1 //===--- SwiftCallingConv.cpp - Lowering for the Swift calling convention -===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Implementation of the abstract lowering for the Swift calling convention.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "clang/CodeGen/SwiftCallingConv.h"
15 #include "clang/Basic/TargetInfo.h"
16 #include "CodeGenModule.h"
17 #include "TargetInfo.h"
18
19 using namespace clang;
20 using namespace CodeGen;
21 using namespace swiftcall;
22
getSwiftABIInfo(CodeGenModule & CGM)23 static const SwiftABIInfo &getSwiftABIInfo(CodeGenModule &CGM) {
24 return cast<SwiftABIInfo>(CGM.getTargetCodeGenInfo().getABIInfo());
25 }
26
isPowerOf2(unsigned n)27 static bool isPowerOf2(unsigned n) {
28 return n == (n & -n);
29 }
30
31 /// Given two types with the same size, try to find a common type.
getCommonType(llvm::Type * first,llvm::Type * second)32 static llvm::Type *getCommonType(llvm::Type *first, llvm::Type *second) {
33 assert(first != second);
34
35 // Allow pointers to merge with integers, but prefer the integer type.
36 if (first->isIntegerTy()) {
37 if (second->isPointerTy()) return first;
38 } else if (first->isPointerTy()) {
39 if (second->isIntegerTy()) return second;
40 if (second->isPointerTy()) return first;
41
42 // Allow two vectors to be merged (given that they have the same size).
43 // This assumes that we never have two different vector register sets.
44 } else if (auto firstVecTy = dyn_cast<llvm::VectorType>(first)) {
45 if (auto secondVecTy = dyn_cast<llvm::VectorType>(second)) {
46 if (auto commonTy = getCommonType(firstVecTy->getElementType(),
47 secondVecTy->getElementType())) {
48 return (commonTy == firstVecTy->getElementType() ? first : second);
49 }
50 }
51 }
52
53 return nullptr;
54 }
55
getTypeStoreSize(CodeGenModule & CGM,llvm::Type * type)56 static CharUnits getTypeStoreSize(CodeGenModule &CGM, llvm::Type *type) {
57 return CharUnits::fromQuantity(CGM.getDataLayout().getTypeStoreSize(type));
58 }
59
getTypeAllocSize(CodeGenModule & CGM,llvm::Type * type)60 static CharUnits getTypeAllocSize(CodeGenModule &CGM, llvm::Type *type) {
61 return CharUnits::fromQuantity(CGM.getDataLayout().getTypeAllocSize(type));
62 }
63
addTypedData(QualType type,CharUnits begin)64 void SwiftAggLowering::addTypedData(QualType type, CharUnits begin) {
65 // Deal with various aggregate types as special cases:
66
67 // Record types.
68 if (auto recType = type->getAs<RecordType>()) {
69 addTypedData(recType->getDecl(), begin);
70
71 // Array types.
72 } else if (type->isArrayType()) {
73 // Incomplete array types (flexible array members?) don't provide
74 // data to lay out, and the other cases shouldn't be possible.
75 auto arrayType = CGM.getContext().getAsConstantArrayType(type);
76 if (!arrayType) return;
77
78 QualType eltType = arrayType->getElementType();
79 auto eltSize = CGM.getContext().getTypeSizeInChars(eltType);
80 for (uint64_t i = 0, e = arrayType->getSize().getZExtValue(); i != e; ++i) {
81 addTypedData(eltType, begin + i * eltSize);
82 }
83
84 // Complex types.
85 } else if (auto complexType = type->getAs<ComplexType>()) {
86 auto eltType = complexType->getElementType();
87 auto eltSize = CGM.getContext().getTypeSizeInChars(eltType);
88 auto eltLLVMType = CGM.getTypes().ConvertType(eltType);
89 addTypedData(eltLLVMType, begin, begin + eltSize);
90 addTypedData(eltLLVMType, begin + eltSize, begin + 2 * eltSize);
91
92 // Member pointer types.
93 } else if (type->getAs<MemberPointerType>()) {
94 // Just add it all as opaque.
95 addOpaqueData(begin, begin + CGM.getContext().getTypeSizeInChars(type));
96
97 // Everything else is scalar and should not convert as an LLVM aggregate.
98 } else {
99 // We intentionally convert as !ForMem because we want to preserve
100 // that a type was an i1.
101 auto llvmType = CGM.getTypes().ConvertType(type);
102 addTypedData(llvmType, begin);
103 }
104 }
105
addTypedData(const RecordDecl * record,CharUnits begin)106 void SwiftAggLowering::addTypedData(const RecordDecl *record, CharUnits begin) {
107 addTypedData(record, begin, CGM.getContext().getASTRecordLayout(record));
108 }
109
addTypedData(const RecordDecl * record,CharUnits begin,const ASTRecordLayout & layout)110 void SwiftAggLowering::addTypedData(const RecordDecl *record, CharUnits begin,
111 const ASTRecordLayout &layout) {
112 // Unions are a special case.
113 if (record->isUnion()) {
114 for (auto field : record->fields()) {
115 if (field->isBitField()) {
116 addBitFieldData(field, begin, 0);
117 } else {
118 addTypedData(field->getType(), begin);
119 }
120 }
121 return;
122 }
123
124 // Note that correctness does not rely on us adding things in
125 // their actual order of layout; it's just somewhat more efficient
126 // for the builder.
127
128 // With that in mind, add "early" C++ data.
129 auto cxxRecord = dyn_cast<CXXRecordDecl>(record);
130 if (cxxRecord) {
131 // - a v-table pointer, if the class adds its own
132 if (layout.hasOwnVFPtr()) {
133 addTypedData(CGM.Int8PtrTy, begin);
134 }
135
136 // - non-virtual bases
137 for (auto &baseSpecifier : cxxRecord->bases()) {
138 if (baseSpecifier.isVirtual()) continue;
139
140 auto baseRecord = baseSpecifier.getType()->getAsCXXRecordDecl();
141 addTypedData(baseRecord, begin + layout.getBaseClassOffset(baseRecord));
142 }
143
144 // - a vbptr if the class adds its own
145 if (layout.hasOwnVBPtr()) {
146 addTypedData(CGM.Int8PtrTy, begin + layout.getVBPtrOffset());
147 }
148 }
149
150 // Add fields.
151 for (auto field : record->fields()) {
152 auto fieldOffsetInBits = layout.getFieldOffset(field->getFieldIndex());
153 if (field->isBitField()) {
154 addBitFieldData(field, begin, fieldOffsetInBits);
155 } else {
156 addTypedData(field->getType(),
157 begin + CGM.getContext().toCharUnitsFromBits(fieldOffsetInBits));
158 }
159 }
160
161 // Add "late" C++ data:
162 if (cxxRecord) {
163 // - virtual bases
164 for (auto &vbaseSpecifier : cxxRecord->vbases()) {
165 auto baseRecord = vbaseSpecifier.getType()->getAsCXXRecordDecl();
166 addTypedData(baseRecord, begin + layout.getVBaseClassOffset(baseRecord));
167 }
168 }
169 }
170
addBitFieldData(const FieldDecl * bitfield,CharUnits recordBegin,uint64_t bitfieldBitBegin)171 void SwiftAggLowering::addBitFieldData(const FieldDecl *bitfield,
172 CharUnits recordBegin,
173 uint64_t bitfieldBitBegin) {
174 assert(bitfield->isBitField());
175 auto &ctx = CGM.getContext();
176 auto width = bitfield->getBitWidthValue(ctx);
177
178 // We can ignore zero-width bit-fields.
179 if (width == 0) return;
180
181 // toCharUnitsFromBits rounds down.
182 CharUnits bitfieldByteBegin = ctx.toCharUnitsFromBits(bitfieldBitBegin);
183
184 // Find the offset of the last byte that is partially occupied by the
185 // bit-field; since we otherwise expect exclusive ends, the end is the
186 // next byte.
187 uint64_t bitfieldBitLast = bitfieldBitBegin + width - 1;
188 CharUnits bitfieldByteEnd =
189 ctx.toCharUnitsFromBits(bitfieldBitLast) + CharUnits::One();
190 addOpaqueData(recordBegin + bitfieldByteBegin,
191 recordBegin + bitfieldByteEnd);
192 }
193
addTypedData(llvm::Type * type,CharUnits begin)194 void SwiftAggLowering::addTypedData(llvm::Type *type, CharUnits begin) {
195 assert(type && "didn't provide type for typed data");
196 addTypedData(type, begin, begin + getTypeStoreSize(CGM, type));
197 }
198
addTypedData(llvm::Type * type,CharUnits begin,CharUnits end)199 void SwiftAggLowering::addTypedData(llvm::Type *type,
200 CharUnits begin, CharUnits end) {
201 assert(type && "didn't provide type for typed data");
202 assert(getTypeStoreSize(CGM, type) == end - begin);
203
204 // Legalize vector types.
205 if (auto vecTy = dyn_cast<llvm::VectorType>(type)) {
206 SmallVector<llvm::Type*, 4> componentTys;
207 legalizeVectorType(CGM, end - begin, vecTy, componentTys);
208 assert(componentTys.size() >= 1);
209
210 // Walk the initial components.
211 for (size_t i = 0, e = componentTys.size(); i != e - 1; ++i) {
212 llvm::Type *componentTy = componentTys[i];
213 auto componentSize = getTypeStoreSize(CGM, componentTy);
214 assert(componentSize < end - begin);
215 addLegalTypedData(componentTy, begin, begin + componentSize);
216 begin += componentSize;
217 }
218
219 return addLegalTypedData(componentTys.back(), begin, end);
220 }
221
222 // Legalize integer types.
223 if (auto intTy = dyn_cast<llvm::IntegerType>(type)) {
224 if (!isLegalIntegerType(CGM, intTy))
225 return addOpaqueData(begin, end);
226 }
227
228 // All other types should be legal.
229 return addLegalTypedData(type, begin, end);
230 }
231
addLegalTypedData(llvm::Type * type,CharUnits begin,CharUnits end)232 void SwiftAggLowering::addLegalTypedData(llvm::Type *type,
233 CharUnits begin, CharUnits end) {
234 // Require the type to be naturally aligned.
235 if (!begin.isZero() && !begin.isMultipleOf(getNaturalAlignment(CGM, type))) {
236
237 // Try splitting vector types.
238 if (auto vecTy = dyn_cast<llvm::VectorType>(type)) {
239 auto split = splitLegalVectorType(CGM, end - begin, vecTy);
240 auto eltTy = split.first;
241 auto numElts = split.second;
242
243 auto eltSize = (end - begin) / numElts;
244 assert(eltSize == getTypeStoreSize(CGM, eltTy));
245 for (size_t i = 0, e = numElts; i != e; ++i) {
246 addLegalTypedData(eltTy, begin, begin + eltSize);
247 begin += eltSize;
248 }
249 assert(begin == end);
250 return;
251 }
252
253 return addOpaqueData(begin, end);
254 }
255
256 addEntry(type, begin, end);
257 }
258
addEntry(llvm::Type * type,CharUnits begin,CharUnits end)259 void SwiftAggLowering::addEntry(llvm::Type *type,
260 CharUnits begin, CharUnits end) {
261 assert((!type ||
262 (!isa<llvm::StructType>(type) && !isa<llvm::ArrayType>(type))) &&
263 "cannot add aggregate-typed data");
264 assert(!type || begin.isMultipleOf(getNaturalAlignment(CGM, type)));
265
266 // Fast path: we can just add entries to the end.
267 if (Entries.empty() || Entries.back().End <= begin) {
268 Entries.push_back({begin, end, type});
269 return;
270 }
271
272 // Find the first existing entry that ends after the start of the new data.
273 // TODO: do a binary search if Entries is big enough for it to matter.
274 size_t index = Entries.size() - 1;
275 while (index != 0) {
276 if (Entries[index - 1].End <= begin) break;
277 --index;
278 }
279
280 // The entry ends after the start of the new data.
281 // If the entry starts after the end of the new data, there's no conflict.
282 if (Entries[index].Begin >= end) {
283 // This insertion is potentially O(n), but the way we generally build
284 // these layouts makes that unlikely to matter: we'd need a union of
285 // several very large types.
286 Entries.insert(Entries.begin() + index, {begin, end, type});
287 return;
288 }
289
290 // Otherwise, the ranges overlap. The new range might also overlap
291 // with later ranges.
292 restartAfterSplit:
293
294 // Simplest case: an exact overlap.
295 if (Entries[index].Begin == begin && Entries[index].End == end) {
296 // If the types match exactly, great.
297 if (Entries[index].Type == type) return;
298
299 // If either type is opaque, make the entry opaque and return.
300 if (Entries[index].Type == nullptr) {
301 return;
302 } else if (type == nullptr) {
303 Entries[index].Type = nullptr;
304 return;
305 }
306
307 // If they disagree in an ABI-agnostic way, just resolve the conflict
308 // arbitrarily.
309 if (auto entryType = getCommonType(Entries[index].Type, type)) {
310 Entries[index].Type = entryType;
311 return;
312 }
313
314 // Otherwise, make the entry opaque.
315 Entries[index].Type = nullptr;
316 return;
317 }
318
319 // Okay, we have an overlapping conflict of some sort.
320
321 // If we have a vector type, split it.
322 if (auto vecTy = dyn_cast_or_null<llvm::VectorType>(type)) {
323 auto eltTy = vecTy->getElementType();
324 CharUnits eltSize = (end - begin) / vecTy->getNumElements();
325 assert(eltSize == getTypeStoreSize(CGM, eltTy));
326 for (unsigned i = 0, e = vecTy->getNumElements(); i != e; ++i) {
327 addEntry(eltTy, begin, begin + eltSize);
328 begin += eltSize;
329 }
330 assert(begin == end);
331 return;
332 }
333
334 // If the entry is a vector type, split it and try again.
335 if (Entries[index].Type && Entries[index].Type->isVectorTy()) {
336 splitVectorEntry(index);
337 goto restartAfterSplit;
338 }
339
340 // Okay, we have no choice but to make the existing entry opaque.
341
342 Entries[index].Type = nullptr;
343
344 // Stretch the start of the entry to the beginning of the range.
345 if (begin < Entries[index].Begin) {
346 Entries[index].Begin = begin;
347 assert(index == 0 || begin >= Entries[index - 1].End);
348 }
349
350 // Stretch the end of the entry to the end of the range; but if we run
351 // into the start of the next entry, just leave the range there and repeat.
352 while (end > Entries[index].End) {
353 assert(Entries[index].Type == nullptr);
354
355 // If the range doesn't overlap the next entry, we're done.
356 if (index == Entries.size() - 1 || end <= Entries[index + 1].Begin) {
357 Entries[index].End = end;
358 break;
359 }
360
361 // Otherwise, stretch to the start of the next entry.
362 Entries[index].End = Entries[index + 1].Begin;
363
364 // Continue with the next entry.
365 index++;
366
367 // This entry needs to be made opaque if it is not already.
368 if (Entries[index].Type == nullptr)
369 continue;
370
371 // Split vector entries unless we completely subsume them.
372 if (Entries[index].Type->isVectorTy() &&
373 end < Entries[index].End) {
374 splitVectorEntry(index);
375 }
376
377 // Make the entry opaque.
378 Entries[index].Type = nullptr;
379 }
380 }
381
382 /// Replace the entry of vector type at offset 'index' with a sequence
383 /// of its component vectors.
splitVectorEntry(unsigned index)384 void SwiftAggLowering::splitVectorEntry(unsigned index) {
385 auto vecTy = cast<llvm::VectorType>(Entries[index].Type);
386 auto split = splitLegalVectorType(CGM, Entries[index].getWidth(), vecTy);
387
388 auto eltTy = split.first;
389 CharUnits eltSize = getTypeStoreSize(CGM, eltTy);
390 auto numElts = split.second;
391 Entries.insert(Entries.begin() + index + 1, numElts - 1, StorageEntry());
392
393 CharUnits begin = Entries[index].Begin;
394 for (unsigned i = 0; i != numElts; ++i) {
395 Entries[index].Type = eltTy;
396 Entries[index].Begin = begin;
397 Entries[index].End = begin + eltSize;
398 begin += eltSize;
399 }
400 }
401
402 /// Given a power-of-two unit size, return the offset of the aligned unit
403 /// of that size which contains the given offset.
404 ///
405 /// In other words, round down to the nearest multiple of the unit size.
getOffsetAtStartOfUnit(CharUnits offset,CharUnits unitSize)406 static CharUnits getOffsetAtStartOfUnit(CharUnits offset, CharUnits unitSize) {
407 assert(isPowerOf2(unitSize.getQuantity()));
408 auto unitMask = ~(unitSize.getQuantity() - 1);
409 return CharUnits::fromQuantity(offset.getQuantity() & unitMask);
410 }
411
areBytesInSameUnit(CharUnits first,CharUnits second,CharUnits chunkSize)412 static bool areBytesInSameUnit(CharUnits first, CharUnits second,
413 CharUnits chunkSize) {
414 return getOffsetAtStartOfUnit(first, chunkSize)
415 == getOffsetAtStartOfUnit(second, chunkSize);
416 }
417
isMergeableEntryType(llvm::Type * type)418 static bool isMergeableEntryType(llvm::Type *type) {
419 // Opaquely-typed memory is always mergeable.
420 if (type == nullptr) return true;
421
422 // Pointers and integers are always mergeable. In theory we should not
423 // merge pointers, but (1) it doesn't currently matter in practice because
424 // the chunk size is never greater than the size of a pointer and (2)
425 // Swift IRGen uses integer types for a lot of things that are "really"
426 // just storing pointers (like Optional<SomePointer>). If we ever have a
427 // target that would otherwise combine pointers, we should put some effort
428 // into fixing those cases in Swift IRGen and then call out pointer types
429 // here.
430
431 // Floating-point and vector types should never be merged.
432 // Most such types are too large and highly-aligned to ever trigger merging
433 // in practice, but it's important for the rule to cover at least 'half'
434 // and 'float', as well as things like small vectors of 'i1' or 'i8'.
435 return (!type->isFloatingPointTy() && !type->isVectorTy());
436 }
437
shouldMergeEntries(const StorageEntry & first,const StorageEntry & second,CharUnits chunkSize)438 bool SwiftAggLowering::shouldMergeEntries(const StorageEntry &first,
439 const StorageEntry &second,
440 CharUnits chunkSize) {
441 // Only merge entries that overlap the same chunk. We test this first
442 // despite being a bit more expensive because this is the condition that
443 // tends to prevent merging.
444 if (!areBytesInSameUnit(first.End - CharUnits::One(), second.Begin,
445 chunkSize))
446 return false;
447
448 return (isMergeableEntryType(first.Type) &&
449 isMergeableEntryType(second.Type));
450 }
451
finish()452 void SwiftAggLowering::finish() {
453 if (Entries.empty()) {
454 Finished = true;
455 return;
456 }
457
458 // We logically split the layout down into a series of chunks of this size,
459 // which is generally the size of a pointer.
460 const CharUnits chunkSize = getMaximumVoluntaryIntegerSize(CGM);
461
462 // First pass: if two entries should be merged, make them both opaque
463 // and stretch one to meet the next.
464 // Also, remember if there are any opaque entries.
465 bool hasOpaqueEntries = (Entries[0].Type == nullptr);
466 for (size_t i = 1, e = Entries.size(); i != e; ++i) {
467 if (shouldMergeEntries(Entries[i - 1], Entries[i], chunkSize)) {
468 Entries[i - 1].Type = nullptr;
469 Entries[i].Type = nullptr;
470 Entries[i - 1].End = Entries[i].Begin;
471 hasOpaqueEntries = true;
472
473 } else if (Entries[i].Type == nullptr) {
474 hasOpaqueEntries = true;
475 }
476 }
477
478 // The rest of the algorithm leaves non-opaque entries alone, so if we
479 // have no opaque entries, we're done.
480 if (!hasOpaqueEntries) {
481 Finished = true;
482 return;
483 }
484
485 // Okay, move the entries to a temporary and rebuild Entries.
486 auto orig = std::move(Entries);
487 assert(Entries.empty());
488
489 for (size_t i = 0, e = orig.size(); i != e; ++i) {
490 // Just copy over non-opaque entries.
491 if (orig[i].Type != nullptr) {
492 Entries.push_back(orig[i]);
493 continue;
494 }
495
496 // Scan forward to determine the full extent of the next opaque range.
497 // We know from the first pass that only contiguous ranges will overlap
498 // the same aligned chunk.
499 auto begin = orig[i].Begin;
500 auto end = orig[i].End;
501 while (i + 1 != e &&
502 orig[i + 1].Type == nullptr &&
503 end == orig[i + 1].Begin) {
504 end = orig[i + 1].End;
505 i++;
506 }
507
508 // Add an entry per intersected chunk.
509 do {
510 // Find the smallest aligned storage unit in the maximal aligned
511 // storage unit containing 'begin' that contains all the bytes in
512 // the intersection between the range and this chunk.
513 CharUnits localBegin = begin;
514 CharUnits chunkBegin = getOffsetAtStartOfUnit(localBegin, chunkSize);
515 CharUnits chunkEnd = chunkBegin + chunkSize;
516 CharUnits localEnd = std::min(end, chunkEnd);
517
518 // Just do a simple loop over ever-increasing unit sizes.
519 CharUnits unitSize = CharUnits::One();
520 CharUnits unitBegin, unitEnd;
521 for (; ; unitSize *= 2) {
522 assert(unitSize <= chunkSize);
523 unitBegin = getOffsetAtStartOfUnit(localBegin, unitSize);
524 unitEnd = unitBegin + unitSize;
525 if (unitEnd >= localEnd) break;
526 }
527
528 // Add an entry for this unit.
529 auto entryTy =
530 llvm::IntegerType::get(CGM.getLLVMContext(),
531 CGM.getContext().toBits(unitSize));
532 Entries.push_back({unitBegin, unitEnd, entryTy});
533
534 // The next chunk starts where this chunk left off.
535 begin = localEnd;
536 } while (begin != end);
537 }
538
539 // Okay, finally finished.
540 Finished = true;
541 }
542
enumerateComponents(EnumerationCallback callback) const543 void SwiftAggLowering::enumerateComponents(EnumerationCallback callback) const {
544 assert(Finished && "haven't yet finished lowering");
545
546 for (auto &entry : Entries) {
547 callback(entry.Begin, entry.End, entry.Type);
548 }
549 }
550
551 std::pair<llvm::StructType*, llvm::Type*>
getCoerceAndExpandTypes() const552 SwiftAggLowering::getCoerceAndExpandTypes() const {
553 assert(Finished && "haven't yet finished lowering");
554
555 auto &ctx = CGM.getLLVMContext();
556
557 if (Entries.empty()) {
558 auto type = llvm::StructType::get(ctx);
559 return { type, type };
560 }
561
562 SmallVector<llvm::Type*, 8> elts;
563 CharUnits lastEnd = CharUnits::Zero();
564 bool hasPadding = false;
565 bool packed = false;
566 for (auto &entry : Entries) {
567 if (entry.Begin != lastEnd) {
568 auto paddingSize = entry.Begin - lastEnd;
569 assert(!paddingSize.isNegative());
570
571 auto padding = llvm::ArrayType::get(llvm::Type::getInt8Ty(ctx),
572 paddingSize.getQuantity());
573 elts.push_back(padding);
574 hasPadding = true;
575 }
576
577 if (!packed && !entry.Begin.isMultipleOf(
578 CharUnits::fromQuantity(
579 CGM.getDataLayout().getABITypeAlignment(entry.Type))))
580 packed = true;
581
582 elts.push_back(entry.Type);
583
584 lastEnd = entry.Begin + getTypeAllocSize(CGM, entry.Type);
585 assert(entry.End <= lastEnd);
586 }
587
588 // We don't need to adjust 'packed' to deal with possible tail padding
589 // because we never do that kind of access through the coercion type.
590 auto coercionType = llvm::StructType::get(ctx, elts, packed);
591
592 llvm::Type *unpaddedType = coercionType;
593 if (hasPadding) {
594 elts.clear();
595 for (auto &entry : Entries) {
596 elts.push_back(entry.Type);
597 }
598 if (elts.size() == 1) {
599 unpaddedType = elts[0];
600 } else {
601 unpaddedType = llvm::StructType::get(ctx, elts, /*packed*/ false);
602 }
603 } else if (Entries.size() == 1) {
604 unpaddedType = Entries[0].Type;
605 }
606
607 return { coercionType, unpaddedType };
608 }
609
shouldPassIndirectly(bool asReturnValue) const610 bool SwiftAggLowering::shouldPassIndirectly(bool asReturnValue) const {
611 assert(Finished && "haven't yet finished lowering");
612
613 // Empty types don't need to be passed indirectly.
614 if (Entries.empty()) return false;
615
616 // Avoid copying the array of types when there's just a single element.
617 if (Entries.size() == 1) {
618 return getSwiftABIInfo(CGM).shouldPassIndirectlyForSwift(
619 Entries.back().Type,
620 asReturnValue);
621 }
622
623 SmallVector<llvm::Type*, 8> componentTys;
624 componentTys.reserve(Entries.size());
625 for (auto &entry : Entries) {
626 componentTys.push_back(entry.Type);
627 }
628 return getSwiftABIInfo(CGM).shouldPassIndirectlyForSwift(componentTys,
629 asReturnValue);
630 }
631
shouldPassIndirectly(CodeGenModule & CGM,ArrayRef<llvm::Type * > componentTys,bool asReturnValue)632 bool swiftcall::shouldPassIndirectly(CodeGenModule &CGM,
633 ArrayRef<llvm::Type*> componentTys,
634 bool asReturnValue) {
635 return getSwiftABIInfo(CGM).shouldPassIndirectlyForSwift(componentTys,
636 asReturnValue);
637 }
638
getMaximumVoluntaryIntegerSize(CodeGenModule & CGM)639 CharUnits swiftcall::getMaximumVoluntaryIntegerSize(CodeGenModule &CGM) {
640 // Currently always the size of an ordinary pointer.
641 return CGM.getContext().toCharUnitsFromBits(
642 CGM.getContext().getTargetInfo().getPointerWidth(0));
643 }
644
getNaturalAlignment(CodeGenModule & CGM,llvm::Type * type)645 CharUnits swiftcall::getNaturalAlignment(CodeGenModule &CGM, llvm::Type *type) {
646 // For Swift's purposes, this is always just the store size of the type
647 // rounded up to a power of 2.
648 auto size = (unsigned long long) getTypeStoreSize(CGM, type).getQuantity();
649 if (!isPowerOf2(size)) {
650 size = 1ULL << (llvm::findLastSet(size, llvm::ZB_Undefined) + 1);
651 }
652 assert(size >= CGM.getDataLayout().getABITypeAlignment(type));
653 return CharUnits::fromQuantity(size);
654 }
655
isLegalIntegerType(CodeGenModule & CGM,llvm::IntegerType * intTy)656 bool swiftcall::isLegalIntegerType(CodeGenModule &CGM,
657 llvm::IntegerType *intTy) {
658 auto size = intTy->getBitWidth();
659 switch (size) {
660 case 1:
661 case 8:
662 case 16:
663 case 32:
664 case 64:
665 // Just assume that the above are always legal.
666 return true;
667
668 case 128:
669 return CGM.getContext().getTargetInfo().hasInt128Type();
670
671 default:
672 return false;
673 }
674 }
675
isLegalVectorType(CodeGenModule & CGM,CharUnits vectorSize,llvm::VectorType * vectorTy)676 bool swiftcall::isLegalVectorType(CodeGenModule &CGM, CharUnits vectorSize,
677 llvm::VectorType *vectorTy) {
678 return isLegalVectorType(CGM, vectorSize, vectorTy->getElementType(),
679 vectorTy->getNumElements());
680 }
681
isLegalVectorType(CodeGenModule & CGM,CharUnits vectorSize,llvm::Type * eltTy,unsigned numElts)682 bool swiftcall::isLegalVectorType(CodeGenModule &CGM, CharUnits vectorSize,
683 llvm::Type *eltTy, unsigned numElts) {
684 assert(numElts > 1 && "illegal vector length");
685 return getSwiftABIInfo(CGM)
686 .isLegalVectorTypeForSwift(vectorSize, eltTy, numElts);
687 }
688
689 std::pair<llvm::Type*, unsigned>
splitLegalVectorType(CodeGenModule & CGM,CharUnits vectorSize,llvm::VectorType * vectorTy)690 swiftcall::splitLegalVectorType(CodeGenModule &CGM, CharUnits vectorSize,
691 llvm::VectorType *vectorTy) {
692 auto numElts = vectorTy->getNumElements();
693 auto eltTy = vectorTy->getElementType();
694
695 // Try to split the vector type in half.
696 if (numElts >= 4 && isPowerOf2(numElts)) {
697 if (isLegalVectorType(CGM, vectorSize / 2, eltTy, numElts / 2))
698 return {llvm::VectorType::get(eltTy, numElts / 2), 2};
699 }
700
701 return {eltTy, numElts};
702 }
703
legalizeVectorType(CodeGenModule & CGM,CharUnits origVectorSize,llvm::VectorType * origVectorTy,llvm::SmallVectorImpl<llvm::Type * > & components)704 void swiftcall::legalizeVectorType(CodeGenModule &CGM, CharUnits origVectorSize,
705 llvm::VectorType *origVectorTy,
706 llvm::SmallVectorImpl<llvm::Type*> &components) {
707 // If it's already a legal vector type, use it.
708 if (isLegalVectorType(CGM, origVectorSize, origVectorTy)) {
709 components.push_back(origVectorTy);
710 return;
711 }
712
713 // Try to split the vector into legal subvectors.
714 auto numElts = origVectorTy->getNumElements();
715 auto eltTy = origVectorTy->getElementType();
716 assert(numElts != 1);
717
718 // The largest size that we're still considering making subvectors of.
719 // Always a power of 2.
720 unsigned logCandidateNumElts = llvm::findLastSet(numElts, llvm::ZB_Undefined);
721 unsigned candidateNumElts = 1U << logCandidateNumElts;
722 assert(candidateNumElts <= numElts && candidateNumElts * 2 > numElts);
723
724 // Minor optimization: don't check the legality of this exact size twice.
725 if (candidateNumElts == numElts) {
726 logCandidateNumElts--;
727 candidateNumElts >>= 1;
728 }
729
730 CharUnits eltSize = (origVectorSize / numElts);
731 CharUnits candidateSize = eltSize * candidateNumElts;
732
733 // The sensibility of this algorithm relies on the fact that we never
734 // have a legal non-power-of-2 vector size without having the power of 2
735 // also be legal.
736 while (logCandidateNumElts > 0) {
737 assert(candidateNumElts == 1U << logCandidateNumElts);
738 assert(candidateNumElts <= numElts);
739 assert(candidateSize == eltSize * candidateNumElts);
740
741 // Skip illegal vector sizes.
742 if (!isLegalVectorType(CGM, candidateSize, eltTy, candidateNumElts)) {
743 logCandidateNumElts--;
744 candidateNumElts /= 2;
745 candidateSize /= 2;
746 continue;
747 }
748
749 // Add the right number of vectors of this size.
750 auto numVecs = numElts >> logCandidateNumElts;
751 components.append(numVecs, llvm::VectorType::get(eltTy, candidateNumElts));
752 numElts -= (numVecs << logCandidateNumElts);
753
754 if (numElts == 0) return;
755
756 // It's possible that the number of elements remaining will be legal.
757 // This can happen with e.g. <7 x float> when <3 x float> is legal.
758 // This only needs to be separately checked if it's not a power of 2.
759 if (numElts > 2 && !isPowerOf2(numElts) &&
760 isLegalVectorType(CGM, eltSize * numElts, eltTy, numElts)) {
761 components.push_back(llvm::VectorType::get(eltTy, numElts));
762 return;
763 }
764
765 // Bring vecSize down to something no larger than numElts.
766 do {
767 logCandidateNumElts--;
768 candidateNumElts /= 2;
769 candidateSize /= 2;
770 } while (candidateNumElts > numElts);
771 }
772
773 // Otherwise, just append a bunch of individual elements.
774 components.append(numElts, eltTy);
775 }
776
mustPassRecordIndirectly(CodeGenModule & CGM,const RecordDecl * record)777 bool swiftcall::mustPassRecordIndirectly(CodeGenModule &CGM,
778 const RecordDecl *record) {
779 // FIXME: should we not rely on the standard computation in Sema, just in
780 // case we want to diverge from the platform ABI (e.g. on targets where
781 // that uses the MSVC rule)?
782 return !record->canPassInRegisters();
783 }
784
classifyExpandedType(SwiftAggLowering & lowering,bool forReturn,CharUnits alignmentForIndirect)785 static ABIArgInfo classifyExpandedType(SwiftAggLowering &lowering,
786 bool forReturn,
787 CharUnits alignmentForIndirect) {
788 if (lowering.empty()) {
789 return ABIArgInfo::getIgnore();
790 } else if (lowering.shouldPassIndirectly(forReturn)) {
791 return ABIArgInfo::getIndirect(alignmentForIndirect, /*byval*/ false);
792 } else {
793 auto types = lowering.getCoerceAndExpandTypes();
794 return ABIArgInfo::getCoerceAndExpand(types.first, types.second);
795 }
796 }
797
classifyType(CodeGenModule & CGM,CanQualType type,bool forReturn)798 static ABIArgInfo classifyType(CodeGenModule &CGM, CanQualType type,
799 bool forReturn) {
800 if (auto recordType = dyn_cast<RecordType>(type)) {
801 auto record = recordType->getDecl();
802 auto &layout = CGM.getContext().getASTRecordLayout(record);
803
804 if (mustPassRecordIndirectly(CGM, record))
805 return ABIArgInfo::getIndirect(layout.getAlignment(), /*byval*/ false);
806
807 SwiftAggLowering lowering(CGM);
808 lowering.addTypedData(recordType->getDecl(), CharUnits::Zero(), layout);
809 lowering.finish();
810
811 return classifyExpandedType(lowering, forReturn, layout.getAlignment());
812 }
813
814 // Just assume that all of our target ABIs can support returning at least
815 // two integer or floating-point values.
816 if (isa<ComplexType>(type)) {
817 return (forReturn ? ABIArgInfo::getDirect() : ABIArgInfo::getExpand());
818 }
819
820 // Vector types may need to be legalized.
821 if (isa<VectorType>(type)) {
822 SwiftAggLowering lowering(CGM);
823 lowering.addTypedData(type, CharUnits::Zero());
824 lowering.finish();
825
826 CharUnits alignment = CGM.getContext().getTypeAlignInChars(type);
827 return classifyExpandedType(lowering, forReturn, alignment);
828 }
829
830 // Member pointer types need to be expanded, but it's a simple form of
831 // expansion that 'Direct' can handle. Note that CanBeFlattened should be
832 // true for this to work.
833
834 // 'void' needs to be ignored.
835 if (type->isVoidType()) {
836 return ABIArgInfo::getIgnore();
837 }
838
839 // Everything else can be passed directly.
840 return ABIArgInfo::getDirect();
841 }
842
classifyReturnType(CodeGenModule & CGM,CanQualType type)843 ABIArgInfo swiftcall::classifyReturnType(CodeGenModule &CGM, CanQualType type) {
844 return classifyType(CGM, type, /*forReturn*/ true);
845 }
846
classifyArgumentType(CodeGenModule & CGM,CanQualType type)847 ABIArgInfo swiftcall::classifyArgumentType(CodeGenModule &CGM,
848 CanQualType type) {
849 return classifyType(CGM, type, /*forReturn*/ false);
850 }
851
computeABIInfo(CodeGenModule & CGM,CGFunctionInfo & FI)852 void swiftcall::computeABIInfo(CodeGenModule &CGM, CGFunctionInfo &FI) {
853 auto &retInfo = FI.getReturnInfo();
854 retInfo = classifyReturnType(CGM, FI.getReturnType());
855
856 for (unsigned i = 0, e = FI.arg_size(); i != e; ++i) {
857 auto &argInfo = FI.arg_begin()[i];
858 argInfo.info = classifyArgumentType(CGM, argInfo.type);
859 }
860 }
861
862 // Is swifterror lowered to a register by the target ABI.
isSwiftErrorLoweredInRegister(CodeGenModule & CGM)863 bool swiftcall::isSwiftErrorLoweredInRegister(CodeGenModule &CGM) {
864 return getSwiftABIInfo(CGM).isSwiftErrorInRegister();
865 }
866