1 //===--- CGExprComplex.cpp - Emit LLVM Code for Complex Exprs -------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code to emit Expr nodes with complex types as LLVM code.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "CodeGenFunction.h"
15 #include "CodeGenModule.h"
16 #include "clang/AST/StmtVisitor.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/IR/Constants.h"
19 #include "llvm/IR/Instructions.h"
20 #include "llvm/IR/MDBuilder.h"
21 #include "llvm/IR/Metadata.h"
22 #include <algorithm>
23 using namespace clang;
24 using namespace CodeGen;
25
26 //===----------------------------------------------------------------------===//
27 // Complex Expression Emitter
28 //===----------------------------------------------------------------------===//
29
30 typedef CodeGenFunction::ComplexPairTy ComplexPairTy;
31
32 /// Return the complex type that we are meant to emit.
getComplexType(QualType type)33 static const ComplexType *getComplexType(QualType type) {
34 type = type.getCanonicalType();
35 if (const ComplexType *comp = dyn_cast<ComplexType>(type)) {
36 return comp;
37 } else {
38 return cast<ComplexType>(cast<AtomicType>(type)->getValueType());
39 }
40 }
41
42 namespace {
43 class ComplexExprEmitter
44 : public StmtVisitor<ComplexExprEmitter, ComplexPairTy> {
45 CodeGenFunction &CGF;
46 CGBuilderTy &Builder;
47 bool IgnoreReal;
48 bool IgnoreImag;
49 public:
ComplexExprEmitter(CodeGenFunction & cgf,bool ir=false,bool ii=false)50 ComplexExprEmitter(CodeGenFunction &cgf, bool ir=false, bool ii=false)
51 : CGF(cgf), Builder(CGF.Builder), IgnoreReal(ir), IgnoreImag(ii) {
52 }
53
54
55 //===--------------------------------------------------------------------===//
56 // Utilities
57 //===--------------------------------------------------------------------===//
58
TestAndClearIgnoreReal()59 bool TestAndClearIgnoreReal() {
60 bool I = IgnoreReal;
61 IgnoreReal = false;
62 return I;
63 }
TestAndClearIgnoreImag()64 bool TestAndClearIgnoreImag() {
65 bool I = IgnoreImag;
66 IgnoreImag = false;
67 return I;
68 }
69
70 /// EmitLoadOfLValue - Given an expression with complex type that represents a
71 /// value l-value, this method emits the address of the l-value, then loads
72 /// and returns the result.
EmitLoadOfLValue(const Expr * E)73 ComplexPairTy EmitLoadOfLValue(const Expr *E) {
74 return EmitLoadOfLValue(CGF.EmitLValue(E), E->getExprLoc());
75 }
76
77 ComplexPairTy EmitLoadOfLValue(LValue LV, SourceLocation Loc);
78
79 /// EmitStoreOfComplex - Store the specified real/imag parts into the
80 /// specified value pointer.
81 void EmitStoreOfComplex(ComplexPairTy Val, LValue LV, bool isInit);
82
83 /// Emit a cast from complex value Val to DestType.
84 ComplexPairTy EmitComplexToComplexCast(ComplexPairTy Val, QualType SrcType,
85 QualType DestType, SourceLocation Loc);
86 /// Emit a cast from scalar value Val to DestType.
87 ComplexPairTy EmitScalarToComplexCast(llvm::Value *Val, QualType SrcType,
88 QualType DestType, SourceLocation Loc);
89
90 //===--------------------------------------------------------------------===//
91 // Visitor Methods
92 //===--------------------------------------------------------------------===//
93
Visit(Expr * E)94 ComplexPairTy Visit(Expr *E) {
95 ApplyDebugLocation DL(CGF, E);
96 return StmtVisitor<ComplexExprEmitter, ComplexPairTy>::Visit(E);
97 }
98
VisitStmt(Stmt * S)99 ComplexPairTy VisitStmt(Stmt *S) {
100 S->dump(CGF.getContext().getSourceManager());
101 llvm_unreachable("Stmt can't have complex result type!");
102 }
103 ComplexPairTy VisitExpr(Expr *S);
VisitConstantExpr(ConstantExpr * E)104 ComplexPairTy VisitConstantExpr(ConstantExpr *E) {
105 return Visit(E->getSubExpr());
106 }
VisitParenExpr(ParenExpr * PE)107 ComplexPairTy VisitParenExpr(ParenExpr *PE) { return Visit(PE->getSubExpr());}
VisitGenericSelectionExpr(GenericSelectionExpr * GE)108 ComplexPairTy VisitGenericSelectionExpr(GenericSelectionExpr *GE) {
109 return Visit(GE->getResultExpr());
110 }
111 ComplexPairTy VisitImaginaryLiteral(const ImaginaryLiteral *IL);
112 ComplexPairTy
VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr * PE)113 VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *PE) {
114 return Visit(PE->getReplacement());
115 }
VisitCoawaitExpr(CoawaitExpr * S)116 ComplexPairTy VisitCoawaitExpr(CoawaitExpr *S) {
117 return CGF.EmitCoawaitExpr(*S).getComplexVal();
118 }
VisitCoyieldExpr(CoyieldExpr * S)119 ComplexPairTy VisitCoyieldExpr(CoyieldExpr *S) {
120 return CGF.EmitCoyieldExpr(*S).getComplexVal();
121 }
VisitUnaryCoawait(const UnaryOperator * E)122 ComplexPairTy VisitUnaryCoawait(const UnaryOperator *E) {
123 return Visit(E->getSubExpr());
124 }
125
emitConstant(const CodeGenFunction::ConstantEmission & Constant,Expr * E)126 ComplexPairTy emitConstant(const CodeGenFunction::ConstantEmission &Constant,
127 Expr *E) {
128 assert(Constant && "not a constant");
129 if (Constant.isReference())
130 return EmitLoadOfLValue(Constant.getReferenceLValue(CGF, E),
131 E->getExprLoc());
132
133 llvm::Constant *pair = Constant.getValue();
134 return ComplexPairTy(pair->getAggregateElement(0U),
135 pair->getAggregateElement(1U));
136 }
137
138 // l-values.
VisitDeclRefExpr(DeclRefExpr * E)139 ComplexPairTy VisitDeclRefExpr(DeclRefExpr *E) {
140 if (CodeGenFunction::ConstantEmission Constant = CGF.tryEmitAsConstant(E))
141 return emitConstant(Constant, E);
142 return EmitLoadOfLValue(E);
143 }
VisitObjCIvarRefExpr(ObjCIvarRefExpr * E)144 ComplexPairTy VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
145 return EmitLoadOfLValue(E);
146 }
VisitObjCMessageExpr(ObjCMessageExpr * E)147 ComplexPairTy VisitObjCMessageExpr(ObjCMessageExpr *E) {
148 return CGF.EmitObjCMessageExpr(E).getComplexVal();
149 }
VisitArraySubscriptExpr(Expr * E)150 ComplexPairTy VisitArraySubscriptExpr(Expr *E) { return EmitLoadOfLValue(E); }
VisitMemberExpr(MemberExpr * ME)151 ComplexPairTy VisitMemberExpr(MemberExpr *ME) {
152 if (CodeGenFunction::ConstantEmission Constant =
153 CGF.tryEmitAsConstant(ME)) {
154 CGF.EmitIgnoredExpr(ME->getBase());
155 return emitConstant(Constant, ME);
156 }
157 return EmitLoadOfLValue(ME);
158 }
VisitOpaqueValueExpr(OpaqueValueExpr * E)159 ComplexPairTy VisitOpaqueValueExpr(OpaqueValueExpr *E) {
160 if (E->isGLValue())
161 return EmitLoadOfLValue(CGF.getOrCreateOpaqueLValueMapping(E),
162 E->getExprLoc());
163 return CGF.getOrCreateOpaqueRValueMapping(E).getComplexVal();
164 }
165
VisitPseudoObjectExpr(PseudoObjectExpr * E)166 ComplexPairTy VisitPseudoObjectExpr(PseudoObjectExpr *E) {
167 return CGF.EmitPseudoObjectRValue(E).getComplexVal();
168 }
169
170 // FIXME: CompoundLiteralExpr
171
172 ComplexPairTy EmitCast(CastKind CK, Expr *Op, QualType DestTy);
VisitImplicitCastExpr(ImplicitCastExpr * E)173 ComplexPairTy VisitImplicitCastExpr(ImplicitCastExpr *E) {
174 // Unlike for scalars, we don't have to worry about function->ptr demotion
175 // here.
176 return EmitCast(E->getCastKind(), E->getSubExpr(), E->getType());
177 }
VisitCastExpr(CastExpr * E)178 ComplexPairTy VisitCastExpr(CastExpr *E) {
179 if (const auto *ECE = dyn_cast<ExplicitCastExpr>(E))
180 CGF.CGM.EmitExplicitCastExprType(ECE, &CGF);
181 return EmitCast(E->getCastKind(), E->getSubExpr(), E->getType());
182 }
183 ComplexPairTy VisitCallExpr(const CallExpr *E);
184 ComplexPairTy VisitStmtExpr(const StmtExpr *E);
185
186 // Operators.
VisitPrePostIncDec(const UnaryOperator * E,bool isInc,bool isPre)187 ComplexPairTy VisitPrePostIncDec(const UnaryOperator *E,
188 bool isInc, bool isPre) {
189 LValue LV = CGF.EmitLValue(E->getSubExpr());
190 return CGF.EmitComplexPrePostIncDec(E, LV, isInc, isPre);
191 }
VisitUnaryPostDec(const UnaryOperator * E)192 ComplexPairTy VisitUnaryPostDec(const UnaryOperator *E) {
193 return VisitPrePostIncDec(E, false, false);
194 }
VisitUnaryPostInc(const UnaryOperator * E)195 ComplexPairTy VisitUnaryPostInc(const UnaryOperator *E) {
196 return VisitPrePostIncDec(E, true, false);
197 }
VisitUnaryPreDec(const UnaryOperator * E)198 ComplexPairTy VisitUnaryPreDec(const UnaryOperator *E) {
199 return VisitPrePostIncDec(E, false, true);
200 }
VisitUnaryPreInc(const UnaryOperator * E)201 ComplexPairTy VisitUnaryPreInc(const UnaryOperator *E) {
202 return VisitPrePostIncDec(E, true, true);
203 }
VisitUnaryDeref(const Expr * E)204 ComplexPairTy VisitUnaryDeref(const Expr *E) { return EmitLoadOfLValue(E); }
VisitUnaryPlus(const UnaryOperator * E)205 ComplexPairTy VisitUnaryPlus (const UnaryOperator *E) {
206 TestAndClearIgnoreReal();
207 TestAndClearIgnoreImag();
208 return Visit(E->getSubExpr());
209 }
210 ComplexPairTy VisitUnaryMinus (const UnaryOperator *E);
211 ComplexPairTy VisitUnaryNot (const UnaryOperator *E);
212 // LNot,Real,Imag never return complex.
VisitUnaryExtension(const UnaryOperator * E)213 ComplexPairTy VisitUnaryExtension(const UnaryOperator *E) {
214 return Visit(E->getSubExpr());
215 }
VisitCXXDefaultArgExpr(CXXDefaultArgExpr * DAE)216 ComplexPairTy VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) {
217 return Visit(DAE->getExpr());
218 }
VisitCXXDefaultInitExpr(CXXDefaultInitExpr * DIE)219 ComplexPairTy VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE) {
220 CodeGenFunction::CXXDefaultInitExprScope Scope(CGF);
221 return Visit(DIE->getExpr());
222 }
VisitExprWithCleanups(ExprWithCleanups * E)223 ComplexPairTy VisitExprWithCleanups(ExprWithCleanups *E) {
224 CGF.enterFullExpression(E);
225 CodeGenFunction::RunCleanupsScope Scope(CGF);
226 ComplexPairTy Vals = Visit(E->getSubExpr());
227 // Defend against dominance problems caused by jumps out of expression
228 // evaluation through the shared cleanup block.
229 Scope.ForceCleanup({&Vals.first, &Vals.second});
230 return Vals;
231 }
VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr * E)232 ComplexPairTy VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E) {
233 assert(E->getType()->isAnyComplexType() && "Expected complex type!");
234 QualType Elem = E->getType()->castAs<ComplexType>()->getElementType();
235 llvm::Constant *Null = llvm::Constant::getNullValue(CGF.ConvertType(Elem));
236 return ComplexPairTy(Null, Null);
237 }
VisitImplicitValueInitExpr(ImplicitValueInitExpr * E)238 ComplexPairTy VisitImplicitValueInitExpr(ImplicitValueInitExpr *E) {
239 assert(E->getType()->isAnyComplexType() && "Expected complex type!");
240 QualType Elem = E->getType()->castAs<ComplexType>()->getElementType();
241 llvm::Constant *Null =
242 llvm::Constant::getNullValue(CGF.ConvertType(Elem));
243 return ComplexPairTy(Null, Null);
244 }
245
246 struct BinOpInfo {
247 ComplexPairTy LHS;
248 ComplexPairTy RHS;
249 QualType Ty; // Computation Type.
250 };
251
252 BinOpInfo EmitBinOps(const BinaryOperator *E);
253 LValue EmitCompoundAssignLValue(const CompoundAssignOperator *E,
254 ComplexPairTy (ComplexExprEmitter::*Func)
255 (const BinOpInfo &),
256 RValue &Val);
257 ComplexPairTy EmitCompoundAssign(const CompoundAssignOperator *E,
258 ComplexPairTy (ComplexExprEmitter::*Func)
259 (const BinOpInfo &));
260
261 ComplexPairTy EmitBinAdd(const BinOpInfo &Op);
262 ComplexPairTy EmitBinSub(const BinOpInfo &Op);
263 ComplexPairTy EmitBinMul(const BinOpInfo &Op);
264 ComplexPairTy EmitBinDiv(const BinOpInfo &Op);
265
266 ComplexPairTy EmitComplexBinOpLibCall(StringRef LibCallName,
267 const BinOpInfo &Op);
268
VisitBinAdd(const BinaryOperator * E)269 ComplexPairTy VisitBinAdd(const BinaryOperator *E) {
270 return EmitBinAdd(EmitBinOps(E));
271 }
VisitBinSub(const BinaryOperator * E)272 ComplexPairTy VisitBinSub(const BinaryOperator *E) {
273 return EmitBinSub(EmitBinOps(E));
274 }
VisitBinMul(const BinaryOperator * E)275 ComplexPairTy VisitBinMul(const BinaryOperator *E) {
276 return EmitBinMul(EmitBinOps(E));
277 }
VisitBinDiv(const BinaryOperator * E)278 ComplexPairTy VisitBinDiv(const BinaryOperator *E) {
279 return EmitBinDiv(EmitBinOps(E));
280 }
281
282 // Compound assignments.
VisitBinAddAssign(const CompoundAssignOperator * E)283 ComplexPairTy VisitBinAddAssign(const CompoundAssignOperator *E) {
284 return EmitCompoundAssign(E, &ComplexExprEmitter::EmitBinAdd);
285 }
VisitBinSubAssign(const CompoundAssignOperator * E)286 ComplexPairTy VisitBinSubAssign(const CompoundAssignOperator *E) {
287 return EmitCompoundAssign(E, &ComplexExprEmitter::EmitBinSub);
288 }
VisitBinMulAssign(const CompoundAssignOperator * E)289 ComplexPairTy VisitBinMulAssign(const CompoundAssignOperator *E) {
290 return EmitCompoundAssign(E, &ComplexExprEmitter::EmitBinMul);
291 }
VisitBinDivAssign(const CompoundAssignOperator * E)292 ComplexPairTy VisitBinDivAssign(const CompoundAssignOperator *E) {
293 return EmitCompoundAssign(E, &ComplexExprEmitter::EmitBinDiv);
294 }
295
296 // GCC rejects rem/and/or/xor for integer complex.
297 // Logical and/or always return int, never complex.
298
299 // No comparisons produce a complex result.
300
301 LValue EmitBinAssignLValue(const BinaryOperator *E,
302 ComplexPairTy &Val);
303 ComplexPairTy VisitBinAssign (const BinaryOperator *E);
304 ComplexPairTy VisitBinComma (const BinaryOperator *E);
305
306
307 ComplexPairTy
308 VisitAbstractConditionalOperator(const AbstractConditionalOperator *CO);
309 ComplexPairTy VisitChooseExpr(ChooseExpr *CE);
310
311 ComplexPairTy VisitInitListExpr(InitListExpr *E);
312
VisitCompoundLiteralExpr(CompoundLiteralExpr * E)313 ComplexPairTy VisitCompoundLiteralExpr(CompoundLiteralExpr *E) {
314 return EmitLoadOfLValue(E);
315 }
316
317 ComplexPairTy VisitVAArgExpr(VAArgExpr *E);
318
VisitAtomicExpr(AtomicExpr * E)319 ComplexPairTy VisitAtomicExpr(AtomicExpr *E) {
320 return CGF.EmitAtomicExpr(E).getComplexVal();
321 }
322 };
323 } // end anonymous namespace.
324
325 //===----------------------------------------------------------------------===//
326 // Utilities
327 //===----------------------------------------------------------------------===//
328
emitAddrOfRealComponent(Address addr,QualType complexType)329 Address CodeGenFunction::emitAddrOfRealComponent(Address addr,
330 QualType complexType) {
331 CharUnits offset = CharUnits::Zero();
332 return Builder.CreateStructGEP(addr, 0, offset, addr.getName() + ".realp");
333 }
334
emitAddrOfImagComponent(Address addr,QualType complexType)335 Address CodeGenFunction::emitAddrOfImagComponent(Address addr,
336 QualType complexType) {
337 QualType eltType = complexType->castAs<ComplexType>()->getElementType();
338 CharUnits offset = getContext().getTypeSizeInChars(eltType);
339 return Builder.CreateStructGEP(addr, 1, offset, addr.getName() + ".imagp");
340 }
341
342 /// EmitLoadOfLValue - Given an RValue reference for a complex, emit code to
343 /// load the real and imaginary pieces, returning them as Real/Imag.
EmitLoadOfLValue(LValue lvalue,SourceLocation loc)344 ComplexPairTy ComplexExprEmitter::EmitLoadOfLValue(LValue lvalue,
345 SourceLocation loc) {
346 assert(lvalue.isSimple() && "non-simple complex l-value?");
347 if (lvalue.getType()->isAtomicType())
348 return CGF.EmitAtomicLoad(lvalue, loc).getComplexVal();
349
350 Address SrcPtr = lvalue.getAddress();
351 bool isVolatile = lvalue.isVolatileQualified();
352
353 llvm::Value *Real = nullptr, *Imag = nullptr;
354
355 if (!IgnoreReal || isVolatile) {
356 Address RealP = CGF.emitAddrOfRealComponent(SrcPtr, lvalue.getType());
357 Real = Builder.CreateLoad(RealP, isVolatile, SrcPtr.getName() + ".real");
358 }
359
360 if (!IgnoreImag || isVolatile) {
361 Address ImagP = CGF.emitAddrOfImagComponent(SrcPtr, lvalue.getType());
362 Imag = Builder.CreateLoad(ImagP, isVolatile, SrcPtr.getName() + ".imag");
363 }
364
365 return ComplexPairTy(Real, Imag);
366 }
367
368 /// EmitStoreOfComplex - Store the specified real/imag parts into the
369 /// specified value pointer.
EmitStoreOfComplex(ComplexPairTy Val,LValue lvalue,bool isInit)370 void ComplexExprEmitter::EmitStoreOfComplex(ComplexPairTy Val, LValue lvalue,
371 bool isInit) {
372 if (lvalue.getType()->isAtomicType() ||
373 (!isInit && CGF.LValueIsSuitableForInlineAtomic(lvalue)))
374 return CGF.EmitAtomicStore(RValue::getComplex(Val), lvalue, isInit);
375
376 Address Ptr = lvalue.getAddress();
377 Address RealPtr = CGF.emitAddrOfRealComponent(Ptr, lvalue.getType());
378 Address ImagPtr = CGF.emitAddrOfImagComponent(Ptr, lvalue.getType());
379
380 Builder.CreateStore(Val.first, RealPtr, lvalue.isVolatileQualified());
381 Builder.CreateStore(Val.second, ImagPtr, lvalue.isVolatileQualified());
382 }
383
384
385
386 //===----------------------------------------------------------------------===//
387 // Visitor Methods
388 //===----------------------------------------------------------------------===//
389
VisitExpr(Expr * E)390 ComplexPairTy ComplexExprEmitter::VisitExpr(Expr *E) {
391 CGF.ErrorUnsupported(E, "complex expression");
392 llvm::Type *EltTy =
393 CGF.ConvertType(getComplexType(E->getType())->getElementType());
394 llvm::Value *U = llvm::UndefValue::get(EltTy);
395 return ComplexPairTy(U, U);
396 }
397
398 ComplexPairTy ComplexExprEmitter::
VisitImaginaryLiteral(const ImaginaryLiteral * IL)399 VisitImaginaryLiteral(const ImaginaryLiteral *IL) {
400 llvm::Value *Imag = CGF.EmitScalarExpr(IL->getSubExpr());
401 return ComplexPairTy(llvm::Constant::getNullValue(Imag->getType()), Imag);
402 }
403
404
VisitCallExpr(const CallExpr * E)405 ComplexPairTy ComplexExprEmitter::VisitCallExpr(const CallExpr *E) {
406 if (E->getCallReturnType(CGF.getContext())->isReferenceType())
407 return EmitLoadOfLValue(E);
408
409 return CGF.EmitCallExpr(E).getComplexVal();
410 }
411
VisitStmtExpr(const StmtExpr * E)412 ComplexPairTy ComplexExprEmitter::VisitStmtExpr(const StmtExpr *E) {
413 CodeGenFunction::StmtExprEvaluation eval(CGF);
414 Address RetAlloca = CGF.EmitCompoundStmt(*E->getSubStmt(), true);
415 assert(RetAlloca.isValid() && "Expected complex return value");
416 return EmitLoadOfLValue(CGF.MakeAddrLValue(RetAlloca, E->getType()),
417 E->getExprLoc());
418 }
419
420 /// Emit a cast from complex value Val to DestType.
EmitComplexToComplexCast(ComplexPairTy Val,QualType SrcType,QualType DestType,SourceLocation Loc)421 ComplexPairTy ComplexExprEmitter::EmitComplexToComplexCast(ComplexPairTy Val,
422 QualType SrcType,
423 QualType DestType,
424 SourceLocation Loc) {
425 // Get the src/dest element type.
426 SrcType = SrcType->castAs<ComplexType>()->getElementType();
427 DestType = DestType->castAs<ComplexType>()->getElementType();
428
429 // C99 6.3.1.6: When a value of complex type is converted to another
430 // complex type, both the real and imaginary parts follow the conversion
431 // rules for the corresponding real types.
432 Val.first = CGF.EmitScalarConversion(Val.first, SrcType, DestType, Loc);
433 Val.second = CGF.EmitScalarConversion(Val.second, SrcType, DestType, Loc);
434 return Val;
435 }
436
EmitScalarToComplexCast(llvm::Value * Val,QualType SrcType,QualType DestType,SourceLocation Loc)437 ComplexPairTy ComplexExprEmitter::EmitScalarToComplexCast(llvm::Value *Val,
438 QualType SrcType,
439 QualType DestType,
440 SourceLocation Loc) {
441 // Convert the input element to the element type of the complex.
442 DestType = DestType->castAs<ComplexType>()->getElementType();
443 Val = CGF.EmitScalarConversion(Val, SrcType, DestType, Loc);
444
445 // Return (realval, 0).
446 return ComplexPairTy(Val, llvm::Constant::getNullValue(Val->getType()));
447 }
448
EmitCast(CastKind CK,Expr * Op,QualType DestTy)449 ComplexPairTy ComplexExprEmitter::EmitCast(CastKind CK, Expr *Op,
450 QualType DestTy) {
451 switch (CK) {
452 case CK_Dependent: llvm_unreachable("dependent cast kind in IR gen!");
453
454 // Atomic to non-atomic casts may be more than a no-op for some platforms and
455 // for some types.
456 case CK_AtomicToNonAtomic:
457 case CK_NonAtomicToAtomic:
458 case CK_NoOp:
459 case CK_LValueToRValue:
460 case CK_UserDefinedConversion:
461 return Visit(Op);
462
463 case CK_LValueBitCast: {
464 LValue origLV = CGF.EmitLValue(Op);
465 Address V = origLV.getAddress();
466 V = Builder.CreateElementBitCast(V, CGF.ConvertType(DestTy));
467 return EmitLoadOfLValue(CGF.MakeAddrLValue(V, DestTy), Op->getExprLoc());
468 }
469
470 case CK_BitCast:
471 case CK_BaseToDerived:
472 case CK_DerivedToBase:
473 case CK_UncheckedDerivedToBase:
474 case CK_Dynamic:
475 case CK_ToUnion:
476 case CK_ArrayToPointerDecay:
477 case CK_FunctionToPointerDecay:
478 case CK_NullToPointer:
479 case CK_NullToMemberPointer:
480 case CK_BaseToDerivedMemberPointer:
481 case CK_DerivedToBaseMemberPointer:
482 case CK_MemberPointerToBoolean:
483 case CK_ReinterpretMemberPointer:
484 case CK_ConstructorConversion:
485 case CK_IntegralToPointer:
486 case CK_PointerToIntegral:
487 case CK_PointerToBoolean:
488 case CK_ToVoid:
489 case CK_VectorSplat:
490 case CK_IntegralCast:
491 case CK_BooleanToSignedIntegral:
492 case CK_IntegralToBoolean:
493 case CK_IntegralToFloating:
494 case CK_FloatingToIntegral:
495 case CK_FloatingToBoolean:
496 case CK_FloatingCast:
497 case CK_CPointerToObjCPointerCast:
498 case CK_BlockPointerToObjCPointerCast:
499 case CK_AnyPointerToBlockPointerCast:
500 case CK_ObjCObjectLValueCast:
501 case CK_FloatingComplexToReal:
502 case CK_FloatingComplexToBoolean:
503 case CK_IntegralComplexToReal:
504 case CK_IntegralComplexToBoolean:
505 case CK_ARCProduceObject:
506 case CK_ARCConsumeObject:
507 case CK_ARCReclaimReturnedObject:
508 case CK_ARCExtendBlockObject:
509 case CK_CopyAndAutoreleaseBlockObject:
510 case CK_BuiltinFnToFnPtr:
511 case CK_ZeroToOCLOpaqueType:
512 case CK_AddressSpaceConversion:
513 case CK_IntToOCLSampler:
514 case CK_FixedPointCast:
515 case CK_FixedPointToBoolean:
516 llvm_unreachable("invalid cast kind for complex value");
517
518 case CK_FloatingRealToComplex:
519 case CK_IntegralRealToComplex:
520 return EmitScalarToComplexCast(CGF.EmitScalarExpr(Op), Op->getType(),
521 DestTy, Op->getExprLoc());
522
523 case CK_FloatingComplexCast:
524 case CK_FloatingComplexToIntegralComplex:
525 case CK_IntegralComplexCast:
526 case CK_IntegralComplexToFloatingComplex:
527 return EmitComplexToComplexCast(Visit(Op), Op->getType(), DestTy,
528 Op->getExprLoc());
529 }
530
531 llvm_unreachable("unknown cast resulting in complex value");
532 }
533
VisitUnaryMinus(const UnaryOperator * E)534 ComplexPairTy ComplexExprEmitter::VisitUnaryMinus(const UnaryOperator *E) {
535 TestAndClearIgnoreReal();
536 TestAndClearIgnoreImag();
537 ComplexPairTy Op = Visit(E->getSubExpr());
538
539 llvm::Value *ResR, *ResI;
540 if (Op.first->getType()->isFloatingPointTy()) {
541 ResR = Builder.CreateFNeg(Op.first, "neg.r");
542 ResI = Builder.CreateFNeg(Op.second, "neg.i");
543 } else {
544 ResR = Builder.CreateNeg(Op.first, "neg.r");
545 ResI = Builder.CreateNeg(Op.second, "neg.i");
546 }
547 return ComplexPairTy(ResR, ResI);
548 }
549
VisitUnaryNot(const UnaryOperator * E)550 ComplexPairTy ComplexExprEmitter::VisitUnaryNot(const UnaryOperator *E) {
551 TestAndClearIgnoreReal();
552 TestAndClearIgnoreImag();
553 // ~(a+ib) = a + i*-b
554 ComplexPairTy Op = Visit(E->getSubExpr());
555 llvm::Value *ResI;
556 if (Op.second->getType()->isFloatingPointTy())
557 ResI = Builder.CreateFNeg(Op.second, "conj.i");
558 else
559 ResI = Builder.CreateNeg(Op.second, "conj.i");
560
561 return ComplexPairTy(Op.first, ResI);
562 }
563
EmitBinAdd(const BinOpInfo & Op)564 ComplexPairTy ComplexExprEmitter::EmitBinAdd(const BinOpInfo &Op) {
565 llvm::Value *ResR, *ResI;
566
567 if (Op.LHS.first->getType()->isFloatingPointTy()) {
568 ResR = Builder.CreateFAdd(Op.LHS.first, Op.RHS.first, "add.r");
569 if (Op.LHS.second && Op.RHS.second)
570 ResI = Builder.CreateFAdd(Op.LHS.second, Op.RHS.second, "add.i");
571 else
572 ResI = Op.LHS.second ? Op.LHS.second : Op.RHS.second;
573 assert(ResI && "Only one operand may be real!");
574 } else {
575 ResR = Builder.CreateAdd(Op.LHS.first, Op.RHS.first, "add.r");
576 assert(Op.LHS.second && Op.RHS.second &&
577 "Both operands of integer complex operators must be complex!");
578 ResI = Builder.CreateAdd(Op.LHS.second, Op.RHS.second, "add.i");
579 }
580 return ComplexPairTy(ResR, ResI);
581 }
582
EmitBinSub(const BinOpInfo & Op)583 ComplexPairTy ComplexExprEmitter::EmitBinSub(const BinOpInfo &Op) {
584 llvm::Value *ResR, *ResI;
585 if (Op.LHS.first->getType()->isFloatingPointTy()) {
586 ResR = Builder.CreateFSub(Op.LHS.first, Op.RHS.first, "sub.r");
587 if (Op.LHS.second && Op.RHS.second)
588 ResI = Builder.CreateFSub(Op.LHS.second, Op.RHS.second, "sub.i");
589 else
590 ResI = Op.LHS.second ? Op.LHS.second
591 : Builder.CreateFNeg(Op.RHS.second, "sub.i");
592 assert(ResI && "Only one operand may be real!");
593 } else {
594 ResR = Builder.CreateSub(Op.LHS.first, Op.RHS.first, "sub.r");
595 assert(Op.LHS.second && Op.RHS.second &&
596 "Both operands of integer complex operators must be complex!");
597 ResI = Builder.CreateSub(Op.LHS.second, Op.RHS.second, "sub.i");
598 }
599 return ComplexPairTy(ResR, ResI);
600 }
601
602 /// Emit a libcall for a binary operation on complex types.
EmitComplexBinOpLibCall(StringRef LibCallName,const BinOpInfo & Op)603 ComplexPairTy ComplexExprEmitter::EmitComplexBinOpLibCall(StringRef LibCallName,
604 const BinOpInfo &Op) {
605 CallArgList Args;
606 Args.add(RValue::get(Op.LHS.first),
607 Op.Ty->castAs<ComplexType>()->getElementType());
608 Args.add(RValue::get(Op.LHS.second),
609 Op.Ty->castAs<ComplexType>()->getElementType());
610 Args.add(RValue::get(Op.RHS.first),
611 Op.Ty->castAs<ComplexType>()->getElementType());
612 Args.add(RValue::get(Op.RHS.second),
613 Op.Ty->castAs<ComplexType>()->getElementType());
614
615 // We *must* use the full CG function call building logic here because the
616 // complex type has special ABI handling. We also should not forget about
617 // special calling convention which may be used for compiler builtins.
618
619 // We create a function qualified type to state that this call does not have
620 // any exceptions.
621 FunctionProtoType::ExtProtoInfo EPI;
622 EPI = EPI.withExceptionSpec(
623 FunctionProtoType::ExceptionSpecInfo(EST_BasicNoexcept));
624 SmallVector<QualType, 4> ArgsQTys(
625 4, Op.Ty->castAs<ComplexType>()->getElementType());
626 QualType FQTy = CGF.getContext().getFunctionType(Op.Ty, ArgsQTys, EPI);
627 const CGFunctionInfo &FuncInfo = CGF.CGM.getTypes().arrangeFreeFunctionCall(
628 Args, cast<FunctionType>(FQTy.getTypePtr()), false);
629
630 llvm::FunctionType *FTy = CGF.CGM.getTypes().GetFunctionType(FuncInfo);
631 llvm::Constant *Func = CGF.CGM.CreateBuiltinFunction(FTy, LibCallName);
632 CGCallee Callee = CGCallee::forDirect(Func, FQTy->getAs<FunctionProtoType>());
633
634 llvm::Instruction *Call;
635 RValue Res = CGF.EmitCall(FuncInfo, Callee, ReturnValueSlot(), Args, &Call);
636 cast<llvm::CallInst>(Call)->setCallingConv(CGF.CGM.getRuntimeCC());
637 return Res.getComplexVal();
638 }
639
640 /// Lookup the libcall name for a given floating point type complex
641 /// multiply.
getComplexMultiplyLibCallName(llvm::Type * Ty)642 static StringRef getComplexMultiplyLibCallName(llvm::Type *Ty) {
643 switch (Ty->getTypeID()) {
644 default:
645 llvm_unreachable("Unsupported floating point type!");
646 case llvm::Type::HalfTyID:
647 return "__mulhc3";
648 case llvm::Type::FloatTyID:
649 return "__mulsc3";
650 case llvm::Type::DoubleTyID:
651 return "__muldc3";
652 case llvm::Type::PPC_FP128TyID:
653 return "__multc3";
654 case llvm::Type::X86_FP80TyID:
655 return "__mulxc3";
656 case llvm::Type::FP128TyID:
657 return "__multc3";
658 }
659 }
660
661 // See C11 Annex G.5.1 for the semantics of multiplicative operators on complex
662 // typed values.
EmitBinMul(const BinOpInfo & Op)663 ComplexPairTy ComplexExprEmitter::EmitBinMul(const BinOpInfo &Op) {
664 using llvm::Value;
665 Value *ResR, *ResI;
666 llvm::MDBuilder MDHelper(CGF.getLLVMContext());
667
668 if (Op.LHS.first->getType()->isFloatingPointTy()) {
669 // The general formulation is:
670 // (a + ib) * (c + id) = (a * c - b * d) + i(a * d + b * c)
671 //
672 // But we can fold away components which would be zero due to a real
673 // operand according to C11 Annex G.5.1p2.
674 // FIXME: C11 also provides for imaginary types which would allow folding
675 // still more of this within the type system.
676
677 if (Op.LHS.second && Op.RHS.second) {
678 // If both operands are complex, emit the core math directly, and then
679 // test for NaNs. If we find NaNs in the result, we delegate to a libcall
680 // to carefully re-compute the correct infinity representation if
681 // possible. The expectation is that the presence of NaNs here is
682 // *extremely* rare, and so the cost of the libcall is almost irrelevant.
683 // This is good, because the libcall re-computes the core multiplication
684 // exactly the same as we do here and re-tests for NaNs in order to be
685 // a generic complex*complex libcall.
686
687 // First compute the four products.
688 Value *AC = Builder.CreateFMul(Op.LHS.first, Op.RHS.first, "mul_ac");
689 Value *BD = Builder.CreateFMul(Op.LHS.second, Op.RHS.second, "mul_bd");
690 Value *AD = Builder.CreateFMul(Op.LHS.first, Op.RHS.second, "mul_ad");
691 Value *BC = Builder.CreateFMul(Op.LHS.second, Op.RHS.first, "mul_bc");
692
693 // The real part is the difference of the first two, the imaginary part is
694 // the sum of the second.
695 ResR = Builder.CreateFSub(AC, BD, "mul_r");
696 ResI = Builder.CreateFAdd(AD, BC, "mul_i");
697
698 // Emit the test for the real part becoming NaN and create a branch to
699 // handle it. We test for NaN by comparing the number to itself.
700 Value *IsRNaN = Builder.CreateFCmpUNO(ResR, ResR, "isnan_cmp");
701 llvm::BasicBlock *ContBB = CGF.createBasicBlock("complex_mul_cont");
702 llvm::BasicBlock *INaNBB = CGF.createBasicBlock("complex_mul_imag_nan");
703 llvm::Instruction *Branch = Builder.CreateCondBr(IsRNaN, INaNBB, ContBB);
704 llvm::BasicBlock *OrigBB = Branch->getParent();
705
706 // Give hint that we very much don't expect to see NaNs.
707 // Value chosen to match UR_NONTAKEN_WEIGHT, see BranchProbabilityInfo.cpp
708 llvm::MDNode *BrWeight = MDHelper.createBranchWeights(1, (1U << 20) - 1);
709 Branch->setMetadata(llvm::LLVMContext::MD_prof, BrWeight);
710
711 // Now test the imaginary part and create its branch.
712 CGF.EmitBlock(INaNBB);
713 Value *IsINaN = Builder.CreateFCmpUNO(ResI, ResI, "isnan_cmp");
714 llvm::BasicBlock *LibCallBB = CGF.createBasicBlock("complex_mul_libcall");
715 Branch = Builder.CreateCondBr(IsINaN, LibCallBB, ContBB);
716 Branch->setMetadata(llvm::LLVMContext::MD_prof, BrWeight);
717
718 // Now emit the libcall on this slowest of the slow paths.
719 CGF.EmitBlock(LibCallBB);
720 Value *LibCallR, *LibCallI;
721 std::tie(LibCallR, LibCallI) = EmitComplexBinOpLibCall(
722 getComplexMultiplyLibCallName(Op.LHS.first->getType()), Op);
723 Builder.CreateBr(ContBB);
724
725 // Finally continue execution by phi-ing together the different
726 // computation paths.
727 CGF.EmitBlock(ContBB);
728 llvm::PHINode *RealPHI = Builder.CreatePHI(ResR->getType(), 3, "real_mul_phi");
729 RealPHI->addIncoming(ResR, OrigBB);
730 RealPHI->addIncoming(ResR, INaNBB);
731 RealPHI->addIncoming(LibCallR, LibCallBB);
732 llvm::PHINode *ImagPHI = Builder.CreatePHI(ResI->getType(), 3, "imag_mul_phi");
733 ImagPHI->addIncoming(ResI, OrigBB);
734 ImagPHI->addIncoming(ResI, INaNBB);
735 ImagPHI->addIncoming(LibCallI, LibCallBB);
736 return ComplexPairTy(RealPHI, ImagPHI);
737 }
738 assert((Op.LHS.second || Op.RHS.second) &&
739 "At least one operand must be complex!");
740
741 // If either of the operands is a real rather than a complex, the
742 // imaginary component is ignored when computing the real component of the
743 // result.
744 ResR = Builder.CreateFMul(Op.LHS.first, Op.RHS.first, "mul.rl");
745
746 ResI = Op.LHS.second
747 ? Builder.CreateFMul(Op.LHS.second, Op.RHS.first, "mul.il")
748 : Builder.CreateFMul(Op.LHS.first, Op.RHS.second, "mul.ir");
749 } else {
750 assert(Op.LHS.second && Op.RHS.second &&
751 "Both operands of integer complex operators must be complex!");
752 Value *ResRl = Builder.CreateMul(Op.LHS.first, Op.RHS.first, "mul.rl");
753 Value *ResRr = Builder.CreateMul(Op.LHS.second, Op.RHS.second, "mul.rr");
754 ResR = Builder.CreateSub(ResRl, ResRr, "mul.r");
755
756 Value *ResIl = Builder.CreateMul(Op.LHS.second, Op.RHS.first, "mul.il");
757 Value *ResIr = Builder.CreateMul(Op.LHS.first, Op.RHS.second, "mul.ir");
758 ResI = Builder.CreateAdd(ResIl, ResIr, "mul.i");
759 }
760 return ComplexPairTy(ResR, ResI);
761 }
762
763 // See C11 Annex G.5.1 for the semantics of multiplicative operators on complex
764 // typed values.
EmitBinDiv(const BinOpInfo & Op)765 ComplexPairTy ComplexExprEmitter::EmitBinDiv(const BinOpInfo &Op) {
766 llvm::Value *LHSr = Op.LHS.first, *LHSi = Op.LHS.second;
767 llvm::Value *RHSr = Op.RHS.first, *RHSi = Op.RHS.second;
768
769 llvm::Value *DSTr, *DSTi;
770 if (LHSr->getType()->isFloatingPointTy()) {
771 // If we have a complex operand on the RHS and FastMath is not allowed, we
772 // delegate to a libcall to handle all of the complexities and minimize
773 // underflow/overflow cases. When FastMath is allowed we construct the
774 // divide inline using the same algorithm as for integer operands.
775 //
776 // FIXME: We would be able to avoid the libcall in many places if we
777 // supported imaginary types in addition to complex types.
778 if (RHSi && !CGF.getLangOpts().FastMath) {
779 BinOpInfo LibCallOp = Op;
780 // If LHS was a real, supply a null imaginary part.
781 if (!LHSi)
782 LibCallOp.LHS.second = llvm::Constant::getNullValue(LHSr->getType());
783
784 switch (LHSr->getType()->getTypeID()) {
785 default:
786 llvm_unreachable("Unsupported floating point type!");
787 case llvm::Type::HalfTyID:
788 return EmitComplexBinOpLibCall("__divhc3", LibCallOp);
789 case llvm::Type::FloatTyID:
790 return EmitComplexBinOpLibCall("__divsc3", LibCallOp);
791 case llvm::Type::DoubleTyID:
792 return EmitComplexBinOpLibCall("__divdc3", LibCallOp);
793 case llvm::Type::PPC_FP128TyID:
794 return EmitComplexBinOpLibCall("__divtc3", LibCallOp);
795 case llvm::Type::X86_FP80TyID:
796 return EmitComplexBinOpLibCall("__divxc3", LibCallOp);
797 case llvm::Type::FP128TyID:
798 return EmitComplexBinOpLibCall("__divtc3", LibCallOp);
799 }
800 } else if (RHSi) {
801 if (!LHSi)
802 LHSi = llvm::Constant::getNullValue(RHSi->getType());
803
804 // (a+ib) / (c+id) = ((ac+bd)/(cc+dd)) + i((bc-ad)/(cc+dd))
805 llvm::Value *AC = Builder.CreateFMul(LHSr, RHSr); // a*c
806 llvm::Value *BD = Builder.CreateFMul(LHSi, RHSi); // b*d
807 llvm::Value *ACpBD = Builder.CreateFAdd(AC, BD); // ac+bd
808
809 llvm::Value *CC = Builder.CreateFMul(RHSr, RHSr); // c*c
810 llvm::Value *DD = Builder.CreateFMul(RHSi, RHSi); // d*d
811 llvm::Value *CCpDD = Builder.CreateFAdd(CC, DD); // cc+dd
812
813 llvm::Value *BC = Builder.CreateFMul(LHSi, RHSr); // b*c
814 llvm::Value *AD = Builder.CreateFMul(LHSr, RHSi); // a*d
815 llvm::Value *BCmAD = Builder.CreateFSub(BC, AD); // bc-ad
816
817 DSTr = Builder.CreateFDiv(ACpBD, CCpDD);
818 DSTi = Builder.CreateFDiv(BCmAD, CCpDD);
819 } else {
820 assert(LHSi && "Can have at most one non-complex operand!");
821
822 DSTr = Builder.CreateFDiv(LHSr, RHSr);
823 DSTi = Builder.CreateFDiv(LHSi, RHSr);
824 }
825 } else {
826 assert(Op.LHS.second && Op.RHS.second &&
827 "Both operands of integer complex operators must be complex!");
828 // (a+ib) / (c+id) = ((ac+bd)/(cc+dd)) + i((bc-ad)/(cc+dd))
829 llvm::Value *Tmp1 = Builder.CreateMul(LHSr, RHSr); // a*c
830 llvm::Value *Tmp2 = Builder.CreateMul(LHSi, RHSi); // b*d
831 llvm::Value *Tmp3 = Builder.CreateAdd(Tmp1, Tmp2); // ac+bd
832
833 llvm::Value *Tmp4 = Builder.CreateMul(RHSr, RHSr); // c*c
834 llvm::Value *Tmp5 = Builder.CreateMul(RHSi, RHSi); // d*d
835 llvm::Value *Tmp6 = Builder.CreateAdd(Tmp4, Tmp5); // cc+dd
836
837 llvm::Value *Tmp7 = Builder.CreateMul(LHSi, RHSr); // b*c
838 llvm::Value *Tmp8 = Builder.CreateMul(LHSr, RHSi); // a*d
839 llvm::Value *Tmp9 = Builder.CreateSub(Tmp7, Tmp8); // bc-ad
840
841 if (Op.Ty->castAs<ComplexType>()->getElementType()->isUnsignedIntegerType()) {
842 DSTr = Builder.CreateUDiv(Tmp3, Tmp6);
843 DSTi = Builder.CreateUDiv(Tmp9, Tmp6);
844 } else {
845 DSTr = Builder.CreateSDiv(Tmp3, Tmp6);
846 DSTi = Builder.CreateSDiv(Tmp9, Tmp6);
847 }
848 }
849
850 return ComplexPairTy(DSTr, DSTi);
851 }
852
853 ComplexExprEmitter::BinOpInfo
EmitBinOps(const BinaryOperator * E)854 ComplexExprEmitter::EmitBinOps(const BinaryOperator *E) {
855 TestAndClearIgnoreReal();
856 TestAndClearIgnoreImag();
857 BinOpInfo Ops;
858 if (E->getLHS()->getType()->isRealFloatingType())
859 Ops.LHS = ComplexPairTy(CGF.EmitScalarExpr(E->getLHS()), nullptr);
860 else
861 Ops.LHS = Visit(E->getLHS());
862 if (E->getRHS()->getType()->isRealFloatingType())
863 Ops.RHS = ComplexPairTy(CGF.EmitScalarExpr(E->getRHS()), nullptr);
864 else
865 Ops.RHS = Visit(E->getRHS());
866
867 Ops.Ty = E->getType();
868 return Ops;
869 }
870
871
872 LValue ComplexExprEmitter::
EmitCompoundAssignLValue(const CompoundAssignOperator * E,ComplexPairTy (ComplexExprEmitter::* Func)(const BinOpInfo &),RValue & Val)873 EmitCompoundAssignLValue(const CompoundAssignOperator *E,
874 ComplexPairTy (ComplexExprEmitter::*Func)(const BinOpInfo&),
875 RValue &Val) {
876 TestAndClearIgnoreReal();
877 TestAndClearIgnoreImag();
878 QualType LHSTy = E->getLHS()->getType();
879 if (const AtomicType *AT = LHSTy->getAs<AtomicType>())
880 LHSTy = AT->getValueType();
881
882 BinOpInfo OpInfo;
883
884 // Load the RHS and LHS operands.
885 // __block variables need to have the rhs evaluated first, plus this should
886 // improve codegen a little.
887 OpInfo.Ty = E->getComputationResultType();
888 QualType ComplexElementTy = cast<ComplexType>(OpInfo.Ty)->getElementType();
889
890 // The RHS should have been converted to the computation type.
891 if (E->getRHS()->getType()->isRealFloatingType()) {
892 assert(
893 CGF.getContext()
894 .hasSameUnqualifiedType(ComplexElementTy, E->getRHS()->getType()));
895 OpInfo.RHS = ComplexPairTy(CGF.EmitScalarExpr(E->getRHS()), nullptr);
896 } else {
897 assert(CGF.getContext()
898 .hasSameUnqualifiedType(OpInfo.Ty, E->getRHS()->getType()));
899 OpInfo.RHS = Visit(E->getRHS());
900 }
901
902 LValue LHS = CGF.EmitLValue(E->getLHS());
903
904 // Load from the l-value and convert it.
905 SourceLocation Loc = E->getExprLoc();
906 if (LHSTy->isAnyComplexType()) {
907 ComplexPairTy LHSVal = EmitLoadOfLValue(LHS, Loc);
908 OpInfo.LHS = EmitComplexToComplexCast(LHSVal, LHSTy, OpInfo.Ty, Loc);
909 } else {
910 llvm::Value *LHSVal = CGF.EmitLoadOfScalar(LHS, Loc);
911 // For floating point real operands we can directly pass the scalar form
912 // to the binary operator emission and potentially get more efficient code.
913 if (LHSTy->isRealFloatingType()) {
914 if (!CGF.getContext().hasSameUnqualifiedType(ComplexElementTy, LHSTy))
915 LHSVal = CGF.EmitScalarConversion(LHSVal, LHSTy, ComplexElementTy, Loc);
916 OpInfo.LHS = ComplexPairTy(LHSVal, nullptr);
917 } else {
918 OpInfo.LHS = EmitScalarToComplexCast(LHSVal, LHSTy, OpInfo.Ty, Loc);
919 }
920 }
921
922 // Expand the binary operator.
923 ComplexPairTy Result = (this->*Func)(OpInfo);
924
925 // Truncate the result and store it into the LHS lvalue.
926 if (LHSTy->isAnyComplexType()) {
927 ComplexPairTy ResVal =
928 EmitComplexToComplexCast(Result, OpInfo.Ty, LHSTy, Loc);
929 EmitStoreOfComplex(ResVal, LHS, /*isInit*/ false);
930 Val = RValue::getComplex(ResVal);
931 } else {
932 llvm::Value *ResVal =
933 CGF.EmitComplexToScalarConversion(Result, OpInfo.Ty, LHSTy, Loc);
934 CGF.EmitStoreOfScalar(ResVal, LHS, /*isInit*/ false);
935 Val = RValue::get(ResVal);
936 }
937
938 return LHS;
939 }
940
941 // Compound assignments.
942 ComplexPairTy ComplexExprEmitter::
EmitCompoundAssign(const CompoundAssignOperator * E,ComplexPairTy (ComplexExprEmitter::* Func)(const BinOpInfo &))943 EmitCompoundAssign(const CompoundAssignOperator *E,
944 ComplexPairTy (ComplexExprEmitter::*Func)(const BinOpInfo&)){
945 RValue Val;
946 LValue LV = EmitCompoundAssignLValue(E, Func, Val);
947
948 // The result of an assignment in C is the assigned r-value.
949 if (!CGF.getLangOpts().CPlusPlus)
950 return Val.getComplexVal();
951
952 // If the lvalue is non-volatile, return the computed value of the assignment.
953 if (!LV.isVolatileQualified())
954 return Val.getComplexVal();
955
956 return EmitLoadOfLValue(LV, E->getExprLoc());
957 }
958
EmitBinAssignLValue(const BinaryOperator * E,ComplexPairTy & Val)959 LValue ComplexExprEmitter::EmitBinAssignLValue(const BinaryOperator *E,
960 ComplexPairTy &Val) {
961 assert(CGF.getContext().hasSameUnqualifiedType(E->getLHS()->getType(),
962 E->getRHS()->getType()) &&
963 "Invalid assignment");
964 TestAndClearIgnoreReal();
965 TestAndClearIgnoreImag();
966
967 // Emit the RHS. __block variables need the RHS evaluated first.
968 Val = Visit(E->getRHS());
969
970 // Compute the address to store into.
971 LValue LHS = CGF.EmitLValue(E->getLHS());
972
973 // Store the result value into the LHS lvalue.
974 EmitStoreOfComplex(Val, LHS, /*isInit*/ false);
975
976 return LHS;
977 }
978
VisitBinAssign(const BinaryOperator * E)979 ComplexPairTy ComplexExprEmitter::VisitBinAssign(const BinaryOperator *E) {
980 ComplexPairTy Val;
981 LValue LV = EmitBinAssignLValue(E, Val);
982
983 // The result of an assignment in C is the assigned r-value.
984 if (!CGF.getLangOpts().CPlusPlus)
985 return Val;
986
987 // If the lvalue is non-volatile, return the computed value of the assignment.
988 if (!LV.isVolatileQualified())
989 return Val;
990
991 return EmitLoadOfLValue(LV, E->getExprLoc());
992 }
993
VisitBinComma(const BinaryOperator * E)994 ComplexPairTy ComplexExprEmitter::VisitBinComma(const BinaryOperator *E) {
995 CGF.EmitIgnoredExpr(E->getLHS());
996 return Visit(E->getRHS());
997 }
998
999 ComplexPairTy ComplexExprEmitter::
VisitAbstractConditionalOperator(const AbstractConditionalOperator * E)1000 VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) {
1001 TestAndClearIgnoreReal();
1002 TestAndClearIgnoreImag();
1003 llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true");
1004 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false");
1005 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end");
1006
1007 // Bind the common expression if necessary.
1008 CodeGenFunction::OpaqueValueMapping binding(CGF, E);
1009
1010
1011 CodeGenFunction::ConditionalEvaluation eval(CGF);
1012 CGF.EmitBranchOnBoolExpr(E->getCond(), LHSBlock, RHSBlock,
1013 CGF.getProfileCount(E));
1014
1015 eval.begin(CGF);
1016 CGF.EmitBlock(LHSBlock);
1017 CGF.incrementProfileCounter(E);
1018 ComplexPairTy LHS = Visit(E->getTrueExpr());
1019 LHSBlock = Builder.GetInsertBlock();
1020 CGF.EmitBranch(ContBlock);
1021 eval.end(CGF);
1022
1023 eval.begin(CGF);
1024 CGF.EmitBlock(RHSBlock);
1025 ComplexPairTy RHS = Visit(E->getFalseExpr());
1026 RHSBlock = Builder.GetInsertBlock();
1027 CGF.EmitBlock(ContBlock);
1028 eval.end(CGF);
1029
1030 // Create a PHI node for the real part.
1031 llvm::PHINode *RealPN = Builder.CreatePHI(LHS.first->getType(), 2, "cond.r");
1032 RealPN->addIncoming(LHS.first, LHSBlock);
1033 RealPN->addIncoming(RHS.first, RHSBlock);
1034
1035 // Create a PHI node for the imaginary part.
1036 llvm::PHINode *ImagPN = Builder.CreatePHI(LHS.first->getType(), 2, "cond.i");
1037 ImagPN->addIncoming(LHS.second, LHSBlock);
1038 ImagPN->addIncoming(RHS.second, RHSBlock);
1039
1040 return ComplexPairTy(RealPN, ImagPN);
1041 }
1042
VisitChooseExpr(ChooseExpr * E)1043 ComplexPairTy ComplexExprEmitter::VisitChooseExpr(ChooseExpr *E) {
1044 return Visit(E->getChosenSubExpr());
1045 }
1046
VisitInitListExpr(InitListExpr * E)1047 ComplexPairTy ComplexExprEmitter::VisitInitListExpr(InitListExpr *E) {
1048 bool Ignore = TestAndClearIgnoreReal();
1049 (void)Ignore;
1050 assert (Ignore == false && "init list ignored");
1051 Ignore = TestAndClearIgnoreImag();
1052 (void)Ignore;
1053 assert (Ignore == false && "init list ignored");
1054
1055 if (E->getNumInits() == 2) {
1056 llvm::Value *Real = CGF.EmitScalarExpr(E->getInit(0));
1057 llvm::Value *Imag = CGF.EmitScalarExpr(E->getInit(1));
1058 return ComplexPairTy(Real, Imag);
1059 } else if (E->getNumInits() == 1) {
1060 return Visit(E->getInit(0));
1061 }
1062
1063 // Empty init list initializes to null
1064 assert(E->getNumInits() == 0 && "Unexpected number of inits");
1065 QualType Ty = E->getType()->castAs<ComplexType>()->getElementType();
1066 llvm::Type* LTy = CGF.ConvertType(Ty);
1067 llvm::Value* zeroConstant = llvm::Constant::getNullValue(LTy);
1068 return ComplexPairTy(zeroConstant, zeroConstant);
1069 }
1070
VisitVAArgExpr(VAArgExpr * E)1071 ComplexPairTy ComplexExprEmitter::VisitVAArgExpr(VAArgExpr *E) {
1072 Address ArgValue = Address::invalid();
1073 Address ArgPtr = CGF.EmitVAArg(E, ArgValue);
1074
1075 if (!ArgPtr.isValid()) {
1076 CGF.ErrorUnsupported(E, "complex va_arg expression");
1077 llvm::Type *EltTy =
1078 CGF.ConvertType(E->getType()->castAs<ComplexType>()->getElementType());
1079 llvm::Value *U = llvm::UndefValue::get(EltTy);
1080 return ComplexPairTy(U, U);
1081 }
1082
1083 return EmitLoadOfLValue(CGF.MakeAddrLValue(ArgPtr, E->getType()),
1084 E->getExprLoc());
1085 }
1086
1087 //===----------------------------------------------------------------------===//
1088 // Entry Point into this File
1089 //===----------------------------------------------------------------------===//
1090
1091 /// EmitComplexExpr - Emit the computation of the specified expression of
1092 /// complex type, ignoring the result.
EmitComplexExpr(const Expr * E,bool IgnoreReal,bool IgnoreImag)1093 ComplexPairTy CodeGenFunction::EmitComplexExpr(const Expr *E, bool IgnoreReal,
1094 bool IgnoreImag) {
1095 assert(E && getComplexType(E->getType()) &&
1096 "Invalid complex expression to emit");
1097
1098 return ComplexExprEmitter(*this, IgnoreReal, IgnoreImag)
1099 .Visit(const_cast<Expr *>(E));
1100 }
1101
EmitComplexExprIntoLValue(const Expr * E,LValue dest,bool isInit)1102 void CodeGenFunction::EmitComplexExprIntoLValue(const Expr *E, LValue dest,
1103 bool isInit) {
1104 assert(E && getComplexType(E->getType()) &&
1105 "Invalid complex expression to emit");
1106 ComplexExprEmitter Emitter(*this);
1107 ComplexPairTy Val = Emitter.Visit(const_cast<Expr*>(E));
1108 Emitter.EmitStoreOfComplex(Val, dest, isInit);
1109 }
1110
1111 /// EmitStoreOfComplex - Store a complex number into the specified l-value.
EmitStoreOfComplex(ComplexPairTy V,LValue dest,bool isInit)1112 void CodeGenFunction::EmitStoreOfComplex(ComplexPairTy V, LValue dest,
1113 bool isInit) {
1114 ComplexExprEmitter(*this).EmitStoreOfComplex(V, dest, isInit);
1115 }
1116
1117 /// EmitLoadOfComplex - Load a complex number from the specified address.
EmitLoadOfComplex(LValue src,SourceLocation loc)1118 ComplexPairTy CodeGenFunction::EmitLoadOfComplex(LValue src,
1119 SourceLocation loc) {
1120 return ComplexExprEmitter(*this).EmitLoadOfLValue(src, loc);
1121 }
1122
EmitComplexAssignmentLValue(const BinaryOperator * E)1123 LValue CodeGenFunction::EmitComplexAssignmentLValue(const BinaryOperator *E) {
1124 assert(E->getOpcode() == BO_Assign);
1125 ComplexPairTy Val; // ignored
1126 return ComplexExprEmitter(*this).EmitBinAssignLValue(E, Val);
1127 }
1128
1129 typedef ComplexPairTy (ComplexExprEmitter::*CompoundFunc)(
1130 const ComplexExprEmitter::BinOpInfo &);
1131
getComplexOp(BinaryOperatorKind Op)1132 static CompoundFunc getComplexOp(BinaryOperatorKind Op) {
1133 switch (Op) {
1134 case BO_MulAssign: return &ComplexExprEmitter::EmitBinMul;
1135 case BO_DivAssign: return &ComplexExprEmitter::EmitBinDiv;
1136 case BO_SubAssign: return &ComplexExprEmitter::EmitBinSub;
1137 case BO_AddAssign: return &ComplexExprEmitter::EmitBinAdd;
1138 default:
1139 llvm_unreachable("unexpected complex compound assignment");
1140 }
1141 }
1142
1143 LValue CodeGenFunction::
EmitComplexCompoundAssignmentLValue(const CompoundAssignOperator * E)1144 EmitComplexCompoundAssignmentLValue(const CompoundAssignOperator *E) {
1145 CompoundFunc Op = getComplexOp(E->getOpcode());
1146 RValue Val;
1147 return ComplexExprEmitter(*this).EmitCompoundAssignLValue(E, Op, Val);
1148 }
1149
1150 LValue CodeGenFunction::
EmitScalarCompoundAssignWithComplex(const CompoundAssignOperator * E,llvm::Value * & Result)1151 EmitScalarCompoundAssignWithComplex(const CompoundAssignOperator *E,
1152 llvm::Value *&Result) {
1153 CompoundFunc Op = getComplexOp(E->getOpcode());
1154 RValue Val;
1155 LValue Ret = ComplexExprEmitter(*this).EmitCompoundAssignLValue(E, Op, Val);
1156 Result = Val.getScalarVal();
1157 return Ret;
1158 }
1159