1 //===--- CGExprComplex.cpp - Emit LLVM Code for Complex Exprs -------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code to emit Expr nodes with complex types as LLVM code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenFunction.h" 15 #include "CodeGenModule.h" 16 #include "clang/AST/StmtVisitor.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/IR/Constants.h" 19 #include "llvm/IR/Instructions.h" 20 #include "llvm/IR/MDBuilder.h" 21 #include "llvm/IR/Metadata.h" 22 #include <algorithm> 23 using namespace clang; 24 using namespace CodeGen; 25 26 //===----------------------------------------------------------------------===// 27 // Complex Expression Emitter 28 //===----------------------------------------------------------------------===// 29 30 typedef CodeGenFunction::ComplexPairTy ComplexPairTy; 31 32 /// Return the complex type that we are meant to emit. 33 static const ComplexType *getComplexType(QualType type) { 34 type = type.getCanonicalType(); 35 if (const ComplexType *comp = dyn_cast<ComplexType>(type)) { 36 return comp; 37 } else { 38 return cast<ComplexType>(cast<AtomicType>(type)->getValueType()); 39 } 40 } 41 42 namespace { 43 class ComplexExprEmitter 44 : public StmtVisitor<ComplexExprEmitter, ComplexPairTy> { 45 CodeGenFunction &CGF; 46 CGBuilderTy &Builder; 47 bool IgnoreReal; 48 bool IgnoreImag; 49 public: 50 ComplexExprEmitter(CodeGenFunction &cgf, bool ir=false, bool ii=false) 51 : CGF(cgf), Builder(CGF.Builder), IgnoreReal(ir), IgnoreImag(ii) { 52 } 53 54 55 //===--------------------------------------------------------------------===// 56 // Utilities 57 //===--------------------------------------------------------------------===// 58 59 bool TestAndClearIgnoreReal() { 60 bool I = IgnoreReal; 61 IgnoreReal = false; 62 return I; 63 } 64 bool TestAndClearIgnoreImag() { 65 bool I = IgnoreImag; 66 IgnoreImag = false; 67 return I; 68 } 69 70 /// EmitLoadOfLValue - Given an expression with complex type that represents a 71 /// value l-value, this method emits the address of the l-value, then loads 72 /// and returns the result. 73 ComplexPairTy EmitLoadOfLValue(const Expr *E) { 74 return EmitLoadOfLValue(CGF.EmitLValue(E), E->getExprLoc()); 75 } 76 77 ComplexPairTy EmitLoadOfLValue(LValue LV, SourceLocation Loc); 78 79 /// EmitStoreOfComplex - Store the specified real/imag parts into the 80 /// specified value pointer. 81 void EmitStoreOfComplex(ComplexPairTy Val, LValue LV, bool isInit); 82 83 /// Emit a cast from complex value Val to DestType. 84 ComplexPairTy EmitComplexToComplexCast(ComplexPairTy Val, QualType SrcType, 85 QualType DestType, SourceLocation Loc); 86 /// Emit a cast from scalar value Val to DestType. 87 ComplexPairTy EmitScalarToComplexCast(llvm::Value *Val, QualType SrcType, 88 QualType DestType, SourceLocation Loc); 89 90 //===--------------------------------------------------------------------===// 91 // Visitor Methods 92 //===--------------------------------------------------------------------===// 93 94 ComplexPairTy Visit(Expr *E) { 95 ApplyDebugLocation DL(CGF, E); 96 return StmtVisitor<ComplexExprEmitter, ComplexPairTy>::Visit(E); 97 } 98 99 ComplexPairTy VisitStmt(Stmt *S) { 100 S->dump(CGF.getContext().getSourceManager()); 101 llvm_unreachable("Stmt can't have complex result type!"); 102 } 103 ComplexPairTy VisitExpr(Expr *S); 104 ComplexPairTy VisitParenExpr(ParenExpr *PE) { return Visit(PE->getSubExpr());} 105 ComplexPairTy VisitGenericSelectionExpr(GenericSelectionExpr *GE) { 106 return Visit(GE->getResultExpr()); 107 } 108 ComplexPairTy VisitImaginaryLiteral(const ImaginaryLiteral *IL); 109 ComplexPairTy 110 VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *PE) { 111 return Visit(PE->getReplacement()); 112 } 113 ComplexPairTy VisitCoawaitExpr(CoawaitExpr *S) { 114 return CGF.EmitCoawaitExpr(*S).getComplexVal(); 115 } 116 ComplexPairTy VisitCoyieldExpr(CoyieldExpr *S) { 117 return CGF.EmitCoyieldExpr(*S).getComplexVal(); 118 } 119 ComplexPairTy VisitUnaryCoawait(const UnaryOperator *E) { 120 return Visit(E->getSubExpr()); 121 } 122 123 ComplexPairTy emitConstant(const CodeGenFunction::ConstantEmission &Constant, 124 Expr *E) { 125 assert(Constant && "not a constant"); 126 if (Constant.isReference()) 127 return EmitLoadOfLValue(Constant.getReferenceLValue(CGF, E), 128 E->getExprLoc()); 129 130 llvm::Constant *pair = Constant.getValue(); 131 return ComplexPairTy(pair->getAggregateElement(0U), 132 pair->getAggregateElement(1U)); 133 } 134 135 // l-values. 136 ComplexPairTy VisitDeclRefExpr(DeclRefExpr *E) { 137 if (CodeGenFunction::ConstantEmission Constant = CGF.tryEmitAsConstant(E)) 138 return emitConstant(Constant, E); 139 return EmitLoadOfLValue(E); 140 } 141 ComplexPairTy VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) { 142 return EmitLoadOfLValue(E); 143 } 144 ComplexPairTy VisitObjCMessageExpr(ObjCMessageExpr *E) { 145 return CGF.EmitObjCMessageExpr(E).getComplexVal(); 146 } 147 ComplexPairTy VisitArraySubscriptExpr(Expr *E) { return EmitLoadOfLValue(E); } 148 ComplexPairTy VisitMemberExpr(MemberExpr *ME) { 149 if (CodeGenFunction::ConstantEmission Constant = 150 CGF.tryEmitAsConstant(ME)) { 151 CGF.EmitIgnoredExpr(ME->getBase()); 152 return emitConstant(Constant, ME); 153 } 154 return EmitLoadOfLValue(ME); 155 } 156 ComplexPairTy VisitOpaqueValueExpr(OpaqueValueExpr *E) { 157 if (E->isGLValue()) 158 return EmitLoadOfLValue(CGF.getOpaqueLValueMapping(E), E->getExprLoc()); 159 return CGF.getOpaqueRValueMapping(E).getComplexVal(); 160 } 161 162 ComplexPairTy VisitPseudoObjectExpr(PseudoObjectExpr *E) { 163 return CGF.EmitPseudoObjectRValue(E).getComplexVal(); 164 } 165 166 // FIXME: CompoundLiteralExpr 167 168 ComplexPairTy EmitCast(CastKind CK, Expr *Op, QualType DestTy); 169 ComplexPairTy VisitImplicitCastExpr(ImplicitCastExpr *E) { 170 // Unlike for scalars, we don't have to worry about function->ptr demotion 171 // here. 172 return EmitCast(E->getCastKind(), E->getSubExpr(), E->getType()); 173 } 174 ComplexPairTy VisitCastExpr(CastExpr *E) { 175 if (const auto *ECE = dyn_cast<ExplicitCastExpr>(E)) 176 CGF.CGM.EmitExplicitCastExprType(ECE, &CGF); 177 return EmitCast(E->getCastKind(), E->getSubExpr(), E->getType()); 178 } 179 ComplexPairTy VisitCallExpr(const CallExpr *E); 180 ComplexPairTy VisitStmtExpr(const StmtExpr *E); 181 182 // Operators. 183 ComplexPairTy VisitPrePostIncDec(const UnaryOperator *E, 184 bool isInc, bool isPre) { 185 LValue LV = CGF.EmitLValue(E->getSubExpr()); 186 return CGF.EmitComplexPrePostIncDec(E, LV, isInc, isPre); 187 } 188 ComplexPairTy VisitUnaryPostDec(const UnaryOperator *E) { 189 return VisitPrePostIncDec(E, false, false); 190 } 191 ComplexPairTy VisitUnaryPostInc(const UnaryOperator *E) { 192 return VisitPrePostIncDec(E, true, false); 193 } 194 ComplexPairTy VisitUnaryPreDec(const UnaryOperator *E) { 195 return VisitPrePostIncDec(E, false, true); 196 } 197 ComplexPairTy VisitUnaryPreInc(const UnaryOperator *E) { 198 return VisitPrePostIncDec(E, true, true); 199 } 200 ComplexPairTy VisitUnaryDeref(const Expr *E) { return EmitLoadOfLValue(E); } 201 ComplexPairTy VisitUnaryPlus (const UnaryOperator *E) { 202 TestAndClearIgnoreReal(); 203 TestAndClearIgnoreImag(); 204 return Visit(E->getSubExpr()); 205 } 206 ComplexPairTy VisitUnaryMinus (const UnaryOperator *E); 207 ComplexPairTy VisitUnaryNot (const UnaryOperator *E); 208 // LNot,Real,Imag never return complex. 209 ComplexPairTy VisitUnaryExtension(const UnaryOperator *E) { 210 return Visit(E->getSubExpr()); 211 } 212 ComplexPairTy VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) { 213 return Visit(DAE->getExpr()); 214 } 215 ComplexPairTy VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE) { 216 CodeGenFunction::CXXDefaultInitExprScope Scope(CGF); 217 return Visit(DIE->getExpr()); 218 } 219 ComplexPairTy VisitExprWithCleanups(ExprWithCleanups *E) { 220 CGF.enterFullExpression(E); 221 CodeGenFunction::RunCleanupsScope Scope(CGF); 222 ComplexPairTy Vals = Visit(E->getSubExpr()); 223 // Defend against dominance problems caused by jumps out of expression 224 // evaluation through the shared cleanup block. 225 Scope.ForceCleanup({&Vals.first, &Vals.second}); 226 return Vals; 227 } 228 ComplexPairTy VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E) { 229 assert(E->getType()->isAnyComplexType() && "Expected complex type!"); 230 QualType Elem = E->getType()->castAs<ComplexType>()->getElementType(); 231 llvm::Constant *Null = llvm::Constant::getNullValue(CGF.ConvertType(Elem)); 232 return ComplexPairTy(Null, Null); 233 } 234 ComplexPairTy VisitImplicitValueInitExpr(ImplicitValueInitExpr *E) { 235 assert(E->getType()->isAnyComplexType() && "Expected complex type!"); 236 QualType Elem = E->getType()->castAs<ComplexType>()->getElementType(); 237 llvm::Constant *Null = 238 llvm::Constant::getNullValue(CGF.ConvertType(Elem)); 239 return ComplexPairTy(Null, Null); 240 } 241 242 struct BinOpInfo { 243 ComplexPairTy LHS; 244 ComplexPairTy RHS; 245 QualType Ty; // Computation Type. 246 }; 247 248 BinOpInfo EmitBinOps(const BinaryOperator *E); 249 LValue EmitCompoundAssignLValue(const CompoundAssignOperator *E, 250 ComplexPairTy (ComplexExprEmitter::*Func) 251 (const BinOpInfo &), 252 RValue &Val); 253 ComplexPairTy EmitCompoundAssign(const CompoundAssignOperator *E, 254 ComplexPairTy (ComplexExprEmitter::*Func) 255 (const BinOpInfo &)); 256 257 ComplexPairTy EmitBinAdd(const BinOpInfo &Op); 258 ComplexPairTy EmitBinSub(const BinOpInfo &Op); 259 ComplexPairTy EmitBinMul(const BinOpInfo &Op); 260 ComplexPairTy EmitBinDiv(const BinOpInfo &Op); 261 262 ComplexPairTy EmitComplexBinOpLibCall(StringRef LibCallName, 263 const BinOpInfo &Op); 264 265 ComplexPairTy VisitBinAdd(const BinaryOperator *E) { 266 return EmitBinAdd(EmitBinOps(E)); 267 } 268 ComplexPairTy VisitBinSub(const BinaryOperator *E) { 269 return EmitBinSub(EmitBinOps(E)); 270 } 271 ComplexPairTy VisitBinMul(const BinaryOperator *E) { 272 return EmitBinMul(EmitBinOps(E)); 273 } 274 ComplexPairTy VisitBinDiv(const BinaryOperator *E) { 275 return EmitBinDiv(EmitBinOps(E)); 276 } 277 278 // Compound assignments. 279 ComplexPairTy VisitBinAddAssign(const CompoundAssignOperator *E) { 280 return EmitCompoundAssign(E, &ComplexExprEmitter::EmitBinAdd); 281 } 282 ComplexPairTy VisitBinSubAssign(const CompoundAssignOperator *E) { 283 return EmitCompoundAssign(E, &ComplexExprEmitter::EmitBinSub); 284 } 285 ComplexPairTy VisitBinMulAssign(const CompoundAssignOperator *E) { 286 return EmitCompoundAssign(E, &ComplexExprEmitter::EmitBinMul); 287 } 288 ComplexPairTy VisitBinDivAssign(const CompoundAssignOperator *E) { 289 return EmitCompoundAssign(E, &ComplexExprEmitter::EmitBinDiv); 290 } 291 292 // GCC rejects rem/and/or/xor for integer complex. 293 // Logical and/or always return int, never complex. 294 295 // No comparisons produce a complex result. 296 297 LValue EmitBinAssignLValue(const BinaryOperator *E, 298 ComplexPairTy &Val); 299 ComplexPairTy VisitBinAssign (const BinaryOperator *E); 300 ComplexPairTy VisitBinComma (const BinaryOperator *E); 301 302 303 ComplexPairTy 304 VisitAbstractConditionalOperator(const AbstractConditionalOperator *CO); 305 ComplexPairTy VisitChooseExpr(ChooseExpr *CE); 306 307 ComplexPairTy VisitInitListExpr(InitListExpr *E); 308 309 ComplexPairTy VisitCompoundLiteralExpr(CompoundLiteralExpr *E) { 310 return EmitLoadOfLValue(E); 311 } 312 313 ComplexPairTy VisitVAArgExpr(VAArgExpr *E); 314 315 ComplexPairTy VisitAtomicExpr(AtomicExpr *E) { 316 return CGF.EmitAtomicExpr(E).getComplexVal(); 317 } 318 }; 319 } // end anonymous namespace. 320 321 //===----------------------------------------------------------------------===// 322 // Utilities 323 //===----------------------------------------------------------------------===// 324 325 Address CodeGenFunction::emitAddrOfRealComponent(Address addr, 326 QualType complexType) { 327 CharUnits offset = CharUnits::Zero(); 328 return Builder.CreateStructGEP(addr, 0, offset, addr.getName() + ".realp"); 329 } 330 331 Address CodeGenFunction::emitAddrOfImagComponent(Address addr, 332 QualType complexType) { 333 QualType eltType = complexType->castAs<ComplexType>()->getElementType(); 334 CharUnits offset = getContext().getTypeSizeInChars(eltType); 335 return Builder.CreateStructGEP(addr, 1, offset, addr.getName() + ".imagp"); 336 } 337 338 /// EmitLoadOfLValue - Given an RValue reference for a complex, emit code to 339 /// load the real and imaginary pieces, returning them as Real/Imag. 340 ComplexPairTy ComplexExprEmitter::EmitLoadOfLValue(LValue lvalue, 341 SourceLocation loc) { 342 assert(lvalue.isSimple() && "non-simple complex l-value?"); 343 if (lvalue.getType()->isAtomicType()) 344 return CGF.EmitAtomicLoad(lvalue, loc).getComplexVal(); 345 346 Address SrcPtr = lvalue.getAddress(); 347 bool isVolatile = lvalue.isVolatileQualified(); 348 349 llvm::Value *Real = nullptr, *Imag = nullptr; 350 351 if (!IgnoreReal || isVolatile) { 352 Address RealP = CGF.emitAddrOfRealComponent(SrcPtr, lvalue.getType()); 353 Real = Builder.CreateLoad(RealP, isVolatile, SrcPtr.getName() + ".real"); 354 } 355 356 if (!IgnoreImag || isVolatile) { 357 Address ImagP = CGF.emitAddrOfImagComponent(SrcPtr, lvalue.getType()); 358 Imag = Builder.CreateLoad(ImagP, isVolatile, SrcPtr.getName() + ".imag"); 359 } 360 361 return ComplexPairTy(Real, Imag); 362 } 363 364 /// EmitStoreOfComplex - Store the specified real/imag parts into the 365 /// specified value pointer. 366 void ComplexExprEmitter::EmitStoreOfComplex(ComplexPairTy Val, LValue lvalue, 367 bool isInit) { 368 if (lvalue.getType()->isAtomicType() || 369 (!isInit && CGF.LValueIsSuitableForInlineAtomic(lvalue))) 370 return CGF.EmitAtomicStore(RValue::getComplex(Val), lvalue, isInit); 371 372 Address Ptr = lvalue.getAddress(); 373 Address RealPtr = CGF.emitAddrOfRealComponent(Ptr, lvalue.getType()); 374 Address ImagPtr = CGF.emitAddrOfImagComponent(Ptr, lvalue.getType()); 375 376 Builder.CreateStore(Val.first, RealPtr, lvalue.isVolatileQualified()); 377 Builder.CreateStore(Val.second, ImagPtr, lvalue.isVolatileQualified()); 378 } 379 380 381 382 //===----------------------------------------------------------------------===// 383 // Visitor Methods 384 //===----------------------------------------------------------------------===// 385 386 ComplexPairTy ComplexExprEmitter::VisitExpr(Expr *E) { 387 CGF.ErrorUnsupported(E, "complex expression"); 388 llvm::Type *EltTy = 389 CGF.ConvertType(getComplexType(E->getType())->getElementType()); 390 llvm::Value *U = llvm::UndefValue::get(EltTy); 391 return ComplexPairTy(U, U); 392 } 393 394 ComplexPairTy ComplexExprEmitter:: 395 VisitImaginaryLiteral(const ImaginaryLiteral *IL) { 396 llvm::Value *Imag = CGF.EmitScalarExpr(IL->getSubExpr()); 397 return ComplexPairTy(llvm::Constant::getNullValue(Imag->getType()), Imag); 398 } 399 400 401 ComplexPairTy ComplexExprEmitter::VisitCallExpr(const CallExpr *E) { 402 if (E->getCallReturnType(CGF.getContext())->isReferenceType()) 403 return EmitLoadOfLValue(E); 404 405 return CGF.EmitCallExpr(E).getComplexVal(); 406 } 407 408 ComplexPairTy ComplexExprEmitter::VisitStmtExpr(const StmtExpr *E) { 409 CodeGenFunction::StmtExprEvaluation eval(CGF); 410 Address RetAlloca = CGF.EmitCompoundStmt(*E->getSubStmt(), true); 411 assert(RetAlloca.isValid() && "Expected complex return value"); 412 return EmitLoadOfLValue(CGF.MakeAddrLValue(RetAlloca, E->getType()), 413 E->getExprLoc()); 414 } 415 416 /// Emit a cast from complex value Val to DestType. 417 ComplexPairTy ComplexExprEmitter::EmitComplexToComplexCast(ComplexPairTy Val, 418 QualType SrcType, 419 QualType DestType, 420 SourceLocation Loc) { 421 // Get the src/dest element type. 422 SrcType = SrcType->castAs<ComplexType>()->getElementType(); 423 DestType = DestType->castAs<ComplexType>()->getElementType(); 424 425 // C99 6.3.1.6: When a value of complex type is converted to another 426 // complex type, both the real and imaginary parts follow the conversion 427 // rules for the corresponding real types. 428 Val.first = CGF.EmitScalarConversion(Val.first, SrcType, DestType, Loc); 429 Val.second = CGF.EmitScalarConversion(Val.second, SrcType, DestType, Loc); 430 return Val; 431 } 432 433 ComplexPairTy ComplexExprEmitter::EmitScalarToComplexCast(llvm::Value *Val, 434 QualType SrcType, 435 QualType DestType, 436 SourceLocation Loc) { 437 // Convert the input element to the element type of the complex. 438 DestType = DestType->castAs<ComplexType>()->getElementType(); 439 Val = CGF.EmitScalarConversion(Val, SrcType, DestType, Loc); 440 441 // Return (realval, 0). 442 return ComplexPairTy(Val, llvm::Constant::getNullValue(Val->getType())); 443 } 444 445 ComplexPairTy ComplexExprEmitter::EmitCast(CastKind CK, Expr *Op, 446 QualType DestTy) { 447 switch (CK) { 448 case CK_Dependent: llvm_unreachable("dependent cast kind in IR gen!"); 449 450 // Atomic to non-atomic casts may be more than a no-op for some platforms and 451 // for some types. 452 case CK_AtomicToNonAtomic: 453 case CK_NonAtomicToAtomic: 454 case CK_NoOp: 455 case CK_LValueToRValue: 456 case CK_UserDefinedConversion: 457 return Visit(Op); 458 459 case CK_LValueBitCast: { 460 LValue origLV = CGF.EmitLValue(Op); 461 Address V = origLV.getAddress(); 462 V = Builder.CreateElementBitCast(V, CGF.ConvertType(DestTy)); 463 return EmitLoadOfLValue(CGF.MakeAddrLValue(V, DestTy), Op->getExprLoc()); 464 } 465 466 case CK_BitCast: 467 case CK_BaseToDerived: 468 case CK_DerivedToBase: 469 case CK_UncheckedDerivedToBase: 470 case CK_Dynamic: 471 case CK_ToUnion: 472 case CK_ArrayToPointerDecay: 473 case CK_FunctionToPointerDecay: 474 case CK_NullToPointer: 475 case CK_NullToMemberPointer: 476 case CK_BaseToDerivedMemberPointer: 477 case CK_DerivedToBaseMemberPointer: 478 case CK_MemberPointerToBoolean: 479 case CK_ReinterpretMemberPointer: 480 case CK_ConstructorConversion: 481 case CK_IntegralToPointer: 482 case CK_PointerToIntegral: 483 case CK_PointerToBoolean: 484 case CK_ToVoid: 485 case CK_VectorSplat: 486 case CK_IntegralCast: 487 case CK_BooleanToSignedIntegral: 488 case CK_IntegralToBoolean: 489 case CK_IntegralToFloating: 490 case CK_FloatingToIntegral: 491 case CK_FloatingToBoolean: 492 case CK_FloatingCast: 493 case CK_CPointerToObjCPointerCast: 494 case CK_BlockPointerToObjCPointerCast: 495 case CK_AnyPointerToBlockPointerCast: 496 case CK_ObjCObjectLValueCast: 497 case CK_FloatingComplexToReal: 498 case CK_FloatingComplexToBoolean: 499 case CK_IntegralComplexToReal: 500 case CK_IntegralComplexToBoolean: 501 case CK_ARCProduceObject: 502 case CK_ARCConsumeObject: 503 case CK_ARCReclaimReturnedObject: 504 case CK_ARCExtendBlockObject: 505 case CK_CopyAndAutoreleaseBlockObject: 506 case CK_BuiltinFnToFnPtr: 507 case CK_ZeroToOCLEvent: 508 case CK_ZeroToOCLQueue: 509 case CK_AddressSpaceConversion: 510 case CK_IntToOCLSampler: 511 llvm_unreachable("invalid cast kind for complex value"); 512 513 case CK_FloatingRealToComplex: 514 case CK_IntegralRealToComplex: 515 return EmitScalarToComplexCast(CGF.EmitScalarExpr(Op), Op->getType(), 516 DestTy, Op->getExprLoc()); 517 518 case CK_FloatingComplexCast: 519 case CK_FloatingComplexToIntegralComplex: 520 case CK_IntegralComplexCast: 521 case CK_IntegralComplexToFloatingComplex: 522 return EmitComplexToComplexCast(Visit(Op), Op->getType(), DestTy, 523 Op->getExprLoc()); 524 } 525 526 llvm_unreachable("unknown cast resulting in complex value"); 527 } 528 529 ComplexPairTy ComplexExprEmitter::VisitUnaryMinus(const UnaryOperator *E) { 530 TestAndClearIgnoreReal(); 531 TestAndClearIgnoreImag(); 532 ComplexPairTy Op = Visit(E->getSubExpr()); 533 534 llvm::Value *ResR, *ResI; 535 if (Op.first->getType()->isFloatingPointTy()) { 536 ResR = Builder.CreateFNeg(Op.first, "neg.r"); 537 ResI = Builder.CreateFNeg(Op.second, "neg.i"); 538 } else { 539 ResR = Builder.CreateNeg(Op.first, "neg.r"); 540 ResI = Builder.CreateNeg(Op.second, "neg.i"); 541 } 542 return ComplexPairTy(ResR, ResI); 543 } 544 545 ComplexPairTy ComplexExprEmitter::VisitUnaryNot(const UnaryOperator *E) { 546 TestAndClearIgnoreReal(); 547 TestAndClearIgnoreImag(); 548 // ~(a+ib) = a + i*-b 549 ComplexPairTy Op = Visit(E->getSubExpr()); 550 llvm::Value *ResI; 551 if (Op.second->getType()->isFloatingPointTy()) 552 ResI = Builder.CreateFNeg(Op.second, "conj.i"); 553 else 554 ResI = Builder.CreateNeg(Op.second, "conj.i"); 555 556 return ComplexPairTy(Op.first, ResI); 557 } 558 559 ComplexPairTy ComplexExprEmitter::EmitBinAdd(const BinOpInfo &Op) { 560 llvm::Value *ResR, *ResI; 561 562 if (Op.LHS.first->getType()->isFloatingPointTy()) { 563 ResR = Builder.CreateFAdd(Op.LHS.first, Op.RHS.first, "add.r"); 564 if (Op.LHS.second && Op.RHS.second) 565 ResI = Builder.CreateFAdd(Op.LHS.second, Op.RHS.second, "add.i"); 566 else 567 ResI = Op.LHS.second ? Op.LHS.second : Op.RHS.second; 568 assert(ResI && "Only one operand may be real!"); 569 } else { 570 ResR = Builder.CreateAdd(Op.LHS.first, Op.RHS.first, "add.r"); 571 assert(Op.LHS.second && Op.RHS.second && 572 "Both operands of integer complex operators must be complex!"); 573 ResI = Builder.CreateAdd(Op.LHS.second, Op.RHS.second, "add.i"); 574 } 575 return ComplexPairTy(ResR, ResI); 576 } 577 578 ComplexPairTy ComplexExprEmitter::EmitBinSub(const BinOpInfo &Op) { 579 llvm::Value *ResR, *ResI; 580 if (Op.LHS.first->getType()->isFloatingPointTy()) { 581 ResR = Builder.CreateFSub(Op.LHS.first, Op.RHS.first, "sub.r"); 582 if (Op.LHS.second && Op.RHS.second) 583 ResI = Builder.CreateFSub(Op.LHS.second, Op.RHS.second, "sub.i"); 584 else 585 ResI = Op.LHS.second ? Op.LHS.second 586 : Builder.CreateFNeg(Op.RHS.second, "sub.i"); 587 assert(ResI && "Only one operand may be real!"); 588 } else { 589 ResR = Builder.CreateSub(Op.LHS.first, Op.RHS.first, "sub.r"); 590 assert(Op.LHS.second && Op.RHS.second && 591 "Both operands of integer complex operators must be complex!"); 592 ResI = Builder.CreateSub(Op.LHS.second, Op.RHS.second, "sub.i"); 593 } 594 return ComplexPairTy(ResR, ResI); 595 } 596 597 /// \brief Emit a libcall for a binary operation on complex types. 598 ComplexPairTy ComplexExprEmitter::EmitComplexBinOpLibCall(StringRef LibCallName, 599 const BinOpInfo &Op) { 600 CallArgList Args; 601 Args.add(RValue::get(Op.LHS.first), 602 Op.Ty->castAs<ComplexType>()->getElementType()); 603 Args.add(RValue::get(Op.LHS.second), 604 Op.Ty->castAs<ComplexType>()->getElementType()); 605 Args.add(RValue::get(Op.RHS.first), 606 Op.Ty->castAs<ComplexType>()->getElementType()); 607 Args.add(RValue::get(Op.RHS.second), 608 Op.Ty->castAs<ComplexType>()->getElementType()); 609 610 // We *must* use the full CG function call building logic here because the 611 // complex type has special ABI handling. We also should not forget about 612 // special calling convention which may be used for compiler builtins. 613 614 // We create a function qualified type to state that this call does not have 615 // any exceptions. 616 FunctionProtoType::ExtProtoInfo EPI; 617 EPI = EPI.withExceptionSpec( 618 FunctionProtoType::ExceptionSpecInfo(EST_BasicNoexcept)); 619 SmallVector<QualType, 4> ArgsQTys( 620 4, Op.Ty->castAs<ComplexType>()->getElementType()); 621 QualType FQTy = CGF.getContext().getFunctionType(Op.Ty, ArgsQTys, EPI); 622 const CGFunctionInfo &FuncInfo = CGF.CGM.getTypes().arrangeFreeFunctionCall( 623 Args, cast<FunctionType>(FQTy.getTypePtr()), false); 624 625 llvm::FunctionType *FTy = CGF.CGM.getTypes().GetFunctionType(FuncInfo); 626 llvm::Constant *Func = CGF.CGM.CreateBuiltinFunction(FTy, LibCallName); 627 CGCallee Callee = CGCallee::forDirect(Func, FQTy->getAs<FunctionProtoType>()); 628 629 llvm::Instruction *Call; 630 RValue Res = CGF.EmitCall(FuncInfo, Callee, ReturnValueSlot(), Args, &Call); 631 cast<llvm::CallInst>(Call)->setCallingConv(CGF.CGM.getBuiltinCC()); 632 return Res.getComplexVal(); 633 } 634 635 /// \brief Lookup the libcall name for a given floating point type complex 636 /// multiply. 637 static StringRef getComplexMultiplyLibCallName(llvm::Type *Ty) { 638 switch (Ty->getTypeID()) { 639 default: 640 llvm_unreachable("Unsupported floating point type!"); 641 case llvm::Type::HalfTyID: 642 return "__mulhc3"; 643 case llvm::Type::FloatTyID: 644 return "__mulsc3"; 645 case llvm::Type::DoubleTyID: 646 return "__muldc3"; 647 case llvm::Type::PPC_FP128TyID: 648 return "__multc3"; 649 case llvm::Type::X86_FP80TyID: 650 return "__mulxc3"; 651 case llvm::Type::FP128TyID: 652 return "__multc3"; 653 } 654 } 655 656 // See C11 Annex G.5.1 for the semantics of multiplicative operators on complex 657 // typed values. 658 ComplexPairTy ComplexExprEmitter::EmitBinMul(const BinOpInfo &Op) { 659 using llvm::Value; 660 Value *ResR, *ResI; 661 llvm::MDBuilder MDHelper(CGF.getLLVMContext()); 662 663 if (Op.LHS.first->getType()->isFloatingPointTy()) { 664 // The general formulation is: 665 // (a + ib) * (c + id) = (a * c - b * d) + i(a * d + b * c) 666 // 667 // But we can fold away components which would be zero due to a real 668 // operand according to C11 Annex G.5.1p2. 669 // FIXME: C11 also provides for imaginary types which would allow folding 670 // still more of this within the type system. 671 672 if (Op.LHS.second && Op.RHS.second) { 673 // If both operands are complex, emit the core math directly, and then 674 // test for NaNs. If we find NaNs in the result, we delegate to a libcall 675 // to carefully re-compute the correct infinity representation if 676 // possible. The expectation is that the presence of NaNs here is 677 // *extremely* rare, and so the cost of the libcall is almost irrelevant. 678 // This is good, because the libcall re-computes the core multiplication 679 // exactly the same as we do here and re-tests for NaNs in order to be 680 // a generic complex*complex libcall. 681 682 // First compute the four products. 683 Value *AC = Builder.CreateFMul(Op.LHS.first, Op.RHS.first, "mul_ac"); 684 Value *BD = Builder.CreateFMul(Op.LHS.second, Op.RHS.second, "mul_bd"); 685 Value *AD = Builder.CreateFMul(Op.LHS.first, Op.RHS.second, "mul_ad"); 686 Value *BC = Builder.CreateFMul(Op.LHS.second, Op.RHS.first, "mul_bc"); 687 688 // The real part is the difference of the first two, the imaginary part is 689 // the sum of the second. 690 ResR = Builder.CreateFSub(AC, BD, "mul_r"); 691 ResI = Builder.CreateFAdd(AD, BC, "mul_i"); 692 693 // Emit the test for the real part becoming NaN and create a branch to 694 // handle it. We test for NaN by comparing the number to itself. 695 Value *IsRNaN = Builder.CreateFCmpUNO(ResR, ResR, "isnan_cmp"); 696 llvm::BasicBlock *ContBB = CGF.createBasicBlock("complex_mul_cont"); 697 llvm::BasicBlock *INaNBB = CGF.createBasicBlock("complex_mul_imag_nan"); 698 llvm::Instruction *Branch = Builder.CreateCondBr(IsRNaN, INaNBB, ContBB); 699 llvm::BasicBlock *OrigBB = Branch->getParent(); 700 701 // Give hint that we very much don't expect to see NaNs. 702 // Value chosen to match UR_NONTAKEN_WEIGHT, see BranchProbabilityInfo.cpp 703 llvm::MDNode *BrWeight = MDHelper.createBranchWeights(1, (1U << 20) - 1); 704 Branch->setMetadata(llvm::LLVMContext::MD_prof, BrWeight); 705 706 // Now test the imaginary part and create its branch. 707 CGF.EmitBlock(INaNBB); 708 Value *IsINaN = Builder.CreateFCmpUNO(ResI, ResI, "isnan_cmp"); 709 llvm::BasicBlock *LibCallBB = CGF.createBasicBlock("complex_mul_libcall"); 710 Branch = Builder.CreateCondBr(IsINaN, LibCallBB, ContBB); 711 Branch->setMetadata(llvm::LLVMContext::MD_prof, BrWeight); 712 713 // Now emit the libcall on this slowest of the slow paths. 714 CGF.EmitBlock(LibCallBB); 715 Value *LibCallR, *LibCallI; 716 std::tie(LibCallR, LibCallI) = EmitComplexBinOpLibCall( 717 getComplexMultiplyLibCallName(Op.LHS.first->getType()), Op); 718 Builder.CreateBr(ContBB); 719 720 // Finally continue execution by phi-ing together the different 721 // computation paths. 722 CGF.EmitBlock(ContBB); 723 llvm::PHINode *RealPHI = Builder.CreatePHI(ResR->getType(), 3, "real_mul_phi"); 724 RealPHI->addIncoming(ResR, OrigBB); 725 RealPHI->addIncoming(ResR, INaNBB); 726 RealPHI->addIncoming(LibCallR, LibCallBB); 727 llvm::PHINode *ImagPHI = Builder.CreatePHI(ResI->getType(), 3, "imag_mul_phi"); 728 ImagPHI->addIncoming(ResI, OrigBB); 729 ImagPHI->addIncoming(ResI, INaNBB); 730 ImagPHI->addIncoming(LibCallI, LibCallBB); 731 return ComplexPairTy(RealPHI, ImagPHI); 732 } 733 assert((Op.LHS.second || Op.RHS.second) && 734 "At least one operand must be complex!"); 735 736 // If either of the operands is a real rather than a complex, the 737 // imaginary component is ignored when computing the real component of the 738 // result. 739 ResR = Builder.CreateFMul(Op.LHS.first, Op.RHS.first, "mul.rl"); 740 741 ResI = Op.LHS.second 742 ? Builder.CreateFMul(Op.LHS.second, Op.RHS.first, "mul.il") 743 : Builder.CreateFMul(Op.LHS.first, Op.RHS.second, "mul.ir"); 744 } else { 745 assert(Op.LHS.second && Op.RHS.second && 746 "Both operands of integer complex operators must be complex!"); 747 Value *ResRl = Builder.CreateMul(Op.LHS.first, Op.RHS.first, "mul.rl"); 748 Value *ResRr = Builder.CreateMul(Op.LHS.second, Op.RHS.second, "mul.rr"); 749 ResR = Builder.CreateSub(ResRl, ResRr, "mul.r"); 750 751 Value *ResIl = Builder.CreateMul(Op.LHS.second, Op.RHS.first, "mul.il"); 752 Value *ResIr = Builder.CreateMul(Op.LHS.first, Op.RHS.second, "mul.ir"); 753 ResI = Builder.CreateAdd(ResIl, ResIr, "mul.i"); 754 } 755 return ComplexPairTy(ResR, ResI); 756 } 757 758 // See C11 Annex G.5.1 for the semantics of multiplicative operators on complex 759 // typed values. 760 ComplexPairTy ComplexExprEmitter::EmitBinDiv(const BinOpInfo &Op) { 761 llvm::Value *LHSr = Op.LHS.first, *LHSi = Op.LHS.second; 762 llvm::Value *RHSr = Op.RHS.first, *RHSi = Op.RHS.second; 763 764 llvm::Value *DSTr, *DSTi; 765 if (LHSr->getType()->isFloatingPointTy()) { 766 // If we have a complex operand on the RHS and FastMath is not allowed, we 767 // delegate to a libcall to handle all of the complexities and minimize 768 // underflow/overflow cases. When FastMath is allowed we construct the 769 // divide inline using the same algorithm as for integer operands. 770 // 771 // FIXME: We would be able to avoid the libcall in many places if we 772 // supported imaginary types in addition to complex types. 773 if (RHSi && !CGF.getLangOpts().FastMath) { 774 BinOpInfo LibCallOp = Op; 775 // If LHS was a real, supply a null imaginary part. 776 if (!LHSi) 777 LibCallOp.LHS.second = llvm::Constant::getNullValue(LHSr->getType()); 778 779 switch (LHSr->getType()->getTypeID()) { 780 default: 781 llvm_unreachable("Unsupported floating point type!"); 782 case llvm::Type::HalfTyID: 783 return EmitComplexBinOpLibCall("__divhc3", LibCallOp); 784 case llvm::Type::FloatTyID: 785 return EmitComplexBinOpLibCall("__divsc3", LibCallOp); 786 case llvm::Type::DoubleTyID: 787 return EmitComplexBinOpLibCall("__divdc3", LibCallOp); 788 case llvm::Type::PPC_FP128TyID: 789 return EmitComplexBinOpLibCall("__divtc3", LibCallOp); 790 case llvm::Type::X86_FP80TyID: 791 return EmitComplexBinOpLibCall("__divxc3", LibCallOp); 792 case llvm::Type::FP128TyID: 793 return EmitComplexBinOpLibCall("__divtc3", LibCallOp); 794 } 795 } else if (RHSi) { 796 if (!LHSi) 797 LHSi = llvm::Constant::getNullValue(RHSi->getType()); 798 799 // (a+ib) / (c+id) = ((ac+bd)/(cc+dd)) + i((bc-ad)/(cc+dd)) 800 llvm::Value *AC = Builder.CreateFMul(LHSr, RHSr); // a*c 801 llvm::Value *BD = Builder.CreateFMul(LHSi, RHSi); // b*d 802 llvm::Value *ACpBD = Builder.CreateFAdd(AC, BD); // ac+bd 803 804 llvm::Value *CC = Builder.CreateFMul(RHSr, RHSr); // c*c 805 llvm::Value *DD = Builder.CreateFMul(RHSi, RHSi); // d*d 806 llvm::Value *CCpDD = Builder.CreateFAdd(CC, DD); // cc+dd 807 808 llvm::Value *BC = Builder.CreateFMul(LHSi, RHSr); // b*c 809 llvm::Value *AD = Builder.CreateFMul(LHSr, RHSi); // a*d 810 llvm::Value *BCmAD = Builder.CreateFSub(BC, AD); // bc-ad 811 812 DSTr = Builder.CreateFDiv(ACpBD, CCpDD); 813 DSTi = Builder.CreateFDiv(BCmAD, CCpDD); 814 } else { 815 assert(LHSi && "Can have at most one non-complex operand!"); 816 817 DSTr = Builder.CreateFDiv(LHSr, RHSr); 818 DSTi = Builder.CreateFDiv(LHSi, RHSr); 819 } 820 } else { 821 assert(Op.LHS.second && Op.RHS.second && 822 "Both operands of integer complex operators must be complex!"); 823 // (a+ib) / (c+id) = ((ac+bd)/(cc+dd)) + i((bc-ad)/(cc+dd)) 824 llvm::Value *Tmp1 = Builder.CreateMul(LHSr, RHSr); // a*c 825 llvm::Value *Tmp2 = Builder.CreateMul(LHSi, RHSi); // b*d 826 llvm::Value *Tmp3 = Builder.CreateAdd(Tmp1, Tmp2); // ac+bd 827 828 llvm::Value *Tmp4 = Builder.CreateMul(RHSr, RHSr); // c*c 829 llvm::Value *Tmp5 = Builder.CreateMul(RHSi, RHSi); // d*d 830 llvm::Value *Tmp6 = Builder.CreateAdd(Tmp4, Tmp5); // cc+dd 831 832 llvm::Value *Tmp7 = Builder.CreateMul(LHSi, RHSr); // b*c 833 llvm::Value *Tmp8 = Builder.CreateMul(LHSr, RHSi); // a*d 834 llvm::Value *Tmp9 = Builder.CreateSub(Tmp7, Tmp8); // bc-ad 835 836 if (Op.Ty->castAs<ComplexType>()->getElementType()->isUnsignedIntegerType()) { 837 DSTr = Builder.CreateUDiv(Tmp3, Tmp6); 838 DSTi = Builder.CreateUDiv(Tmp9, Tmp6); 839 } else { 840 DSTr = Builder.CreateSDiv(Tmp3, Tmp6); 841 DSTi = Builder.CreateSDiv(Tmp9, Tmp6); 842 } 843 } 844 845 return ComplexPairTy(DSTr, DSTi); 846 } 847 848 ComplexExprEmitter::BinOpInfo 849 ComplexExprEmitter::EmitBinOps(const BinaryOperator *E) { 850 TestAndClearIgnoreReal(); 851 TestAndClearIgnoreImag(); 852 BinOpInfo Ops; 853 if (E->getLHS()->getType()->isRealFloatingType()) 854 Ops.LHS = ComplexPairTy(CGF.EmitScalarExpr(E->getLHS()), nullptr); 855 else 856 Ops.LHS = Visit(E->getLHS()); 857 if (E->getRHS()->getType()->isRealFloatingType()) 858 Ops.RHS = ComplexPairTy(CGF.EmitScalarExpr(E->getRHS()), nullptr); 859 else 860 Ops.RHS = Visit(E->getRHS()); 861 862 Ops.Ty = E->getType(); 863 return Ops; 864 } 865 866 867 LValue ComplexExprEmitter:: 868 EmitCompoundAssignLValue(const CompoundAssignOperator *E, 869 ComplexPairTy (ComplexExprEmitter::*Func)(const BinOpInfo&), 870 RValue &Val) { 871 TestAndClearIgnoreReal(); 872 TestAndClearIgnoreImag(); 873 QualType LHSTy = E->getLHS()->getType(); 874 if (const AtomicType *AT = LHSTy->getAs<AtomicType>()) 875 LHSTy = AT->getValueType(); 876 877 BinOpInfo OpInfo; 878 879 // Load the RHS and LHS operands. 880 // __block variables need to have the rhs evaluated first, plus this should 881 // improve codegen a little. 882 OpInfo.Ty = E->getComputationResultType(); 883 QualType ComplexElementTy = cast<ComplexType>(OpInfo.Ty)->getElementType(); 884 885 // The RHS should have been converted to the computation type. 886 if (E->getRHS()->getType()->isRealFloatingType()) { 887 assert( 888 CGF.getContext() 889 .hasSameUnqualifiedType(ComplexElementTy, E->getRHS()->getType())); 890 OpInfo.RHS = ComplexPairTy(CGF.EmitScalarExpr(E->getRHS()), nullptr); 891 } else { 892 assert(CGF.getContext() 893 .hasSameUnqualifiedType(OpInfo.Ty, E->getRHS()->getType())); 894 OpInfo.RHS = Visit(E->getRHS()); 895 } 896 897 LValue LHS = CGF.EmitLValue(E->getLHS()); 898 899 // Load from the l-value and convert it. 900 SourceLocation Loc = E->getExprLoc(); 901 if (LHSTy->isAnyComplexType()) { 902 ComplexPairTy LHSVal = EmitLoadOfLValue(LHS, Loc); 903 OpInfo.LHS = EmitComplexToComplexCast(LHSVal, LHSTy, OpInfo.Ty, Loc); 904 } else { 905 llvm::Value *LHSVal = CGF.EmitLoadOfScalar(LHS, Loc); 906 // For floating point real operands we can directly pass the scalar form 907 // to the binary operator emission and potentially get more efficient code. 908 if (LHSTy->isRealFloatingType()) { 909 if (!CGF.getContext().hasSameUnqualifiedType(ComplexElementTy, LHSTy)) 910 LHSVal = CGF.EmitScalarConversion(LHSVal, LHSTy, ComplexElementTy, Loc); 911 OpInfo.LHS = ComplexPairTy(LHSVal, nullptr); 912 } else { 913 OpInfo.LHS = EmitScalarToComplexCast(LHSVal, LHSTy, OpInfo.Ty, Loc); 914 } 915 } 916 917 // Expand the binary operator. 918 ComplexPairTy Result = (this->*Func)(OpInfo); 919 920 // Truncate the result and store it into the LHS lvalue. 921 if (LHSTy->isAnyComplexType()) { 922 ComplexPairTy ResVal = 923 EmitComplexToComplexCast(Result, OpInfo.Ty, LHSTy, Loc); 924 EmitStoreOfComplex(ResVal, LHS, /*isInit*/ false); 925 Val = RValue::getComplex(ResVal); 926 } else { 927 llvm::Value *ResVal = 928 CGF.EmitComplexToScalarConversion(Result, OpInfo.Ty, LHSTy, Loc); 929 CGF.EmitStoreOfScalar(ResVal, LHS, /*isInit*/ false); 930 Val = RValue::get(ResVal); 931 } 932 933 return LHS; 934 } 935 936 // Compound assignments. 937 ComplexPairTy ComplexExprEmitter:: 938 EmitCompoundAssign(const CompoundAssignOperator *E, 939 ComplexPairTy (ComplexExprEmitter::*Func)(const BinOpInfo&)){ 940 RValue Val; 941 LValue LV = EmitCompoundAssignLValue(E, Func, Val); 942 943 // The result of an assignment in C is the assigned r-value. 944 if (!CGF.getLangOpts().CPlusPlus) 945 return Val.getComplexVal(); 946 947 // If the lvalue is non-volatile, return the computed value of the assignment. 948 if (!LV.isVolatileQualified()) 949 return Val.getComplexVal(); 950 951 return EmitLoadOfLValue(LV, E->getExprLoc()); 952 } 953 954 LValue ComplexExprEmitter::EmitBinAssignLValue(const BinaryOperator *E, 955 ComplexPairTy &Val) { 956 assert(CGF.getContext().hasSameUnqualifiedType(E->getLHS()->getType(), 957 E->getRHS()->getType()) && 958 "Invalid assignment"); 959 TestAndClearIgnoreReal(); 960 TestAndClearIgnoreImag(); 961 962 // Emit the RHS. __block variables need the RHS evaluated first. 963 Val = Visit(E->getRHS()); 964 965 // Compute the address to store into. 966 LValue LHS = CGF.EmitLValue(E->getLHS()); 967 968 // Store the result value into the LHS lvalue. 969 EmitStoreOfComplex(Val, LHS, /*isInit*/ false); 970 971 return LHS; 972 } 973 974 ComplexPairTy ComplexExprEmitter::VisitBinAssign(const BinaryOperator *E) { 975 ComplexPairTy Val; 976 LValue LV = EmitBinAssignLValue(E, Val); 977 978 // The result of an assignment in C is the assigned r-value. 979 if (!CGF.getLangOpts().CPlusPlus) 980 return Val; 981 982 // If the lvalue is non-volatile, return the computed value of the assignment. 983 if (!LV.isVolatileQualified()) 984 return Val; 985 986 return EmitLoadOfLValue(LV, E->getExprLoc()); 987 } 988 989 ComplexPairTy ComplexExprEmitter::VisitBinComma(const BinaryOperator *E) { 990 CGF.EmitIgnoredExpr(E->getLHS()); 991 return Visit(E->getRHS()); 992 } 993 994 ComplexPairTy ComplexExprEmitter:: 995 VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) { 996 TestAndClearIgnoreReal(); 997 TestAndClearIgnoreImag(); 998 llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true"); 999 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false"); 1000 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end"); 1001 1002 // Bind the common expression if necessary. 1003 CodeGenFunction::OpaqueValueMapping binding(CGF, E); 1004 1005 1006 CodeGenFunction::ConditionalEvaluation eval(CGF); 1007 CGF.EmitBranchOnBoolExpr(E->getCond(), LHSBlock, RHSBlock, 1008 CGF.getProfileCount(E)); 1009 1010 eval.begin(CGF); 1011 CGF.EmitBlock(LHSBlock); 1012 CGF.incrementProfileCounter(E); 1013 ComplexPairTy LHS = Visit(E->getTrueExpr()); 1014 LHSBlock = Builder.GetInsertBlock(); 1015 CGF.EmitBranch(ContBlock); 1016 eval.end(CGF); 1017 1018 eval.begin(CGF); 1019 CGF.EmitBlock(RHSBlock); 1020 ComplexPairTy RHS = Visit(E->getFalseExpr()); 1021 RHSBlock = Builder.GetInsertBlock(); 1022 CGF.EmitBlock(ContBlock); 1023 eval.end(CGF); 1024 1025 // Create a PHI node for the real part. 1026 llvm::PHINode *RealPN = Builder.CreatePHI(LHS.first->getType(), 2, "cond.r"); 1027 RealPN->addIncoming(LHS.first, LHSBlock); 1028 RealPN->addIncoming(RHS.first, RHSBlock); 1029 1030 // Create a PHI node for the imaginary part. 1031 llvm::PHINode *ImagPN = Builder.CreatePHI(LHS.first->getType(), 2, "cond.i"); 1032 ImagPN->addIncoming(LHS.second, LHSBlock); 1033 ImagPN->addIncoming(RHS.second, RHSBlock); 1034 1035 return ComplexPairTy(RealPN, ImagPN); 1036 } 1037 1038 ComplexPairTy ComplexExprEmitter::VisitChooseExpr(ChooseExpr *E) { 1039 return Visit(E->getChosenSubExpr()); 1040 } 1041 1042 ComplexPairTy ComplexExprEmitter::VisitInitListExpr(InitListExpr *E) { 1043 bool Ignore = TestAndClearIgnoreReal(); 1044 (void)Ignore; 1045 assert (Ignore == false && "init list ignored"); 1046 Ignore = TestAndClearIgnoreImag(); 1047 (void)Ignore; 1048 assert (Ignore == false && "init list ignored"); 1049 1050 if (E->getNumInits() == 2) { 1051 llvm::Value *Real = CGF.EmitScalarExpr(E->getInit(0)); 1052 llvm::Value *Imag = CGF.EmitScalarExpr(E->getInit(1)); 1053 return ComplexPairTy(Real, Imag); 1054 } else if (E->getNumInits() == 1) { 1055 return Visit(E->getInit(0)); 1056 } 1057 1058 // Empty init list intializes to null 1059 assert(E->getNumInits() == 0 && "Unexpected number of inits"); 1060 QualType Ty = E->getType()->castAs<ComplexType>()->getElementType(); 1061 llvm::Type* LTy = CGF.ConvertType(Ty); 1062 llvm::Value* zeroConstant = llvm::Constant::getNullValue(LTy); 1063 return ComplexPairTy(zeroConstant, zeroConstant); 1064 } 1065 1066 ComplexPairTy ComplexExprEmitter::VisitVAArgExpr(VAArgExpr *E) { 1067 Address ArgValue = Address::invalid(); 1068 Address ArgPtr = CGF.EmitVAArg(E, ArgValue); 1069 1070 if (!ArgPtr.isValid()) { 1071 CGF.ErrorUnsupported(E, "complex va_arg expression"); 1072 llvm::Type *EltTy = 1073 CGF.ConvertType(E->getType()->castAs<ComplexType>()->getElementType()); 1074 llvm::Value *U = llvm::UndefValue::get(EltTy); 1075 return ComplexPairTy(U, U); 1076 } 1077 1078 return EmitLoadOfLValue(CGF.MakeAddrLValue(ArgPtr, E->getType()), 1079 E->getExprLoc()); 1080 } 1081 1082 //===----------------------------------------------------------------------===// 1083 // Entry Point into this File 1084 //===----------------------------------------------------------------------===// 1085 1086 /// EmitComplexExpr - Emit the computation of the specified expression of 1087 /// complex type, ignoring the result. 1088 ComplexPairTy CodeGenFunction::EmitComplexExpr(const Expr *E, bool IgnoreReal, 1089 bool IgnoreImag) { 1090 assert(E && getComplexType(E->getType()) && 1091 "Invalid complex expression to emit"); 1092 1093 return ComplexExprEmitter(*this, IgnoreReal, IgnoreImag) 1094 .Visit(const_cast<Expr *>(E)); 1095 } 1096 1097 void CodeGenFunction::EmitComplexExprIntoLValue(const Expr *E, LValue dest, 1098 bool isInit) { 1099 assert(E && getComplexType(E->getType()) && 1100 "Invalid complex expression to emit"); 1101 ComplexExprEmitter Emitter(*this); 1102 ComplexPairTy Val = Emitter.Visit(const_cast<Expr*>(E)); 1103 Emitter.EmitStoreOfComplex(Val, dest, isInit); 1104 } 1105 1106 /// EmitStoreOfComplex - Store a complex number into the specified l-value. 1107 void CodeGenFunction::EmitStoreOfComplex(ComplexPairTy V, LValue dest, 1108 bool isInit) { 1109 ComplexExprEmitter(*this).EmitStoreOfComplex(V, dest, isInit); 1110 } 1111 1112 /// EmitLoadOfComplex - Load a complex number from the specified address. 1113 ComplexPairTy CodeGenFunction::EmitLoadOfComplex(LValue src, 1114 SourceLocation loc) { 1115 return ComplexExprEmitter(*this).EmitLoadOfLValue(src, loc); 1116 } 1117 1118 LValue CodeGenFunction::EmitComplexAssignmentLValue(const BinaryOperator *E) { 1119 assert(E->getOpcode() == BO_Assign); 1120 ComplexPairTy Val; // ignored 1121 return ComplexExprEmitter(*this).EmitBinAssignLValue(E, Val); 1122 } 1123 1124 typedef ComplexPairTy (ComplexExprEmitter::*CompoundFunc)( 1125 const ComplexExprEmitter::BinOpInfo &); 1126 1127 static CompoundFunc getComplexOp(BinaryOperatorKind Op) { 1128 switch (Op) { 1129 case BO_MulAssign: return &ComplexExprEmitter::EmitBinMul; 1130 case BO_DivAssign: return &ComplexExprEmitter::EmitBinDiv; 1131 case BO_SubAssign: return &ComplexExprEmitter::EmitBinSub; 1132 case BO_AddAssign: return &ComplexExprEmitter::EmitBinAdd; 1133 default: 1134 llvm_unreachable("unexpected complex compound assignment"); 1135 } 1136 } 1137 1138 LValue CodeGenFunction:: 1139 EmitComplexCompoundAssignmentLValue(const CompoundAssignOperator *E) { 1140 CompoundFunc Op = getComplexOp(E->getOpcode()); 1141 RValue Val; 1142 return ComplexExprEmitter(*this).EmitCompoundAssignLValue(E, Op, Val); 1143 } 1144 1145 LValue CodeGenFunction:: 1146 EmitScalarCompoundAssignWithComplex(const CompoundAssignOperator *E, 1147 llvm::Value *&Result) { 1148 CompoundFunc Op = getComplexOp(E->getOpcode()); 1149 RValue Val; 1150 LValue Ret = ComplexExprEmitter(*this).EmitCompoundAssignLValue(E, Op, Val); 1151 Result = Val.getScalarVal(); 1152 return Ret; 1153 } 1154