1 //===-- CodeGenFunction.h - Per-Function state for LLVM CodeGen -*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This is the internal per-function state used for llvm translation. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #ifndef LLVM_CLANG_LIB_CODEGEN_CODEGENFUNCTION_H 15 #define LLVM_CLANG_LIB_CODEGEN_CODEGENFUNCTION_H 16 17 #include "CGBuilder.h" 18 #include "CGDebugInfo.h" 19 #include "CGLoopInfo.h" 20 #include "CGValue.h" 21 #include "CodeGenModule.h" 22 #include "CodeGenPGO.h" 23 #include "EHScopeStack.h" 24 #include "VarBypassDetector.h" 25 #include "clang/AST/CharUnits.h" 26 #include "clang/AST/ExprCXX.h" 27 #include "clang/AST/ExprObjC.h" 28 #include "clang/AST/ExprOpenMP.h" 29 #include "clang/AST/Type.h" 30 #include "clang/Basic/ABI.h" 31 #include "clang/Basic/CapturedStmt.h" 32 #include "clang/Basic/CodeGenOptions.h" 33 #include "clang/Basic/OpenMPKinds.h" 34 #include "clang/Basic/TargetInfo.h" 35 #include "llvm/ADT/ArrayRef.h" 36 #include "llvm/ADT/DenseMap.h" 37 #include "llvm/ADT/MapVector.h" 38 #include "llvm/ADT/SmallVector.h" 39 #include "llvm/IR/ValueHandle.h" 40 #include "llvm/Support/Debug.h" 41 #include "llvm/Transforms/Utils/SanitizerStats.h" 42 43 namespace llvm { 44 class BasicBlock; 45 class LLVMContext; 46 class MDNode; 47 class Module; 48 class SwitchInst; 49 class Twine; 50 class Value; 51 class CallSite; 52 } 53 54 namespace clang { 55 class ASTContext; 56 class BlockDecl; 57 class CXXDestructorDecl; 58 class CXXForRangeStmt; 59 class CXXTryStmt; 60 class Decl; 61 class LabelDecl; 62 class EnumConstantDecl; 63 class FunctionDecl; 64 class FunctionProtoType; 65 class LabelStmt; 66 class ObjCContainerDecl; 67 class ObjCInterfaceDecl; 68 class ObjCIvarDecl; 69 class ObjCMethodDecl; 70 class ObjCImplementationDecl; 71 class ObjCPropertyImplDecl; 72 class TargetInfo; 73 class VarDecl; 74 class ObjCForCollectionStmt; 75 class ObjCAtTryStmt; 76 class ObjCAtThrowStmt; 77 class ObjCAtSynchronizedStmt; 78 class ObjCAutoreleasePoolStmt; 79 80 namespace analyze_os_log { 81 class OSLogBufferLayout; 82 } 83 84 namespace CodeGen { 85 class CodeGenTypes; 86 class CGCallee; 87 class CGFunctionInfo; 88 class CGRecordLayout; 89 class CGBlockInfo; 90 class CGCXXABI; 91 class BlockByrefHelpers; 92 class BlockByrefInfo; 93 class BlockFlags; 94 class BlockFieldFlags; 95 class RegionCodeGenTy; 96 class TargetCodeGenInfo; 97 struct OMPTaskDataTy; 98 struct CGCoroData; 99 100 /// The kind of evaluation to perform on values of a particular 101 /// type. Basically, is the code in CGExprScalar, CGExprComplex, or 102 /// CGExprAgg? 103 /// 104 /// TODO: should vectors maybe be split out into their own thing? 105 enum TypeEvaluationKind { 106 TEK_Scalar, 107 TEK_Complex, 108 TEK_Aggregate 109 }; 110 111 #define LIST_SANITIZER_CHECKS \ 112 SANITIZER_CHECK(AddOverflow, add_overflow, 0) \ 113 SANITIZER_CHECK(BuiltinUnreachable, builtin_unreachable, 0) \ 114 SANITIZER_CHECK(CFICheckFail, cfi_check_fail, 0) \ 115 SANITIZER_CHECK(DivremOverflow, divrem_overflow, 0) \ 116 SANITIZER_CHECK(DynamicTypeCacheMiss, dynamic_type_cache_miss, 0) \ 117 SANITIZER_CHECK(FloatCastOverflow, float_cast_overflow, 0) \ 118 SANITIZER_CHECK(FunctionTypeMismatch, function_type_mismatch, 0) \ 119 SANITIZER_CHECK(ImplicitConversion, implicit_conversion, 0) \ 120 SANITIZER_CHECK(InvalidBuiltin, invalid_builtin, 0) \ 121 SANITIZER_CHECK(LoadInvalidValue, load_invalid_value, 0) \ 122 SANITIZER_CHECK(MissingReturn, missing_return, 0) \ 123 SANITIZER_CHECK(MulOverflow, mul_overflow, 0) \ 124 SANITIZER_CHECK(NegateOverflow, negate_overflow, 0) \ 125 SANITIZER_CHECK(NullabilityArg, nullability_arg, 0) \ 126 SANITIZER_CHECK(NullabilityReturn, nullability_return, 1) \ 127 SANITIZER_CHECK(NonnullArg, nonnull_arg, 0) \ 128 SANITIZER_CHECK(NonnullReturn, nonnull_return, 1) \ 129 SANITIZER_CHECK(OutOfBounds, out_of_bounds, 0) \ 130 SANITIZER_CHECK(PointerOverflow, pointer_overflow, 0) \ 131 SANITIZER_CHECK(ShiftOutOfBounds, shift_out_of_bounds, 0) \ 132 SANITIZER_CHECK(SubOverflow, sub_overflow, 0) \ 133 SANITIZER_CHECK(TypeMismatch, type_mismatch, 1) \ 134 SANITIZER_CHECK(AlignmentAssumption, alignment_assumption, 0) \ 135 SANITIZER_CHECK(VLABoundNotPositive, vla_bound_not_positive, 0) 136 137 enum SanitizerHandler { 138 #define SANITIZER_CHECK(Enum, Name, Version) Enum, 139 LIST_SANITIZER_CHECKS 140 #undef SANITIZER_CHECK 141 }; 142 143 /// Helper class with most of the code for saving a value for a 144 /// conditional expression cleanup. 145 struct DominatingLLVMValue { 146 typedef llvm::PointerIntPair<llvm::Value*, 1, bool> saved_type; 147 148 /// Answer whether the given value needs extra work to be saved. needsSavingDominatingLLVMValue149 static bool needsSaving(llvm::Value *value) { 150 // If it's not an instruction, we don't need to save. 151 if (!isa<llvm::Instruction>(value)) return false; 152 153 // If it's an instruction in the entry block, we don't need to save. 154 llvm::BasicBlock *block = cast<llvm::Instruction>(value)->getParent(); 155 return (block != &block->getParent()->getEntryBlock()); 156 } 157 158 static saved_type save(CodeGenFunction &CGF, llvm::Value *value); 159 static llvm::Value *restore(CodeGenFunction &CGF, saved_type value); 160 }; 161 162 /// A partial specialization of DominatingValue for llvm::Values that 163 /// might be llvm::Instructions. 164 template <class T> struct DominatingPointer<T,true> : DominatingLLVMValue { 165 typedef T *type; 166 static type restore(CodeGenFunction &CGF, saved_type value) { 167 return static_cast<T*>(DominatingLLVMValue::restore(CGF, value)); 168 } 169 }; 170 171 /// A specialization of DominatingValue for Address. 172 template <> struct DominatingValue<Address> { 173 typedef Address type; 174 175 struct saved_type { 176 DominatingLLVMValue::saved_type SavedValue; 177 CharUnits Alignment; 178 }; 179 180 static bool needsSaving(type value) { 181 return DominatingLLVMValue::needsSaving(value.getPointer()); 182 } 183 static saved_type save(CodeGenFunction &CGF, type value) { 184 return { DominatingLLVMValue::save(CGF, value.getPointer()), 185 value.getAlignment() }; 186 } 187 static type restore(CodeGenFunction &CGF, saved_type value) { 188 return Address(DominatingLLVMValue::restore(CGF, value.SavedValue), 189 value.Alignment); 190 } 191 }; 192 193 /// A specialization of DominatingValue for RValue. 194 template <> struct DominatingValue<RValue> { 195 typedef RValue type; 196 class saved_type { 197 enum Kind { ScalarLiteral, ScalarAddress, AggregateLiteral, 198 AggregateAddress, ComplexAddress }; 199 200 llvm::Value *Value; 201 unsigned K : 3; 202 unsigned Align : 29; 203 saved_type(llvm::Value *v, Kind k, unsigned a = 0) 204 : Value(v), K(k), Align(a) {} 205 206 public: 207 static bool needsSaving(RValue value); 208 static saved_type save(CodeGenFunction &CGF, RValue value); 209 RValue restore(CodeGenFunction &CGF); 210 211 // implementations in CGCleanup.cpp 212 }; 213 214 static bool needsSaving(type value) { 215 return saved_type::needsSaving(value); 216 } 217 static saved_type save(CodeGenFunction &CGF, type value) { 218 return saved_type::save(CGF, value); 219 } 220 static type restore(CodeGenFunction &CGF, saved_type value) { 221 return value.restore(CGF); 222 } 223 }; 224 225 /// CodeGenFunction - This class organizes the per-function state that is used 226 /// while generating LLVM code. 227 class CodeGenFunction : public CodeGenTypeCache { 228 CodeGenFunction(const CodeGenFunction &) = delete; 229 void operator=(const CodeGenFunction &) = delete; 230 231 friend class CGCXXABI; 232 public: 233 /// A jump destination is an abstract label, branching to which may 234 /// require a jump out through normal cleanups. 235 struct JumpDest { 236 JumpDest() : Block(nullptr), ScopeDepth(), Index(0) {} 237 JumpDest(llvm::BasicBlock *Block, 238 EHScopeStack::stable_iterator Depth, 239 unsigned Index) 240 : Block(Block), ScopeDepth(Depth), Index(Index) {} 241 242 bool isValid() const { return Block != nullptr; } 243 llvm::BasicBlock *getBlock() const { return Block; } 244 EHScopeStack::stable_iterator getScopeDepth() const { return ScopeDepth; } 245 unsigned getDestIndex() const { return Index; } 246 247 // This should be used cautiously. 248 void setScopeDepth(EHScopeStack::stable_iterator depth) { 249 ScopeDepth = depth; 250 } 251 252 private: 253 llvm::BasicBlock *Block; 254 EHScopeStack::stable_iterator ScopeDepth; 255 unsigned Index; 256 }; 257 258 CodeGenModule &CGM; // Per-module state. 259 const TargetInfo &Target; 260 261 typedef std::pair<llvm::Value *, llvm::Value *> ComplexPairTy; 262 LoopInfoStack LoopStack; 263 CGBuilderTy Builder; 264 265 // Stores variables for which we can't generate correct lifetime markers 266 // because of jumps. 267 VarBypassDetector Bypasses; 268 269 // CodeGen lambda for loops and support for ordered clause 270 typedef llvm::function_ref<void(CodeGenFunction &, const OMPLoopDirective &, 271 JumpDest)> 272 CodeGenLoopTy; 273 typedef llvm::function_ref<void(CodeGenFunction &, SourceLocation, 274 const unsigned, const bool)> 275 CodeGenOrderedTy; 276 277 // Codegen lambda for loop bounds in worksharing loop constructs 278 typedef llvm::function_ref<std::pair<LValue, LValue>( 279 CodeGenFunction &, const OMPExecutableDirective &S)> 280 CodeGenLoopBoundsTy; 281 282 // Codegen lambda for loop bounds in dispatch-based loop implementation 283 typedef llvm::function_ref<std::pair<llvm::Value *, llvm::Value *>( 284 CodeGenFunction &, const OMPExecutableDirective &S, Address LB, 285 Address UB)> 286 CodeGenDispatchBoundsTy; 287 288 /// CGBuilder insert helper. This function is called after an 289 /// instruction is created using Builder. 290 void InsertHelper(llvm::Instruction *I, const llvm::Twine &Name, 291 llvm::BasicBlock *BB, 292 llvm::BasicBlock::iterator InsertPt) const; 293 294 /// CurFuncDecl - Holds the Decl for the current outermost 295 /// non-closure context. 296 const Decl *CurFuncDecl; 297 /// CurCodeDecl - This is the inner-most code context, which includes blocks. 298 const Decl *CurCodeDecl; 299 const CGFunctionInfo *CurFnInfo; 300 QualType FnRetTy; 301 llvm::Function *CurFn = nullptr; 302 303 // Holds coroutine data if the current function is a coroutine. We use a 304 // wrapper to manage its lifetime, so that we don't have to define CGCoroData 305 // in this header. 306 struct CGCoroInfo { 307 std::unique_ptr<CGCoroData> Data; 308 CGCoroInfo(); 309 ~CGCoroInfo(); 310 }; 311 CGCoroInfo CurCoro; 312 313 bool isCoroutine() const { 314 return CurCoro.Data != nullptr; 315 } 316 317 /// CurGD - The GlobalDecl for the current function being compiled. 318 GlobalDecl CurGD; 319 320 /// PrologueCleanupDepth - The cleanup depth enclosing all the 321 /// cleanups associated with the parameters. 322 EHScopeStack::stable_iterator PrologueCleanupDepth; 323 324 /// ReturnBlock - Unified return block. 325 JumpDest ReturnBlock; 326 327 /// ReturnValue - The temporary alloca to hold the return 328 /// value. This is invalid iff the function has no return value. 329 Address ReturnValue = Address::invalid(); 330 331 /// Return true if a label was seen in the current scope. 332 bool hasLabelBeenSeenInCurrentScope() const { 333 if (CurLexicalScope) 334 return CurLexicalScope->hasLabels(); 335 return !LabelMap.empty(); 336 } 337 338 /// AllocaInsertPoint - This is an instruction in the entry block before which 339 /// we prefer to insert allocas. 340 llvm::AssertingVH<llvm::Instruction> AllocaInsertPt; 341 342 /// API for captured statement code generation. 343 class CGCapturedStmtInfo { 344 public: 345 explicit CGCapturedStmtInfo(CapturedRegionKind K = CR_Default) 346 : Kind(K), ThisValue(nullptr), CXXThisFieldDecl(nullptr) {} 347 explicit CGCapturedStmtInfo(const CapturedStmt &S, 348 CapturedRegionKind K = CR_Default) 349 : Kind(K), ThisValue(nullptr), CXXThisFieldDecl(nullptr) { 350 351 RecordDecl::field_iterator Field = 352 S.getCapturedRecordDecl()->field_begin(); 353 for (CapturedStmt::const_capture_iterator I = S.capture_begin(), 354 E = S.capture_end(); 355 I != E; ++I, ++Field) { 356 if (I->capturesThis()) 357 CXXThisFieldDecl = *Field; 358 else if (I->capturesVariable()) 359 CaptureFields[I->getCapturedVar()->getCanonicalDecl()] = *Field; 360 else if (I->capturesVariableByCopy()) 361 CaptureFields[I->getCapturedVar()->getCanonicalDecl()] = *Field; 362 } 363 } 364 365 virtual ~CGCapturedStmtInfo(); 366 367 CapturedRegionKind getKind() const { return Kind; } 368 369 virtual void setContextValue(llvm::Value *V) { ThisValue = V; } 370 // Retrieve the value of the context parameter. 371 virtual llvm::Value *getContextValue() const { return ThisValue; } 372 373 /// Lookup the captured field decl for a variable. 374 virtual const FieldDecl *lookup(const VarDecl *VD) const { 375 return CaptureFields.lookup(VD->getCanonicalDecl()); 376 } 377 378 bool isCXXThisExprCaptured() const { return getThisFieldDecl() != nullptr; } 379 virtual FieldDecl *getThisFieldDecl() const { return CXXThisFieldDecl; } 380 381 static bool classof(const CGCapturedStmtInfo *) { 382 return true; 383 } 384 385 /// Emit the captured statement body. 386 virtual void EmitBody(CodeGenFunction &CGF, const Stmt *S) { 387 CGF.incrementProfileCounter(S); 388 CGF.EmitStmt(S); 389 } 390 391 /// Get the name of the capture helper. 392 virtual StringRef getHelperName() const { return "__captured_stmt"; } 393 394 private: 395 /// The kind of captured statement being generated. 396 CapturedRegionKind Kind; 397 398 /// Keep the map between VarDecl and FieldDecl. 399 llvm::SmallDenseMap<const VarDecl *, FieldDecl *> CaptureFields; 400 401 /// The base address of the captured record, passed in as the first 402 /// argument of the parallel region function. 403 llvm::Value *ThisValue; 404 405 /// Captured 'this' type. 406 FieldDecl *CXXThisFieldDecl; 407 }; 408 CGCapturedStmtInfo *CapturedStmtInfo = nullptr; 409 410 /// RAII for correct setting/restoring of CapturedStmtInfo. 411 class CGCapturedStmtRAII { 412 private: 413 CodeGenFunction &CGF; 414 CGCapturedStmtInfo *PrevCapturedStmtInfo; 415 public: 416 CGCapturedStmtRAII(CodeGenFunction &CGF, 417 CGCapturedStmtInfo *NewCapturedStmtInfo) 418 : CGF(CGF), PrevCapturedStmtInfo(CGF.CapturedStmtInfo) { 419 CGF.CapturedStmtInfo = NewCapturedStmtInfo; 420 } 421 ~CGCapturedStmtRAII() { CGF.CapturedStmtInfo = PrevCapturedStmtInfo; } 422 }; 423 424 /// An abstract representation of regular/ObjC call/message targets. 425 class AbstractCallee { 426 /// The function declaration of the callee. 427 const Decl *CalleeDecl; 428 429 public: 430 AbstractCallee() : CalleeDecl(nullptr) {} 431 AbstractCallee(const FunctionDecl *FD) : CalleeDecl(FD) {} 432 AbstractCallee(const ObjCMethodDecl *OMD) : CalleeDecl(OMD) {} 433 bool hasFunctionDecl() const { 434 return dyn_cast_or_null<FunctionDecl>(CalleeDecl); 435 } 436 const Decl *getDecl() const { return CalleeDecl; } 437 unsigned getNumParams() const { 438 if (const auto *FD = dyn_cast<FunctionDecl>(CalleeDecl)) 439 return FD->getNumParams(); 440 return cast<ObjCMethodDecl>(CalleeDecl)->param_size(); 441 } 442 const ParmVarDecl *getParamDecl(unsigned I) const { 443 if (const auto *FD = dyn_cast<FunctionDecl>(CalleeDecl)) 444 return FD->getParamDecl(I); 445 return *(cast<ObjCMethodDecl>(CalleeDecl)->param_begin() + I); 446 } 447 }; 448 449 /// Sanitizers enabled for this function. 450 SanitizerSet SanOpts; 451 452 /// True if CodeGen currently emits code implementing sanitizer checks. 453 bool IsSanitizerScope = false; 454 455 /// RAII object to set/unset CodeGenFunction::IsSanitizerScope. 456 class SanitizerScope { 457 CodeGenFunction *CGF; 458 public: 459 SanitizerScope(CodeGenFunction *CGF); 460 ~SanitizerScope(); 461 }; 462 463 /// In C++, whether we are code generating a thunk. This controls whether we 464 /// should emit cleanups. 465 bool CurFuncIsThunk = false; 466 467 /// In ARC, whether we should autorelease the return value. 468 bool AutoreleaseResult = false; 469 470 /// Whether we processed a Microsoft-style asm block during CodeGen. These can 471 /// potentially set the return value. 472 bool SawAsmBlock = false; 473 474 const NamedDecl *CurSEHParent = nullptr; 475 476 /// True if the current function is an outlined SEH helper. This can be a 477 /// finally block or filter expression. 478 bool IsOutlinedSEHHelper = false; 479 480 const CodeGen::CGBlockInfo *BlockInfo = nullptr; 481 llvm::Value *BlockPointer = nullptr; 482 483 llvm::DenseMap<const VarDecl *, FieldDecl *> LambdaCaptureFields; 484 FieldDecl *LambdaThisCaptureField = nullptr; 485 486 /// A mapping from NRVO variables to the flags used to indicate 487 /// when the NRVO has been applied to this variable. 488 llvm::DenseMap<const VarDecl *, llvm::Value *> NRVOFlags; 489 490 EHScopeStack EHStack; 491 llvm::SmallVector<char, 256> LifetimeExtendedCleanupStack; 492 llvm::SmallVector<const JumpDest *, 2> SEHTryEpilogueStack; 493 494 llvm::Instruction *CurrentFuncletPad = nullptr; 495 496 class CallLifetimeEnd final : public EHScopeStack::Cleanup { 497 llvm::Value *Addr; 498 llvm::Value *Size; 499 500 public: 501 CallLifetimeEnd(Address addr, llvm::Value *size) 502 : Addr(addr.getPointer()), Size(size) {} 503 504 void Emit(CodeGenFunction &CGF, Flags flags) override { 505 CGF.EmitLifetimeEnd(Size, Addr); 506 } 507 }; 508 509 /// Header for data within LifetimeExtendedCleanupStack. 510 struct LifetimeExtendedCleanupHeader { 511 /// The size of the following cleanup object. 512 unsigned Size; 513 /// The kind of cleanup to push: a value from the CleanupKind enumeration. 514 unsigned Kind : 31; 515 /// Whether this is a conditional cleanup. 516 unsigned IsConditional : 1; 517 518 size_t getSize() const { return Size; } 519 CleanupKind getKind() const { return (CleanupKind)Kind; } 520 bool isConditional() const { return IsConditional; } 521 }; 522 523 /// i32s containing the indexes of the cleanup destinations. 524 Address NormalCleanupDest = Address::invalid(); 525 526 unsigned NextCleanupDestIndex = 1; 527 528 /// FirstBlockInfo - The head of a singly-linked-list of block layouts. 529 CGBlockInfo *FirstBlockInfo = nullptr; 530 531 /// EHResumeBlock - Unified block containing a call to llvm.eh.resume. 532 llvm::BasicBlock *EHResumeBlock = nullptr; 533 534 /// The exception slot. All landing pads write the current exception pointer 535 /// into this alloca. 536 llvm::Value *ExceptionSlot = nullptr; 537 538 /// The selector slot. Under the MandatoryCleanup model, all landing pads 539 /// write the current selector value into this alloca. 540 llvm::AllocaInst *EHSelectorSlot = nullptr; 541 542 /// A stack of exception code slots. Entering an __except block pushes a slot 543 /// on the stack and leaving pops one. The __exception_code() intrinsic loads 544 /// a value from the top of the stack. 545 SmallVector<Address, 1> SEHCodeSlotStack; 546 547 /// Value returned by __exception_info intrinsic. 548 llvm::Value *SEHInfo = nullptr; 549 550 /// Emits a landing pad for the current EH stack. 551 llvm::BasicBlock *EmitLandingPad(); 552 553 llvm::BasicBlock *getInvokeDestImpl(); 554 555 template <class T> 556 typename DominatingValue<T>::saved_type saveValueInCond(T value) { 557 return DominatingValue<T>::save(*this, value); 558 } 559 560 public: 561 /// ObjCEHValueStack - Stack of Objective-C exception values, used for 562 /// rethrows. 563 SmallVector<llvm::Value*, 8> ObjCEHValueStack; 564 565 /// A class controlling the emission of a finally block. 566 class FinallyInfo { 567 /// Where the catchall's edge through the cleanup should go. 568 JumpDest RethrowDest; 569 570 /// A function to call to enter the catch. 571 llvm::Constant *BeginCatchFn; 572 573 /// An i1 variable indicating whether or not the @finally is 574 /// running for an exception. 575 llvm::AllocaInst *ForEHVar; 576 577 /// An i8* variable into which the exception pointer to rethrow 578 /// has been saved. 579 llvm::AllocaInst *SavedExnVar; 580 581 public: 582 void enter(CodeGenFunction &CGF, const Stmt *Finally, 583 llvm::Constant *beginCatchFn, llvm::Constant *endCatchFn, 584 llvm::Constant *rethrowFn); 585 void exit(CodeGenFunction &CGF); 586 }; 587 588 /// Returns true inside SEH __try blocks. 589 bool isSEHTryScope() const { return !SEHTryEpilogueStack.empty(); } 590 591 /// Returns true while emitting a cleanuppad. 592 bool isCleanupPadScope() const { 593 return CurrentFuncletPad && isa<llvm::CleanupPadInst>(CurrentFuncletPad); 594 } 595 596 /// pushFullExprCleanup - Push a cleanup to be run at the end of the 597 /// current full-expression. Safe against the possibility that 598 /// we're currently inside a conditionally-evaluated expression. 599 template <class T, class... As> 600 void pushFullExprCleanup(CleanupKind kind, As... A) { 601 // If we're not in a conditional branch, or if none of the 602 // arguments requires saving, then use the unconditional cleanup. 603 if (!isInConditionalBranch()) 604 return EHStack.pushCleanup<T>(kind, A...); 605 606 // Stash values in a tuple so we can guarantee the order of saves. 607 typedef std::tuple<typename DominatingValue<As>::saved_type...> SavedTuple; 608 SavedTuple Saved{saveValueInCond(A)...}; 609 610 typedef EHScopeStack::ConditionalCleanup<T, As...> CleanupType; 611 EHStack.pushCleanupTuple<CleanupType>(kind, Saved); 612 initFullExprCleanup(); 613 } 614 615 /// Queue a cleanup to be pushed after finishing the current 616 /// full-expression. 617 template <class T, class... As> 618 void pushCleanupAfterFullExpr(CleanupKind Kind, As... A) { 619 if (!isInConditionalBranch()) 620 return pushCleanupAfterFullExprImpl<T>(Kind, Address::invalid(), A...); 621 622 Address ActiveFlag = createCleanupActiveFlag(); 623 assert(!DominatingValue<Address>::needsSaving(ActiveFlag) && 624 "cleanup active flag should never need saving"); 625 626 typedef std::tuple<typename DominatingValue<As>::saved_type...> SavedTuple; 627 SavedTuple Saved{saveValueInCond(A)...}; 628 629 typedef EHScopeStack::ConditionalCleanup<T, As...> CleanupType; 630 pushCleanupAfterFullExprImpl<CleanupType>(Kind, ActiveFlag, Saved); 631 } 632 633 template <class T, class... As> 634 void pushCleanupAfterFullExprImpl(CleanupKind Kind, Address ActiveFlag, 635 As... A) { 636 LifetimeExtendedCleanupHeader Header = {sizeof(T), Kind, 637 ActiveFlag.isValid()}; 638 639 size_t OldSize = LifetimeExtendedCleanupStack.size(); 640 LifetimeExtendedCleanupStack.resize( 641 LifetimeExtendedCleanupStack.size() + sizeof(Header) + Header.Size + 642 (Header.IsConditional ? sizeof(ActiveFlag) : 0)); 643 644 static_assert(sizeof(Header) % alignof(T) == 0, 645 "Cleanup will be allocated on misaligned address"); 646 char *Buffer = &LifetimeExtendedCleanupStack[OldSize]; 647 new (Buffer) LifetimeExtendedCleanupHeader(Header); 648 new (Buffer + sizeof(Header)) T(A...); 649 if (Header.IsConditional) 650 new (Buffer + sizeof(Header) + sizeof(T)) Address(ActiveFlag); 651 } 652 653 /// Set up the last cleanup that was pushed as a conditional 654 /// full-expression cleanup. 655 void initFullExprCleanup() { 656 initFullExprCleanupWithFlag(createCleanupActiveFlag()); 657 } 658 659 void initFullExprCleanupWithFlag(Address ActiveFlag); 660 Address createCleanupActiveFlag(); 661 662 /// PushDestructorCleanup - Push a cleanup to call the 663 /// complete-object destructor of an object of the given type at the 664 /// given address. Does nothing if T is not a C++ class type with a 665 /// non-trivial destructor. 666 void PushDestructorCleanup(QualType T, Address Addr); 667 668 /// PushDestructorCleanup - Push a cleanup to call the 669 /// complete-object variant of the given destructor on the object at 670 /// the given address. 671 void PushDestructorCleanup(const CXXDestructorDecl *Dtor, Address Addr); 672 673 /// PopCleanupBlock - Will pop the cleanup entry on the stack and 674 /// process all branch fixups. 675 void PopCleanupBlock(bool FallThroughIsBranchThrough = false); 676 677 /// DeactivateCleanupBlock - Deactivates the given cleanup block. 678 /// The block cannot be reactivated. Pops it if it's the top of the 679 /// stack. 680 /// 681 /// \param DominatingIP - An instruction which is known to 682 /// dominate the current IP (if set) and which lies along 683 /// all paths of execution between the current IP and the 684 /// the point at which the cleanup comes into scope. 685 void DeactivateCleanupBlock(EHScopeStack::stable_iterator Cleanup, 686 llvm::Instruction *DominatingIP); 687 688 /// ActivateCleanupBlock - Activates an initially-inactive cleanup. 689 /// Cannot be used to resurrect a deactivated cleanup. 690 /// 691 /// \param DominatingIP - An instruction which is known to 692 /// dominate the current IP (if set) and which lies along 693 /// all paths of execution between the current IP and the 694 /// the point at which the cleanup comes into scope. 695 void ActivateCleanupBlock(EHScopeStack::stable_iterator Cleanup, 696 llvm::Instruction *DominatingIP); 697 698 /// Enters a new scope for capturing cleanups, all of which 699 /// will be executed once the scope is exited. 700 class RunCleanupsScope { 701 EHScopeStack::stable_iterator CleanupStackDepth, OldCleanupScopeDepth; 702 size_t LifetimeExtendedCleanupStackSize; 703 bool OldDidCallStackSave; 704 protected: 705 bool PerformCleanup; 706 private: 707 708 RunCleanupsScope(const RunCleanupsScope &) = delete; 709 void operator=(const RunCleanupsScope &) = delete; 710 711 protected: 712 CodeGenFunction& CGF; 713 714 public: 715 /// Enter a new cleanup scope. 716 explicit RunCleanupsScope(CodeGenFunction &CGF) 717 : PerformCleanup(true), CGF(CGF) 718 { 719 CleanupStackDepth = CGF.EHStack.stable_begin(); 720 LifetimeExtendedCleanupStackSize = 721 CGF.LifetimeExtendedCleanupStack.size(); 722 OldDidCallStackSave = CGF.DidCallStackSave; 723 CGF.DidCallStackSave = false; 724 OldCleanupScopeDepth = CGF.CurrentCleanupScopeDepth; 725 CGF.CurrentCleanupScopeDepth = CleanupStackDepth; 726 } 727 728 /// Exit this cleanup scope, emitting any accumulated cleanups. 729 ~RunCleanupsScope() { 730 if (PerformCleanup) 731 ForceCleanup(); 732 } 733 734 /// Determine whether this scope requires any cleanups. 735 bool requiresCleanups() const { 736 return CGF.EHStack.stable_begin() != CleanupStackDepth; 737 } 738 739 /// Force the emission of cleanups now, instead of waiting 740 /// until this object is destroyed. 741 /// \param ValuesToReload - A list of values that need to be available at 742 /// the insertion point after cleanup emission. If cleanup emission created 743 /// a shared cleanup block, these value pointers will be rewritten. 744 /// Otherwise, they not will be modified. 745 void ForceCleanup(std::initializer_list<llvm::Value**> ValuesToReload = {}) { 746 assert(PerformCleanup && "Already forced cleanup"); 747 CGF.DidCallStackSave = OldDidCallStackSave; 748 CGF.PopCleanupBlocks(CleanupStackDepth, LifetimeExtendedCleanupStackSize, 749 ValuesToReload); 750 PerformCleanup = false; 751 CGF.CurrentCleanupScopeDepth = OldCleanupScopeDepth; 752 } 753 }; 754 755 // Cleanup stack depth of the RunCleanupsScope that was pushed most recently. 756 EHScopeStack::stable_iterator CurrentCleanupScopeDepth = 757 EHScopeStack::stable_end(); 758 759 class LexicalScope : public RunCleanupsScope { 760 SourceRange Range; 761 SmallVector<const LabelDecl*, 4> Labels; 762 LexicalScope *ParentScope; 763 764 LexicalScope(const LexicalScope &) = delete; 765 void operator=(const LexicalScope &) = delete; 766 767 public: 768 /// Enter a new cleanup scope. 769 explicit LexicalScope(CodeGenFunction &CGF, SourceRange Range) 770 : RunCleanupsScope(CGF), Range(Range), ParentScope(CGF.CurLexicalScope) { 771 CGF.CurLexicalScope = this; 772 if (CGDebugInfo *DI = CGF.getDebugInfo()) 773 DI->EmitLexicalBlockStart(CGF.Builder, Range.getBegin()); 774 } 775 776 void addLabel(const LabelDecl *label) { 777 assert(PerformCleanup && "adding label to dead scope?"); 778 Labels.push_back(label); 779 } 780 781 /// Exit this cleanup scope, emitting any accumulated 782 /// cleanups. 783 ~LexicalScope() { 784 if (CGDebugInfo *DI = CGF.getDebugInfo()) 785 DI->EmitLexicalBlockEnd(CGF.Builder, Range.getEnd()); 786 787 // If we should perform a cleanup, force them now. Note that 788 // this ends the cleanup scope before rescoping any labels. 789 if (PerformCleanup) { 790 ApplyDebugLocation DL(CGF, Range.getEnd()); 791 ForceCleanup(); 792 } 793 } 794 795 /// Force the emission of cleanups now, instead of waiting 796 /// until this object is destroyed. 797 void ForceCleanup() { 798 CGF.CurLexicalScope = ParentScope; 799 RunCleanupsScope::ForceCleanup(); 800 801 if (!Labels.empty()) 802 rescopeLabels(); 803 } 804 805 bool hasLabels() const { 806 return !Labels.empty(); 807 } 808 809 void rescopeLabels(); 810 }; 811 812 typedef llvm::DenseMap<const Decl *, Address> DeclMapTy; 813 814 /// The class used to assign some variables some temporarily addresses. 815 class OMPMapVars { 816 DeclMapTy SavedLocals; 817 DeclMapTy SavedTempAddresses; 818 OMPMapVars(const OMPMapVars &) = delete; 819 void operator=(const OMPMapVars &) = delete; 820 821 public: 822 explicit OMPMapVars() = default; 823 ~OMPMapVars() { 824 assert(SavedLocals.empty() && "Did not restored original addresses."); 825 }; 826 827 /// Sets the address of the variable \p LocalVD to be \p TempAddr in 828 /// function \p CGF. 829 /// \return true if at least one variable was set already, false otherwise. 830 bool setVarAddr(CodeGenFunction &CGF, const VarDecl *LocalVD, 831 Address TempAddr) { 832 LocalVD = LocalVD->getCanonicalDecl(); 833 // Only save it once. 834 if (SavedLocals.count(LocalVD)) return false; 835 836 // Copy the existing local entry to SavedLocals. 837 auto it = CGF.LocalDeclMap.find(LocalVD); 838 if (it != CGF.LocalDeclMap.end()) 839 SavedLocals.try_emplace(LocalVD, it->second); 840 else 841 SavedLocals.try_emplace(LocalVD, Address::invalid()); 842 843 // Generate the private entry. 844 QualType VarTy = LocalVD->getType(); 845 if (VarTy->isReferenceType()) { 846 Address Temp = CGF.CreateMemTemp(VarTy); 847 CGF.Builder.CreateStore(TempAddr.getPointer(), Temp); 848 TempAddr = Temp; 849 } 850 SavedTempAddresses.try_emplace(LocalVD, TempAddr); 851 852 return true; 853 } 854 855 /// Applies new addresses to the list of the variables. 856 /// \return true if at least one variable is using new address, false 857 /// otherwise. 858 bool apply(CodeGenFunction &CGF) { 859 copyInto(SavedTempAddresses, CGF.LocalDeclMap); 860 SavedTempAddresses.clear(); 861 return !SavedLocals.empty(); 862 } 863 864 /// Restores original addresses of the variables. 865 void restore(CodeGenFunction &CGF) { 866 if (!SavedLocals.empty()) { 867 copyInto(SavedLocals, CGF.LocalDeclMap); 868 SavedLocals.clear(); 869 } 870 } 871 872 private: 873 /// Copy all the entries in the source map over the corresponding 874 /// entries in the destination, which must exist. 875 static void copyInto(const DeclMapTy &Src, DeclMapTy &Dest) { 876 for (auto &Pair : Src) { 877 if (!Pair.second.isValid()) { 878 Dest.erase(Pair.first); 879 continue; 880 } 881 882 auto I = Dest.find(Pair.first); 883 if (I != Dest.end()) 884 I->second = Pair.second; 885 else 886 Dest.insert(Pair); 887 } 888 } 889 }; 890 891 /// The scope used to remap some variables as private in the OpenMP loop body 892 /// (or other captured region emitted without outlining), and to restore old 893 /// vars back on exit. 894 class OMPPrivateScope : public RunCleanupsScope { 895 OMPMapVars MappedVars; 896 OMPPrivateScope(const OMPPrivateScope &) = delete; 897 void operator=(const OMPPrivateScope &) = delete; 898 899 public: 900 /// Enter a new OpenMP private scope. 901 explicit OMPPrivateScope(CodeGenFunction &CGF) : RunCleanupsScope(CGF) {} 902 903 /// Registers \p LocalVD variable as a private and apply \p PrivateGen 904 /// function for it to generate corresponding private variable. \p 905 /// PrivateGen returns an address of the generated private variable. 906 /// \return true if the variable is registered as private, false if it has 907 /// been privatized already. 908 bool addPrivate(const VarDecl *LocalVD, 909 const llvm::function_ref<Address()> PrivateGen) { 910 assert(PerformCleanup && "adding private to dead scope"); 911 return MappedVars.setVarAddr(CGF, LocalVD, PrivateGen()); 912 } 913 914 /// Privatizes local variables previously registered as private. 915 /// Registration is separate from the actual privatization to allow 916 /// initializers use values of the original variables, not the private one. 917 /// This is important, for example, if the private variable is a class 918 /// variable initialized by a constructor that references other private 919 /// variables. But at initialization original variables must be used, not 920 /// private copies. 921 /// \return true if at least one variable was privatized, false otherwise. 922 bool Privatize() { return MappedVars.apply(CGF); } 923 924 void ForceCleanup() { 925 RunCleanupsScope::ForceCleanup(); 926 MappedVars.restore(CGF); 927 } 928 929 /// Exit scope - all the mapped variables are restored. 930 ~OMPPrivateScope() { 931 if (PerformCleanup) 932 ForceCleanup(); 933 } 934 935 /// Checks if the global variable is captured in current function. 936 bool isGlobalVarCaptured(const VarDecl *VD) const { 937 VD = VD->getCanonicalDecl(); 938 return !VD->isLocalVarDeclOrParm() && CGF.LocalDeclMap.count(VD) > 0; 939 } 940 }; 941 942 /// Takes the old cleanup stack size and emits the cleanup blocks 943 /// that have been added. 944 void 945 PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize, 946 std::initializer_list<llvm::Value **> ValuesToReload = {}); 947 948 /// Takes the old cleanup stack size and emits the cleanup blocks 949 /// that have been added, then adds all lifetime-extended cleanups from 950 /// the given position to the stack. 951 void 952 PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize, 953 size_t OldLifetimeExtendedStackSize, 954 std::initializer_list<llvm::Value **> ValuesToReload = {}); 955 956 void ResolveBranchFixups(llvm::BasicBlock *Target); 957 958 /// The given basic block lies in the current EH scope, but may be a 959 /// target of a potentially scope-crossing jump; get a stable handle 960 /// to which we can perform this jump later. 961 JumpDest getJumpDestInCurrentScope(llvm::BasicBlock *Target) { 962 return JumpDest(Target, 963 EHStack.getInnermostNormalCleanup(), 964 NextCleanupDestIndex++); 965 } 966 967 /// The given basic block lies in the current EH scope, but may be a 968 /// target of a potentially scope-crossing jump; get a stable handle 969 /// to which we can perform this jump later. 970 JumpDest getJumpDestInCurrentScope(StringRef Name = StringRef()) { 971 return getJumpDestInCurrentScope(createBasicBlock(Name)); 972 } 973 974 /// EmitBranchThroughCleanup - Emit a branch from the current insert 975 /// block through the normal cleanup handling code (if any) and then 976 /// on to \arg Dest. 977 void EmitBranchThroughCleanup(JumpDest Dest); 978 979 /// isObviouslyBranchWithoutCleanups - Return true if a branch to the 980 /// specified destination obviously has no cleanups to run. 'false' is always 981 /// a conservatively correct answer for this method. 982 bool isObviouslyBranchWithoutCleanups(JumpDest Dest) const; 983 984 /// popCatchScope - Pops the catch scope at the top of the EHScope 985 /// stack, emitting any required code (other than the catch handlers 986 /// themselves). 987 void popCatchScope(); 988 989 llvm::BasicBlock *getEHResumeBlock(bool isCleanup); 990 llvm::BasicBlock *getEHDispatchBlock(EHScopeStack::stable_iterator scope); 991 llvm::BasicBlock * 992 getFuncletEHDispatchBlock(EHScopeStack::stable_iterator scope); 993 994 /// An object to manage conditionally-evaluated expressions. 995 class ConditionalEvaluation { 996 llvm::BasicBlock *StartBB; 997 998 public: 999 ConditionalEvaluation(CodeGenFunction &CGF) 1000 : StartBB(CGF.Builder.GetInsertBlock()) {} 1001 1002 void begin(CodeGenFunction &CGF) { 1003 assert(CGF.OutermostConditional != this); 1004 if (!CGF.OutermostConditional) 1005 CGF.OutermostConditional = this; 1006 } 1007 1008 void end(CodeGenFunction &CGF) { 1009 assert(CGF.OutermostConditional != nullptr); 1010 if (CGF.OutermostConditional == this) 1011 CGF.OutermostConditional = nullptr; 1012 } 1013 1014 /// Returns a block which will be executed prior to each 1015 /// evaluation of the conditional code. 1016 llvm::BasicBlock *getStartingBlock() const { 1017 return StartBB; 1018 } 1019 }; 1020 1021 /// isInConditionalBranch - Return true if we're currently emitting 1022 /// one branch or the other of a conditional expression. 1023 bool isInConditionalBranch() const { return OutermostConditional != nullptr; } 1024 1025 void setBeforeOutermostConditional(llvm::Value *value, Address addr) { 1026 assert(isInConditionalBranch()); 1027 llvm::BasicBlock *block = OutermostConditional->getStartingBlock(); 1028 auto store = new llvm::StoreInst(value, addr.getPointer(), &block->back()); 1029 store->setAlignment(addr.getAlignment().getQuantity()); 1030 } 1031 1032 /// An RAII object to record that we're evaluating a statement 1033 /// expression. 1034 class StmtExprEvaluation { 1035 CodeGenFunction &CGF; 1036 1037 /// We have to save the outermost conditional: cleanups in a 1038 /// statement expression aren't conditional just because the 1039 /// StmtExpr is. 1040 ConditionalEvaluation *SavedOutermostConditional; 1041 1042 public: 1043 StmtExprEvaluation(CodeGenFunction &CGF) 1044 : CGF(CGF), SavedOutermostConditional(CGF.OutermostConditional) { 1045 CGF.OutermostConditional = nullptr; 1046 } 1047 1048 ~StmtExprEvaluation() { 1049 CGF.OutermostConditional = SavedOutermostConditional; 1050 CGF.EnsureInsertPoint(); 1051 } 1052 }; 1053 1054 /// An object which temporarily prevents a value from being 1055 /// destroyed by aggressive peephole optimizations that assume that 1056 /// all uses of a value have been realized in the IR. 1057 class PeepholeProtection { 1058 llvm::Instruction *Inst; 1059 friend class CodeGenFunction; 1060 1061 public: 1062 PeepholeProtection() : Inst(nullptr) {} 1063 }; 1064 1065 /// A non-RAII class containing all the information about a bound 1066 /// opaque value. OpaqueValueMapping, below, is a RAII wrapper for 1067 /// this which makes individual mappings very simple; using this 1068 /// class directly is useful when you have a variable number of 1069 /// opaque values or don't want the RAII functionality for some 1070 /// reason. 1071 class OpaqueValueMappingData { 1072 const OpaqueValueExpr *OpaqueValue; 1073 bool BoundLValue; 1074 CodeGenFunction::PeepholeProtection Protection; 1075 1076 OpaqueValueMappingData(const OpaqueValueExpr *ov, 1077 bool boundLValue) 1078 : OpaqueValue(ov), BoundLValue(boundLValue) {} 1079 public: 1080 OpaqueValueMappingData() : OpaqueValue(nullptr) {} 1081 1082 static bool shouldBindAsLValue(const Expr *expr) { 1083 // gl-values should be bound as l-values for obvious reasons. 1084 // Records should be bound as l-values because IR generation 1085 // always keeps them in memory. Expressions of function type 1086 // act exactly like l-values but are formally required to be 1087 // r-values in C. 1088 return expr->isGLValue() || 1089 expr->getType()->isFunctionType() || 1090 hasAggregateEvaluationKind(expr->getType()); 1091 } 1092 1093 static OpaqueValueMappingData bind(CodeGenFunction &CGF, 1094 const OpaqueValueExpr *ov, 1095 const Expr *e) { 1096 if (shouldBindAsLValue(ov)) 1097 return bind(CGF, ov, CGF.EmitLValue(e)); 1098 return bind(CGF, ov, CGF.EmitAnyExpr(e)); 1099 } 1100 1101 static OpaqueValueMappingData bind(CodeGenFunction &CGF, 1102 const OpaqueValueExpr *ov, 1103 const LValue &lv) { 1104 assert(shouldBindAsLValue(ov)); 1105 CGF.OpaqueLValues.insert(std::make_pair(ov, lv)); 1106 return OpaqueValueMappingData(ov, true); 1107 } 1108 1109 static OpaqueValueMappingData bind(CodeGenFunction &CGF, 1110 const OpaqueValueExpr *ov, 1111 const RValue &rv) { 1112 assert(!shouldBindAsLValue(ov)); 1113 CGF.OpaqueRValues.insert(std::make_pair(ov, rv)); 1114 1115 OpaqueValueMappingData data(ov, false); 1116 1117 // Work around an extremely aggressive peephole optimization in 1118 // EmitScalarConversion which assumes that all other uses of a 1119 // value are extant. 1120 data.Protection = CGF.protectFromPeepholes(rv); 1121 1122 return data; 1123 } 1124 1125 bool isValid() const { return OpaqueValue != nullptr; } 1126 void clear() { OpaqueValue = nullptr; } 1127 1128 void unbind(CodeGenFunction &CGF) { 1129 assert(OpaqueValue && "no data to unbind!"); 1130 1131 if (BoundLValue) { 1132 CGF.OpaqueLValues.erase(OpaqueValue); 1133 } else { 1134 CGF.OpaqueRValues.erase(OpaqueValue); 1135 CGF.unprotectFromPeepholes(Protection); 1136 } 1137 } 1138 }; 1139 1140 /// An RAII object to set (and then clear) a mapping for an OpaqueValueExpr. 1141 class OpaqueValueMapping { 1142 CodeGenFunction &CGF; 1143 OpaqueValueMappingData Data; 1144 1145 public: 1146 static bool shouldBindAsLValue(const Expr *expr) { 1147 return OpaqueValueMappingData::shouldBindAsLValue(expr); 1148 } 1149 1150 /// Build the opaque value mapping for the given conditional 1151 /// operator if it's the GNU ?: extension. This is a common 1152 /// enough pattern that the convenience operator is really 1153 /// helpful. 1154 /// 1155 OpaqueValueMapping(CodeGenFunction &CGF, 1156 const AbstractConditionalOperator *op) : CGF(CGF) { 1157 if (isa<ConditionalOperator>(op)) 1158 // Leave Data empty. 1159 return; 1160 1161 const BinaryConditionalOperator *e = cast<BinaryConditionalOperator>(op); 1162 Data = OpaqueValueMappingData::bind(CGF, e->getOpaqueValue(), 1163 e->getCommon()); 1164 } 1165 1166 /// Build the opaque value mapping for an OpaqueValueExpr whose source 1167 /// expression is set to the expression the OVE represents. 1168 OpaqueValueMapping(CodeGenFunction &CGF, const OpaqueValueExpr *OV) 1169 : CGF(CGF) { 1170 if (OV) { 1171 assert(OV->getSourceExpr() && "wrong form of OpaqueValueMapping used " 1172 "for OVE with no source expression"); 1173 Data = OpaqueValueMappingData::bind(CGF, OV, OV->getSourceExpr()); 1174 } 1175 } 1176 1177 OpaqueValueMapping(CodeGenFunction &CGF, 1178 const OpaqueValueExpr *opaqueValue, 1179 LValue lvalue) 1180 : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, lvalue)) { 1181 } 1182 1183 OpaqueValueMapping(CodeGenFunction &CGF, 1184 const OpaqueValueExpr *opaqueValue, 1185 RValue rvalue) 1186 : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, rvalue)) { 1187 } 1188 1189 void pop() { 1190 Data.unbind(CGF); 1191 Data.clear(); 1192 } 1193 1194 ~OpaqueValueMapping() { 1195 if (Data.isValid()) Data.unbind(CGF); 1196 } 1197 }; 1198 1199 private: 1200 CGDebugInfo *DebugInfo; 1201 /// Used to create unique names for artificial VLA size debug info variables. 1202 unsigned VLAExprCounter = 0; 1203 bool DisableDebugInfo = false; 1204 1205 /// DidCallStackSave - Whether llvm.stacksave has been called. Used to avoid 1206 /// calling llvm.stacksave for multiple VLAs in the same scope. 1207 bool DidCallStackSave = false; 1208 1209 /// IndirectBranch - The first time an indirect goto is seen we create a block 1210 /// with an indirect branch. Every time we see the address of a label taken, 1211 /// we add the label to the indirect goto. Every subsequent indirect goto is 1212 /// codegen'd as a jump to the IndirectBranch's basic block. 1213 llvm::IndirectBrInst *IndirectBranch = nullptr; 1214 1215 /// LocalDeclMap - This keeps track of the LLVM allocas or globals for local C 1216 /// decls. 1217 DeclMapTy LocalDeclMap; 1218 1219 // Keep track of the cleanups for callee-destructed parameters pushed to the 1220 // cleanup stack so that they can be deactivated later. 1221 llvm::DenseMap<const ParmVarDecl *, EHScopeStack::stable_iterator> 1222 CalleeDestructedParamCleanups; 1223 1224 /// SizeArguments - If a ParmVarDecl had the pass_object_size attribute, this 1225 /// will contain a mapping from said ParmVarDecl to its implicit "object_size" 1226 /// parameter. 1227 llvm::SmallDenseMap<const ParmVarDecl *, const ImplicitParamDecl *, 2> 1228 SizeArguments; 1229 1230 /// Track escaped local variables with auto storage. Used during SEH 1231 /// outlining to produce a call to llvm.localescape. 1232 llvm::DenseMap<llvm::AllocaInst *, int> EscapedLocals; 1233 1234 /// LabelMap - This keeps track of the LLVM basic block for each C label. 1235 llvm::DenseMap<const LabelDecl*, JumpDest> LabelMap; 1236 1237 // BreakContinueStack - This keeps track of where break and continue 1238 // statements should jump to. 1239 struct BreakContinue { 1240 BreakContinue(JumpDest Break, JumpDest Continue) 1241 : BreakBlock(Break), ContinueBlock(Continue) {} 1242 1243 JumpDest BreakBlock; 1244 JumpDest ContinueBlock; 1245 }; 1246 SmallVector<BreakContinue, 8> BreakContinueStack; 1247 1248 /// Handles cancellation exit points in OpenMP-related constructs. 1249 class OpenMPCancelExitStack { 1250 /// Tracks cancellation exit point and join point for cancel-related exit 1251 /// and normal exit. 1252 struct CancelExit { 1253 CancelExit() = default; 1254 CancelExit(OpenMPDirectiveKind Kind, JumpDest ExitBlock, 1255 JumpDest ContBlock) 1256 : Kind(Kind), ExitBlock(ExitBlock), ContBlock(ContBlock) {} 1257 OpenMPDirectiveKind Kind = OMPD_unknown; 1258 /// true if the exit block has been emitted already by the special 1259 /// emitExit() call, false if the default codegen is used. 1260 bool HasBeenEmitted = false; 1261 JumpDest ExitBlock; 1262 JumpDest ContBlock; 1263 }; 1264 1265 SmallVector<CancelExit, 8> Stack; 1266 1267 public: 1268 OpenMPCancelExitStack() : Stack(1) {} 1269 ~OpenMPCancelExitStack() = default; 1270 /// Fetches the exit block for the current OpenMP construct. 1271 JumpDest getExitBlock() const { return Stack.back().ExitBlock; } 1272 /// Emits exit block with special codegen procedure specific for the related 1273 /// OpenMP construct + emits code for normal construct cleanup. 1274 void emitExit(CodeGenFunction &CGF, OpenMPDirectiveKind Kind, 1275 const llvm::function_ref<void(CodeGenFunction &)> CodeGen) { 1276 if (Stack.back().Kind == Kind && getExitBlock().isValid()) { 1277 assert(CGF.getOMPCancelDestination(Kind).isValid()); 1278 assert(CGF.HaveInsertPoint()); 1279 assert(!Stack.back().HasBeenEmitted); 1280 auto IP = CGF.Builder.saveAndClearIP(); 1281 CGF.EmitBlock(Stack.back().ExitBlock.getBlock()); 1282 CodeGen(CGF); 1283 CGF.EmitBranch(Stack.back().ContBlock.getBlock()); 1284 CGF.Builder.restoreIP(IP); 1285 Stack.back().HasBeenEmitted = true; 1286 } 1287 CodeGen(CGF); 1288 } 1289 /// Enter the cancel supporting \a Kind construct. 1290 /// \param Kind OpenMP directive that supports cancel constructs. 1291 /// \param HasCancel true, if the construct has inner cancel directive, 1292 /// false otherwise. 1293 void enter(CodeGenFunction &CGF, OpenMPDirectiveKind Kind, bool HasCancel) { 1294 Stack.push_back({Kind, 1295 HasCancel ? CGF.getJumpDestInCurrentScope("cancel.exit") 1296 : JumpDest(), 1297 HasCancel ? CGF.getJumpDestInCurrentScope("cancel.cont") 1298 : JumpDest()}); 1299 } 1300 /// Emits default exit point for the cancel construct (if the special one 1301 /// has not be used) + join point for cancel/normal exits. 1302 void exit(CodeGenFunction &CGF) { 1303 if (getExitBlock().isValid()) { 1304 assert(CGF.getOMPCancelDestination(Stack.back().Kind).isValid()); 1305 bool HaveIP = CGF.HaveInsertPoint(); 1306 if (!Stack.back().HasBeenEmitted) { 1307 if (HaveIP) 1308 CGF.EmitBranchThroughCleanup(Stack.back().ContBlock); 1309 CGF.EmitBlock(Stack.back().ExitBlock.getBlock()); 1310 CGF.EmitBranchThroughCleanup(Stack.back().ContBlock); 1311 } 1312 CGF.EmitBlock(Stack.back().ContBlock.getBlock()); 1313 if (!HaveIP) { 1314 CGF.Builder.CreateUnreachable(); 1315 CGF.Builder.ClearInsertionPoint(); 1316 } 1317 } 1318 Stack.pop_back(); 1319 } 1320 }; 1321 OpenMPCancelExitStack OMPCancelStack; 1322 1323 CodeGenPGO PGO; 1324 1325 /// Calculate branch weights appropriate for PGO data 1326 llvm::MDNode *createProfileWeights(uint64_t TrueCount, uint64_t FalseCount); 1327 llvm::MDNode *createProfileWeights(ArrayRef<uint64_t> Weights); 1328 llvm::MDNode *createProfileWeightsForLoop(const Stmt *Cond, 1329 uint64_t LoopCount); 1330 1331 public: 1332 /// Increment the profiler's counter for the given statement by \p StepV. 1333 /// If \p StepV is null, the default increment is 1. 1334 void incrementProfileCounter(const Stmt *S, llvm::Value *StepV = nullptr) { 1335 if (CGM.getCodeGenOpts().hasProfileClangInstr()) 1336 PGO.emitCounterIncrement(Builder, S, StepV); 1337 PGO.setCurrentStmt(S); 1338 } 1339 1340 /// Get the profiler's count for the given statement. 1341 uint64_t getProfileCount(const Stmt *S) { 1342 Optional<uint64_t> Count = PGO.getStmtCount(S); 1343 if (!Count.hasValue()) 1344 return 0; 1345 return *Count; 1346 } 1347 1348 /// Set the profiler's current count. 1349 void setCurrentProfileCount(uint64_t Count) { 1350 PGO.setCurrentRegionCount(Count); 1351 } 1352 1353 /// Get the profiler's current count. This is generally the count for the most 1354 /// recently incremented counter. 1355 uint64_t getCurrentProfileCount() { 1356 return PGO.getCurrentRegionCount(); 1357 } 1358 1359 private: 1360 1361 /// SwitchInsn - This is nearest current switch instruction. It is null if 1362 /// current context is not in a switch. 1363 llvm::SwitchInst *SwitchInsn = nullptr; 1364 /// The branch weights of SwitchInsn when doing instrumentation based PGO. 1365 SmallVector<uint64_t, 16> *SwitchWeights = nullptr; 1366 1367 /// CaseRangeBlock - This block holds if condition check for last case 1368 /// statement range in current switch instruction. 1369 llvm::BasicBlock *CaseRangeBlock = nullptr; 1370 1371 /// OpaqueLValues - Keeps track of the current set of opaque value 1372 /// expressions. 1373 llvm::DenseMap<const OpaqueValueExpr *, LValue> OpaqueLValues; 1374 llvm::DenseMap<const OpaqueValueExpr *, RValue> OpaqueRValues; 1375 1376 // VLASizeMap - This keeps track of the associated size for each VLA type. 1377 // We track this by the size expression rather than the type itself because 1378 // in certain situations, like a const qualifier applied to an VLA typedef, 1379 // multiple VLA types can share the same size expression. 1380 // FIXME: Maybe this could be a stack of maps that is pushed/popped as we 1381 // enter/leave scopes. 1382 llvm::DenseMap<const Expr*, llvm::Value*> VLASizeMap; 1383 1384 /// A block containing a single 'unreachable' instruction. Created 1385 /// lazily by getUnreachableBlock(). 1386 llvm::BasicBlock *UnreachableBlock = nullptr; 1387 1388 /// Counts of the number return expressions in the function. 1389 unsigned NumReturnExprs = 0; 1390 1391 /// Count the number of simple (constant) return expressions in the function. 1392 unsigned NumSimpleReturnExprs = 0; 1393 1394 /// The last regular (non-return) debug location (breakpoint) in the function. 1395 SourceLocation LastStopPoint; 1396 1397 public: 1398 /// A scope within which we are constructing the fields of an object which 1399 /// might use a CXXDefaultInitExpr. This stashes away a 'this' value to use 1400 /// if we need to evaluate a CXXDefaultInitExpr within the evaluation. 1401 class FieldConstructionScope { 1402 public: 1403 FieldConstructionScope(CodeGenFunction &CGF, Address This) 1404 : CGF(CGF), OldCXXDefaultInitExprThis(CGF.CXXDefaultInitExprThis) { 1405 CGF.CXXDefaultInitExprThis = This; 1406 } 1407 ~FieldConstructionScope() { 1408 CGF.CXXDefaultInitExprThis = OldCXXDefaultInitExprThis; 1409 } 1410 1411 private: 1412 CodeGenFunction &CGF; 1413 Address OldCXXDefaultInitExprThis; 1414 }; 1415 1416 /// The scope of a CXXDefaultInitExpr. Within this scope, the value of 'this' 1417 /// is overridden to be the object under construction. 1418 class CXXDefaultInitExprScope { 1419 public: 1420 CXXDefaultInitExprScope(CodeGenFunction &CGF) 1421 : CGF(CGF), OldCXXThisValue(CGF.CXXThisValue), 1422 OldCXXThisAlignment(CGF.CXXThisAlignment) { 1423 CGF.CXXThisValue = CGF.CXXDefaultInitExprThis.getPointer(); 1424 CGF.CXXThisAlignment = CGF.CXXDefaultInitExprThis.getAlignment(); 1425 } 1426 ~CXXDefaultInitExprScope() { 1427 CGF.CXXThisValue = OldCXXThisValue; 1428 CGF.CXXThisAlignment = OldCXXThisAlignment; 1429 } 1430 1431 public: 1432 CodeGenFunction &CGF; 1433 llvm::Value *OldCXXThisValue; 1434 CharUnits OldCXXThisAlignment; 1435 }; 1436 1437 /// The scope of an ArrayInitLoopExpr. Within this scope, the value of the 1438 /// current loop index is overridden. 1439 class ArrayInitLoopExprScope { 1440 public: 1441 ArrayInitLoopExprScope(CodeGenFunction &CGF, llvm::Value *Index) 1442 : CGF(CGF), OldArrayInitIndex(CGF.ArrayInitIndex) { 1443 CGF.ArrayInitIndex = Index; 1444 } 1445 ~ArrayInitLoopExprScope() { 1446 CGF.ArrayInitIndex = OldArrayInitIndex; 1447 } 1448 1449 private: 1450 CodeGenFunction &CGF; 1451 llvm::Value *OldArrayInitIndex; 1452 }; 1453 1454 class InlinedInheritingConstructorScope { 1455 public: 1456 InlinedInheritingConstructorScope(CodeGenFunction &CGF, GlobalDecl GD) 1457 : CGF(CGF), OldCurGD(CGF.CurGD), OldCurFuncDecl(CGF.CurFuncDecl), 1458 OldCurCodeDecl(CGF.CurCodeDecl), 1459 OldCXXABIThisDecl(CGF.CXXABIThisDecl), 1460 OldCXXABIThisValue(CGF.CXXABIThisValue), 1461 OldCXXThisValue(CGF.CXXThisValue), 1462 OldCXXABIThisAlignment(CGF.CXXABIThisAlignment), 1463 OldCXXThisAlignment(CGF.CXXThisAlignment), 1464 OldReturnValue(CGF.ReturnValue), OldFnRetTy(CGF.FnRetTy), 1465 OldCXXInheritedCtorInitExprArgs( 1466 std::move(CGF.CXXInheritedCtorInitExprArgs)) { 1467 CGF.CurGD = GD; 1468 CGF.CurFuncDecl = CGF.CurCodeDecl = 1469 cast<CXXConstructorDecl>(GD.getDecl()); 1470 CGF.CXXABIThisDecl = nullptr; 1471 CGF.CXXABIThisValue = nullptr; 1472 CGF.CXXThisValue = nullptr; 1473 CGF.CXXABIThisAlignment = CharUnits(); 1474 CGF.CXXThisAlignment = CharUnits(); 1475 CGF.ReturnValue = Address::invalid(); 1476 CGF.FnRetTy = QualType(); 1477 CGF.CXXInheritedCtorInitExprArgs.clear(); 1478 } 1479 ~InlinedInheritingConstructorScope() { 1480 CGF.CurGD = OldCurGD; 1481 CGF.CurFuncDecl = OldCurFuncDecl; 1482 CGF.CurCodeDecl = OldCurCodeDecl; 1483 CGF.CXXABIThisDecl = OldCXXABIThisDecl; 1484 CGF.CXXABIThisValue = OldCXXABIThisValue; 1485 CGF.CXXThisValue = OldCXXThisValue; 1486 CGF.CXXABIThisAlignment = OldCXXABIThisAlignment; 1487 CGF.CXXThisAlignment = OldCXXThisAlignment; 1488 CGF.ReturnValue = OldReturnValue; 1489 CGF.FnRetTy = OldFnRetTy; 1490 CGF.CXXInheritedCtorInitExprArgs = 1491 std::move(OldCXXInheritedCtorInitExprArgs); 1492 } 1493 1494 private: 1495 CodeGenFunction &CGF; 1496 GlobalDecl OldCurGD; 1497 const Decl *OldCurFuncDecl; 1498 const Decl *OldCurCodeDecl; 1499 ImplicitParamDecl *OldCXXABIThisDecl; 1500 llvm::Value *OldCXXABIThisValue; 1501 llvm::Value *OldCXXThisValue; 1502 CharUnits OldCXXABIThisAlignment; 1503 CharUnits OldCXXThisAlignment; 1504 Address OldReturnValue; 1505 QualType OldFnRetTy; 1506 CallArgList OldCXXInheritedCtorInitExprArgs; 1507 }; 1508 1509 private: 1510 /// CXXThisDecl - When generating code for a C++ member function, 1511 /// this will hold the implicit 'this' declaration. 1512 ImplicitParamDecl *CXXABIThisDecl = nullptr; 1513 llvm::Value *CXXABIThisValue = nullptr; 1514 llvm::Value *CXXThisValue = nullptr; 1515 CharUnits CXXABIThisAlignment; 1516 CharUnits CXXThisAlignment; 1517 1518 /// The value of 'this' to use when evaluating CXXDefaultInitExprs within 1519 /// this expression. 1520 Address CXXDefaultInitExprThis = Address::invalid(); 1521 1522 /// The current array initialization index when evaluating an 1523 /// ArrayInitIndexExpr within an ArrayInitLoopExpr. 1524 llvm::Value *ArrayInitIndex = nullptr; 1525 1526 /// The values of function arguments to use when evaluating 1527 /// CXXInheritedCtorInitExprs within this context. 1528 CallArgList CXXInheritedCtorInitExprArgs; 1529 1530 /// CXXStructorImplicitParamDecl - When generating code for a constructor or 1531 /// destructor, this will hold the implicit argument (e.g. VTT). 1532 ImplicitParamDecl *CXXStructorImplicitParamDecl = nullptr; 1533 llvm::Value *CXXStructorImplicitParamValue = nullptr; 1534 1535 /// OutermostConditional - Points to the outermost active 1536 /// conditional control. This is used so that we know if a 1537 /// temporary should be destroyed conditionally. 1538 ConditionalEvaluation *OutermostConditional = nullptr; 1539 1540 /// The current lexical scope. 1541 LexicalScope *CurLexicalScope = nullptr; 1542 1543 /// The current source location that should be used for exception 1544 /// handling code. 1545 SourceLocation CurEHLocation; 1546 1547 /// BlockByrefInfos - For each __block variable, contains 1548 /// information about the layout of the variable. 1549 llvm::DenseMap<const ValueDecl *, BlockByrefInfo> BlockByrefInfos; 1550 1551 /// Used by -fsanitize=nullability-return to determine whether the return 1552 /// value can be checked. 1553 llvm::Value *RetValNullabilityPrecondition = nullptr; 1554 1555 /// Check if -fsanitize=nullability-return instrumentation is required for 1556 /// this function. 1557 bool requiresReturnValueNullabilityCheck() const { 1558 return RetValNullabilityPrecondition; 1559 } 1560 1561 /// Used to store precise source locations for return statements by the 1562 /// runtime return value checks. 1563 Address ReturnLocation = Address::invalid(); 1564 1565 /// Check if the return value of this function requires sanitization. 1566 bool requiresReturnValueCheck() const { 1567 return requiresReturnValueNullabilityCheck() || 1568 (SanOpts.has(SanitizerKind::ReturnsNonnullAttribute) && 1569 CurCodeDecl && CurCodeDecl->getAttr<ReturnsNonNullAttr>()); 1570 } 1571 1572 llvm::BasicBlock *TerminateLandingPad = nullptr; 1573 llvm::BasicBlock *TerminateHandler = nullptr; 1574 llvm::BasicBlock *TrapBB = nullptr; 1575 1576 /// Terminate funclets keyed by parent funclet pad. 1577 llvm::MapVector<llvm::Value *, llvm::BasicBlock *> TerminateFunclets; 1578 1579 /// Largest vector width used in ths function. Will be used to create a 1580 /// function attribute. 1581 unsigned LargestVectorWidth = 0; 1582 1583 /// True if we need emit the life-time markers. 1584 const bool ShouldEmitLifetimeMarkers; 1585 1586 /// Add OpenCL kernel arg metadata and the kernel attribute metadata to 1587 /// the function metadata. 1588 void EmitOpenCLKernelMetadata(const FunctionDecl *FD, 1589 llvm::Function *Fn); 1590 1591 public: 1592 CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext=false); 1593 ~CodeGenFunction(); 1594 1595 CodeGenTypes &getTypes() const { return CGM.getTypes(); } 1596 ASTContext &getContext() const { return CGM.getContext(); } 1597 CGDebugInfo *getDebugInfo() { 1598 if (DisableDebugInfo) 1599 return nullptr; 1600 return DebugInfo; 1601 } 1602 void disableDebugInfo() { DisableDebugInfo = true; } 1603 void enableDebugInfo() { DisableDebugInfo = false; } 1604 1605 bool shouldUseFusedARCCalls() { 1606 return CGM.getCodeGenOpts().OptimizationLevel == 0; 1607 } 1608 1609 const LangOptions &getLangOpts() const { return CGM.getLangOpts(); } 1610 1611 /// Returns a pointer to the function's exception object and selector slot, 1612 /// which is assigned in every landing pad. 1613 Address getExceptionSlot(); 1614 Address getEHSelectorSlot(); 1615 1616 /// Returns the contents of the function's exception object and selector 1617 /// slots. 1618 llvm::Value *getExceptionFromSlot(); 1619 llvm::Value *getSelectorFromSlot(); 1620 1621 Address getNormalCleanupDestSlot(); 1622 1623 llvm::BasicBlock *getUnreachableBlock() { 1624 if (!UnreachableBlock) { 1625 UnreachableBlock = createBasicBlock("unreachable"); 1626 new llvm::UnreachableInst(getLLVMContext(), UnreachableBlock); 1627 } 1628 return UnreachableBlock; 1629 } 1630 1631 llvm::BasicBlock *getInvokeDest() { 1632 if (!EHStack.requiresLandingPad()) return nullptr; 1633 return getInvokeDestImpl(); 1634 } 1635 1636 bool currentFunctionUsesSEHTry() const { return CurSEHParent != nullptr; } 1637 1638 const TargetInfo &getTarget() const { return Target; } 1639 llvm::LLVMContext &getLLVMContext() { return CGM.getLLVMContext(); } 1640 const TargetCodeGenInfo &getTargetHooks() const { 1641 return CGM.getTargetCodeGenInfo(); 1642 } 1643 1644 //===--------------------------------------------------------------------===// 1645 // Cleanups 1646 //===--------------------------------------------------------------------===// 1647 1648 typedef void Destroyer(CodeGenFunction &CGF, Address addr, QualType ty); 1649 1650 void pushIrregularPartialArrayCleanup(llvm::Value *arrayBegin, 1651 Address arrayEndPointer, 1652 QualType elementType, 1653 CharUnits elementAlignment, 1654 Destroyer *destroyer); 1655 void pushRegularPartialArrayCleanup(llvm::Value *arrayBegin, 1656 llvm::Value *arrayEnd, 1657 QualType elementType, 1658 CharUnits elementAlignment, 1659 Destroyer *destroyer); 1660 1661 void pushDestroy(QualType::DestructionKind dtorKind, 1662 Address addr, QualType type); 1663 void pushEHDestroy(QualType::DestructionKind dtorKind, 1664 Address addr, QualType type); 1665 void pushDestroy(CleanupKind kind, Address addr, QualType type, 1666 Destroyer *destroyer, bool useEHCleanupForArray); 1667 void pushLifetimeExtendedDestroy(CleanupKind kind, Address addr, 1668 QualType type, Destroyer *destroyer, 1669 bool useEHCleanupForArray); 1670 void pushCallObjectDeleteCleanup(const FunctionDecl *OperatorDelete, 1671 llvm::Value *CompletePtr, 1672 QualType ElementType); 1673 void pushStackRestore(CleanupKind kind, Address SPMem); 1674 void emitDestroy(Address addr, QualType type, Destroyer *destroyer, 1675 bool useEHCleanupForArray); 1676 llvm::Function *generateDestroyHelper(Address addr, QualType type, 1677 Destroyer *destroyer, 1678 bool useEHCleanupForArray, 1679 const VarDecl *VD); 1680 void emitArrayDestroy(llvm::Value *begin, llvm::Value *end, 1681 QualType elementType, CharUnits elementAlign, 1682 Destroyer *destroyer, 1683 bool checkZeroLength, bool useEHCleanup); 1684 1685 Destroyer *getDestroyer(QualType::DestructionKind destructionKind); 1686 1687 /// Determines whether an EH cleanup is required to destroy a type 1688 /// with the given destruction kind. 1689 bool needsEHCleanup(QualType::DestructionKind kind) { 1690 switch (kind) { 1691 case QualType::DK_none: 1692 return false; 1693 case QualType::DK_cxx_destructor: 1694 case QualType::DK_objc_weak_lifetime: 1695 case QualType::DK_nontrivial_c_struct: 1696 return getLangOpts().Exceptions; 1697 case QualType::DK_objc_strong_lifetime: 1698 return getLangOpts().Exceptions && 1699 CGM.getCodeGenOpts().ObjCAutoRefCountExceptions; 1700 } 1701 llvm_unreachable("bad destruction kind"); 1702 } 1703 1704 CleanupKind getCleanupKind(QualType::DestructionKind kind) { 1705 return (needsEHCleanup(kind) ? NormalAndEHCleanup : NormalCleanup); 1706 } 1707 1708 //===--------------------------------------------------------------------===// 1709 // Objective-C 1710 //===--------------------------------------------------------------------===// 1711 1712 void GenerateObjCMethod(const ObjCMethodDecl *OMD); 1713 1714 void StartObjCMethod(const ObjCMethodDecl *MD, const ObjCContainerDecl *CD); 1715 1716 /// GenerateObjCGetter - Synthesize an Objective-C property getter function. 1717 void GenerateObjCGetter(ObjCImplementationDecl *IMP, 1718 const ObjCPropertyImplDecl *PID); 1719 void generateObjCGetterBody(const ObjCImplementationDecl *classImpl, 1720 const ObjCPropertyImplDecl *propImpl, 1721 const ObjCMethodDecl *GetterMothodDecl, 1722 llvm::Constant *AtomicHelperFn); 1723 1724 void GenerateObjCCtorDtorMethod(ObjCImplementationDecl *IMP, 1725 ObjCMethodDecl *MD, bool ctor); 1726 1727 /// GenerateObjCSetter - Synthesize an Objective-C property setter function 1728 /// for the given property. 1729 void GenerateObjCSetter(ObjCImplementationDecl *IMP, 1730 const ObjCPropertyImplDecl *PID); 1731 void generateObjCSetterBody(const ObjCImplementationDecl *classImpl, 1732 const ObjCPropertyImplDecl *propImpl, 1733 llvm::Constant *AtomicHelperFn); 1734 1735 //===--------------------------------------------------------------------===// 1736 // Block Bits 1737 //===--------------------------------------------------------------------===// 1738 1739 /// Emit block literal. 1740 /// \return an LLVM value which is a pointer to a struct which contains 1741 /// information about the block, including the block invoke function, the 1742 /// captured variables, etc. 1743 llvm::Value *EmitBlockLiteral(const BlockExpr *); 1744 static void destroyBlockInfos(CGBlockInfo *info); 1745 1746 llvm::Function *GenerateBlockFunction(GlobalDecl GD, 1747 const CGBlockInfo &Info, 1748 const DeclMapTy &ldm, 1749 bool IsLambdaConversionToBlock, 1750 bool BuildGlobalBlock); 1751 1752 /// Check if \p T is a C++ class that has a destructor that can throw. 1753 static bool cxxDestructorCanThrow(QualType T); 1754 1755 llvm::Constant *GenerateCopyHelperFunction(const CGBlockInfo &blockInfo); 1756 llvm::Constant *GenerateDestroyHelperFunction(const CGBlockInfo &blockInfo); 1757 llvm::Constant *GenerateObjCAtomicSetterCopyHelperFunction( 1758 const ObjCPropertyImplDecl *PID); 1759 llvm::Constant *GenerateObjCAtomicGetterCopyHelperFunction( 1760 const ObjCPropertyImplDecl *PID); 1761 llvm::Value *EmitBlockCopyAndAutorelease(llvm::Value *Block, QualType Ty); 1762 1763 void BuildBlockRelease(llvm::Value *DeclPtr, BlockFieldFlags flags, 1764 bool CanThrow); 1765 1766 class AutoVarEmission; 1767 1768 void emitByrefStructureInit(const AutoVarEmission &emission); 1769 1770 /// Enter a cleanup to destroy a __block variable. Note that this 1771 /// cleanup should be a no-op if the variable hasn't left the stack 1772 /// yet; if a cleanup is required for the variable itself, that needs 1773 /// to be done externally. 1774 /// 1775 /// \param Kind Cleanup kind. 1776 /// 1777 /// \param Addr When \p LoadBlockVarAddr is false, the address of the __block 1778 /// structure that will be passed to _Block_object_dispose. When 1779 /// \p LoadBlockVarAddr is true, the address of the field of the block 1780 /// structure that holds the address of the __block structure. 1781 /// 1782 /// \param Flags The flag that will be passed to _Block_object_dispose. 1783 /// 1784 /// \param LoadBlockVarAddr Indicates whether we need to emit a load from 1785 /// \p Addr to get the address of the __block structure. 1786 void enterByrefCleanup(CleanupKind Kind, Address Addr, BlockFieldFlags Flags, 1787 bool LoadBlockVarAddr, bool CanThrow); 1788 1789 void setBlockContextParameter(const ImplicitParamDecl *D, unsigned argNum, 1790 llvm::Value *ptr); 1791 1792 Address LoadBlockStruct(); 1793 Address GetAddrOfBlockDecl(const VarDecl *var); 1794 1795 /// BuildBlockByrefAddress - Computes the location of the 1796 /// data in a variable which is declared as __block. 1797 Address emitBlockByrefAddress(Address baseAddr, const VarDecl *V, 1798 bool followForward = true); 1799 Address emitBlockByrefAddress(Address baseAddr, 1800 const BlockByrefInfo &info, 1801 bool followForward, 1802 const llvm::Twine &name); 1803 1804 const BlockByrefInfo &getBlockByrefInfo(const VarDecl *var); 1805 1806 QualType BuildFunctionArgList(GlobalDecl GD, FunctionArgList &Args); 1807 1808 void GenerateCode(GlobalDecl GD, llvm::Function *Fn, 1809 const CGFunctionInfo &FnInfo); 1810 1811 /// Annotate the function with an attribute that disables TSan checking at 1812 /// runtime. 1813 void markAsIgnoreThreadCheckingAtRuntime(llvm::Function *Fn); 1814 1815 /// Emit code for the start of a function. 1816 /// \param Loc The location to be associated with the function. 1817 /// \param StartLoc The location of the function body. 1818 void StartFunction(GlobalDecl GD, 1819 QualType RetTy, 1820 llvm::Function *Fn, 1821 const CGFunctionInfo &FnInfo, 1822 const FunctionArgList &Args, 1823 SourceLocation Loc = SourceLocation(), 1824 SourceLocation StartLoc = SourceLocation()); 1825 1826 static bool IsConstructorDelegationValid(const CXXConstructorDecl *Ctor); 1827 1828 void EmitConstructorBody(FunctionArgList &Args); 1829 void EmitDestructorBody(FunctionArgList &Args); 1830 void emitImplicitAssignmentOperatorBody(FunctionArgList &Args); 1831 void EmitFunctionBody(const Stmt *Body); 1832 void EmitBlockWithFallThrough(llvm::BasicBlock *BB, const Stmt *S); 1833 1834 void EmitForwardingCallToLambda(const CXXMethodDecl *LambdaCallOperator, 1835 CallArgList &CallArgs); 1836 void EmitLambdaBlockInvokeBody(); 1837 void EmitLambdaDelegatingInvokeBody(const CXXMethodDecl *MD); 1838 void EmitLambdaStaticInvokeBody(const CXXMethodDecl *MD); 1839 void EmitAsanPrologueOrEpilogue(bool Prologue); 1840 1841 /// Emit the unified return block, trying to avoid its emission when 1842 /// possible. 1843 /// \return The debug location of the user written return statement if the 1844 /// return block is is avoided. 1845 llvm::DebugLoc EmitReturnBlock(); 1846 1847 /// FinishFunction - Complete IR generation of the current function. It is 1848 /// legal to call this function even if there is no current insertion point. 1849 void FinishFunction(SourceLocation EndLoc=SourceLocation()); 1850 1851 void StartThunk(llvm::Function *Fn, GlobalDecl GD, 1852 const CGFunctionInfo &FnInfo, bool IsUnprototyped); 1853 1854 void EmitCallAndReturnForThunk(llvm::Constant *Callee, const ThunkInfo *Thunk, 1855 bool IsUnprototyped); 1856 1857 void FinishThunk(); 1858 1859 /// Emit a musttail call for a thunk with a potentially adjusted this pointer. 1860 void EmitMustTailThunk(GlobalDecl GD, llvm::Value *AdjustedThisPtr, 1861 llvm::Value *Callee); 1862 1863 /// Generate a thunk for the given method. 1864 void generateThunk(llvm::Function *Fn, const CGFunctionInfo &FnInfo, 1865 GlobalDecl GD, const ThunkInfo &Thunk, 1866 bool IsUnprototyped); 1867 1868 llvm::Function *GenerateVarArgsThunk(llvm::Function *Fn, 1869 const CGFunctionInfo &FnInfo, 1870 GlobalDecl GD, const ThunkInfo &Thunk); 1871 1872 void EmitCtorPrologue(const CXXConstructorDecl *CD, CXXCtorType Type, 1873 FunctionArgList &Args); 1874 1875 void EmitInitializerForField(FieldDecl *Field, LValue LHS, Expr *Init); 1876 1877 /// Struct with all information about dynamic [sub]class needed to set vptr. 1878 struct VPtr { 1879 BaseSubobject Base; 1880 const CXXRecordDecl *NearestVBase; 1881 CharUnits OffsetFromNearestVBase; 1882 const CXXRecordDecl *VTableClass; 1883 }; 1884 1885 /// Initialize the vtable pointer of the given subobject. 1886 void InitializeVTablePointer(const VPtr &vptr); 1887 1888 typedef llvm::SmallVector<VPtr, 4> VPtrsVector; 1889 1890 typedef llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBasesSetTy; 1891 VPtrsVector getVTablePointers(const CXXRecordDecl *VTableClass); 1892 1893 void getVTablePointers(BaseSubobject Base, const CXXRecordDecl *NearestVBase, 1894 CharUnits OffsetFromNearestVBase, 1895 bool BaseIsNonVirtualPrimaryBase, 1896 const CXXRecordDecl *VTableClass, 1897 VisitedVirtualBasesSetTy &VBases, VPtrsVector &vptrs); 1898 1899 void InitializeVTablePointers(const CXXRecordDecl *ClassDecl); 1900 1901 /// GetVTablePtr - Return the Value of the vtable pointer member pointed 1902 /// to by This. 1903 llvm::Value *GetVTablePtr(Address This, llvm::Type *VTableTy, 1904 const CXXRecordDecl *VTableClass); 1905 1906 enum CFITypeCheckKind { 1907 CFITCK_VCall, 1908 CFITCK_NVCall, 1909 CFITCK_DerivedCast, 1910 CFITCK_UnrelatedCast, 1911 CFITCK_ICall, 1912 CFITCK_NVMFCall, 1913 CFITCK_VMFCall, 1914 }; 1915 1916 /// Derived is the presumed address of an object of type T after a 1917 /// cast. If T is a polymorphic class type, emit a check that the virtual 1918 /// table for Derived belongs to a class derived from T. 1919 void EmitVTablePtrCheckForCast(QualType T, llvm::Value *Derived, 1920 bool MayBeNull, CFITypeCheckKind TCK, 1921 SourceLocation Loc); 1922 1923 /// EmitVTablePtrCheckForCall - Virtual method MD is being called via VTable. 1924 /// If vptr CFI is enabled, emit a check that VTable is valid. 1925 void EmitVTablePtrCheckForCall(const CXXRecordDecl *RD, llvm::Value *VTable, 1926 CFITypeCheckKind TCK, SourceLocation Loc); 1927 1928 /// EmitVTablePtrCheck - Emit a check that VTable is a valid virtual table for 1929 /// RD using llvm.type.test. 1930 void EmitVTablePtrCheck(const CXXRecordDecl *RD, llvm::Value *VTable, 1931 CFITypeCheckKind TCK, SourceLocation Loc); 1932 1933 /// If whole-program virtual table optimization is enabled, emit an assumption 1934 /// that VTable is a member of RD's type identifier. Or, if vptr CFI is 1935 /// enabled, emit a check that VTable is a member of RD's type identifier. 1936 void EmitTypeMetadataCodeForVCall(const CXXRecordDecl *RD, 1937 llvm::Value *VTable, SourceLocation Loc); 1938 1939 /// Returns whether we should perform a type checked load when loading a 1940 /// virtual function for virtual calls to members of RD. This is generally 1941 /// true when both vcall CFI and whole-program-vtables are enabled. 1942 bool ShouldEmitVTableTypeCheckedLoad(const CXXRecordDecl *RD); 1943 1944 /// Emit a type checked load from the given vtable. 1945 llvm::Value *EmitVTableTypeCheckedLoad(const CXXRecordDecl *RD, llvm::Value *VTable, 1946 uint64_t VTableByteOffset); 1947 1948 /// EnterDtorCleanups - Enter the cleanups necessary to complete the 1949 /// given phase of destruction for a destructor. The end result 1950 /// should call destructors on members and base classes in reverse 1951 /// order of their construction. 1952 void EnterDtorCleanups(const CXXDestructorDecl *Dtor, CXXDtorType Type); 1953 1954 /// ShouldInstrumentFunction - Return true if the current function should be 1955 /// instrumented with __cyg_profile_func_* calls 1956 bool ShouldInstrumentFunction(); 1957 1958 /// ShouldXRayInstrument - Return true if the current function should be 1959 /// instrumented with XRay nop sleds. 1960 bool ShouldXRayInstrumentFunction() const; 1961 1962 /// AlwaysEmitXRayCustomEvents - Return true if we must unconditionally emit 1963 /// XRay custom event handling calls. 1964 bool AlwaysEmitXRayCustomEvents() const; 1965 1966 /// AlwaysEmitXRayTypedEvents - Return true if clang must unconditionally emit 1967 /// XRay typed event handling calls. 1968 bool AlwaysEmitXRayTypedEvents() const; 1969 1970 /// Encode an address into a form suitable for use in a function prologue. 1971 llvm::Constant *EncodeAddrForUseInPrologue(llvm::Function *F, 1972 llvm::Constant *Addr); 1973 1974 /// Decode an address used in a function prologue, encoded by \c 1975 /// EncodeAddrForUseInPrologue. 1976 llvm::Value *DecodeAddrUsedInPrologue(llvm::Value *F, 1977 llvm::Value *EncodedAddr); 1978 1979 /// EmitFunctionProlog - Emit the target specific LLVM code to load the 1980 /// arguments for the given function. This is also responsible for naming the 1981 /// LLVM function arguments. 1982 void EmitFunctionProlog(const CGFunctionInfo &FI, 1983 llvm::Function *Fn, 1984 const FunctionArgList &Args); 1985 1986 /// EmitFunctionEpilog - Emit the target specific LLVM code to return the 1987 /// given temporary. 1988 void EmitFunctionEpilog(const CGFunctionInfo &FI, bool EmitRetDbgLoc, 1989 SourceLocation EndLoc); 1990 1991 /// Emit a test that checks if the return value \p RV is nonnull. 1992 void EmitReturnValueCheck(llvm::Value *RV); 1993 1994 /// EmitStartEHSpec - Emit the start of the exception spec. 1995 void EmitStartEHSpec(const Decl *D); 1996 1997 /// EmitEndEHSpec - Emit the end of the exception spec. 1998 void EmitEndEHSpec(const Decl *D); 1999 2000 /// getTerminateLandingPad - Return a landing pad that just calls terminate. 2001 llvm::BasicBlock *getTerminateLandingPad(); 2002 2003 /// getTerminateLandingPad - Return a cleanup funclet that just calls 2004 /// terminate. 2005 llvm::BasicBlock *getTerminateFunclet(); 2006 2007 /// getTerminateHandler - Return a handler (not a landing pad, just 2008 /// a catch handler) that just calls terminate. This is used when 2009 /// a terminate scope encloses a try. 2010 llvm::BasicBlock *getTerminateHandler(); 2011 2012 llvm::Type *ConvertTypeForMem(QualType T); 2013 llvm::Type *ConvertType(QualType T); 2014 llvm::Type *ConvertType(const TypeDecl *T) { 2015 return ConvertType(getContext().getTypeDeclType(T)); 2016 } 2017 2018 /// LoadObjCSelf - Load the value of self. This function is only valid while 2019 /// generating code for an Objective-C method. 2020 llvm::Value *LoadObjCSelf(); 2021 2022 /// TypeOfSelfObject - Return type of object that this self represents. 2023 QualType TypeOfSelfObject(); 2024 2025 /// getEvaluationKind - Return the TypeEvaluationKind of QualType \c T. 2026 static TypeEvaluationKind getEvaluationKind(QualType T); 2027 2028 static bool hasScalarEvaluationKind(QualType T) { 2029 return getEvaluationKind(T) == TEK_Scalar; 2030 } 2031 2032 static bool hasAggregateEvaluationKind(QualType T) { 2033 return getEvaluationKind(T) == TEK_Aggregate; 2034 } 2035 2036 /// createBasicBlock - Create an LLVM basic block. 2037 llvm::BasicBlock *createBasicBlock(const Twine &name = "", 2038 llvm::Function *parent = nullptr, 2039 llvm::BasicBlock *before = nullptr) { 2040 return llvm::BasicBlock::Create(getLLVMContext(), name, parent, before); 2041 } 2042 2043 /// getBasicBlockForLabel - Return the LLVM basicblock that the specified 2044 /// label maps to. 2045 JumpDest getJumpDestForLabel(const LabelDecl *S); 2046 2047 /// SimplifyForwardingBlocks - If the given basic block is only a branch to 2048 /// another basic block, simplify it. This assumes that no other code could 2049 /// potentially reference the basic block. 2050 void SimplifyForwardingBlocks(llvm::BasicBlock *BB); 2051 2052 /// EmitBlock - Emit the given block \arg BB and set it as the insert point, 2053 /// adding a fall-through branch from the current insert block if 2054 /// necessary. It is legal to call this function even if there is no current 2055 /// insertion point. 2056 /// 2057 /// IsFinished - If true, indicates that the caller has finished emitting 2058 /// branches to the given block and does not expect to emit code into it. This 2059 /// means the block can be ignored if it is unreachable. 2060 void EmitBlock(llvm::BasicBlock *BB, bool IsFinished=false); 2061 2062 /// EmitBlockAfterUses - Emit the given block somewhere hopefully 2063 /// near its uses, and leave the insertion point in it. 2064 void EmitBlockAfterUses(llvm::BasicBlock *BB); 2065 2066 /// EmitBranch - Emit a branch to the specified basic block from the current 2067 /// insert block, taking care to avoid creation of branches from dummy 2068 /// blocks. It is legal to call this function even if there is no current 2069 /// insertion point. 2070 /// 2071 /// This function clears the current insertion point. The caller should follow 2072 /// calls to this function with calls to Emit*Block prior to generation new 2073 /// code. 2074 void EmitBranch(llvm::BasicBlock *Block); 2075 2076 /// HaveInsertPoint - True if an insertion point is defined. If not, this 2077 /// indicates that the current code being emitted is unreachable. 2078 bool HaveInsertPoint() const { 2079 return Builder.GetInsertBlock() != nullptr; 2080 } 2081 2082 /// EnsureInsertPoint - Ensure that an insertion point is defined so that 2083 /// emitted IR has a place to go. Note that by definition, if this function 2084 /// creates a block then that block is unreachable; callers may do better to 2085 /// detect when no insertion point is defined and simply skip IR generation. 2086 void EnsureInsertPoint() { 2087 if (!HaveInsertPoint()) 2088 EmitBlock(createBasicBlock()); 2089 } 2090 2091 /// ErrorUnsupported - Print out an error that codegen doesn't support the 2092 /// specified stmt yet. 2093 void ErrorUnsupported(const Stmt *S, const char *Type); 2094 2095 //===--------------------------------------------------------------------===// 2096 // Helpers 2097 //===--------------------------------------------------------------------===// 2098 2099 LValue MakeAddrLValue(Address Addr, QualType T, 2100 AlignmentSource Source = AlignmentSource::Type) { 2101 return LValue::MakeAddr(Addr, T, getContext(), LValueBaseInfo(Source), 2102 CGM.getTBAAAccessInfo(T)); 2103 } 2104 2105 LValue MakeAddrLValue(Address Addr, QualType T, LValueBaseInfo BaseInfo, 2106 TBAAAccessInfo TBAAInfo) { 2107 return LValue::MakeAddr(Addr, T, getContext(), BaseInfo, TBAAInfo); 2108 } 2109 2110 LValue MakeAddrLValue(llvm::Value *V, QualType T, CharUnits Alignment, 2111 AlignmentSource Source = AlignmentSource::Type) { 2112 return LValue::MakeAddr(Address(V, Alignment), T, getContext(), 2113 LValueBaseInfo(Source), CGM.getTBAAAccessInfo(T)); 2114 } 2115 2116 LValue MakeAddrLValue(llvm::Value *V, QualType T, CharUnits Alignment, 2117 LValueBaseInfo BaseInfo, TBAAAccessInfo TBAAInfo) { 2118 return LValue::MakeAddr(Address(V, Alignment), T, getContext(), 2119 BaseInfo, TBAAInfo); 2120 } 2121 2122 LValue MakeNaturalAlignPointeeAddrLValue(llvm::Value *V, QualType T); 2123 LValue MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T); 2124 CharUnits getNaturalTypeAlignment(QualType T, 2125 LValueBaseInfo *BaseInfo = nullptr, 2126 TBAAAccessInfo *TBAAInfo = nullptr, 2127 bool forPointeeType = false); 2128 CharUnits getNaturalPointeeTypeAlignment(QualType T, 2129 LValueBaseInfo *BaseInfo = nullptr, 2130 TBAAAccessInfo *TBAAInfo = nullptr); 2131 2132 Address EmitLoadOfReference(LValue RefLVal, 2133 LValueBaseInfo *PointeeBaseInfo = nullptr, 2134 TBAAAccessInfo *PointeeTBAAInfo = nullptr); 2135 LValue EmitLoadOfReferenceLValue(LValue RefLVal); 2136 LValue EmitLoadOfReferenceLValue(Address RefAddr, QualType RefTy, 2137 AlignmentSource Source = 2138 AlignmentSource::Type) { 2139 LValue RefLVal = MakeAddrLValue(RefAddr, RefTy, LValueBaseInfo(Source), 2140 CGM.getTBAAAccessInfo(RefTy)); 2141 return EmitLoadOfReferenceLValue(RefLVal); 2142 } 2143 2144 Address EmitLoadOfPointer(Address Ptr, const PointerType *PtrTy, 2145 LValueBaseInfo *BaseInfo = nullptr, 2146 TBAAAccessInfo *TBAAInfo = nullptr); 2147 LValue EmitLoadOfPointerLValue(Address Ptr, const PointerType *PtrTy); 2148 2149 /// CreateTempAlloca - This creates an alloca and inserts it into the entry 2150 /// block if \p ArraySize is nullptr, otherwise inserts it at the current 2151 /// insertion point of the builder. The caller is responsible for setting an 2152 /// appropriate alignment on 2153 /// the alloca. 2154 /// 2155 /// \p ArraySize is the number of array elements to be allocated if it 2156 /// is not nullptr. 2157 /// 2158 /// LangAS::Default is the address space of pointers to local variables and 2159 /// temporaries, as exposed in the source language. In certain 2160 /// configurations, this is not the same as the alloca address space, and a 2161 /// cast is needed to lift the pointer from the alloca AS into 2162 /// LangAS::Default. This can happen when the target uses a restricted 2163 /// address space for the stack but the source language requires 2164 /// LangAS::Default to be a generic address space. The latter condition is 2165 /// common for most programming languages; OpenCL is an exception in that 2166 /// LangAS::Default is the private address space, which naturally maps 2167 /// to the stack. 2168 /// 2169 /// Because the address of a temporary is often exposed to the program in 2170 /// various ways, this function will perform the cast. The original alloca 2171 /// instruction is returned through \p Alloca if it is not nullptr. 2172 /// 2173 /// The cast is not performaed in CreateTempAllocaWithoutCast. This is 2174 /// more efficient if the caller knows that the address will not be exposed. 2175 llvm::AllocaInst *CreateTempAlloca(llvm::Type *Ty, const Twine &Name = "tmp", 2176 llvm::Value *ArraySize = nullptr); 2177 Address CreateTempAlloca(llvm::Type *Ty, CharUnits align, 2178 const Twine &Name = "tmp", 2179 llvm::Value *ArraySize = nullptr, 2180 Address *Alloca = nullptr); 2181 Address CreateTempAllocaWithoutCast(llvm::Type *Ty, CharUnits align, 2182 const Twine &Name = "tmp", 2183 llvm::Value *ArraySize = nullptr); 2184 2185 /// CreateDefaultAlignedTempAlloca - This creates an alloca with the 2186 /// default ABI alignment of the given LLVM type. 2187 /// 2188 /// IMPORTANT NOTE: This is *not* generally the right alignment for 2189 /// any given AST type that happens to have been lowered to the 2190 /// given IR type. This should only ever be used for function-local, 2191 /// IR-driven manipulations like saving and restoring a value. Do 2192 /// not hand this address off to arbitrary IRGen routines, and especially 2193 /// do not pass it as an argument to a function that might expect a 2194 /// properly ABI-aligned value. 2195 Address CreateDefaultAlignTempAlloca(llvm::Type *Ty, 2196 const Twine &Name = "tmp"); 2197 2198 /// InitTempAlloca - Provide an initial value for the given alloca which 2199 /// will be observable at all locations in the function. 2200 /// 2201 /// The address should be something that was returned from one of 2202 /// the CreateTempAlloca or CreateMemTemp routines, and the 2203 /// initializer must be valid in the entry block (i.e. it must 2204 /// either be a constant or an argument value). 2205 void InitTempAlloca(Address Alloca, llvm::Value *Value); 2206 2207 /// CreateIRTemp - Create a temporary IR object of the given type, with 2208 /// appropriate alignment. This routine should only be used when an temporary 2209 /// value needs to be stored into an alloca (for example, to avoid explicit 2210 /// PHI construction), but the type is the IR type, not the type appropriate 2211 /// for storing in memory. 2212 /// 2213 /// That is, this is exactly equivalent to CreateMemTemp, but calling 2214 /// ConvertType instead of ConvertTypeForMem. 2215 Address CreateIRTemp(QualType T, const Twine &Name = "tmp"); 2216 2217 /// CreateMemTemp - Create a temporary memory object of the given type, with 2218 /// appropriate alignmen and cast it to the default address space. Returns 2219 /// the original alloca instruction by \p Alloca if it is not nullptr. 2220 Address CreateMemTemp(QualType T, const Twine &Name = "tmp", 2221 Address *Alloca = nullptr); 2222 Address CreateMemTemp(QualType T, CharUnits Align, const Twine &Name = "tmp", 2223 Address *Alloca = nullptr); 2224 2225 /// CreateMemTemp - Create a temporary memory object of the given type, with 2226 /// appropriate alignmen without casting it to the default address space. 2227 Address CreateMemTempWithoutCast(QualType T, const Twine &Name = "tmp"); 2228 Address CreateMemTempWithoutCast(QualType T, CharUnits Align, 2229 const Twine &Name = "tmp"); 2230 2231 /// CreateAggTemp - Create a temporary memory object for the given 2232 /// aggregate type. 2233 AggValueSlot CreateAggTemp(QualType T, const Twine &Name = "tmp") { 2234 return AggValueSlot::forAddr(CreateMemTemp(T, Name), 2235 T.getQualifiers(), 2236 AggValueSlot::IsNotDestructed, 2237 AggValueSlot::DoesNotNeedGCBarriers, 2238 AggValueSlot::IsNotAliased, 2239 AggValueSlot::DoesNotOverlap); 2240 } 2241 2242 /// Emit a cast to void* in the appropriate address space. 2243 llvm::Value *EmitCastToVoidPtr(llvm::Value *value); 2244 2245 /// EvaluateExprAsBool - Perform the usual unary conversions on the specified 2246 /// expression and compare the result against zero, returning an Int1Ty value. 2247 llvm::Value *EvaluateExprAsBool(const Expr *E); 2248 2249 /// EmitIgnoredExpr - Emit an expression in a context which ignores the result. 2250 void EmitIgnoredExpr(const Expr *E); 2251 2252 /// EmitAnyExpr - Emit code to compute the specified expression which can have 2253 /// any type. The result is returned as an RValue struct. If this is an 2254 /// aggregate expression, the aggloc/agglocvolatile arguments indicate where 2255 /// the result should be returned. 2256 /// 2257 /// \param ignoreResult True if the resulting value isn't used. 2258 RValue EmitAnyExpr(const Expr *E, 2259 AggValueSlot aggSlot = AggValueSlot::ignored(), 2260 bool ignoreResult = false); 2261 2262 // EmitVAListRef - Emit a "reference" to a va_list; this is either the address 2263 // or the value of the expression, depending on how va_list is defined. 2264 Address EmitVAListRef(const Expr *E); 2265 2266 /// Emit a "reference" to a __builtin_ms_va_list; this is 2267 /// always the value of the expression, because a __builtin_ms_va_list is a 2268 /// pointer to a char. 2269 Address EmitMSVAListRef(const Expr *E); 2270 2271 /// EmitAnyExprToTemp - Similarly to EmitAnyExpr(), however, the result will 2272 /// always be accessible even if no aggregate location is provided. 2273 RValue EmitAnyExprToTemp(const Expr *E); 2274 2275 /// EmitAnyExprToMem - Emits the code necessary to evaluate an 2276 /// arbitrary expression into the given memory location. 2277 void EmitAnyExprToMem(const Expr *E, Address Location, 2278 Qualifiers Quals, bool IsInitializer); 2279 2280 void EmitAnyExprToExn(const Expr *E, Address Addr); 2281 2282 /// EmitExprAsInit - Emits the code necessary to initialize a 2283 /// location in memory with the given initializer. 2284 void EmitExprAsInit(const Expr *init, const ValueDecl *D, LValue lvalue, 2285 bool capturedByInit); 2286 2287 /// hasVolatileMember - returns true if aggregate type has a volatile 2288 /// member. 2289 bool hasVolatileMember(QualType T) { 2290 if (const RecordType *RT = T->getAs<RecordType>()) { 2291 const RecordDecl *RD = cast<RecordDecl>(RT->getDecl()); 2292 return RD->hasVolatileMember(); 2293 } 2294 return false; 2295 } 2296 2297 /// Determine whether a return value slot may overlap some other object. 2298 AggValueSlot::Overlap_t overlapForReturnValue() { 2299 // FIXME: Assuming no overlap here breaks guaranteed copy elision for base 2300 // class subobjects. These cases may need to be revisited depending on the 2301 // resolution of the relevant core issue. 2302 return AggValueSlot::DoesNotOverlap; 2303 } 2304 2305 /// Determine whether a field initialization may overlap some other object. 2306 AggValueSlot::Overlap_t overlapForFieldInit(const FieldDecl *FD) { 2307 // FIXME: These cases can result in overlap as a result of P0840R0's 2308 // [[no_unique_address]] attribute. We can still infer NoOverlap in the 2309 // presence of that attribute if the field is within the nvsize of its 2310 // containing class, because non-virtual subobjects are initialized in 2311 // address order. 2312 return AggValueSlot::DoesNotOverlap; 2313 } 2314 2315 /// Determine whether a base class initialization may overlap some other 2316 /// object. 2317 AggValueSlot::Overlap_t overlapForBaseInit(const CXXRecordDecl *RD, 2318 const CXXRecordDecl *BaseRD, 2319 bool IsVirtual); 2320 2321 /// Emit an aggregate assignment. 2322 void EmitAggregateAssign(LValue Dest, LValue Src, QualType EltTy) { 2323 bool IsVolatile = hasVolatileMember(EltTy); 2324 EmitAggregateCopy(Dest, Src, EltTy, AggValueSlot::MayOverlap, IsVolatile); 2325 } 2326 2327 void EmitAggregateCopyCtor(LValue Dest, LValue Src, 2328 AggValueSlot::Overlap_t MayOverlap) { 2329 EmitAggregateCopy(Dest, Src, Src.getType(), MayOverlap); 2330 } 2331 2332 /// EmitAggregateCopy - Emit an aggregate copy. 2333 /// 2334 /// \param isVolatile \c true iff either the source or the destination is 2335 /// volatile. 2336 /// \param MayOverlap Whether the tail padding of the destination might be 2337 /// occupied by some other object. More efficient code can often be 2338 /// generated if not. 2339 void EmitAggregateCopy(LValue Dest, LValue Src, QualType EltTy, 2340 AggValueSlot::Overlap_t MayOverlap, 2341 bool isVolatile = false); 2342 2343 /// GetAddrOfLocalVar - Return the address of a local variable. 2344 Address GetAddrOfLocalVar(const VarDecl *VD) { 2345 auto it = LocalDeclMap.find(VD); 2346 assert(it != LocalDeclMap.end() && 2347 "Invalid argument to GetAddrOfLocalVar(), no decl!"); 2348 return it->second; 2349 } 2350 2351 /// Given an opaque value expression, return its LValue mapping if it exists, 2352 /// otherwise create one. 2353 LValue getOrCreateOpaqueLValueMapping(const OpaqueValueExpr *e); 2354 2355 /// Given an opaque value expression, return its RValue mapping if it exists, 2356 /// otherwise create one. 2357 RValue getOrCreateOpaqueRValueMapping(const OpaqueValueExpr *e); 2358 2359 /// Get the index of the current ArrayInitLoopExpr, if any. 2360 llvm::Value *getArrayInitIndex() { return ArrayInitIndex; } 2361 2362 /// getAccessedFieldNo - Given an encoded value and a result number, return 2363 /// the input field number being accessed. 2364 static unsigned getAccessedFieldNo(unsigned Idx, const llvm::Constant *Elts); 2365 2366 llvm::BlockAddress *GetAddrOfLabel(const LabelDecl *L); 2367 llvm::BasicBlock *GetIndirectGotoBlock(); 2368 2369 /// Check if \p E is a C++ "this" pointer wrapped in value-preserving casts. 2370 static bool IsWrappedCXXThis(const Expr *E); 2371 2372 /// EmitNullInitialization - Generate code to set a value of the given type to 2373 /// null, If the type contains data member pointers, they will be initialized 2374 /// to -1 in accordance with the Itanium C++ ABI. 2375 void EmitNullInitialization(Address DestPtr, QualType Ty); 2376 2377 /// Emits a call to an LLVM variable-argument intrinsic, either 2378 /// \c llvm.va_start or \c llvm.va_end. 2379 /// \param ArgValue A reference to the \c va_list as emitted by either 2380 /// \c EmitVAListRef or \c EmitMSVAListRef. 2381 /// \param IsStart If \c true, emits a call to \c llvm.va_start; otherwise, 2382 /// calls \c llvm.va_end. 2383 llvm::Value *EmitVAStartEnd(llvm::Value *ArgValue, bool IsStart); 2384 2385 /// Generate code to get an argument from the passed in pointer 2386 /// and update it accordingly. 2387 /// \param VE The \c VAArgExpr for which to generate code. 2388 /// \param VAListAddr Receives a reference to the \c va_list as emitted by 2389 /// either \c EmitVAListRef or \c EmitMSVAListRef. 2390 /// \returns A pointer to the argument. 2391 // FIXME: We should be able to get rid of this method and use the va_arg 2392 // instruction in LLVM instead once it works well enough. 2393 Address EmitVAArg(VAArgExpr *VE, Address &VAListAddr); 2394 2395 /// emitArrayLength - Compute the length of an array, even if it's a 2396 /// VLA, and drill down to the base element type. 2397 llvm::Value *emitArrayLength(const ArrayType *arrayType, 2398 QualType &baseType, 2399 Address &addr); 2400 2401 /// EmitVLASize - Capture all the sizes for the VLA expressions in 2402 /// the given variably-modified type and store them in the VLASizeMap. 2403 /// 2404 /// This function can be called with a null (unreachable) insert point. 2405 void EmitVariablyModifiedType(QualType Ty); 2406 2407 struct VlaSizePair { 2408 llvm::Value *NumElts; 2409 QualType Type; 2410 2411 VlaSizePair(llvm::Value *NE, QualType T) : NumElts(NE), Type(T) {} 2412 }; 2413 2414 /// Return the number of elements for a single dimension 2415 /// for the given array type. 2416 VlaSizePair getVLAElements1D(const VariableArrayType *vla); 2417 VlaSizePair getVLAElements1D(QualType vla); 2418 2419 /// Returns an LLVM value that corresponds to the size, 2420 /// in non-variably-sized elements, of a variable length array type, 2421 /// plus that largest non-variably-sized element type. Assumes that 2422 /// the type has already been emitted with EmitVariablyModifiedType. 2423 VlaSizePair getVLASize(const VariableArrayType *vla); 2424 VlaSizePair getVLASize(QualType vla); 2425 2426 /// LoadCXXThis - Load the value of 'this'. This function is only valid while 2427 /// generating code for an C++ member function. 2428 llvm::Value *LoadCXXThis() { 2429 assert(CXXThisValue && "no 'this' value for this function"); 2430 return CXXThisValue; 2431 } 2432 Address LoadCXXThisAddress(); 2433 2434 /// LoadCXXVTT - Load the VTT parameter to base constructors/destructors have 2435 /// virtual bases. 2436 // FIXME: Every place that calls LoadCXXVTT is something 2437 // that needs to be abstracted properly. 2438 llvm::Value *LoadCXXVTT() { 2439 assert(CXXStructorImplicitParamValue && "no VTT value for this function"); 2440 return CXXStructorImplicitParamValue; 2441 } 2442 2443 /// GetAddressOfBaseOfCompleteClass - Convert the given pointer to a 2444 /// complete class to the given direct base. 2445 Address 2446 GetAddressOfDirectBaseInCompleteClass(Address Value, 2447 const CXXRecordDecl *Derived, 2448 const CXXRecordDecl *Base, 2449 bool BaseIsVirtual); 2450 2451 static bool ShouldNullCheckClassCastValue(const CastExpr *Cast); 2452 2453 /// GetAddressOfBaseClass - This function will add the necessary delta to the 2454 /// load of 'this' and returns address of the base class. 2455 Address GetAddressOfBaseClass(Address Value, 2456 const CXXRecordDecl *Derived, 2457 CastExpr::path_const_iterator PathBegin, 2458 CastExpr::path_const_iterator PathEnd, 2459 bool NullCheckValue, SourceLocation Loc); 2460 2461 Address GetAddressOfDerivedClass(Address Value, 2462 const CXXRecordDecl *Derived, 2463 CastExpr::path_const_iterator PathBegin, 2464 CastExpr::path_const_iterator PathEnd, 2465 bool NullCheckValue); 2466 2467 /// GetVTTParameter - Return the VTT parameter that should be passed to a 2468 /// base constructor/destructor with virtual bases. 2469 /// FIXME: VTTs are Itanium ABI-specific, so the definition should move 2470 /// to ItaniumCXXABI.cpp together with all the references to VTT. 2471 llvm::Value *GetVTTParameter(GlobalDecl GD, bool ForVirtualBase, 2472 bool Delegating); 2473 2474 void EmitDelegateCXXConstructorCall(const CXXConstructorDecl *Ctor, 2475 CXXCtorType CtorType, 2476 const FunctionArgList &Args, 2477 SourceLocation Loc); 2478 // It's important not to confuse this and the previous function. Delegating 2479 // constructors are the C++0x feature. The constructor delegate optimization 2480 // is used to reduce duplication in the base and complete consturctors where 2481 // they are substantially the same. 2482 void EmitDelegatingCXXConstructorCall(const CXXConstructorDecl *Ctor, 2483 const FunctionArgList &Args); 2484 2485 /// Emit a call to an inheriting constructor (that is, one that invokes a 2486 /// constructor inherited from a base class) by inlining its definition. This 2487 /// is necessary if the ABI does not support forwarding the arguments to the 2488 /// base class constructor (because they're variadic or similar). 2489 void EmitInlinedInheritingCXXConstructorCall(const CXXConstructorDecl *Ctor, 2490 CXXCtorType CtorType, 2491 bool ForVirtualBase, 2492 bool Delegating, 2493 CallArgList &Args); 2494 2495 /// Emit a call to a constructor inherited from a base class, passing the 2496 /// current constructor's arguments along unmodified (without even making 2497 /// a copy). 2498 void EmitInheritedCXXConstructorCall(const CXXConstructorDecl *D, 2499 bool ForVirtualBase, Address This, 2500 bool InheritedFromVBase, 2501 const CXXInheritedCtorInitExpr *E); 2502 2503 void EmitCXXConstructorCall(const CXXConstructorDecl *D, CXXCtorType Type, 2504 bool ForVirtualBase, bool Delegating, 2505 Address This, const CXXConstructExpr *E, 2506 AggValueSlot::Overlap_t Overlap, 2507 bool NewPointerIsChecked); 2508 2509 void EmitCXXConstructorCall(const CXXConstructorDecl *D, CXXCtorType Type, 2510 bool ForVirtualBase, bool Delegating, 2511 Address This, CallArgList &Args, 2512 AggValueSlot::Overlap_t Overlap, 2513 SourceLocation Loc, 2514 bool NewPointerIsChecked); 2515 2516 /// Emit assumption load for all bases. Requires to be be called only on 2517 /// most-derived class and not under construction of the object. 2518 void EmitVTableAssumptionLoads(const CXXRecordDecl *ClassDecl, Address This); 2519 2520 /// Emit assumption that vptr load == global vtable. 2521 void EmitVTableAssumptionLoad(const VPtr &vptr, Address This); 2522 2523 void EmitSynthesizedCXXCopyCtorCall(const CXXConstructorDecl *D, 2524 Address This, Address Src, 2525 const CXXConstructExpr *E); 2526 2527 void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D, 2528 const ArrayType *ArrayTy, 2529 Address ArrayPtr, 2530 const CXXConstructExpr *E, 2531 bool NewPointerIsChecked, 2532 bool ZeroInitialization = false); 2533 2534 void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D, 2535 llvm::Value *NumElements, 2536 Address ArrayPtr, 2537 const CXXConstructExpr *E, 2538 bool NewPointerIsChecked, 2539 bool ZeroInitialization = false); 2540 2541 static Destroyer destroyCXXObject; 2542 2543 void EmitCXXDestructorCall(const CXXDestructorDecl *D, CXXDtorType Type, 2544 bool ForVirtualBase, bool Delegating, 2545 Address This); 2546 2547 void EmitNewArrayInitializer(const CXXNewExpr *E, QualType elementType, 2548 llvm::Type *ElementTy, Address NewPtr, 2549 llvm::Value *NumElements, 2550 llvm::Value *AllocSizeWithoutCookie); 2551 2552 void EmitCXXTemporary(const CXXTemporary *Temporary, QualType TempType, 2553 Address Ptr); 2554 2555 llvm::Value *EmitLifetimeStart(uint64_t Size, llvm::Value *Addr); 2556 void EmitLifetimeEnd(llvm::Value *Size, llvm::Value *Addr); 2557 2558 llvm::Value *EmitCXXNewExpr(const CXXNewExpr *E); 2559 void EmitCXXDeleteExpr(const CXXDeleteExpr *E); 2560 2561 void EmitDeleteCall(const FunctionDecl *DeleteFD, llvm::Value *Ptr, 2562 QualType DeleteTy, llvm::Value *NumElements = nullptr, 2563 CharUnits CookieSize = CharUnits()); 2564 2565 RValue EmitBuiltinNewDeleteCall(const FunctionProtoType *Type, 2566 const CallExpr *TheCallExpr, bool IsDelete); 2567 2568 llvm::Value *EmitCXXTypeidExpr(const CXXTypeidExpr *E); 2569 llvm::Value *EmitDynamicCast(Address V, const CXXDynamicCastExpr *DCE); 2570 Address EmitCXXUuidofExpr(const CXXUuidofExpr *E); 2571 2572 /// Situations in which we might emit a check for the suitability of a 2573 /// pointer or glvalue. 2574 enum TypeCheckKind { 2575 /// Checking the operand of a load. Must be suitably sized and aligned. 2576 TCK_Load, 2577 /// Checking the destination of a store. Must be suitably sized and aligned. 2578 TCK_Store, 2579 /// Checking the bound value in a reference binding. Must be suitably sized 2580 /// and aligned, but is not required to refer to an object (until the 2581 /// reference is used), per core issue 453. 2582 TCK_ReferenceBinding, 2583 /// Checking the object expression in a non-static data member access. Must 2584 /// be an object within its lifetime. 2585 TCK_MemberAccess, 2586 /// Checking the 'this' pointer for a call to a non-static member function. 2587 /// Must be an object within its lifetime. 2588 TCK_MemberCall, 2589 /// Checking the 'this' pointer for a constructor call. 2590 TCK_ConstructorCall, 2591 /// Checking the operand of a static_cast to a derived pointer type. Must be 2592 /// null or an object within its lifetime. 2593 TCK_DowncastPointer, 2594 /// Checking the operand of a static_cast to a derived reference type. Must 2595 /// be an object within its lifetime. 2596 TCK_DowncastReference, 2597 /// Checking the operand of a cast to a base object. Must be suitably sized 2598 /// and aligned. 2599 TCK_Upcast, 2600 /// Checking the operand of a cast to a virtual base object. Must be an 2601 /// object within its lifetime. 2602 TCK_UpcastToVirtualBase, 2603 /// Checking the value assigned to a _Nonnull pointer. Must not be null. 2604 TCK_NonnullAssign, 2605 /// Checking the operand of a dynamic_cast or a typeid expression. Must be 2606 /// null or an object within its lifetime. 2607 TCK_DynamicOperation 2608 }; 2609 2610 /// Determine whether the pointer type check \p TCK permits null pointers. 2611 static bool isNullPointerAllowed(TypeCheckKind TCK); 2612 2613 /// Determine whether the pointer type check \p TCK requires a vptr check. 2614 static bool isVptrCheckRequired(TypeCheckKind TCK, QualType Ty); 2615 2616 /// Whether any type-checking sanitizers are enabled. If \c false, 2617 /// calls to EmitTypeCheck can be skipped. 2618 bool sanitizePerformTypeCheck() const; 2619 2620 /// Emit a check that \p V is the address of storage of the 2621 /// appropriate size and alignment for an object of type \p Type. 2622 void EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc, llvm::Value *V, 2623 QualType Type, CharUnits Alignment = CharUnits::Zero(), 2624 SanitizerSet SkippedChecks = SanitizerSet()); 2625 2626 /// Emit a check that \p Base points into an array object, which 2627 /// we can access at index \p Index. \p Accessed should be \c false if we 2628 /// this expression is used as an lvalue, for instance in "&Arr[Idx]". 2629 void EmitBoundsCheck(const Expr *E, const Expr *Base, llvm::Value *Index, 2630 QualType IndexType, bool Accessed); 2631 2632 llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV, 2633 bool isInc, bool isPre); 2634 ComplexPairTy EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV, 2635 bool isInc, bool isPre); 2636 2637 /// Converts Location to a DebugLoc, if debug information is enabled. 2638 llvm::DebugLoc SourceLocToDebugLoc(SourceLocation Location); 2639 2640 2641 //===--------------------------------------------------------------------===// 2642 // Declaration Emission 2643 //===--------------------------------------------------------------------===// 2644 2645 /// EmitDecl - Emit a declaration. 2646 /// 2647 /// This function can be called with a null (unreachable) insert point. 2648 void EmitDecl(const Decl &D); 2649 2650 /// EmitVarDecl - Emit a local variable declaration. 2651 /// 2652 /// This function can be called with a null (unreachable) insert point. 2653 void EmitVarDecl(const VarDecl &D); 2654 2655 void EmitScalarInit(const Expr *init, const ValueDecl *D, LValue lvalue, 2656 bool capturedByInit); 2657 2658 typedef void SpecialInitFn(CodeGenFunction &Init, const VarDecl &D, 2659 llvm::Value *Address); 2660 2661 /// Determine whether the given initializer is trivial in the sense 2662 /// that it requires no code to be generated. 2663 bool isTrivialInitializer(const Expr *Init); 2664 2665 /// EmitAutoVarDecl - Emit an auto variable declaration. 2666 /// 2667 /// This function can be called with a null (unreachable) insert point. 2668 void EmitAutoVarDecl(const VarDecl &D); 2669 2670 class AutoVarEmission { 2671 friend class CodeGenFunction; 2672 2673 const VarDecl *Variable; 2674 2675 /// The address of the alloca for languages with explicit address space 2676 /// (e.g. OpenCL) or alloca casted to generic pointer for address space 2677 /// agnostic languages (e.g. C++). Invalid if the variable was emitted 2678 /// as a global constant. 2679 Address Addr; 2680 2681 llvm::Value *NRVOFlag; 2682 2683 /// True if the variable is a __block variable that is captured by an 2684 /// escaping block. 2685 bool IsEscapingByRef; 2686 2687 /// True if the variable is of aggregate type and has a constant 2688 /// initializer. 2689 bool IsConstantAggregate; 2690 2691 /// Non-null if we should use lifetime annotations. 2692 llvm::Value *SizeForLifetimeMarkers; 2693 2694 /// Address with original alloca instruction. Invalid if the variable was 2695 /// emitted as a global constant. 2696 Address AllocaAddr; 2697 2698 struct Invalid {}; 2699 AutoVarEmission(Invalid) 2700 : Variable(nullptr), Addr(Address::invalid()), 2701 AllocaAddr(Address::invalid()) {} 2702 2703 AutoVarEmission(const VarDecl &variable) 2704 : Variable(&variable), Addr(Address::invalid()), NRVOFlag(nullptr), 2705 IsEscapingByRef(false), IsConstantAggregate(false), 2706 SizeForLifetimeMarkers(nullptr), AllocaAddr(Address::invalid()) {} 2707 2708 bool wasEmittedAsGlobal() const { return !Addr.isValid(); } 2709 2710 public: 2711 static AutoVarEmission invalid() { return AutoVarEmission(Invalid()); } 2712 2713 bool useLifetimeMarkers() const { 2714 return SizeForLifetimeMarkers != nullptr; 2715 } 2716 llvm::Value *getSizeForLifetimeMarkers() const { 2717 assert(useLifetimeMarkers()); 2718 return SizeForLifetimeMarkers; 2719 } 2720 2721 /// Returns the raw, allocated address, which is not necessarily 2722 /// the address of the object itself. It is casted to default 2723 /// address space for address space agnostic languages. 2724 Address getAllocatedAddress() const { 2725 return Addr; 2726 } 2727 2728 /// Returns the address for the original alloca instruction. 2729 Address getOriginalAllocatedAddress() const { return AllocaAddr; } 2730 2731 /// Returns the address of the object within this declaration. 2732 /// Note that this does not chase the forwarding pointer for 2733 /// __block decls. 2734 Address getObjectAddress(CodeGenFunction &CGF) const { 2735 if (!IsEscapingByRef) return Addr; 2736 2737 return CGF.emitBlockByrefAddress(Addr, Variable, /*forward*/ false); 2738 } 2739 }; 2740 AutoVarEmission EmitAutoVarAlloca(const VarDecl &var); 2741 void EmitAutoVarInit(const AutoVarEmission &emission); 2742 void EmitAutoVarCleanups(const AutoVarEmission &emission); 2743 void emitAutoVarTypeCleanup(const AutoVarEmission &emission, 2744 QualType::DestructionKind dtorKind); 2745 2746 /// Emits the alloca and debug information for the size expressions for each 2747 /// dimension of an array. It registers the association of its (1-dimensional) 2748 /// QualTypes and size expression's debug node, so that CGDebugInfo can 2749 /// reference this node when creating the DISubrange object to describe the 2750 /// array types. 2751 void EmitAndRegisterVariableArrayDimensions(CGDebugInfo *DI, 2752 const VarDecl &D, 2753 bool EmitDebugInfo); 2754 2755 void EmitStaticVarDecl(const VarDecl &D, 2756 llvm::GlobalValue::LinkageTypes Linkage); 2757 2758 class ParamValue { 2759 llvm::Value *Value; 2760 unsigned Alignment; 2761 ParamValue(llvm::Value *V, unsigned A) : Value(V), Alignment(A) {} 2762 public: 2763 static ParamValue forDirect(llvm::Value *value) { 2764 return ParamValue(value, 0); 2765 } 2766 static ParamValue forIndirect(Address addr) { 2767 assert(!addr.getAlignment().isZero()); 2768 return ParamValue(addr.getPointer(), addr.getAlignment().getQuantity()); 2769 } 2770 2771 bool isIndirect() const { return Alignment != 0; } 2772 llvm::Value *getAnyValue() const { return Value; } 2773 2774 llvm::Value *getDirectValue() const { 2775 assert(!isIndirect()); 2776 return Value; 2777 } 2778 2779 Address getIndirectAddress() const { 2780 assert(isIndirect()); 2781 return Address(Value, CharUnits::fromQuantity(Alignment)); 2782 } 2783 }; 2784 2785 /// EmitParmDecl - Emit a ParmVarDecl or an ImplicitParamDecl. 2786 void EmitParmDecl(const VarDecl &D, ParamValue Arg, unsigned ArgNo); 2787 2788 /// protectFromPeepholes - Protect a value that we're intending to 2789 /// store to the side, but which will probably be used later, from 2790 /// aggressive peepholing optimizations that might delete it. 2791 /// 2792 /// Pass the result to unprotectFromPeepholes to declare that 2793 /// protection is no longer required. 2794 /// 2795 /// There's no particular reason why this shouldn't apply to 2796 /// l-values, it's just that no existing peepholes work on pointers. 2797 PeepholeProtection protectFromPeepholes(RValue rvalue); 2798 void unprotectFromPeepholes(PeepholeProtection protection); 2799 2800 void EmitAlignmentAssumptionCheck(llvm::Value *Ptr, QualType Ty, 2801 SourceLocation Loc, 2802 SourceLocation AssumptionLoc, 2803 llvm::Value *Alignment, 2804 llvm::Value *OffsetValue, 2805 llvm::Value *TheCheck, 2806 llvm::Instruction *Assumption); 2807 2808 void EmitAlignmentAssumption(llvm::Value *PtrValue, QualType Ty, 2809 SourceLocation Loc, SourceLocation AssumptionLoc, 2810 llvm::Value *Alignment, 2811 llvm::Value *OffsetValue = nullptr); 2812 2813 void EmitAlignmentAssumption(llvm::Value *PtrValue, QualType Ty, 2814 SourceLocation Loc, SourceLocation AssumptionLoc, 2815 unsigned Alignment, 2816 llvm::Value *OffsetValue = nullptr); 2817 2818 void EmitAlignmentAssumption(llvm::Value *PtrValue, const Expr *E, 2819 SourceLocation AssumptionLoc, unsigned Alignment, 2820 llvm::Value *OffsetValue = nullptr); 2821 2822 //===--------------------------------------------------------------------===// 2823 // Statement Emission 2824 //===--------------------------------------------------------------------===// 2825 2826 /// EmitStopPoint - Emit a debug stoppoint if we are emitting debug info. 2827 void EmitStopPoint(const Stmt *S); 2828 2829 /// EmitStmt - Emit the code for the statement \arg S. It is legal to call 2830 /// this function even if there is no current insertion point. 2831 /// 2832 /// This function may clear the current insertion point; callers should use 2833 /// EnsureInsertPoint if they wish to subsequently generate code without first 2834 /// calling EmitBlock, EmitBranch, or EmitStmt. 2835 void EmitStmt(const Stmt *S, ArrayRef<const Attr *> Attrs = None); 2836 2837 /// EmitSimpleStmt - Try to emit a "simple" statement which does not 2838 /// necessarily require an insertion point or debug information; typically 2839 /// because the statement amounts to a jump or a container of other 2840 /// statements. 2841 /// 2842 /// \return True if the statement was handled. 2843 bool EmitSimpleStmt(const Stmt *S); 2844 2845 Address EmitCompoundStmt(const CompoundStmt &S, bool GetLast = false, 2846 AggValueSlot AVS = AggValueSlot::ignored()); 2847 Address EmitCompoundStmtWithoutScope(const CompoundStmt &S, 2848 bool GetLast = false, 2849 AggValueSlot AVS = 2850 AggValueSlot::ignored()); 2851 2852 /// EmitLabel - Emit the block for the given label. It is legal to call this 2853 /// function even if there is no current insertion point. 2854 void EmitLabel(const LabelDecl *D); // helper for EmitLabelStmt. 2855 2856 void EmitLabelStmt(const LabelStmt &S); 2857 void EmitAttributedStmt(const AttributedStmt &S); 2858 void EmitGotoStmt(const GotoStmt &S); 2859 void EmitIndirectGotoStmt(const IndirectGotoStmt &S); 2860 void EmitIfStmt(const IfStmt &S); 2861 2862 void EmitWhileStmt(const WhileStmt &S, 2863 ArrayRef<const Attr *> Attrs = None); 2864 void EmitDoStmt(const DoStmt &S, ArrayRef<const Attr *> Attrs = None); 2865 void EmitForStmt(const ForStmt &S, 2866 ArrayRef<const Attr *> Attrs = None); 2867 void EmitReturnStmt(const ReturnStmt &S); 2868 void EmitDeclStmt(const DeclStmt &S); 2869 void EmitBreakStmt(const BreakStmt &S); 2870 void EmitContinueStmt(const ContinueStmt &S); 2871 void EmitSwitchStmt(const SwitchStmt &S); 2872 void EmitDefaultStmt(const DefaultStmt &S); 2873 void EmitCaseStmt(const CaseStmt &S); 2874 void EmitCaseStmtRange(const CaseStmt &S); 2875 void EmitAsmStmt(const AsmStmt &S); 2876 2877 void EmitObjCForCollectionStmt(const ObjCForCollectionStmt &S); 2878 void EmitObjCAtTryStmt(const ObjCAtTryStmt &S); 2879 void EmitObjCAtThrowStmt(const ObjCAtThrowStmt &S); 2880 void EmitObjCAtSynchronizedStmt(const ObjCAtSynchronizedStmt &S); 2881 void EmitObjCAutoreleasePoolStmt(const ObjCAutoreleasePoolStmt &S); 2882 2883 void EmitCoroutineBody(const CoroutineBodyStmt &S); 2884 void EmitCoreturnStmt(const CoreturnStmt &S); 2885 RValue EmitCoawaitExpr(const CoawaitExpr &E, 2886 AggValueSlot aggSlot = AggValueSlot::ignored(), 2887 bool ignoreResult = false); 2888 LValue EmitCoawaitLValue(const CoawaitExpr *E); 2889 RValue EmitCoyieldExpr(const CoyieldExpr &E, 2890 AggValueSlot aggSlot = AggValueSlot::ignored(), 2891 bool ignoreResult = false); 2892 LValue EmitCoyieldLValue(const CoyieldExpr *E); 2893 RValue EmitCoroutineIntrinsic(const CallExpr *E, unsigned int IID); 2894 2895 void EnterCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false); 2896 void ExitCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false); 2897 2898 void EmitCXXTryStmt(const CXXTryStmt &S); 2899 void EmitSEHTryStmt(const SEHTryStmt &S); 2900 void EmitSEHLeaveStmt(const SEHLeaveStmt &S); 2901 void EnterSEHTryStmt(const SEHTryStmt &S); 2902 void ExitSEHTryStmt(const SEHTryStmt &S); 2903 2904 void pushSEHCleanup(CleanupKind kind, 2905 llvm::Function *FinallyFunc); 2906 void startOutlinedSEHHelper(CodeGenFunction &ParentCGF, bool IsFilter, 2907 const Stmt *OutlinedStmt); 2908 2909 llvm::Function *GenerateSEHFilterFunction(CodeGenFunction &ParentCGF, 2910 const SEHExceptStmt &Except); 2911 2912 llvm::Function *GenerateSEHFinallyFunction(CodeGenFunction &ParentCGF, 2913 const SEHFinallyStmt &Finally); 2914 2915 void EmitSEHExceptionCodeSave(CodeGenFunction &ParentCGF, 2916 llvm::Value *ParentFP, 2917 llvm::Value *EntryEBP); 2918 llvm::Value *EmitSEHExceptionCode(); 2919 llvm::Value *EmitSEHExceptionInfo(); 2920 llvm::Value *EmitSEHAbnormalTermination(); 2921 2922 /// Emit simple code for OpenMP directives in Simd-only mode. 2923 void EmitSimpleOMPExecutableDirective(const OMPExecutableDirective &D); 2924 2925 /// Scan the outlined statement for captures from the parent function. For 2926 /// each capture, mark the capture as escaped and emit a call to 2927 /// llvm.localrecover. Insert the localrecover result into the LocalDeclMap. 2928 void EmitCapturedLocals(CodeGenFunction &ParentCGF, const Stmt *OutlinedStmt, 2929 bool IsFilter); 2930 2931 /// Recovers the address of a local in a parent function. ParentVar is the 2932 /// address of the variable used in the immediate parent function. It can 2933 /// either be an alloca or a call to llvm.localrecover if there are nested 2934 /// outlined functions. ParentFP is the frame pointer of the outermost parent 2935 /// frame. 2936 Address recoverAddrOfEscapedLocal(CodeGenFunction &ParentCGF, 2937 Address ParentVar, 2938 llvm::Value *ParentFP); 2939 2940 void EmitCXXForRangeStmt(const CXXForRangeStmt &S, 2941 ArrayRef<const Attr *> Attrs = None); 2942 2943 /// Controls insertion of cancellation exit blocks in worksharing constructs. 2944 class OMPCancelStackRAII { 2945 CodeGenFunction &CGF; 2946 2947 public: 2948 OMPCancelStackRAII(CodeGenFunction &CGF, OpenMPDirectiveKind Kind, 2949 bool HasCancel) 2950 : CGF(CGF) { 2951 CGF.OMPCancelStack.enter(CGF, Kind, HasCancel); 2952 } 2953 ~OMPCancelStackRAII() { CGF.OMPCancelStack.exit(CGF); } 2954 }; 2955 2956 /// Returns calculated size of the specified type. 2957 llvm::Value *getTypeSize(QualType Ty); 2958 LValue InitCapturedStruct(const CapturedStmt &S); 2959 llvm::Function *EmitCapturedStmt(const CapturedStmt &S, CapturedRegionKind K); 2960 llvm::Function *GenerateCapturedStmtFunction(const CapturedStmt &S); 2961 Address GenerateCapturedStmtArgument(const CapturedStmt &S); 2962 llvm::Function *GenerateOpenMPCapturedStmtFunction(const CapturedStmt &S); 2963 void GenerateOpenMPCapturedVars(const CapturedStmt &S, 2964 SmallVectorImpl<llvm::Value *> &CapturedVars); 2965 void emitOMPSimpleStore(LValue LVal, RValue RVal, QualType RValTy, 2966 SourceLocation Loc); 2967 /// Perform element by element copying of arrays with type \a 2968 /// OriginalType from \a SrcAddr to \a DestAddr using copying procedure 2969 /// generated by \a CopyGen. 2970 /// 2971 /// \param DestAddr Address of the destination array. 2972 /// \param SrcAddr Address of the source array. 2973 /// \param OriginalType Type of destination and source arrays. 2974 /// \param CopyGen Copying procedure that copies value of single array element 2975 /// to another single array element. 2976 void EmitOMPAggregateAssign( 2977 Address DestAddr, Address SrcAddr, QualType OriginalType, 2978 const llvm::function_ref<void(Address, Address)> CopyGen); 2979 /// Emit proper copying of data from one variable to another. 2980 /// 2981 /// \param OriginalType Original type of the copied variables. 2982 /// \param DestAddr Destination address. 2983 /// \param SrcAddr Source address. 2984 /// \param DestVD Destination variable used in \a CopyExpr (for arrays, has 2985 /// type of the base array element). 2986 /// \param SrcVD Source variable used in \a CopyExpr (for arrays, has type of 2987 /// the base array element). 2988 /// \param Copy Actual copygin expression for copying data from \a SrcVD to \a 2989 /// DestVD. 2990 void EmitOMPCopy(QualType OriginalType, 2991 Address DestAddr, Address SrcAddr, 2992 const VarDecl *DestVD, const VarDecl *SrcVD, 2993 const Expr *Copy); 2994 /// Emit atomic update code for constructs: \a X = \a X \a BO \a E or 2995 /// \a X = \a E \a BO \a E. 2996 /// 2997 /// \param X Value to be updated. 2998 /// \param E Update value. 2999 /// \param BO Binary operation for update operation. 3000 /// \param IsXLHSInRHSPart true if \a X is LHS in RHS part of the update 3001 /// expression, false otherwise. 3002 /// \param AO Atomic ordering of the generated atomic instructions. 3003 /// \param CommonGen Code generator for complex expressions that cannot be 3004 /// expressed through atomicrmw instruction. 3005 /// \returns <true, OldAtomicValue> if simple 'atomicrmw' instruction was 3006 /// generated, <false, RValue::get(nullptr)> otherwise. 3007 std::pair<bool, RValue> EmitOMPAtomicSimpleUpdateExpr( 3008 LValue X, RValue E, BinaryOperatorKind BO, bool IsXLHSInRHSPart, 3009 llvm::AtomicOrdering AO, SourceLocation Loc, 3010 const llvm::function_ref<RValue(RValue)> CommonGen); 3011 bool EmitOMPFirstprivateClause(const OMPExecutableDirective &D, 3012 OMPPrivateScope &PrivateScope); 3013 void EmitOMPPrivateClause(const OMPExecutableDirective &D, 3014 OMPPrivateScope &PrivateScope); 3015 void EmitOMPUseDevicePtrClause( 3016 const OMPClause &C, OMPPrivateScope &PrivateScope, 3017 const llvm::DenseMap<const ValueDecl *, Address> &CaptureDeviceAddrMap); 3018 /// Emit code for copyin clause in \a D directive. The next code is 3019 /// generated at the start of outlined functions for directives: 3020 /// \code 3021 /// threadprivate_var1 = master_threadprivate_var1; 3022 /// operator=(threadprivate_var2, master_threadprivate_var2); 3023 /// ... 3024 /// __kmpc_barrier(&loc, global_tid); 3025 /// \endcode 3026 /// 3027 /// \param D OpenMP directive possibly with 'copyin' clause(s). 3028 /// \returns true if at least one copyin variable is found, false otherwise. 3029 bool EmitOMPCopyinClause(const OMPExecutableDirective &D); 3030 /// Emit initial code for lastprivate variables. If some variable is 3031 /// not also firstprivate, then the default initialization is used. Otherwise 3032 /// initialization of this variable is performed by EmitOMPFirstprivateClause 3033 /// method. 3034 /// 3035 /// \param D Directive that may have 'lastprivate' directives. 3036 /// \param PrivateScope Private scope for capturing lastprivate variables for 3037 /// proper codegen in internal captured statement. 3038 /// 3039 /// \returns true if there is at least one lastprivate variable, false 3040 /// otherwise. 3041 bool EmitOMPLastprivateClauseInit(const OMPExecutableDirective &D, 3042 OMPPrivateScope &PrivateScope); 3043 /// Emit final copying of lastprivate values to original variables at 3044 /// the end of the worksharing or simd directive. 3045 /// 3046 /// \param D Directive that has at least one 'lastprivate' directives. 3047 /// \param IsLastIterCond Boolean condition that must be set to 'i1 true' if 3048 /// it is the last iteration of the loop code in associated directive, or to 3049 /// 'i1 false' otherwise. If this item is nullptr, no final check is required. 3050 void EmitOMPLastprivateClauseFinal(const OMPExecutableDirective &D, 3051 bool NoFinals, 3052 llvm::Value *IsLastIterCond = nullptr); 3053 /// Emit initial code for linear clauses. 3054 void EmitOMPLinearClause(const OMPLoopDirective &D, 3055 CodeGenFunction::OMPPrivateScope &PrivateScope); 3056 /// Emit final code for linear clauses. 3057 /// \param CondGen Optional conditional code for final part of codegen for 3058 /// linear clause. 3059 void EmitOMPLinearClauseFinal( 3060 const OMPLoopDirective &D, 3061 const llvm::function_ref<llvm::Value *(CodeGenFunction &)> CondGen); 3062 /// Emit initial code for reduction variables. Creates reduction copies 3063 /// and initializes them with the values according to OpenMP standard. 3064 /// 3065 /// \param D Directive (possibly) with the 'reduction' clause. 3066 /// \param PrivateScope Private scope for capturing reduction variables for 3067 /// proper codegen in internal captured statement. 3068 /// 3069 void EmitOMPReductionClauseInit(const OMPExecutableDirective &D, 3070 OMPPrivateScope &PrivateScope); 3071 /// Emit final update of reduction values to original variables at 3072 /// the end of the directive. 3073 /// 3074 /// \param D Directive that has at least one 'reduction' directives. 3075 /// \param ReductionKind The kind of reduction to perform. 3076 void EmitOMPReductionClauseFinal(const OMPExecutableDirective &D, 3077 const OpenMPDirectiveKind ReductionKind); 3078 /// Emit initial code for linear variables. Creates private copies 3079 /// and initializes them with the values according to OpenMP standard. 3080 /// 3081 /// \param D Directive (possibly) with the 'linear' clause. 3082 /// \return true if at least one linear variable is found that should be 3083 /// initialized with the value of the original variable, false otherwise. 3084 bool EmitOMPLinearClauseInit(const OMPLoopDirective &D); 3085 3086 typedef const llvm::function_ref<void(CodeGenFunction & /*CGF*/, 3087 llvm::Value * /*OutlinedFn*/, 3088 const OMPTaskDataTy & /*Data*/)> 3089 TaskGenTy; 3090 void EmitOMPTaskBasedDirective(const OMPExecutableDirective &S, 3091 const OpenMPDirectiveKind CapturedRegion, 3092 const RegionCodeGenTy &BodyGen, 3093 const TaskGenTy &TaskGen, OMPTaskDataTy &Data); 3094 struct OMPTargetDataInfo { 3095 Address BasePointersArray = Address::invalid(); 3096 Address PointersArray = Address::invalid(); 3097 Address SizesArray = Address::invalid(); 3098 unsigned NumberOfTargetItems = 0; 3099 explicit OMPTargetDataInfo() = default; 3100 OMPTargetDataInfo(Address BasePointersArray, Address PointersArray, 3101 Address SizesArray, unsigned NumberOfTargetItems) 3102 : BasePointersArray(BasePointersArray), PointersArray(PointersArray), 3103 SizesArray(SizesArray), NumberOfTargetItems(NumberOfTargetItems) {} 3104 }; 3105 void EmitOMPTargetTaskBasedDirective(const OMPExecutableDirective &S, 3106 const RegionCodeGenTy &BodyGen, 3107 OMPTargetDataInfo &InputInfo); 3108 3109 void EmitOMPParallelDirective(const OMPParallelDirective &S); 3110 void EmitOMPSimdDirective(const OMPSimdDirective &S); 3111 void EmitOMPForDirective(const OMPForDirective &S); 3112 void EmitOMPForSimdDirective(const OMPForSimdDirective &S); 3113 void EmitOMPSectionsDirective(const OMPSectionsDirective &S); 3114 void EmitOMPSectionDirective(const OMPSectionDirective &S); 3115 void EmitOMPSingleDirective(const OMPSingleDirective &S); 3116 void EmitOMPMasterDirective(const OMPMasterDirective &S); 3117 void EmitOMPCriticalDirective(const OMPCriticalDirective &S); 3118 void EmitOMPParallelForDirective(const OMPParallelForDirective &S); 3119 void EmitOMPParallelForSimdDirective(const OMPParallelForSimdDirective &S); 3120 void EmitOMPParallelSectionsDirective(const OMPParallelSectionsDirective &S); 3121 void EmitOMPTaskDirective(const OMPTaskDirective &S); 3122 void EmitOMPTaskyieldDirective(const OMPTaskyieldDirective &S); 3123 void EmitOMPBarrierDirective(const OMPBarrierDirective &S); 3124 void EmitOMPTaskwaitDirective(const OMPTaskwaitDirective &S); 3125 void EmitOMPTaskgroupDirective(const OMPTaskgroupDirective &S); 3126 void EmitOMPFlushDirective(const OMPFlushDirective &S); 3127 void EmitOMPOrderedDirective(const OMPOrderedDirective &S); 3128 void EmitOMPAtomicDirective(const OMPAtomicDirective &S); 3129 void EmitOMPTargetDirective(const OMPTargetDirective &S); 3130 void EmitOMPTargetDataDirective(const OMPTargetDataDirective &S); 3131 void EmitOMPTargetEnterDataDirective(const OMPTargetEnterDataDirective &S); 3132 void EmitOMPTargetExitDataDirective(const OMPTargetExitDataDirective &S); 3133 void EmitOMPTargetUpdateDirective(const OMPTargetUpdateDirective &S); 3134 void EmitOMPTargetParallelDirective(const OMPTargetParallelDirective &S); 3135 void 3136 EmitOMPTargetParallelForDirective(const OMPTargetParallelForDirective &S); 3137 void EmitOMPTeamsDirective(const OMPTeamsDirective &S); 3138 void 3139 EmitOMPCancellationPointDirective(const OMPCancellationPointDirective &S); 3140 void EmitOMPCancelDirective(const OMPCancelDirective &S); 3141 void EmitOMPTaskLoopBasedDirective(const OMPLoopDirective &S); 3142 void EmitOMPTaskLoopDirective(const OMPTaskLoopDirective &S); 3143 void EmitOMPTaskLoopSimdDirective(const OMPTaskLoopSimdDirective &S); 3144 void EmitOMPDistributeDirective(const OMPDistributeDirective &S); 3145 void EmitOMPDistributeParallelForDirective( 3146 const OMPDistributeParallelForDirective &S); 3147 void EmitOMPDistributeParallelForSimdDirective( 3148 const OMPDistributeParallelForSimdDirective &S); 3149 void EmitOMPDistributeSimdDirective(const OMPDistributeSimdDirective &S); 3150 void EmitOMPTargetParallelForSimdDirective( 3151 const OMPTargetParallelForSimdDirective &S); 3152 void EmitOMPTargetSimdDirective(const OMPTargetSimdDirective &S); 3153 void EmitOMPTeamsDistributeDirective(const OMPTeamsDistributeDirective &S); 3154 void 3155 EmitOMPTeamsDistributeSimdDirective(const OMPTeamsDistributeSimdDirective &S); 3156 void EmitOMPTeamsDistributeParallelForSimdDirective( 3157 const OMPTeamsDistributeParallelForSimdDirective &S); 3158 void EmitOMPTeamsDistributeParallelForDirective( 3159 const OMPTeamsDistributeParallelForDirective &S); 3160 void EmitOMPTargetTeamsDirective(const OMPTargetTeamsDirective &S); 3161 void EmitOMPTargetTeamsDistributeDirective( 3162 const OMPTargetTeamsDistributeDirective &S); 3163 void EmitOMPTargetTeamsDistributeParallelForDirective( 3164 const OMPTargetTeamsDistributeParallelForDirective &S); 3165 void EmitOMPTargetTeamsDistributeParallelForSimdDirective( 3166 const OMPTargetTeamsDistributeParallelForSimdDirective &S); 3167 void EmitOMPTargetTeamsDistributeSimdDirective( 3168 const OMPTargetTeamsDistributeSimdDirective &S); 3169 3170 /// Emit device code for the target directive. 3171 static void EmitOMPTargetDeviceFunction(CodeGenModule &CGM, 3172 StringRef ParentName, 3173 const OMPTargetDirective &S); 3174 static void 3175 EmitOMPTargetParallelDeviceFunction(CodeGenModule &CGM, StringRef ParentName, 3176 const OMPTargetParallelDirective &S); 3177 /// Emit device code for the target parallel for directive. 3178 static void EmitOMPTargetParallelForDeviceFunction( 3179 CodeGenModule &CGM, StringRef ParentName, 3180 const OMPTargetParallelForDirective &S); 3181 /// Emit device code for the target parallel for simd directive. 3182 static void EmitOMPTargetParallelForSimdDeviceFunction( 3183 CodeGenModule &CGM, StringRef ParentName, 3184 const OMPTargetParallelForSimdDirective &S); 3185 /// Emit device code for the target teams directive. 3186 static void 3187 EmitOMPTargetTeamsDeviceFunction(CodeGenModule &CGM, StringRef ParentName, 3188 const OMPTargetTeamsDirective &S); 3189 /// Emit device code for the target teams distribute directive. 3190 static void EmitOMPTargetTeamsDistributeDeviceFunction( 3191 CodeGenModule &CGM, StringRef ParentName, 3192 const OMPTargetTeamsDistributeDirective &S); 3193 /// Emit device code for the target teams distribute simd directive. 3194 static void EmitOMPTargetTeamsDistributeSimdDeviceFunction( 3195 CodeGenModule &CGM, StringRef ParentName, 3196 const OMPTargetTeamsDistributeSimdDirective &S); 3197 /// Emit device code for the target simd directive. 3198 static void EmitOMPTargetSimdDeviceFunction(CodeGenModule &CGM, 3199 StringRef ParentName, 3200 const OMPTargetSimdDirective &S); 3201 /// Emit device code for the target teams distribute parallel for simd 3202 /// directive. 3203 static void EmitOMPTargetTeamsDistributeParallelForSimdDeviceFunction( 3204 CodeGenModule &CGM, StringRef ParentName, 3205 const OMPTargetTeamsDistributeParallelForSimdDirective &S); 3206 3207 static void EmitOMPTargetTeamsDistributeParallelForDeviceFunction( 3208 CodeGenModule &CGM, StringRef ParentName, 3209 const OMPTargetTeamsDistributeParallelForDirective &S); 3210 /// Emit inner loop of the worksharing/simd construct. 3211 /// 3212 /// \param S Directive, for which the inner loop must be emitted. 3213 /// \param RequiresCleanup true, if directive has some associated private 3214 /// variables. 3215 /// \param LoopCond Bollean condition for loop continuation. 3216 /// \param IncExpr Increment expression for loop control variable. 3217 /// \param BodyGen Generator for the inner body of the inner loop. 3218 /// \param PostIncGen Genrator for post-increment code (required for ordered 3219 /// loop directvies). 3220 void EmitOMPInnerLoop( 3221 const Stmt &S, bool RequiresCleanup, const Expr *LoopCond, 3222 const Expr *IncExpr, 3223 const llvm::function_ref<void(CodeGenFunction &)> BodyGen, 3224 const llvm::function_ref<void(CodeGenFunction &)> PostIncGen); 3225 3226 JumpDest getOMPCancelDestination(OpenMPDirectiveKind Kind); 3227 /// Emit initial code for loop counters of loop-based directives. 3228 void EmitOMPPrivateLoopCounters(const OMPLoopDirective &S, 3229 OMPPrivateScope &LoopScope); 3230 3231 /// Helper for the OpenMP loop directives. 3232 void EmitOMPLoopBody(const OMPLoopDirective &D, JumpDest LoopExit); 3233 3234 /// Emit code for the worksharing loop-based directive. 3235 /// \return true, if this construct has any lastprivate clause, false - 3236 /// otherwise. 3237 bool EmitOMPWorksharingLoop(const OMPLoopDirective &S, Expr *EUB, 3238 const CodeGenLoopBoundsTy &CodeGenLoopBounds, 3239 const CodeGenDispatchBoundsTy &CGDispatchBounds); 3240 3241 /// Emit code for the distribute loop-based directive. 3242 void EmitOMPDistributeLoop(const OMPLoopDirective &S, 3243 const CodeGenLoopTy &CodeGenLoop, Expr *IncExpr); 3244 3245 /// Helpers for the OpenMP loop directives. 3246 void EmitOMPSimdInit(const OMPLoopDirective &D, bool IsMonotonic = false); 3247 void EmitOMPSimdFinal( 3248 const OMPLoopDirective &D, 3249 const llvm::function_ref<llvm::Value *(CodeGenFunction &)> CondGen); 3250 3251 /// Emits the lvalue for the expression with possibly captured variable. 3252 LValue EmitOMPSharedLValue(const Expr *E); 3253 3254 private: 3255 /// Helpers for blocks. 3256 llvm::Value *EmitBlockLiteral(const CGBlockInfo &Info); 3257 3258 /// struct with the values to be passed to the OpenMP loop-related functions 3259 struct OMPLoopArguments { 3260 /// loop lower bound 3261 Address LB = Address::invalid(); 3262 /// loop upper bound 3263 Address UB = Address::invalid(); 3264 /// loop stride 3265 Address ST = Address::invalid(); 3266 /// isLastIteration argument for runtime functions 3267 Address IL = Address::invalid(); 3268 /// Chunk value generated by sema 3269 llvm::Value *Chunk = nullptr; 3270 /// EnsureUpperBound 3271 Expr *EUB = nullptr; 3272 /// IncrementExpression 3273 Expr *IncExpr = nullptr; 3274 /// Loop initialization 3275 Expr *Init = nullptr; 3276 /// Loop exit condition 3277 Expr *Cond = nullptr; 3278 /// Update of LB after a whole chunk has been executed 3279 Expr *NextLB = nullptr; 3280 /// Update of UB after a whole chunk has been executed 3281 Expr *NextUB = nullptr; 3282 OMPLoopArguments() = default; 3283 OMPLoopArguments(Address LB, Address UB, Address ST, Address IL, 3284 llvm::Value *Chunk = nullptr, Expr *EUB = nullptr, 3285 Expr *IncExpr = nullptr, Expr *Init = nullptr, 3286 Expr *Cond = nullptr, Expr *NextLB = nullptr, 3287 Expr *NextUB = nullptr) 3288 : LB(LB), UB(UB), ST(ST), IL(IL), Chunk(Chunk), EUB(EUB), 3289 IncExpr(IncExpr), Init(Init), Cond(Cond), NextLB(NextLB), 3290 NextUB(NextUB) {} 3291 }; 3292 void EmitOMPOuterLoop(bool DynamicOrOrdered, bool IsMonotonic, 3293 const OMPLoopDirective &S, OMPPrivateScope &LoopScope, 3294 const OMPLoopArguments &LoopArgs, 3295 const CodeGenLoopTy &CodeGenLoop, 3296 const CodeGenOrderedTy &CodeGenOrdered); 3297 void EmitOMPForOuterLoop(const OpenMPScheduleTy &ScheduleKind, 3298 bool IsMonotonic, const OMPLoopDirective &S, 3299 OMPPrivateScope &LoopScope, bool Ordered, 3300 const OMPLoopArguments &LoopArgs, 3301 const CodeGenDispatchBoundsTy &CGDispatchBounds); 3302 void EmitOMPDistributeOuterLoop(OpenMPDistScheduleClauseKind ScheduleKind, 3303 const OMPLoopDirective &S, 3304 OMPPrivateScope &LoopScope, 3305 const OMPLoopArguments &LoopArgs, 3306 const CodeGenLoopTy &CodeGenLoopContent); 3307 /// Emit code for sections directive. 3308 void EmitSections(const OMPExecutableDirective &S); 3309 3310 public: 3311 3312 //===--------------------------------------------------------------------===// 3313 // LValue Expression Emission 3314 //===--------------------------------------------------------------------===// 3315 3316 /// GetUndefRValue - Get an appropriate 'undef' rvalue for the given type. 3317 RValue GetUndefRValue(QualType Ty); 3318 3319 /// EmitUnsupportedRValue - Emit a dummy r-value using the type of E 3320 /// and issue an ErrorUnsupported style diagnostic (using the 3321 /// provided Name). 3322 RValue EmitUnsupportedRValue(const Expr *E, 3323 const char *Name); 3324 3325 /// EmitUnsupportedLValue - Emit a dummy l-value using the type of E and issue 3326 /// an ErrorUnsupported style diagnostic (using the provided Name). 3327 LValue EmitUnsupportedLValue(const Expr *E, 3328 const char *Name); 3329 3330 /// EmitLValue - Emit code to compute a designator that specifies the location 3331 /// of the expression. 3332 /// 3333 /// This can return one of two things: a simple address or a bitfield 3334 /// reference. In either case, the LLVM Value* in the LValue structure is 3335 /// guaranteed to be an LLVM pointer type. 3336 /// 3337 /// If this returns a bitfield reference, nothing about the pointee type of 3338 /// the LLVM value is known: For example, it may not be a pointer to an 3339 /// integer. 3340 /// 3341 /// If this returns a normal address, and if the lvalue's C type is fixed 3342 /// size, this method guarantees that the returned pointer type will point to 3343 /// an LLVM type of the same size of the lvalue's type. If the lvalue has a 3344 /// variable length type, this is not possible. 3345 /// 3346 LValue EmitLValue(const Expr *E); 3347 3348 /// Same as EmitLValue but additionally we generate checking code to 3349 /// guard against undefined behavior. This is only suitable when we know 3350 /// that the address will be used to access the object. 3351 LValue EmitCheckedLValue(const Expr *E, TypeCheckKind TCK); 3352 3353 RValue convertTempToRValue(Address addr, QualType type, 3354 SourceLocation Loc); 3355 3356 void EmitAtomicInit(Expr *E, LValue lvalue); 3357 3358 bool LValueIsSuitableForInlineAtomic(LValue Src); 3359 3360 RValue EmitAtomicLoad(LValue LV, SourceLocation SL, 3361 AggValueSlot Slot = AggValueSlot::ignored()); 3362 3363 RValue EmitAtomicLoad(LValue lvalue, SourceLocation loc, 3364 llvm::AtomicOrdering AO, bool IsVolatile = false, 3365 AggValueSlot slot = AggValueSlot::ignored()); 3366 3367 void EmitAtomicStore(RValue rvalue, LValue lvalue, bool isInit); 3368 3369 void EmitAtomicStore(RValue rvalue, LValue lvalue, llvm::AtomicOrdering AO, 3370 bool IsVolatile, bool isInit); 3371 3372 std::pair<RValue, llvm::Value *> EmitAtomicCompareExchange( 3373 LValue Obj, RValue Expected, RValue Desired, SourceLocation Loc, 3374 llvm::AtomicOrdering Success = 3375 llvm::AtomicOrdering::SequentiallyConsistent, 3376 llvm::AtomicOrdering Failure = 3377 llvm::AtomicOrdering::SequentiallyConsistent, 3378 bool IsWeak = false, AggValueSlot Slot = AggValueSlot::ignored()); 3379 3380 void EmitAtomicUpdate(LValue LVal, llvm::AtomicOrdering AO, 3381 const llvm::function_ref<RValue(RValue)> &UpdateOp, 3382 bool IsVolatile); 3383 3384 /// EmitToMemory - Change a scalar value from its value 3385 /// representation to its in-memory representation. 3386 llvm::Value *EmitToMemory(llvm::Value *Value, QualType Ty); 3387 3388 /// EmitFromMemory - Change a scalar value from its memory 3389 /// representation to its value representation. 3390 llvm::Value *EmitFromMemory(llvm::Value *Value, QualType Ty); 3391 3392 /// Check if the scalar \p Value is within the valid range for the given 3393 /// type \p Ty. 3394 /// 3395 /// Returns true if a check is needed (even if the range is unknown). 3396 bool EmitScalarRangeCheck(llvm::Value *Value, QualType Ty, 3397 SourceLocation Loc); 3398 3399 /// EmitLoadOfScalar - Load a scalar value from an address, taking 3400 /// care to appropriately convert from the memory representation to 3401 /// the LLVM value representation. 3402 llvm::Value *EmitLoadOfScalar(Address Addr, bool Volatile, QualType Ty, 3403 SourceLocation Loc, 3404 AlignmentSource Source = AlignmentSource::Type, 3405 bool isNontemporal = false) { 3406 return EmitLoadOfScalar(Addr, Volatile, Ty, Loc, LValueBaseInfo(Source), 3407 CGM.getTBAAAccessInfo(Ty), isNontemporal); 3408 } 3409 3410 llvm::Value *EmitLoadOfScalar(Address Addr, bool Volatile, QualType Ty, 3411 SourceLocation Loc, LValueBaseInfo BaseInfo, 3412 TBAAAccessInfo TBAAInfo, 3413 bool isNontemporal = false); 3414 3415 /// EmitLoadOfScalar - Load a scalar value from an address, taking 3416 /// care to appropriately convert from the memory representation to 3417 /// the LLVM value representation. The l-value must be a simple 3418 /// l-value. 3419 llvm::Value *EmitLoadOfScalar(LValue lvalue, SourceLocation Loc); 3420 3421 /// EmitStoreOfScalar - Store a scalar value to an address, taking 3422 /// care to appropriately convert from the memory representation to 3423 /// the LLVM value representation. 3424 void EmitStoreOfScalar(llvm::Value *Value, Address Addr, 3425 bool Volatile, QualType Ty, 3426 AlignmentSource Source = AlignmentSource::Type, 3427 bool isInit = false, bool isNontemporal = false) { 3428 EmitStoreOfScalar(Value, Addr, Volatile, Ty, LValueBaseInfo(Source), 3429 CGM.getTBAAAccessInfo(Ty), isInit, isNontemporal); 3430 } 3431 3432 void EmitStoreOfScalar(llvm::Value *Value, Address Addr, 3433 bool Volatile, QualType Ty, 3434 LValueBaseInfo BaseInfo, TBAAAccessInfo TBAAInfo, 3435 bool isInit = false, bool isNontemporal = false); 3436 3437 /// EmitStoreOfScalar - Store a scalar value to an address, taking 3438 /// care to appropriately convert from the memory representation to 3439 /// the LLVM value representation. The l-value must be a simple 3440 /// l-value. The isInit flag indicates whether this is an initialization. 3441 /// If so, atomic qualifiers are ignored and the store is always non-atomic. 3442 void EmitStoreOfScalar(llvm::Value *value, LValue lvalue, bool isInit=false); 3443 3444 /// EmitLoadOfLValue - Given an expression that represents a value lvalue, 3445 /// this method emits the address of the lvalue, then loads the result as an 3446 /// rvalue, returning the rvalue. 3447 RValue EmitLoadOfLValue(LValue V, SourceLocation Loc); 3448 RValue EmitLoadOfExtVectorElementLValue(LValue V); 3449 RValue EmitLoadOfBitfieldLValue(LValue LV, SourceLocation Loc); 3450 RValue EmitLoadOfGlobalRegLValue(LValue LV); 3451 3452 /// EmitStoreThroughLValue - Store the specified rvalue into the specified 3453 /// lvalue, where both are guaranteed to the have the same type, and that type 3454 /// is 'Ty'. 3455 void EmitStoreThroughLValue(RValue Src, LValue Dst, bool isInit = false); 3456 void EmitStoreThroughExtVectorComponentLValue(RValue Src, LValue Dst); 3457 void EmitStoreThroughGlobalRegLValue(RValue Src, LValue Dst); 3458 3459 /// EmitStoreThroughBitfieldLValue - Store Src into Dst with same constraints 3460 /// as EmitStoreThroughLValue. 3461 /// 3462 /// \param Result [out] - If non-null, this will be set to a Value* for the 3463 /// bit-field contents after the store, appropriate for use as the result of 3464 /// an assignment to the bit-field. 3465 void EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst, 3466 llvm::Value **Result=nullptr); 3467 3468 /// Emit an l-value for an assignment (simple or compound) of complex type. 3469 LValue EmitComplexAssignmentLValue(const BinaryOperator *E); 3470 LValue EmitComplexCompoundAssignmentLValue(const CompoundAssignOperator *E); 3471 LValue EmitScalarCompoundAssignWithComplex(const CompoundAssignOperator *E, 3472 llvm::Value *&Result); 3473 3474 // Note: only available for agg return types 3475 LValue EmitBinaryOperatorLValue(const BinaryOperator *E); 3476 LValue EmitCompoundAssignmentLValue(const CompoundAssignOperator *E); 3477 // Note: only available for agg return types 3478 LValue EmitCallExprLValue(const CallExpr *E); 3479 // Note: only available for agg return types 3480 LValue EmitVAArgExprLValue(const VAArgExpr *E); 3481 LValue EmitDeclRefLValue(const DeclRefExpr *E); 3482 LValue EmitStringLiteralLValue(const StringLiteral *E); 3483 LValue EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E); 3484 LValue EmitPredefinedLValue(const PredefinedExpr *E); 3485 LValue EmitUnaryOpLValue(const UnaryOperator *E); 3486 LValue EmitArraySubscriptExpr(const ArraySubscriptExpr *E, 3487 bool Accessed = false); 3488 LValue EmitOMPArraySectionExpr(const OMPArraySectionExpr *E, 3489 bool IsLowerBound = true); 3490 LValue EmitExtVectorElementExpr(const ExtVectorElementExpr *E); 3491 LValue EmitMemberExpr(const MemberExpr *E); 3492 LValue EmitObjCIsaExpr(const ObjCIsaExpr *E); 3493 LValue EmitCompoundLiteralLValue(const CompoundLiteralExpr *E); 3494 LValue EmitInitListLValue(const InitListExpr *E); 3495 LValue EmitConditionalOperatorLValue(const AbstractConditionalOperator *E); 3496 LValue EmitCastLValue(const CastExpr *E); 3497 LValue EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E); 3498 LValue EmitOpaqueValueLValue(const OpaqueValueExpr *e); 3499 3500 Address EmitExtVectorElementLValue(LValue V); 3501 3502 RValue EmitRValueForField(LValue LV, const FieldDecl *FD, SourceLocation Loc); 3503 3504 Address EmitArrayToPointerDecay(const Expr *Array, 3505 LValueBaseInfo *BaseInfo = nullptr, 3506 TBAAAccessInfo *TBAAInfo = nullptr); 3507 3508 class ConstantEmission { 3509 llvm::PointerIntPair<llvm::Constant*, 1, bool> ValueAndIsReference; 3510 ConstantEmission(llvm::Constant *C, bool isReference) 3511 : ValueAndIsReference(C, isReference) {} 3512 public: 3513 ConstantEmission() {} 3514 static ConstantEmission forReference(llvm::Constant *C) { 3515 return ConstantEmission(C, true); 3516 } 3517 static ConstantEmission forValue(llvm::Constant *C) { 3518 return ConstantEmission(C, false); 3519 } 3520 3521 explicit operator bool() const { 3522 return ValueAndIsReference.getOpaqueValue() != nullptr; 3523 } 3524 3525 bool isReference() const { return ValueAndIsReference.getInt(); } 3526 LValue getReferenceLValue(CodeGenFunction &CGF, Expr *refExpr) const { 3527 assert(isReference()); 3528 return CGF.MakeNaturalAlignAddrLValue(ValueAndIsReference.getPointer(), 3529 refExpr->getType()); 3530 } 3531 3532 llvm::Constant *getValue() const { 3533 assert(!isReference()); 3534 return ValueAndIsReference.getPointer(); 3535 } 3536 }; 3537 3538 ConstantEmission tryEmitAsConstant(DeclRefExpr *refExpr); 3539 ConstantEmission tryEmitAsConstant(const MemberExpr *ME); 3540 llvm::Value *emitScalarConstant(const ConstantEmission &Constant, Expr *E); 3541 3542 RValue EmitPseudoObjectRValue(const PseudoObjectExpr *e, 3543 AggValueSlot slot = AggValueSlot::ignored()); 3544 LValue EmitPseudoObjectLValue(const PseudoObjectExpr *e); 3545 3546 llvm::Value *EmitIvarOffset(const ObjCInterfaceDecl *Interface, 3547 const ObjCIvarDecl *Ivar); 3548 LValue EmitLValueForField(LValue Base, const FieldDecl* Field); 3549 LValue EmitLValueForLambdaField(const FieldDecl *Field); 3550 3551 /// EmitLValueForFieldInitialization - Like EmitLValueForField, except that 3552 /// if the Field is a reference, this will return the address of the reference 3553 /// and not the address of the value stored in the reference. 3554 LValue EmitLValueForFieldInitialization(LValue Base, 3555 const FieldDecl* Field); 3556 3557 LValue EmitLValueForIvar(QualType ObjectTy, 3558 llvm::Value* Base, const ObjCIvarDecl *Ivar, 3559 unsigned CVRQualifiers); 3560 3561 LValue EmitCXXConstructLValue(const CXXConstructExpr *E); 3562 LValue EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E); 3563 LValue EmitLambdaLValue(const LambdaExpr *E); 3564 LValue EmitCXXTypeidLValue(const CXXTypeidExpr *E); 3565 LValue EmitCXXUuidofLValue(const CXXUuidofExpr *E); 3566 3567 LValue EmitObjCMessageExprLValue(const ObjCMessageExpr *E); 3568 LValue EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E); 3569 LValue EmitStmtExprLValue(const StmtExpr *E); 3570 LValue EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E); 3571 LValue EmitObjCSelectorLValue(const ObjCSelectorExpr *E); 3572 void EmitDeclRefExprDbgValue(const DeclRefExpr *E, const APValue &Init); 3573 3574 //===--------------------------------------------------------------------===// 3575 // Scalar Expression Emission 3576 //===--------------------------------------------------------------------===// 3577 3578 /// EmitCall - Generate a call of the given function, expecting the given 3579 /// result type, and using the given argument list which specifies both the 3580 /// LLVM arguments and the types they were derived from. 3581 RValue EmitCall(const CGFunctionInfo &CallInfo, const CGCallee &Callee, 3582 ReturnValueSlot ReturnValue, const CallArgList &Args, 3583 llvm::Instruction **callOrInvoke, SourceLocation Loc); 3584 RValue EmitCall(const CGFunctionInfo &CallInfo, const CGCallee &Callee, 3585 ReturnValueSlot ReturnValue, const CallArgList &Args, 3586 llvm::Instruction **callOrInvoke = nullptr) { 3587 return EmitCall(CallInfo, Callee, ReturnValue, Args, callOrInvoke, 3588 SourceLocation()); 3589 } 3590 RValue EmitCall(QualType FnType, const CGCallee &Callee, const CallExpr *E, 3591 ReturnValueSlot ReturnValue, llvm::Value *Chain = nullptr); 3592 RValue EmitCallExpr(const CallExpr *E, 3593 ReturnValueSlot ReturnValue = ReturnValueSlot()); 3594 RValue EmitSimpleCallExpr(const CallExpr *E, ReturnValueSlot ReturnValue); 3595 CGCallee EmitCallee(const Expr *E); 3596 3597 void checkTargetFeatures(const CallExpr *E, const FunctionDecl *TargetDecl); 3598 3599 llvm::CallInst *EmitRuntimeCall(llvm::Value *callee, 3600 const Twine &name = ""); 3601 llvm::CallInst *EmitRuntimeCall(llvm::Value *callee, 3602 ArrayRef<llvm::Value*> args, 3603 const Twine &name = ""); 3604 llvm::CallInst *EmitNounwindRuntimeCall(llvm::Value *callee, 3605 const Twine &name = ""); 3606 llvm::CallInst *EmitNounwindRuntimeCall(llvm::Value *callee, 3607 ArrayRef<llvm::Value*> args, 3608 const Twine &name = ""); 3609 3610 SmallVector<llvm::OperandBundleDef, 1> 3611 getBundlesForFunclet(llvm::Value *Callee); 3612 3613 llvm::CallSite EmitCallOrInvoke(llvm::Value *Callee, 3614 ArrayRef<llvm::Value *> Args, 3615 const Twine &Name = ""); 3616 llvm::CallSite EmitRuntimeCallOrInvoke(llvm::Value *callee, 3617 ArrayRef<llvm::Value*> args, 3618 const Twine &name = ""); 3619 llvm::CallSite EmitRuntimeCallOrInvoke(llvm::Value *callee, 3620 const Twine &name = ""); 3621 void EmitNoreturnRuntimeCallOrInvoke(llvm::Value *callee, 3622 ArrayRef<llvm::Value*> args); 3623 3624 CGCallee BuildAppleKextVirtualCall(const CXXMethodDecl *MD, 3625 NestedNameSpecifier *Qual, 3626 llvm::Type *Ty); 3627 3628 CGCallee BuildAppleKextVirtualDestructorCall(const CXXDestructorDecl *DD, 3629 CXXDtorType Type, 3630 const CXXRecordDecl *RD); 3631 3632 // Return the copy constructor name with the prefix "__copy_constructor_" 3633 // removed. 3634 static std::string getNonTrivialCopyConstructorStr(QualType QT, 3635 CharUnits Alignment, 3636 bool IsVolatile, 3637 ASTContext &Ctx); 3638 3639 // Return the destructor name with the prefix "__destructor_" removed. 3640 static std::string getNonTrivialDestructorStr(QualType QT, 3641 CharUnits Alignment, 3642 bool IsVolatile, 3643 ASTContext &Ctx); 3644 3645 // These functions emit calls to the special functions of non-trivial C 3646 // structs. 3647 void defaultInitNonTrivialCStructVar(LValue Dst); 3648 void callCStructDefaultConstructor(LValue Dst); 3649 void callCStructDestructor(LValue Dst); 3650 void callCStructCopyConstructor(LValue Dst, LValue Src); 3651 void callCStructMoveConstructor(LValue Dst, LValue Src); 3652 void callCStructCopyAssignmentOperator(LValue Dst, LValue Src); 3653 void callCStructMoveAssignmentOperator(LValue Dst, LValue Src); 3654 3655 RValue 3656 EmitCXXMemberOrOperatorCall(const CXXMethodDecl *Method, 3657 const CGCallee &Callee, 3658 ReturnValueSlot ReturnValue, llvm::Value *This, 3659 llvm::Value *ImplicitParam, 3660 QualType ImplicitParamTy, const CallExpr *E, 3661 CallArgList *RtlArgs); 3662 RValue EmitCXXDestructorCall(const CXXDestructorDecl *DD, 3663 const CGCallee &Callee, 3664 llvm::Value *This, llvm::Value *ImplicitParam, 3665 QualType ImplicitParamTy, const CallExpr *E, 3666 StructorType Type); 3667 RValue EmitCXXMemberCallExpr(const CXXMemberCallExpr *E, 3668 ReturnValueSlot ReturnValue); 3669 RValue EmitCXXMemberOrOperatorMemberCallExpr(const CallExpr *CE, 3670 const CXXMethodDecl *MD, 3671 ReturnValueSlot ReturnValue, 3672 bool HasQualifier, 3673 NestedNameSpecifier *Qualifier, 3674 bool IsArrow, const Expr *Base); 3675 // Compute the object pointer. 3676 Address EmitCXXMemberDataPointerAddress(const Expr *E, Address base, 3677 llvm::Value *memberPtr, 3678 const MemberPointerType *memberPtrType, 3679 LValueBaseInfo *BaseInfo = nullptr, 3680 TBAAAccessInfo *TBAAInfo = nullptr); 3681 RValue EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E, 3682 ReturnValueSlot ReturnValue); 3683 3684 RValue EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E, 3685 const CXXMethodDecl *MD, 3686 ReturnValueSlot ReturnValue); 3687 RValue EmitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E); 3688 3689 RValue EmitCUDAKernelCallExpr(const CUDAKernelCallExpr *E, 3690 ReturnValueSlot ReturnValue); 3691 3692 RValue EmitNVPTXDevicePrintfCallExpr(const CallExpr *E, 3693 ReturnValueSlot ReturnValue); 3694 3695 RValue EmitBuiltinExpr(const GlobalDecl GD, unsigned BuiltinID, 3696 const CallExpr *E, ReturnValueSlot ReturnValue); 3697 3698 RValue emitRotate(const CallExpr *E, bool IsRotateRight); 3699 3700 /// Emit IR for __builtin_os_log_format. 3701 RValue emitBuiltinOSLogFormat(const CallExpr &E); 3702 3703 llvm::Function *generateBuiltinOSLogHelperFunction( 3704 const analyze_os_log::OSLogBufferLayout &Layout, 3705 CharUnits BufferAlignment); 3706 3707 RValue EmitBlockCallExpr(const CallExpr *E, ReturnValueSlot ReturnValue); 3708 3709 /// EmitTargetBuiltinExpr - Emit the given builtin call. Returns 0 if the call 3710 /// is unhandled by the current target. 3711 llvm::Value *EmitTargetBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 3712 3713 llvm::Value *EmitAArch64CompareBuiltinExpr(llvm::Value *Op, llvm::Type *Ty, 3714 const llvm::CmpInst::Predicate Fp, 3715 const llvm::CmpInst::Predicate Ip, 3716 const llvm::Twine &Name = ""); 3717 llvm::Value *EmitARMBuiltinExpr(unsigned BuiltinID, const CallExpr *E, 3718 llvm::Triple::ArchType Arch); 3719 3720 llvm::Value *EmitCommonNeonBuiltinExpr(unsigned BuiltinID, 3721 unsigned LLVMIntrinsic, 3722 unsigned AltLLVMIntrinsic, 3723 const char *NameHint, 3724 unsigned Modifier, 3725 const CallExpr *E, 3726 SmallVectorImpl<llvm::Value *> &Ops, 3727 Address PtrOp0, Address PtrOp1, 3728 llvm::Triple::ArchType Arch); 3729 3730 llvm::Value *EmitISOVolatileLoad(const CallExpr *E); 3731 llvm::Value *EmitISOVolatileStore(const CallExpr *E); 3732 3733 llvm::Function *LookupNeonLLVMIntrinsic(unsigned IntrinsicID, 3734 unsigned Modifier, llvm::Type *ArgTy, 3735 const CallExpr *E); 3736 llvm::Value *EmitNeonCall(llvm::Function *F, 3737 SmallVectorImpl<llvm::Value*> &O, 3738 const char *name, 3739 unsigned shift = 0, bool rightshift = false); 3740 llvm::Value *EmitNeonSplat(llvm::Value *V, llvm::Constant *Idx); 3741 llvm::Value *EmitNeonShiftVector(llvm::Value *V, llvm::Type *Ty, 3742 bool negateForRightShift); 3743 llvm::Value *EmitNeonRShiftImm(llvm::Value *Vec, llvm::Value *Amt, 3744 llvm::Type *Ty, bool usgn, const char *name); 3745 llvm::Value *vectorWrapScalar16(llvm::Value *Op); 3746 llvm::Value *EmitAArch64BuiltinExpr(unsigned BuiltinID, const CallExpr *E, 3747 llvm::Triple::ArchType Arch); 3748 3749 llvm::Value *BuildVector(ArrayRef<llvm::Value*> Ops); 3750 llvm::Value *EmitX86BuiltinExpr(unsigned BuiltinID, const CallExpr *E); 3751 llvm::Value *EmitPPCBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 3752 llvm::Value *EmitAMDGPUBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 3753 llvm::Value *EmitSystemZBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 3754 llvm::Value *EmitNVPTXBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 3755 llvm::Value *EmitWebAssemblyBuiltinExpr(unsigned BuiltinID, 3756 const CallExpr *E); 3757 llvm::Value *EmitHexagonBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 3758 3759 private: 3760 enum class MSVCIntrin; 3761 3762 public: 3763 llvm::Value *EmitMSVCBuiltinExpr(MSVCIntrin BuiltinID, const CallExpr *E); 3764 3765 llvm::Value *EmitBuiltinAvailable(ArrayRef<llvm::Value *> Args); 3766 3767 llvm::Value *EmitObjCProtocolExpr(const ObjCProtocolExpr *E); 3768 llvm::Value *EmitObjCStringLiteral(const ObjCStringLiteral *E); 3769 llvm::Value *EmitObjCBoxedExpr(const ObjCBoxedExpr *E); 3770 llvm::Value *EmitObjCArrayLiteral(const ObjCArrayLiteral *E); 3771 llvm::Value *EmitObjCDictionaryLiteral(const ObjCDictionaryLiteral *E); 3772 llvm::Value *EmitObjCCollectionLiteral(const Expr *E, 3773 const ObjCMethodDecl *MethodWithObjects); 3774 llvm::Value *EmitObjCSelectorExpr(const ObjCSelectorExpr *E); 3775 RValue EmitObjCMessageExpr(const ObjCMessageExpr *E, 3776 ReturnValueSlot Return = ReturnValueSlot()); 3777 3778 /// Retrieves the default cleanup kind for an ARC cleanup. 3779 /// Except under -fobjc-arc-eh, ARC cleanups are normal-only. 3780 CleanupKind getARCCleanupKind() { 3781 return CGM.getCodeGenOpts().ObjCAutoRefCountExceptions 3782 ? NormalAndEHCleanup : NormalCleanup; 3783 } 3784 3785 // ARC primitives. 3786 void EmitARCInitWeak(Address addr, llvm::Value *value); 3787 void EmitARCDestroyWeak(Address addr); 3788 llvm::Value *EmitARCLoadWeak(Address addr); 3789 llvm::Value *EmitARCLoadWeakRetained(Address addr); 3790 llvm::Value *EmitARCStoreWeak(Address addr, llvm::Value *value, bool ignored); 3791 void emitARCCopyAssignWeak(QualType Ty, Address DstAddr, Address SrcAddr); 3792 void emitARCMoveAssignWeak(QualType Ty, Address DstAddr, Address SrcAddr); 3793 void EmitARCCopyWeak(Address dst, Address src); 3794 void EmitARCMoveWeak(Address dst, Address src); 3795 llvm::Value *EmitARCRetainAutorelease(QualType type, llvm::Value *value); 3796 llvm::Value *EmitARCRetainAutoreleaseNonBlock(llvm::Value *value); 3797 llvm::Value *EmitARCStoreStrong(LValue lvalue, llvm::Value *value, 3798 bool resultIgnored); 3799 llvm::Value *EmitARCStoreStrongCall(Address addr, llvm::Value *value, 3800 bool resultIgnored); 3801 llvm::Value *EmitARCRetain(QualType type, llvm::Value *value); 3802 llvm::Value *EmitARCRetainNonBlock(llvm::Value *value); 3803 llvm::Value *EmitARCRetainBlock(llvm::Value *value, bool mandatory); 3804 void EmitARCDestroyStrong(Address addr, ARCPreciseLifetime_t precise); 3805 void EmitARCRelease(llvm::Value *value, ARCPreciseLifetime_t precise); 3806 llvm::Value *EmitARCAutorelease(llvm::Value *value); 3807 llvm::Value *EmitARCAutoreleaseReturnValue(llvm::Value *value); 3808 llvm::Value *EmitARCRetainAutoreleaseReturnValue(llvm::Value *value); 3809 llvm::Value *EmitARCRetainAutoreleasedReturnValue(llvm::Value *value); 3810 llvm::Value *EmitARCUnsafeClaimAutoreleasedReturnValue(llvm::Value *value); 3811 3812 llvm::Value *EmitObjCAutorelease(llvm::Value *value, llvm::Type *returnType); 3813 llvm::Value *EmitObjCRetainNonBlock(llvm::Value *value, 3814 llvm::Type *returnType); 3815 void EmitObjCRelease(llvm::Value *value, ARCPreciseLifetime_t precise); 3816 3817 std::pair<LValue,llvm::Value*> 3818 EmitARCStoreAutoreleasing(const BinaryOperator *e); 3819 std::pair<LValue,llvm::Value*> 3820 EmitARCStoreStrong(const BinaryOperator *e, bool ignored); 3821 std::pair<LValue,llvm::Value*> 3822 EmitARCStoreUnsafeUnretained(const BinaryOperator *e, bool ignored); 3823 3824 llvm::Value *EmitObjCAlloc(llvm::Value *value, 3825 llvm::Type *returnType); 3826 llvm::Value *EmitObjCAllocWithZone(llvm::Value *value, 3827 llvm::Type *returnType); 3828 llvm::Value *EmitObjCThrowOperand(const Expr *expr); 3829 llvm::Value *EmitObjCConsumeObject(QualType T, llvm::Value *Ptr); 3830 llvm::Value *EmitObjCExtendObjectLifetime(QualType T, llvm::Value *Ptr); 3831 3832 llvm::Value *EmitARCExtendBlockObject(const Expr *expr); 3833 llvm::Value *EmitARCReclaimReturnedObject(const Expr *e, 3834 bool allowUnsafeClaim); 3835 llvm::Value *EmitARCRetainScalarExpr(const Expr *expr); 3836 llvm::Value *EmitARCRetainAutoreleaseScalarExpr(const Expr *expr); 3837 llvm::Value *EmitARCUnsafeUnretainedScalarExpr(const Expr *expr); 3838 3839 void EmitARCIntrinsicUse(ArrayRef<llvm::Value*> values); 3840 3841 static Destroyer destroyARCStrongImprecise; 3842 static Destroyer destroyARCStrongPrecise; 3843 static Destroyer destroyARCWeak; 3844 static Destroyer emitARCIntrinsicUse; 3845 static Destroyer destroyNonTrivialCStruct; 3846 3847 void EmitObjCAutoreleasePoolPop(llvm::Value *Ptr); 3848 llvm::Value *EmitObjCAutoreleasePoolPush(); 3849 llvm::Value *EmitObjCMRRAutoreleasePoolPush(); 3850 void EmitObjCAutoreleasePoolCleanup(llvm::Value *Ptr); 3851 void EmitObjCMRRAutoreleasePoolPop(llvm::Value *Ptr); 3852 3853 /// Emits a reference binding to the passed in expression. 3854 RValue EmitReferenceBindingToExpr(const Expr *E); 3855 3856 //===--------------------------------------------------------------------===// 3857 // Expression Emission 3858 //===--------------------------------------------------------------------===// 3859 3860 // Expressions are broken into three classes: scalar, complex, aggregate. 3861 3862 /// EmitScalarExpr - Emit the computation of the specified expression of LLVM 3863 /// scalar type, returning the result. 3864 llvm::Value *EmitScalarExpr(const Expr *E , bool IgnoreResultAssign = false); 3865 3866 /// Emit a conversion from the specified type to the specified destination 3867 /// type, both of which are LLVM scalar types. 3868 llvm::Value *EmitScalarConversion(llvm::Value *Src, QualType SrcTy, 3869 QualType DstTy, SourceLocation Loc); 3870 3871 /// Emit a conversion from the specified complex type to the specified 3872 /// destination type, where the destination type is an LLVM scalar type. 3873 llvm::Value *EmitComplexToScalarConversion(ComplexPairTy Src, QualType SrcTy, 3874 QualType DstTy, 3875 SourceLocation Loc); 3876 3877 /// EmitAggExpr - Emit the computation of the specified expression 3878 /// of aggregate type. The result is computed into the given slot, 3879 /// which may be null to indicate that the value is not needed. 3880 void EmitAggExpr(const Expr *E, AggValueSlot AS); 3881 3882 /// EmitAggExprToLValue - Emit the computation of the specified expression of 3883 /// aggregate type into a temporary LValue. 3884 LValue EmitAggExprToLValue(const Expr *E); 3885 3886 /// EmitExtendGCLifetime - Given a pointer to an Objective-C object, 3887 /// make sure it survives garbage collection until this point. 3888 void EmitExtendGCLifetime(llvm::Value *object); 3889 3890 /// EmitComplexExpr - Emit the computation of the specified expression of 3891 /// complex type, returning the result. 3892 ComplexPairTy EmitComplexExpr(const Expr *E, 3893 bool IgnoreReal = false, 3894 bool IgnoreImag = false); 3895 3896 /// EmitComplexExprIntoLValue - Emit the given expression of complex 3897 /// type and place its result into the specified l-value. 3898 void EmitComplexExprIntoLValue(const Expr *E, LValue dest, bool isInit); 3899 3900 /// EmitStoreOfComplex - Store a complex number into the specified l-value. 3901 void EmitStoreOfComplex(ComplexPairTy V, LValue dest, bool isInit); 3902 3903 /// EmitLoadOfComplex - Load a complex number from the specified l-value. 3904 ComplexPairTy EmitLoadOfComplex(LValue src, SourceLocation loc); 3905 3906 Address emitAddrOfRealComponent(Address complex, QualType complexType); 3907 Address emitAddrOfImagComponent(Address complex, QualType complexType); 3908 3909 /// AddInitializerToStaticVarDecl - Add the initializer for 'D' to the 3910 /// global variable that has already been created for it. If the initializer 3911 /// has a different type than GV does, this may free GV and return a different 3912 /// one. Otherwise it just returns GV. 3913 llvm::GlobalVariable * 3914 AddInitializerToStaticVarDecl(const VarDecl &D, 3915 llvm::GlobalVariable *GV); 3916 3917 // Emit an @llvm.invariant.start call for the given memory region. 3918 void EmitInvariantStart(llvm::Constant *Addr, CharUnits Size); 3919 3920 /// EmitCXXGlobalVarDeclInit - Create the initializer for a C++ 3921 /// variable with global storage. 3922 void EmitCXXGlobalVarDeclInit(const VarDecl &D, llvm::Constant *DeclPtr, 3923 bool PerformInit); 3924 3925 llvm::Constant *createAtExitStub(const VarDecl &VD, llvm::Constant *Dtor, 3926 llvm::Constant *Addr); 3927 3928 /// Call atexit() with a function that passes the given argument to 3929 /// the given function. 3930 void registerGlobalDtorWithAtExit(const VarDecl &D, llvm::Constant *fn, 3931 llvm::Constant *addr); 3932 3933 /// Call atexit() with function dtorStub. 3934 void registerGlobalDtorWithAtExit(llvm::Constant *dtorStub); 3935 3936 /// Emit code in this function to perform a guarded variable 3937 /// initialization. Guarded initializations are used when it's not 3938 /// possible to prove that an initialization will be done exactly 3939 /// once, e.g. with a static local variable or a static data member 3940 /// of a class template. 3941 void EmitCXXGuardedInit(const VarDecl &D, llvm::GlobalVariable *DeclPtr, 3942 bool PerformInit); 3943 3944 enum class GuardKind { VariableGuard, TlsGuard }; 3945 3946 /// Emit a branch to select whether or not to perform guarded initialization. 3947 void EmitCXXGuardedInitBranch(llvm::Value *NeedsInit, 3948 llvm::BasicBlock *InitBlock, 3949 llvm::BasicBlock *NoInitBlock, 3950 GuardKind Kind, const VarDecl *D); 3951 3952 /// GenerateCXXGlobalInitFunc - Generates code for initializing global 3953 /// variables. 3954 void 3955 GenerateCXXGlobalInitFunc(llvm::Function *Fn, 3956 ArrayRef<llvm::Function *> CXXThreadLocals, 3957 ConstantAddress Guard = ConstantAddress::invalid()); 3958 3959 /// GenerateCXXGlobalDtorsFunc - Generates code for destroying global 3960 /// variables. 3961 void GenerateCXXGlobalDtorsFunc( 3962 llvm::Function *Fn, 3963 const std::vector<std::pair<llvm::WeakTrackingVH, llvm::Constant *>> 3964 &DtorsAndObjects); 3965 3966 void GenerateCXXGlobalVarDeclInitFunc(llvm::Function *Fn, 3967 const VarDecl *D, 3968 llvm::GlobalVariable *Addr, 3969 bool PerformInit); 3970 3971 void EmitCXXConstructExpr(const CXXConstructExpr *E, AggValueSlot Dest); 3972 3973 void EmitSynthesizedCXXCopyCtor(Address Dest, Address Src, const Expr *Exp); 3974 3975 void enterFullExpression(const FullExpr *E) { 3976 if (const auto *EWC = dyn_cast<ExprWithCleanups>(E)) 3977 if (EWC->getNumObjects() == 0) 3978 return; 3979 enterNonTrivialFullExpression(E); 3980 } 3981 void enterNonTrivialFullExpression(const FullExpr *E); 3982 3983 void EmitCXXThrowExpr(const CXXThrowExpr *E, bool KeepInsertionPoint = true); 3984 3985 void EmitLambdaExpr(const LambdaExpr *E, AggValueSlot Dest); 3986 3987 RValue EmitAtomicExpr(AtomicExpr *E); 3988 3989 //===--------------------------------------------------------------------===// 3990 // Annotations Emission 3991 //===--------------------------------------------------------------------===// 3992 3993 /// Emit an annotation call (intrinsic or builtin). 3994 llvm::Value *EmitAnnotationCall(llvm::Value *AnnotationFn, 3995 llvm::Value *AnnotatedVal, 3996 StringRef AnnotationStr, 3997 SourceLocation Location); 3998 3999 /// Emit local annotations for the local variable V, declared by D. 4000 void EmitVarAnnotations(const VarDecl *D, llvm::Value *V); 4001 4002 /// Emit field annotations for the given field & value. Returns the 4003 /// annotation result. 4004 Address EmitFieldAnnotations(const FieldDecl *D, Address V); 4005 4006 //===--------------------------------------------------------------------===// 4007 // Internal Helpers 4008 //===--------------------------------------------------------------------===// 4009 4010 /// ContainsLabel - Return true if the statement contains a label in it. If 4011 /// this statement is not executed normally, it not containing a label means 4012 /// that we can just remove the code. 4013 static bool ContainsLabel(const Stmt *S, bool IgnoreCaseStmts = false); 4014 4015 /// containsBreak - Return true if the statement contains a break out of it. 4016 /// If the statement (recursively) contains a switch or loop with a break 4017 /// inside of it, this is fine. 4018 static bool containsBreak(const Stmt *S); 4019 4020 /// Determine if the given statement might introduce a declaration into the 4021 /// current scope, by being a (possibly-labelled) DeclStmt. 4022 static bool mightAddDeclToScope(const Stmt *S); 4023 4024 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 4025 /// to a constant, or if it does but contains a label, return false. If it 4026 /// constant folds return true and set the boolean result in Result. 4027 bool ConstantFoldsToSimpleInteger(const Expr *Cond, bool &Result, 4028 bool AllowLabels = false); 4029 4030 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 4031 /// to a constant, or if it does but contains a label, return false. If it 4032 /// constant folds return true and set the folded value. 4033 bool ConstantFoldsToSimpleInteger(const Expr *Cond, llvm::APSInt &Result, 4034 bool AllowLabels = false); 4035 4036 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an 4037 /// if statement) to the specified blocks. Based on the condition, this might 4038 /// try to simplify the codegen of the conditional based on the branch. 4039 /// TrueCount should be the number of times we expect the condition to 4040 /// evaluate to true based on PGO data. 4041 void EmitBranchOnBoolExpr(const Expr *Cond, llvm::BasicBlock *TrueBlock, 4042 llvm::BasicBlock *FalseBlock, uint64_t TrueCount); 4043 4044 /// Given an assignment `*LHS = RHS`, emit a test that checks if \p RHS is 4045 /// nonnull, if \p LHS is marked _Nonnull. 4046 void EmitNullabilityCheck(LValue LHS, llvm::Value *RHS, SourceLocation Loc); 4047 4048 /// An enumeration which makes it easier to specify whether or not an 4049 /// operation is a subtraction. 4050 enum { NotSubtraction = false, IsSubtraction = true }; 4051 4052 /// Same as IRBuilder::CreateInBoundsGEP, but additionally emits a check to 4053 /// detect undefined behavior when the pointer overflow sanitizer is enabled. 4054 /// \p SignedIndices indicates whether any of the GEP indices are signed. 4055 /// \p IsSubtraction indicates whether the expression used to form the GEP 4056 /// is a subtraction. 4057 llvm::Value *EmitCheckedInBoundsGEP(llvm::Value *Ptr, 4058 ArrayRef<llvm::Value *> IdxList, 4059 bool SignedIndices, 4060 bool IsSubtraction, 4061 SourceLocation Loc, 4062 const Twine &Name = ""); 4063 4064 /// Specifies which type of sanitizer check to apply when handling a 4065 /// particular builtin. 4066 enum BuiltinCheckKind { 4067 BCK_CTZPassedZero, 4068 BCK_CLZPassedZero, 4069 }; 4070 4071 /// Emits an argument for a call to a builtin. If the builtin sanitizer is 4072 /// enabled, a runtime check specified by \p Kind is also emitted. 4073 llvm::Value *EmitCheckedArgForBuiltin(const Expr *E, BuiltinCheckKind Kind); 4074 4075 /// Emit a description of a type in a format suitable for passing to 4076 /// a runtime sanitizer handler. 4077 llvm::Constant *EmitCheckTypeDescriptor(QualType T); 4078 4079 /// Convert a value into a format suitable for passing to a runtime 4080 /// sanitizer handler. 4081 llvm::Value *EmitCheckValue(llvm::Value *V); 4082 4083 /// Emit a description of a source location in a format suitable for 4084 /// passing to a runtime sanitizer handler. 4085 llvm::Constant *EmitCheckSourceLocation(SourceLocation Loc); 4086 4087 /// Create a basic block that will call a handler function in a 4088 /// sanitizer runtime with the provided arguments, and create a conditional 4089 /// branch to it. 4090 void EmitCheck(ArrayRef<std::pair<llvm::Value *, SanitizerMask>> Checked, 4091 SanitizerHandler Check, ArrayRef<llvm::Constant *> StaticArgs, 4092 ArrayRef<llvm::Value *> DynamicArgs); 4093 4094 /// Emit a slow path cross-DSO CFI check which calls __cfi_slowpath 4095 /// if Cond if false. 4096 void EmitCfiSlowPathCheck(SanitizerMask Kind, llvm::Value *Cond, 4097 llvm::ConstantInt *TypeId, llvm::Value *Ptr, 4098 ArrayRef<llvm::Constant *> StaticArgs); 4099 4100 /// Emit a reached-unreachable diagnostic if \p Loc is valid and runtime 4101 /// checking is enabled. Otherwise, just emit an unreachable instruction. 4102 void EmitUnreachable(SourceLocation Loc); 4103 4104 /// Create a basic block that will call the trap intrinsic, and emit a 4105 /// conditional branch to it, for the -ftrapv checks. 4106 void EmitTrapCheck(llvm::Value *Checked); 4107 4108 /// Emit a call to trap or debugtrap and attach function attribute 4109 /// "trap-func-name" if specified. 4110 llvm::CallInst *EmitTrapCall(llvm::Intrinsic::ID IntrID); 4111 4112 /// Emit a stub for the cross-DSO CFI check function. 4113 void EmitCfiCheckStub(); 4114 4115 /// Emit a cross-DSO CFI failure handling function. 4116 void EmitCfiCheckFail(); 4117 4118 /// Create a check for a function parameter that may potentially be 4119 /// declared as non-null. 4120 void EmitNonNullArgCheck(RValue RV, QualType ArgType, SourceLocation ArgLoc, 4121 AbstractCallee AC, unsigned ParmNum); 4122 4123 /// EmitCallArg - Emit a single call argument. 4124 void EmitCallArg(CallArgList &args, const Expr *E, QualType ArgType); 4125 4126 /// EmitDelegateCallArg - We are performing a delegate call; that 4127 /// is, the current function is delegating to another one. Produce 4128 /// a r-value suitable for passing the given parameter. 4129 void EmitDelegateCallArg(CallArgList &args, const VarDecl *param, 4130 SourceLocation loc); 4131 4132 /// SetFPAccuracy - Set the minimum required accuracy of the given floating 4133 /// point operation, expressed as the maximum relative error in ulp. 4134 void SetFPAccuracy(llvm::Value *Val, float Accuracy); 4135 4136 private: 4137 llvm::MDNode *getRangeForLoadFromType(QualType Ty); 4138 void EmitReturnOfRValue(RValue RV, QualType Ty); 4139 4140 void deferPlaceholderReplacement(llvm::Instruction *Old, llvm::Value *New); 4141 4142 llvm::SmallVector<std::pair<llvm::Instruction *, llvm::Value *>, 4> 4143 DeferredReplacements; 4144 4145 /// Set the address of a local variable. 4146 void setAddrOfLocalVar(const VarDecl *VD, Address Addr) { 4147 assert(!LocalDeclMap.count(VD) && "Decl already exists in LocalDeclMap!"); 4148 LocalDeclMap.insert({VD, Addr}); 4149 } 4150 4151 /// ExpandTypeFromArgs - Reconstruct a structure of type \arg Ty 4152 /// from function arguments into \arg Dst. See ABIArgInfo::Expand. 4153 /// 4154 /// \param AI - The first function argument of the expansion. 4155 void ExpandTypeFromArgs(QualType Ty, LValue Dst, 4156 SmallVectorImpl<llvm::Value *>::iterator &AI); 4157 4158 /// ExpandTypeToArgs - Expand an CallArg \arg Arg, with the LLVM type for \arg 4159 /// Ty, into individual arguments on the provided vector \arg IRCallArgs, 4160 /// starting at index \arg IRCallArgPos. See ABIArgInfo::Expand. 4161 void ExpandTypeToArgs(QualType Ty, CallArg Arg, llvm::FunctionType *IRFuncTy, 4162 SmallVectorImpl<llvm::Value *> &IRCallArgs, 4163 unsigned &IRCallArgPos); 4164 4165 llvm::Value* EmitAsmInput(const TargetInfo::ConstraintInfo &Info, 4166 const Expr *InputExpr, std::string &ConstraintStr); 4167 4168 llvm::Value* EmitAsmInputLValue(const TargetInfo::ConstraintInfo &Info, 4169 LValue InputValue, QualType InputType, 4170 std::string &ConstraintStr, 4171 SourceLocation Loc); 4172 4173 /// Attempts to statically evaluate the object size of E. If that 4174 /// fails, emits code to figure the size of E out for us. This is 4175 /// pass_object_size aware. 4176 /// 4177 /// If EmittedExpr is non-null, this will use that instead of re-emitting E. 4178 llvm::Value *evaluateOrEmitBuiltinObjectSize(const Expr *E, unsigned Type, 4179 llvm::IntegerType *ResType, 4180 llvm::Value *EmittedE); 4181 4182 /// Emits the size of E, as required by __builtin_object_size. This 4183 /// function is aware of pass_object_size parameters, and will act accordingly 4184 /// if E is a parameter with the pass_object_size attribute. 4185 llvm::Value *emitBuiltinObjectSize(const Expr *E, unsigned Type, 4186 llvm::IntegerType *ResType, 4187 llvm::Value *EmittedE); 4188 4189 public: 4190 #ifndef NDEBUG 4191 // Determine whether the given argument is an Objective-C method 4192 // that may have type parameters in its signature. 4193 static bool isObjCMethodWithTypeParams(const ObjCMethodDecl *method) { 4194 const DeclContext *dc = method->getDeclContext(); 4195 if (const ObjCInterfaceDecl *classDecl= dyn_cast<ObjCInterfaceDecl>(dc)) { 4196 return classDecl->getTypeParamListAsWritten(); 4197 } 4198 4199 if (const ObjCCategoryDecl *catDecl = dyn_cast<ObjCCategoryDecl>(dc)) { 4200 return catDecl->getTypeParamList(); 4201 } 4202 4203 return false; 4204 } 4205 4206 template<typename T> 4207 static bool isObjCMethodWithTypeParams(const T *) { return false; } 4208 #endif 4209 4210 enum class EvaluationOrder { 4211 ///! No language constraints on evaluation order. 4212 Default, 4213 ///! Language semantics require left-to-right evaluation. 4214 ForceLeftToRight, 4215 ///! Language semantics require right-to-left evaluation. 4216 ForceRightToLeft 4217 }; 4218 4219 /// EmitCallArgs - Emit call arguments for a function. 4220 template <typename T> 4221 void EmitCallArgs(CallArgList &Args, const T *CallArgTypeInfo, 4222 llvm::iterator_range<CallExpr::const_arg_iterator> ArgRange, 4223 AbstractCallee AC = AbstractCallee(), 4224 unsigned ParamsToSkip = 0, 4225 EvaluationOrder Order = EvaluationOrder::Default) { 4226 SmallVector<QualType, 16> ArgTypes; 4227 CallExpr::const_arg_iterator Arg = ArgRange.begin(); 4228 4229 assert((ParamsToSkip == 0 || CallArgTypeInfo) && 4230 "Can't skip parameters if type info is not provided"); 4231 if (CallArgTypeInfo) { 4232 #ifndef NDEBUG 4233 bool isGenericMethod = isObjCMethodWithTypeParams(CallArgTypeInfo); 4234 #endif 4235 4236 // First, use the argument types that the type info knows about 4237 for (auto I = CallArgTypeInfo->param_type_begin() + ParamsToSkip, 4238 E = CallArgTypeInfo->param_type_end(); 4239 I != E; ++I, ++Arg) { 4240 assert(Arg != ArgRange.end() && "Running over edge of argument list!"); 4241 assert((isGenericMethod || 4242 ((*I)->isVariablyModifiedType() || 4243 (*I).getNonReferenceType()->isObjCRetainableType() || 4244 getContext() 4245 .getCanonicalType((*I).getNonReferenceType()) 4246 .getTypePtr() == 4247 getContext() 4248 .getCanonicalType((*Arg)->getType()) 4249 .getTypePtr())) && 4250 "type mismatch in call argument!"); 4251 ArgTypes.push_back(*I); 4252 } 4253 } 4254 4255 // Either we've emitted all the call args, or we have a call to variadic 4256 // function. 4257 assert((Arg == ArgRange.end() || !CallArgTypeInfo || 4258 CallArgTypeInfo->isVariadic()) && 4259 "Extra arguments in non-variadic function!"); 4260 4261 // If we still have any arguments, emit them using the type of the argument. 4262 for (auto *A : llvm::make_range(Arg, ArgRange.end())) 4263 ArgTypes.push_back(CallArgTypeInfo ? getVarArgType(A) : A->getType()); 4264 4265 EmitCallArgs(Args, ArgTypes, ArgRange, AC, ParamsToSkip, Order); 4266 } 4267 4268 void EmitCallArgs(CallArgList &Args, ArrayRef<QualType> ArgTypes, 4269 llvm::iterator_range<CallExpr::const_arg_iterator> ArgRange, 4270 AbstractCallee AC = AbstractCallee(), 4271 unsigned ParamsToSkip = 0, 4272 EvaluationOrder Order = EvaluationOrder::Default); 4273 4274 /// EmitPointerWithAlignment - Given an expression with a pointer type, 4275 /// emit the value and compute our best estimate of the alignment of the 4276 /// pointee. 4277 /// 4278 /// \param BaseInfo - If non-null, this will be initialized with 4279 /// information about the source of the alignment and the may-alias 4280 /// attribute. Note that this function will conservatively fall back on 4281 /// the type when it doesn't recognize the expression and may-alias will 4282 /// be set to false. 4283 /// 4284 /// One reasonable way to use this information is when there's a language 4285 /// guarantee that the pointer must be aligned to some stricter value, and 4286 /// we're simply trying to ensure that sufficiently obvious uses of under- 4287 /// aligned objects don't get miscompiled; for example, a placement new 4288 /// into the address of a local variable. In such a case, it's quite 4289 /// reasonable to just ignore the returned alignment when it isn't from an 4290 /// explicit source. 4291 Address EmitPointerWithAlignment(const Expr *Addr, 4292 LValueBaseInfo *BaseInfo = nullptr, 4293 TBAAAccessInfo *TBAAInfo = nullptr); 4294 4295 /// If \p E references a parameter with pass_object_size info or a constant 4296 /// array size modifier, emit the object size divided by the size of \p EltTy. 4297 /// Otherwise return null. 4298 llvm::Value *LoadPassedObjectSize(const Expr *E, QualType EltTy); 4299 4300 void EmitSanitizerStatReport(llvm::SanitizerStatKind SSK); 4301 4302 struct MultiVersionResolverOption { 4303 llvm::Function *Function; 4304 FunctionDecl *FD; 4305 struct Conds { 4306 StringRef Architecture; 4307 llvm::SmallVector<StringRef, 8> Features; 4308 4309 Conds(StringRef Arch, ArrayRef<StringRef> Feats) 4310 : Architecture(Arch), Features(Feats.begin(), Feats.end()) {} 4311 } Conditions; 4312 4313 MultiVersionResolverOption(llvm::Function *F, StringRef Arch, 4314 ArrayRef<StringRef> Feats) 4315 : Function(F), Conditions(Arch, Feats) {} 4316 }; 4317 4318 // Emits the body of a multiversion function's resolver. Assumes that the 4319 // options are already sorted in the proper order, with the 'default' option 4320 // last (if it exists). 4321 void EmitMultiVersionResolver(llvm::Function *Resolver, 4322 ArrayRef<MultiVersionResolverOption> Options); 4323 4324 static uint64_t GetX86CpuSupportsMask(ArrayRef<StringRef> FeatureStrs); 4325 4326 private: 4327 QualType getVarArgType(const Expr *Arg); 4328 4329 void EmitDeclMetadata(); 4330 4331 BlockByrefHelpers *buildByrefHelpers(llvm::StructType &byrefType, 4332 const AutoVarEmission &emission); 4333 4334 void AddObjCARCExceptionMetadata(llvm::Instruction *Inst); 4335 4336 llvm::Value *GetValueForARMHint(unsigned BuiltinID); 4337 llvm::Value *EmitX86CpuIs(const CallExpr *E); 4338 llvm::Value *EmitX86CpuIs(StringRef CPUStr); 4339 llvm::Value *EmitX86CpuSupports(const CallExpr *E); 4340 llvm::Value *EmitX86CpuSupports(ArrayRef<StringRef> FeatureStrs); 4341 llvm::Value *EmitX86CpuSupports(uint64_t Mask); 4342 llvm::Value *EmitX86CpuInit(); 4343 llvm::Value *FormResolverCondition(const MultiVersionResolverOption &RO); 4344 }; 4345 4346 inline DominatingLLVMValue::saved_type 4347 DominatingLLVMValue::save(CodeGenFunction &CGF, llvm::Value *value) { 4348 if (!needsSaving(value)) return saved_type(value, false); 4349 4350 // Otherwise, we need an alloca. 4351 auto align = CharUnits::fromQuantity( 4352 CGF.CGM.getDataLayout().getPrefTypeAlignment(value->getType())); 4353 Address alloca = 4354 CGF.CreateTempAlloca(value->getType(), align, "cond-cleanup.save"); 4355 CGF.Builder.CreateStore(value, alloca); 4356 4357 return saved_type(alloca.getPointer(), true); 4358 } 4359 4360 inline llvm::Value *DominatingLLVMValue::restore(CodeGenFunction &CGF, 4361 saved_type value) { 4362 // If the value says it wasn't saved, trust that it's still dominating. 4363 if (!value.getInt()) return value.getPointer(); 4364 4365 // Otherwise, it should be an alloca instruction, as set up in save(). 4366 auto alloca = cast<llvm::AllocaInst>(value.getPointer()); 4367 return CGF.Builder.CreateAlignedLoad(alloca, alloca->getAlignment()); 4368 } 4369 4370 } // end namespace CodeGen 4371 } // end namespace clang 4372 4373 #endif 4374