_LambdaCapture:
3141   case EK_CompoundLiteralInit:
3142   case EK_RelatedResult:
3143     return nullptr;
3144   }
3145 
3146   llvm_unreachable("Invalid EntityKind!");
3147 }
3148 
allowsNRVO() const3149 bool InitializedEntity::allowsNRVO() const {
3150   switch (getKind()) {
3151   case EK_Result:
3152   case EK_Exception:
3153     return LocAndNRVO.NRVO;
3154 
3155   case EK_StmtExprResult:
3156   case EK_Variable:
3157   case EK_Parameter:
3158   case EK_Parameter_CF_Audited:
3159   case EK_Member:
3160   case EK_Binding:
3161   case EK_New:
3162   case EK_Temporary:
3163   case EK_CompoundLiteralInit:
3164   case EK_Base:
3165   case EK_Delegating:
3166   case EK_ArrayElement:
3167   case EK_VectorElement:
3168   case EK_ComplexElement:
3169   case EK_BlockElement:
3170   case EK_LambdaToBlockConversionBlockElement:
3171   case EK_LambdaCapture:
3172   case EK_RelatedResult:
3173     break;
3174   }
3175 
3176   return false;
3177 }
3178 
dumpImpl(raw_ostream & OS) const3179 unsigned InitializedEntity::dumpImpl(raw_ostream &OS) const {
3180   assert(getParent() != this);
3181   unsigned Depth = getParent() ? getParent()->dumpImpl(OS) : 0;
3182   for (unsigned I = 0; I != Depth; ++I)
3183     OS << "`-";
3184 
3185   switch (getKind()) {
3186   case EK_Variable: OS << "Variable"; break;
3187   case EK_Parameter: OS << "Parameter"; break;
3188   case EK_Parameter_CF_Audited: OS << "CF audited function Parameter";
3189     break;
3190   case EK_Result: OS << "Result"; break;
3191   case EK_StmtExprResult: OS << "StmtExprResult"; break;
3192   case EK_Exception: OS << "Exception"; break;
3193   case EK_Member: OS << "Member"; break;
3194   case EK_Binding: OS << "Binding"; break;
3195   case EK_New: OS << "New"; break;
3196   case EK_Temporary: OS << "Temporary"; break;
3197   case EK_CompoundLiteralInit: OS << "CompoundLiteral";break;
3198   case EK_RelatedResult: OS << "RelatedResult"; break;
3199   case EK_Base: OS << "Base"; break;
3200   case EK_Delegating: OS << "Delegating"; break;
3201   case EK_ArrayElement: OS << "ArrayElement " << Index; break;
3202   case EK_VectorElement: OS << "VectorElement " << Index; break;
3203   case EK_ComplexElement: OS << "ComplexElement " << Index; break;
3204   case EK_BlockElement: OS << "Block"; break;
3205   case EK_LambdaToBlockConversionBlockElement:
3206     OS << "Block (lambda)";
3207     break;
3208   case EK_LambdaCapture:
3209     OS << "LambdaCapture ";
3210     OS << DeclarationName(Capture.VarID);
3211     break;
3212   }
3213 
3214   if (auto *D = getDecl()) {
3215     OS << " ";
3216     D->printQualifiedName(OS);
3217   }
3218 
3219   OS << " '" << getType().getAsString() << "'\n";
3220 
3221   return Depth + 1;
3222 }
3223 
dump() const3224 LLVM_DUMP_METHOD void InitializedEntity::dump() const {
3225   dumpImpl(llvm::errs());
3226 }
3227 
3228 //===----------------------------------------------------------------------===//
3229 // Initialization sequence
3230 //===----------------------------------------------------------------------===//
3231 
Destroy()3232 void InitializationSequence::Step::Destroy() {
3233   switch (Kind) {
3234   case SK_ResolveAddressOfOverloadedFunction:
3235   case SK_CastDerivedToBaseRValue:
3236   case SK_CastDerivedToBaseXValue:
3237   case SK_CastDerivedToBaseLValue:
3238   case SK_BindReference:
3239   case SK_BindReferenceToTemporary:
3240   case SK_FinalCopy:
3241   case SK_ExtraneousCopyToTemporary:
3242   case SK_UserConversion:
3243   case SK_QualificationConversionRValue:
3244   case SK_QualificationConversionXValue:
3245   case SK_QualificationConversionLValue:
3246   case SK_AtomicConversion:
3247   case SK_LValueToRValue:
3248   case SK_ListInitialization:
3249   case SK_UnwrapInitList:
3250   case SK_RewrapInitList:
3251   case SK_ConstructorInitialization:
3252   case SK_ConstructorInitializationFromList:
3253   case SK_ZeroInitialization:
3254   case SK_CAssignment:
3255   case SK_StringInit:
3256   case SK_ObjCObjectConversion:
3257   case SK_ArrayLoopIndex:
3258   case SK_ArrayLoopInit:
3259   case SK_ArrayInit:
3260   case SK_GNUArrayInit:
3261   case SK_ParenthesizedArrayInit:
3262   case SK_PassByIndirectCopyRestore:
3263   case SK_PassByIndirectRestore:
3264   case SK_ProduceObjCObject:
3265   case SK_StdInitializerList:
3266   case SK_StdInitializerListConstructorCall:
3267   case SK_OCLSamplerInit:
3268   case SK_OCLZeroOpaqueType:
3269     break;
3270 
3271   case SK_ConversionSequence:
3272   case SK_ConversionSequenceNoNarrowing:
3273     delete ICS;
3274   }
3275 }
3276 
isDirectReferenceBinding() const3277 bool InitializationSequence::isDirectReferenceBinding() const {
3278   // There can be some lvalue adjustments after the SK_BindReference step.
3279   for (auto I = Steps.rbegin(); I != Steps.rend(); ++I) {
3280     if (I->Kind == SK_BindReference)
3281       return true;
3282     if (I->Kind == SK_BindReferenceToTemporary)
3283       return false;
3284   }
3285   return false;
3286 }
3287 
isAmbiguous() const3288 bool InitializationSequence::isAmbiguous() const {
3289   if (!Failed())
3290     return false;
3291 
3292   switch (getFailureKind()) {
3293   case FK_TooManyInitsForReference:
3294   case FK_ParenthesizedListInitForReference:
3295   case FK_ArrayNeedsInitList:
3296   case FK_ArrayNeedsInitListOrStringLiteral:
3297   case FK_ArrayNeedsInitListOrWideStringLiteral:
3298   case FK_NarrowStringIntoWideCharArray:
3299   case FK_WideStringIntoCharArray:
3300   case FK_IncompatWideStringIntoWideChar:
3301   case FK_PlainStringIntoUTF8Char:
3302   case FK_UTF8StringIntoPlainChar:
3303   case FK_AddressOfOverloadFailed: // FIXME: Could do better
3304   case FK_NonConstLValueReferenceBindingToTemporary:
3305   case FK_NonConstLValueReferenceBindingToBitfield:
3306   case FK_NonConstLValueReferenceBindingToVectorElement:
3307   case FK_NonConstLValueReferenceBindingToUnrelated:
3308   case FK_RValueReferenceBindingToLValue:
3309   case FK_ReferenceInitDropsQualifiers:
3310   case FK_ReferenceInitFailed:
3311   case FK_ConversionFailed:
3312   case FK_ConversionFromPropertyFailed:
3313   case FK_TooManyInitsForScalar:
3314   case FK_ParenthesizedListInitForScalar:
3315   case FK_ReferenceBindingToInitList:
3316   case FK_InitListBadDestinationType:
3317   case FK_DefaultInitOfConst:
3318   case FK_Incomplete:
3319   case FK_ArrayTypeMismatch:
3320   case FK_NonConstantArrayInit:
3321   case FK_ListInitializationFailed:
3322   case FK_VariableLengthArrayHasInitializer:
3323   case FK_PlaceholderType:
3324   case FK_ExplicitConstructor:
3325   case FK_AddressOfUnaddressableFunction:
3326     return false;
3327 
3328   case FK_ReferenceInitOverloadFailed:
3329   case FK_UserConversionOverloadFailed:
3330   case FK_ConstructorOverloadFailed:
3331   case FK_ListConstructorOverloadFailed:
3332     return FailedOverloadResult == OR_Ambiguous;
3333   }
3334 
3335   llvm_unreachable("Invalid EntityKind!");
3336 }
3337 
isConstructorInitialization() const3338 bool InitializationSequence::isConstructorInitialization() const {
3339   return !Steps.empty() && Steps.back().Kind == SK_ConstructorInitialization;
3340 }
3341 
3342 void
3343 InitializationSequence
AddAddressOverloadResolutionStep(FunctionDecl * Function,DeclAccessPair Found,bool HadMultipleCandidates)3344 ::AddAddressOverloadResolutionStep(FunctionDecl *Function,
3345                                    DeclAccessPair Found,
3346                                    bool HadMultipleCandidates) {
3347   Step S;
3348   S.Kind = SK_ResolveAddressOfOverloadedFunction;
3349   S.Type = Function->getType();
3350   S.Function.HadMultipleCandidates = HadMultipleCandidates;
3351   S.Function.Function = Function;
3352   S.Function.FoundDecl = Found;
3353   Steps.push_back(S);
3354 }
3355 
AddDerivedToBaseCastStep(QualType BaseType,ExprValueKind VK)3356 void InitializationSequence::AddDerivedToBaseCastStep(QualType BaseType,
3357                                                       ExprValueKind VK) {
3358   Step S;
3359   switch (VK) {
3360   case VK_RValue: S.Kind = SK_CastDerivedToBaseRValue; break;
3361   case VK_XValue: S.Kind = SK_CastDerivedToBaseXValue; break;
3362   case VK_LValue: S.Kind = SK_CastDerivedToBaseLValue; break;
3363   }
3364   S.Type = BaseType;
3365   Steps.push_back(S);
3366 }
3367 
AddReferenceBindingStep(QualType T,bool BindingTemporary)3368 void InitializationSequence::AddReferenceBindingStep(QualType T,
3369                                                      bool BindingTemporary) {
3370   Step S;
3371   S.Kind = BindingTemporary? SK_BindReferenceToTemporary : SK_BindReference;
3372   S.Type = T;
3373   Steps.push_back(S);
3374 }
3375 
AddFinalCopy(QualType T)3376 void InitializationSequence::AddFinalCopy(QualType T) {
3377   Step S;
3378   S.Kind = SK_FinalCopy;
3379   S.Type = T;
3380   Steps.push_back(S);
3381 }
3382 
AddExtraneousCopyToTemporary(QualType T)3383 void InitializationSequence::AddExtraneousCopyToTemporary(QualType T) {
3384   Step S;
3385   S.Kind = SK_ExtraneousCopyToTemporary;
3386   S.Type = T;
3387   Steps.push_back(S);
3388 }
3389 
3390 void
AddUserConversionStep(FunctionDecl * Function,DeclAccessPair FoundDecl,QualType T,bool HadMultipleCandidates)3391 InitializationSequence::AddUserConversionStep(FunctionDecl *Function,
3392                                               DeclAccessPair FoundDecl,
3393                                               QualType T,
3394                                               bool HadMultipleCandidates) {
3395   Step S;
3396   S.Kind = SK_UserConversion;
3397   S.Type = T;
3398   S.Function.HadMultipleCandidates = HadMultipleCandidates;
3399   S.Function.Function = Function;
3400   S.Function.FoundDecl = FoundDecl;
3401   Steps.push_back(S);
3402 }
3403 
AddQualificationConversionStep(QualType Ty,ExprValueKind VK)3404 void InitializationSequence::AddQualificationConversionStep(QualType Ty,
3405                                                             ExprValueKind VK) {
3406   Step S;
3407   S.Kind = SK_QualificationConversionRValue; // work around a gcc warning
3408   switch (VK) {
3409   case VK_RValue:
3410     S.Kind = SK_QualificationConversionRValue;
3411     break;
3412   case VK_XValue:
3413     S.Kind = SK_QualificationConversionXValue;
3414     break;
3415   case VK_LValue:
3416     S.Kind = SK_QualificationConversionLValue;
3417     break;
3418   }
3419   S.Type = Ty;
3420   Steps.push_back(S);
3421 }
3422 
AddAtomicConversionStep(QualType Ty)3423 void InitializationSequence::AddAtomicConversionStep(QualType Ty) {
3424   Step S;
3425   S.Kind = SK_AtomicConversion;
3426   S.Type = Ty;
3427   Steps.push_back(S);
3428 }
3429 
AddLValueToRValueStep(QualType Ty)3430 void InitializationSequence::AddLValueToRValueStep(QualType Ty) {
3431   assert(!Ty.hasQualifiers() && "rvalues may not have qualifiers");
3432 
3433   Step S;
3434   S.Kind = SK_LValueToRValue;
3435   S.Type = Ty;
3436   Steps.push_back(S);
3437 }
3438 
AddConversionSequenceStep(const ImplicitConversionSequence & ICS,QualType T,bool TopLevelOfInitList)3439 void InitializationSequence::AddConversionSequenceStep(
3440     const ImplicitConversionSequence &ICS, QualType T,
3441     bool TopLevelOfInitList) {
3442   Step S;
3443   S.Kind = TopLevelOfInitList ? SK_ConversionSequenceNoNarrowing
3444                               : SK_ConversionSequence;
3445   S.Type = T;
3446   S.ICS = new ImplicitConversionSequence(ICS);
3447   Steps.push_back(S);
3448 }
3449 
AddListInitializationStep(QualType T)3450 void InitializationSequence::AddListInitializationStep(QualType T) {
3451   Step S;
3452   S.Kind = SK_ListInitialization;
3453   S.Type = T;
3454   Steps.push_back(S);
3455 }
3456 
AddConstructorInitializationStep(DeclAccessPair FoundDecl,CXXConstructorDecl * Constructor,QualType T,bool HadMultipleCandidates,bool FromInitList,bool AsInitList)3457 void InitializationSequence::AddConstructorInitializationStep(
3458     DeclAccessPair FoundDecl, CXXConstructorDecl *Constructor, QualType T,
3459     bool HadMultipleCandidates, bool FromInitList, bool AsInitList) {
3460   Step S;
3461   S.Kind = FromInitList ? AsInitList ? SK_StdInitializerListConstructorCall
3462                                      : SK_ConstructorInitializationFromList
3463                         : SK_ConstructorInitialization;
3464   S.Type = T;
3465   S.Function.HadMultipleCandidates = HadMultipleCandidates;
3466   S.Function.Function = Constructor;
3467   S.Function.FoundDecl = FoundDecl;
3468   Steps.push_back(S);
3469 }
3470 
AddZeroInitializationStep(QualType T)3471 void InitializationSequence::AddZeroInitializationStep(QualType T) {
3472   Step S;
3473   S.Kind = SK_ZeroInitialization;
3474   S.Type = T;
3475   Steps.push_back(S);
3476 }
3477 
AddCAssignmentStep(QualType T)3478 void InitializationSequence::AddCAssignmentStep(QualType T) {
3479   Step S;
3480   S.Kind = SK_CAssignment;
3481   S.Type = T;
3482   Steps.push_back(S);
3483 }
3484 
AddStringInitStep(QualType T)3485 void InitializationSequence::AddStringInitStep(QualType T) {
3486   Step S;
3487   S.Kind = SK_StringInit;
3488   S.Type = T;
3489   Steps.push_back(S);
3490 }
3491 
AddObjCObjectConversionStep(QualType T)3492 void InitializationSequence::AddObjCObjectConversionStep(QualType T) {
3493   Step S;
3494   S.Kind = SK_ObjCObjectConversion;
3495   S.Type = T;
3496   Steps.push_back(S);
3497 }
3498 
AddArrayInitStep(QualType T,bool IsGNUExtension)3499 void InitializationSequence::AddArrayInitStep(QualType T, bool IsGNUExtension) {
3500   Step S;
3501   S.Kind = IsGNUExtension ? SK_GNUArrayInit : SK_ArrayInit;
3502   S.Type = T;
3503   Steps.push_back(S);
3504 }
3505 
AddArrayInitLoopStep(QualType T,QualType EltT)3506 void InitializationSequence::AddArrayInitLoopStep(QualType T, QualType EltT) {
3507   Step S;
3508   S.Kind = SK_ArrayLoopIndex;
3509   S.Type = EltT;
3510   Steps.insert(Steps.begin(), S);
3511 
3512   S.Kind = SK_ArrayLoopInit;
3513   S.Type = T;
3514   Steps.push_back(S);
3515 }
3516 
AddParenthesizedArrayInitStep(QualType T)3517 void InitializationSequence::AddParenthesizedArrayInitStep(QualType T) {
3518   Step S;
3519   S.Kind = SK_ParenthesizedArrayInit;
3520   S.Type = T;
3521   Steps.push_back(S);
3522 }
3523 
AddPassByIndirectCopyRestoreStep(QualType type,bool shouldCopy)3524 void InitializationSequence::AddPassByIndirectCopyRestoreStep(QualType type,
3525                                                               bool shouldCopy) {
3526   Step s;
3527   s.Kind = (shouldCopy ? SK_PassByIndirectCopyRestore
3528                        : SK_PassByIndirectRestore);
3529   s.Type = type;
3530   Steps.push_back(s);
3531 }
3532 
AddProduceObjCObjectStep(QualType T)3533 void InitializationSequence::AddProduceObjCObjectStep(QualType T) {
3534   Step S;
3535   S.Kind = SK_ProduceObjCObject;
3536   S.Type = T;
3537   Steps.push_back(S);
3538 }
3539 
AddStdInitializerListConstructionStep(QualType T)3540 void InitializationSequence::AddStdInitializerListConstructionStep(QualType T) {
3541   Step S;
3542   S.Kind = SK_StdInitializerList;
3543   S.Type = T;
3544   Steps.push_back(S);
3545 }
3546 
AddOCLSamplerInitStep(QualType T)3547 void InitializationSequence::AddOCLSamplerInitStep(QualType T) {
3548   Step S;
3549   S.Kind = SK_OCLSamplerInit;
3550   S.Type = T;
3551   Steps.push_back(S);
3552 }
3553 
AddOCLZeroOpaqueTypeStep(QualType T)3554 void InitializationSequence::AddOCLZeroOpaqueTypeStep(QualType T) {
3555   Step S;
3556   S.Kind = SK_OCLZeroOpaqueType;
3557   S.Type = T;
3558   Steps.push_back(S);
3559 }
3560 
RewrapReferenceInitList(QualType T,InitListExpr * Syntactic)3561 void InitializationSequence::RewrapReferenceInitList(QualType T,
3562                                                      InitListExpr *Syntactic) {
3563   assert(Syntactic->getNumInits() == 1 &&
3564          "Can only rewrap trivial init lists.");
3565   Step S;
3566   S.Kind = SK_UnwrapInitList;
3567   S.Type = Syntactic->getInit(0)->getType();
3568   Steps.insert(Steps.begin(), S);
3569 
3570   S.Kind = SK_RewrapInitList;
3571   S.Type = T;
3572   S.WrappingSyntacticList = Syntactic;
3573   Steps.push_back(S);
3574 }
3575 
SetOverloadFailure(FailureKind Failure,OverloadingResult Result)3576 void InitializationSequence::SetOverloadFailure(FailureKind Failure,
3577                                                 OverloadingResult Result) {
3578   setSequenceKind(FailedSequence);
3579   this->Failure = Failure;
3580   this->FailedOverloadResult = Result;
3581 }
3582 
3583 //===----------------------------------------------------------------------===//
3584 // Attempt initialization
3585 //===----------------------------------------------------------------------===//
3586 
3587 /// Tries to add a zero initializer. Returns true if that worked.
3588 static bool
maybeRecoverWithZeroInitialization(Sema & S,InitializationSequence & Sequence,const InitializedEntity & Entity)3589 maybeRecoverWithZeroInitialization(Sema &S, InitializationSequence &Sequence,
3590                                    const InitializedEntity &Entity) {
3591   if (Entity.getKind() != InitializedEntity::EK_Variable)
3592     return false;
3593 
3594   VarDecl *VD = cast<VarDecl>(Entity.getDecl());
3595   if (VD->getInit() || VD->getEndLoc().isMacroID())
3596     return false;
3597 
3598   QualType VariableTy = VD->getType().getCanonicalType();
3599   SourceLocation Loc = S.getLocForEndOfToken(VD->getEndLoc());
3600   std::string Init = S.getFixItZeroInitializerForType(VariableTy, Loc);
3601   if (!Init.empty()) {
3602     Sequence.AddZeroInitializationStep(Entity.getType());
3603     Sequence.SetZeroInitializationFixit(Init, Loc);
3604     return true;
3605   }
3606   return false;
3607 }
3608 
MaybeProduceObjCObject(Sema & S,InitializationSequence & Sequence,const InitializedEntity & Entity)3609 static void MaybeProduceObjCObject(Sema &S,
3610                                    InitializationSequence &Sequence,
3611                                    const InitializedEntity &Entity) {
3612   if (!S.getLangOpts().ObjCAutoRefCount) return;
3613 
3614   /// When initializing a parameter, produce the value if it's marked
3615   /// __attribute__((ns_consumed)).
3616   if (Entity.isParameterKind()) {
3617     if (!Entity.isParameterConsumed())
3618       return;
3619 
3620     assert(Entity.getType()->isObjCRetainableType() &&
3621            "consuming an object of unretainable type?");
3622     Sequence.AddProduceObjCObjectStep(Entity.getType());
3623 
3624   /// When initializing a return value, if the return type is a
3625   /// retainable type, then returns need to immediately retain the
3626   /// object.  If an autorelease is required, it will be done at the
3627   /// last instant.
3628   } else if (Entity.getKind() == InitializedEntity::EK_Result ||
3629              Entity.getKind() == InitializedEntity::EK_StmtExprResult) {
3630     if (!Entity.getType()->isObjCRetainableType())
3631       return;
3632 
3633     Sequence.AddProduceObjCObjectStep(Entity.getType());
3634   }
3635 }
3636 
3637 static void TryListInitialization(Sema &S,
3638                                   const InitializedEntity &Entity,
3639                                   const InitializationKind &Kind,
3640                                   InitListExpr *InitList,
3641                                   InitializationSequence &Sequence,
3642                                   bool TreatUnavailableAsInvalid);
3643 
3644 /// When initializing from init list via constructor, handle
3645 /// initialization of an object of type std::initializer_list<T>.
3646 ///
3647 /// \return true if we have handled initialization of an object of type
3648 /// std::initializer_list<T>, false otherwise.
TryInitializerListConstruction(Sema & S,InitListExpr * List,QualType DestType,InitializationSequence & Sequence,bool TreatUnavailableAsInvalid)3649 static bool TryInitializerListConstruction(Sema &S,
3650                                            InitListExpr *List,
3651                                            QualType DestType,
3652                                            InitializationSequence &Sequence,
3653                                            bool TreatUnavailableAsInvalid) {
3654   QualType E;
3655   if (!S.isStdInitializerList(DestType, &E))
3656     return false;
3657 
3658   if (!S.isCompleteType(List->getExprLoc(), E)) {
3659     Sequence.setIncompleteTypeFailure(E);
3660     return true;
3661   }
3662 
3663   // Try initializing a temporary array from the init list.
3664   QualType ArrayType = S.Context.getConstantArrayType(
3665       E.withConst(), llvm::APInt(S.Context.getTypeSize(S.Context.getSizeType()),
3666                                  List->getNumInits()),
3667       clang::ArrayType::Normal, 0);
3668   InitializedEntity HiddenArray =
3669       InitializedEntity::InitializeTemporary(ArrayType);
3670   InitializationKind Kind = InitializationKind::CreateDirectList(
3671       List->getExprLoc(), List->getBeginLoc(), List->getEndLoc());
3672   TryListInitialization(S, HiddenArray, Kind, List, Sequence,
3673                         TreatUnavailableAsInvalid);
3674   if (Sequence)
3675     Sequence.AddStdInitializerListConstructionStep(DestType);
3676   return true;
3677 }
3678 
3679 /// Determine if the constructor has the signature of a copy or move
3680 /// constructor for the type T of the class in which it was found. That is,
3681 /// determine if its first parameter is of type T or reference to (possibly
3682 /// cv-qualified) T.
hasCopyOrMoveCtorParam(ASTContext & Ctx,const ConstructorInfo & Info)3683 static bool hasCopyOrMoveCtorParam(ASTContext &Ctx,
3684                                    const ConstructorInfo &Info) {
3685   if (Info.Constructor->getNumParams() == 0)
3686     return false;
3687 
3688   QualType ParmT =
3689       Info.Constructor->getParamDecl(0)->getType().getNonReferenceType();
3690   QualType ClassT =
3691       Ctx.getRecordType(cast<CXXRecordDecl>(Info.FoundDecl->getDeclContext()));
3692 
3693   return Ctx.hasSameUnqualifiedType(ParmT, ClassT);
3694 }
3695 
3696 static OverloadingResult
ResolveConstructorOverload(Sema & S,SourceLocation DeclLoc,MultiExprArg Args,OverloadCandidateSet & CandidateSet,QualType DestType,DeclContext::lookup_result Ctors,OverloadCandidateSet::iterator & Best,bool CopyInitializing,bool AllowExplicit,bool OnlyListConstructors,bool IsListInit,bool SecondStepOfCopyInit=false)3697 ResolveConstructorOverload(Sema &S, SourceLocation DeclLoc,
3698                            MultiExprArg Args,
3699                            OverloadCandidateSet &CandidateSet,
3700                            QualType DestType,
3701                            DeclContext::lookup_result Ctors,
3702                            OverloadCandidateSet::iterator &Best,
3703                            bool CopyInitializing, bool AllowExplicit,
3704                            bool OnlyListConstructors, bool IsListInit,
3705                            bool SecondStepOfCopyInit = false) {
3706   CandidateSet.clear(OverloadCandidateSet::CSK_InitByConstructor);
3707 
3708   for (NamedDecl *D : Ctors) {
3709     auto Info = getConstructorInfo(D);
3710     if (!Info.Constructor || Info.Constructor->isInvalidDecl())
3711       continue;
3712 
3713     if (!AllowExplicit && Info.Constructor->isExplicit())
3714       continue;
3715 
3716     if (OnlyListConstructors && !S.isInitListConstructor(Info.Constructor))
3717       continue;
3718 
3719     // C++11 [over.best.ics]p4:
3720     //   ... and the constructor or user-defined conversion function is a
3721     //   candidate by
3722     //   - 13.3.1.3, when the argument is the temporary in the second step
3723     //     of a class copy-initialization, or
3724     //   - 13.3.1.4, 13.3.1.5, or 13.3.1.6 (in all cases), [not handled here]
3725     //   - the second phase of 13.3.1.7 when the initializer list has exactly
3726     //     one element that is itself an initializer list, and the target is
3727     //     the first parameter of a constructor of class X, and the conversion
3728     //     is to X or reference to (possibly cv-qualified X),
3729     //   user-defined conversion sequences are not considered.
3730     bool SuppressUserConversions =
3731         SecondStepOfCopyInit ||
3732         (IsListInit && Args.size() == 1 && isa<InitListExpr>(Args[0]) &&
3733          hasCopyOrMoveCtorParam(S.Context, Info));
3734 
3735     if (Info.ConstructorTmpl)
3736       S.AddTemplateOverloadCandidate(Info.ConstructorTmpl, Info.FoundDecl,
3737                                      /*ExplicitArgs*/ nullptr, Args,
3738                                      CandidateSet, SuppressUserConversions);
3739     else {
3740       // C++ [over.match.copy]p1:
3741       //   - When initializing a temporary to be bound to the first parameter
3742       //     of a constructor [for type T] that takes a reference to possibly
3743       //     cv-qualified T as its first argument, called with a single
3744       //     argument in the context of direct-initialization, explicit
3745       //     conversion functions are also considered.
3746       // FIXME: What if a constructor template instantiates to such a signature?
3747       bool AllowExplicitConv = AllowExplicit && !CopyInitializing &&
3748                                Args.size() == 1 &&
3749                                hasCopyOrMoveCtorParam(S.Context, Info);
3750       S.AddOverloadCandidate(Info.Constructor, Info.FoundDecl, Args,
3751                              CandidateSet, SuppressUserConversions,
3752                              /*PartialOverloading=*/false,
3753                              /*AllowExplicit=*/AllowExplicitConv);
3754     }
3755   }
3756 
3757   // FIXME: Work around a bug in C++17 guaranteed copy elision.
3758   //
3759   // When initializing an object of class type T by constructor
3760   // ([over.match.ctor]) or by list-initialization ([over.match.list])
3761   // from a single expression of class type U, conversion functions of
3762   // U that convert to the non-reference type cv T are candidates.
3763   // Explicit conversion functions are only candidates during
3764   // direct-initialization.
3765   //
3766   // Note: SecondStepOfCopyInit is only ever true in this case when
3767   // evaluating whether to produce a C++98 compatibility warning.
3768   if (S.getLangOpts().CPlusPlus17 && Args.size() == 1 &&
3769       !SecondStepOfCopyInit) {
3770     Expr *Initializer = Args[0];
3771     auto *SourceRD = Initializer->getType()->getAsCXXRecordDecl();
3772     if (SourceRD && S.isCompleteType(DeclLoc, Initializer->getType())) {
3773       const auto &Conversions = SourceRD->getVisibleConversionFunctions();
3774       for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) {
3775         NamedDecl *D = *I;
3776         CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext());
3777         D = D->getUnderlyingDecl();
3778 
3779         FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(D);
3780         CXXConversionDecl *Conv;
3781         if (ConvTemplate)
3782           Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
3783         else
3784           Conv = cast<CXXConversionDecl>(D);
3785 
3786         if ((AllowExplicit && !CopyInitializing) || !Conv->isExplicit()) {
3787           if (ConvTemplate)
3788             S.AddTemplateConversionCandidate(ConvTemplate, I.getPair(),
3789                                              ActingDC, Initializer, DestType,
3790                                              CandidateSet, AllowExplicit,
3791                                              /*AllowResultConversion*/false);
3792           else
3793             S.AddConversionCandidate(Conv, I.getPair(), ActingDC, Initializer,
3794                                      DestType, CandidateSet, AllowExplicit,
3795                                      /*AllowResultConversion*/false);
3796         }
3797       }
3798     }
3799   }
3800 
3801   // Perform overload resolution and return the result.
3802   return CandidateSet.BestViableFunction(S, DeclLoc, Best);
3803 }
3804 
3805 /// Attempt initialization by constructor (C++ [dcl.init]), which
3806 /// enumerates the constructors of the initialized entity and performs overload
3807 /// resolution to select the best.
3808 /// \param DestType       The destination class type.
3809 /// \param DestArrayType  The destination type, which is either DestType or
3810 ///                       a (possibly multidimensional) array of DestType.
3811 /// \param IsListInit     Is this list-initialization?
3812 /// \param IsInitListCopy Is this non-list-initialization resulting from a
3813 ///                       list-initialization from {x} where x is the same
3814 ///                       type as the entity?
TryConstructorInitialization(Sema & S,const InitializedEntity & Entity,const InitializationKind & Kind,MultiExprArg Args,QualType DestType,QualType DestArrayType,InitializationSequence & Sequence,bool IsListInit=false,bool IsInitListCopy=false)3815 static void TryConstructorInitialization(Sema &S,
3816                                          const InitializedEntity &Entity,
3817                                          const InitializationKind &Kind,
3818                                          MultiExprArg Args, QualType DestType,
3819                                          QualType DestArrayType,
3820                                          InitializationSequence &Sequence,
3821                                          bool IsListInit = false,
3822                                          bool IsInitListCopy = false) {
3823   assert(((!IsListInit && !IsInitListCopy) ||
3824           (Args.size() == 1 && isa<InitListExpr>(Args[0]))) &&
3825          "IsListInit/IsInitListCopy must come with a single initializer list "
3826          "argument.");
3827   InitListExpr *ILE =
3828       (IsListInit || IsInitListCopy) ? cast<InitListExpr>(Args[0]) : nullptr;
3829   MultiExprArg UnwrappedArgs =
3830       ILE ? MultiExprArg(ILE->getInits(), ILE->getNumInits()) : Args;
3831 
3832   // The type we're constructing needs to be complete.
3833   if (!S.isCompleteType(Kind.getLocation(), DestType)) {
3834     Sequence.setIncompleteTypeFailure(DestType);
3835     return;
3836   }
3837 
3838   // C++17 [dcl.init]p17:
3839   //     - If the initializer expression is a prvalue and the cv-unqualified
3840   //       version of the source type is the same class as the class of the
3841   //       destination, the initializer expression is used to initialize the
3842   //       destination object.
3843   // Per DR (no number yet), this does not apply when initializing a base
3844   // class or delegating to another constructor from a mem-initializer.
3845   // ObjC++: Lambda captured by the block in the lambda to block conversion
3846   // should avoid copy elision.
3847   if (S.getLangOpts().CPlusPlus17 &&
3848       Entity.getKind() != InitializedEntity::EK_Base &&
3849       Entity.getKind() != InitializedEntity::EK_Delegating &&
3850       Entity.getKind() !=
3851           InitializedEntity::EK_LambdaToBlockConversionBlockElement &&
3852       UnwrappedArgs.size() == 1 && UnwrappedArgs[0]->isRValue() &&
3853       S.Context.hasSameUnqualifiedType(UnwrappedArgs[0]->getType(), DestType)) {
3854     // Convert qualifications if necessary.
3855     Sequence.AddQualificationConversionStep(DestType, VK_RValue);
3856     if (ILE)
3857       Sequence.RewrapReferenceInitList(DestType, ILE);
3858     return;
3859   }
3860 
3861   const RecordType *DestRecordType = DestType->getAs<RecordType>();
3862   assert(DestRecordType && "Constructor initialization requires record type");
3863   CXXRecordDecl *DestRecordDecl
3864     = cast<CXXRecordDecl>(DestRecordType->getDecl());
3865 
3866   // Build the candidate set directly in the initialization sequence
3867   // structure, so that it will persist if we fail.
3868   OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet();
3869 
3870   // Determine whether we are allowed to call explicit constructors or
3871   // explicit conversion operators.
3872   bool AllowExplicit = Kind.AllowExplicit() || IsListInit;
3873   bool CopyInitialization = Kind.getKind() == InitializationKind::IK_Copy;
3874 
3875   //   - Otherwise, if T is a class type, constructors are considered. The
3876   //     applicable constructors are enumerated, and the best one is chosen
3877   //     through overload resolution.
3878   DeclContext::lookup_result Ctors = S.LookupConstructors(DestRecordDecl);
3879 
3880   OverloadingResult Result = OR_No_Viable_Function;
3881   OverloadCandidateSet::iterator Best;
3882   bool AsInitializerList = false;
3883 
3884   // C++11 [over.match.list]p1, per DR1467:
3885   //   When objects of non-aggregate type T are list-initialized, such that
3886   //   8.5.4 [dcl.init.list] specifies that overload resolution is performed
3887   //   according to the rules in this section, overload resolution selects
3888   //   the constructor in two phases:
3889   //
3890   //   - Initially, the candidate functions are the initializer-list
3891   //     constructors of the class T and the argument list consists of the
3892   //     initializer list as a single argument.
3893   if (IsListInit) {
3894     AsInitializerList = true;
3895 
3896     // If the initializer list has no elements and T has a default constructor,
3897     // the first phase is omitted.
3898     if (!(UnwrappedArgs.empty() && DestRecordDecl->hasDefaultConstructor()))
3899       Result = ResolveConstructorOverload(S, Kind.getLocation(), Args,
3900                                           CandidateSet, DestType, Ctors, Best,
3901                                           CopyInitialization, AllowExplicit,
3902                                           /*OnlyListConstructor=*/true,
3903                                           IsListInit);
3904   }
3905 
3906   // C++11 [over.match.list]p1:
3907   //   - If no viable initializer-list constructor is found, overload resolution
3908   //     is performed again, where the candidate functions are all the
3909   //     constructors of the class T and the argument list consists of the
3910   //     elements of the initializer list.
3911   if (Result == OR_No_Viable_Function) {
3912     AsInitializerList = false;
3913     Result = ResolveConstructorOverload(S, Kind.getLocation(), UnwrappedArgs,
3914                                         CandidateSet, DestType, Ctors, Best,
3915                                         CopyInitialization, AllowExplicit,
3916                                         /*OnlyListConstructors=*/false,
3917                                         IsListInit);
3918   }
3919   if (Result) {
3920     Sequence.SetOverloadFailure(IsListInit ?
3921                       InitializationSequence::FK_ListConstructorOverloadFailed :
3922                       InitializationSequence::FK_ConstructorOverloadFailed,
3923                                 Result);
3924     return;
3925   }
3926 
3927   bool HadMultipleCandidates = (CandidateSet.size() > 1);
3928 
3929   // In C++17, ResolveConstructorOverload can select a conversion function
3930   // instead of a constructor.
3931   if (auto *CD = dyn_cast<CXXConversionDecl>(Best->Function)) {
3932     // Add the user-defined conversion step that calls the conversion function.
3933     QualType ConvType = CD->getConversionType();
3934     assert(S.Context.hasSameUnqualifiedType(ConvType, DestType) &&
3935            "should not have selected this conversion function");
3936     Sequence.AddUserConversionStep(CD, Best->FoundDecl, ConvType,
3937                                    HadMultipleCandidates);
3938     if (!S.Context.hasSameType(ConvType, DestType))
3939       Sequence.AddQualificationConversionStep(DestType, VK_RValue);
3940     if (IsListInit)
3941       Sequence.RewrapReferenceInitList(Entity.getType(), ILE);
3942     return;
3943   }
3944 
3945   // C++11 [dcl.init]p6:
3946   //   If a program calls for the default initialization of an object
3947   //   of a const-qualified type T, T shall be a class type with a
3948   //   user-provided default constructor.
3949   // C++ core issue 253 proposal:
3950   //   If the implicit default constructor initializes all subobjects, no
3951   //   initializer should be required.
3952   // The 253 proposal is for example needed to process libstdc++ headers in 5.x.
3953   CXXConstructorDecl *CtorDecl = cast<CXXConstructorDecl>(Best->Function);
3954   if (Kind.getKind() == InitializationKind::IK_Default &&
3955       Entity.getType().isConstQualified()) {
3956     if (!CtorDecl->getParent()->allowConstDefaultInit()) {
3957       if (!maybeRecoverWithZeroInitialization(S, Sequence, Entity))
3958         Sequence.SetFailed(InitializationSequence::FK_DefaultInitOfConst);
3959       return;
3960     }
3961   }
3962 
3963   // C++11 [over.match.list]p1:
3964   //   In copy-list-initialization, if an explicit constructor is chosen, the
3965   //   initializer is ill-formed.
3966   if (IsListInit && !Kind.AllowExplicit() && CtorDecl->isExplicit()) {
3967     Sequence.SetFailed(InitializationSequence::FK_ExplicitConstructor);
3968     return;
3969   }
3970 
3971   // Add the constructor initialization step. Any cv-qualification conversion is
3972   // subsumed by the initialization.
3973   Sequence.AddConstructorInitializationStep(
3974       Best->FoundDecl, CtorDecl, DestArrayType, HadMultipleCandidates,
3975       IsListInit | IsInitListCopy, AsInitializerList);
3976 }
3977 
3978 static bool
ResolveOverloadedFunctionForReferenceBinding(Sema & S,Expr * Initializer,QualType & SourceType,QualType & UnqualifiedSourceType,QualType UnqualifiedTargetType,InitializationSequence & Sequence)3979 ResolveOverloadedFunctionForReferenceBinding(Sema &S,
3980                                              Expr *Initializer,
3981                                              QualType &SourceType,
3982                                              QualType &UnqualifiedSourceType,
3983                                              QualType UnqualifiedTargetType,
3984                                              InitializationSequence &Sequence) {
3985   if (S.Context.getCanonicalType(UnqualifiedSourceType) ==
3986         S.Context.OverloadTy) {
3987     DeclAccessPair Found;
3988     bool HadMultipleCandidates = false;
3989     if (FunctionDecl *Fn
3990         = S.ResolveAddressOfOverloadedFunction(Initializer,
3991                                                UnqualifiedTargetType,
3992                                                false, Found,
3993                                                &HadMultipleCandidates)) {
3994       Sequence.AddAddressOverloadResolutionStep(Fn, Found,
3995                                                 HadMultipleCandidates);
3996       SourceType = Fn->getType();
3997       UnqualifiedSourceType = SourceType.getUnqualifiedType();
3998     } else if (!UnqualifiedTargetType->isRecordType()) {
3999       Sequence.SetFailed(InitializationSequence::FK_AddressOfOverloadFailed);
4000       return true;
4001     }
4002   }
4003   return false;
4004 }
4005 
4006 static void TryReferenceInitializationCore(Sema &S,
4007                                            const InitializedEntity &Entity,
4008                                            const InitializationKind &Kind,
4009                                            Expr *Initializer,
4010                                            QualType cv1T1, QualType T1,
4011                                            Qualifiers T1Quals,
4012                                            QualType cv2T2, QualType T2,
4013                                            Qualifiers T2Quals,
4014                                            InitializationSequence &Sequence);
4015 
4016 static void TryValueInitialization(Sema &S,
4017                                    const InitializedEntity &Entity,
4018                                    const InitializationKind &Kind,
4019                                    InitializationSequence &Sequence,
4020                                    InitListExpr *InitList = nullptr);
4021 
4022 /// Attempt list initialization of a reference.
TryReferenceListInitialization(Sema & S,const InitializedEntity & Entity,const InitializationKind & Kind,InitListExpr * InitList,InitializationSequence & Sequence,bool TreatUnavailableAsInvalid)4023 static void TryReferenceListInitialization(Sema &S,
4024                                            const InitializedEntity &Entity,
4025                                            const InitializationKind &Kind,
4026                                            InitListExpr *InitList,
4027                                            InitializationSequence &Sequence,
4028                                            bool TreatUnavailableAsInvalid) {
4029   // First, catch C++03 where this isn't possible.
4030   if (!S.getLangOpts().CPlusPlus11) {
4031     Sequence.SetFailed(InitializationSequence::FK_ReferenceBindingToInitList);
4032     return;
4033   }
4034   // Can't reference initialize a compound literal.
4035   if (Entity.getKind() == InitializedEntity::EK_CompoundLiteralInit) {
4036     Sequence.SetFailed(InitializationSequence::FK_ReferenceBindingToInitList);
4037     return;
4038   }
4039 
4040   QualType DestType = Entity.getType();
4041   QualType cv1T1 = DestType->getAs<ReferenceType>()->getPointeeType();
4042   Qualifiers T1Quals;
4043   QualType T1 = S.Context.getUnqualifiedArrayType(cv1T1, T1Quals);
4044 
4045   // Reference initialization via an initializer list works thus:
4046   // If the initializer list consists of a single element that is
4047   // reference-related to the referenced type, bind directly to that element
4048   // (possibly creating temporaries).
4049   // Otherwise, initialize a temporary with the initializer list and
4050   // bind to that.
4051   if (InitList->getNumInits() == 1) {
4052     Expr *Initializer = InitList->getInit(0);
4053     QualType cv2T2 = Initializer->getType();
4054     Qualifiers T2Quals;
4055     QualType T2 = S.Context.getUnqualifiedArrayType(cv2T2, T2Quals);
4056 
4057     // If this fails, creating a temporary wouldn't work either.
4058     if (ResolveOverloadedFunctionForReferenceBinding(S, Initializer, cv2T2, T2,
4059                                                      T1, Sequence))
4060       return;
4061 
4062     SourceLocation DeclLoc = Initializer->getBeginLoc();
4063     bool dummy1, dummy2, dummy3;
4064     Sema::ReferenceCompareResult RefRelationship
4065       = S.CompareReferenceRelationship(DeclLoc, cv1T1, cv2T2, dummy1,
4066                                        dummy2, dummy3);
4067     if (RefRelationship >= Sema::Ref_Related) {
4068       // Try to bind the reference here.
4069       TryReferenceInitializationCore(S, Entity, Kind, Initializer, cv1T1, T1,
4070                                      T1Quals, cv2T2, T2, T2Quals, Sequence);
4071       if (Sequence)
4072         Sequence.RewrapReferenceInitList(cv1T1, InitList);
4073       return;
4074     }
4075 
4076     // Update the initializer if we've resolved an overloaded function.
4077     if (Sequence.step_begin() != Sequence.step_end())
4078       Sequence.RewrapReferenceInitList(cv1T1, InitList);
4079   }
4080 
4081   // Not reference-related. Create a temporary and bind to that.
4082   InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(cv1T1);
4083 
4084   TryListInitialization(S, TempEntity, Kind, InitList, Sequence,
4085                         TreatUnavailableAsInvalid);
4086   if (Sequence) {
4087     if (DestType->isRValueReferenceType() ||
4088         (T1Quals.hasConst() && !T1Quals.hasVolatile()))
4089       Sequence.AddReferenceBindingStep(cv1T1, /*bindingTemporary=*/true);
4090     else
4091       Sequence.SetFailed(
4092           InitializationSequence::FK_NonConstLValueReferenceBindingToTemporary);
4093   }
4094 }
4095 
4096 /// Attempt list initialization (C++0x [dcl.init.list])
TryListInitialization(Sema & S,const InitializedEntity & Entity,const InitializationKind & Kind,InitListExpr * InitList,InitializationSequence & Sequence,bool TreatUnavailableAsInvalid)4097 static void TryListInitialization(Sema &S,
4098                                   const InitializedEntity &Entity,
4099                                   const InitializationKind &Kind,
4100                                   InitListExpr *InitList,
4101                                   InitializationSequence &Sequence,
4102                                   bool TreatUnavailableAsInvalid) {
4103   QualType DestType = Entity.getType();
4104 
4105   // C++ doesn't allow scalar initialization with more than one argument.
4106   // But C99 complex numbers are scalars and it makes sense there.
4107   if (S.getLangOpts().CPlusPlus && DestType->isScalarType() &&
4108       !DestType->isAnyComplexType() && InitList->getNumInits() > 1) {
4109     Sequence.SetFailed(InitializationSequence::FK_TooManyInitsForScalar);
4110     return;
4111   }
4112   if (DestType->isReferenceType()) {
4113     TryReferenceListInitialization(S, Entity, Kind, InitList, Sequence,
4114                                    TreatUnavailableAsInvalid);
4115     return;
4116   }
4117 
4118   if (DestType->isRecordType() &&
4119       !S.isCompleteType(InitList->getBeginLoc(), DestType)) {
4120     Sequence.setIncompleteTypeFailure(DestType);
4121     return;
4122   }
4123 
4124   // C++11 [dcl.init.list]p3, per DR1467:
4125   // - If T is a class type and the initializer list has a single element of
4126   //   type cv U, where U is T or a class derived from T, the object is
4127   //   initialized from that element (by copy-initialization for
4128   //   copy-list-initialization, or by direct-initialization for
4129   //   direct-list-initialization).
4130   // - Otherwise, if T is a character array and the initializer list has a
4131   //   single element that is an appropriately-typed string literal
4132   //   (8.5.2 [dcl.init.string]), initialization is performed as described
4133   //   in that section.
4134   // - Otherwise, if T is an aggregate, [...] (continue below).
4135   if (S.getLangOpts().CPlusPlus11 && InitList->getNumInits() == 1) {
4136     if (DestType->isRecordType()) {
4137       QualType InitType = InitList->getInit(0)->getType();
4138       if (S.Context.hasSameUnqualifiedType(InitType, DestType) ||
4139           S.IsDerivedFrom(InitList->getBeginLoc(), InitType, DestType)) {
4140         Expr *InitListAsExpr = InitList;
4141         TryConstructorInitialization(S, Entity, Kind, InitListAsExpr, DestType,
4142                                      DestType, Sequence,
4143                                      /*InitListSyntax*/false,
4144                                      /*IsInitListCopy*/true);
4145         return;
4146       }
4147     }
4148     if (const ArrayType *DestAT = S.Context.getAsArrayType(DestType)) {
4149       Expr *SubInit[1] = {InitList->getInit(0)};
4150       if (!isa<VariableArrayType>(DestAT) &&
4151           IsStringInit(SubInit[0], DestAT, S.Context) == SIF_None) {
4152         InitializationKind SubKind =
4153             Kind.getKind() == InitializationKind::IK_DirectList
4154                 ? InitializationKind::CreateDirect(Kind.getLocation(),
4155                                                    InitList->getLBraceLoc(),
4156                                                    InitList->getRBraceLoc())
4157                 : Kind;
4158         Sequence.InitializeFrom(S, Entity, SubKind, SubInit,
4159                                 /*TopLevelOfInitList*/ true,
4160                                 TreatUnavailableAsInvalid);
4161 
4162         // TryStringLiteralInitialization() (in InitializeFrom()) will fail if
4163         // the element is not an appropriately-typed string literal, in which
4164         // case we should proceed as in C++11 (below).
4165         if (Sequence) {
4166           Sequence.RewrapReferenceInitList(Entity.getType(), InitList);
4167           return;
4168         }
4169       }
4170     }
4171   }
4172 
4173   // C++11 [dcl.init.list]p3:
4174   //   - If T is an aggregate, aggregate initialization is performed.
4175   if ((DestType->isRecordType() && !DestType->isAggregateType()) ||
4176       (S.getLangOpts().CPlusPlus11 &&
4177        S.isStdInitializerList(DestType, nullptr))) {
4178     if (S.getLangOpts().CPlusPlus11) {
4179       //   - Otherwise, if the initializer list has no elements and T is a
4180       //     class type with a default constructor, the object is
4181       //     value-initialized.
4182       if (InitList->getNumInits() == 0) {
4183         CXXRecordDecl *RD = DestType->getAsCXXRecordDecl();
4184         if (RD->hasDefaultConstructor()) {
4185           TryValueInitialization(S, Entity, Kind, Sequence, InitList);
4186           return;
4187         }
4188       }
4189 
4190       //   - Otherwise, if T is a specialization of std::initializer_list<E>,
4191       //     an initializer_list object constructed [...]
4192       if (TryInitializerListConstruction(S, InitList, DestType, Sequence,
4193                                          TreatUnavailableAsInvalid))
4194         return;
4195 
4196       //   - Otherwise, if T is a class type, constructors are considered.
4197       Expr *InitListAsExpr = InitList;
4198       TryConstructorInitialization(S, Entity, Kind, InitListAsExpr, DestType,
4199                                    DestType, Sequence, /*InitListSyntax*/true);
4200     } else
4201       Sequence.SetFailed(InitializationSequence::FK_InitListBadDestinationType);
4202     return;
4203   }
4204 
4205   if (S.getLangOpts().CPlusPlus && !DestType->isAggregateType() &&
4206       InitList->getNumInits() == 1) {
4207     Expr *E = InitList->getInit(0);
4208 
4209     //   - Otherwise, if T is an enumeration with a fixed underlying type,
4210     //     the initializer-list has a single element v, and the initialization
4211     //     is direct-list-initialization, the object is initialized with the
4212     //     value T(v); if a narrowing conversion is required to convert v to
4213     //     the underlying type of T, the program is ill-formed.
4214     auto *ET = DestType->getAs<EnumType>();
4215     if (S.getLangOpts().CPlusPlus17 &&
4216         Kind.getKind() == InitializationKind::IK_DirectList &&
4217         ET && ET->getDecl()->isFixed() &&
4218         !S.Context.hasSameUnqualifiedType(E->getType(), DestType) &&
4219         (E->getType()->isIntegralOrEnumerationType() ||
4220          E->getType()->isFloatingType())) {
4221       // There are two ways that T(v) can work when T is an enumeration type.
4222       // If there is either an implicit conversion sequence from v to T or
4223       // a conversion function that can convert from v to T, then we use that.
4224       // Otherwise, if v is of integral, enumeration, or floating-point type,
4225       // it is converted to the enumeration type via its underlying type.
4226       // There is no overlap possible between these two cases (except when the
4227       // source value is already of the destination type), and the first
4228       // case is handled by the general case for single-element lists below.
4229       ImplicitConversionSequence ICS;
4230       ICS.setStandard();
4231       ICS.Standard.setAsIdentityConversion();
4232       if (!E->isRValue())
4233         ICS.Standard.First = ICK_Lvalue_To_Rvalue;
4234       // If E is of a floating-point type, then the conversion is ill-formed
4235       // due to narrowing, but go through the motions in order to produce the
4236       // right diagnostic.
4237       ICS.Standard.Second = E->getType()->isFloatingType()
4238                                 ? ICK_Floating_Integral
4239                                 : ICK_Integral_Conversion;
4240       ICS.Standard.setFromType(E->getType());
4241       ICS.Standard.setToType(0, E->getType());
4242       ICS.Standard.setToType(1, DestType);
4243       ICS.Standard.setToType(2, DestType);
4244       Sequence.AddConversionSequenceStep(ICS, ICS.Standard.getToType(2),
4245                                          /*TopLevelOfInitList*/true);
4246       Sequence.RewrapReferenceInitList(Entity.getType(), InitList);
4247       return;
4248     }
4249 
4250     //   - Otherwise, if the initializer list has a single element of type E
4251     //     [...references are handled above...], the object or reference is
4252     //     initialized from that element (by copy-initialization for
4253     //     copy-list-initialization, or by direct-initialization for
4254     //     direct-list-initialization); if a narrowing conversion is required
4255     //     to convert the element to T, the program is ill-formed.
4256     //
4257     // Per core-24034, this is direct-initialization if we were performing
4258     // direct-list-initialization and copy-initialization otherwise.
4259     // We can't use InitListChecker for this, because it always performs
4260     // copy-initialization. This only matters if we might use an 'explicit'
4261     // conversion operator, so we only need to handle the cases where the source
4262     // is of record type.
4263     if (InitList->getInit(0)->getType()->isRecordType()) {
4264       InitializationKind SubKind =
4265           Kind.getKind() == InitializationKind::IK_DirectList
4266               ? InitializationKind::CreateDirect(Kind.getLocation(),
4267                                                  InitList->getLBraceLoc(),
4268                                                  InitList->getRBraceLoc())
4269               : Kind;
4270       Expr *SubInit[1] = { InitList->getInit(0) };
4271       Sequence.InitializeFrom(S, Entity, SubKind, SubInit,
4272                               /*TopLevelOfInitList*/true,
4273                               TreatUnavailableAsInvalid);
4274       if (Sequence)
4275         Sequence.RewrapReferenceInitList(Entity.getType(), InitList);
4276       return;
4277     }
4278   }
4279 
4280   InitListChecker CheckInitList(S, Entity, InitList,
4281           DestType, /*VerifyOnly=*/true, TreatUnavailableAsInvalid);
4282   if (CheckInitList.HadError()) {
4283     Sequence.SetFailed(InitializationSequence::FK_ListInitializationFailed);
4284     return;
4285   }
4286 
4287   // Add the list initialization step with the built init list.
4288   Sequence.AddListInitializationStep(DestType);
4289 }
4290 
4291 /// Try a reference initialization that involves calling a conversion
4292 /// function.
TryRefInitWithConversionFunction(Sema & S,const InitializedEntity & Entity,const InitializationKind & Kind,Expr * Initializer,bool AllowRValues,bool IsLValueRef,InitializationSequence & Sequence)4293 static OverloadingResult TryRefInitWithConversionFunction(
4294     Sema &S, const InitializedEntity &Entity, const InitializationKind &Kind,
4295     Expr *Initializer, bool AllowRValues, bool IsLValueRef,
4296     InitializationSequence &Sequence) {
4297   QualType DestType = Entity.getType();
4298   QualType cv1T1 = DestType->getAs<ReferenceType>()->getPointeeType();
4299   QualType T1 = cv1T1.getUnqualifiedType();
4300   QualType cv2T2 = Initializer->getType();
4301   QualType T2 = cv2T2.getUnqualifiedType();
4302 
4303   bool DerivedToBase;
4304   bool ObjCConversion;
4305   bool ObjCLifetimeConversion;
4306   assert(!S.CompareReferenceRelationship(Initializer->getBeginLoc(), T1, T2,
4307                                          DerivedToBase, ObjCConversion,
4308                                          ObjCLifetimeConversion) &&
4309          "Must have incompatible references when binding via conversion");
4310   (void)DerivedToBase;
4311   (void)ObjCConversion;
4312   (void)ObjCLifetimeConversion;
4313 
4314   // Build the candidate set directly in the initialization sequence
4315   // structure, so that it will persist if we fail.
4316   OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet();
4317   CandidateSet.clear(OverloadCandidateSet::CSK_InitByUserDefinedConversion);
4318 
4319   // Determine whether we are allowed to call explicit conversion operators.
4320   // Note that none of [over.match.copy], [over.match.conv], nor
4321   // [over.match.ref] permit an explicit constructor to be chosen when
4322   // initializing a reference, not even for direct-initialization.
4323   bool AllowExplicitCtors = false;
4324   bool AllowExplicitConvs = Kind.allowExplicitConversionFunctionsInRefBinding();
4325 
4326   const RecordType *T1RecordType = nullptr;
4327   if (AllowRValues && (T1RecordType = T1->getAs<RecordType>()) &&
4328       S.isCompleteType(Kind.getLocation(), T1)) {
4329     // The type we're converting to is a class type. Enumerate its constructors
4330     // to see if there is a suitable conversion.
4331     CXXRecordDecl *T1RecordDecl = cast<CXXRecordDecl>(T1RecordType->getDecl());
4332 
4333     for (NamedDecl *D : S.LookupConstructors(T1RecordDecl)) {
4334       auto Info = getConstructorInfo(D);
4335       if (!Info.Constructor)
4336         continue;
4337 
4338       if (!Info.Constructor->isInvalidDecl() &&
4339           Info.Constructor->isConvertingConstructor(AllowExplicitCtors)) {
4340         if (Info.ConstructorTmpl)
4341           S.AddTemplateOverloadCandidate(Info.ConstructorTmpl, Info.FoundDecl,
4342                                          /*ExplicitArgs*/ nullptr,
4343                                          Initializer, CandidateSet,
4344                                          /*SuppressUserConversions=*/true);
4345         else
4346           S.AddOverloadCandidate(Info.Constructor, Info.FoundDecl,
4347                                  Initializer, CandidateSet,
4348                                  /*SuppressUserConversions=*/true);
4349       }
4350     }
4351   }
4352   if (T1RecordType && T1RecordType->getDecl()->isInvalidDecl())
4353     return OR_No_Viable_Function;
4354 
4355   const RecordType *T2RecordType = nullptr;
4356   if ((T2RecordType = T2->getAs<RecordType>()) &&
4357       S.isCompleteType(Kind.getLocation(), T2)) {
4358     // The type we're converting from is a class type, enumerate its conversion
4359     // functions.
4360     CXXRecordDecl *T2RecordDecl = cast<CXXRecordDecl>(T2RecordType->getDecl());
4361 
4362     const auto &Conversions = T2RecordDecl->getVisibleConversionFunctions();
4363     for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) {
4364       NamedDecl *D = *I;
4365       CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext());
4366       if (isa<UsingShadowDecl>(D))
4367         D = cast<UsingShadowDecl>(D)->getTargetDecl();
4368 
4369       FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(D);
4370       CXXConversionDecl *Conv;
4371       if (ConvTemplate)
4372         Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
4373       else
4374         Conv = cast<CXXConversionDecl>(D);
4375 
4376       // If the conversion function doesn't return a reference type,
4377       // it can't be considered for this conversion unless we're allowed to
4378       // consider rvalues.
4379       // FIXME: Do we need to make sure that we only consider conversion
4380       // candidates with reference-compatible results? That might be needed to
4381       // break recursion.
4382       if ((AllowExplicitConvs || !Conv->isExplicit()) &&
4383           (AllowRValues || Conv->getConversionType()->isLValueReferenceType())){
4384         if (ConvTemplate)
4385           S.AddTemplateConversionCandidate(ConvTemplate, I.getPair(),
4386                                            ActingDC, Initializer,
4387                                            DestType, CandidateSet,
4388                                            /*AllowObjCConversionOnExplicit=*/
4389                                              false);
4390         else
4391           S.AddConversionCandidate(Conv, I.getPair(), ActingDC,
4392                                    Initializer, DestType, CandidateSet,
4393                                    /*AllowObjCConversionOnExplicit=*/false);
4394       }
4395     }
4396   }
4397   if (T2RecordType && T2RecordType->getDecl()->isInvalidDecl())
4398     return OR_No_Viable_Function;
4399 
4400   SourceLocation DeclLoc = Initializer->getBeginLoc();
4401 
4402   // Perform overload resolution. If it fails, return the failed result.
4403   OverloadCandidateSet::iterator Best;
4404   if (OverloadingResult Result
4405         = CandidateSet.BestViableFunction(S, DeclLoc, Best))
4406     return Result;
4407 
4408   FunctionDecl *Function = Best->Function;
4409   // This is the overload that will be used for this initialization step if we
4410   // use this initialization. Mark it as referenced.
4411   Function->setReferenced();
4412 
4413   // Compute the returned type and value kind of the conversion.
4414   QualType cv3T3;
4415   if (isa<CXXConversionDecl>(Function))
4416     cv3T3 = Function->getReturnType();
4417   else
4418     cv3T3 = T1;
4419 
4420   ExprValueKind VK = VK_RValue;
4421   if (cv3T3->isLValueReferenceType())
4422     VK = VK_LValue;
4423   else if (const auto *RRef = cv3T3->getAs<RValueReferenceType>())
4424     VK = RRef->getPointeeType()->isFunctionType() ? VK_LValue : VK_XValue;
4425   cv3T3 = cv3T3.getNonLValueExprType(S.Context);
4426 
4427   // Add the user-defined conversion step.
4428   bool HadMultipleCandidates = (CandidateSet.size() > 1);
4429   Sequence.AddUserConversionStep(Function, Best->FoundDecl, cv3T3,
4430                                  HadMultipleCandidates);
4431 
4432   // Determine whether we'll need to perform derived-to-base adjustments or
4433   // other conversions.
4434   bool NewDerivedToBase = false;
4435   bool NewObjCConversion = false;
4436   bool NewObjCLifetimeConversion = false;
4437   Sema::ReferenceCompareResult NewRefRelationship
4438     = S.CompareReferenceRelationship(DeclLoc, T1, cv3T3,
4439                                      NewDerivedToBase, NewObjCConversion,
4440                                      NewObjCLifetimeConversion);
4441 
4442   // Add the final conversion sequence, if necessary.
4443   if (NewRefRelationship == Sema::Ref_Incompatible) {
4444     assert(!isa<CXXConstructorDecl>(Function) &&
4445            "should not have conversion after constructor");
4446 
4447     ImplicitConversionSequence ICS;
4448     ICS.setStandard();
4449     ICS.Standard = Best->FinalConversion;
4450     Sequence.AddConversionSequenceStep(ICS, ICS.Standard.getToType(2));
4451 
4452     // Every implicit conversion results in a prvalue, except for a glvalue
4453     // derived-to-base conversion, which we handle below.
4454     cv3T3 = ICS.Standard.getToType(2);
4455     VK = VK_RValue;
4456   }
4457 
4458   //   If the converted initializer is a prvalue, its type T4 is adjusted to
4459   //   type "cv1 T4" and the temporary materialization conversion is applied.
4460   //
4461   // We adjust the cv-qualifications to match the reference regardless of
4462   // whether we have a prvalue so that the AST records the change. In this
4463   // case, T4 is "cv3 T3".
4464   QualType cv1T4 = S.Context.getQualifiedType(cv3T3, cv1T1.getQualifiers());
4465   if (cv1T4.getQualifiers() != cv3T3.getQualifiers())
4466     Sequence.AddQualificationConversionStep(cv1T4, VK);
4467   Sequence.AddReferenceBindingStep(cv1T4, VK == VK_RValue);
4468   VK = IsLValueRef ? VK_LValue : VK_XValue;
4469 
4470   if (NewDerivedToBase)
4471     Sequence.AddDerivedToBaseCastStep(cv1T1, VK);
4472   else if (NewObjCConversion)
4473     Sequence.AddObjCObjectConversionStep(cv1T1);
4474 
4475   return OR_Success;
4476 }
4477 
4478 static void CheckCXX98CompatAccessibleCopy(Sema &S,
4479                                            const InitializedEntity &Entity,
4480                                            Expr *CurInitExpr);
4481 
4482 /// Attempt reference initialization (C++0x [dcl.init.ref])
TryReferenceInitialization(Sema & S,const InitializedEntity & Entity,const InitializationKind & Kind,Expr * Initializer,InitializationSequence & Sequence)4483 static void TryReferenceInitialization(Sema &S,
4484                                        const InitializedEntity &Entity,
4485                                        const InitializationKind &Kind,
4486                                        Expr *Initializer,
4487                                        InitializationSequence &Sequence) {
4488   QualType DestType = Entity.getType();
4489   QualType cv1T1 = DestType->getAs<ReferenceType>()->getPointeeType();
4490   Qualifiers T1Quals;
4491   QualType T1 = S.Context.getUnqualifiedArrayType(cv1T1, T1Quals);
4492   QualType cv2T2 = Initializer->getType();
4493   Qualifiers T2Quals;
4494   QualType T2 = S.Context.getUnqualifiedArrayType(cv2T2, T2Quals);
4495 
4496   // If the initializer is the address of an overloaded function, try
4497   // to resolve the overloaded function. If all goes well, T2 is the
4498   // type of the resulting function.
4499   if (ResolveOverloadedFunctionForReferenceBinding(S, Initializer, cv2T2, T2,
4500                                                    T1, Sequence))
4501     return;
4502 
4503   // Delegate everything else to a subfunction.
4504   TryReferenceInitializationCore(S, Entity, Kind, Initializer, cv1T1, T1,
4505                                  T1Quals, cv2T2, T2, T2Quals, Sequence);
4506 }
4507 
4508 /// Determine whether an expression is a non-referenceable glvalue (one to
4509 /// which a reference can never bind). Attempting to bind a reference to
4510 /// such a glvalue will always create a temporary.
isNonReferenceableGLValue(Expr * E)4511 static bool isNonReferenceableGLValue(Expr *E) {
4512   return E->refersToBitField() || E->refersToVectorElement();
4513 }
4514 
4515 /// Reference initialization without resolving overloaded functions.
TryReferenceInitializationCore(Sema & S,const InitializedEntity & Entity,const InitializationKind & Kind,Expr * Initializer,QualType cv1T1,QualType T1,Qualifiers T1Quals,QualType cv2T2,QualType T2,Qualifiers T2Quals,InitializationSequence & Sequence)4516 static void TryReferenceInitializationCore(Sema &S,
4517                                            const InitializedEntity &Entity,
4518                                            const InitializationKind &Kind,
4519                                            Expr *Initializer,
4520                                            QualType cv1T1, QualType T1,
4521                                            Qualifiers T1Quals,
4522                                            QualType cv2T2, QualType T2,
4523                                            Qualifiers T2Quals,
4524                                            InitializationSequence &Sequence) {
4525   QualType DestType = Entity.getType();
4526   SourceLocation DeclLoc = Initializer->getBeginLoc();
4527   // Compute some basic properties of the types and the initializer.
4528   bool isLValueRef = DestType->isLValueReferenceType();
4529   bool isRValueRef = !isLValueRef;
4530   bool DerivedToBase = false;
4531   bool ObjCConversion = false;
4532   bool ObjCLifetimeConversion = false;
4533   Expr::Classification InitCategory = Initializer->Classify(S.Context);
4534   Sema::ReferenceCompareResult RefRelationship
4535     = S.CompareReferenceRelationship(DeclLoc, cv1T1, cv2T2, DerivedToBase,
4536                                      ObjCConversion, ObjCLifetimeConversion);
4537 
4538   // C++0x [dcl.init.ref]p5:
4539   //   A reference to type "cv1 T1" is initialized by an expression of type
4540   //   "cv2 T2" as follows:
4541   //
4542   //     - If the reference is an lvalue reference and the initializer
4543   //       expression
4544   // Note the analogous bullet points for rvalue refs to functions. Because
4545   // there are no function rvalues in C++, rvalue refs to functions are treated
4546   // like lvalue refs.
4547   OverloadingResult ConvOvlResult = OR_Success;
4548   bool T1Function = T1->isFunctionType();
4549   if (isLValueRef || T1Function) {
4550     if (InitCategory.isLValue() && !isNonReferenceableGLValue(Initializer) &&
4551         (RefRelationship == Sema::Ref_Compatible ||
4552          (Kind.isCStyleOrFunctionalCast() &&
4553           RefRelationship == Sema::Ref_Related))) {
4554       //   - is an lvalue (but is not a bit-field), and "cv1 T1" is
4555       //     reference-compatible with "cv2 T2," or
4556       if (T1Quals != T2Quals)
4557         // Convert to cv1 T2. This should only add qualifiers unless this is a
4558         // c-style cast. The removal of qualifiers in that case notionally
4559         // happens after the reference binding, but that doesn't matter.
4560         Sequence.AddQualificationConversionStep(
4561             S.Context.getQualifiedType(T2, T1Quals),
4562             Initializer->getValueKind());
4563       if (DerivedToBase)
4564         Sequence.AddDerivedToBaseCastStep(cv1T1, VK_LValue);
4565       else if (ObjCConversion)
4566         Sequence.AddObjCObjectConversionStep(cv1T1);
4567 
4568       // We only create a temporary here when binding a reference to a
4569       // bit-field or vector element. Those cases are't supposed to be
4570       // handled by this bullet, but the outcome is the same either way.
4571       Sequence.AddReferenceBindingStep(cv1T1, false);
4572       return;
4573     }
4574 
4575     //     - has a class type (i.e., T2 is a class type), where T1 is not
4576     //       reference-related to T2, and can be implicitly converted to an
4577     //       lvalue of type "cv3 T3," where "cv1 T1" is reference-compatible
4578     //       with "cv3 T3" (this conversion is selected by enumerating the
4579     //       applicable conversion functions (13.3.1.6) and choosing the best
4580     //       one through overload resolution (13.3)),
4581     // If we have an rvalue ref to function type here, the rhs must be
4582     // an rvalue. DR1287 removed the "implicitly" here.
4583     if (RefRelationship == Sema::Ref_Incompatible && T2->isRecordType() &&
4584         (isLValueRef || InitCategory.isRValue())) {
4585       ConvOvlResult = TryRefInitWithConversionFunction(
4586           S, Entity, Kind, Initializer, /*AllowRValues*/ isRValueRef,
4587           /*IsLValueRef*/ isLValueRef, Sequence);
4588       if (ConvOvlResult == OR_Success)
4589         return;
4590       if (ConvOvlResult != OR_No_Viable_Function)
4591         Sequence.SetOverloadFailure(
4592             InitializationSequence::FK_ReferenceInitOverloadFailed,
4593             ConvOvlResult);
4594     }
4595   }
4596 
4597   //     - Otherwise, the reference shall be an lvalue reference to a
4598   //       non-volatile const type (i.e., cv1 shall be const), or the reference
4599   //       shall be an rvalue reference.
4600   if (isLValueRef && !(T1Quals.hasConst() && !T1Quals.hasVolatile())) {
4601     if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy)
4602       Sequence.SetFailed(InitializationSequence::FK_AddressOfOverloadFailed);
4603     else if (ConvOvlResult && !Sequence.getFailedCandidateSet().empty())
4604       Sequence.SetOverloadFailure(
4605                         InitializationSequence::FK_ReferenceInitOverloadFailed,
4606                                   ConvOvlResult);
4607     else if (!InitCategory.isLValue())
4608       Sequence.SetFailed(
4609           InitializationSequence::FK_NonConstLValueReferenceBindingToTemporary);
4610     else {
4611       InitializationSequence::FailureKind FK;
4612       switch (RefRelationship) {
4613       case Sema::Ref_Compatible:
4614         if (Initializer->refersToBitField())
4615           FK = InitializationSequence::
4616               FK_NonConstLValueReferenceBindingToBitfield;
4617         else if (Initializer->refersToVectorElement())
4618           FK = InitializationSequence::
4619               FK_NonConstLValueReferenceBindingToVectorElement;
4620         else
4621           llvm_unreachable("unexpected kind of compatible initializer");
4622         break;
4623       case Sema::Ref_Related:
4624         FK = InitializationSequence::FK_ReferenceInitDropsQualifiers;
4625         break;
4626       case Sema::Ref_Incompatible:
4627         FK = InitializationSequence::
4628             FK_NonConstLValueReferenceBindingToUnrelated;
4629         break;
4630       }
4631       Sequence.SetFailed(FK);
4632     }
4633     return;
4634   }
4635 
4636   //    - If the initializer expression
4637   //      - is an
4638   // [<=14] xvalue (but not a bit-field), class prvalue, array prvalue, or
4639   // [1z]   rvalue (but not a bit-field) or
4640   //        function lvalue and "cv1 T1" is reference-compatible with "cv2 T2"
4641   //
4642   // Note: functions are handled above and below rather than here...
4643   if (!T1Function &&
4644       (RefRelationship == Sema::Ref_Compatible ||
4645        (Kind.isCStyleOrFunctionalCast() &&
4646         RefRelationship == Sema::Ref_Related)) &&
4647       ((InitCategory.isXValue() && !isNonReferenceableGLValue(Initializer)) ||
4648        (InitCategory.isPRValue() &&
4649         (S.getLangOpts().CPlusPlus17 || T2->isRecordType() ||
4650          T2->isArrayType())))) {
4651     ExprValueKind ValueKind = InitCategory.isXValue() ? VK_XValue : VK_RValue;
4652     if (InitCategory.isPRValue() && T2->isRecordType()) {
4653       // The corresponding bullet in C++03 [dcl.init.ref]p5 gives the
4654       // compiler the freedom to perform a copy here or bind to the
4655       // object, while C++0x requires that we bind directly to the
4656       // object. Hence, we always bind to the object without making an
4657       // extra copy. However, in C++03 requires that we check for the
4658       // presence of a suitable copy constructor:
4659       //
4660       //   The constructor that would be used to make the copy shall
4661       //   be callable whether or not the copy is actually done.
4662       if (!S.getLangOpts().CPlusPlus11 && !S.getLangOpts().MicrosoftExt)
4663         Sequence.AddExtraneousCopyToTemporary(cv2T2);
4664       else if (S.getLangOpts().CPlusPlus11)
4665         CheckCXX98CompatAccessibleCopy(S, Entity, Initializer);
4666     }
4667 
4668     // C++1z [dcl.init.ref]/5.2.1.2:
4669     //   If the converted initializer is a prvalue, its type T4 is adjusted
4670     //   to type "cv1 T4" and the temporary materialization conversion is
4671     //   applied.
4672     // Postpone address space conversions to after the temporary materialization
4673     // conversion to allow creating temporaries in the alloca address space.
4674     auto AS1 = T1Quals.getAddressSpace();
4675     auto AS2 = T2Quals.getAddressSpace();
4676     T1Quals.removeAddressSpace();
4677     T2Quals.removeAddressSpace();
4678     QualType cv1T4 = S.Context.getQualifiedType(cv2T2, T1Quals);
4679     if (T1Quals != T2Quals)
4680       Sequence.AddQualificationConversionStep(cv1T4, ValueKind);
4681     Sequence.AddReferenceBindingStep(cv1T4, ValueKind == VK_RValue);
4682     ValueKind = isLValueRef ? VK_LValue : VK_XValue;
4683     if (AS1 != AS2) {
4684       T1Quals.addAddressSpace(AS1);
4685       QualType cv1AST4 = S.Context.getQualifiedType(cv2T2, T1Quals);
4686       Sequence.AddQualificationConversionStep(cv1AST4, ValueKind);
4687     }
4688 
4689     //   In any case, the reference is bound to the resulting glvalue (or to
4690     //   an appropriate base class subobject).
4691     if (DerivedToBase)
4692       Sequence.AddDerivedToBaseCastStep(cv1T1, ValueKind);
4693     else if (ObjCConversion)
4694       Sequence.AddObjCObjectConversionStep(cv1T1);
4695     return;
4696   }
4697 
4698   //       - has a class type (i.e., T2 is a class type), where T1 is not
4699   //         reference-related to T2, and can be implicitly converted to an
4700   //         xvalue, class prvalue, or function lvalue of type "cv3 T3",
4701   //         where "cv1 T1" is reference-compatible with "cv3 T3",
4702   //
4703   // DR1287 removes the "implicitly" here.
4704   if (T2->isRecordType()) {
4705     if (RefRelationship == Sema::Ref_Incompatible) {
4706       ConvOvlResult = TryRefInitWithConversionFunction(
4707           S, Entity, Kind, Initializer, /*AllowRValues*/ true,
4708           /*IsLValueRef*/ isLValueRef, Sequence);
4709       if (ConvOvlResult)
4710         Sequence.SetOverloadFailure(
4711             InitializationSequence::FK_ReferenceInitOverloadFailed,
4712             ConvOvlResult);
4713 
4714       return;
4715     }
4716 
4717     if (RefRelationship == Sema::Ref_Compatible &&
4718         isRValueRef && InitCategory.isLValue()) {
4719       Sequence.SetFailed(
4720         InitializationSequence::FK_RValueReferenceBindingToLValue);
4721       return;
4722     }
4723 
4724     Sequence.SetFailed(InitializationSequence::FK_ReferenceInitDropsQualifiers);
4725     return;
4726   }
4727 
4728   //      - Otherwise, a temporary of type "cv1 T1" is created and initialized
4729   //        from the initializer expression using the rules for a non-reference
4730   //        copy-initialization (8.5). The reference is then bound to the
4731   //        temporary. [...]
4732 
4733   InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(cv1T1);
4734 
4735   // FIXME: Why do we use an implicit conversion here rather than trying
4736   // copy-initialization?
4737   ImplicitConversionSequence ICS
4738     = S.TryImplicitConversion(Initializer, TempEntity.getType(),
4739                               /*SuppressUserConversions=*/false,
4740                               /*AllowExplicit=*/false,
4741                               /*FIXME:InOverloadResolution=*/false,
4742                               /*CStyle=*/Kind.isCStyleOrFunctionalCast(),
4743                               /*AllowObjCWritebackConversion=*/false);
4744 
4745   if (ICS.isBad()) {
4746     // FIXME: Use the conversion function set stored in ICS to turn
4747     // this into an overloading ambiguity diagnostic. However, we need
4748     // to keep that set as an OverloadCandidateSet rather than as some
4749     // other kind of set.
4750     if (ConvOvlResult && !Sequence.getFailedCandidateSet().empty())
4751       Sequence.SetOverloadFailure(
4752                         InitializationSequence::FK_ReferenceInitOverloadFailed,
4753                                   ConvOvlResult);
4754     else if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy)
4755       Sequence.SetFailed(InitializationSequence::FK_AddressOfOverloadFailed);
4756     else
4757       Sequence.SetFailed(InitializationSequence::FK_ReferenceInitFailed);
4758     return;
4759   } else {
4760     Sequence.AddConversionSequenceStep(ICS, TempEntity.getType());
4761   }
4762 
4763   //        [...] If T1 is reference-related to T2, cv1 must be the
4764   //        same cv-qualification as, or greater cv-qualification
4765   //        than, cv2; otherwise, the program is ill-formed.
4766   unsigned T1CVRQuals = T1Quals.getCVRQualifiers();
4767   unsigned T2CVRQuals = T2Quals.getCVRQualifiers();
4768   if (RefRelationship == Sema::Ref_Related &&
4769       (T1CVRQuals | T2CVRQuals) != T1CVRQuals) {
4770     Sequence.SetFailed(InitializationSequence::FK_ReferenceInitDropsQualifiers);
4771     return;
4772   }
4773 
4774   //   [...] If T1 is reference-related to T2 and the reference is an rvalue
4775   //   reference, the initializer expression shall not be an lvalue.
4776   if (RefRelationship >= Sema::Ref_Related && !isLValueRef &&
4777       InitCategory.isLValue()) {
4778     Sequence.SetFailed(
4779                     InitializationSequence::FK_RValueReferenceBindingToLValue);
4780     return;
4781   }
4782 
4783   Sequence.AddReferenceBindingStep(cv1T1, /*bindingTemporary=*/true);
4784 }
4785 
4786 /// Attempt character array initialization from a string literal
4787 /// (C++ [dcl.init.string], C99 6.7.8).
TryStringLiteralInitialization(Sema & S,const InitializedEntity & Entity,const InitializationKind & Kind,Expr * Initializer,InitializationSequence & Sequence)4788 static void TryStringLiteralInitialization(Sema &S,
4789                                            const InitializedEntity &Entity,
4790                                            const InitializationKind &Kind,
4791                                            Expr *Initializer,
4792                                        InitializationSequence &Sequence) {
4793   Sequence.AddStringInitStep(Entity.getType());
4794 }
4795 
4796 /// Attempt value initialization (C++ [dcl.init]p7).
TryValueInitialization(Sema & S,const InitializedEntity & Entity,const InitializationKind & Kind,InitializationSequence & Sequence,InitListExpr * InitList)4797 static void TryValueInitialization(Sema &S,
4798                                    const InitializedEntity &Entity,
4799                                    const InitializationKind &Kind,
4800                                    InitializationSequence &Sequence,
4801                                    InitListExpr *InitList) {
4802   assert((!InitList || InitList->getNumInits() == 0) &&
4803          "Shouldn't use value-init for non-empty init lists");
4804 
4805   // C++98 [dcl.init]p5, C++11 [dcl.init]p7:
4806   //
4807   //   To value-initialize an object of type T means:
4808   QualType T = Entity.getType();
4809 
4810   //     -- if T is an array type, then each element is value-initialized;
4811   T = S.Context.getBaseElementType(T);
4812 
4813   if (const RecordType *RT = T->getAs<RecordType>()) {
4814     if (CXXRecordDecl *ClassDecl = dyn_cast<CXXRecordDecl>(RT->getDecl())) {
4815       bool NeedZeroInitialization = true;
4816       // C++98:
4817       // -- if T is a class type (clause 9) with a user-declared constructor
4818       //    (12.1), then the default constructor for T is called (and the
4819       //    initialization is ill-formed if T has no accessible default
4820       //    constructor);
4821       // C++11:
4822       // -- if T is a class type (clause 9) with either no default constructor
4823       //    (12.1 [class.ctor]) or a default constructor that is user-provided
4824       //    or deleted, then the object is default-initialized;
4825       //
4826       // Note that the C++11 rule is the same as the C++98 rule if there are no
4827       // defaulted or deleted constructors, so we just use it unconditionally.
4828       CXXConstructorDecl *CD = S.LookupDefaultConstructor(ClassDecl);
4829       if (!CD || !CD->getCanonicalDecl()->isDefaulted() || CD->isDeleted())
4830         NeedZeroInitialization = false;
4831 
4832       // -- if T is a (possibly cv-qualified) non-union class type without a
4833       //    user-provided or deleted default constructor, then the object is
4834       //    zero-initialized and, if T has a non-trivial default constructor,
4835       //    default-initialized;
4836       // The 'non-union' here was removed by DR1502. The 'non-trivial default
4837       // constructor' part was removed by DR1507.
4838       if (NeedZeroInitialization)
4839         Sequence.AddZeroInitializationStep(Entity.getType());
4840 
4841       // C++03:
4842       // -- if T is a non-union class type without a user-declared constructor,
4843       //    then every non-static data member and base class component of T is
4844       //    value-initialized;
4845       // [...] A program that calls for [...] value-initialization of an
4846       // entity of reference type is ill-formed.
4847       //
4848       // C++11 doesn't need this handling, because value-initialization does not
4849       // occur recursively there, and the implicit default constructor is
4850       // defined as deleted in the problematic cases.
4851       if (!S.getLangOpts().CPlusPlus11 &&
4852           ClassDecl->hasUninitializedReferenceMember()) {
4853         Sequence.SetFailed(InitializationSequence::FK_TooManyInitsForReference);
4854         return;
4855       }
4856 
4857       // If this is list-value-initialization, pass the empty init list on when
4858       // building the constructor call. This affects the semantics of a few
4859       // things (such as whether an explicit default constructor can be called).
4860       Expr *InitListAsExpr = InitList;
4861       MultiExprArg Args(&InitListAsExpr, InitList ? 1 : 0);
4862       bool InitListSyntax = InitList;
4863 
4864       // FIXME: Instead of creating a CXXConstructExpr of array type here,
4865       // wrap a class-typed CXXConstructExpr in an ArrayInitLoopExpr.
4866       return TryConstructorInitialization(
4867           S, Entity, Kind, Args, T, Entity.getType(), Sequence, InitListSyntax);
4868     }
4869   }
4870 
4871   Sequence.AddZeroInitializationStep(Entity.getType());
4872 }
4873 
4874 /// Attempt default initialization (C++ [dcl.init]p6).
TryDefaultInitialization(Sema & S,const InitializedEntity & Entity,const InitializationKind & Kind,InitializationSequence & Sequence)4875 static void TryDefaultInitialization(Sema &S,
4876                                      const InitializedEntity &Entity,
4877                                      const InitializationKind &Kind,
4878                                      InitializationSequence &Sequence) {
4879   assert(Kind.getKind() == InitializationKind::IK_Default);
4880 
4881   // C++ [dcl.init]p6:
4882   //   To default-initialize an object of type T means:
4883   //     - if T is an array type, each element is default-initialized;
4884   QualType DestType = S.Context.getBaseElementType(Entity.getType());
4885 
4886   //     - if T is a (possibly cv-qualified) class type (Clause 9), the default
4887   //       constructor for T is called (and the initialization is ill-formed if
4888   //       T has no accessible default constructor);
4889   if (DestType->isRecordType() && S.getLangOpts().CPlusPlus) {
4890     TryConstructorInitialization(S, Entity, Kind, None, DestType,
4891                                  Entity.getType(), Sequence);
4892     return;
4893   }
4894 
4895   //     - otherwise, no initialization is performed.
4896 
4897   //   If a program calls for the default initialization of an object of
4898   //   a const-qualified type T, T shall be a class type with a user-provided
4899   //   default constructor.
4900   if (DestType.isConstQualified() && S.getLangOpts().CPlusPlus) {
4901     if (!maybeRecoverWithZeroInitialization(S, Sequence, Entity))
4902       Sequence.SetFailed(InitializationSequence::FK_DefaultInitOfConst);
4903     return;
4904   }
4905 
4906   // If the destination type has a lifetime property, zero-initialize it.
4907   if (DestType.getQualifiers().hasObjCLifetime()) {
4908     Sequence.AddZeroInitializationStep(Entity.getType());
4909     return;
4910   }
4911 }
4912 
4913 /// Attempt a user-defined conversion between two types (C++ [dcl.init]),
4914 /// which enumerates all conversion functions and performs overload resolution
4915 /// to select the best.
TryUserDefinedConversion(Sema & S,QualType DestType,const InitializationKind & Kind,Expr * Initializer,InitializationSequence & Sequence,bool TopLevelOfInitList)4916 static void TryUserDefinedConversion(Sema &S,
4917                                      QualType DestType,
4918                                      const InitializationKind &Kind,
4919                                      Expr *Initializer,
4920                                      InitializationSequence &Sequence,
4921                                      bool TopLevelOfInitList) {
4922   assert(!DestType->isReferenceType() && "References are handled elsewhere");
4923   QualType SourceType = Initializer->getType();
4924   assert((DestType->isRecordType() || SourceType->isRecordType()) &&
4925          "Must have a class type to perform a user-defined conversion");
4926 
4927   // Build the candidate set directly in the initialization sequence
4928   // structure, so that it will persist if we fail.
4929   OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet();
4930   CandidateSet.clear(OverloadCandidateSet::CSK_InitByUserDefinedConversion);
4931 
4932   // Determine whether we are allowed to call explicit constructors or
4933   // explicit conversion operators.
4934   bool AllowExplicit = Kind.AllowExplicit();
4935 
4936   if (const RecordType *DestRecordType = DestType->getAs<RecordType>()) {
4937     // The type we're converting to is a class type. Enumerate its constructors
4938     // to see if there is a suitable conversion.
4939     CXXRecordDecl *DestRecordDecl
4940       = cast<CXXRecordDecl>(DestRecordType->getDecl());
4941 
4942     // Try to complete the type we're converting to.
4943     if (S.isCompleteType(Kind.getLocation(), DestType)) {
4944       for (NamedDecl *D : S.LookupConstructors(DestRecordDecl)) {
4945         auto Info = getConstructorInfo(D);
4946         if (!Info.Constructor)
4947           continue;
4948 
4949         if (!Info.Constructor->isInvalidDecl() &&
4950             Info.Constructor->isConvertingConstructor(AllowExplicit)) {
4951           if (Info.ConstructorTmpl)
4952             S.AddTemplateOverloadCandidate(Info.ConstructorTmpl, Info.FoundDecl,
4953                                            /*ExplicitArgs*/ nullptr,
4954                                            Initializer, CandidateSet,
4955                                            /*SuppressUserConversions=*/true);
4956           else
4957             S.AddOverloadCandidate(Info.Constructor, Info.FoundDecl,
4958                                    Initializer, CandidateSet,
4959                                    /*SuppressUserConversions=*/true);
4960         }
4961       }
4962     }
4963   }
4964 
4965   SourceLocation DeclLoc = Initializer->getBeginLoc();
4966 
4967   if (const RecordType *SourceRecordType = SourceType->getAs<RecordType>()) {
4968     // The type we're converting from is a class type, enumerate its conversion
4969     // functions.
4970 
4971     // We can only enumerate the conversion functions for a complete type; if
4972     // the type isn't complete, simply skip this step.
4973     if (S.isCompleteType(DeclLoc, SourceType)) {
4974       CXXRecordDecl *SourceRecordDecl
4975         = cast<CXXRecordDecl>(SourceRecordType->getDecl());
4976 
4977       const auto &Conversions =
4978           SourceRecordDecl->getVisibleConversionFunctions();
4979       for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) {
4980         NamedDecl *D = *I;
4981         CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext());
4982         if (isa<UsingShadowDecl>(D))
4983           D = cast<UsingShadowDecl>(D)->getTargetDecl();
4984 
4985         FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(D);
4986         CXXConversionDecl *Conv;
4987         if (ConvTemplate)
4988           Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
4989         else
4990           Conv = cast<CXXConversionDecl>(D);
4991 
4992         if (AllowExplicit || !Conv->isExplicit()) {
4993           if (ConvTemplate)
4994             S.AddTemplateConversionCandidate(ConvTemplate, I.getPair(),
4995                                              ActingDC, Initializer, DestType,
4996                                              CandidateSet, AllowExplicit);
4997           else
4998             S.AddConversionCandidate(Conv, I.getPair(), ActingDC,
4999                                      Initializer, DestType, CandidateSet,
5000                                      AllowExplicit);
5001         }
5002       }
5003     }
5004   }
5005 
5006   // Perform overload resolution. If it fails, return the failed result.
5007   OverloadCandidateSet::iterator Best;
5008   if (OverloadingResult Result
5009         = CandidateSet.BestViableFunction(S, DeclLoc, Best)) {
5010     Sequence.SetOverloadFailure(
5011                         InitializationSequence::FK_UserConversionOverloadFailed,
5012                                 Result);
5013     return;
5014   }
5015 
5016   FunctionDecl *Function = Best->Function;
5017   Function->setReferenced();
5018   bool HadMultipleCandidates = (CandidateSet.size() > 1);
5019 
5020   if (isa<CXXConstructorDecl>(Function)) {
5021     // Add the user-defined conversion step. Any cv-qualification conversion is
5022     // subsumed by the initialization. Per DR5, the created temporary is of the
5023     // cv-unqualified type of the destination.
5024     Sequence.AddUserConversionStep(Function, Best->FoundDecl,
5025                                    DestType.getUnqualifiedType(),
5026                                    HadMultipleCandidates);
5027 
5028     // C++14 and before:
5029     //   - if the function is a constructor, the call initializes a temporary
5030     //     of the cv-unqualified version of the destination type. The [...]
5031     //     temporary [...] is then used to direct-initialize, according to the
5032     //     rules above, the object that is the destination of the
5033     //     copy-initialization.
5034     // Note that this just performs a simple object copy from the temporary.
5035     //
5036     // C++17:
5037     //   - if the function is a constructor, the call is a prvalue of the
5038     //     cv-unqualified version of the destination type whose return object
5039     //     is initialized by the constructor. The call is used to
5040     //     direct-initialize, according to the rules above, the object that
5041     //     is the destination of the copy-initialization.
5042     // Therefore we need to do nothing further.
5043     //
5044     // FIXME: Mark this copy as extraneous.
5045     if (!S.getLangOpts().CPlusPlus17)
5046       Sequence.AddFinalCopy(DestType);
5047     else if (DestType.hasQualifiers())
5048       Sequence.AddQualificationConversionStep(DestType, VK_RValue);
5049     return;
5050   }
5051 
5052   // Add the user-defined conversion step that calls the conversion function.
5053   QualType ConvType = Function->getCallResultType();
5054   Sequence.AddUserConversionStep(Function, Best->FoundDecl, ConvType,
5055                                  HadMultipleCandidates);
5056 
5057   if (ConvType->getAs<RecordType>()) {
5058     //   The call is used to direct-initialize [...] the object that is the
5059     //   destination of the copy-initialization.
5060     //
5061     // In C++17, this does not call a constructor if we enter /17.6.1:
5062     //   - If the initializer expression is a prvalue and the cv-unqualified
5063     //     version of the source type is the same as the class of the
5064     //     destination [... do not make an extra copy]
5065     //
5066     // FIXME: Mark this copy as extraneous.
5067     if (!S.getLangOpts().CPlusPlus17 ||
5068         Function->getReturnType()->isReferenceType() ||
5069         !S.Context.hasSameUnqualifiedType(ConvType, DestType))
5070       Sequence.AddFinalCopy(DestType);
5071     else if (!S.Context.hasSameType(ConvType, DestType))
5072       Sequence.AddQualificationConversionStep(DestType, VK_RValue);
5073     return;
5074   }
5075 
5076   // If the conversion following the call to the conversion function
5077   // is interesting, add it as a separate step.
5078   if (Best->FinalConversion.First || Best->FinalConversion.Second ||
5079       Best->FinalConversion.Third) {
5080     ImplicitConversionSequence ICS;
5081     ICS.setStandard();
5082     ICS.Standard = Best->FinalConversion;
5083     Sequence.AddConversionSequenceStep(ICS, DestType, TopLevelOfInitList);
5084   }
5085 }
5086 
5087 /// An egregious hack for compatibility with libstdc++-4.2: in <tr1/hashtable>,
5088 /// a function with a pointer return type contains a 'return false;' statement.
5089 /// In C++11, 'false' is not a null pointer, so this breaks the build of any
5090 /// code using that header.
5091 ///
5092 /// Work around this by treating 'return false;' as zero-initializing the result
5093 /// if it's used in a pointer-returning function in a system header.
isLibstdcxxPointerReturnFalseHack(Sema & S,const InitializedEntity & Entity,const Expr * Init)5094 static bool isLibstdcxxPointerReturnFalseHack(Sema &S,
5095                                               const InitializedEntity &Entity,
5096                                               const Expr *Init) {
5097   return S.getLangOpts().CPlusPlus11 &&
5098          Entity.getKind() == InitializedEntity::EK_Result &&
5099          Entity.getType()->isPointerType() &&
5100          isa<CXXBoolLiteralExpr>(Init) &&
5101          !cast<CXXBoolLiteralExpr>(Init)->getValue() &&
5102          S.getSourceManager().isInSystemHeader(Init->getExprLoc());
5103 }
5104 
5105 /// The non-zero enum values here are indexes into diagnostic alternatives.
5106 enum InvalidICRKind { IIK_okay, IIK_nonlocal, IIK_nonscalar };
5107 
5108 /// Determines whether this expression is an acceptable ICR source.
isInvalidICRSource(ASTContext & C,Expr * e,bool isAddressOf,bool & isWeakAccess)5109 static InvalidICRKind isInvalidICRSource(ASTContext &C, Expr *e,
5110                                          bool isAddressOf, bool &isWeakAccess) {
5111   // Skip parens.
5112   e = e->IgnoreParens();
5113 
5114   // Skip address-of nodes.
5115   if (UnaryOperator *op = dyn_cast<UnaryOperator>(e)) {
5116     if (op->getOpcode() == UO_AddrOf)
5117       return isInvalidICRSource(C, op->getSubExpr(), /*addressof*/ true,
5118                                 isWeakAccess);
5119 
5120   // Skip certain casts.
5121   } else if (CastExpr *ce = dyn_cast<CastExpr>(e)) {
5122     switch (ce->getCastKind()) {
5123     case CK_Dependent:
5124     case CK_BitCast:
5125     case CK_LValueBitCast:
5126     case CK_NoOp:
5127       return isInvalidICRSource(C, ce->getSubExpr(), isAddressOf, isWeakAccess);
5128 
5129     case CK_ArrayToPointerDecay:
5130       return IIK_nonscalar;
5131 
5132     case CK_NullToPointer:
5133       return IIK_okay;
5134 
5135     default:
5136       break;
5137     }
5138 
5139   // If we have a declaration reference, it had better be a local variable.
5140   } else if (isa<DeclRefExpr>(e)) {
5141     // set isWeakAccess to true, to mean that there will be an implicit
5142     // load which requires a cleanup.
5143     if (e->getType().getObjCLifetime() == Qualifiers::OCL_Weak)
5144       isWeakAccess = true;
5145 
5146     if (!isAddressOf) return IIK_nonlocal;
5147 
5148     VarDecl *var = dyn_cast<VarDecl>(cast<DeclRefExpr>(e)->getDecl());
5149     if (!var) return IIK_nonlocal;
5150 
5151     return (var->hasLocalStorage() ? IIK_okay : IIK_nonlocal);
5152 
5153   // If we have a conditional operator, check both sides.
5154   } else if (ConditionalOperator *cond = dyn_cast<ConditionalOperator>(e)) {
5155     if (InvalidICRKind iik = isInvalidICRSource(C, cond->getLHS(), isAddressOf,
5156                                                 isWeakAccess))
5157       return iik;
5158 
5159     return isInvalidICRSource(C, cond->getRHS(), isAddressOf, isWeakAccess);
5160 
5161   // These are never scalar.
5162   } else if (isa<ArraySubscriptExpr>(e)) {
5163     return IIK_nonscalar;
5164 
5165   // Otherwise, it needs to be a null pointer constant.
5166   } else {
5167     return (e->isNullPointerConstant(C, Expr::NPC_ValueDependentIsNull)
5168             ? IIK_okay : IIK_nonlocal);
5169   }
5170 
5171   return IIK_nonlocal;
5172 }
5173 
5174 /// Check whether the given expression is a valid operand for an
5175 /// indirect copy/restore.
checkIndirectCopyRestoreSource(Sema & S,Expr * src)5176 static void checkIndirectCopyRestoreSource(Sema &S, Expr *src) {
5177   assert(src->isRValue());
5178   bool isWeakAccess = false;
5179   InvalidICRKind iik = isInvalidICRSource(S.Context, src, false, isWeakAccess);
5180   // If isWeakAccess to true, there will be an implicit
5181   // load which requires a cleanup.
5182   if (S.getLangOpts().ObjCAutoRefCount && isWeakAccess)
5183     S.Cleanup.setExprNeedsCleanups(true);
5184 
5185   if (iik == IIK_okay) return;
5186 
5187   S.Diag(src->getExprLoc(), diag::err_arc_nonlocal_writeback)
5188     << ((unsigned) iik - 1)  // shift index into diagnostic explanations
5189     << src->getSourceRange();
5190 }
5191 
5192 /// Determine whether we have compatible array types for the
5193 /// purposes of GNU by-copy array initialization.
hasCompatibleArrayTypes(ASTContext & Context,const ArrayType * Dest,const ArrayType * Source)5194 static bool hasCompatibleArrayTypes(ASTContext &Context, const ArrayType *Dest,
5195                                     const ArrayType *Source) {
5196   // If the source and destination array types are equivalent, we're
5197   // done.
5198   if (Context.hasSameType(QualType(Dest, 0), QualType(Source, 0)))
5199     return true;
5200 
5201   // Make sure that the element types are the same.
5202   if (!Context.hasSameType(Dest->getElementType(), Source->getElementType()))
5203     return false;
5204 
5205   // The only mismatch we allow is when the destination is an
5206   // incomplete array type and the source is a constant array type.
5207   return Source->isConstantArrayType() && Dest->isIncompleteArrayType();
5208 }
5209 
tryObjCWritebackConversion(Sema & S,InitializationSequence & Sequence,const InitializedEntity & Entity,Expr * Initializer)5210 static bool tryObjCWritebackConversion(Sema &S,
5211                                        InitializationSequence &Sequence,
5212                                        const InitializedEntity &Entity,
5213                                        Expr *Initializer) {
5214   bool ArrayDecay = false;
5215   QualType ArgType = Initializer->getType();
5216   QualType ArgPointee;
5217   if (const ArrayType *ArgArrayType = S.Context.getAsArrayType(ArgType)) {
5218     ArrayDecay = true;
5219     ArgPointee = ArgArrayType->getElementType();
5220     ArgType = S.Context.getPointerType(ArgPointee);
5221   }
5222 
5223   // Handle write-back conversion.
5224   QualType ConvertedArgType;
5225   if (!S.isObjCWritebackConversion(ArgType, Entity.getType(),
5226                                    ConvertedArgType))
5227     return false;
5228 
5229   // We should copy unless we're passing to an argument explicitly
5230   // marked 'out'.
5231   bool ShouldCopy = true;
5232   if (ParmVarDecl *param = cast_or_null<ParmVarDecl>(Entity.getDecl()))
5233     ShouldCopy = (param->getObjCDeclQualifier() != ParmVarDecl::OBJC_TQ_Out);
5234 
5235   // Do we need an lvalue conversion?
5236   if (ArrayDecay || Initializer->isGLValue()) {
5237     ImplicitConversionSequence ICS;
5238     ICS.setStandard();
5239     ICS.Standard.setAsIdentityConversion();
5240 
5241     QualType ResultType;
5242     if (ArrayDecay) {
5243       ICS.Standard.First = ICK_Array_To_Pointer;
5244       ResultType = S.Context.getPointerType(ArgPointee);
5245     } else {
5246       ICS.Standard.First = ICK_Lvalue_To_Rvalue;
5247       ResultType = Initializer->getType().getNonLValueExprType(S.Context);
5248     }
5249 
5250     Sequence.AddConversionSequenceStep(ICS, ResultType);
5251   }
5252 
5253   Sequence.AddPassByIndirectCopyRestoreStep(Entity.getType(), ShouldCopy);
5254   return true;
5255 }
5256 
TryOCLSamplerInitialization(Sema & S,InitializationSequence & Sequence,QualType DestType,Expr * Initializer)5257 static bool TryOCLSamplerInitialization(Sema &S,
5258                                         InitializationSequence &Sequence,
5259                                         QualType DestType,
5260                                         Expr *Initializer) {
5261   if (!S.getLangOpts().OpenCL || !DestType->isSamplerT() ||
5262       (!Initializer->isIntegerConstantExpr(S.Context) &&
5263       !Initializer->getType()->isSamplerT()))
5264     return false;
5265 
5266   Sequence.AddOCLSamplerInitStep(DestType);
5267   return true;
5268 }
5269 
IsZeroInitializer(Expr * Initializer,Sema & S)5270 static bool IsZeroInitializer(Expr *Initializer, Sema &S) {
5271   return Initializer->isIntegerConstantExpr(S.getASTContext()) &&
5272     (Initializer->EvaluateKnownConstInt(S.getASTContext()) == 0);
5273 }
5274 
TryOCLZeroOpaqueTypeInitialization(Sema & S,InitializationSequence & Sequence,QualType DestType,Expr * Initializer)5275 static bool TryOCLZeroOpaqueTypeInitialization(Sema &S,
5276                                                InitializationSequence &Sequence,
5277                                                QualType DestType,
5278                                                Expr *Initializer) {
5279   if (!S.getLangOpts().OpenCL)
5280     return false;
5281 
5282   //
5283   // OpenCL 1.2 spec, s6.12.10
5284   //
5285   // The event argument can also be used to associate the
5286   // async_work_group_copy with a previous async copy allowing
5287   // an event to be shared by multiple async copies; otherwise
5288   // event should be zero.
5289   //
5290   if (DestType->isEventT() || DestType->isQueueT()) {
5291     if (!IsZeroInitializer(Initializer, S))
5292       return false;
5293 
5294     Sequence.AddOCLZeroOpaqueTypeStep(DestType);
5295     return true;
5296   }
5297 
5298   // We should allow zero initialization for all types defined in the
5299   // cl_intel_device_side_avc_motion_estimation extension, except
5300   // intel_sub_group_avc_mce_payload_t and intel_sub_group_avc_mce_result_t.
5301   if (S.getOpenCLOptions().isEnabled(
5302           "cl_intel_device_side_avc_motion_estimation") &&
5303       DestType->isOCLIntelSubgroupAVCType()) {
5304     if (DestType->isOCLIntelSubgroupAVCMcePayloadType() ||
5305         DestType->isOCLIntelSubgroupAVCMceResultType())
5306       return false;
5307     if (!IsZeroInitializer(Initializer, S))
5308       return false;
5309 
5310     Sequence.AddOCLZeroOpaqueTypeStep(DestType);
5311     return true;
5312   }
5313 
5314   return false;
5315 }
5316 
InitializationSequence(Sema & S,const InitializedEntity & Entity,const InitializationKind & Kind,MultiExprArg Args,bool TopLevelOfInitList,bool TreatUnavailableAsInvalid)5317 InitializationSequence::InitializationSequence(Sema &S,
5318                                                const InitializedEntity &Entity,
5319                                                const InitializationKind &Kind,
5320                                                MultiExprArg Args,
5321                                                bool TopLevelOfInitList,
5322                                                bool TreatUnavailableAsInvalid)
5323     : FailedCandidateSet(Kind.getLocation(), OverloadCandidateSet::CSK_Normal) {
5324   InitializeFrom(S, Entity, Kind, Args, TopLevelOfInitList,
5325                  TreatUnavailableAsInvalid);
5326 }
5327 
5328 /// Tries to get a FunctionDecl out of `E`. If it succeeds and we can take the
5329 /// address of that function, this returns true. Otherwise, it returns false.
isExprAnUnaddressableFunction(Sema & S,const Expr * E)5330 static bool isExprAnUnaddressableFunction(Sema &S, const Expr *E) {
5331   auto *DRE = dyn_cast<DeclRefExpr>(E);
5332   if (!DRE || !isa<FunctionDecl>(DRE->getDecl()))
5333     return false;
5334 
5335   return !S.checkAddressOfFunctionIsAvailable(
5336       cast<FunctionDecl>(DRE->getDecl()));
5337 }
5338 
5339 /// Determine whether we can perform an elementwise array copy for this kind
5340 /// of entity.
canPerformArrayCopy(const InitializedEntity & Entity)5341 static bool canPerformArrayCopy(const InitializedEntity &Entity) {
5342   switch (Entity.getKind()) {
5343   case InitializedEntity::EK_LambdaCapture:
5344     // C++ [expr.prim.lambda]p24:
5345     //   For array members, the array elements are direct-initialized in
5346     //   increasing subscript order.
5347     return true;
5348 
5349   case InitializedEntity::EK_Variable:
5350     // C++ [dcl.decomp]p1:
5351     //   [...] each element is copy-initialized or direct-initialized from the
5352     //   corresponding element of the assignment-expression [...]
5353     return isa<DecompositionDecl>(Entity.getDecl());
5354 
5355   case InitializedEntity::EK_Member:
5356     // C++ [class.copy.ctor]p14:
5357     //   - if the member is an array, each element is direct-initialized with
5358     //     the corresponding subobject of x
5359     return Entity.isImplicitMemberInitializer();
5360 
5361   case InitializedEntity::EK_ArrayElement:
5362     // All the above cases are intended to apply recursively, even though none
5363     // of them actually say that.
5364     if (auto *E = Entity.getParent())
5365       return canPerformArrayCopy(*E);
5366     break;
5367 
5368   default:
5369     break;
5370   }
5371 
5372   return false;
5373 }
5374 
InitializeFrom(Sema & S,const InitializedEntity & Entity,const InitializationKind & Kind,MultiExprArg Args,bool TopLevelOfInitList,bool TreatUnavailableAsInvalid)5375 void InitializationSequence::InitializeFrom(Sema &S,
5376                                             const InitializedEntity &Entity,
5377                                             const InitializationKind &Kind,
5378                                             MultiExprArg Args,
5379                                             bool TopLevelOfInitList,
5380                                             bool TreatUnavailableAsInvalid) {
5381   ASTContext &Context = S.Context;
5382 
5383   // Eliminate non-overload placeholder types in the arguments.  We
5384   // need to do this before checking whether types are dependent
5385   // because lowering a pseudo-object expression might well give us
5386   // something of dependent type.
5387   for (unsigned I = 0, E = Args.size(); I != E; ++I)
5388     if (Args[I]->getType()->isNonOverloadPlaceholderType()) {
5389       // FIXME: should we be doing this here?
5390       ExprResult result = S.CheckPlaceholderExpr(Args[I]);
5391       if (result.isInvalid()) {
5392         SetFailed(FK_PlaceholderType);
5393         return;
5394       }
5395       Args[I] = result.get();
5396     }
5397 
5398   // C++0x [dcl.init]p16:
5399   //   The semantics of initializers are as follows. The destination type is
5400   //   the type of the object or reference being initialized and the source
5401   //   type is the type of the initializer expression. The source type is not
5402   //   defined when the initializer is a braced-init-list or when it is a
5403   //   parenthesized list of expressions.
5404   QualType DestType = Entity.getType();
5405 
5406   if (DestType->isDependentType() ||
5407       Expr::hasAnyTypeDependentArguments(Args)) {
5408     SequenceKind = DependentSequence;
5409     return;
5410   }
5411 
5412   // Almost everything is a normal sequence.
5413   setSequenceKind(NormalSequence);
5414 
5415   QualType SourceType;
5416   Expr *Initializer = nullptr;
5417   if (Args.size() == 1) {
5418     Initializer = Args[0];
5419     if (S.getLangOpts().ObjC) {
5420       if (S.CheckObjCBridgeRelatedConversions(Initializer->getBeginLoc(),
5421                                               DestType, Initializer->getType(),
5422                                               Initializer) ||
5423           S.ConversionToObjCStringLiteralCheck(DestType, Initializer))
5424         Args[0] = Initializer;
5425     }
5426     if (!isa<InitListExpr>(Initializer))
5427       SourceType = Initializer->getType();
5428   }
5429 
5430   //     - If the initializer is a (non-parenthesized) braced-init-list, the
5431   //       object is list-initialized (8.5.4).
5432   if (Kind.getKind() != InitializationKind::IK_Direct) {
5433     if (InitListExpr *InitList = dyn_cast_or_null<InitListExpr>(Initializer)) {
5434       TryListInitialization(S, Entity, Kind, InitList, *this,
5435                             TreatUnavailableAsInvalid);
5436       return;
5437     }
5438   }
5439 
5440   //     - If the destination type is a reference type, see 8.5.3.
5441   if (DestType->isReferenceType()) {
5442     // C++0x [dcl.init.ref]p1:
5443     //   A variable declared to be a T& or T&&, that is, "reference to type T"
5444     //   (8.3.2), shall be initialized by an object, or function, of type T or
5445     //   by an object that can be converted into a T.
5446     // (Therefore, multiple arguments are not permitted.)
5447     if (Args.size() != 1)
5448       SetFailed(FK_TooManyInitsForReference);
5449     // C++17 [dcl.init.ref]p5:
5450     //   A reference [...] is initialized by an expression [...] as follows:
5451     // If the initializer is not an expression, presumably we should reject,
5452     // but the standard fails to actually say so.
5453     else if (isa<InitListExpr>(Args[0]))
5454       SetFailed(FK_ParenthesizedListInitForReference);
5455     else
5456       TryReferenceInitialization(S, Entity, Kind, Args[0], *this);
5457     return;
5458   }
5459 
5460   //     - If the initializer is (), the object is value-initialized.
5461   if (Kind.getKind() == InitializationKind::IK_Value ||
5462       (Kind.getKind() == InitializationKind::IK_Direct && Args.empty())) {
5463     TryValueInitialization(S, Entity, Kind, *this);
5464     return;
5465   }
5466 
5467   // Handle default initialization.
5468   if (Kind.getKind() == InitializationKind::IK_Default) {
5469     TryDefaultInitialization(S, Entity, Kind, *this);
5470     return;
5471   }
5472 
5473   //     - If the destination type is an array of characters, an array of
5474   //       char16_t, an array of char32_t, or an array of wchar_t, and the
5475   //       initializer is a string literal, see 8.5.2.
5476   //     - Otherwise, if the destination type is an array, the program is
5477   //       ill-formed.
5478   if (const ArrayType *DestAT = Context.getAsArrayType(DestType)) {
5479     if (Initializer && isa<VariableArrayType>(DestAT)) {
5480       SetFailed(FK_VariableLengthArrayHasInitializer);
5481       return;
5482     }
5483 
5484     if (Initializer) {
5485       switch (IsStringInit(Initializer, DestAT, Context)) {
5486       case SIF_None:
5487         TryStringLiteralInitialization(S, Entity, Kind, Initializer, *this);
5488         return;
5489       case SIF_NarrowStringIntoWideChar:
5490         SetFailed(FK_NarrowStringIntoWideCharArray);
5491         return;
5492       case SIF_WideStringIntoChar:
5493         SetFailed(FK_WideStringIntoCharArray);
5494         return;
5495       case SIF_IncompatWideStringIntoWideChar:
5496         SetFailed(FK_IncompatWideStringIntoWideChar);
5497         return;
5498       case SIF_PlainStringIntoUTF8Char:
5499         SetFailed(FK_PlainStringIntoUTF8Char);
5500         return;
5501       case SIF_UTF8StringIntoPlainChar:
5502         SetFailed(FK_UTF8StringIntoPlainChar);
5503         return;
5504       case SIF_Other:
5505         break;
5506       }
5507     }
5508 
5509     // Some kinds of initialization permit an array to be initialized from
5510     // another array of the same type, and perform elementwise initialization.
5511     if (Initializer && isa<ConstantArrayType>(DestAT) &&
5512         S.Context.hasSameUnqualifiedType(Initializer->getType(),
5513                                          Entity.getType()) &&
5514         canPerformArrayCopy(Entity)) {
5515       // If source is a prvalue, use it directly.
5516       if (Initializer->getValueKind() == VK_RValue) {
5517         AddArrayInitStep(DestType, /*IsGNUExtension*/false);
5518         return;
5519       }
5520 
5521       // Emit element-at-a-time copy loop.
5522       InitializedEntity Element =
5523           InitializedEntity::InitializeElement(S.Context, 0, Entity);
5524       QualType InitEltT =
5525           Context.getAsArrayType(Initializer->getType())->getElementType();
5526       OpaqueValueExpr OVE(Initializer->getExprLoc(), InitEltT,
5527                           Initializer->getValueKind(),
5528                           Initializer->getObjectKind());
5529       Expr *OVEAsExpr = &OVE;
5530       InitializeFrom(S, Element, Kind, OVEAsExpr, TopLevelOfInitList,
5531                      TreatUnavailableAsInvalid);
5532       if (!Failed())
5533         AddArrayInitLoopStep(Entity.getType(), InitEltT);
5534       return;
5535     }
5536 
5537     // Note: as an GNU C extension, we allow initialization of an
5538     // array from a compound literal that creates an array of the same
5539     // type, so long as the initializer has no side effects.
5540     if (!S.getLangOpts().CPlusPlus && Initializer &&
5541         (isa<ConstantExpr>(Initializer->IgnoreParens()) ||
5542          isa<CompoundLiteralExpr>(Initializer->IgnoreParens())) &&
5543         Initializer->getType()->isArrayType()) {
5544       const ArrayType *SourceAT
5545         = Context.getAsArrayType(Initializer->getType());
5546       if (!hasCompatibleArrayTypes(S.Context, DestAT, SourceAT))
5547         SetFailed(FK_ArrayTypeMismatch);
5548       else if (Initializer->HasSideEffects(S.Context))
5549         SetFailed(FK_NonConstantArrayInit);
5550       else {
5551         AddArrayInitStep(DestType, /*IsGNUExtension*/true);
5552       }
5553     }
5554     // Note: as a GNU C++ extension, we allow list-initialization of a
5555     // class member of array type from a parenthesized initializer list.
5556     else if (S.getLangOpts().CPlusPlus &&
5557              Entity.getKind() == InitializedEntity::EK_Member &&
5558              Initializer && isa<InitListExpr>(Initializer)) {
5559       TryListInitialization(S, Entity, Kind, cast<InitListExpr>(Initializer),
5560                             *this, TreatUnavailableAsInvalid);
5561       AddParenthesizedArrayInitStep(DestType);
5562     } else if (DestAT->getElementType()->isCharType())
5563       SetFailed(FK_ArrayNeedsInitListOrStringLiteral);
5564     else if (IsWideCharCompatible(DestAT->getElementType(), Context))
5565       SetFailed(FK_ArrayNeedsInitListOrWideStringLiteral);
5566     else
5567       SetFailed(FK_ArrayNeedsInitList);
5568 
5569     return;
5570   }
5571 
5572   // Determine whether we should consider writeback conversions for
5573   // Objective-C ARC.
5574   bool allowObjCWritebackConversion = S.getLangOpts().ObjCAutoRefCount &&
5575          Entity.isParameterKind();
5576 
5577   // We're at the end of the line for C: it's either a write-back conversion
5578   // or it's a C assignment. There's no need to check anything else.
5579   if (!S.getLangOpts().CPlusPlus) {
5580     // If allowed, check whether this is an Objective-C writeback conversion.
5581     if (allowObjCWritebackConversion &&
5582         tryObjCWritebackConversion(S, *this, Entity, Initializer)) {
5583       return;
5584     }
5585 
5586     if (TryOCLSamplerInitialization(S, *this, DestType, Initializer))
5587       return;
5588 
5589     if (TryOCLZeroOpaqueTypeInitialization(S, *this, DestType, Initializer))
5590       return;
5591 
5592     // Handle initialization in C
5593     AddCAssignmentStep(DestType);
5594     MaybeProduceObjCObject(S, *this, Entity);
5595     return;
5596   }
5597 
5598   assert(S.getLangOpts().CPlusPlus);
5599 
5600   //     - If the destination type is a (possibly cv-qualified) class type:
5601   if (DestType->isRecordType()) {
5602     //     - If the initialization is direct-initialization, or if it is
5603     //       copy-initialization where the cv-unqualified version of the
5604     //       source type is the same class as, or a derived class of, the
5605     //       class of the destination, constructors are considered. [...]
5606     if (Kind.getKind() == InitializationKind::IK_Direct ||
5607         (Kind.getKind() == InitializationKind::IK_Copy &&
5608          (Context.hasSameUnqualifiedType(SourceType, DestType) ||
5609           S.IsDerivedFrom(Initializer->getBeginLoc(), SourceType, DestType))))
5610       TryConstructorInitialization(S, Entity, Kind, Args,
5611                                    DestType, DestType, *this);
5612     //     - Otherwise (i.e., for the remaining copy-initialization cases),
5613     //       user-defined conversion sequences that can convert from the source
5614     //       type to the destination type or (when a conversion function is
5615     //       used) to a derived class thereof are enumerated as described in
5616     //       13.3.1.4, and the best one is chosen through overload resolution
5617     //       (13.3).
5618     else
5619       TryUserDefinedConversion(S, DestType, Kind, Initializer, *this,
5620                                TopLevelOfInitList);
5621     return;
5622   }
5623 
5624   assert(Args.size() >= 1 && "Zero-argument case handled above");
5625 
5626   // The remaining cases all need a source type.
5627   if (Args.size() > 1) {
5628     SetFailed(FK_TooManyInitsForScalar);
5629     return;
5630   } else if (isa<InitListExpr>(Args[0])) {
5631     SetFailed(FK_ParenthesizedListInitForScalar);
5632     return;
5633   }
5634 
5635   //    - Otherwise, if the source type is a (possibly cv-qualified) class
5636   //      type, conversion functions are considered.
5637   if (!SourceType.isNull() && SourceType->isRecordType()) {
5638     // For a conversion to _Atomic(T) from either T or a class type derived
5639     // from T, initialize the T object then convert to _Atomic type.
5640     bool NeedAtomicConversion = false;
5641     if (const AtomicType *Atomic = DestType->getAs<AtomicType>()) {
5642       if (Context.hasSameUnqualifiedType(SourceType, Atomic->getValueType()) ||
5643           S.IsDerivedFrom(Initializer->getBeginLoc(), SourceType,
5644                           Atomic->getValueType())) {
5645         DestType = Atomic->getValueType();
5646         NeedAtomicConversion = true;
5647       }
5648     }
5649 
5650     TryUserDefinedConversion(S, DestType, Kind, Initializer, *this,
5651                              TopLevelOfInitList);
5652     MaybeProduceObjCObject(S, *this, Entity);
5653     if (!Failed() && NeedAtomicConversion)
5654       AddAtomicConversionStep(Entity.getType());
5655     return;
5656   }
5657 
5658   //    - Otherwise, the initial value of the object being initialized is the
5659   //      (possibly converted) value of the initializer expression. Standard
5660   //      conversions (Clause 4) will be used, if necessary, to convert the
5661   //      initializer expression to the cv-unqualified version of the
5662   //      destination type; no user-defined conversions are considered.
5663 
5664   ImplicitConversionSequence ICS
5665     = S.TryImplicitConversion(Initializer, DestType,
5666                               /*SuppressUserConversions*/true,
5667                               /*AllowExplicitConversions*/ false,
5668                               /*InOverloadResolution*/ false,
5669                               /*CStyle=*/Kind.isCStyleOrFunctionalCast(),
5670                               allowObjCWritebackConversion);
5671 
5672   if (ICS.isStandard() &&
5673       ICS.Standard.Second == ICK_Writeback_Conversion) {
5674     // Objective-C ARC writeback conversion.
5675 
5676     // We should copy unless we're passing to an argument explicitly
5677     // marked 'out'.
5678     bool ShouldCopy = true;
5679     if (ParmVarDecl *Param = cast_or_null<ParmVarDecl>(Entity.getDecl()))
5680       ShouldCopy = (Param->getObjCDeclQualifier() != ParmVarDecl::OBJC_TQ_Out);
5681 
5682     // If there was an lvalue adjustment, add it as a separate conversion.
5683     if (ICS.Standard.First == ICK_Array_To_Pointer ||
5684         ICS.Standard.First == ICK_Lvalue_To_Rvalue) {
5685       ImplicitConversionSequence LvalueICS;
5686       LvalueICS.setStandard();
5687       LvalueICS.Standard.setAsIdentityConversion();
5688       LvalueICS.Standard.setAllToTypes(ICS.Standard.getToType(0));
5689       LvalueICS.Standard.First = ICS.Standard.First;
5690       AddConversionSequenceStep(LvalueICS, ICS.Standard.getToType(0));
5691     }
5692 
5693     AddPassByIndirectCopyRestoreStep(DestType, ShouldCopy);
5694   } else if (ICS.isBad()) {
5695     DeclAccessPair dap;
5696     if (isLibstdcxxPointerReturnFalseHack(S, Entity, Initializer)) {
5697       AddZeroInitializationStep(Entity.getType());
5698     } else if (Initializer->getType() == Context.OverloadTy &&
5699                !S.ResolveAddressOfOverloadedFunction(Initializer, DestType,
5700                                                      false, dap))
5701       SetFailed(InitializationSequence::FK_AddressOfOverloadFailed);
5702     else if (Initializer->getType()->isFunctionType() &&
5703              isExprAnUnaddressableFunction(S, Initializer))
5704       SetFailed(InitializationSequence::FK_AddressOfUnaddressableFunction);
5705     else
5706       SetFailed(InitializationSequence::FK_ConversionFailed);
5707   } else {
5708     AddConversionSequenceStep(ICS, DestType, TopLevelOfInitList);
5709 
5710     MaybeProduceObjCObject(S, *this, Entity);
5711   }
5712 }
5713 
~InitializationSequence()5714 InitializationSequence::~InitializationSequence() {
5715   for (auto &S : Steps)
5716     S.Destroy();
5717 }
5718 
5719 //===----------------------------------------------------------------------===//
5720 // Perform initialization
5721 //===----------------------------------------------------------------------===//
5722 static Sema::AssignmentAction
getAssignmentAction(const InitializedEntity & Entity,bool Diagnose=false)5723 getAssignmentAction(const InitializedEntity &Entity, bool Diagnose = false) {
5724   switch(Entity.getKind()) {
5725   case InitializedEntity::EK_Variable:
5726   case InitializedEntity::EK_New:
5727   case InitializedEntity::EK_Exception:
5728   case InitializedEntity::EK_Base:
5729   case InitializedEntity::EK_Delegating:
5730     return Sema::AA_Initializing;
5731 
5732   case InitializedEntity::EK_Parameter:
5733     if (Entity.getDecl() &&
5734         isa<ObjCMethodDecl>(Entity.getDecl()->getDeclContext()))
5735       return Sema::AA_Sending;
5736 
5737     return Sema::AA_Passing;
5738 
5739   case InitializedEntity::EK_Parameter_CF_Audited:
5740     if (Entity.getDecl() &&
5741       isa<ObjCMethodDecl>(Entity.getDecl()->getDeclContext()))
5742       return Sema::AA_Sending;
5743 
5744     return !Diagnose ? Sema::AA_Passing : Sema::AA_Passing_CFAudited;
5745 
5746   case InitializedEntity::EK_Result:
5747   case InitializedEntity::EK_StmtExprResult: // FIXME: Not quite right.
5748     return Sema::AA_Returning;
5749 
5750   case InitializedEntity::EK_Temporary:
5751   case InitializedEntity::EK_RelatedResult:
5752     // FIXME: Can we tell apart casting vs. converting?
5753     return Sema::AA_Casting;
5754 
5755   case InitializedEntity::EK_Member:
5756   case InitializedEntity::EK_Binding:
5757   case InitializedEntity::EK_ArrayElement:
5758   case InitializedEntity::EK_VectorElement:
5759   case InitializedEntity::EK_ComplexElement:
5760   case InitializedEntity::EK_BlockElement:
5761   case InitializedEntity::EK_LambdaToBlockConversionBlockElement:
5762   case InitializedEntity::EK_LambdaCapture:
5763   case InitializedEntity::EK_CompoundLiteralInit:
5764     return Sema::AA_Initializing;
5765   }
5766 
5767   llvm_unreachable("Invalid EntityKind!");
5768 }
5769 
5770 /// Whether we should bind a created object as a temporary when
5771 /// initializing the given entity.
shouldBindAsTemporary(const InitializedEntity & Entity)5772 static bool shouldBindAsTemporary(const InitializedEntity &Entity) {
5773   switch (Entity.getKind()) {
5774   case InitializedEntity::EK_ArrayElement:
5775   case InitializedEntity::EK_Member:
5776   case InitializedEntity::EK_Result:
5777   case InitializedEntity::EK_StmtExprResult:
5778   case InitializedEntity::EK_New:
5779   case InitializedEntity::EK_Variable:
5780   case InitializedEntity::EK_Base:
5781   case InitializedEntity::EK_Delegating:
5782   case InitializedEntity::EK_VectorElement:
5783   case InitializedEntity::EK_ComplexElement:
5784   case InitializedEntity::EK_Exception:
5785   case InitializedEntity::EK_BlockElement:
5786   case InitializedEntity::EK_LambdaToBlockConversionBlockElement:
5787   case InitializedEntity::EK_LambdaCapture:
5788   case InitializedEntity::EK_CompoundLiteralInit:
5789     return false;
5790 
5791   case InitializedEntity::EK_Parameter:
5792   case InitializedEntity::EK_Parameter_CF_Audited:
5793   case InitializedEntity::EK_Temporary:
5794   case InitializedEntity::EK_RelatedResult:
5795   case InitializedEntity::EK_Binding:
5796     return true;
5797   }
5798 
5799   llvm_unreachable("missed an InitializedEntity kind?");
5800 }
5801 
5802 /// Whether the given entity, when initialized with an object
5803 /// created for that initialization, requires destruction.
shouldDestroyEntity(const InitializedEntity & Entity)5804 static bool shouldDestroyEntity(const InitializedEntity &Entity) {
5805   switch (Entity.getKind()) {
5806     case InitializedEntity::EK_Result:
5807     case InitializedEntity::EK_StmtExprResult:
5808     case InitializedEntity::EK_New:
5809     case InitializedEntity::EK_Base:
5810     case InitializedEntity::EK_Delegating:
5811     case InitializedEntity::EK_VectorElement:
5812     case InitializedEntity::EK_ComplexElement:
5813     case InitializedEntity::EK_BlockElement:
5814     case InitializedEntity::EK_LambdaToBlockConversionBlockElement:
5815     case InitializedEntity::EK_LambdaCapture:
5816       return false;
5817 
5818     case InitializedEntity::EK_Member:
5819     case InitializedEntity::EK_Binding:
5820     case InitializedEntity::EK_Variable:
5821     case InitializedEntity::EK_Parameter:
5822     case InitializedEntity::EK_Parameter_CF_Audited:
5823     case InitializedEntity::EK_Temporary:
5824     case InitializedEntity::EK_ArrayElement:
5825     case InitializedEntity::EK_Exception:
5826     case InitializedEntity::EK_CompoundLiteralInit:
5827     case InitializedEntity::EK_RelatedResult:
5828       return true;
5829   }
5830 
5831   llvm_unreachable("missed an InitializedEntity kind?");
5832 }
5833 
5834 /// Get the location at which initialization diagnostics should appear.
getInitializationLoc(const InitializedEntity & Entity,Expr * Initializer)5835 static SourceLocation getInitializationLoc(const InitializedEntity &Entity,
5836                                            Expr *Initializer) {
5837   switch (Entity.getKind()) {
5838   case InitializedEntity::EK_Result:
5839   case InitializedEntity::EK_StmtExprResult:
5840     return Entity.getReturnLoc();
5841 
5842   case InitializedEntity::EK_Exception:
5843     return Entity.getThrowLoc();
5844 
5845   case InitializedEntity::EK_Variable:
5846   case InitializedEntity::EK_Binding:
5847     return Entity.getDecl()->getLocation();
5848 
5849   case InitializedEntity::EK_LambdaCapture:
5850     return Entity.getCaptureLoc();
5851 
5852   case InitializedEntity::EK_ArrayElement:
5853   case InitializedEntity::EK_Member:
5854   case InitializedEntity::EK_Parameter:
5855   case InitializedEntity::EK_Parameter_CF_Audited:
5856   case InitializedEntity::EK_Temporary:
5857   case InitializedEntity::EK_New:
5858   case InitializedEntity::EK_Base:
5859   case InitializedEntity::EK_Delegating:
5860   case InitializedEntity::EK_VectorElement:
5861   case InitializedEntity::EK_ComplexElement:
5862   case InitializedEntity::EK_BlockElement:
5863   case InitializedEntity::EK_LambdaToBlockConversionBlockElement:
5864   case InitializedEntity::EK_CompoundLiteralInit:
5865   case InitializedEntity::EK_RelatedResult:
5866     return Initializer->getBeginLoc();
5867   }
5868   llvm_unreachable("missed an InitializedEntity kind?");
5869 }
5870 
5871 /// Make a (potentially elidable) temporary copy of the object
5872 /// provided by the given initializer by calling the appropriate copy
5873 /// constructor.
5874 ///
5875 /// \param S The Sema object used for type-checking.
5876 ///
5877 /// \param T The type of the temporary object, which must either be
5878 /// the type of the initializer expression or a superclass thereof.
5879 ///
5880 /// \param Entity The entity being initialized.
5881 ///
5882 /// \param CurInit The initializer expression.
5883 ///
5884 /// \param IsExtraneousCopy Whether this is an "extraneous" copy that
5885 /// is permitted in C++03 (but not C++0x) when binding a reference to
5886 /// an rvalue.
5887 ///
5888 /// \returns An expression that copies the initializer expression into
5889 /// a temporary object, or an error expression if a copy could not be
5890 /// created.
CopyObject(Sema & S,QualType T,const InitializedEntity & Entity,ExprResult CurInit,bool IsExtraneousCopy)5891 static ExprResult CopyObject(Sema &S,
5892                              QualType T,
5893                              const InitializedEntity &Entity,
5894                              ExprResult CurInit,
5895                              bool IsExtraneousCopy) {
5896   if (CurInit.isInvalid())
5897     return CurInit;
5898   // Determine which class type we're copying to.
5899   Expr *CurInitExpr = (Expr *)CurInit.get();
5900   CXXRecordDecl *Class = nullptr;
5901   if (const RecordType *Record = T->getAs<RecordType>())
5902     Class = cast<CXXRecordDecl>(Record->getDecl());
5903   if (!Class)
5904     return CurInit;
5905 
5906   SourceLocation Loc = getInitializationLoc(Entity, CurInit.get());
5907 
5908   // Make sure that the type we are copying is complete.
5909   if (S.RequireCompleteType(Loc, T, diag::err_temp_copy_incomplete))
5910     return CurInit;
5911 
5912   // Perform overload resolution using the class's constructors. Per
5913   // C++11 [dcl.init]p16, second bullet for class types, this initialization
5914   // is direct-initialization.
5915   OverloadCandidateSet CandidateSet(Loc, OverloadCandidateSet::CSK_Normal);
5916   DeclContext::lookup_result Ctors = S.LookupConstructors(Class);
5917 
5918   OverloadCandidateSet::iterator Best;
5919   switch (ResolveConstructorOverload(
5920       S, Loc, CurInitExpr, CandidateSet, T, Ctors, Best,
5921       /*CopyInitializing=*/false, /*AllowExplicit=*/true,
5922       /*OnlyListConstructors=*/false, /*IsListInit=*/false,
5923       /*SecondStepOfCopyInit=*/true)) {
5924   case OR_Success:
5925     break;
5926 
5927   case OR_No_Viable_Function:
5928     S.Diag(Loc, IsExtraneousCopy && !S.isSFINAEContext()
5929            ? diag::ext_rvalue_to_reference_temp_copy_no_viable
5930            : diag::err_temp_copy_no_viable)
5931       << (int)Entity.getKind() << CurInitExpr->getType()
5932       << CurInitExpr->getSourceRange();
5933     CandidateSet.NoteCandidates(S, OCD_AllCandidates, CurInitExpr);
5934     if (!IsExtraneousCopy || S.isSFINAEContext())
5935       return ExprError();
5936     return CurInit;
5937 
5938   case OR_Ambiguous:
5939     S.Diag(Loc, diag::err_temp_copy_ambiguous)
5940       << (int)Entity.getKind() << CurInitExpr->getType()
5941       << CurInitExpr->getSourceRange();
5942     CandidateSet.NoteCandidates(S, OCD_ViableCandidates, CurInitExpr);
5943     return ExprError();
5944 
5945   case OR_Deleted:
5946     S.Diag(Loc, diag::err_temp_copy_deleted)
5947       << (int)Entity.getKind() << CurInitExpr->getType()
5948       << CurInitExpr->getSourceRange();
5949     S.NoteDeletedFunction(Best->Function);
5950     return ExprError();
5951   }
5952 
5953   bool HadMultipleCandidates = CandidateSet.size() > 1;
5954 
5955   CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(Best->Function);
5956   SmallVector<Expr*, 8> ConstructorArgs;
5957   CurInit.get(); // Ownership transferred into MultiExprArg, below.
5958 
5959   S.CheckConstructorAccess(Loc, Constructor, Best->FoundDecl, Entity,
5960                            IsExtraneousCopy);
5961 
5962   if (IsExtraneousCopy) {
5963     // If this is a totally extraneous copy for C++03 reference
5964     // binding purposes, just return the original initialization
5965     // expression. We don't generate an (elided) copy operation here
5966     // because doing so would require us to pass down a flag to avoid
5967     // infinite recursion, where each step adds another extraneous,
5968     // elidable copy.
5969 
5970     // Instantiate the default arguments of any extra parameters in
5971     // the selected copy constructor, as if we were going to create a
5972     // proper call to the copy constructor.
5973     for (unsigned I = 1, N = Constructor->getNumParams(); I != N; ++I) {
5974       ParmVarDecl *Parm = Constructor->getParamDecl(I);
5975       if (S.RequireCompleteType(Loc, Parm->getType(),
5976                                 diag::err_call_incomplete_argument))
5977         break;
5978 
5979       // Build the default argument expression; we don't actually care
5980       // if this succeeds or not, because this routine will complain
5981       // if there was a problem.
5982       S.BuildCXXDefaultArgExpr(Loc, Constructor, Parm);
5983     }
5984 
5985     return CurInitExpr;
5986   }
5987 
5988   // Determine the arguments required to actually perform the
5989   // constructor call (we might have derived-to-base conversions, or
5990   // the copy constructor may have default arguments).
5991   if (S.CompleteConstructorCall(Constructor, CurInitExpr, Loc, ConstructorArgs))
5992     return ExprError();
5993 
5994   // C++0x [class.copy]p32:
5995   //   When certain criteria are met, an implementation is allowed to
5996   //   omit the copy/move construction of a class object, even if the
5997   //   copy/move constructor and/or destructor for the object have
5998   //   side effects. [...]
5999   //     - when a temporary class object that has not been bound to a
6000   //       reference (12.2) would be copied/moved to a class object
6001   //       with the same cv-unqualified type, the copy/move operation
6002   //       can be omitted by constructing the temporary object
6003   //       directly into the target of the omitted copy/move
6004   //
6005   // Note that the other three bullets are handled elsewhere. Copy
6006   // elision for return statements and throw expressions are handled as part
6007   // of constructor initialization, while copy elision for exception handlers
6008   // is handled by the run-time.
6009   //
6010   // FIXME: If the function parameter is not the same type as the temporary, we
6011   // should still be able to elide the copy, but we don't have a way to
6012   // represent in the AST how much should be elided in this case.
6013   bool Elidable =
6014       CurInitExpr->isTemporaryObject(S.Context, Class) &&
6015       S.Context.hasSameUnqualifiedType(
6016           Best->Function->getParamDecl(0)->getType().getNonReferenceType(),
6017           CurInitExpr->getType());
6018 
6019   // Actually perform the constructor call.
6020   CurInit = S.BuildCXXConstructExpr(Loc, T, Best->FoundDecl, Constructor,
6021                                     Elidable,
6022                                     ConstructorArgs,
6023                                     HadMultipleCandidates,
6024                                     /*ListInit*/ false,
6025                                     /*StdInitListInit*/ false,
6026                                     /*ZeroInit*/ false,
6027                                     CXXConstructExpr::CK_Complete,
6028                                     SourceRange());
6029 
6030   // If we're supposed to bind temporaries, do so.
6031   if (!CurInit.isInvalid() && shouldBindAsTemporary(Entity))
6032     CurInit = S.MaybeBindToTemporary(CurInit.getAs<Expr>());
6033   return CurInit;
6034 }
6035 
6036 /// Check whether elidable copy construction for binding a reference to
6037 /// a temporary would have succeeded if we were building in C++98 mode, for
6038 /// -Wc++98-compat.
CheckCXX98CompatAccessibleCopy(Sema & S,const InitializedEntity & Entity,Expr * CurInitExpr)6039 static void CheckCXX98CompatAccessibleCopy(Sema &S,
6040                                            const InitializedEntity &Entity,
6041                                            Expr *CurInitExpr) {
6042   assert(S.getLangOpts().CPlusPlus11);
6043 
6044   const RecordType *Record = CurInitExpr->getType()->getAs<RecordType>();
6045   if (!Record)
6046     return;
6047 
6048   SourceLocation Loc = getInitializationLoc(Entity, CurInitExpr);
6049   if (S.Diags.isIgnored(diag::warn_cxx98_compat_temp_copy, Loc))
6050     return;
6051 
6052   // Find constructors which would have been considered.
6053   OverloadCandidateSet CandidateSet(Loc, OverloadCandidateSet::CSK_Normal);
6054   DeclContext::lookup_result Ctors =
6055       S.LookupConstructors(cast<CXXRecordDecl>(Record->getDecl()));
6056 
6057   // Perform overload resolution.
6058   OverloadCandidateSet::iterator Best;
6059   OverloadingResult OR = ResolveConstructorOverload(
6060       S, Loc, CurInitExpr, CandidateSet, CurInitExpr->getType(), Ctors, Best,
6061       /*CopyInitializing=*/false, /*AllowExplicit=*/true,
6062       /*OnlyListConstructors=*/false, /*IsListInit=*/false,
6063       /*SecondStepOfCopyInit=*/true);
6064 
6065   PartialDiagnostic Diag = S.PDiag(diag::warn_cxx98_compat_temp_copy)
6066     << OR << (int)Entity.getKind() << CurInitExpr->getType()
6067     << CurInitExpr->getSourceRange();
6068 
6069   switch (OR) {
6070   case OR_Success:
6071     S.CheckConstructorAccess(Loc, cast<CXXConstructorDecl>(Best->Function),
6072                              Best->FoundDecl, Entity, Diag);
6073     // FIXME: Check default arguments as far as that's possible.
6074     break;
6075 
6076   case OR_No_Viable_Function:
6077     S.Diag(Loc, Diag);
6078     CandidateSet.NoteCandidates(S, OCD_AllCandidates, CurInitExpr);
6079     break;
6080 
6081   case OR_Ambiguous:
6082     S.Diag(Loc, Diag);
6083     CandidateSet.NoteCandidates(S, OCD_ViableCandidates, CurInitExpr);
6084     break;
6085 
6086   case OR_Deleted:
6087     S.Diag(Loc, Diag);
6088     S.NoteDeletedFunction(Best->Function);
6089     break;
6090   }
6091 }
6092 
PrintInitLocationNote(Sema & S,const InitializedEntity & Entity)6093 void InitializationSequence::PrintInitLocationNote(Sema &S,
6094                                               const InitializedEntity &Entity) {
6095   if (Entity.isParameterKind() && Entity.getDecl()) {
6096     if (Entity.getDecl()->getLocation().isInvalid())
6097       return;
6098 
6099     if (Entity.getDecl()->getDeclName())
6100       S.Diag(Entity.getDecl()->getLocation(), diag::note_parameter_named_here)
6101         << Entity.getDecl()->getDeclName();
6102     else
6103       S.Diag(Entity.getDecl()->getLocation(), diag::note_parameter_here);
6104   }
6105   else if (Entity.getKind() == InitializedEntity::EK_RelatedResult &&
6106            Entity.getMethodDecl())
6107     S.Diag(Entity.getMethodDecl()->getLocation(),
6108            diag::note_method_return_type_change)
6109       << Entity.getMethodDecl()->getDeclName();
6110 }
6111 
6112 /// Returns true if the parameters describe a constructor initialization of
6113 /// an explicit temporary object, e.g. "Point(x, y)".
isExplicitTemporary(const InitializedEntity & Entity,const InitializationKind & Kind,unsigned NumArgs)6114 static bool isExplicitTemporary(const InitializedEntity &Entity,
6115                                 const InitializationKind &Kind,
6116                                 unsigned NumArgs) {
6117   switch (Entity.getKind()) {
6118   case InitializedEntity::EK_Temporary:
6119   case InitializedEntity::EK_CompoundLiteralInit:
6120   case InitializedEntity::EK_RelatedResult:
6121     break;
6122   default:
6123     return false;
6124   }
6125 
6126   switch (Kind.getKind()) {
6127   case InitializationKind::IK_DirectList:
6128     return true;
6129   // FIXME: Hack to work around cast weirdness.
6130   case InitializationKind::IK_Direct:
6131   case InitializationKind::IK_Value:
6132     return NumArgs != 1;
6133   default:
6134     return false;
6135   }
6136 }
6137 
6138 static ExprResult
PerformConstructorInitialization(Sema & S,const InitializedEntity & Entity,const InitializationKind & Kind,MultiExprArg Args,const InitializationSequence::Step & Step,bool & ConstructorInitRequiresZeroInit,bool IsListInitialization,bool IsStdInitListInitialization,SourceLocation LBraceLoc,SourceLocation RBraceLoc)6139 PerformConstructorInitialization(Sema &S,
6140                                  const InitializedEntity &Entity,
6141                                  const InitializationKind &Kind,
6142                                  MultiExprArg Args,
6143                                  const InitializationSequence::Step& Step,
6144                                  bool &ConstructorInitRequiresZeroInit,
6145                                  bool IsListInitialization,
6146                                  bool IsStdInitListInitialization,
6147                                  SourceLocation LBraceLoc,
6148                                  SourceLocation RBraceLoc) {
6149   unsigned NumArgs = Args.size();
6150   CXXConstructorDecl *Constructor
6151     = cast<CXXConstructorDecl>(Step.Function.Function);
6152   bool HadMultipleCandidates = Step.Function.HadMultipleCandidates;
6153 
6154   // Build a call to the selected constructor.
6155   SmallVector<Expr*, 8> ConstructorArgs;
6156   SourceLocation Loc = (Kind.isCopyInit() && Kind.getEqualLoc().isValid())
6157                          ? Kind.getEqualLoc()
6158                          : Kind.getLocation();
6159 
6160   if (Kind.getKind() == InitializationKind::IK_Default) {
6161     // Force even a trivial, implicit default constructor to be
6162     // semantically checked. We do this explicitly because we don't build
6163     // the definition for completely trivial constructors.
6164     assert(Constructor->getParent() && "No parent class for constructor.");
6165     if (Constructor->isDefaulted() && Constructor->isDefaultConstructor() &&
6166         Constructor->isTrivial() && !Constructor->isUsed(false))
6167       S.DefineImplicitDefaultConstructor(Loc, Constructor);
6168   }
6169 
6170   ExprResult CurInit((Expr *)nullptr);
6171 
6172   // C++ [over.match.copy]p1:
6173   //   - When initializing a temporary to be bound to the first parameter
6174   //     of a constructor that takes a reference to possibly cv-qualified
6175   //     T as its first argument, called with a single argument in the
6176   //     context of direct-initialization, explicit conversion functions
6177   //     are also considered.
6178   bool AllowExplicitConv =
6179       Kind.AllowExplicit() && !Kind.isCopyInit() && Args.size() == 1 &&
6180       hasCopyOrMoveCtorParam(S.Context,
6181                              getConstructorInfo(Step.Function.FoundDecl));
6182 
6183   // Determine the arguments required to actually perform the constructor
6184   // call.
6185   if (S.CompleteConstructorCall(Constructor, Args,
6186                                 Loc, ConstructorArgs,
6187                                 AllowExplicitConv,
6188                                 IsListInitialization))
6189     return ExprError();
6190 
6191 
6192   if (isExplicitTemporary(Entity, Kind, NumArgs)) {
6193     // An explicitly-constructed temporary, e.g., X(1, 2).
6194     if (S.DiagnoseUseOfDecl(Constructor, Loc))
6195       return ExprError();
6196 
6197     TypeSourceInfo *TSInfo = Entity.getTypeSourceInfo();
6198     if (!TSInfo)
6199       TSInfo = S.Context.getTrivialTypeSourceInfo(Entity.getType(), Loc);
6200     SourceRange ParenOrBraceRange =
6201         (Kind.getKind() == InitializationKind::IK_DirectList)
6202         ? SourceRange(LBraceLoc, RBraceLoc)
6203         : Kind.getParenOrBraceRange();
6204 
6205     if (auto *Shadow = dyn_cast<ConstructorUsingShadowDecl>(
6206             Step.Function.FoundDecl.getDecl())) {
6207       Constructor = S.findInheritingConstructor(Loc, Constructor, Shadow);
6208       if (S.DiagnoseUseOfDecl(Constructor, Loc))
6209         return ExprError();
6210     }
6211     S.MarkFunctionReferenced(Loc, Constructor);
6212 
6213     CurInit = CXXTemporaryObjectExpr::Create(
6214         S.Context, Constructor,
6215         Entity.getType().getNonLValueExprType(S.Context), TSInfo,
6216         ConstructorArgs, ParenOrBraceRange, HadMultipleCandidates,
6217         IsListInitialization, IsStdInitListInitialization,
6218         ConstructorInitRequiresZeroInit);
6219   } else {
6220     CXXConstructExpr::ConstructionKind ConstructKind =
6221       CXXConstructExpr::CK_Complete;
6222 
6223     if (Entity.getKind() == InitializedEntity::EK_Base) {
6224       ConstructKind = Entity.getBaseSpecifier()->isVirtual() ?
6225         CXXConstructExpr::CK_VirtualBase :
6226         CXXConstructExpr::CK_NonVirtualBase;
6227     } else if (Entity.getKind() == InitializedEntity::EK_Delegating) {
6228       ConstructKind = CXXConstructExpr::CK_Delegating;
6229     }
6230 
6231     // Only get the parenthesis or brace range if it is a list initialization or
6232     // direct construction.
6233     SourceRange ParenOrBraceRange;
6234     if (IsListInitialization)
6235       ParenOrBraceRange = SourceRange(LBraceLoc, RBraceLoc);
6236     else if (Kind.getKind() == InitializationKind::IK_Direct)
6237       ParenOrBraceRange = Kind.getParenOrBraceRange();
6238 
6239     // If the entity allows NRVO, mark the construction as elidable
6240     // unconditionally.
6241     if (Entity.allowsNRVO())
6242       CurInit = S.BuildCXXConstructExpr(Loc, Step.Type,
6243                                         Step.Function.FoundDecl,
6244                                         Constructor, /*Elidable=*/true,
6245                                         ConstructorArgs,
6246                                         HadMultipleCandidates,
6247                                         IsListInitialization,
6248                                         IsStdInitListInitialization,
6249                                         ConstructorInitRequiresZeroInit,
6250                                         ConstructKind,
6251                                         ParenOrBraceRange);
6252     else
6253       CurInit = S.BuildCXXConstructExpr(Loc, Step.Type,
6254                                         Step.Function.FoundDecl,
6255                                         Constructor,
6256                                         ConstructorArgs,
6257                                         HadMultipleCandidates,
6258                                         IsListInitialization,
6259                                         IsStdInitListInitialization,
6260                                         ConstructorInitRequiresZeroInit,
6261                                         ConstructKind,
6262                                         ParenOrBraceRange);
6263   }
6264   if (CurInit.isInvalid())
6265     return ExprError();
6266 
6267   // Only check access if all of that succeeded.
6268   S.CheckConstructorAccess(Loc, Constructor, Step.Function.FoundDecl, Entity);
6269   if (S.DiagnoseUseOfDecl(Step.Function.FoundDecl, Loc))
6270     return ExprError();
6271 
6272   if (shouldBindAsTemporary(Entity))
6273     CurInit = S.MaybeBindToTemporary(CurInit.get());
6274 
6275   return CurInit;
6276 }
6277 
6278 namespace {
6279 enum LifetimeKind {
6280   /// The lifetime of a temporary bound to this entity ends at the end of the
6281   /// full-expression, and that's (probably) fine.
6282   LK_FullExpression,
6283 
6284   /// The lifetime of a temporary bound to this entity is extended to the
6285   /// lifeitme of the entity itself.
6286   LK_Extended,
6287 
6288   /// The lifetime of a temporary bound to this entity probably ends too soon,
6289   /// because the entity is allocated in a new-expression.
6290   LK_New,
6291 
6292   /// The lifetime of a temporary bound to this entity ends too soon, because
6293   /// the entity is a return object.
6294   LK_Return,
6295 
6296   /// The lifetime of a temporary bound to this entity ends too soon, because
6297   /// the entity is the result of a statement expression.
6298   LK_StmtExprResult,
6299 
6300   /// This is a mem-initializer: if it would extend a temporary (other than via
6301   /// a default member initializer), the program is ill-formed.
6302   LK_MemInitializer,
6303 };
6304 using LifetimeResult =
6305     llvm::PointerIntPair<const InitializedEntity *, 3, LifetimeKind>;
6306 }
6307 
6308 /// Determine the declaration which an initialized entity ultimately refers to,
6309 /// for the purpose of lifetime-extending a temporary bound to a reference in
6310 /// the initialization of \p Entity.
getEntityLifetime(const InitializedEntity * Entity,const InitializedEntity * InitField=nullptr)6311 static LifetimeResult getEntityLifetime(
6312     const InitializedEntity *Entity,
6313     const InitializedEntity *InitField = nullptr) {
6314   // C++11 [class.temporary]p5:
6315   switch (Entity->getKind()) {
6316   case InitializedEntity::EK_Variable:
6317     //   The temporary [...] persists for the lifetime of the reference
6318     return {Entity, LK_Extended};
6319 
6320   case InitializedEntity::EK_Member:
6321     // For subobjects, we look at the complete object.
6322     if (Entity->getParent())
6323       return getEntityLifetime(Entity->getParent(), Entity);
6324 
6325     //   except:
6326     // C++17 [class.base.init]p8:
6327     //   A temporary expression bound to a reference member in a
6328     //   mem-initializer is ill-formed.
6329     // C++17 [class.base.init]p11:
6330     //   A temporary expression bound to a reference member from a
6331     //   default member initializer is ill-formed.
6332     //
6333     // The context of p11 and its example suggest that it's only the use of a
6334     // default member initializer from a constructor that makes the program
6335     // ill-formed, not its mere existence, and that it can even be used by
6336     // aggregate initialization.
6337     return {Entity, Entity->isDefaultMemberInitializer() ? LK_Extended
6338                                                          : LK_MemInitializer};
6339 
6340   case InitializedEntity::EK_Binding:
6341     // Per [dcl.decomp]p3, the binding is treated as a variable of reference
6342     // type.
6343     return {Entity, LK_Extended};
6344 
6345   case InitializedEntity::EK_Parameter:
6346   case InitializedEntity::EK_Parameter_CF_Audited:
6347     //   -- A temporary bound to a reference parameter in a function call
6348     //      persists until the completion of the full-expression containing
6349     //      the call.
6350     return {nullptr, LK_FullExpression};
6351 
6352   case InitializedEntity::EK_Result:
6353     //   -- The lifetime of a temporary bound to the returned value in a
6354     //      function return statement is not extended; the temporary is
6355     //      destroyed at the end of the full-expression in the return statement.
6356     return {nullptr, LK_Return};
6357 
6358   case InitializedEntity::EK_StmtExprResult:
6359     // FIXME: Should we lifetime-extend through the result of a statement
6360     // expression?
6361     return {nullptr, LK_StmtExprResult};
6362 
6363   case InitializedEntity::EK_New:
6364     //   -- A temporary bound to a reference in a new-initializer persists
6365     //      until the completion of the full-expression containing the
6366     //      new-initializer.
6367     return {nullptr, LK_New};
6368 
6369   case InitializedEntity::EK_Temporary:
6370   case InitializedEntity::EK_CompoundLiteralInit:
6371   case InitializedEntity::EK_RelatedResult:
6372     // We don't yet know the storage duration of the surrounding temporary.
6373     // Assume it's got full-expression duration for now, it will patch up our
6374     // storage duration if that's not correct.
6375     return {nullptr, LK_FullExpression};
6376 
6377   case InitializedEntity::EK_ArrayElement:
6378     // For subobjects, we look at the complete object.
6379     return getEntityLifetime(Entity->getParent(), InitField);
6380 
6381   case InitializedEntity::EK_Base:
6382     // For subobjects, we look at the complete object.
6383     if (Entity->getParent())
6384       return getEntityLifetime(Entity->getParent(), InitField);
6385     return {InitField, LK_MemInitializer};
6386 
6387   case InitializedEntity::EK_Delegating:
6388     // We can reach this case for aggregate initialization in a constructor:
6389     //   struct A { int &&r; };
6390     //   struct B : A { B() : A{0} {} };
6391     // In this case, use the outermost field decl as the context.
6392     return {InitField, LK_MemInitializer};
6393 
6394   case InitializedEntity::EK_BlockElement:
6395   case InitializedEntity::EK_LambdaToBlockConversionBlockElement:
6396   case InitializedEntity::EK_LambdaCapture:
6397   case InitializedEntity::EK_VectorElement:
6398   case InitializedEntity::EK_ComplexElement:
6399     return {nullptr, LK_FullExpression};
6400 
6401   case InitializedEntity::EK_Exception:
6402     // FIXME: Can we diagnose lifetime problems with exceptions?
6403     return {nullptr, LK_FullExpression};
6404   }
6405   llvm_unreachable("unknown entity kind");
6406 }
6407 
6408 namespace {
6409 enum ReferenceKind {
6410   /// Lifetime would be extended by a reference binding to a temporary.
6411   RK_ReferenceBinding,
6412   /// Lifetime would be extended by a std::initializer_list object binding to
6413   /// its backing array.
6414   RK_StdInitializerList,
6415 };
6416 
6417 /// A temporary or local variable. This will be one of:
6418 ///  * A MaterializeTemporaryExpr.
6419 ///  * A DeclRefExpr whose declaration is a local.
6420 ///  * An AddrLabelExpr.
6421 ///  * A BlockExpr for a block with captures.
6422 using Local = Expr*;
6423 
6424 /// Expressions we stepped over when looking for the local state. Any steps
6425 /// that would inhibit lifetime extension or take us out of subexpressions of
6426 /// the initializer are included.
6427 struct IndirectLocalPathEntry {
6428   enum EntryKind {
6429     DefaultInit,
6430     AddressOf,
6431     VarInit,
6432     LValToRVal,
6433     LifetimeBoundCall,
6434   } Kind;
6435   Expr *E;
6436   const Decl *D = nullptr;
IndirectLocalPathEntry__anon3a2dc5580411::IndirectLocalPathEntry6437   IndirectLocalPathEntry() {}
IndirectLocalPathEntry__anon3a2dc5580411::IndirectLocalPathEntry6438   IndirectLocalPathEntry(EntryKind K, Expr *E) : Kind(K), E(E) {}
IndirectLocalPathEntry__anon3a2dc5580411::IndirectLocalPathEntry6439   IndirectLocalPathEntry(EntryKind K, Expr *E, const Decl *D)
6440       : Kind(K), E(E), D(D) {}
6441 };
6442 
6443 using IndirectLocalPath = llvm::SmallVectorImpl<IndirectLocalPathEntry>;
6444 
6445 struct RevertToOldSizeRAII {
6446   IndirectLocalPath &Path;
6447   unsigned OldSize = Path.size();
RevertToOldSizeRAII__anon3a2dc5580411::RevertToOldSizeRAII6448   RevertToOldSizeRAII(IndirectLocalPath &Path) : Path(Path) {}
~RevertToOldSizeRAII__anon3a2dc5580411::RevertToOldSizeRAII6449   ~RevertToOldSizeRAII() { Path.resize(OldSize); }
6450 };
6451 
6452 using LocalVisitor = llvm::function_ref<bool(IndirectLocalPath &Path, Local L,
6453                                              ReferenceKind RK)>;
6454 }
6455 
isVarOnPath(IndirectLocalPath & Path,VarDecl * VD)6456 static bool isVarOnPath(IndirectLocalPath &Path, VarDecl *VD) {
6457   for (auto E : Path)
6458     if (E.Kind == IndirectLocalPathEntry::VarInit && E.D == VD)
6459       return true;
6460   return false;
6461 }
6462 
pathContainsInit(IndirectLocalPath & Path)6463 static bool pathContainsInit(IndirectLocalPath &Path) {
6464   return llvm::any_of(Path, [=](IndirectLocalPathEntry E) {
6465     return E.Kind == IndirectLocalPathEntry::DefaultInit ||
6466            E.Kind == IndirectLocalPathEntry::VarInit;
6467   });
6468 }
6469 
6470 static void visitLocalsRetainedByInitializer(IndirectLocalPath &Path,
6471                                              Expr *Init, LocalVisitor Visit,
6472                                              bool RevisitSubinits);
6473 
6474 static void visitLocalsRetainedByReferenceBinding(IndirectLocalPath &Path,
6475                                                   Expr *Init, ReferenceKind RK,
6476                                                   LocalVisitor Visit);
6477 
implicitObjectParamIsLifetimeBound(const FunctionDecl * FD)6478 static bool implicitObjectParamIsLifetimeBound(const FunctionDecl *FD) {
6479   const TypeSourceInfo *TSI = FD->getTypeSourceInfo();
6480   if (!TSI)
6481     return false;
6482   // Don't declare this variable in the second operand of the for-statement;
6483   // GCC miscompiles that by ending its lifetime before evaluating the
6484   // third operand. See gcc.gnu.org/PR86769.
6485   AttributedTypeLoc ATL;
6486   for (TypeLoc TL = TSI->getTypeLoc();
6487        (ATL = TL.getAsAdjusted<AttributedTypeLoc>());
6488        TL = ATL.getModifiedLoc()) {
6489     if (ATL.getAttrAs<LifetimeBoundAttr>())
6490       return true;
6491   }
6492   return false;
6493 }
6494 
visitLifetimeBoundArguments(IndirectLocalPath & Path,Expr * Call,LocalVisitor Visit)6495 static void visitLifetimeBoundArguments(IndirectLocalPath &Path, Expr *Call,
6496                                         LocalVisitor Visit) {
6497   const FunctionDecl *Callee;
6498   ArrayRef<Expr*> Args;
6499 
6500   if (auto *CE = dyn_cast<CallExpr>(Call)) {
6501     Callee = CE->getDirectCallee();
6502     Args = llvm::makeArrayRef(CE->getArgs(), CE->getNumArgs());
6503   } else {
6504     auto *CCE = cast<CXXConstructExpr>(Call);
6505     Callee = CCE->getConstructor();
6506     Args = llvm::makeArrayRef(CCE->getArgs(), CCE->getNumArgs());
6507   }
6508   if (!Callee)
6509     return;
6510 
6511   Expr *ObjectArg = nullptr;
6512   if (isa<CXXOperatorCallExpr>(Call) && Callee->isCXXInstanceMember()) {
6513     ObjectArg = Args[0];
6514     Args = Args.slice(1);
6515   } else if (auto *MCE = dyn_cast<CXXMemberCallExpr>(Call)) {
6516     ObjectArg = MCE->getImplicitObjectArgument();
6517   }
6518 
6519   auto VisitLifetimeBoundArg = [&](const Decl *D, Expr *Arg) {
6520     Path.push_back({IndirectLocalPathEntry::LifetimeBoundCall, Arg, D});
6521     if (Arg->isGLValue())
6522       visitLocalsRetainedByReferenceBinding(Path, Arg, RK_ReferenceBinding,
6523                                             Visit);
6524     else
6525       visitLocalsRetainedByInitializer(Path, Arg, Visit, true);
6526     Path.pop_back();
6527   };
6528 
6529   if (ObjectArg && implicitObjectParamIsLifetimeBound(Callee))
6530     VisitLifetimeBoundArg(Callee, ObjectArg);
6531 
6532   for (unsigned I = 0,
6533                 N = std::min<unsigned>(Callee->getNumParams(), Args.size());
6534        I != N; ++I) {
6535     if (Callee->getParamDecl(I)->hasAttr<LifetimeBoundAttr>())
6536       VisitLifetimeBoundArg(Callee->getParamDecl(I), Args[I]);
6537   }
6538 }
6539 
6540 /// Visit the locals that would be reachable through a reference bound to the
6541 /// glvalue expression \c Init.
visitLocalsRetainedByReferenceBinding(IndirectLocalPath & Path,Expr * Init,ReferenceKind RK,LocalVisitor Visit)6542 static void visitLocalsRetainedByReferenceBinding(IndirectLocalPath &Path,
6543                                                   Expr *Init, ReferenceKind RK,
6544                                                   LocalVisitor Visit) {
6545   RevertToOldSizeRAII RAII(Path);
6546 
6547   // Walk past any constructs which we can lifetime-extend across.
6548   Expr *Old;
6549   do {
6550     Old = Init;
6551 
6552     if (auto *FE = dyn_cast<FullExpr>(Init))
6553       Init = FE->getSubExpr();
6554 
6555     if (InitListExpr *ILE = dyn_cast<InitListExpr>(Init)) {
6556       // If this is just redundant braces around an initializer, step over it.
6557       if (ILE->isTransparent())
6558         Init = ILE->getInit(0);
6559     }
6560 
6561     // Step over any subobject adjustments; we may have a materialized
6562     // temporary inside them.
6563     Init = const_cast<Expr *>(Init->skipRValueSubobjectAdjustments());
6564 
6565     // Per current approach for DR1376, look through casts to reference type
6566     // when performing lifetime extension.
6567     if (CastExpr *CE = dyn_cast<CastExpr>(Init))
6568       if (CE->getSubExpr()->isGLValue())
6569         Init = CE->getSubExpr();
6570 
6571     // Per the current approach for DR1299, look through array element access
6572     // on array glvalues when performing lifetime extension.
6573     if (auto *ASE = dyn_cast<ArraySubscriptExpr>(Init)) {
6574       Init = ASE->getBase();
6575       auto *ICE = dyn_cast<ImplicitCastExpr>(Init);
6576       if (ICE && ICE->getCastKind() == CK_ArrayToPointerDecay)
6577         Init = ICE->getSubExpr();
6578       else
6579         // We can't lifetime extend through this but we might still find some
6580         // retained temporaries.
6581         return visitLocalsRetainedByInitializer(Path, Init, Visit, true);
6582     }
6583 
6584     // Step into CXXDefaultInitExprs so we can diagnose cases where a
6585     // constructor inherits one as an implicit mem-initializer.
6586     if (auto *DIE = dyn_cast<CXXDefaultInitExpr>(Init)) {
6587       Path.push_back(
6588           {IndirectLocalPathEntry::DefaultInit, DIE, DIE->getField()});
6589       Init = DIE->getExpr();
6590     }
6591   } while (Init != Old);
6592 
6593   if (auto *MTE = dyn_cast<MaterializeTemporaryExpr>(Init)) {
6594     if (Visit(Path, Local(MTE), RK))
6595       visitLocalsRetainedByInitializer(Path, MTE->GetTemporaryExpr(), Visit,
6596                                        true);
6597   }
6598 
6599   if (isa<CallExpr>(Init))
6600     return visitLifetimeBoundArguments(Path, Init, Visit);
6601 
6602   switch (Init->getStmtClass()) {
6603   case Stmt::DeclRefExprClass: {
6604     // If we find the name of a local non-reference parameter, we could have a
6605     // lifetime problem.
6606     auto *DRE = cast<DeclRefExpr>(Init);
6607     auto *VD = dyn_cast<VarDecl>(DRE->getDecl());
6608     if (VD && VD->hasLocalStorage() &&
6609         !DRE->refersToEnclosingVariableOrCapture()) {
6610       if (!VD->getType()->isReferenceType()) {
6611         Visit(Path, Local(DRE), RK);
6612       } else if (isa<ParmVarDecl>(DRE->getDecl())) {
6613         // The lifetime of a reference parameter is unknown; assume it's OK
6614         // for now.
6615         break;
6616       } else if (VD->getInit() && !isVarOnPath(Path, VD)) {
6617         Path.push_back({IndirectLocalPathEntry::VarInit, DRE, VD});
6618         visitLocalsRetainedByReferenceBinding(Path, VD->getInit(),
6619                                               RK_ReferenceBinding, Visit);
6620       }
6621     }
6622     break;
6623   }
6624 
6625   case Stmt::UnaryOperatorClass: {
6626     // The only unary operator that make sense to handle here
6627     // is Deref.  All others don't resolve to a "name."  This includes
6628     // handling all sorts of rvalues passed to a unary operator.
6629     const UnaryOperator *U = cast<UnaryOperator>(Init);
6630     if (U->getOpcode() == UO_Deref)
6631       visitLocalsRetainedByInitializer(Path, U->getSubExpr(), Visit, true);
6632     break;
6633   }
6634 
6635   case Stmt::OMPArraySectionExprClass: {
6636     visitLocalsRetainedByInitializer(
6637         Path, cast<OMPArraySectionExpr>(Init)->getBase(), Visit, true);
6638     break;
6639   }
6640 
6641   case Stmt::ConditionalOperatorClass:
6642   case Stmt::BinaryConditionalOperatorClass: {
6643     auto *C = cast<AbstractConditionalOperator>(Init);
6644     if (!C->getTrueExpr()->getType()->isVoidType())
6645       visitLocalsRetainedByReferenceBinding(Path, C->getTrueExpr(), RK, Visit);
6646     if (!C->getFalseExpr()->getType()->isVoidType())
6647       visitLocalsRetainedByReferenceBinding(Path, C->getFalseExpr(), RK, Visit);
6648     break;
6649   }
6650 
6651   // FIXME: Visit the left-hand side of an -> or ->*.
6652 
6653   default:
6654     break;
6655   }
6656 }
6657 
6658 /// Visit the locals that would be reachable through an object initialized by
6659 /// the prvalue expression \c Init.
visitLocalsRetainedByInitializer(IndirectLocalPath & Path,Expr * Init,LocalVisitor Visit,bool RevisitSubinits)6660 static void visitLocalsRetainedByInitializer(IndirectLocalPath &Path,
6661                                              Expr *Init, LocalVisitor Visit,
6662                                              bool RevisitSubinits) {
6663   RevertToOldSizeRAII RAII(Path);
6664 
6665   Expr *Old;
6666   do {
6667     Old = Init;
6668 
6669     // Step into CXXDefaultInitExprs so we can diagnose cases where a
6670     // constructor inherits one as an implicit mem-initializer.
6671     if (auto *DIE = dyn_cast<CXXDefaultInitExpr>(Init)) {
6672       Path.push_back({IndirectLocalPathEntry::DefaultInit, DIE, DIE->getField()});
6673       Init = DIE->getExpr();
6674     }
6675 
6676     if (auto *FE = dyn_cast<FullExpr>(Init))
6677       Init = FE->getSubExpr();
6678 
6679     // Dig out the expression which constructs the extended temporary.
6680     Init = const_cast<Expr *>(Init->skipRValueSubobjectAdjustments());
6681 
6682     if (CXXBindTemporaryExpr *BTE = dyn_cast<CXXBindTemporaryExpr>(Init))
6683       Init = BTE->getSubExpr();
6684 
6685     Init = Init->IgnoreParens();
6686 
6687     // Step over value-preserving rvalue casts.
6688     if (auto *CE = dyn_cast<CastExpr>(Init)) {
6689       switch (CE->getCastKind()) {
6690       case CK_LValueToRValue:
6691         // If we can match the lvalue to a const object, we can look at its
6692         // initializer.
6693         Path.push_back({IndirectLocalPathEntry::LValToRVal, CE});
6694         return visitLocalsRetainedByReferenceBinding(
6695             Path, Init, RK_ReferenceBinding,
6696             [&](IndirectLocalPath &Path, Local L, ReferenceKind RK) -> bool {
6697           if (auto *DRE = dyn_cast<DeclRefExpr>(L)) {
6698             auto *VD = dyn_cast<VarDecl>(DRE->getDecl());
6699             if (VD && VD->getType().isConstQualified() && VD->getInit() &&
6700                 !isVarOnPath(Path, VD)) {
6701               Path.push_back({IndirectLocalPathEntry::VarInit, DRE, VD});
6702               visitLocalsRetainedByInitializer(Path, VD->getInit(), Visit, true);
6703             }
6704           } else if (auto *MTE = dyn_cast<MaterializeTemporaryExpr>(L)) {
6705             if (MTE->getType().isConstQualified())
6706               visitLocalsRetainedByInitializer(Path, MTE->GetTemporaryExpr(),
6707                                                Visit, true);
6708           }
6709           return false;
6710         });
6711 
6712         // We assume that objects can be retained by pointers cast to integers,
6713         // but not if the integer is cast to floating-point type or to _Complex.
6714         // We assume that casts to 'bool' do not preserve enough information to
6715         // retain a local object.
6716       case CK_NoOp:
6717       case CK_BitCast:
6718       case CK_BaseToDerived:
6719       case CK_DerivedToBase:
6720       case CK_UncheckedDerivedToBase:
6721       case CK_Dynamic:
6722       case CK_ToUnion:
6723       case CK_UserDefinedConversion:
6724       case CK_ConstructorConversion:
6725       case CK_IntegralToPointer:
6726       case CK_PointerToIntegral:
6727       case CK_VectorSplat:
6728       case CK_IntegralCast:
6729       case CK_CPointerToObjCPointerCast:
6730       case CK_BlockPointerToObjCPointerCast:
6731       case CK_AnyPointerToBlockPointerCast:
6732       case CK_AddressSpaceConversion:
6733         break;
6734 
6735       case CK_ArrayToPointerDecay:
6736         // Model array-to-pointer decay as taking the address of the array
6737         // lvalue.
6738         Path.push_back({IndirectLocalPathEntry::AddressOf, CE});
6739         return visitLocalsRetainedByReferenceBinding(Path, CE->getSubExpr(),
6740                                                      RK_ReferenceBinding, Visit);
6741 
6742       default:
6743         return;
6744       }
6745 
6746       Init = CE->getSubExpr();
6747     }
6748   } while (Old != Init);
6749 
6750   // C++17 [dcl.init.list]p6:
6751   //   initializing an initializer_list object from the array extends the
6752   //   lifetime of the array exactly like binding a reference to a temporary.
6753   if (auto *ILE = dyn_cast<CXXStdInitializerListExpr>(Init))
6754     return visitLocalsRetainedByReferenceBinding(Path, ILE->getSubExpr(),
6755                                                  RK_StdInitializerList, Visit);
6756 
6757   if (InitListExpr *ILE = dyn_cast<InitListExpr>(Init)) {
6758     // We already visited the elements of this initializer list while
6759     // performing the initialization. Don't visit them again unless we've
6760     // changed the lifetime of the initialized entity.
6761     if (!RevisitSubinits)
6762       return;
6763 
6764     if (ILE->isTransparent())
6765       return visitLocalsRetainedByInitializer(Path, ILE->getInit(0), Visit,
6766                                               RevisitSubinits);
6767 
6768     if (ILE->getType()->isArrayType()) {
6769       for (unsigned I = 0, N = ILE->getNumInits(); I != N; ++I)
6770         visitLocalsRetainedByInitializer(Path, ILE->getInit(I), Visit,
6771                                          RevisitSubinits);
6772       return;
6773     }
6774 
6775     if (CXXRecordDecl *RD = ILE->getType()->getAsCXXRecordDecl()) {
6776       assert(RD->isAggregate() && "aggregate init on non-aggregate");
6777 
6778       // If we lifetime-extend a braced initializer which is initializing an
6779       // aggregate, and that aggregate contains reference members which are
6780       // bound to temporaries, those temporaries are also lifetime-extended.
6781       if (RD->isUnion() && ILE->getInitializedFieldInUnion() &&
6782           ILE->getInitializedFieldInUnion()->getType()->isReferenceType())
6783         visitLocalsRetainedByReferenceBinding(Path, ILE->getInit(0),
6784                                               RK_ReferenceBinding, Visit);
6785       else {
6786         unsigned Index = 0;
6787         for (const auto *I : RD->fields()) {
6788           if (Index >= ILE->getNumInits())
6789             break;
6790           if (I->isUnnamedBitfield())
6791             continue;
6792           Expr *SubInit = ILE->getInit(Index);
6793           if (I->getType()->isReferenceType())
6794             visitLocalsRetainedByReferenceBinding(Path, SubInit,
6795                                                   RK_ReferenceBinding, Visit);
6796           else
6797             // This might be either aggregate-initialization of a member or
6798             // initialization of a std::initializer_list object. Regardless,
6799             // we should recursively lifetime-extend that initializer.
6800             visitLocalsRetainedByInitializer(Path, SubInit, Visit,
6801                                              RevisitSubinits);
6802           ++Index;
6803         }
6804       }
6805     }
6806     return;
6807   }
6808 
6809   // The lifetime of an init-capture is that of the closure object constructed
6810   // by a lambda-expression.
6811   if (auto *LE = dyn_cast<LambdaExpr>(Init)) {
6812     for (Expr *E : LE->capture_inits()) {
6813       if (!E)
6814         continue;
6815       if (E->isGLValue())
6816         visitLocalsRetainedByReferenceBinding(Path, E, RK_ReferenceBinding,
6817                                               Visit);
6818       else
6819         visitLocalsRetainedByInitializer(Path, E, Visit, true);
6820     }
6821   }
6822 
6823   if (isa<CallExpr>(Init) || isa<CXXConstructExpr>(Init))
6824     return visitLifetimeBoundArguments(Path, Init, Visit);
6825 
6826   switch (Init->getStmtClass()) {
6827   case Stmt::UnaryOperatorClass: {
6828     auto *UO = cast<UnaryOperator>(Init);
6829     // If the initializer is the address of a local, we could have a lifetime
6830     // problem.
6831     if (UO->getOpcode() == UO_AddrOf) {
6832       // If this is &rvalue, then it's ill-formed and we have already diagnosed
6833       // it. Don't produce a redundant warning about the lifetime of the
6834       // temporary.
6835       if (isa<MaterializeTemporaryExpr>(UO->getSubExpr()))
6836         return;
6837 
6838       Path.push_back({IndirectLocalPathEntry::AddressOf, UO});
6839       visitLocalsRetainedByReferenceBinding(Path, UO->getSubExpr(),
6840                                             RK_ReferenceBinding, Visit);
6841     }
6842     break;
6843   }
6844 
6845   case Stmt::BinaryOperatorClass: {
6846     // Handle pointer arithmetic.
6847     auto *BO = cast<BinaryOperator>(Init);
6848     BinaryOperatorKind BOK = BO->getOpcode();
6849     if (!BO->getType()->isPointerType() || (BOK != BO_Add && BOK != BO_Sub))
6850       break;
6851 
6852     if (BO->getLHS()->getType()->isPointerType())
6853       visitLocalsRetainedByInitializer(Path, BO->getLHS(), Visit, true);
6854     else if (BO->getRHS()->getType()->isPointerType())
6855       visitLocalsRetainedByInitializer(Path, BO->getRHS(), Visit, true);
6856     break;
6857   }
6858 
6859   case Stmt::ConditionalOperatorClass:
6860   case Stmt::BinaryConditionalOperatorClass: {
6861     auto *C = cast<AbstractConditionalOperator>(Init);
6862     // In C++, we can have a throw-expression operand, which has 'void' type
6863     // and isn't interesting from a lifetime perspective.
6864     if (!C->getTrueExpr()->getType()->isVoidType())
6865       visitLocalsRetainedByInitializer(Path, C->getTrueExpr(), Visit, true);
6866     if (!C->getFalseExpr()->getType()->isVoidType())
6867       visitLocalsRetainedByInitializer(Path, C->getFalseExpr(), Visit, true);
6868     break;
6869   }
6870 
6871   case Stmt::BlockExprClass:
6872     if (cast<BlockExpr>(Init)->getBlockDecl()->hasCaptures()) {
6873       // This is a local block, whose lifetime is that of the function.
6874       Visit(Path, Local(cast<BlockExpr>(Init)), RK_ReferenceBinding);
6875     }
6876     break;
6877 
6878   case Stmt::AddrLabelExprClass:
6879     // We want to warn if the address of a label would escape the function.
6880     Visit(Path, Local(cast<AddrLabelExpr>(Init)), RK_ReferenceBinding);
6881     break;
6882 
6883   default:
6884     break;
6885   }
6886 }
6887 
6888 /// Determine whether this is an indirect path to a temporary that we are
6889 /// supposed to lifetime-extend along (but don't).
shouldLifetimeExtendThroughPath(const IndirectLocalPath & Path)6890 static bool shouldLifetimeExtendThroughPath(const IndirectLocalPath &Path) {
6891   for (auto Elem : Path) {
6892     if (Elem.Kind != IndirectLocalPathEntry::DefaultInit)
6893       return false;
6894   }
6895   return true;
6896 }
6897 
6898 /// Find the range for the first interesting entry in the path at or after I.
nextPathEntryRange(const IndirectLocalPath & Path,unsigned I,Expr * E)6899 static SourceRange nextPathEntryRange(const IndirectLocalPath &Path, unsigned I,
6900                                       Expr *E) {
6901   for (unsigned N = Path.size(); I != N; ++I) {
6902     switch (Path[I].Kind) {
6903     case IndirectLocalPathEntry::AddressOf:
6904     case IndirectLocalPathEntry::LValToRVal:
6905     case IndirectLocalPathEntry::LifetimeBoundCall:
6906       // These exist primarily to mark the path as not permitting or
6907       // supporting lifetime extension.
6908       break;
6909 
6910     case IndirectLocalPathEntry::DefaultInit:
6911     case IndirectLocalPathEntry::VarInit:
6912       return Path[I].E->getSourceRange();
6913     }
6914   }
6915   return E->getSourceRange();
6916 }
6917 
checkInitializerLifetime(const InitializedEntity & Entity,Expr * Init)6918 void Sema::checkInitializerLifetime(const InitializedEntity &Entity,
6919                                     Expr *Init) {
6920   LifetimeResult LR = getEntityLifetime(&Entity);
6921   LifetimeKind LK = LR.getInt();
6922   const InitializedEntity *ExtendingEntity = LR.getPointer();
6923 
6924   // If this entity doesn't have an interesting lifetime, don't bother looking
6925   // for temporaries within its initializer.
6926   if (LK == LK_FullExpression)
6927     return;
6928 
6929   auto TemporaryVisitor = [&](IndirectLocalPath &Path, Local L,
6930                               ReferenceKind RK) -> bool {
6931     SourceRange DiagRange = nextPathEntryRange(Path, 0, L);
6932     SourceLocation DiagLoc = DiagRange.getBegin();
6933 
6934     switch (LK) {
6935     case LK_FullExpression:
6936       llvm_unreachable("already handled this");
6937 
6938     case LK_Extended: {
6939       auto *MTE = dyn_cast<MaterializeTemporaryExpr>(L);
6940       if (!MTE) {
6941         // The initialized entity has lifetime beyond the full-expression,
6942         // and the local entity does too, so don't warn.
6943         //
6944         // FIXME: We should consider warning if a static / thread storage
6945         // duration variable retains an automatic storage duration local.
6946         return false;
6947       }
6948 
6949       // Lifetime-extend the temporary.
6950       if (Path.empty()) {
6951         // Update the storage duration of the materialized temporary.
6952         // FIXME: Rebuild the expression instead of mutating it.
6953         MTE->setExtendingDecl(ExtendingEntity->getDecl(),
6954                               ExtendingEntity->allocateManglingNumber());
6955         // Also visit the temporaries lifetime-extended by this initializer.
6956         return true;
6957       }
6958 
6959       if (shouldLifetimeExtendThroughPath(Path)) {
6960         // We're supposed to lifetime-extend the temporary along this path (per
6961         // the resolution of DR1815), but we don't support that yet.
6962         //
6963         // FIXME: Properly handle this situation. Perhaps the easiest approach
6964         // would be to clone the initializer expression on each use that would
6965         // lifetime extend its temporaries.
6966         Diag(DiagLoc, diag::warn_unsupported_lifetime_extension)
6967             << RK << DiagRange;
6968       } else {
6969         // If the path goes through the initialization of a variable or field,
6970         // it can't possibly reach a temporary created in this full-expression.
6971         // We will have already diagnosed any problems with the initializer.
6972         if (pathContainsInit(Path))
6973           return false;
6974 
6975         Diag(DiagLoc, diag::warn_dangling_variable)
6976             << RK << !Entity.getParent()
6977             << ExtendingEntity->getDecl()->isImplicit()
6978             << ExtendingEntity->getDecl() << Init->isGLValue() << DiagRange;
6979       }
6980       break;
6981     }
6982 
6983     case LK_MemInitializer: {
6984       if (isa<MaterializeTemporaryExpr>(L)) {
6985         // Under C++ DR1696, if a mem-initializer (or a default member
6986         // initializer used by the absence of one) would lifetime-extend a
6987         // temporary, the program is ill-formed.
6988         if (auto *ExtendingDecl =
6989                 ExtendingEntity ? ExtendingEntity->getDecl() : nullptr) {
6990           bool IsSubobjectMember = ExtendingEntity != &Entity;
6991           Diag(DiagLoc, shouldLifetimeExtendThroughPath(Path)
6992                             ? diag::err_dangling_member
6993                             : diag::warn_dangling_member)
6994               << ExtendingDecl << IsSubobjectMember << RK << DiagRange;
6995           // Don't bother adding a note pointing to the field if we're inside
6996           // its default member initializer; our primary diagnostic points to
6997           // the same place in that case.
6998           if (Path.empty() ||
6999               Path.back().Kind != IndirectLocalPathEntry::DefaultInit) {
7000             Diag(ExtendingDecl->getLocation(),
7001                  diag::note_lifetime_extending_member_declared_here)
7002                 << RK << IsSubobjectMember;
7003           }
7004         } else {
7005           // We have a mem-initializer but no particular field within it; this
7006           // is either a base class or a delegating initializer directly
7007           // initializing the base-class from something that doesn't live long
7008           // enough.
7009           //
7010           // FIXME: Warn on this.
7011           return false;
7012         }
7013       } else {
7014         // Paths via a default initializer can only occur during error recovery
7015         // (there's no other way that a default initializer can refer to a
7016         // local). Don't produce a bogus warning on those cases.
7017         if (pathContainsInit(Path))
7018           return false;
7019 
7020         auto *DRE = dyn_cast<DeclRefExpr>(L);
7021         auto *VD = DRE ? dyn_cast<VarDecl>(DRE->getDecl()) : nullptr;
7022         if (!VD) {
7023           // A member was initialized to a local block.
7024           // FIXME: Warn on this.
7025           return false;
7026         }
7027 
7028         if (auto *Member =
7029                 ExtendingEntity ? ExtendingEntity->getDecl() : nullptr) {
7030           bool IsPointer = Member->getType()->isAnyPointerType();
7031           Diag(DiagLoc, IsPointer ? diag::warn_init_ptr_member_to_parameter_addr
7032                                   : diag::warn_bind_ref_member_to_parameter)
7033               << Member << VD << isa<ParmVarDecl>(VD) << DiagRange;
7034           Diag(Member->getLocation(),
7035                diag::note_ref_or_ptr_member_declared_here)
7036               << (unsigned)IsPointer;
7037         }
7038       }
7039       break;
7040     }
7041 
7042     case LK_New:
7043       if (isa<MaterializeTemporaryExpr>(L)) {
7044         Diag(DiagLoc, RK == RK_ReferenceBinding
7045                           ? diag::warn_new_dangling_reference
7046                           : diag::warn_new_dangling_initializer_list)
7047             << !Entity.getParent() << DiagRange;
7048       } else {
7049         // We can't determine if the allocation outlives the local declaration.
7050         return false;
7051       }
7052       break;
7053 
7054     case LK_Return:
7055     case LK_StmtExprResult:
7056       if (auto *DRE = dyn_cast<DeclRefExpr>(L)) {
7057         // We can't determine if the local variable outlives the statement
7058         // expression.
7059         if (LK == LK_StmtExprResult)
7060           return false;
7061         Diag(DiagLoc, diag::warn_ret_stack_addr_ref)
7062             << Entity.getType()->isReferenceType() << DRE->getDecl()
7063             << isa<ParmVarDecl>(DRE->getDecl()) << DiagRange;
7064       } else if (isa<BlockExpr>(L)) {
7065         Diag(DiagLoc, diag::err_ret_local_block) << DiagRange;
7066       } else if (isa<AddrLabelExpr>(L)) {
7067         // Don't warn when returning a label from a statement expression.
7068         // Leaving the scope doesn't end its lifetime.
7069         if (LK == LK_StmtExprResult)
7070           return false;
7071         Diag(DiagLoc, diag::warn_ret_addr_label) << DiagRange;
7072       } else {
7073         Diag(DiagLoc, diag::warn_ret_local_temp_addr_ref)
7074          << Entity.getType()->isReferenceType() << DiagRange;
7075       }
7076       break;
7077     }
7078 
7079     for (unsigned I = 0; I != Path.size(); ++I) {
7080       auto Elem = Path[I];
7081 
7082       switch (Elem.Kind) {
7083       case IndirectLocalPathEntry::AddressOf:
7084       case IndirectLocalPathEntry::LValToRVal:
7085         // These exist primarily to mark the path as not permitting or
7086         // supporting lifetime extension.
7087         break;
7088 
7089       case IndirectLocalPathEntry::LifetimeBoundCall:
7090         // FIXME: Consider adding a note for this.
7091         break;
7092 
7093       case IndirectLocalPathEntry::DefaultInit: {
7094         auto *FD = cast<FieldDecl>(Elem.D);
7095         Diag(FD->getLocation(), diag::note_init_with_default_member_initalizer)
7096             << FD << nextPathEntryRange(Path, I + 1, L);
7097         break;
7098       }
7099 
7100       case IndirectLocalPathEntry::VarInit:
7101         const VarDecl *VD = cast<VarDecl>(Elem.D);
7102         Diag(VD->getLocation(), diag::note_local_var_initializer)
7103             << VD->getType()->isReferenceType()
7104             << VD->isImplicit() << VD->getDeclName()
7105             << nextPathEntryRange(Path, I + 1, L);
7106         break;
7107       }
7108     }
7109 
7110     // We didn't lifetime-extend, so don't go any further; we don't need more
7111     // warnings or errors on inner temporaries within this one's initializer.
7112     return false;
7113   };
7114 
7115   llvm::SmallVector<IndirectLocalPathEntry, 8> Path;
7116   if (Init->isGLValue())
7117     visitLocalsRetainedByReferenceBinding(Path, Init, RK_ReferenceBinding,
7118                                           TemporaryVisitor);
7119   else
7120     visitLocalsRetainedByInitializer(Path, Init, TemporaryVisitor, false);
7121 }
7122 
7123 static void DiagnoseNarrowingInInitList(Sema &S,
7124                                         const ImplicitConversionSequence &ICS,
7125                                         QualType PreNarrowingType,
7126                                         QualType EntityType,
7127                                         const Expr *PostInit);
7128 
7129 /// Provide warnings when std::move is used on construction.
CheckMoveOnConstruction(Sema & S,const Expr * InitExpr,bool IsReturnStmt)7130 static void CheckMoveOnConstruction(Sema &S, const Expr *InitExpr,
7131                                     bool IsReturnStmt) {
7132   if (!InitExpr)
7133     return;
7134 
7135   if (S.inTemplateInstantiation())
7136     return;
7137 
7138   QualType DestType = InitExpr->getType();
7139   if (!DestType->isRecordType())
7140     return;
7141 
7142   unsigned DiagID = 0;
7143   if (IsReturnStmt) {
7144     const CXXConstructExpr *CCE =
7145         dyn_cast<CXXConstructExpr>(InitExpr->IgnoreParens());
7146     if (!CCE || CCE->getNumArgs() != 1)
7147       return;
7148 
7149     if (!CCE->getConstructor()->isCopyOrMoveConstructor())
7150       return;
7151 
7152     InitExpr = CCE->getArg(0)->IgnoreImpCasts();
7153   }
7154 
7155   // Find the std::move call and get the argument.
7156   const CallExpr *CE = dyn_cast<CallExpr>(InitExpr->IgnoreParens());
7157   if (!CE || !CE->isCallToStdMove())
7158     return;
7159 
7160   const Expr *Arg = CE->getArg(0)->IgnoreImplicit();
7161 
7162   if (IsReturnStmt) {
7163     const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Arg->IgnoreParenImpCasts());
7164     if (!DRE || DRE->refersToEnclosingVariableOrCapture())
7165       return;
7166 
7167     const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl());
7168     if (!VD || !VD->hasLocalStorage())
7169       return;
7170 
7171     // __block variables are not moved implicitly.
7172     if (VD->hasAttr<BlocksAttr>())
7173       return;
7174 
7175     QualType SourceType = VD->getType();
7176     if (!SourceType->isRecordType())
7177       return;
7178 
7179     if (!S.Context.hasSameUnqualifiedType(DestType, SourceType)) {
7180       return;
7181     }
7182 
7183     // If we're returning a function parameter, copy elision
7184     // is not possible.
7185     if (isa<ParmVarDecl>(VD))
7186       DiagID = diag::warn_redundant_move_on_return;
7187     else
7188       DiagID = diag::warn_pessimizing_move_on_return;
7189   } else {
7190     DiagID = diag::warn_pessimizing_move_on_initialization;
7191     const Expr *ArgStripped = Arg->IgnoreImplicit()->IgnoreParens();
7192     if (!ArgStripped->isRValue() || !ArgStripped->getType()->isRecordType())
7193       return;
7194   }
7195 
7196   S.Diag(CE->getBeginLoc(), DiagID);
7197 
7198   // Get all the locations for a fix-it.  Don't emit the fix-it if any location
7199   // is within a macro.
7200   SourceLocation CallBegin = CE->getCallee()->getBeginLoc();
7201   if (CallBegin.isMacroID())
7202     return;
7203   SourceLocation RParen = CE->getRParenLoc();
7204   if (RParen.isMacroID())
7205     return;
7206   SourceLocation LParen;
7207   SourceLocation ArgLoc = Arg->getBeginLoc();
7208 
7209   // Special testing for the argument location.  Since the fix-it needs the
7210   // location right before the argument, the argument location can be in a
7211   // macro only if it is at the beginning of the macro.
7212   while (ArgLoc.isMacroID() &&
7213          S.getSourceManager().isAtStartOfImmediateMacroExpansion(ArgLoc)) {
7214     ArgLoc = S.getSourceManager().getImmediateExpansionRange(ArgLoc).getBegin();
7215   }
7216 
7217   if (LParen.isMacroID())
7218     return;
7219 
7220   LParen = ArgLoc.getLocWithOffset(-1);
7221 
7222   S.Diag(CE->getBeginLoc(), diag::note_remove_move)
7223       << FixItHint::CreateRemoval(SourceRange(CallBegin, LParen))
7224       << FixItHint::CreateRemoval(SourceRange(RParen, RParen));
7225 }
7226 
CheckForNullPointerDereference(Sema & S,const Expr * E)7227 static void CheckForNullPointerDereference(Sema &S, const Expr *E) {
7228   // Check to see if we are dereferencing a null pointer.  If so, this is
7229   // undefined behavior, so warn about it.  This only handles the pattern
7230   // "*null", which is a very syntactic check.
7231   if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E->IgnoreParenCasts()))
7232     if (UO->getOpcode() == UO_Deref &&
7233         UO->getSubExpr()->IgnoreParenCasts()->
7234         isNullPointerConstant(S.Context, Expr::NPC_ValueDependentIsNotNull)) {
7235     S.DiagRuntimeBehavior(UO->getOperatorLoc(), UO,
7236                           S.PDiag(diag::warn_binding_null_to_reference)
7237                             << UO->getSubExpr()->getSourceRange());
7238   }
7239 }
7240 
7241 MaterializeTemporaryExpr *
CreateMaterializeTemporaryExpr(QualType T,Expr * Temporary,bool BoundToLvalueReference)7242 Sema::CreateMaterializeTemporaryExpr(QualType T, Expr *Temporary,
7243                                      bool BoundToLvalueReference) {
7244   auto MTE = new (Context)
7245       MaterializeTemporaryExpr(T, Temporary, BoundToLvalueReference);
7246 
7247   // Order an ExprWithCleanups for lifetime marks.
7248   //
7249   // TODO: It'll be good to have a single place to check the access of the
7250   // destructor and generate ExprWithCleanups for various uses. Currently these
7251   // are done in both CreateMaterializeTemporaryExpr and MaybeBindToTemporary,
7252   // but there may be a chance to merge them.
7253   Cleanup.setExprNeedsCleanups(false);
7254   return MTE;
7255 }
7256 
TemporaryMaterializationConversion(Expr * E)7257 ExprResult Sema::TemporaryMaterializationConversion(Expr *E) {
7258   // In C++98, we don't want to implicitly create an xvalue.
7259   // FIXME: This means that AST consumers need to deal with "prvalues" that
7260   // denote materialized temporaries. Maybe we should add another ValueKind
7261   // for "xvalue pretending to be a prvalue" for C++98 support.
7262   if (!E->isRValue() || !getLangOpts().CPlusPlus11)
7263     return E;
7264 
7265   // C++1z [conv.rval]/1: T shall be a complete type.
7266   // FIXME: Does this ever matter (can we form a prvalue of incomplete type)?
7267   // If so, we should check for a non-abstract class type here too.
7268   QualType T = E->getType();
7269   if (RequireCompleteType(E->getExprLoc(), T, diag::err_incomplete_type))
7270     return ExprError();
7271 
7272   return CreateMaterializeTemporaryExpr(E->getType(), E, false);
7273 }
7274 
PerformQualificationConversion(Expr * E,QualType Ty,ExprValueKind VK,CheckedConversionKind CCK)7275 ExprResult Sema::PerformQualificationConversion(Expr *E, QualType Ty,
7276                                                 ExprValueKind VK,
7277                                                 CheckedConversionKind CCK) {
7278   CastKind CK = (Ty.getAddressSpace() != E->getType().getAddressSpace())
7279                     ? CK_AddressSpaceConversion
7280                     : CK_NoOp;
7281   return ImpCastExprToType(E, Ty, CK, VK, /*BasePath=*/nullptr, CCK);
7282 }
7283 
Perform(Sema & S,const InitializedEntity & Entity,const InitializationKind & Kind,MultiExprArg Args,QualType * ResultType)7284 ExprResult InitializationSequence::Perform(Sema &S,
7285                                            const InitializedEntity &Entity,
7286                                            const InitializationKind &Kind,
7287                                            MultiExprArg Args,
7288                                            QualType *ResultType) {
7289   if (Failed()) {
7290     Diagnose(S, Entity, Kind, Args);
7291     return ExprError();
7292   }
7293   if (!ZeroInitializationFixit.empty()) {
7294     unsigned DiagID = diag::err_default_init_const;
7295     if (Decl *D = Entity.getDecl())
7296       if (S.getLangOpts().MSVCCompat && D->hasAttr<SelectAnyAttr>())
7297         DiagID = diag::ext_default_init_const;
7298 
7299     // The initialization would have succeeded with this fixit. Since the fixit
7300     // is on the error, we need to build a valid AST in this case, so this isn't
7301     // handled in the Failed() branch above.
7302     QualType DestType = Entity.getType();
7303     S.Diag(Kind.getLocation(), DiagID)
7304         << DestType << (bool)DestType->getAs<RecordType>()
7305         << FixItHint::CreateInsertion(ZeroInitializationFixitLoc,
7306                                       ZeroInitializationFixit);
7307   }
7308 
7309   if (getKind() == DependentSequence) {
7310     // If the declaration is a non-dependent, incomplete array type
7311     // that has an initializer, then its type will be completed once
7312     // the initializer is instantiated.
7313     if (ResultType && !Entity.getType()->isDependentType() &&
7314         Args.size() == 1) {
7315       QualType DeclType = Entity.getType();
7316       if (const IncompleteArrayType *ArrayT
7317                            = S.Context.getAsIncompleteArrayType(DeclType)) {
7318         // FIXME: We don't currently have the ability to accurately
7319         // compute the length of an initializer list without
7320         // performing full type-checking of the initializer list
7321         // (since we have to determine where braces are implicitly
7322         // introduced and such).  So, we fall back to making the array
7323         // type a dependently-sized array type with no specified
7324         // bound.
7325         if (isa<InitListExpr>((Expr *)Args[0])) {
7326           SourceRange Brackets;
7327 
7328           // Scavange the location of the brackets from the entity, if we can.
7329           if (auto *DD = dyn_cast_or_null<DeclaratorDecl>(Entity.getDecl())) {
7330             if (TypeSourceInfo *TInfo = DD->getTypeSourceInfo()) {
7331               TypeLoc TL = TInfo->getTypeLoc();
7332               if (IncompleteArrayTypeLoc ArrayLoc =
7333                       TL.getAs<IncompleteArrayTypeLoc>())
7334                 Brackets = ArrayLoc.getBracketsRange();
7335             }
7336           }
7337 
7338           *ResultType
7339             = S.Context.getDependentSizedArrayType(ArrayT->getElementType(),
7340                                                    /*NumElts=*/nullptr,
7341                                                    ArrayT->getSizeModifier(),
7342                                        ArrayT->getIndexTypeCVRQualifiers(),
7343                                                    Brackets);
7344         }
7345 
7346       }
7347     }
7348     if (Kind.getKind() == InitializationKind::IK_Direct &&
7349         !Kind.isExplicitCast()) {
7350       // Rebuild the ParenListExpr.
7351       SourceRange ParenRange = Kind.getParenOrBraceRange();
7352       return S.ActOnParenListExpr(ParenRange.getBegin(), ParenRange.getEnd(),
7353                                   Args);
7354     }
7355     assert(Kind.getKind() == InitializationKind::IK_Copy ||
7356            Kind.isExplicitCast() ||
7357            Kind.getKind() == InitializationKind::IK_DirectList);
7358     return ExprResult(Args[0]);
7359   }
7360 
7361   // No steps means no initialization.
7362   if (Steps.empty())
7363     return ExprResult((Expr *)nullptr);
7364 
7365   if (S.getLangOpts().CPlusPlus11 && Entity.getType()->isReferenceType() &&
7366       Args.size() == 1 && isa<InitListExpr>(Args[0]) &&
7367       !Entity.isParameterKind()) {
7368     // Produce a C++98 compatibility warning if we are initializing a reference
7369     // from an initializer list. For parameters, we produce a better warning
7370     // elsewhere.
7371     Expr *Init = Args[0];
7372     S.Diag(Init->getBeginLoc(), diag::warn_cxx98_compat_reference_list_init)
7373         << Init->getSourceRange();
7374   }
7375 
7376   // OpenCL v2.0 s6.13.11.1. atomic variables can be initialized in global scope
7377   QualType ETy = Entity.getType();
7378   Qualifiers TyQualifiers = ETy.getQualifiers();
7379   bool HasGlobalAS = TyQualifiers.hasAddressSpace() &&
7380                      TyQualifiers.getAddressSpace() == LangAS::opencl_global;
7381 
7382   if (S.getLangOpts().OpenCLVersion >= 200 &&
7383       ETy->isAtomicType() && !HasGlobalAS &&
7384       Entity.getKind() == InitializedEntity::EK_Variable && Args.size() > 0) {
7385     S.Diag(Args[0]->getBeginLoc(), diag::err_opencl_atomic_init)
7386         << 1
7387         << SourceRange(Entity.getDecl()->getBeginLoc(), Args[0]->getEndLoc());
7388     return ExprError();
7389   }
7390 
7391   QualType DestType = Entity.getType().getNonReferenceType();
7392   // FIXME: Ugly hack around the fact that Entity.getType() is not
7393   // the same as Entity.getDecl()->getType() in cases involving type merging,
7394   //  and we want latter when it makes sense.
7395   if (ResultType)
7396     *ResultType = Entity.getDecl() ? Entity.getDecl()->getType() :
7397                                      Entity.getType();
7398 
7399   ExprResult CurInit((Expr *)nullptr);
7400   SmallVector<Expr*, 4> ArrayLoopCommonExprs;
7401 
7402   // For initialization steps that start with a single initializer,
7403   // grab the only argument out the Args and place it into the "current"
7404   // initializer.
7405   switch (Steps.front().Kind) {
7406   case SK_ResolveAddressOfOverloadedFunction:
7407   case SK_CastDerivedToBaseRValue:
7408   case SK_CastDerivedToBaseXValue:
7409   case SK_CastDerivedToBaseLValue:
7410   case SK_BindReference:
7411   case SK_BindReferenceToTemporary:
7412   case SK_FinalCopy:
7413   case SK_ExtraneousCopyToTemporary:
7414   case SK_UserConversion:
7415   case SK_QualificationConversionLValue:
7416   case SK_QualificationConversionXValue:
7417   case SK_QualificationConversionRValue:
7418   case SK_AtomicConversion:
7419   case SK_LValueToRValue:
7420   case SK_ConversionSequence:
7421   case SK_ConversionSequenceNoNarrowing:
7422   case SK_ListInitialization:
7423   case SK_UnwrapInitList:
7424   case SK_RewrapInitList:
7425   case SK_CAssignment:
7426   case SK_StringInit:
7427   case SK_ObjCObjectConversion:
7428   case SK_ArrayLoopIndex:
7429   case SK_ArrayLoopInit:
7430   case SK_ArrayInit:
7431   case SK_GNUArrayInit:
7432   case SK_ParenthesizedArrayInit:
7433   case SK_PassByIndirectCopyRestore:
7434   case SK_PassByIndirectRestore:
7435   case SK_ProduceObjCObject:
7436   case SK_StdInitializerList:
7437   case SK_OCLSamplerInit:
7438   case SK_OCLZeroOpaqueType: {
7439     assert(Args.size() == 1);
7440     CurInit = Args[0];
7441     if (!CurInit.get()) return ExprError();
7442     break;
7443   }
7444 
7445   case SK_ConstructorInitialization:
7446   case SK_ConstructorInitializationFromList:
7447   case SK_StdInitializerListConstructorCall:
7448   case SK_ZeroInitialization:
7449     break;
7450   }
7451 
7452   // Promote from an unevaluated context to an unevaluated list context in
7453   // C++11 list-initialization; we need to instantiate entities usable in
7454   // constant expressions here in order to perform narrowing checks =(
7455   EnterExpressionEvaluationContext Evaluated(
7456       S, EnterExpressionEvaluationContext::InitList,
7457       CurInit.get() && isa<InitListExpr>(CurInit.get()));
7458 
7459   // C++ [class.abstract]p2:
7460   //   no objects of an abstract class can be created except as subobjects
7461   //   of a class derived from it
7462   auto checkAbstractType = [&](QualType T) -> bool {
7463     if (Entity.getKind() == InitializedEntity::EK_Base ||
7464         Entity.getKind() == InitializedEntity::EK_Delegating)
7465       return false;
7466     return S.RequireNonAbstractType(Kind.getLocation(), T,
7467                                     diag::err_allocation_of_abstract_type);
7468   };
7469 
7470   // Walk through the computed steps for the initialization sequence,
7471   // performing the specified conversions along the way.
7472   bool ConstructorInitRequiresZeroInit = false;
7473   for (step_iterator Step = step_begin(), StepEnd = step_end();
7474        Step != StepEnd; ++Step) {
7475     if (CurInit.isInvalid())
7476       return ExprError();
7477 
7478     QualType SourceType = CurInit.get() ? CurInit.get()->getType() : QualType();
7479 
7480     switch (Step->Kind) {
7481     case SK_ResolveAddressOfOverloadedFunction:
7482       // Overload resolution determined which function invoke; update the
7483       // initializer to reflect that choice.
7484       S.CheckAddressOfMemberAccess(CurInit.get(), Step->Function.FoundDecl);
7485       if (S.DiagnoseUseOfDecl(Step->Function.FoundDecl, Kind.getLocation()))
7486         return ExprError();
7487       CurInit = S.FixOverloadedFunctionReference(CurInit,
7488                                                  Step->Function.FoundDecl,
7489                                                  Step->Function.Function);
7490       break;
7491 
7492     case SK_CastDerivedToBaseRValue:
7493     case SK_CastDerivedToBaseXValue:
7494     case SK_CastDerivedToBaseLValue: {
7495       // We have a derived-to-base cast that produces either an rvalue or an
7496       // lvalue. Perform that cast.
7497 
7498       CXXCastPath BasePath;
7499 
7500       // Casts to inaccessible base classes are allowed with C-style casts.
7501       bool IgnoreBaseAccess = Kind.isCStyleOrFunctionalCast();
7502       if (S.CheckDerivedToBaseConversion(
7503               SourceType, Step->Type, CurInit.get()->getBeginLoc(),
7504               CurInit.get()->getSourceRange(), &BasePath, IgnoreBaseAccess))
7505         return ExprError();
7506 
7507       ExprValueKind VK =
7508           Step->Kind == SK_CastDerivedToBaseLValue ?
7509               VK_LValue :
7510               (Step->Kind == SK_CastDerivedToBaseXValue ?
7511                    VK_XValue :
7512                    VK_RValue);
7513       CurInit =
7514           ImplicitCastExpr::Create(S.Context, Step->Type, CK_DerivedToBase,
7515                                    CurInit.get(), &BasePath, VK);
7516       break;
7517     }
7518 
7519     case SK_BindReference:
7520       // Reference binding does not have any corresponding ASTs.
7521 
7522       // Check exception specifications
7523       if (S.CheckExceptionSpecCompatibility(CurInit.get(), DestType))
7524         return ExprError();
7525 
7526       // We don't check for e.g. function pointers here, since address
7527       // availability checks should only occur when the function first decays
7528       // into a pointer or reference.
7529       if (CurInit.get()->getType()->isFunctionProtoType()) {
7530         if (auto *DRE = dyn_cast<DeclRefExpr>(CurInit.get()->IgnoreParens())) {
7531           if (auto *FD = dyn_cast<FunctionDecl>(DRE->getDecl())) {
7532             if (!S.checkAddressOfFunctionIsAvailable(FD, /*Complain=*/true,
7533                                                      DRE->getBeginLoc()))
7534               return ExprError();
7535           }
7536         }
7537       }
7538 
7539       CheckForNullPointerDereference(S, CurInit.get());
7540       break;
7541 
7542     case SK_BindReferenceToTemporary: {
7543       // Make sure the "temporary" is actually an rvalue.
7544       assert(CurInit.get()->isRValue() && "not a temporary");
7545 
7546       // Check exception specifications
7547       if (S.CheckExceptionSpecCompatibility(CurInit.get(), DestType))
7548         return ExprError();
7549 
7550       // Materialize the temporary into memory.
7551       MaterializeTemporaryExpr *MTE = S.CreateMaterializeTemporaryExpr(
7552           Step->Type, CurInit.get(), Entity.getType()->isLValueReferenceType());
7553       CurInit = MTE;
7554 
7555       // If we're extending this temporary to automatic storage duration -- we
7556       // need to register its cleanup during the full-expression's cleanups.
7557       if (MTE->getStorageDuration() == SD_Automatic &&
7558           MTE->getType().isDestructedType())
7559         S.Cleanup.setExprNeedsCleanups(true);
7560       break;
7561     }
7562 
7563     case SK_FinalCopy:
7564       if (checkAbstractType(Step->Type))
7565         return ExprError();
7566 
7567       // If the overall initialization is initializing a temporary, we already
7568       // bound our argument if it was necessary to do so. If not (if we're
7569       // ultimately initializing a non-temporary), our argument needs to be
7570       // bound since it's initializing a function parameter.
7571       // FIXME: This is a mess. Rationalize temporary destruction.
7572       if (!shouldBindAsTemporary(Entity))
7573         CurInit = S.MaybeBindToTemporary(CurInit.get());
7574       CurInit = CopyObject(S, Step->Type, Entity, CurInit,
7575                            /*IsExtraneousCopy=*/false);
7576       break;
7577 
7578     case SK_ExtraneousCopyToTemporary:
7579       CurInit = CopyObject(S, Step->Type, Entity, CurInit,
7580                            /*IsExtraneousCopy=*/true);
7581       break;
7582 
7583     case SK_UserConversion: {
7584       // We have a user-defined conversion that invokes either a constructor
7585       // or a conversion function.
7586       CastKind CastKind;
7587       FunctionDecl *Fn = Step->Function.Function;
7588       DeclAccessPair FoundFn = Step->Function.FoundDecl;
7589       bool HadMultipleCandidates = Step->Function.HadMultipleCandidates;
7590       bool CreatedObject = false;
7591       if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Fn)) {
7592         // Build a call to the selected constructor.
7593         SmallVector<Expr*, 8> ConstructorArgs;
7594         SourceLocation Loc = CurInit.get()->getBeginLoc();
7595 
7596         // Determine the arguments required to actually perform the constructor
7597         // call.
7598         Expr *Arg = CurInit.get();
7599         if (S.CompleteConstructorCall(Constructor,
7600                                       MultiExprArg(&Arg, 1),
7601                                       Loc, ConstructorArgs))
7602           return ExprError();
7603 
7604         // Build an expression that constructs a temporary.
7605         CurInit = S.BuildCXXConstructExpr(Loc, Step->Type,
7606                                           FoundFn, Constructor,
7607                                           ConstructorArgs,
7608                                           HadMultipleCandidates,
7609                                           /*ListInit*/ false,
7610                                           /*StdInitListInit*/ false,
7611                                           /*ZeroInit*/ false,
7612                                           CXXConstructExpr::CK_Complete,
7613                                           SourceRange());
7614         if (CurInit.isInvalid())
7615           return ExprError();
7616 
7617         S.CheckConstructorAccess(Kind.getLocation(), Constructor, FoundFn,
7618                                  Entity);
7619         if (S.DiagnoseUseOfDecl(FoundFn, Kind.getLocation()))
7620           return ExprError();
7621 
7622         CastKind = CK_ConstructorConversion;
7623         CreatedObject = true;
7624       } else {
7625         // Build a call to the conversion function.
7626         CXXConversionDecl *Conversion = cast<CXXConversionDecl>(Fn);
7627         S.CheckMemberOperatorAccess(Kind.getLocation(), CurInit.get(), nullptr,
7628                                     FoundFn);
7629         if (S.DiagnoseUseOfDecl(FoundFn, Kind.getLocation()))
7630           return ExprError();
7631 
7632         CurInit = S.BuildCXXMemberCallExpr(CurInit.get(), FoundFn, Conversion,
7633                                            HadMultipleCandidates);
7634         if (CurInit.isInvalid())
7635           return ExprError();
7636 
7637         CastKind = CK_UserDefinedConversion;
7638         CreatedObject = Conversion->getReturnType()->isRecordType();
7639       }
7640 
7641       if (CreatedObject && checkAbstractType(CurInit.get()->getType()))
7642         return ExprError();
7643 
7644       CurInit = ImplicitCastExpr::Create(S.Context, CurInit.get()->getType(),
7645                                          CastKind, CurInit.get(), nullptr,
7646                                          CurInit.get()->getValueKind());
7647 
7648       if (shouldBindAsTemporary(Entity))
7649         // The overall entity is temporary, so this expression should be
7650         // destroyed at the end of its full-expression.
7651         CurInit = S.MaybeBindToTemporary(CurInit.getAs<Expr>());
7652       else if (CreatedObject && shouldDestroyEntity(Entity)) {
7653         // The object outlasts the full-expression, but we need to prepare for
7654         // a destructor being run on it.
7655         // FIXME: It makes no sense to do this here. This should happen
7656         // regardless of how we initialized the entity.
7657         QualType T = CurInit.get()->getType();
7658         if (const RecordType *Record = T->getAs<RecordType>()) {
7659           CXXDestructorDecl *Destructor
7660             = S.LookupDestructor(cast<CXXRecordDecl>(Record->getDecl()));
7661           S.CheckDestructorAccess(CurInit.get()->getBeginLoc(), Destructor,
7662                                   S.PDiag(diag::err_access_dtor_temp) << T);
7663           S.MarkFunctionReferenced(CurInit.get()->getBeginLoc(), Destructor);
7664           if (S.DiagnoseUseOfDecl(Destructor, CurInit.get()->getBeginLoc()))
7665             return ExprError();
7666         }
7667       }
7668       break;
7669     }
7670 
7671     case SK_QualificationConversionLValue:
7672     case SK_QualificationConversionXValue:
7673     case SK_QualificationConversionRValue: {
7674       // Perform a qualification conversion; these can never go wrong.
7675       ExprValueKind VK =
7676           Step->Kind == SK_QualificationConversionLValue
7677               ? VK_LValue
7678               : (Step->Kind == SK_QualificationConversionXValue ? VK_XValue
7679                                                                 : VK_RValue);
7680       CurInit = S.PerformQualificationConversion(CurInit.get(), Step->Type, VK);
7681       break;
7682     }
7683 
7684     case SK_AtomicConversion: {
7685       assert(CurInit.get()->isRValue() && "cannot convert glvalue to atomic");
7686       CurInit = S.ImpCastExprToType(CurInit.get(), Step->Type,
7687                                     CK_NonAtomicToAtomic, VK_RValue);
7688       break;
7689     }
7690 
7691     case SK_LValueToRValue: {
7692       assert(CurInit.get()->isGLValue() && "cannot load from a prvalue");
7693       CurInit = ImplicitCastExpr::Create(S.Context, Step->Type,
7694                                          CK_LValueToRValue, CurInit.get(),
7695                                          /*BasePath=*/nullptr, VK_RValue);
7696       break;
7697     }
7698 
7699     case SK_ConversionSequence:
7700     case SK_ConversionSequenceNoNarrowing: {
7701       if (const auto *FromPtrType =
7702               CurInit.get()->getType()->getAs<PointerType>()) {
7703         if (const auto *ToPtrType = Step->Type->getAs<PointerType>()) {
7704           if (FromPtrType->getPointeeType()->hasAttr(attr::NoDeref) &&
7705               !ToPtrType->getPointeeType()->hasAttr(attr::NoDeref)) {
7706             S.Diag(CurInit.get()->getExprLoc(),
7707                    diag::warn_noderef_to_dereferenceable_pointer)
7708                 << CurInit.get()->getSourceRange();
7709           }
7710         }
7711       }
7712 
7713       Sema::CheckedConversionKind CCK
7714         = Kind.isCStyleCast()? Sema::CCK_CStyleCast
7715         : Kind.isFunctionalCast()? Sema::CCK_FunctionalCast
7716         : Kind.isExplicitCast()? Sema::CCK_OtherCast
7717         : Sema::CCK_ImplicitConversion;
7718       ExprResult CurInitExprRes =
7719         S.PerformImplicitConversion(CurInit.get(), Step->Type, *Step->ICS,
7720                                     getAssignmentAction(Entity), CCK);
7721       if (CurInitExprRes.isInvalid())
7722         return ExprError();
7723 
7724       S.DiscardMisalignedMemberAddress(Step->Type.getTypePtr(), CurInit.get());
7725 
7726       CurInit = CurInitExprRes;
7727 
7728       if (Step->Kind == SK_ConversionSequenceNoNarrowing &&
7729           S.getLangOpts().CPlusPlus)
7730         DiagnoseNarrowingInInitList(S, *Step->ICS, SourceType, Entity.getType(),
7731                                     CurInit.get());
7732 
7733       break;
7734     }
7735 
7736     case SK_ListInitialization: {
7737       if (checkAbstractType(Step->Type))
7738         return ExprError();
7739 
7740       InitListExpr *InitList = cast<InitListExpr>(CurInit.get());
7741       // If we're not initializing the top-level entity, we need to create an
7742       // InitializeTemporary entity for our target type.
7743       QualType Ty = Step->Type;
7744       bool IsTemporary = !S.Context.hasSameType(Entity.getType(), Ty);
7745       InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(Ty);
7746       InitializedEntity InitEntity = IsTemporary ? TempEntity : Entity;
7747       InitListChecker PerformInitList(S, InitEntity,
7748           InitList, Ty, /*VerifyOnly=*/false,
7749           /*TreatUnavailableAsInvalid=*/false);
7750       if (PerformInitList.HadError())
7751         return ExprError();
7752 
7753       // Hack: We must update *ResultType if available in order to set the
7754       // bounds of arrays, e.g. in 'int ar[] = {1, 2, 3};'.
7755       // Worst case: 'const int (&arref)[] = {1, 2, 3};'.
7756       if (ResultType &&
7757           ResultType->getNonReferenceType()->isIncompleteArrayType()) {
7758         if ((*ResultType)->isRValueReferenceType())
7759           Ty = S.Context.getRValueReferenceType(Ty);
7760         else if ((*ResultType)->isLValueReferenceType())
7761           Ty = S.Context.getLValueReferenceType(Ty,
7762             (*ResultType)->getAs<LValueReferenceType>()->isSpelledAsLValue());
7763         *ResultType = Ty;
7764       }
7765 
7766       InitListExpr *StructuredInitList =
7767           PerformInitList.getFullyStructuredList();
7768       CurInit.get();
7769       CurInit = shouldBindAsTemporary(InitEntity)
7770           ? S.MaybeBindToTemporary(StructuredInitList)
7771           : StructuredInitList;
7772       break;
7773     }
7774 
7775     case SK_ConstructorInitializationFromList: {
7776       if (checkAbstractType(Step->Type))
7777         return ExprError();
7778 
7779       // When an initializer list is passed for a parameter of type "reference
7780       // to object", we don't get an EK_Temporary entity, but instead an
7781       // EK_Parameter entity with reference type.
7782       // FIXME: This is a hack. What we really should do is create a user
7783       // conversion step for this case, but this makes it considerably more
7784       // complicated. For now, this will do.
7785       InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(
7786                                         Entity.getType().getNonReferenceType());
7787       bool UseTemporary = Entity.getType()->isReferenceType();
7788       assert(Args.size() == 1 && "expected a single argument for list init");
7789       InitListExpr *InitList = cast<InitListExpr>(Args[0]);
7790       S.Diag(InitList->getExprLoc(), diag::warn_cxx98_compat_ctor_list_init)
7791         << InitList->getSourceRange();
7792       MultiExprArg Arg(InitList->getInits(), InitList->getNumInits());
7793       CurInit = PerformConstructorInitialization(S, UseTemporary ? TempEntity :
7794                                                                    Entity,
7795                                                  Kind, Arg, *Step,
7796                                                ConstructorInitRequiresZeroInit,
7797                                                /*IsListInitialization*/true,
7798                                                /*IsStdInitListInit*/false,
7799                                                InitList->getLBraceLoc(),
7800                                                InitList->getRBraceLoc());
7801       break;
7802     }
7803 
7804     case SK_UnwrapInitList:
7805       CurInit = cast<InitListExpr>(CurInit.get())->getInit(0);
7806       break;
7807 
7808     case SK_RewrapInitList: {
7809       Expr *E = CurInit.get();
7810       InitListExpr *Syntactic = Step->WrappingSyntacticList;
7811       InitListExpr *ILE = new (S.Context) InitListExpr(S.Context,
7812           Syntactic->getLBraceLoc(), E, Syntactic->getRBraceLoc());
7813       ILE->setSyntacticForm(Syntactic);
7814       ILE->setType(E->getType());
7815       ILE->setValueKind(E->getValueKind());
7816       CurInit = ILE;
7817       break;
7818     }
7819 
7820     case SK_ConstructorInitialization:
7821     case SK_StdInitializerListConstructorCall: {
7822       if (checkAbstractType(Step->Type))
7823         return ExprError();
7824 
7825       // When an initializer list is passed for a parameter of type "reference
7826       // to object", we don't get an EK_Temporary entity, but instead an
7827       // EK_Parameter entity with reference type.
7828       // FIXME: This is a hack. What we really should do is create a user
7829       // conversion step for this case, but this makes it considerably more
7830       // complicated. For now, this will do.
7831       InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(
7832                                         Entity.getType().getNonReferenceType());
7833       bool UseTemporary = Entity.getType()->isReferenceType();
7834       bool IsStdInitListInit =
7835           Step->Kind == SK_StdInitializerListConstructorCall;
7836       Expr *Source = CurInit.get();
7837       SourceRange Range = Kind.hasParenOrBraceRange()
7838                               ? Kind.getParenOrBraceRange()
7839                               : SourceRange();
7840       CurInit = PerformConstructorInitialization(
7841           S, UseTemporary ? TempEntity : Entity, Kind,
7842           Source ? MultiExprArg(Source) : Args, *Step,
7843           ConstructorInitRequiresZeroInit,
7844           /*IsListInitialization*/ IsStdInitListInit,
7845           /*IsStdInitListInitialization*/ IsStdInitListInit,
7846           /*LBraceLoc*/ Range.getBegin(),
7847           /*RBraceLoc*/ Range.getEnd());
7848       break;
7849     }
7850 
7851     case SK_ZeroInitialization: {
7852       step_iterator NextStep = Step;
7853       ++NextStep;
7854       if (NextStep != StepEnd &&
7855           (NextStep->Kind == SK_ConstructorInitialization ||
7856            NextStep->Kind == SK_ConstructorInitializationFromList)) {
7857         // The need for zero-initialization is recorded directly into
7858         // the call to the object's constructor within the next step.
7859         ConstructorInitRequiresZeroInit = true;
7860       } else if (Kind.getKind() == InitializationKind::IK_Value &&
7861                  S.getLangOpts().CPlusPlus &&
7862                  !Kind.isImplicitValueInit()) {
7863         TypeSourceInfo *TSInfo = Entity.getTypeSourceInfo();
7864         if (!TSInfo)
7865           TSInfo = S.Context.getTrivialTypeSourceInfo(Step->Type,
7866                                                     Kind.getRange().getBegin());
7867 
7868         CurInit = new (S.Context) CXXScalarValueInitExpr(
7869             Entity.getType().getNonLValueExprType(S.Context), TSInfo,
7870             Kind.getRange().getEnd());
7871       } else {
7872         CurInit = new (S.Context) ImplicitValueInitExpr(Step->Type);
7873       }
7874       break;
7875     }
7876 
7877     case SK_CAssignment: {
7878       QualType SourceType = CurInit.get()->getType();
7879 
7880       // Save off the initial CurInit in case we need to emit a diagnostic
7881       ExprResult InitialCurInit = CurInit;
7882       ExprResult Result = CurInit;
7883       Sema::AssignConvertType ConvTy =
7884         S.CheckSingleAssignmentConstraints(Step->Type, Result, true,
7885             Entity.getKind() == InitializedEntity::EK_Parameter_CF_Audited);
7886       if (Result.isInvalid())
7887         return ExprError();
7888       CurInit = Result;
7889 
7890       // If this is a call, allow conversion to a transparent union.
7891       ExprResult CurInitExprRes = CurInit;
7892       if (ConvTy != Sema::Compatible &&
7893           Entity.isParameterKind() &&
7894           S.CheckTransparentUnionArgumentConstraints(Step->Type, CurInitExprRes)
7895             == Sema::Compatible)
7896         ConvTy = Sema::Compatible;
7897       if (CurInitExprRes.isInvalid())
7898         return ExprError();
7899       CurInit = CurInitExprRes;
7900 
7901       bool Complained;
7902       if (S.DiagnoseAssignmentResult(ConvTy, Kind.getLocation(),
7903                                      Step->Type, SourceType,
7904                                      InitialCurInit.get(),
7905                                      getAssignmentAction(Entity, true),
7906                                      &Complained)) {
7907         PrintInitLocationNote(S, Entity);
7908         return ExprError();
7909       } else if (Complained)
7910         PrintInitLocationNote(S, Entity);
7911       break;
7912     }
7913 
7914     case SK_StringInit: {
7915       QualType Ty = Step->Type;
7916       CheckStringInit(CurInit.get(), ResultType ? *ResultType : Ty,
7917                       S.Context.getAsArrayType(Ty), S);
7918       break;
7919     }
7920 
7921     case SK_ObjCObjectConversion:
7922       CurInit = S.ImpCastExprToType(CurInit.get(), Step->Type,
7923                           CK_ObjCObjectLValueCast,
7924                           CurInit.get()->getValueKind());
7925       break;
7926 
7927     case SK_ArrayLoopIndex: {
7928       Expr *Cur = CurInit.get();
7929       Expr *BaseExpr = new (S.Context)
7930           OpaqueValueExpr(Cur->getExprLoc(), Cur->getType(),
7931                           Cur->getValueKind(), Cur->getObjectKind(), Cur);
7932       Expr *IndexExpr =
7933           new (S.Context) ArrayInitIndexExpr(S.Context.getSizeType());
7934       CurInit = S.CreateBuiltinArraySubscriptExpr(
7935           BaseExpr, Kind.getLocation(), IndexExpr, Kind.getLocation());
7936       ArrayLoopCommonExprs.push_back(BaseExpr);
7937       break;
7938     }
7939 
7940     case SK_ArrayLoopInit: {
7941       assert(!ArrayLoopCommonExprs.empty() &&
7942              "mismatched SK_ArrayLoopIndex and SK_ArrayLoopInit");
7943       Expr *Common = ArrayLoopCommonExprs.pop_back_val();
7944       CurInit = new (S.Context) ArrayInitLoopExpr(Step->Type, Common,
7945                                                   CurInit.get());
7946       break;
7947     }
7948 
7949     case SK_GNUArrayInit:
7950       // Okay: we checked everything before creating this step. Note that
7951       // this is a GNU extension.
7952       S.Diag(Kind.getLocation(), diag::ext_array_init_copy)
7953         << Step->Type << CurInit.get()->getType()
7954         << CurInit.get()->getSourceRange();
7955       LLVM_FALLTHROUGH;
7956     case SK_ArrayInit:
7957       // If the destination type is an incomplete array type, update the
7958       // type accordingly.
7959       if (ResultType) {
7960         if (const IncompleteArrayType *IncompleteDest
7961                            = S.Context.getAsIncompleteArrayType(Step->Type)) {
7962           if (const ConstantArrayType *ConstantSource
7963                  = S.Context.getAsConstantArrayType(CurInit.get()->getType())) {
7964             *ResultType = S.Context.getConstantArrayType(
7965                                              IncompleteDest->getElementType(),
7966                                              ConstantSource->getSize(),
7967                                              ArrayType::Normal, 0);
7968           }
7969         }
7970       }
7971       break;
7972 
7973     case SK_ParenthesizedArrayInit:
7974       // Okay: we checked everything before creating this step. Note that
7975       // this is a GNU extension.
7976       S.Diag(Kind.getLocation(), diag::ext_array_init_parens)
7977         << CurInit.get()->getSourceRange();
7978       break;
7979 
7980     case SK_PassByIndirectCopyRestore:
7981     case SK_PassByIndirectRestore:
7982       checkIndirectCopyRestoreSource(S, CurInit.get());
7983       CurInit = new (S.Context) ObjCIndirectCopyRestoreExpr(
7984           CurInit.get(), Step->Type,
7985           Step->Kind == SK_PassByIndirectCopyRestore);
7986       break;
7987 
7988     case SK_ProduceObjCObject:
7989       CurInit =
7990           ImplicitCastExpr::Create(S.Context, Step->Type, CK_ARCProduceObject,
7991                                    CurInit.get(), nullptr, VK_RValue);
7992       break;
7993 
7994     case SK_StdInitializerList: {
7995       S.Diag(CurInit.get()->getExprLoc(),
7996              diag::warn_cxx98_compat_initializer_list_init)
7997         << CurInit.get()->getSourceRange();
7998 
7999       // Materialize the temporary into memory.
8000       MaterializeTemporaryExpr *MTE = S.CreateMaterializeTemporaryExpr(
8001           CurInit.get()->getType(), CurInit.get(),
8002           /*BoundToLvalueReference=*/false);
8003 
8004       // Wrap it in a construction of a std::initializer_list<T>.
8005       CurInit = new (S.Context) CXXStdInitializerListExpr(Step->Type, MTE);
8006 
8007       // Bind the result, in case the library has given initializer_list a
8008       // non-trivial destructor.
8009       if (shouldBindAsTemporary(Entity))
8010         CurInit = S.MaybeBindToTemporary(CurInit.get());
8011       break;
8012     }
8013 
8014     case SK_OCLSamplerInit: {
8015       // Sampler initialization have 5 cases:
8016       //   1. function argument passing
8017       //      1a. argument is a file-scope variable
8018       //      1b. argument is a function-scope variable
8019       //      1c. argument is one of caller function's parameters
8020       //   2. variable initialization
8021       //      2a. initializing a file-scope variable
8022       //      2b. initializing a function-scope variable
8023       //
8024       // For file-scope variables, since they cannot be initialized by function
8025       // call of __translate_sampler_initializer in LLVM IR, their references
8026       // need to be replaced by a cast from their literal initializers to
8027       // sampler type. Since sampler variables can only be used in function
8028       // calls as arguments, we only need to replace them when handling the
8029       // argument passing.
8030       assert(Step->Type->isSamplerT() &&
8031              "Sampler initialization on non-sampler type.");
8032       Expr *Init = CurInit.get();
8033       QualType SourceType = Init->getType();
8034       // Case 1
8035       if (Entity.isParameterKind()) {
8036         if (!SourceType->isSamplerT() && !SourceType->isIntegerType()) {
8037           S.Diag(Kind.getLocation(), diag::err_sampler_argument_required)
8038             << SourceType;
8039           break;
8040         } else if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Init)) {
8041           auto Var = cast<VarDecl>(DRE->getDecl());
8042           // Case 1b and 1c
8043           // No cast from integer to sampler is needed.
8044           if (!Var->hasGlobalStorage()) {
8045             CurInit = ImplicitCastExpr::Create(S.Context, Step->Type,
8046                                                CK_LValueToRValue, Init,
8047                                                /*BasePath=*/nullptr, VK_RValue);
8048             break;
8049           }
8050           // Case 1a
8051           // For function call with a file-scope sampler variable as argument,
8052           // get the integer literal.
8053           // Do not diagnose if the file-scope variable does not have initializer
8054           // since this has already been diagnosed when parsing the variable
8055           // declaration.
8056           if (!Var->getInit() || !isa<ImplicitCastExpr>(Var->getInit()))
8057             break;
8058           Init = cast<ImplicitCastExpr>(const_cast<Expr*>(
8059             Var->getInit()))->getSubExpr();
8060           SourceType = Init->getType();
8061         }
8062       } else {
8063         // Case 2
8064         // Check initializer is 32 bit integer constant.
8065         // If the initializer is taken from global variable, do not diagnose since
8066         // this has already been done when parsing the variable declaration.
8067         if (!Init->isConstantInitializer(S.Context, false))
8068           break;
8069 
8070         if (!SourceType->isIntegerType() ||
8071             32 != S.Context.getIntWidth(SourceType)) {
8072           S.Diag(Kind.getLocation(), diag::err_sampler_initializer_not_integer)
8073             << SourceType;
8074           break;
8075         }
8076 
8077         Expr::EvalResult EVResult;
8078         Init->EvaluateAsInt(EVResult, S.Context);
8079         llvm::APSInt Result = EVResult.Val.getInt();
8080         const uint64_t SamplerValue = Result.getLimitedValue();
8081         // 32-bit value of sampler's initializer is interpreted as
8082         // bit-field with the following structure:
8083         // |unspecified|Filter|Addressing Mode| Normalized Coords|
8084         // |31        6|5    4|3             1|                 0|
8085         // This structure corresponds to enum values of sampler properties
8086         // defined in SPIR spec v1.2 and also opencl-c.h
8087         unsigned AddressingMode  = (0x0E & SamplerValue) >> 1;
8088         unsigned FilterMode      = (0x30 & SamplerValue) >> 4;
8089         if (FilterMode != 1 && FilterMode != 2 &&
8090             !S.getOpenCLOptions().isEnabled(
8091                 "cl_intel_device_side_avc_motion_estimation"))
8092           S.Diag(Kind.getLocation(),
8093                  diag::warn_sampler_initializer_invalid_bits)
8094                  << "Filter Mode";
8095         if (AddressingMode > 4)
8096           S.Diag(Kind.getLocation(),
8097                  diag::warn_sampler_initializer_invalid_bits)
8098                  << "Addressing Mode";
8099       }
8100 
8101       // Cases 1a, 2a and 2b
8102       // Insert cast from integer to sampler.
8103       CurInit = S.ImpCastExprToType(Init, S.Context.OCLSamplerTy,
8104                                       CK_IntToOCLSampler);
8105       break;
8106     }
8107     case SK_OCLZeroOpaqueType: {
8108       assert((Step->Type->isEventT() || Step->Type->isQueueT() ||
8109               Step->Type->isOCLIntelSubgroupAVCType()) &&
8110              "Wrong type for initialization of OpenCL opaque type.");
8111 
8112       CurInit = S.ImpCastExprToType(CurInit.get(), Step->Type,
8113                                     CK_ZeroToOCLOpaqueType,
8114                                     CurInit.get()->getValueKind());
8115       break;
8116     }
8117     }
8118   }
8119 
8120   // Check whether the initializer has a shorter lifetime than the initialized
8121   // entity, and if not, either lifetime-extend or warn as appropriate.
8122   if (auto *Init = CurInit.get())
8123     S.checkInitializerLifetime(Entity, Init);
8124 
8125   // Diagnose non-fatal problems with the completed initialization.
8126   if (Entity.getKind() == InitializedEntity::EK_Member &&
8127       cast<FieldDecl>(Entity.getDecl())->isBitField())
8128     S.CheckBitFieldInitialization(Kind.getLocation(),
8129                                   cast<FieldDecl>(Entity.getDecl()),
8130                                   CurInit.get());
8131 
8132   // Check for std::move on construction.
8133   if (const Expr *E = CurInit.get()) {
8134     CheckMoveOnConstruction(S, E,
8135                             Entity.getKind() == InitializedEntity::EK_Result);
8136   }
8137 
8138   return CurInit;
8139 }
8140 
8141 /// Somewhere within T there is an uninitialized reference subobject.
8142 /// Dig it out and diagnose it.
DiagnoseUninitializedReference(Sema & S,SourceLocation Loc,QualType T)8143 static bool DiagnoseUninitializedReference(Sema &S, SourceLocation Loc,
8144                                            QualType T) {
8145   if (T->isReferenceType()) {
8146     S.Diag(Loc, diag::err_reference_without_init)
8147       << T.getNonReferenceType();
8148     return true;
8149   }
8150 
8151   CXXRecordDecl *RD = T->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
8152   if (!RD || !RD->hasUninitializedReferenceMember())
8153     return false;
8154 
8155   for (const auto *FI : RD->fields()) {
8156     if (FI->isUnnamedBitfield())
8157       continue;
8158 
8159     if (DiagnoseUninitializedReference(S, FI->getLocation(), FI->getType())) {
8160       S.Diag(Loc, diag::note_value_initialization_here) << RD;
8161       return true;
8162     }
8163   }
8164 
8165   for (const auto &BI : RD->bases()) {
8166     if (DiagnoseUninitializedReference(S, BI.getBeginLoc(), BI.getType())) {
8167       S.Diag(Loc, diag::note_value_initialization_here) << RD;
8168       return true;
8169     }
8170   }
8171 
8172   return false;
8173 }
8174 
8175 
8176 //===----------------------------------------------------------------------===//
8177 // Diagnose initialization failures
8178 //===----------------------------------------------------------------------===//
8179 
8180 /// Emit notes associated with an initialization that failed due to a
8181 /// "simple" conversion failure.
emitBadConversionNotes(Sema & S,const InitializedEntity & entity,Expr * op)8182 static void emitBadConversionNotes(Sema &S, const InitializedEntity &entity,
8183                                    Expr *op) {
8184   QualType destType = entity.getType();
8185   if (destType.getNonReferenceType()->isObjCObjectPointerType() &&
8186       op->getType()->isObjCObjectPointerType()) {
8187 
8188     // Emit a possible note about the conversion failing because the
8189     // operand is a message send with a related result type.
8190     S.EmitRelatedResultTypeNote(op);
8191 
8192     // Emit a possible note about a return failing because we're
8193     // expecting a related result type.
8194     if (entity.getKind() == InitializedEntity::EK_Result)
8195       S.EmitRelatedResultTypeNoteForReturn(destType);
8196   }
8197 }
8198 
diagnoseListInit(Sema & S,const InitializedEntity & Entity,InitListExpr * InitList)8199 static void diagnoseListInit(Sema &S, const InitializedEntity &Entity,
8200                              InitListExpr *InitList) {
8201   QualType DestType = Entity.getType();
8202 
8203   QualType E;
8204   if (S.getLangOpts().CPlusPlus11 && S.isStdInitializerList(DestType, &E)) {
8205     QualType ArrayType = S.Context.getConstantArrayType(
8206         E.withConst(),
8207         llvm::APInt(S.Context.getTypeSize(S.Context.getSizeType()),
8208                     InitList->getNumInits()),
8209         clang::ArrayType::Normal, 0);
8210     InitializedEntity HiddenArray =
8211         InitializedEntity::InitializeTemporary(ArrayType);
8212     return diagnoseListInit(S, HiddenArray, InitList);
8213   }
8214 
8215   if (DestType->isReferenceType()) {
8216     // A list-initialization failure for a reference means that we tried to
8217     // create a temporary of the inner type (per [dcl.init.list]p3.6) and the
8218     // inner initialization failed.
8219     QualType T = DestType->getAs<ReferenceType>()->getPointeeType();
8220     diagnoseListInit(S, InitializedEntity::InitializeTemporary(T), InitList);
8221     SourceLocation Loc = InitList->getBeginLoc();
8222     if (auto *D = Entity.getDecl())
8223       Loc = D->getLocation();
8224     S.Diag(Loc, diag::note_in_reference_temporary_list_initializer) << T;
8225     return;
8226   }
8227 
8228   InitListChecker DiagnoseInitList(S, Entity, InitList, DestType,
8229                                    /*VerifyOnly=*/false,
8230                                    /*TreatUnavailableAsInvalid=*/false);
8231   assert(DiagnoseInitList.HadError() &&
8232          "Inconsistent init list check result.");
8233 }
8234 
Diagnose(Sema & S,const InitializedEntity & Entity,const InitializationKind & Kind,ArrayRef<Expr * > Args)8235 bool InitializationSequence::Diagnose(Sema &S,
8236                                       const InitializedEntity &Entity,
8237                                       const InitializationKind &Kind,
8238                                       ArrayRef<Expr *> Args) {
8239   if (!Failed())
8240     return false;
8241 
8242   // When we want to diagnose only one element of a braced-init-list,
8243   // we need to factor it out.
8244   Expr *OnlyArg;
8245   if (Args.size() == 1) {
8246     auto *List = dyn_cast<InitListExpr>(Args[0]);
8247     if (List && List->getNumInits() == 1)
8248       OnlyArg = List->getInit(0);
8249     else
8250       OnlyArg = Args[0];
8251   }
8252   else
8253     OnlyArg = nullptr;
8254 
8255   QualType DestType = Entity.getType();
8256   switch (Failure) {
8257   case FK_TooManyInitsForReference:
8258     // FIXME: Customize for the initialized entity?
8259     if (Args.empty()) {
8260       // Dig out the reference subobject which is uninitialized and diagnose it.
8261       // If this is value-initialization, this could be nested some way within
8262       // the target type.
8263       assert(Kind.getKind() == InitializationKind::IK_Value ||
8264              DestType->isReferenceType());
8265       bool Diagnosed =
8266         DiagnoseUninitializedReference(S, Kind.getLocation(), DestType);
8267       assert(Diagnosed && "couldn't find uninitialized reference to diagnose");
8268       (void)Diagnosed;
8269     } else  // FIXME: diagnostic below could be better!
8270       S.Diag(Kind.getLocation(), diag::err_reference_has_multiple_inits)
8271           << SourceRange(Args.front()->getBeginLoc(), Args.back()->getEndLoc());
8272     break;
8273   case FK_ParenthesizedListInitForReference:
8274     S.Diag(Kind.getLocation(), diag::err_list_init_in_parens)
8275       << 1 << Entity.getType() << Args[0]->getSourceRange();
8276     break;
8277 
8278   case FK_ArrayNeedsInitList:
8279     S.Diag(Kind.getLocation(), diag::err_array_init_not_init_list) << 0;
8280     break;
8281   case FK_ArrayNeedsInitListOrStringLiteral:
8282     S.Diag(Kind.getLocation(), diag::err_array_init_not_init_list) << 1;
8283     break;
8284   case FK_ArrayNeedsInitListOrWideStringLiteral:
8285     S.Diag(Kind.getLocation(), diag::err_array_init_not_init_list) << 2;
8286     break;
8287   case FK_NarrowStringIntoWideCharArray:
8288     S.Diag(Kind.getLocation(), diag::err_array_init_narrow_string_into_wchar);
8289     break;
8290   case FK_WideStringIntoCharArray:
8291     S.Diag(Kind.getLocation(), diag::err_array_init_wide_string_into_char);
8292     break;
8293   case FK_IncompatWideStringIntoWideChar:
8294     S.Diag(Kind.getLocation(),
8295            diag::err_array_init_incompat_wide_string_into_wchar);
8296     break;
8297   case FK_PlainStringIntoUTF8Char:
8298     S.Diag(Kind.getLocation(),
8299            diag::err_array_init_plain_string_into_char8_t);
8300     S.Diag(Args.front()->getBeginLoc(),
8301            diag::note_array_init_plain_string_into_char8_t)
8302         << FixItHint::CreateInsertion(Args.front()->getBeginLoc(), "u8");
8303     break;
8304   case FK_UTF8StringIntoPlainChar:
8305     S.Diag(Kind.getLocation(),
8306            diag::err_array_init_utf8_string_into_char)
8307       << S.getLangOpts().CPlusPlus2a;
8308     break;
8309   case FK_ArrayTypeMismatch:
8310   case FK_NonConstantArrayInit:
8311     S.Diag(Kind.getLocation(),
8312            (Failure == FK_ArrayTypeMismatch
8313               ? diag::err_array_init_different_type
8314               : diag::err_array_init_non_constant_array))
8315       << DestType.getNonReferenceType()
8316       << OnlyArg->getType()
8317       << Args[0]->getSourceRange();
8318     break;
8319 
8320   case FK_VariableLengthArrayHasInitializer:
8321     S.Diag(Kind.getLocation(), diag::err_variable_object_no_init)
8322       << Args[0]->getSourceRange();
8323     break;
8324 
8325   case FK_AddressOfOverloadFailed: {
8326     DeclAccessPair Found;
8327     S.ResolveAddressOfOverloadedFunction(OnlyArg,
8328                                          DestType.getNonReferenceType(),
8329                                          true,
8330                                          Found);
8331     break;
8332   }
8333 
8334   case FK_AddressOfUnaddressableFunction: {
8335     auto *FD = cast<FunctionDecl>(cast<DeclRefExpr>(OnlyArg)->getDecl());
8336     S.checkAddressOfFunctionIsAvailable(FD, /*Complain=*/true,
8337                                         OnlyArg->getBeginLoc());
8338     break;
8339   }
8340 
8341   case FK_ReferenceInitOverloadFailed:
8342   case FK_UserConversionOverloadFailed:
8343     switch (FailedOverloadResult) {
8344     case OR_Ambiguous:
8345       if (Failure == FK_UserConversionOverloadFailed)
8346         S.Diag(Kind.getLocation(), diag::err_typecheck_ambiguous_condition)
8347           << OnlyArg->getType() << DestType
8348           << Args[0]->getSourceRange();
8349       else
8350         S.Diag(Kind.getLocation(), diag::err_ref_init_ambiguous)
8351           << DestType << OnlyArg->getType()
8352           << Args[0]->getSourceRange();
8353 
8354       FailedCandidateSet.NoteCandidates(S, OCD_ViableCandidates, Args);
8355       break;
8356 
8357     case OR_No_Viable_Function:
8358       if (!S.RequireCompleteType(Kind.getLocation(),
8359                                  DestType.getNonReferenceType(),
8360                           diag::err_typecheck_nonviable_condition_incomplete,
8361                                OnlyArg->getType(), Args[0]->getSourceRange()))
8362         S.Diag(Kind.getLocation(), diag::err_typecheck_nonviable_condition)
8363           << (Entity.getKind() == InitializedEntity::EK_Result)
8364           << OnlyArg->getType() << Args[0]->getSourceRange()
8365           << DestType.getNonReferenceType();
8366 
8367       FailedCandidateSet.NoteCandidates(S, OCD_AllCandidates, Args);
8368       break;
8369 
8370     case OR_Deleted: {
8371       S.Diag(Kind.getLocation(), diag::err_typecheck_deleted_function)
8372         << OnlyArg->getType() << DestType.getNonReferenceType()
8373         << Args[0]->getSourceRange();
8374       OverloadCandidateSet::iterator Best;
8375       OverloadingResult Ovl
8376         = FailedCandidateSet.BestViableFunction(S, Kind.getLocation(), Best);
8377       if (Ovl == OR_Deleted) {
8378         S.NoteDeletedFunction(Best->Function);
8379       } else {
8380         llvm_unreachable("Inconsistent overload resolution?");
8381       }
8382       break;
8383     }
8384 
8385     case OR_Success:
8386       llvm_unreachable("Conversion did not fail!");
8387     }
8388     break;
8389 
8390   case FK_NonConstLValueReferenceBindingToTemporary:
8391     if (isa<InitListExpr>(Args[0])) {
8392       S.Diag(Kind.getLocation(),
8393              diag::err_lvalue_reference_bind_to_initlist)
8394       << DestType.getNonReferenceType().isVolatileQualified()
8395       << DestType.getNonReferenceType()
8396       << Args[0]->getSourceRange();
8397       break;
8398     }
8399     LLVM_FALLTHROUGH;
8400 
8401   case FK_NonConstLValueReferenceBindingToUnrelated:
8402     S.Diag(Kind.getLocation(),
8403            Failure == FK_NonConstLValueReferenceBindingToTemporary
8404              ? diag::err_lvalue_reference_bind_to_temporary
8405              : diag::err_lvalue_reference_bind_to_unrelated)
8406       << DestType.getNonReferenceType().isVolatileQualified()
8407       << DestType.getNonReferenceType()
8408       << OnlyArg->getType()
8409       << Args[0]->getSourceRange();
8410     break;
8411 
8412   case FK_NonConstLValueReferenceBindingToBitfield: {
8413     // We don't necessarily have an unambiguous source bit-field.
8414     FieldDecl *BitField = Args[0]->getSourceBitField();
8415     S.Diag(Kind.getLocation(), diag::err_reference_bind_to_bitfield)
8416       << DestType.isVolatileQualified()
8417       << (BitField ? BitField->getDeclName() : DeclarationName())
8418       << (BitField != nullptr)
8419       << Args[0]->getSourceRange();
8420     if (BitField)
8421       S.Diag(BitField->getLocation(), diag::note_bitfield_decl);
8422     break;
8423   }
8424 
8425   case FK_NonConstLValueReferenceBindingToVectorElement:
8426     S.Diag(Kind.getLocation(), diag::err_reference_bind_to_vector_element)
8427       << DestType.isVolatileQualified()
8428       << Args[0]->getSourceRange();
8429     break;
8430 
8431   case FK_RValueReferenceBindingToLValue:
8432     S.Diag(Kind.getLocation(), diag::err_lvalue_to_rvalue_ref)
8433       << DestType.getNonReferenceType() << OnlyArg->getType()
8434       << Args[0]->getSourceRange();
8435     break;
8436 
8437   case FK_ReferenceInitDropsQualifiers: {
8438     QualType SourceType = OnlyArg->getType();
8439     QualType NonRefType = DestType.getNonReferenceType();
8440     Qualifiers DroppedQualifiers =
8441         SourceType.getQualifiers() - NonRefType.getQualifiers();
8442 
8443     S.Diag(Kind.getLocation(), diag::err_reference_bind_drops_quals)
8444       << SourceType
8445       << NonRefType
8446       << DroppedQualifiers.getCVRQualifiers()
8447       << Args[0]->getSourceRange();
8448     break;
8449   }
8450 
8451   case FK_ReferenceInitFailed:
8452     S.Diag(Kind.getLocation(), diag::err_reference_bind_failed)
8453       << DestType.getNonReferenceType()
8454       << OnlyArg->isLValue()
8455       << OnlyArg->getType()
8456       << Args[0]->getSourceRange();
8457     emitBadConversionNotes(S, Entity, Args[0]);
8458     break;
8459 
8460   case FK_ConversionFailed: {
8461     QualType FromType = OnlyArg->getType();
8462     PartialDiagnostic PDiag = S.PDiag(diag::err_init_conversion_failed)
8463       << (int)Entity.getKind()
8464       << DestType
8465       << OnlyArg->isLValue()
8466       << FromType
8467       << Args[0]->getSourceRange();
8468     S.HandleFunctionTypeMismatch(PDiag, FromType, DestType);
8469     S.Diag(Kind.getLocation(), PDiag);
8470     emitBadConversionNotes(S, Entity, Args[0]);
8471     break;
8472   }
8473 
8474   case FK_ConversionFromPropertyFailed:
8475     // No-op. This error has already been reported.
8476     break;
8477 
8478   case FK_TooManyInitsForScalar: {
8479     SourceRange R;
8480 
8481     auto *InitList = dyn_cast<InitListExpr>(Args[0]);
8482     if (InitList && InitList->getNumInits() >= 1) {
8483       R = SourceRange(InitList->getInit(0)->getEndLoc(), InitList->getEndLoc());
8484     } else {
8485       assert(Args.size() > 1 && "Expected multiple initializers!");
8486       R = SourceRange(Args.front()->getEndLoc(), Args.back()->getEndLoc());
8487     }
8488 
8489     R.setBegin(S.getLocForEndOfToken(R.getBegin()));
8490     if (Kind.isCStyleOrFunctionalCast())
8491       S.Diag(Kind.getLocation(), diag::err_builtin_func_cast_more_than_one_arg)
8492         << R;
8493     else
8494       S.Diag(Kind.getLocation(), diag::err_excess_initializers)
8495         << /*scalar=*/2 << R;
8496     break;
8497   }
8498 
8499   case FK_ParenthesizedListInitForScalar:
8500     S.Diag(Kind.getLocation(), diag::err_list_init_in_parens)
8501       << 0 << Entity.getType() << Args[0]->getSourceRange();
8502     break;
8503 
8504   case FK_ReferenceBindingToInitList:
8505     S.Diag(Kind.getLocation(), diag::err_reference_bind_init_list)
8506       << DestType.getNonReferenceType() << Args[0]->getSourceRange();
8507     break;
8508 
8509   case FK_InitListBadDestinationType:
8510     S.Diag(Kind.getLocation(), diag::err_init_list_bad_dest_type)
8511       << (DestType->isRecordType()) << DestType << Args[0]->getSourceRange();
8512     break;
8513 
8514   case FK_ListConstructorOverloadFailed:
8515   case FK_ConstructorOverloadFailed: {
8516     SourceRange ArgsRange;
8517     if (Args.size())
8518       ArgsRange =
8519           SourceRange(Args.front()->getBeginLoc(), Args.back()->getEndLoc());
8520 
8521     if (Failure == FK_ListConstructorOverloadFailed) {
8522       assert(Args.size() == 1 &&
8523              "List construction from other than 1 argument.");
8524       InitListExpr *InitList = cast<InitListExpr>(Args[0]);
8525       Args = MultiExprArg(InitList->getInits(), InitList->getNumInits());
8526     }
8527 
8528     // FIXME: Using "DestType" for the entity we're printing is probably
8529     // bad.
8530     switch (FailedOverloadResult) {
8531       case OR_Ambiguous:
8532         S.Diag(Kind.getLocation(), diag::err_ovl_ambiguous_init)
8533           << DestType << ArgsRange;
8534         FailedCandidateSet.NoteCandidates(S, OCD_ViableCandidates, Args);
8535         break;
8536 
8537       case OR_No_Viable_Function:
8538         if (Kind.getKind() == InitializationKind::IK_Default &&
8539             (Entity.getKind() == InitializedEntity::EK_Base ||
8540              Entity.getKind() == InitializedEntity::EK_Member) &&
8541             isa<CXXConstructorDecl>(S.CurContext)) {
8542           // This is implicit default initialization of a member or
8543           // base within a constructor. If no viable function was
8544           // found, notify the user that they need to explicitly
8545           // initialize this base/member.
8546           CXXConstructorDecl *Constructor
8547             = cast<CXXConstructorDecl>(S.CurContext);
8548           const CXXRecordDecl *InheritedFrom = nullptr;
8549           if (auto Inherited = Constructor->getInheritedConstructor())
8550             InheritedFrom = Inherited.getShadowDecl()->getNominatedBaseClass();
8551           if (Entity.getKind() == InitializedEntity::EK_Base) {
8552             S.Diag(Kind.getLocation(), diag::err_missing_default_ctor)
8553               << (InheritedFrom ? 2 : Constructor->isImplicit() ? 1 : 0)
8554               << S.Context.getTypeDeclType(Constructor->getParent())
8555               << /*base=*/0
8556               << Entity.getType()
8557               << InheritedFrom;
8558 
8559             RecordDecl *BaseDecl
8560               = Entity.getBaseSpecifier()->getType()->getAs<RecordType>()
8561                                                                   ->getDecl();
8562             S.Diag(BaseDecl->getLocation(), diag::note_previous_decl)
8563               << S.Context.getTagDeclType(BaseDecl);
8564           } else {
8565             S.Diag(Kind.getLocation(), diag::err_missing_default_ctor)
8566               << (InheritedFrom ? 2 : Constructor->isImplicit() ? 1 : 0)
8567               << S.Context.getTypeDeclType(Constructor->getParent())
8568               << /*member=*/1
8569               << Entity.getName()
8570               << InheritedFrom;
8571             S.Diag(Entity.getDecl()->getLocation(),
8572                    diag::note_member_declared_at);
8573 
8574             if (const RecordType *Record
8575                                  = Entity.getType()->getAs<RecordType>())
8576               S.Diag(Record->getDecl()->getLocation(),
8577                      diag::note_previous_decl)
8578                 << S.Context.getTagDeclType(Record->getDecl());
8579           }
8580           break;
8581         }
8582 
8583         S.Diag(Kind.getLocation(), diag::err_ovl_no_viable_function_in_init)
8584           << DestType << ArgsRange;
8585         FailedCandidateSet.NoteCandidates(S, OCD_AllCandidates, Args);
8586         break;
8587 
8588       case OR_Deleted: {
8589         OverloadCandidateSet::iterator Best;
8590         OverloadingResult Ovl
8591           = FailedCandidateSet.BestViableFunction(S, Kind.getLocation(), Best);
8592         if (Ovl != OR_Deleted) {
8593           S.Diag(Kind.getLocation(), diag::err_ovl_deleted_init)
8594             << true << DestType << ArgsRange;
8595           llvm_unreachable("Inconsistent overload resolution?");
8596           break;
8597         }
8598 
8599         // If this is a defaulted or implicitly-declared function, then
8600         // it was implicitly deleted. Make it clear that the deletion was
8601         // implicit.
8602         if (S.isImplicitlyDeleted(Best->Function))
8603           S.Diag(Kind.getLocation(), diag::err_ovl_deleted_special_init)
8604             << S.getSpecialMember(cast<CXXMethodDecl>(Best->Function))
8605             << DestType << ArgsRange;
8606         else
8607           S.Diag(Kind.getLocation(), diag::err_ovl_deleted_init)
8608             << true << DestType << ArgsRange;
8609 
8610         S.NoteDeletedFunction(Best->Function);
8611         break;
8612       }
8613 
8614       case OR_Success:
8615         llvm_unreachable("Conversion did not fail!");
8616     }
8617   }
8618   break;
8619 
8620   case FK_DefaultInitOfConst:
8621     if (Entity.getKind() == InitializedEntity::EK_Member &&
8622         isa<CXXConstructorDecl>(S.CurContext)) {
8623       // This is implicit default-initialization of a const member in
8624       // a constructor. Complain that it needs to be explicitly
8625       // initialized.
8626       CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(S.CurContext);
8627       S.Diag(Kind.getLocation(), diag::err_uninitialized_member_in_ctor)
8628         << (Constructor->getInheritedConstructor() ? 2 :
8629             Constructor->isImplicit() ? 1 : 0)
8630         << S.Context.getTypeDeclType(Constructor->getParent())
8631         << /*const=*/1
8632         << Entity.getName();
8633       S.Diag(Entity.getDecl()->getLocation(), diag::note_previous_decl)
8634         << Entity.getName();
8635     } else {
8636       S.Diag(Kind.getLocation(), diag::err_default_init_const)
8637           << DestType << (bool)DestType->getAs<RecordType>();
8638     }
8639     break;
8640 
8641   case FK_Incomplete:
8642     S.RequireCompleteType(Kind.getLocation(), FailedIncompleteType,
8643                           diag::err_init_incomplete_type);
8644     break;
8645 
8646   case FK_ListInitializationFailed: {
8647     // Run the init list checker again to emit diagnostics.
8648     InitListExpr *InitList = cast<InitListExpr>(Args[0]);
8649     diagnoseListInit(S, Entity, InitList);
8650     break;
8651   }
8652 
8653   case FK_PlaceholderType: {
8654     // FIXME: Already diagnosed!
8655     break;
8656   }
8657 
8658   case FK_ExplicitConstructor: {
8659     S.Diag(Kind.getLocation(), diag::err_selected_explicit_constructor)
8660       << Args[0]->getSourceRange();
8661     OverloadCandidateSet::iterator Best;
8662     OverloadingResult Ovl
8663       = FailedCandidateSet.BestViableFunction(S, Kind.getLocation(), Best);
8664     (void)Ovl;
8665     assert(Ovl == OR_Success && "Inconsistent overload resolution");
8666     CXXConstructorDecl *CtorDecl = cast<CXXConstructorDecl>(Best->Function);
8667     S.Diag(CtorDecl->getLocation(),
8668            diag::note_explicit_ctor_deduction_guide_here) << false;
8669     break;
8670   }
8671   }
8672 
8673   PrintInitLocationNote(S, Entity);
8674   return true;
8675 }
8676 
dump(raw_ostream & OS) const8677 void InitializationSequence::dump(raw_ostream &OS) const {
8678   switch (SequenceKind) {
8679   case FailedSequence: {
8680     OS << "Failed sequence: ";
8681     switch (Failure) {
8682     case FK_TooManyInitsForReference:
8683       OS << "too many initializers for reference";
8684       break;
8685 
8686     case FK_ParenthesizedListInitForReference:
8687       OS << "parenthesized list init for reference";
8688       break;
8689 
8690     case FK_ArrayNeedsInitList:
8691       OS << "array requires initializer list";
8692       break;
8693 
8694     case FK_AddressOfUnaddressableFunction:
8695       OS << "address of unaddressable function was taken";
8696       break;
8697 
8698     case FK_ArrayNeedsInitListOrStringLiteral:
8699       OS << "array requires initializer list or string literal";
8700       break;
8701 
8702     case FK_ArrayNeedsInitListOrWideStringLiteral:
8703       OS << "array requires initializer list or wide string literal";
8704       break;
8705 
8706     case FK_NarrowStringIntoWideCharArray:
8707       OS << "narrow string into wide char array";
8708       break;
8709 
8710     case FK_WideStringIntoCharArray:
8711       OS << "wide string into char array";
8712       break;
8713 
8714     case FK_IncompatWideStringIntoWideChar:
8715       OS << "incompatible wide string into wide char array";
8716       break;
8717 
8718     case FK_PlainStringIntoUTF8Char:
8719       OS << "plain string literal into char8_t array";
8720       break;
8721 
8722     case FK_UTF8StringIntoPlainChar:
8723       OS << "u8 string literal into char array";
8724       break;
8725 
8726     case FK_ArrayTypeMismatch:
8727       OS << "array type mismatch";
8728       break;
8729 
8730     case FK_NonConstantArrayInit:
8731       OS << "non-constant array initializer";
8732       break;
8733 
8734     case FK_AddressOfOverloadFailed:
8735       OS << "address of overloaded function failed";
8736       break;
8737 
8738     case FK_ReferenceInitOverloadFailed:
8739       OS << "overload resolution for reference initialization failed";
8740       break;
8741 
8742     case FK_NonConstLValueReferenceBindingToTemporary:
8743       OS << "non-const lvalue reference bound to temporary";
8744       break;
8745 
8746     case FK_NonConstLValueReferenceBindingToBitfield:
8747       OS << "non-const lvalue reference bound to bit-field";
8748       break;
8749 
8750     case FK_NonConstLValueReferenceBindingToVectorElement:
8751       OS << "non-const lvalue reference bound to vector element";
8752       break;
8753 
8754     case FK_NonConstLValueReferenceBindingToUnrelated:
8755       OS << "non-const lvalue reference bound to unrelated type";
8756       break;
8757 
8758     case FK_RValueReferenceBindingToLValue:
8759       OS << "rvalue reference bound to an lvalue";
8760       break;
8761 
8762     case FK_ReferenceInitDropsQualifiers:
8763       OS << "reference initialization drops qualifiers";
8764       break;
8765 
8766     case FK_ReferenceInitFailed:
8767       OS << "reference initialization failed";
8768       break;
8769 
8770     case FK_ConversionFailed:
8771       OS << "conversion failed";
8772       break;
8773 
8774     case FK_ConversionFromPropertyFailed:
8775       OS << "conversion from property failed";
8776       break;
8777 
8778     case FK_TooManyInitsForScalar:
8779       OS << "too many initializers for scalar";
8780       break;
8781 
8782     case FK_ParenthesizedListInitForScalar:
8783       OS << "parenthesized list init for reference";
8784       break;
8785 
8786     case FK_ReferenceBindingToInitList:
8787       OS << "referencing binding to initializer list";
8788       break;
8789 
8790     case FK_InitListBadDestinationType:
8791       OS << "initializer list for non-aggregate, non-scalar type";
8792       break;
8793 
8794     case FK_UserConversionOverloadFailed:
8795       OS << "overloading failed for user-defined conversion";
8796       break;
8797 
8798     case FK_ConstructorOverloadFailed:
8799       OS << "constructor overloading failed";
8800       break;
8801 
8802     case FK_DefaultInitOfConst:
8803       OS << "default initialization of a const variable";
8804       break;
8805 
8806     case FK_Incomplete:
8807       OS << "initialization of incomplete type";
8808       break;
8809 
8810     case FK_ListInitializationFailed:
8811       OS << "list initialization checker failure";
8812       break;
8813 
8814     case FK_VariableLengthArrayHasInitializer:
8815       OS << "variable length array has an initializer";
8816       break;
8817 
8818     case FK_PlaceholderType:
8819       OS << "initializer expression isn't contextually valid";
8820       break;
8821 
8822     case FK_ListConstructorOverloadFailed:
8823       OS << "list constructor overloading failed";
8824       break;
8825 
8826     case FK_ExplicitConstructor:
8827       OS << "list copy initialization chose explicit constructor";
8828       break;
8829     }
8830     OS << '\n';
8831     return;
8832   }
8833 
8834   case DependentSequence:
8835     OS << "Dependent sequence\n";
8836     return;
8837 
8838   case NormalSequence:
8839     OS << "Normal sequence: ";
8840     break;
8841   }
8842 
8843   for (step_iterator S = step_begin(), SEnd = step_end(); S != SEnd; ++S) {
8844     if (S != step_begin()) {
8845       OS << " -> ";
8846     }
8847 
8848     switch (S->Kind) {
8849     case SK_ResolveAddressOfOverloadedFunction:
8850       OS << "resolve address of overloaded function";
8851       break;
8852 
8853     case SK_CastDerivedToBaseRValue:
8854       OS << "derived-to-base (rvalue)";
8855       break;
8856 
8857     case SK_CastDerivedToBaseXValue:
8858       OS << "derived-to-base (xvalue)";
8859       break;
8860 
8861     case SK_CastDerivedToBaseLValue:
8862       OS << "derived-to-base (lvalue)";
8863       break;
8864 
8865     case SK_BindReference:
8866       OS << "bind reference to lvalue";
8867       break;
8868 
8869     case SK_BindReferenceToTemporary:
8870       OS << "bind reference to a temporary";
8871       break;
8872 
8873     case SK_FinalCopy:
8874       OS << "final copy in class direct-initialization";
8875       break;
8876 
8877     case SK_ExtraneousCopyToTemporary:
8878       OS << "extraneous C++03 copy to temporary";
8879       break;
8880 
8881     case SK_UserConversion:
8882       OS << "user-defined conversion via " << *S->Function.Function;
8883       break;
8884 
8885     case SK_QualificationConversionRValue:
8886       OS << "qualification conversion (rvalue)";
8887       break;
8888 
8889     case SK_QualificationConversionXValue:
8890       OS << "qualification conversion (xvalue)";
8891       break;
8892 
8893     case SK_QualificationConversionLValue:
8894       OS << "qualification conversion (lvalue)";
8895       break;
8896 
8897     case SK_AtomicConversion:
8898       OS << "non-atomic-to-atomic conversion";
8899       break;
8900 
8901     case SK_LValueToRValue:
8902       OS << "load (lvalue to rvalue)";
8903       break;
8904 
8905     case SK_ConversionSequence:
8906       OS << "implicit conversion sequence (";
8907       S->ICS->dump(); // FIXME: use OS
8908       OS << ")";
8909       break;
8910 
8911     case SK_ConversionSequenceNoNarrowing:
8912       OS << "implicit conversion sequence with narrowing prohibited (";
8913       S->ICS->dump(); // FIXME: use OS
8914       OS << ")";
8915       break;
8916 
8917     case SK_ListInitialization:
8918       OS << "list aggregate initialization";
8919       break;
8920 
8921     case SK_UnwrapInitList:
8922       OS << "unwrap reference initializer list";
8923       break;
8924 
8925     case SK_RewrapInitList:
8926       OS << "rewrap reference initializer list";
8927       break;
8928 
8929     case SK_ConstructorInitialization:
8930       OS << "constructor initialization";
8931       break;
8932 
8933     case SK_ConstructorInitializationFromList:
8934       OS << "list initialization via constructor";
8935       break;
8936 
8937     case SK_ZeroInitialization:
8938       OS << "zero initialization";
8939       break;
8940 
8941     case SK_CAssignment:
8942       OS << "C assignment";
8943       break;
8944 
8945     case SK_StringInit:
8946       OS << "string initialization";
8947       break;
8948 
8949     case SK_ObjCObjectConversion:
8950       OS << "Objective-C object conversion";
8951       break;
8952 
8953     case SK_ArrayLoopIndex:
8954       OS << "indexing for array initialization loop";
8955       break;
8956 
8957     case SK_ArrayLoopInit:
8958       OS << "array initialization loop";
8959       break;
8960 
8961     case SK_ArrayInit:
8962       OS << "array initialization";
8963       break;
8964 
8965     case SK_GNUArrayInit:
8966       OS << "array initialization (GNU extension)";
8967       break;
8968 
8969     case SK_ParenthesizedArrayInit:
8970       OS << "parenthesized array initialization";
8971       break;
8972 
8973     case SK_PassByIndirectCopyRestore:
8974       OS << "pass by indirect copy and restore";
8975       break;
8976 
8977     case SK_PassByIndirectRestore:
8978       OS << "pass by indirect restore";
8979       break;
8980 
8981     case SK_ProduceObjCObject:
8982       OS << "Objective-C object retension";
8983       break;
8984 
8985     case SK_StdInitializerList:
8986       OS << "std::initializer_list from initializer list";
8987       break;
8988 
8989     case SK_StdInitializerListConstructorCall:
8990       OS << "list initialization from std::initializer_list";
8991       break;
8992 
8993     case SK_OCLSamplerInit:
8994       OS << "OpenCL sampler_t from integer constant";
8995       break;
8996 
8997     case SK_OCLZeroOpaqueType:
8998       OS << "OpenCL opaque type from zero";
8999       break;
9000     }
9001 
9002     OS << " [" << S->Type.getAsString() << ']';
9003   }
9004 
9005   OS << '\n';
9006 }
9007 
dump() const9008 void InitializationSequence::dump() const {
9009   dump(llvm::errs());
9010 }
9011 
NarrowingErrs(const LangOptions & L)9012 static bool NarrowingErrs(const LangOptions &L) {
9013   return L.CPlusPlus11 &&
9014          (!L.MicrosoftExt || L.isCompatibleWithMSVC(LangOptions::MSVC2015));
9015 }
9016 
DiagnoseNarrowingInInitList(Sema & S,const ImplicitConversionSequence & ICS,QualType PreNarrowingType,QualType EntityType,const Expr * PostInit)9017 static void DiagnoseNarrowingInInitList(Sema &S,
9018                                         const ImplicitConversionSequence &ICS,
9019                                         QualType PreNarrowingType,
9020                                         QualType EntityType,
9021                                         const Expr *PostInit) {
9022   const StandardConversionSequence *SCS = nullptr;
9023   switch (ICS.getKind()) {
9024   case ImplicitConversionSequence::StandardConversion:
9025     SCS = &ICS.Standard;
9026     break;
9027   case ImplicitConversionSequence::UserDefinedConversion:
9028     SCS = &ICS.UserDefined.After;
9029     break;
9030   case ImplicitConversionSequence::AmbiguousConversion:
9031   case ImplicitConversionSequence::EllipsisConversion:
9032   case ImplicitConversionSequence::BadConversion:
9033     return;
9034   }
9035 
9036   // C++11 [dcl.init.list]p7: Check whether this is a narrowing conversion.
9037   APValue ConstantValue;
9038   QualType ConstantType;
9039   switch (SCS->getNarrowingKind(S.Context, PostInit, ConstantValue,
9040                                 ConstantType)) {
9041   case NK_Not_Narrowing:
9042   case NK_Dependent_Narrowing:
9043     // No narrowing occurred.
9044     return;
9045 
9046   case NK_Type_Narrowing:
9047     // This was a floating-to-integer conversion, which is always considered a
9048     // narrowing conversion even if the value is a constant and can be
9049     // represented exactly as an integer.
9050     S.Diag(PostInit->getBeginLoc(), NarrowingErrs(S.getLangOpts())
9051                                         ? diag::ext_init_list_type_narrowing
9052                                         : diag::warn_init_list_type_narrowing)
9053         << PostInit->getSourceRange()
9054         << PreNarrowingType.getLocalUnqualifiedType()
9055         << EntityType.getLocalUnqualifiedType();
9056     break;
9057 
9058   case NK_Constant_Narrowing:
9059     // A constant value was narrowed.
9060     S.Diag(PostInit->getBeginLoc(),
9061            NarrowingErrs(S.getLangOpts())
9062                ? diag::ext_init_list_constant_narrowing
9063                : diag::warn_init_list_constant_narrowing)
9064         << PostInit->getSourceRange()
9065         << ConstantValue.getAsString(S.getASTContext(), ConstantType)
9066         << EntityType.getLocalUnqualifiedType();
9067     break;
9068 
9069   case NK_Variable_Narrowing:
9070     // A variable's value may have been narrowed.
9071     S.Diag(PostInit->getBeginLoc(),
9072            NarrowingErrs(S.getLangOpts())
9073                ? diag::ext_init_list_variable_narrowing
9074                : diag::warn_init_list_variable_narrowing)
9075         << PostInit->getSourceRange()
9076         << PreNarrowingType.getLocalUnqualifiedType()
9077         << EntityType.getLocalUnqualifiedType();
9078     break;
9079   }
9080 
9081   SmallString<128> StaticCast;
9082   llvm::raw_svector_ostream OS(StaticCast);
9083   OS << "static_cast<";
9084   if (const TypedefType *TT = EntityType->getAs<TypedefType>()) {
9085     // It's important to use the typedef's name if there is one so that the
9086     // fixit doesn't break code using types like int64_t.
9087     //
9088     // FIXME: This will break if the typedef requires qualification.  But
9089     // getQualifiedNameAsString() includes non-machine-parsable components.
9090     OS << *TT->getDecl();
9091   } else if (const BuiltinType *BT = EntityType->getAs<BuiltinType>())
9092     OS << BT->getName(S.getLangOpts());
9093   else {
9094     // Oops, we didn't find the actual type of the variable.  Don't emit a fixit
9095     // with a broken cast.
9096     return;
9097   }
9098   OS << ">(";
9099   S.Diag(PostInit->getBeginLoc(), diag::note_init_list_narrowing_silence)
9100       << PostInit->getSourceRange()
9101       << FixItHint::CreateInsertion(PostInit->getBeginLoc(), OS.str())
9102       << FixItHint::CreateInsertion(
9103              S.getLocForEndOfToken(PostInit->getEndLoc()), ")");
9104 }
9105 
9106 //===----------------------------------------------------------------------===//
9107 // Initialization helper functions
9108 //===----------------------------------------------------------------------===//
9109 bool
CanPerformCopyInitialization(const InitializedEntity & Entity,ExprResult Init)9110 Sema::CanPerformCopyInitialization(const InitializedEntity &Entity,
9111                                    ExprResult Init) {
9112   if (Init.isInvalid())
9113     return false;
9114 
9115   Expr *InitE = Init.get();
9116   assert(InitE && "No initialization expression");
9117 
9118   InitializationKind Kind =
9119       InitializationKind::CreateCopy(InitE->getBeginLoc(), SourceLocation());
9120   InitializationSequence Seq(*this, Entity, Kind, InitE);
9121   return !Seq.Failed();
9122 }
9123 
9124 ExprResult
PerformCopyInitialization(const InitializedEntity & Entity,SourceLocation EqualLoc,ExprResult Init,bool TopLevelOfInitList,bool AllowExplicit)9125 Sema::PerformCopyInitialization(const InitializedEntity &Entity,
9126                                 SourceLocation EqualLoc,
9127                                 ExprResult Init,
9128                                 bool TopLevelOfInitList,
9129                                 bool AllowExplicit) {
9130   if (Init.isInvalid())
9131     return ExprError();
9132 
9133   Expr *InitE = Init.get();
9134   assert(InitE && "No initialization expression?");
9135 
9136   if (EqualLoc.isInvalid())
9137     EqualLoc = InitE->getBeginLoc();
9138 
9139   InitializationKind Kind = InitializationKind::CreateCopy(
9140       InitE->getBeginLoc(), EqualLoc, AllowExplicit);
9141   InitializationSequence Seq(*this, Entity, Kind, InitE, TopLevelOfInitList);
9142 
9143   // Prevent infinite recursion when performing parameter copy-initialization.
9144   const bool ShouldTrackCopy =
9145       Entity.isParameterKind() && Seq.isConstructorInitialization();
9146   if (ShouldTrackCopy) {
9147     if (llvm::find(CurrentParameterCopyTypes, Entity.getType()) !=
9148         CurrentParameterCopyTypes.end()) {
9149       Seq.SetOverloadFailure(
9150           InitializationSequence::FK_ConstructorOverloadFailed,
9151           OR_No_Viable_Function);
9152 
9153       // Try to give a meaningful diagnostic note for the problematic
9154       // constructor.
9155       const auto LastStep = Seq.step_end() - 1;
9156       assert(LastStep->Kind ==
9157              InitializationSequence::SK_ConstructorInitialization);
9158       const FunctionDecl *Function = LastStep->Function.Function;
9159       auto Candidate =
9160           llvm::find_if(Seq.getFailedCandidateSet(),
9161                         [Function](const OverloadCandidate &Candidate) -> bool {
9162                           return Candidate.Viable &&
9163                                  Candidate.Function == Function &&
9164                                  Candidate.Conversions.size() > 0;
9165                         });
9166       if (Candidate != Seq.getFailedCandidateSet().end() &&
9167           Function->getNumParams() > 0) {
9168         Candidate->Viable = false;
9169         Candidate->FailureKind = ovl_fail_bad_conversion;
9170         Candidate->Conversions[0].setBad(BadConversionSequence::no_conversion,
9171                                          InitE,
9172                                          Function->getParamDecl(0)->getType());
9173       }
9174     }
9175     CurrentParameterCopyTypes.push_back(Entity.getType());
9176   }
9177 
9178   ExprResult Result = Seq.Perform(*this, Entity, Kind, InitE);
9179 
9180   if (ShouldTrackCopy)
9181     CurrentParameterCopyTypes.pop_back();
9182 
9183   return Result;
9184 }
9185 
9186 /// Determine whether RD is, or is derived from, a specialization of CTD.
isOrIsDerivedFromSpecializationOf(CXXRecordDecl * RD,ClassTemplateDecl * CTD)9187 static bool isOrIsDerivedFromSpecializationOf(CXXRecordDecl *RD,
9188                                               ClassTemplateDecl *CTD) {
9189   auto NotSpecialization = [&] (const CXXRecordDecl *Candidate) {
9190     auto *CTSD = dyn_cast<ClassTemplateSpecializationDecl>(Candidate);
9191     return !CTSD || !declaresSameEntity(CTSD->getSpecializedTemplate(), CTD);
9192   };
9193   return !(NotSpecialization(RD) && RD->forallBases(NotSpecialization));
9194 }
9195 
DeduceTemplateSpecializationFromInitializer(TypeSourceInfo * TSInfo,const InitializedEntity & Entity,const InitializationKind & Kind,MultiExprArg Inits)9196 QualType Sema::DeduceTemplateSpecializationFromInitializer(
9197     TypeSourceInfo *TSInfo, const InitializedEntity &Entity,
9198     const InitializationKind &Kind, MultiExprArg Inits) {
9199   auto *DeducedTST = dyn_cast<DeducedTemplateSpecializationType>(
9200       TSInfo->getType()->getContainedDeducedType());
9201   assert(DeducedTST && "not a deduced template specialization type");
9202 
9203   auto TemplateName = DeducedTST->getTemplateName();
9204   if (TemplateName.isDependent())
9205     return Context.DependentTy;
9206 
9207   // We can only perform deduction for class templates.
9208   auto *Template =
9209       dyn_cast_or_null<ClassTemplateDecl>(TemplateName.getAsTemplateDecl());
9210   if (!Template) {
9211     Diag(Kind.getLocation(),
9212          diag::err_deduced_non_class_template_specialization_type)
9213       << (int)getTemplateNameKindForDiagnostics(TemplateName) << TemplateName;
9214     if (auto *TD = TemplateName.getAsTemplateDecl())
9215       Diag(TD->getLocation(), diag::note_template_decl_here);
9216     return QualType();
9217   }
9218 
9219   // Can't deduce from dependent arguments.
9220   if (Expr::hasAnyTypeDependentArguments(Inits)) {
9221     Diag(TSInfo->getTypeLoc().getBeginLoc(),
9222          diag::warn_cxx14_compat_class_template_argument_deduction)
9223         << TSInfo->getTypeLoc().getSourceRange() << 0;
9224     return Context.DependentTy;
9225   }
9226 
9227   // FIXME: Perform "exact type" matching first, per CWG discussion?
9228   //        Or implement this via an implied 'T(T) -> T' deduction guide?
9229 
9230   // FIXME: Do we need/want a std::initializer_list<T> special case?
9231 
9232   // Look up deduction guides, including those synthesized from constructors.
9233   //
9234   // C++1z [over.match.class.deduct]p1:
9235   //   A set of functions and function templates is formed comprising:
9236   //   - For each constructor of the class template designated by the
9237   //     template-name, a function template [...]
9238   //  - For each deduction-guide, a function or function template [...]
9239   DeclarationNameInfo NameInfo(
9240       Context.DeclarationNames.getCXXDeductionGuideName(Template),
9241       TSInfo->getTypeLoc().getEndLoc());
9242   LookupResult Guides(*this, NameInfo, LookupOrdinaryName);
9243   LookupQualifiedName(Guides, Template->getDeclContext());
9244 
9245   // FIXME: Do not diagnose inaccessible deduction guides. The standard isn't
9246   // clear on this, but they're not found by name so access does not apply.
9247   Guides.suppressDiagnostics();
9248 
9249   // Figure out if this is list-initialization.
9250   InitListExpr *ListInit =
9251       (Inits.size() == 1 && Kind.getKind() != InitializationKind::IK_Direct)
9252           ? dyn_cast<InitListExpr>(Inits[0])
9253           : nullptr;
9254 
9255   // C++1z [over.match.class.deduct]p1:
9256   //   Initialization and overload resolution are performed as described in
9257   //   [dcl.init] and [over.match.ctor], [over.match.copy], or [over.match.list]
9258   //   (as appropriate for the type of initialization performed) for an object
9259   //   of a hypothetical class type, where the selected functions and function
9260   //   templates are considered to be the constructors of that class type
9261   //
9262   // Since we know we're initializing a class type of a type unrelated to that
9263   // of the initializer, this reduces to something fairly reasonable.
9264   OverloadCandidateSet Candidates(Kind.getLocation(),
9265                                   OverloadCandidateSet::CSK_Normal);
9266   OverloadCandidateSet::iterator Best;
9267   auto tryToResolveOverload =
9268       [&](bool OnlyListConstructors) -> OverloadingResult {
9269     Candidates.clear(OverloadCandidateSet::CSK_Normal);
9270     for (auto I = Guides.begin(), E = Guides.end(); I != E; ++I) {
9271       NamedDecl *D = (*I)->getUnderlyingDecl();
9272       if (D->isInvalidDecl())
9273         continue;
9274 
9275       auto *TD = dyn_cast<FunctionTemplateDecl>(D);
9276       auto *GD = dyn_cast_or_null<CXXDeductionGuideDecl>(
9277           TD ? TD->getTemplatedDecl() : dyn_cast<FunctionDecl>(D));
9278       if (!GD)
9279         continue;
9280 
9281       // C++ [over.match.ctor]p1: (non-list copy-initialization from non-class)
9282       //   For copy-initialization, the candidate functions are all the
9283       //   converting constructors (12.3.1) of that class.
9284       // C++ [over.match.copy]p1: (non-list copy-initialization from class)
9285       //   The converting constructors of T are candidate functions.
9286       if (Kind.isCopyInit() && !ListInit) {
9287         // Only consider converting constructors.
9288         if (GD->isExplicit())
9289           continue;
9290 
9291         // When looking for a converting constructor, deduction guides that
9292         // could never be called with one argument are not interesting to
9293         // check or note.
9294         if (GD->getMinRequiredArguments() > 1 ||
9295             (GD->getNumParams() == 0 && !GD->isVariadic()))
9296           continue;
9297       }
9298 
9299       // C++ [over.match.list]p1.1: (first phase list initialization)
9300       //   Initially, the candidate functions are the initializer-list
9301       //   constructors of the class T
9302       if (OnlyListConstructors && !isInitListConstructor(GD))
9303         continue;
9304 
9305       // C++ [over.match.list]p1.2: (second phase list initialization)
9306       //   the candidate functions are all the constructors of the class T
9307       // C++ [over.match.ctor]p1: (all other cases)
9308       //   the candidate functions are all the constructors of the class of
9309       //   the object being initialized
9310 
9311       // C++ [over.best.ics]p4:
9312       //   When [...] the constructor [...] is a candidate by
9313       //    - [over.match.copy] (in all cases)
9314       // FIXME: The "second phase of [over.match.list] case can also
9315       // theoretically happen here, but it's not clear whether we can
9316       // ever have a parameter of the right type.
9317       bool SuppressUserConversions = Kind.isCopyInit();
9318 
9319       if (TD)
9320         AddTemplateOverloadCandidate(TD, I.getPair(), /*ExplicitArgs*/ nullptr,
9321                                      Inits, Candidates,
9322                                      SuppressUserConversions);
9323       else
9324         AddOverloadCandidate(GD, I.getPair(), Inits, Candidates,
9325                              SuppressUserConversions);
9326     }
9327     return Candidates.BestViableFunction(*this, Kind.getLocation(), Best);
9328   };
9329 
9330   OverloadingResult Result = OR_No_Viable_Function;
9331 
9332   // C++11 [over.match.list]p1, per DR1467: for list-initialization, first
9333   // try initializer-list constructors.
9334   if (ListInit) {
9335     bool TryListConstructors = true;
9336 
9337     // Try list constructors unless the list is empty and the class has one or
9338     // more default constructors, in which case those constructors win.
9339     if (!ListInit->getNumInits()) {
9340       for (NamedDecl *D : Guides) {
9341         auto *FD = dyn_cast<FunctionDecl>(D->getUnderlyingDecl());
9342         if (FD && FD->getMinRequiredArguments() == 0) {
9343           TryListConstructors = false;
9344           break;
9345         }
9346       }
9347     } else if (ListInit->getNumInits() == 1) {
9348       // C++ [over.match.class.deduct]:
9349       //   As an exception, the first phase in [over.match.list] (considering
9350       //   initializer-list constructors) is omitted if the initializer list
9351       //   consists of a single expression of type cv U, where U is a
9352       //   specialization of C or a class derived from a specialization of C.
9353       Expr *E = ListInit->getInit(0);
9354       auto *RD = E->getType()->getAsCXXRecordDecl();
9355       if (!isa<InitListExpr>(E) && RD &&
9356           isCompleteType(Kind.getLocation(), E->getType()) &&
9357           isOrIsDerivedFromSpecializationOf(RD, Template))
9358         TryListConstructors = false;
9359     }
9360 
9361     if (TryListConstructors)
9362       Result = tryToResolveOverload(/*OnlyListConstructor*/true);
9363     // Then unwrap the initializer list and try again considering all
9364     // constructors.
9365     Inits = MultiExprArg(ListInit->getInits(), ListInit->getNumInits());
9366   }
9367 
9368   // If list-initialization fails, or if we're doing any other kind of
9369   // initialization, we (eventually) consider constructors.
9370   if (Result == OR_No_Viable_Function)
9371     Result = tryToResolveOverload(/*OnlyListConstructor*/false);
9372 
9373   switch (Result) {
9374   case OR_Ambiguous:
9375     Diag(Kind.getLocation(), diag::err_deduced_class_template_ctor_ambiguous)
9376       << TemplateName;
9377     // FIXME: For list-initialization candidates, it'd usually be better to
9378     // list why they were not viable when given the initializer list itself as
9379     // an argument.
9380     Candidates.NoteCandidates(*this, OCD_ViableCandidates, Inits);
9381     return QualType();
9382 
9383   case OR_No_Viable_Function: {
9384     CXXRecordDecl *Primary =
9385         cast<ClassTemplateDecl>(Template)->getTemplatedDecl();
9386     bool Complete =
9387         isCompleteType(Kind.getLocation(), Context.getTypeDeclType(Primary));
9388     Diag(Kind.getLocation(),
9389          Complete ? diag::err_deduced_class_template_ctor_no_viable
9390                   : diag::err_deduced_class_template_incomplete)
9391       << TemplateName << !Guides.empty();
9392     Candidates.NoteCandidates(*this, OCD_AllCandidates, Inits);
9393     return QualType();
9394   }
9395 
9396   case OR_Deleted: {
9397     Diag(Kind.getLocation(), diag::err_deduced_class_template_deleted)
9398       << TemplateName;
9399     NoteDeletedFunction(Best->Function);
9400     return QualType();
9401   }
9402 
9403   case OR_Success:
9404     // C++ [over.match.list]p1:
9405     //   In copy-list-initialization, if an explicit constructor is chosen, the
9406     //   initialization is ill-formed.
9407     if (Kind.isCopyInit() && ListInit &&
9408         cast<CXXDeductionGuideDecl>(Best->Function)->isExplicit()) {
9409       bool IsDeductionGuide = !Best->Function->isImplicit();
9410       Diag(Kind.getLocation(), diag::err_deduced_class_template_explicit)
9411           << TemplateName << IsDeductionGuide;
9412       Diag(Best->Function->getLocation(),
9413            diag::note_explicit_ctor_deduction_guide_here)
9414           << IsDeductionGuide;
9415       return QualType();
9416     }
9417 
9418     // Make sure we didn't select an unusable deduction guide, and mark it
9419     // as referenced.
9420     DiagnoseUseOfDecl(Best->Function, Kind.getLocation());
9421     MarkFunctionReferenced(Kind.getLocation(), Best->Function);
9422     break;
9423   }
9424 
9425   // C++ [dcl.type.class.deduct]p1:
9426   //  The placeholder is replaced by the return type of the function selected
9427   //  by overload resolution for class template deduction.
9428   QualType DeducedType =
9429       SubstAutoType(TSInfo->getType(), Best->Function->getReturnType());
9430   Diag(TSInfo->getTypeLoc().getBeginLoc(),
9431        diag::warn_cxx14_compat_class_template_argument_deduction)
9432       << TSInfo->getTypeLoc().getSourceRange() << 1 << DeducedType;
9433   return DeducedType;
9434 }
9435