1 //===--- CGExprComplex.cpp - Emit LLVM Code for Complex Exprs -------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code to emit Expr nodes with complex types as LLVM code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenFunction.h" 15 #include "CodeGenModule.h" 16 #include "clang/AST/StmtVisitor.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/IR/Constants.h" 19 #include "llvm/IR/Instructions.h" 20 #include "llvm/IR/MDBuilder.h" 21 #include "llvm/IR/Metadata.h" 22 #include <algorithm> 23 using namespace clang; 24 using namespace CodeGen; 25 26 //===----------------------------------------------------------------------===// 27 // Complex Expression Emitter 28 //===----------------------------------------------------------------------===// 29 30 typedef CodeGenFunction::ComplexPairTy ComplexPairTy; 31 32 /// Return the complex type that we are meant to emit. 33 static const ComplexType *getComplexType(QualType type) { 34 type = type.getCanonicalType(); 35 if (const ComplexType *comp = dyn_cast<ComplexType>(type)) { 36 return comp; 37 } else { 38 return cast<ComplexType>(cast<AtomicType>(type)->getValueType()); 39 } 40 } 41 42 namespace { 43 class ComplexExprEmitter 44 : public StmtVisitor<ComplexExprEmitter, ComplexPairTy> { 45 CodeGenFunction &CGF; 46 CGBuilderTy &Builder; 47 bool IgnoreReal; 48 bool IgnoreImag; 49 public: 50 ComplexExprEmitter(CodeGenFunction &cgf, bool ir=false, bool ii=false) 51 : CGF(cgf), Builder(CGF.Builder), IgnoreReal(ir), IgnoreImag(ii) { 52 } 53 54 55 //===--------------------------------------------------------------------===// 56 // Utilities 57 //===--------------------------------------------------------------------===// 58 59 bool TestAndClearIgnoreReal() { 60 bool I = IgnoreReal; 61 IgnoreReal = false; 62 return I; 63 } 64 bool TestAndClearIgnoreImag() { 65 bool I = IgnoreImag; 66 IgnoreImag = false; 67 return I; 68 } 69 70 /// EmitLoadOfLValue - Given an expression with complex type that represents a 71 /// value l-value, this method emits the address of the l-value, then loads 72 /// and returns the result. 73 ComplexPairTy EmitLoadOfLValue(const Expr *E) { 74 return EmitLoadOfLValue(CGF.EmitLValue(E), E->getExprLoc()); 75 } 76 77 ComplexPairTy EmitLoadOfLValue(LValue LV, SourceLocation Loc); 78 79 /// EmitStoreOfComplex - Store the specified real/imag parts into the 80 /// specified value pointer. 81 void EmitStoreOfComplex(ComplexPairTy Val, LValue LV, bool isInit); 82 83 /// Emit a cast from complex value Val to DestType. 84 ComplexPairTy EmitComplexToComplexCast(ComplexPairTy Val, QualType SrcType, 85 QualType DestType, SourceLocation Loc); 86 /// Emit a cast from scalar value Val to DestType. 87 ComplexPairTy EmitScalarToComplexCast(llvm::Value *Val, QualType SrcType, 88 QualType DestType, SourceLocation Loc); 89 90 //===--------------------------------------------------------------------===// 91 // Visitor Methods 92 //===--------------------------------------------------------------------===// 93 94 ComplexPairTy Visit(Expr *E) { 95 ApplyDebugLocation DL(CGF, E); 96 return StmtVisitor<ComplexExprEmitter, ComplexPairTy>::Visit(E); 97 } 98 99 ComplexPairTy VisitStmt(Stmt *S) { 100 S->dump(CGF.getContext().getSourceManager()); 101 llvm_unreachable("Stmt can't have complex result type!"); 102 } 103 ComplexPairTy VisitExpr(Expr *S); 104 ComplexPairTy VisitParenExpr(ParenExpr *PE) { return Visit(PE->getSubExpr());} 105 ComplexPairTy VisitGenericSelectionExpr(GenericSelectionExpr *GE) { 106 return Visit(GE->getResultExpr()); 107 } 108 ComplexPairTy VisitImaginaryLiteral(const ImaginaryLiteral *IL); 109 ComplexPairTy 110 VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *PE) { 111 return Visit(PE->getReplacement()); 112 } 113 ComplexPairTy VisitCoawaitExpr(CoawaitExpr *S) { 114 return CGF.EmitCoawaitExpr(*S).getComplexVal(); 115 } 116 ComplexPairTy VisitCoyieldExpr(CoyieldExpr *S) { 117 return CGF.EmitCoyieldExpr(*S).getComplexVal(); 118 } 119 ComplexPairTy VisitUnaryCoawait(const UnaryOperator *E) { 120 return Visit(E->getSubExpr()); 121 } 122 123 124 // l-values. 125 ComplexPairTy VisitDeclRefExpr(DeclRefExpr *E) { 126 if (CodeGenFunction::ConstantEmission result = CGF.tryEmitAsConstant(E)) { 127 if (result.isReference()) 128 return EmitLoadOfLValue(result.getReferenceLValue(CGF, E), 129 E->getExprLoc()); 130 131 llvm::Constant *pair = result.getValue(); 132 return ComplexPairTy(pair->getAggregateElement(0U), 133 pair->getAggregateElement(1U)); 134 } 135 return EmitLoadOfLValue(E); 136 } 137 ComplexPairTy VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) { 138 return EmitLoadOfLValue(E); 139 } 140 ComplexPairTy VisitObjCMessageExpr(ObjCMessageExpr *E) { 141 return CGF.EmitObjCMessageExpr(E).getComplexVal(); 142 } 143 ComplexPairTy VisitArraySubscriptExpr(Expr *E) { return EmitLoadOfLValue(E); } 144 ComplexPairTy VisitMemberExpr(const Expr *E) { return EmitLoadOfLValue(E); } 145 ComplexPairTy VisitOpaqueValueExpr(OpaqueValueExpr *E) { 146 if (E->isGLValue()) 147 return EmitLoadOfLValue(CGF.getOpaqueLValueMapping(E), E->getExprLoc()); 148 return CGF.getOpaqueRValueMapping(E).getComplexVal(); 149 } 150 151 ComplexPairTy VisitPseudoObjectExpr(PseudoObjectExpr *E) { 152 return CGF.EmitPseudoObjectRValue(E).getComplexVal(); 153 } 154 155 // FIXME: CompoundLiteralExpr 156 157 ComplexPairTy EmitCast(CastKind CK, Expr *Op, QualType DestTy); 158 ComplexPairTy VisitImplicitCastExpr(ImplicitCastExpr *E) { 159 // Unlike for scalars, we don't have to worry about function->ptr demotion 160 // here. 161 return EmitCast(E->getCastKind(), E->getSubExpr(), E->getType()); 162 } 163 ComplexPairTy VisitCastExpr(CastExpr *E) { 164 if (const auto *ECE = dyn_cast<ExplicitCastExpr>(E)) 165 CGF.CGM.EmitExplicitCastExprType(ECE, &CGF); 166 return EmitCast(E->getCastKind(), E->getSubExpr(), E->getType()); 167 } 168 ComplexPairTy VisitCallExpr(const CallExpr *E); 169 ComplexPairTy VisitStmtExpr(const StmtExpr *E); 170 171 // Operators. 172 ComplexPairTy VisitPrePostIncDec(const UnaryOperator *E, 173 bool isInc, bool isPre) { 174 LValue LV = CGF.EmitLValue(E->getSubExpr()); 175 return CGF.EmitComplexPrePostIncDec(E, LV, isInc, isPre); 176 } 177 ComplexPairTy VisitUnaryPostDec(const UnaryOperator *E) { 178 return VisitPrePostIncDec(E, false, false); 179 } 180 ComplexPairTy VisitUnaryPostInc(const UnaryOperator *E) { 181 return VisitPrePostIncDec(E, true, false); 182 } 183 ComplexPairTy VisitUnaryPreDec(const UnaryOperator *E) { 184 return VisitPrePostIncDec(E, false, true); 185 } 186 ComplexPairTy VisitUnaryPreInc(const UnaryOperator *E) { 187 return VisitPrePostIncDec(E, true, true); 188 } 189 ComplexPairTy VisitUnaryDeref(const Expr *E) { return EmitLoadOfLValue(E); } 190 ComplexPairTy VisitUnaryPlus (const UnaryOperator *E) { 191 TestAndClearIgnoreReal(); 192 TestAndClearIgnoreImag(); 193 return Visit(E->getSubExpr()); 194 } 195 ComplexPairTy VisitUnaryMinus (const UnaryOperator *E); 196 ComplexPairTy VisitUnaryNot (const UnaryOperator *E); 197 // LNot,Real,Imag never return complex. 198 ComplexPairTy VisitUnaryExtension(const UnaryOperator *E) { 199 return Visit(E->getSubExpr()); 200 } 201 ComplexPairTy VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) { 202 return Visit(DAE->getExpr()); 203 } 204 ComplexPairTy VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE) { 205 CodeGenFunction::CXXDefaultInitExprScope Scope(CGF); 206 return Visit(DIE->getExpr()); 207 } 208 ComplexPairTy VisitExprWithCleanups(ExprWithCleanups *E) { 209 CGF.enterFullExpression(E); 210 CodeGenFunction::RunCleanupsScope Scope(CGF); 211 ComplexPairTy Vals = Visit(E->getSubExpr()); 212 // Defend against dominance problems caused by jumps out of expression 213 // evaluation through the shared cleanup block. 214 Scope.ForceCleanup({&Vals.first, &Vals.second}); 215 return Vals; 216 } 217 ComplexPairTy VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E) { 218 assert(E->getType()->isAnyComplexType() && "Expected complex type!"); 219 QualType Elem = E->getType()->castAs<ComplexType>()->getElementType(); 220 llvm::Constant *Null = llvm::Constant::getNullValue(CGF.ConvertType(Elem)); 221 return ComplexPairTy(Null, Null); 222 } 223 ComplexPairTy VisitImplicitValueInitExpr(ImplicitValueInitExpr *E) { 224 assert(E->getType()->isAnyComplexType() && "Expected complex type!"); 225 QualType Elem = E->getType()->castAs<ComplexType>()->getElementType(); 226 llvm::Constant *Null = 227 llvm::Constant::getNullValue(CGF.ConvertType(Elem)); 228 return ComplexPairTy(Null, Null); 229 } 230 231 struct BinOpInfo { 232 ComplexPairTy LHS; 233 ComplexPairTy RHS; 234 QualType Ty; // Computation Type. 235 }; 236 237 BinOpInfo EmitBinOps(const BinaryOperator *E); 238 LValue EmitCompoundAssignLValue(const CompoundAssignOperator *E, 239 ComplexPairTy (ComplexExprEmitter::*Func) 240 (const BinOpInfo &), 241 RValue &Val); 242 ComplexPairTy EmitCompoundAssign(const CompoundAssignOperator *E, 243 ComplexPairTy (ComplexExprEmitter::*Func) 244 (const BinOpInfo &)); 245 246 ComplexPairTy EmitBinAdd(const BinOpInfo &Op); 247 ComplexPairTy EmitBinSub(const BinOpInfo &Op); 248 ComplexPairTy EmitBinMul(const BinOpInfo &Op); 249 ComplexPairTy EmitBinDiv(const BinOpInfo &Op); 250 251 ComplexPairTy EmitComplexBinOpLibCall(StringRef LibCallName, 252 const BinOpInfo &Op); 253 254 ComplexPairTy VisitBinAdd(const BinaryOperator *E) { 255 return EmitBinAdd(EmitBinOps(E)); 256 } 257 ComplexPairTy VisitBinSub(const BinaryOperator *E) { 258 return EmitBinSub(EmitBinOps(E)); 259 } 260 ComplexPairTy VisitBinMul(const BinaryOperator *E) { 261 return EmitBinMul(EmitBinOps(E)); 262 } 263 ComplexPairTy VisitBinDiv(const BinaryOperator *E) { 264 return EmitBinDiv(EmitBinOps(E)); 265 } 266 267 // Compound assignments. 268 ComplexPairTy VisitBinAddAssign(const CompoundAssignOperator *E) { 269 return EmitCompoundAssign(E, &ComplexExprEmitter::EmitBinAdd); 270 } 271 ComplexPairTy VisitBinSubAssign(const CompoundAssignOperator *E) { 272 return EmitCompoundAssign(E, &ComplexExprEmitter::EmitBinSub); 273 } 274 ComplexPairTy VisitBinMulAssign(const CompoundAssignOperator *E) { 275 return EmitCompoundAssign(E, &ComplexExprEmitter::EmitBinMul); 276 } 277 ComplexPairTy VisitBinDivAssign(const CompoundAssignOperator *E) { 278 return EmitCompoundAssign(E, &ComplexExprEmitter::EmitBinDiv); 279 } 280 281 // GCC rejects rem/and/or/xor for integer complex. 282 // Logical and/or always return int, never complex. 283 284 // No comparisons produce a complex result. 285 286 LValue EmitBinAssignLValue(const BinaryOperator *E, 287 ComplexPairTy &Val); 288 ComplexPairTy VisitBinAssign (const BinaryOperator *E); 289 ComplexPairTy VisitBinComma (const BinaryOperator *E); 290 291 292 ComplexPairTy 293 VisitAbstractConditionalOperator(const AbstractConditionalOperator *CO); 294 ComplexPairTy VisitChooseExpr(ChooseExpr *CE); 295 296 ComplexPairTy VisitInitListExpr(InitListExpr *E); 297 298 ComplexPairTy VisitCompoundLiteralExpr(CompoundLiteralExpr *E) { 299 return EmitLoadOfLValue(E); 300 } 301 302 ComplexPairTy VisitVAArgExpr(VAArgExpr *E); 303 304 ComplexPairTy VisitAtomicExpr(AtomicExpr *E) { 305 return CGF.EmitAtomicExpr(E).getComplexVal(); 306 } 307 }; 308 } // end anonymous namespace. 309 310 //===----------------------------------------------------------------------===// 311 // Utilities 312 //===----------------------------------------------------------------------===// 313 314 Address CodeGenFunction::emitAddrOfRealComponent(Address addr, 315 QualType complexType) { 316 CharUnits offset = CharUnits::Zero(); 317 return Builder.CreateStructGEP(addr, 0, offset, addr.getName() + ".realp"); 318 } 319 320 Address CodeGenFunction::emitAddrOfImagComponent(Address addr, 321 QualType complexType) { 322 QualType eltType = complexType->castAs<ComplexType>()->getElementType(); 323 CharUnits offset = getContext().getTypeSizeInChars(eltType); 324 return Builder.CreateStructGEP(addr, 1, offset, addr.getName() + ".imagp"); 325 } 326 327 /// EmitLoadOfLValue - Given an RValue reference for a complex, emit code to 328 /// load the real and imaginary pieces, returning them as Real/Imag. 329 ComplexPairTy ComplexExprEmitter::EmitLoadOfLValue(LValue lvalue, 330 SourceLocation loc) { 331 assert(lvalue.isSimple() && "non-simple complex l-value?"); 332 if (lvalue.getType()->isAtomicType()) 333 return CGF.EmitAtomicLoad(lvalue, loc).getComplexVal(); 334 335 Address SrcPtr = lvalue.getAddress(); 336 bool isVolatile = lvalue.isVolatileQualified(); 337 338 llvm::Value *Real = nullptr, *Imag = nullptr; 339 340 if (!IgnoreReal || isVolatile) { 341 Address RealP = CGF.emitAddrOfRealComponent(SrcPtr, lvalue.getType()); 342 Real = Builder.CreateLoad(RealP, isVolatile, SrcPtr.getName() + ".real"); 343 } 344 345 if (!IgnoreImag || isVolatile) { 346 Address ImagP = CGF.emitAddrOfImagComponent(SrcPtr, lvalue.getType()); 347 Imag = Builder.CreateLoad(ImagP, isVolatile, SrcPtr.getName() + ".imag"); 348 } 349 350 return ComplexPairTy(Real, Imag); 351 } 352 353 /// EmitStoreOfComplex - Store the specified real/imag parts into the 354 /// specified value pointer. 355 void ComplexExprEmitter::EmitStoreOfComplex(ComplexPairTy Val, LValue lvalue, 356 bool isInit) { 357 if (lvalue.getType()->isAtomicType() || 358 (!isInit && CGF.LValueIsSuitableForInlineAtomic(lvalue))) 359 return CGF.EmitAtomicStore(RValue::getComplex(Val), lvalue, isInit); 360 361 Address Ptr = lvalue.getAddress(); 362 Address RealPtr = CGF.emitAddrOfRealComponent(Ptr, lvalue.getType()); 363 Address ImagPtr = CGF.emitAddrOfImagComponent(Ptr, lvalue.getType()); 364 365 Builder.CreateStore(Val.first, RealPtr, lvalue.isVolatileQualified()); 366 Builder.CreateStore(Val.second, ImagPtr, lvalue.isVolatileQualified()); 367 } 368 369 370 371 //===----------------------------------------------------------------------===// 372 // Visitor Methods 373 //===----------------------------------------------------------------------===// 374 375 ComplexPairTy ComplexExprEmitter::VisitExpr(Expr *E) { 376 CGF.ErrorUnsupported(E, "complex expression"); 377 llvm::Type *EltTy = 378 CGF.ConvertType(getComplexType(E->getType())->getElementType()); 379 llvm::Value *U = llvm::UndefValue::get(EltTy); 380 return ComplexPairTy(U, U); 381 } 382 383 ComplexPairTy ComplexExprEmitter:: 384 VisitImaginaryLiteral(const ImaginaryLiteral *IL) { 385 llvm::Value *Imag = CGF.EmitScalarExpr(IL->getSubExpr()); 386 return ComplexPairTy(llvm::Constant::getNullValue(Imag->getType()), Imag); 387 } 388 389 390 ComplexPairTy ComplexExprEmitter::VisitCallExpr(const CallExpr *E) { 391 if (E->getCallReturnType(CGF.getContext())->isReferenceType()) 392 return EmitLoadOfLValue(E); 393 394 return CGF.EmitCallExpr(E).getComplexVal(); 395 } 396 397 ComplexPairTy ComplexExprEmitter::VisitStmtExpr(const StmtExpr *E) { 398 CodeGenFunction::StmtExprEvaluation eval(CGF); 399 Address RetAlloca = CGF.EmitCompoundStmt(*E->getSubStmt(), true); 400 assert(RetAlloca.isValid() && "Expected complex return value"); 401 return EmitLoadOfLValue(CGF.MakeAddrLValue(RetAlloca, E->getType()), 402 E->getExprLoc()); 403 } 404 405 /// Emit a cast from complex value Val to DestType. 406 ComplexPairTy ComplexExprEmitter::EmitComplexToComplexCast(ComplexPairTy Val, 407 QualType SrcType, 408 QualType DestType, 409 SourceLocation Loc) { 410 // Get the src/dest element type. 411 SrcType = SrcType->castAs<ComplexType>()->getElementType(); 412 DestType = DestType->castAs<ComplexType>()->getElementType(); 413 414 // C99 6.3.1.6: When a value of complex type is converted to another 415 // complex type, both the real and imaginary parts follow the conversion 416 // rules for the corresponding real types. 417 Val.first = CGF.EmitScalarConversion(Val.first, SrcType, DestType, Loc); 418 Val.second = CGF.EmitScalarConversion(Val.second, SrcType, DestType, Loc); 419 return Val; 420 } 421 422 ComplexPairTy ComplexExprEmitter::EmitScalarToComplexCast(llvm::Value *Val, 423 QualType SrcType, 424 QualType DestType, 425 SourceLocation Loc) { 426 // Convert the input element to the element type of the complex. 427 DestType = DestType->castAs<ComplexType>()->getElementType(); 428 Val = CGF.EmitScalarConversion(Val, SrcType, DestType, Loc); 429 430 // Return (realval, 0). 431 return ComplexPairTy(Val, llvm::Constant::getNullValue(Val->getType())); 432 } 433 434 ComplexPairTy ComplexExprEmitter::EmitCast(CastKind CK, Expr *Op, 435 QualType DestTy) { 436 switch (CK) { 437 case CK_Dependent: llvm_unreachable("dependent cast kind in IR gen!"); 438 439 // Atomic to non-atomic casts may be more than a no-op for some platforms and 440 // for some types. 441 case CK_AtomicToNonAtomic: 442 case CK_NonAtomicToAtomic: 443 case CK_NoOp: 444 case CK_LValueToRValue: 445 case CK_UserDefinedConversion: 446 return Visit(Op); 447 448 case CK_LValueBitCast: { 449 LValue origLV = CGF.EmitLValue(Op); 450 Address V = origLV.getAddress(); 451 V = Builder.CreateElementBitCast(V, CGF.ConvertType(DestTy)); 452 return EmitLoadOfLValue(CGF.MakeAddrLValue(V, DestTy), Op->getExprLoc()); 453 } 454 455 case CK_BitCast: 456 case CK_BaseToDerived: 457 case CK_DerivedToBase: 458 case CK_UncheckedDerivedToBase: 459 case CK_Dynamic: 460 case CK_ToUnion: 461 case CK_ArrayToPointerDecay: 462 case CK_FunctionToPointerDecay: 463 case CK_NullToPointer: 464 case CK_NullToMemberPointer: 465 case CK_BaseToDerivedMemberPointer: 466 case CK_DerivedToBaseMemberPointer: 467 case CK_MemberPointerToBoolean: 468 case CK_ReinterpretMemberPointer: 469 case CK_ConstructorConversion: 470 case CK_IntegralToPointer: 471 case CK_PointerToIntegral: 472 case CK_PointerToBoolean: 473 case CK_ToVoid: 474 case CK_VectorSplat: 475 case CK_IntegralCast: 476 case CK_BooleanToSignedIntegral: 477 case CK_IntegralToBoolean: 478 case CK_IntegralToFloating: 479 case CK_FloatingToIntegral: 480 case CK_FloatingToBoolean: 481 case CK_FloatingCast: 482 case CK_CPointerToObjCPointerCast: 483 case CK_BlockPointerToObjCPointerCast: 484 case CK_AnyPointerToBlockPointerCast: 485 case CK_ObjCObjectLValueCast: 486 case CK_FloatingComplexToReal: 487 case CK_FloatingComplexToBoolean: 488 case CK_IntegralComplexToReal: 489 case CK_IntegralComplexToBoolean: 490 case CK_ARCProduceObject: 491 case CK_ARCConsumeObject: 492 case CK_ARCReclaimReturnedObject: 493 case CK_ARCExtendBlockObject: 494 case CK_CopyAndAutoreleaseBlockObject: 495 case CK_BuiltinFnToFnPtr: 496 case CK_ZeroToOCLEvent: 497 case CK_ZeroToOCLQueue: 498 case CK_AddressSpaceConversion: 499 case CK_IntToOCLSampler: 500 llvm_unreachable("invalid cast kind for complex value"); 501 502 case CK_FloatingRealToComplex: 503 case CK_IntegralRealToComplex: 504 return EmitScalarToComplexCast(CGF.EmitScalarExpr(Op), Op->getType(), 505 DestTy, Op->getExprLoc()); 506 507 case CK_FloatingComplexCast: 508 case CK_FloatingComplexToIntegralComplex: 509 case CK_IntegralComplexCast: 510 case CK_IntegralComplexToFloatingComplex: 511 return EmitComplexToComplexCast(Visit(Op), Op->getType(), DestTy, 512 Op->getExprLoc()); 513 } 514 515 llvm_unreachable("unknown cast resulting in complex value"); 516 } 517 518 ComplexPairTy ComplexExprEmitter::VisitUnaryMinus(const UnaryOperator *E) { 519 TestAndClearIgnoreReal(); 520 TestAndClearIgnoreImag(); 521 ComplexPairTy Op = Visit(E->getSubExpr()); 522 523 llvm::Value *ResR, *ResI; 524 if (Op.first->getType()->isFloatingPointTy()) { 525 ResR = Builder.CreateFNeg(Op.first, "neg.r"); 526 ResI = Builder.CreateFNeg(Op.second, "neg.i"); 527 } else { 528 ResR = Builder.CreateNeg(Op.first, "neg.r"); 529 ResI = Builder.CreateNeg(Op.second, "neg.i"); 530 } 531 return ComplexPairTy(ResR, ResI); 532 } 533 534 ComplexPairTy ComplexExprEmitter::VisitUnaryNot(const UnaryOperator *E) { 535 TestAndClearIgnoreReal(); 536 TestAndClearIgnoreImag(); 537 // ~(a+ib) = a + i*-b 538 ComplexPairTy Op = Visit(E->getSubExpr()); 539 llvm::Value *ResI; 540 if (Op.second->getType()->isFloatingPointTy()) 541 ResI = Builder.CreateFNeg(Op.second, "conj.i"); 542 else 543 ResI = Builder.CreateNeg(Op.second, "conj.i"); 544 545 return ComplexPairTy(Op.first, ResI); 546 } 547 548 ComplexPairTy ComplexExprEmitter::EmitBinAdd(const BinOpInfo &Op) { 549 llvm::Value *ResR, *ResI; 550 551 if (Op.LHS.first->getType()->isFloatingPointTy()) { 552 ResR = Builder.CreateFAdd(Op.LHS.first, Op.RHS.first, "add.r"); 553 if (Op.LHS.second && Op.RHS.second) 554 ResI = Builder.CreateFAdd(Op.LHS.second, Op.RHS.second, "add.i"); 555 else 556 ResI = Op.LHS.second ? Op.LHS.second : Op.RHS.second; 557 assert(ResI && "Only one operand may be real!"); 558 } else { 559 ResR = Builder.CreateAdd(Op.LHS.first, Op.RHS.first, "add.r"); 560 assert(Op.LHS.second && Op.RHS.second && 561 "Both operands of integer complex operators must be complex!"); 562 ResI = Builder.CreateAdd(Op.LHS.second, Op.RHS.second, "add.i"); 563 } 564 return ComplexPairTy(ResR, ResI); 565 } 566 567 ComplexPairTy ComplexExprEmitter::EmitBinSub(const BinOpInfo &Op) { 568 llvm::Value *ResR, *ResI; 569 if (Op.LHS.first->getType()->isFloatingPointTy()) { 570 ResR = Builder.CreateFSub(Op.LHS.first, Op.RHS.first, "sub.r"); 571 if (Op.LHS.second && Op.RHS.second) 572 ResI = Builder.CreateFSub(Op.LHS.second, Op.RHS.second, "sub.i"); 573 else 574 ResI = Op.LHS.second ? Op.LHS.second 575 : Builder.CreateFNeg(Op.RHS.second, "sub.i"); 576 assert(ResI && "Only one operand may be real!"); 577 } else { 578 ResR = Builder.CreateSub(Op.LHS.first, Op.RHS.first, "sub.r"); 579 assert(Op.LHS.second && Op.RHS.second && 580 "Both operands of integer complex operators must be complex!"); 581 ResI = Builder.CreateSub(Op.LHS.second, Op.RHS.second, "sub.i"); 582 } 583 return ComplexPairTy(ResR, ResI); 584 } 585 586 /// \brief Emit a libcall for a binary operation on complex types. 587 ComplexPairTy ComplexExprEmitter::EmitComplexBinOpLibCall(StringRef LibCallName, 588 const BinOpInfo &Op) { 589 CallArgList Args; 590 Args.add(RValue::get(Op.LHS.first), 591 Op.Ty->castAs<ComplexType>()->getElementType()); 592 Args.add(RValue::get(Op.LHS.second), 593 Op.Ty->castAs<ComplexType>()->getElementType()); 594 Args.add(RValue::get(Op.RHS.first), 595 Op.Ty->castAs<ComplexType>()->getElementType()); 596 Args.add(RValue::get(Op.RHS.second), 597 Op.Ty->castAs<ComplexType>()->getElementType()); 598 599 // We *must* use the full CG function call building logic here because the 600 // complex type has special ABI handling. We also should not forget about 601 // special calling convention which may be used for compiler builtins. 602 603 // We create a function qualified type to state that this call does not have 604 // any exceptions. 605 FunctionProtoType::ExtProtoInfo EPI; 606 EPI = EPI.withExceptionSpec( 607 FunctionProtoType::ExceptionSpecInfo(EST_BasicNoexcept)); 608 SmallVector<QualType, 4> ArgsQTys( 609 4, Op.Ty->castAs<ComplexType>()->getElementType()); 610 QualType FQTy = CGF.getContext().getFunctionType(Op.Ty, ArgsQTys, EPI); 611 const CGFunctionInfo &FuncInfo = CGF.CGM.getTypes().arrangeFreeFunctionCall( 612 Args, cast<FunctionType>(FQTy.getTypePtr()), false); 613 614 llvm::FunctionType *FTy = CGF.CGM.getTypes().GetFunctionType(FuncInfo); 615 llvm::Constant *Func = CGF.CGM.CreateBuiltinFunction(FTy, LibCallName); 616 CGCallee Callee = CGCallee::forDirect(Func, FQTy->getAs<FunctionProtoType>()); 617 618 llvm::Instruction *Call; 619 RValue Res = CGF.EmitCall(FuncInfo, Callee, ReturnValueSlot(), Args, &Call); 620 cast<llvm::CallInst>(Call)->setCallingConv(CGF.CGM.getBuiltinCC()); 621 return Res.getComplexVal(); 622 } 623 624 /// \brief Lookup the libcall name for a given floating point type complex 625 /// multiply. 626 static StringRef getComplexMultiplyLibCallName(llvm::Type *Ty) { 627 switch (Ty->getTypeID()) { 628 default: 629 llvm_unreachable("Unsupported floating point type!"); 630 case llvm::Type::HalfTyID: 631 return "__mulhc3"; 632 case llvm::Type::FloatTyID: 633 return "__mulsc3"; 634 case llvm::Type::DoubleTyID: 635 return "__muldc3"; 636 case llvm::Type::PPC_FP128TyID: 637 return "__multc3"; 638 case llvm::Type::X86_FP80TyID: 639 return "__mulxc3"; 640 case llvm::Type::FP128TyID: 641 return "__multc3"; 642 } 643 } 644 645 // See C11 Annex G.5.1 for the semantics of multiplicative operators on complex 646 // typed values. 647 ComplexPairTy ComplexExprEmitter::EmitBinMul(const BinOpInfo &Op) { 648 using llvm::Value; 649 Value *ResR, *ResI; 650 llvm::MDBuilder MDHelper(CGF.getLLVMContext()); 651 652 if (Op.LHS.first->getType()->isFloatingPointTy()) { 653 // The general formulation is: 654 // (a + ib) * (c + id) = (a * c - b * d) + i(a * d + b * c) 655 // 656 // But we can fold away components which would be zero due to a real 657 // operand according to C11 Annex G.5.1p2. 658 // FIXME: C11 also provides for imaginary types which would allow folding 659 // still more of this within the type system. 660 661 if (Op.LHS.second && Op.RHS.second) { 662 // If both operands are complex, emit the core math directly, and then 663 // test for NaNs. If we find NaNs in the result, we delegate to a libcall 664 // to carefully re-compute the correct infinity representation if 665 // possible. The expectation is that the presence of NaNs here is 666 // *extremely* rare, and so the cost of the libcall is almost irrelevant. 667 // This is good, because the libcall re-computes the core multiplication 668 // exactly the same as we do here and re-tests for NaNs in order to be 669 // a generic complex*complex libcall. 670 671 // First compute the four products. 672 Value *AC = Builder.CreateFMul(Op.LHS.first, Op.RHS.first, "mul_ac"); 673 Value *BD = Builder.CreateFMul(Op.LHS.second, Op.RHS.second, "mul_bd"); 674 Value *AD = Builder.CreateFMul(Op.LHS.first, Op.RHS.second, "mul_ad"); 675 Value *BC = Builder.CreateFMul(Op.LHS.second, Op.RHS.first, "mul_bc"); 676 677 // The real part is the difference of the first two, the imaginary part is 678 // the sum of the second. 679 ResR = Builder.CreateFSub(AC, BD, "mul_r"); 680 ResI = Builder.CreateFAdd(AD, BC, "mul_i"); 681 682 // Emit the test for the real part becoming NaN and create a branch to 683 // handle it. We test for NaN by comparing the number to itself. 684 Value *IsRNaN = Builder.CreateFCmpUNO(ResR, ResR, "isnan_cmp"); 685 llvm::BasicBlock *ContBB = CGF.createBasicBlock("complex_mul_cont"); 686 llvm::BasicBlock *INaNBB = CGF.createBasicBlock("complex_mul_imag_nan"); 687 llvm::Instruction *Branch = Builder.CreateCondBr(IsRNaN, INaNBB, ContBB); 688 llvm::BasicBlock *OrigBB = Branch->getParent(); 689 690 // Give hint that we very much don't expect to see NaNs. 691 // Value chosen to match UR_NONTAKEN_WEIGHT, see BranchProbabilityInfo.cpp 692 llvm::MDNode *BrWeight = MDHelper.createBranchWeights(1, (1U << 20) - 1); 693 Branch->setMetadata(llvm::LLVMContext::MD_prof, BrWeight); 694 695 // Now test the imaginary part and create its branch. 696 CGF.EmitBlock(INaNBB); 697 Value *IsINaN = Builder.CreateFCmpUNO(ResI, ResI, "isnan_cmp"); 698 llvm::BasicBlock *LibCallBB = CGF.createBasicBlock("complex_mul_libcall"); 699 Branch = Builder.CreateCondBr(IsINaN, LibCallBB, ContBB); 700 Branch->setMetadata(llvm::LLVMContext::MD_prof, BrWeight); 701 702 // Now emit the libcall on this slowest of the slow paths. 703 CGF.EmitBlock(LibCallBB); 704 Value *LibCallR, *LibCallI; 705 std::tie(LibCallR, LibCallI) = EmitComplexBinOpLibCall( 706 getComplexMultiplyLibCallName(Op.LHS.first->getType()), Op); 707 Builder.CreateBr(ContBB); 708 709 // Finally continue execution by phi-ing together the different 710 // computation paths. 711 CGF.EmitBlock(ContBB); 712 llvm::PHINode *RealPHI = Builder.CreatePHI(ResR->getType(), 3, "real_mul_phi"); 713 RealPHI->addIncoming(ResR, OrigBB); 714 RealPHI->addIncoming(ResR, INaNBB); 715 RealPHI->addIncoming(LibCallR, LibCallBB); 716 llvm::PHINode *ImagPHI = Builder.CreatePHI(ResI->getType(), 3, "imag_mul_phi"); 717 ImagPHI->addIncoming(ResI, OrigBB); 718 ImagPHI->addIncoming(ResI, INaNBB); 719 ImagPHI->addIncoming(LibCallI, LibCallBB); 720 return ComplexPairTy(RealPHI, ImagPHI); 721 } 722 assert((Op.LHS.second || Op.RHS.second) && 723 "At least one operand must be complex!"); 724 725 // If either of the operands is a real rather than a complex, the 726 // imaginary component is ignored when computing the real component of the 727 // result. 728 ResR = Builder.CreateFMul(Op.LHS.first, Op.RHS.first, "mul.rl"); 729 730 ResI = Op.LHS.second 731 ? Builder.CreateFMul(Op.LHS.second, Op.RHS.first, "mul.il") 732 : Builder.CreateFMul(Op.LHS.first, Op.RHS.second, "mul.ir"); 733 } else { 734 assert(Op.LHS.second && Op.RHS.second && 735 "Both operands of integer complex operators must be complex!"); 736 Value *ResRl = Builder.CreateMul(Op.LHS.first, Op.RHS.first, "mul.rl"); 737 Value *ResRr = Builder.CreateMul(Op.LHS.second, Op.RHS.second, "mul.rr"); 738 ResR = Builder.CreateSub(ResRl, ResRr, "mul.r"); 739 740 Value *ResIl = Builder.CreateMul(Op.LHS.second, Op.RHS.first, "mul.il"); 741 Value *ResIr = Builder.CreateMul(Op.LHS.first, Op.RHS.second, "mul.ir"); 742 ResI = Builder.CreateAdd(ResIl, ResIr, "mul.i"); 743 } 744 return ComplexPairTy(ResR, ResI); 745 } 746 747 // See C11 Annex G.5.1 for the semantics of multiplicative operators on complex 748 // typed values. 749 ComplexPairTy ComplexExprEmitter::EmitBinDiv(const BinOpInfo &Op) { 750 llvm::Value *LHSr = Op.LHS.first, *LHSi = Op.LHS.second; 751 llvm::Value *RHSr = Op.RHS.first, *RHSi = Op.RHS.second; 752 753 754 llvm::Value *DSTr, *DSTi; 755 if (LHSr->getType()->isFloatingPointTy()) { 756 // If we have a complex operand on the RHS, we delegate to a libcall to 757 // handle all of the complexities and minimize underflow/overflow cases. 758 // 759 // FIXME: We would be able to avoid the libcall in many places if we 760 // supported imaginary types in addition to complex types. 761 if (RHSi) { 762 BinOpInfo LibCallOp = Op; 763 // If LHS was a real, supply a null imaginary part. 764 if (!LHSi) 765 LibCallOp.LHS.second = llvm::Constant::getNullValue(LHSr->getType()); 766 767 StringRef LibCallName; 768 switch (LHSr->getType()->getTypeID()) { 769 default: 770 llvm_unreachable("Unsupported floating point type!"); 771 case llvm::Type::HalfTyID: 772 return EmitComplexBinOpLibCall("__divhc3", LibCallOp); 773 case llvm::Type::FloatTyID: 774 return EmitComplexBinOpLibCall("__divsc3", LibCallOp); 775 case llvm::Type::DoubleTyID: 776 return EmitComplexBinOpLibCall("__divdc3", LibCallOp); 777 case llvm::Type::PPC_FP128TyID: 778 return EmitComplexBinOpLibCall("__divtc3", LibCallOp); 779 case llvm::Type::X86_FP80TyID: 780 return EmitComplexBinOpLibCall("__divxc3", LibCallOp); 781 case llvm::Type::FP128TyID: 782 return EmitComplexBinOpLibCall("__divtc3", LibCallOp); 783 } 784 } 785 assert(LHSi && "Can have at most one non-complex operand!"); 786 787 DSTr = Builder.CreateFDiv(LHSr, RHSr); 788 DSTi = Builder.CreateFDiv(LHSi, RHSr); 789 } else { 790 assert(Op.LHS.second && Op.RHS.second && 791 "Both operands of integer complex operators must be complex!"); 792 // (a+ib) / (c+id) = ((ac+bd)/(cc+dd)) + i((bc-ad)/(cc+dd)) 793 llvm::Value *Tmp1 = Builder.CreateMul(LHSr, RHSr); // a*c 794 llvm::Value *Tmp2 = Builder.CreateMul(LHSi, RHSi); // b*d 795 llvm::Value *Tmp3 = Builder.CreateAdd(Tmp1, Tmp2); // ac+bd 796 797 llvm::Value *Tmp4 = Builder.CreateMul(RHSr, RHSr); // c*c 798 llvm::Value *Tmp5 = Builder.CreateMul(RHSi, RHSi); // d*d 799 llvm::Value *Tmp6 = Builder.CreateAdd(Tmp4, Tmp5); // cc+dd 800 801 llvm::Value *Tmp7 = Builder.CreateMul(LHSi, RHSr); // b*c 802 llvm::Value *Tmp8 = Builder.CreateMul(LHSr, RHSi); // a*d 803 llvm::Value *Tmp9 = Builder.CreateSub(Tmp7, Tmp8); // bc-ad 804 805 if (Op.Ty->castAs<ComplexType>()->getElementType()->isUnsignedIntegerType()) { 806 DSTr = Builder.CreateUDiv(Tmp3, Tmp6); 807 DSTi = Builder.CreateUDiv(Tmp9, Tmp6); 808 } else { 809 DSTr = Builder.CreateSDiv(Tmp3, Tmp6); 810 DSTi = Builder.CreateSDiv(Tmp9, Tmp6); 811 } 812 } 813 814 return ComplexPairTy(DSTr, DSTi); 815 } 816 817 ComplexExprEmitter::BinOpInfo 818 ComplexExprEmitter::EmitBinOps(const BinaryOperator *E) { 819 TestAndClearIgnoreReal(); 820 TestAndClearIgnoreImag(); 821 BinOpInfo Ops; 822 if (E->getLHS()->getType()->isRealFloatingType()) 823 Ops.LHS = ComplexPairTy(CGF.EmitScalarExpr(E->getLHS()), nullptr); 824 else 825 Ops.LHS = Visit(E->getLHS()); 826 if (E->getRHS()->getType()->isRealFloatingType()) 827 Ops.RHS = ComplexPairTy(CGF.EmitScalarExpr(E->getRHS()), nullptr); 828 else 829 Ops.RHS = Visit(E->getRHS()); 830 831 Ops.Ty = E->getType(); 832 return Ops; 833 } 834 835 836 LValue ComplexExprEmitter:: 837 EmitCompoundAssignLValue(const CompoundAssignOperator *E, 838 ComplexPairTy (ComplexExprEmitter::*Func)(const BinOpInfo&), 839 RValue &Val) { 840 TestAndClearIgnoreReal(); 841 TestAndClearIgnoreImag(); 842 QualType LHSTy = E->getLHS()->getType(); 843 if (const AtomicType *AT = LHSTy->getAs<AtomicType>()) 844 LHSTy = AT->getValueType(); 845 846 BinOpInfo OpInfo; 847 848 // Load the RHS and LHS operands. 849 // __block variables need to have the rhs evaluated first, plus this should 850 // improve codegen a little. 851 OpInfo.Ty = E->getComputationResultType(); 852 QualType ComplexElementTy = cast<ComplexType>(OpInfo.Ty)->getElementType(); 853 854 // The RHS should have been converted to the computation type. 855 if (E->getRHS()->getType()->isRealFloatingType()) { 856 assert( 857 CGF.getContext() 858 .hasSameUnqualifiedType(ComplexElementTy, E->getRHS()->getType())); 859 OpInfo.RHS = ComplexPairTy(CGF.EmitScalarExpr(E->getRHS()), nullptr); 860 } else { 861 assert(CGF.getContext() 862 .hasSameUnqualifiedType(OpInfo.Ty, E->getRHS()->getType())); 863 OpInfo.RHS = Visit(E->getRHS()); 864 } 865 866 LValue LHS = CGF.EmitLValue(E->getLHS()); 867 868 // Load from the l-value and convert it. 869 SourceLocation Loc = E->getExprLoc(); 870 if (LHSTy->isAnyComplexType()) { 871 ComplexPairTy LHSVal = EmitLoadOfLValue(LHS, Loc); 872 OpInfo.LHS = EmitComplexToComplexCast(LHSVal, LHSTy, OpInfo.Ty, Loc); 873 } else { 874 llvm::Value *LHSVal = CGF.EmitLoadOfScalar(LHS, Loc); 875 // For floating point real operands we can directly pass the scalar form 876 // to the binary operator emission and potentially get more efficient code. 877 if (LHSTy->isRealFloatingType()) { 878 if (!CGF.getContext().hasSameUnqualifiedType(ComplexElementTy, LHSTy)) 879 LHSVal = CGF.EmitScalarConversion(LHSVal, LHSTy, ComplexElementTy, Loc); 880 OpInfo.LHS = ComplexPairTy(LHSVal, nullptr); 881 } else { 882 OpInfo.LHS = EmitScalarToComplexCast(LHSVal, LHSTy, OpInfo.Ty, Loc); 883 } 884 } 885 886 // Expand the binary operator. 887 ComplexPairTy Result = (this->*Func)(OpInfo); 888 889 // Truncate the result and store it into the LHS lvalue. 890 if (LHSTy->isAnyComplexType()) { 891 ComplexPairTy ResVal = 892 EmitComplexToComplexCast(Result, OpInfo.Ty, LHSTy, Loc); 893 EmitStoreOfComplex(ResVal, LHS, /*isInit*/ false); 894 Val = RValue::getComplex(ResVal); 895 } else { 896 llvm::Value *ResVal = 897 CGF.EmitComplexToScalarConversion(Result, OpInfo.Ty, LHSTy, Loc); 898 CGF.EmitStoreOfScalar(ResVal, LHS, /*isInit*/ false); 899 Val = RValue::get(ResVal); 900 } 901 902 return LHS; 903 } 904 905 // Compound assignments. 906 ComplexPairTy ComplexExprEmitter:: 907 EmitCompoundAssign(const CompoundAssignOperator *E, 908 ComplexPairTy (ComplexExprEmitter::*Func)(const BinOpInfo&)){ 909 RValue Val; 910 LValue LV = EmitCompoundAssignLValue(E, Func, Val); 911 912 // The result of an assignment in C is the assigned r-value. 913 if (!CGF.getLangOpts().CPlusPlus) 914 return Val.getComplexVal(); 915 916 // If the lvalue is non-volatile, return the computed value of the assignment. 917 if (!LV.isVolatileQualified()) 918 return Val.getComplexVal(); 919 920 return EmitLoadOfLValue(LV, E->getExprLoc()); 921 } 922 923 LValue ComplexExprEmitter::EmitBinAssignLValue(const BinaryOperator *E, 924 ComplexPairTy &Val) { 925 assert(CGF.getContext().hasSameUnqualifiedType(E->getLHS()->getType(), 926 E->getRHS()->getType()) && 927 "Invalid assignment"); 928 TestAndClearIgnoreReal(); 929 TestAndClearIgnoreImag(); 930 931 // Emit the RHS. __block variables need the RHS evaluated first. 932 Val = Visit(E->getRHS()); 933 934 // Compute the address to store into. 935 LValue LHS = CGF.EmitLValue(E->getLHS()); 936 937 // Store the result value into the LHS lvalue. 938 EmitStoreOfComplex(Val, LHS, /*isInit*/ false); 939 940 return LHS; 941 } 942 943 ComplexPairTy ComplexExprEmitter::VisitBinAssign(const BinaryOperator *E) { 944 ComplexPairTy Val; 945 LValue LV = EmitBinAssignLValue(E, Val); 946 947 // The result of an assignment in C is the assigned r-value. 948 if (!CGF.getLangOpts().CPlusPlus) 949 return Val; 950 951 // If the lvalue is non-volatile, return the computed value of the assignment. 952 if (!LV.isVolatileQualified()) 953 return Val; 954 955 return EmitLoadOfLValue(LV, E->getExprLoc()); 956 } 957 958 ComplexPairTy ComplexExprEmitter::VisitBinComma(const BinaryOperator *E) { 959 CGF.EmitIgnoredExpr(E->getLHS()); 960 return Visit(E->getRHS()); 961 } 962 963 ComplexPairTy ComplexExprEmitter:: 964 VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) { 965 TestAndClearIgnoreReal(); 966 TestAndClearIgnoreImag(); 967 llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true"); 968 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false"); 969 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end"); 970 971 // Bind the common expression if necessary. 972 CodeGenFunction::OpaqueValueMapping binding(CGF, E); 973 974 975 CodeGenFunction::ConditionalEvaluation eval(CGF); 976 CGF.EmitBranchOnBoolExpr(E->getCond(), LHSBlock, RHSBlock, 977 CGF.getProfileCount(E)); 978 979 eval.begin(CGF); 980 CGF.EmitBlock(LHSBlock); 981 CGF.incrementProfileCounter(E); 982 ComplexPairTy LHS = Visit(E->getTrueExpr()); 983 LHSBlock = Builder.GetInsertBlock(); 984 CGF.EmitBranch(ContBlock); 985 eval.end(CGF); 986 987 eval.begin(CGF); 988 CGF.EmitBlock(RHSBlock); 989 ComplexPairTy RHS = Visit(E->getFalseExpr()); 990 RHSBlock = Builder.GetInsertBlock(); 991 CGF.EmitBlock(ContBlock); 992 eval.end(CGF); 993 994 // Create a PHI node for the real part. 995 llvm::PHINode *RealPN = Builder.CreatePHI(LHS.first->getType(), 2, "cond.r"); 996 RealPN->addIncoming(LHS.first, LHSBlock); 997 RealPN->addIncoming(RHS.first, RHSBlock); 998 999 // Create a PHI node for the imaginary part. 1000 llvm::PHINode *ImagPN = Builder.CreatePHI(LHS.first->getType(), 2, "cond.i"); 1001 ImagPN->addIncoming(LHS.second, LHSBlock); 1002 ImagPN->addIncoming(RHS.second, RHSBlock); 1003 1004 return ComplexPairTy(RealPN, ImagPN); 1005 } 1006 1007 ComplexPairTy ComplexExprEmitter::VisitChooseExpr(ChooseExpr *E) { 1008 return Visit(E->getChosenSubExpr()); 1009 } 1010 1011 ComplexPairTy ComplexExprEmitter::VisitInitListExpr(InitListExpr *E) { 1012 bool Ignore = TestAndClearIgnoreReal(); 1013 (void)Ignore; 1014 assert (Ignore == false && "init list ignored"); 1015 Ignore = TestAndClearIgnoreImag(); 1016 (void)Ignore; 1017 assert (Ignore == false && "init list ignored"); 1018 1019 if (E->getNumInits() == 2) { 1020 llvm::Value *Real = CGF.EmitScalarExpr(E->getInit(0)); 1021 llvm::Value *Imag = CGF.EmitScalarExpr(E->getInit(1)); 1022 return ComplexPairTy(Real, Imag); 1023 } else if (E->getNumInits() == 1) { 1024 return Visit(E->getInit(0)); 1025 } 1026 1027 // Empty init list intializes to null 1028 assert(E->getNumInits() == 0 && "Unexpected number of inits"); 1029 QualType Ty = E->getType()->castAs<ComplexType>()->getElementType(); 1030 llvm::Type* LTy = CGF.ConvertType(Ty); 1031 llvm::Value* zeroConstant = llvm::Constant::getNullValue(LTy); 1032 return ComplexPairTy(zeroConstant, zeroConstant); 1033 } 1034 1035 ComplexPairTy ComplexExprEmitter::VisitVAArgExpr(VAArgExpr *E) { 1036 Address ArgValue = Address::invalid(); 1037 Address ArgPtr = CGF.EmitVAArg(E, ArgValue); 1038 1039 if (!ArgPtr.isValid()) { 1040 CGF.ErrorUnsupported(E, "complex va_arg expression"); 1041 llvm::Type *EltTy = 1042 CGF.ConvertType(E->getType()->castAs<ComplexType>()->getElementType()); 1043 llvm::Value *U = llvm::UndefValue::get(EltTy); 1044 return ComplexPairTy(U, U); 1045 } 1046 1047 return EmitLoadOfLValue(CGF.MakeAddrLValue(ArgPtr, E->getType()), 1048 E->getExprLoc()); 1049 } 1050 1051 //===----------------------------------------------------------------------===// 1052 // Entry Point into this File 1053 //===----------------------------------------------------------------------===// 1054 1055 /// EmitComplexExpr - Emit the computation of the specified expression of 1056 /// complex type, ignoring the result. 1057 ComplexPairTy CodeGenFunction::EmitComplexExpr(const Expr *E, bool IgnoreReal, 1058 bool IgnoreImag) { 1059 assert(E && getComplexType(E->getType()) && 1060 "Invalid complex expression to emit"); 1061 1062 return ComplexExprEmitter(*this, IgnoreReal, IgnoreImag) 1063 .Visit(const_cast<Expr *>(E)); 1064 } 1065 1066 void CodeGenFunction::EmitComplexExprIntoLValue(const Expr *E, LValue dest, 1067 bool isInit) { 1068 assert(E && getComplexType(E->getType()) && 1069 "Invalid complex expression to emit"); 1070 ComplexExprEmitter Emitter(*this); 1071 ComplexPairTy Val = Emitter.Visit(const_cast<Expr*>(E)); 1072 Emitter.EmitStoreOfComplex(Val, dest, isInit); 1073 } 1074 1075 /// EmitStoreOfComplex - Store a complex number into the specified l-value. 1076 void CodeGenFunction::EmitStoreOfComplex(ComplexPairTy V, LValue dest, 1077 bool isInit) { 1078 ComplexExprEmitter(*this).EmitStoreOfComplex(V, dest, isInit); 1079 } 1080 1081 /// EmitLoadOfComplex - Load a complex number from the specified address. 1082 ComplexPairTy CodeGenFunction::EmitLoadOfComplex(LValue src, 1083 SourceLocation loc) { 1084 return ComplexExprEmitter(*this).EmitLoadOfLValue(src, loc); 1085 } 1086 1087 LValue CodeGenFunction::EmitComplexAssignmentLValue(const BinaryOperator *E) { 1088 assert(E->getOpcode() == BO_Assign); 1089 ComplexPairTy Val; // ignored 1090 return ComplexExprEmitter(*this).EmitBinAssignLValue(E, Val); 1091 } 1092 1093 typedef ComplexPairTy (ComplexExprEmitter::*CompoundFunc)( 1094 const ComplexExprEmitter::BinOpInfo &); 1095 1096 static CompoundFunc getComplexOp(BinaryOperatorKind Op) { 1097 switch (Op) { 1098 case BO_MulAssign: return &ComplexExprEmitter::EmitBinMul; 1099 case BO_DivAssign: return &ComplexExprEmitter::EmitBinDiv; 1100 case BO_SubAssign: return &ComplexExprEmitter::EmitBinSub; 1101 case BO_AddAssign: return &ComplexExprEmitter::EmitBinAdd; 1102 default: 1103 llvm_unreachable("unexpected complex compound assignment"); 1104 } 1105 } 1106 1107 LValue CodeGenFunction:: 1108 EmitComplexCompoundAssignmentLValue(const CompoundAssignOperator *E) { 1109 CompoundFunc Op = getComplexOp(E->getOpcode()); 1110 RValue Val; 1111 return ComplexExprEmitter(*this).EmitCompoundAssignLValue(E, Op, Val); 1112 } 1113 1114 LValue CodeGenFunction:: 1115 EmitScalarCompoundAssignWithComplex(const CompoundAssignOperator *E, 1116 llvm::Value *&Result) { 1117 CompoundFunc Op = getComplexOp(E->getOpcode()); 1118 RValue Val; 1119 LValue Ret = ComplexExprEmitter(*this).EmitCompoundAssignLValue(E, Op, Val); 1120 Result = Val.getScalarVal(); 1121 return Ret; 1122 } 1123