1 //=- ReachableCodePathInsensitive.cpp ---------------------------*- C++ --*-==//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements a flow-sensitive, path-insensitive analysis of
11 // determining reachable blocks within a CFG.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #include "clang/Analysis/Analyses/ReachableCode.h"
16 #include "clang/AST/Expr.h"
17 #include "clang/AST/ExprCXX.h"
18 #include "clang/AST/ExprObjC.h"
19 #include "clang/AST/ParentMap.h"
20 #include "clang/AST/StmtCXX.h"
21 #include "clang/Analysis/AnalysisDeclContext.h"
22 #include "clang/Analysis/CFG.h"
23 #include "clang/Basic/SourceManager.h"
24 #include "clang/Lex/Preprocessor.h"
25 #include "llvm/ADT/BitVector.h"
26 #include "llvm/ADT/SmallVector.h"
27
28 using namespace clang;
29
30 //===----------------------------------------------------------------------===//
31 // Core Reachability Analysis routines.
32 //===----------------------------------------------------------------------===//
33
isEnumConstant(const Expr * Ex)34 static bool isEnumConstant(const Expr *Ex) {
35 const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(Ex);
36 if (!DR)
37 return false;
38 return isa<EnumConstantDecl>(DR->getDecl());
39 }
40
isTrivialExpression(const Expr * Ex)41 static bool isTrivialExpression(const Expr *Ex) {
42 Ex = Ex->IgnoreParenCasts();
43 return isa<IntegerLiteral>(Ex) || isa<StringLiteral>(Ex) ||
44 isa<CXXBoolLiteralExpr>(Ex) || isa<ObjCBoolLiteralExpr>(Ex) ||
45 isa<CharacterLiteral>(Ex) ||
46 isEnumConstant(Ex);
47 }
48
isTrivialDoWhile(const CFGBlock * B,const Stmt * S)49 static bool isTrivialDoWhile(const CFGBlock *B, const Stmt *S) {
50 // Check if the block ends with a do...while() and see if 'S' is the
51 // condition.
52 if (const Stmt *Term = B->getTerminator()) {
53 if (const DoStmt *DS = dyn_cast<DoStmt>(Term)) {
54 const Expr *Cond = DS->getCond()->IgnoreParenCasts();
55 return Cond == S && isTrivialExpression(Cond);
56 }
57 }
58 return false;
59 }
60
isBuiltinUnreachable(const Stmt * S)61 static bool isBuiltinUnreachable(const Stmt *S) {
62 if (const auto *DRE = dyn_cast<DeclRefExpr>(S))
63 if (const auto *FDecl = dyn_cast<FunctionDecl>(DRE->getDecl()))
64 return FDecl->getIdentifier() &&
65 FDecl->getBuiltinID() == Builtin::BI__builtin_unreachable;
66 return false;
67 }
68
isBuiltinAssumeFalse(const CFGBlock * B,const Stmt * S,ASTContext & C)69 static bool isBuiltinAssumeFalse(const CFGBlock *B, const Stmt *S,
70 ASTContext &C) {
71 if (B->empty()) {
72 // Happens if S is B's terminator and B contains nothing else
73 // (e.g. a CFGBlock containing only a goto).
74 return false;
75 }
76 if (Optional<CFGStmt> CS = B->back().getAs<CFGStmt>()) {
77 if (const auto *CE = dyn_cast<CallExpr>(CS->getStmt())) {
78 return CE->getCallee()->IgnoreCasts() == S && CE->isBuiltinAssumeFalse(C);
79 }
80 }
81 return false;
82 }
83
isDeadReturn(const CFGBlock * B,const Stmt * S)84 static bool isDeadReturn(const CFGBlock *B, const Stmt *S) {
85 // Look to see if the current control flow ends with a 'return', and see if
86 // 'S' is a substatement. The 'return' may not be the last element in the
87 // block, or may be in a subsequent block because of destructors.
88 const CFGBlock *Current = B;
89 while (true) {
90 for (CFGBlock::const_reverse_iterator I = Current->rbegin(),
91 E = Current->rend();
92 I != E; ++I) {
93 if (Optional<CFGStmt> CS = I->getAs<CFGStmt>()) {
94 if (const ReturnStmt *RS = dyn_cast<ReturnStmt>(CS->getStmt())) {
95 if (RS == S)
96 return true;
97 if (const Expr *RE = RS->getRetValue()) {
98 RE = RE->IgnoreParenCasts();
99 if (RE == S)
100 return true;
101 ParentMap PM(const_cast<Expr *>(RE));
102 // If 'S' is in the ParentMap, it is a subexpression of
103 // the return statement.
104 return PM.getParent(S);
105 }
106 }
107 break;
108 }
109 }
110 // Note also that we are restricting the search for the return statement
111 // to stop at control-flow; only part of a return statement may be dead,
112 // without the whole return statement being dead.
113 if (Current->getTerminator().isTemporaryDtorsBranch()) {
114 // Temporary destructors have a predictable control flow, thus we want to
115 // look into the next block for the return statement.
116 // We look into the false branch, as we know the true branch only contains
117 // the call to the destructor.
118 assert(Current->succ_size() == 2);
119 Current = *(Current->succ_begin() + 1);
120 } else if (!Current->getTerminator() && Current->succ_size() == 1) {
121 // If there is only one successor, we're not dealing with outgoing control
122 // flow. Thus, look into the next block.
123 Current = *Current->succ_begin();
124 if (Current->pred_size() > 1) {
125 // If there is more than one predecessor, we're dealing with incoming
126 // control flow - if the return statement is in that block, it might
127 // well be reachable via a different control flow, thus it's not dead.
128 return false;
129 }
130 } else {
131 // We hit control flow or a dead end. Stop searching.
132 return false;
133 }
134 }
135 llvm_unreachable("Broke out of infinite loop.");
136 }
137
getTopMostMacro(SourceLocation Loc,SourceManager & SM)138 static SourceLocation getTopMostMacro(SourceLocation Loc, SourceManager &SM) {
139 assert(Loc.isMacroID());
140 SourceLocation Last;
141 while (Loc.isMacroID()) {
142 Last = Loc;
143 Loc = SM.getImmediateMacroCallerLoc(Loc);
144 }
145 return Last;
146 }
147
148 /// Returns true if the statement is expanded from a configuration macro.
isExpandedFromConfigurationMacro(const Stmt * S,Preprocessor & PP,bool IgnoreYES_NO=false)149 static bool isExpandedFromConfigurationMacro(const Stmt *S,
150 Preprocessor &PP,
151 bool IgnoreYES_NO = false) {
152 // FIXME: This is not very precise. Here we just check to see if the
153 // value comes from a macro, but we can do much better. This is likely
154 // to be over conservative. This logic is factored into a separate function
155 // so that we can refine it later.
156 SourceLocation L = S->getBeginLoc();
157 if (L.isMacroID()) {
158 SourceManager &SM = PP.getSourceManager();
159 if (IgnoreYES_NO) {
160 // The Objective-C constant 'YES' and 'NO'
161 // are defined as macros. Do not treat them
162 // as configuration values.
163 SourceLocation TopL = getTopMostMacro(L, SM);
164 StringRef MacroName = PP.getImmediateMacroName(TopL);
165 if (MacroName == "YES" || MacroName == "NO")
166 return false;
167 } else if (!PP.getLangOpts().CPlusPlus) {
168 // Do not treat C 'false' and 'true' macros as configuration values.
169 SourceLocation TopL = getTopMostMacro(L, SM);
170 StringRef MacroName = PP.getImmediateMacroName(TopL);
171 if (MacroName == "false" || MacroName == "true")
172 return false;
173 }
174 return true;
175 }
176 return false;
177 }
178
179 static bool isConfigurationValue(const ValueDecl *D, Preprocessor &PP);
180
181 /// Returns true if the statement represents a configuration value.
182 ///
183 /// A configuration value is something usually determined at compile-time
184 /// to conditionally always execute some branch. Such guards are for
185 /// "sometimes unreachable" code. Such code is usually not interesting
186 /// to report as unreachable, and may mask truly unreachable code within
187 /// those blocks.
isConfigurationValue(const Stmt * S,Preprocessor & PP,SourceRange * SilenceableCondVal=nullptr,bool IncludeIntegers=true,bool WrappedInParens=false)188 static bool isConfigurationValue(const Stmt *S,
189 Preprocessor &PP,
190 SourceRange *SilenceableCondVal = nullptr,
191 bool IncludeIntegers = true,
192 bool WrappedInParens = false) {
193 if (!S)
194 return false;
195
196 S = S->IgnoreImplicit();
197
198 if (const Expr *Ex = dyn_cast<Expr>(S))
199 S = Ex->IgnoreCasts();
200
201 // Special case looking for the sigil '()' around an integer literal.
202 if (const ParenExpr *PE = dyn_cast<ParenExpr>(S))
203 if (!PE->getBeginLoc().isMacroID())
204 return isConfigurationValue(PE->getSubExpr(), PP, SilenceableCondVal,
205 IncludeIntegers, true);
206
207 if (const Expr *Ex = dyn_cast<Expr>(S))
208 S = Ex->IgnoreCasts();
209
210 bool IgnoreYES_NO = false;
211
212 switch (S->getStmtClass()) {
213 case Stmt::CallExprClass: {
214 const FunctionDecl *Callee =
215 dyn_cast_or_null<FunctionDecl>(cast<CallExpr>(S)->getCalleeDecl());
216 return Callee ? Callee->isConstexpr() : false;
217 }
218 case Stmt::DeclRefExprClass:
219 return isConfigurationValue(cast<DeclRefExpr>(S)->getDecl(), PP);
220 case Stmt::ObjCBoolLiteralExprClass:
221 IgnoreYES_NO = true;
222 LLVM_FALLTHROUGH;
223 case Stmt::CXXBoolLiteralExprClass:
224 case Stmt::IntegerLiteralClass: {
225 const Expr *E = cast<Expr>(S);
226 if (IncludeIntegers) {
227 if (SilenceableCondVal && !SilenceableCondVal->getBegin().isValid())
228 *SilenceableCondVal = E->getSourceRange();
229 return WrappedInParens || isExpandedFromConfigurationMacro(E, PP, IgnoreYES_NO);
230 }
231 return false;
232 }
233 case Stmt::MemberExprClass:
234 return isConfigurationValue(cast<MemberExpr>(S)->getMemberDecl(), PP);
235 case Stmt::UnaryExprOrTypeTraitExprClass:
236 return true;
237 case Stmt::BinaryOperatorClass: {
238 const BinaryOperator *B = cast<BinaryOperator>(S);
239 // Only include raw integers (not enums) as configuration
240 // values if they are used in a logical or comparison operator
241 // (not arithmetic).
242 IncludeIntegers &= (B->isLogicalOp() || B->isComparisonOp());
243 return isConfigurationValue(B->getLHS(), PP, SilenceableCondVal,
244 IncludeIntegers) ||
245 isConfigurationValue(B->getRHS(), PP, SilenceableCondVal,
246 IncludeIntegers);
247 }
248 case Stmt::UnaryOperatorClass: {
249 const UnaryOperator *UO = cast<UnaryOperator>(S);
250 if (UO->getOpcode() != UO_LNot)
251 return false;
252 bool SilenceableCondValNotSet =
253 SilenceableCondVal && SilenceableCondVal->getBegin().isInvalid();
254 bool IsSubExprConfigValue =
255 isConfigurationValue(UO->getSubExpr(), PP, SilenceableCondVal,
256 IncludeIntegers, WrappedInParens);
257 // Update the silenceable condition value source range only if the range
258 // was set directly by the child expression.
259 if (SilenceableCondValNotSet &&
260 SilenceableCondVal->getBegin().isValid() &&
261 *SilenceableCondVal ==
262 UO->getSubExpr()->IgnoreCasts()->getSourceRange())
263 *SilenceableCondVal = UO->getSourceRange();
264 return IsSubExprConfigValue;
265 }
266 default:
267 return false;
268 }
269 }
270
isConfigurationValue(const ValueDecl * D,Preprocessor & PP)271 static bool isConfigurationValue(const ValueDecl *D, Preprocessor &PP) {
272 if (const EnumConstantDecl *ED = dyn_cast<EnumConstantDecl>(D))
273 return isConfigurationValue(ED->getInitExpr(), PP);
274 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
275 // As a heuristic, treat globals as configuration values. Note
276 // that we only will get here if Sema evaluated this
277 // condition to a constant expression, which means the global
278 // had to be declared in a way to be a truly constant value.
279 // We could generalize this to local variables, but it isn't
280 // clear if those truly represent configuration values that
281 // gate unreachable code.
282 if (!VD->hasLocalStorage())
283 return true;
284
285 // As a heuristic, locals that have been marked 'const' explicitly
286 // can be treated as configuration values as well.
287 return VD->getType().isLocalConstQualified();
288 }
289 return false;
290 }
291
292 /// Returns true if we should always explore all successors of a block.
shouldTreatSuccessorsAsReachable(const CFGBlock * B,Preprocessor & PP)293 static bool shouldTreatSuccessorsAsReachable(const CFGBlock *B,
294 Preprocessor &PP) {
295 if (const Stmt *Term = B->getTerminator()) {
296 if (isa<SwitchStmt>(Term))
297 return true;
298 // Specially handle '||' and '&&'.
299 if (isa<BinaryOperator>(Term)) {
300 return isConfigurationValue(Term, PP);
301 }
302 }
303
304 const Stmt *Cond = B->getTerminatorCondition(/* stripParens */ false);
305 return isConfigurationValue(Cond, PP);
306 }
307
scanFromBlock(const CFGBlock * Start,llvm::BitVector & Reachable,Preprocessor * PP,bool IncludeSometimesUnreachableEdges)308 static unsigned scanFromBlock(const CFGBlock *Start,
309 llvm::BitVector &Reachable,
310 Preprocessor *PP,
311 bool IncludeSometimesUnreachableEdges) {
312 unsigned count = 0;
313
314 // Prep work queue
315 SmallVector<const CFGBlock*, 32> WL;
316
317 // The entry block may have already been marked reachable
318 // by the caller.
319 if (!Reachable[Start->getBlockID()]) {
320 ++count;
321 Reachable[Start->getBlockID()] = true;
322 }
323
324 WL.push_back(Start);
325
326 // Find the reachable blocks from 'Start'.
327 while (!WL.empty()) {
328 const CFGBlock *item = WL.pop_back_val();
329
330 // There are cases where we want to treat all successors as reachable.
331 // The idea is that some "sometimes unreachable" code is not interesting,
332 // and that we should forge ahead and explore those branches anyway.
333 // This allows us to potentially uncover some "always unreachable" code
334 // within the "sometimes unreachable" code.
335 // Look at the successors and mark then reachable.
336 Optional<bool> TreatAllSuccessorsAsReachable;
337 if (!IncludeSometimesUnreachableEdges)
338 TreatAllSuccessorsAsReachable = false;
339
340 for (CFGBlock::const_succ_iterator I = item->succ_begin(),
341 E = item->succ_end(); I != E; ++I) {
342 const CFGBlock *B = *I;
343 if (!B) do {
344 const CFGBlock *UB = I->getPossiblyUnreachableBlock();
345 if (!UB)
346 break;
347
348 if (!TreatAllSuccessorsAsReachable.hasValue()) {
349 assert(PP);
350 TreatAllSuccessorsAsReachable =
351 shouldTreatSuccessorsAsReachable(item, *PP);
352 }
353
354 if (TreatAllSuccessorsAsReachable.getValue()) {
355 B = UB;
356 break;
357 }
358 }
359 while (false);
360
361 if (B) {
362 unsigned blockID = B->getBlockID();
363 if (!Reachable[blockID]) {
364 Reachable.set(blockID);
365 WL.push_back(B);
366 ++count;
367 }
368 }
369 }
370 }
371 return count;
372 }
373
scanMaybeReachableFromBlock(const CFGBlock * Start,Preprocessor & PP,llvm::BitVector & Reachable)374 static unsigned scanMaybeReachableFromBlock(const CFGBlock *Start,
375 Preprocessor &PP,
376 llvm::BitVector &Reachable) {
377 return scanFromBlock(Start, Reachable, &PP, true);
378 }
379
380 //===----------------------------------------------------------------------===//
381 // Dead Code Scanner.
382 //===----------------------------------------------------------------------===//
383
384 namespace {
385 class DeadCodeScan {
386 llvm::BitVector Visited;
387 llvm::BitVector &Reachable;
388 SmallVector<const CFGBlock *, 10> WorkList;
389 Preprocessor &PP;
390 ASTContext &C;
391
392 typedef SmallVector<std::pair<const CFGBlock *, const Stmt *>, 12>
393 DeferredLocsTy;
394
395 DeferredLocsTy DeferredLocs;
396
397 public:
DeadCodeScan(llvm::BitVector & reachable,Preprocessor & PP,ASTContext & C)398 DeadCodeScan(llvm::BitVector &reachable, Preprocessor &PP, ASTContext &C)
399 : Visited(reachable.size()),
400 Reachable(reachable),
401 PP(PP), C(C) {}
402
403 void enqueue(const CFGBlock *block);
404 unsigned scanBackwards(const CFGBlock *Start,
405 clang::reachable_code::Callback &CB);
406
407 bool isDeadCodeRoot(const CFGBlock *Block);
408
409 const Stmt *findDeadCode(const CFGBlock *Block);
410
411 void reportDeadCode(const CFGBlock *B,
412 const Stmt *S,
413 clang::reachable_code::Callback &CB);
414 };
415 }
416
enqueue(const CFGBlock * block)417 void DeadCodeScan::enqueue(const CFGBlock *block) {
418 unsigned blockID = block->getBlockID();
419 if (Reachable[blockID] || Visited[blockID])
420 return;
421 Visited[blockID] = true;
422 WorkList.push_back(block);
423 }
424
isDeadCodeRoot(const clang::CFGBlock * Block)425 bool DeadCodeScan::isDeadCodeRoot(const clang::CFGBlock *Block) {
426 bool isDeadRoot = true;
427
428 for (CFGBlock::const_pred_iterator I = Block->pred_begin(),
429 E = Block->pred_end(); I != E; ++I) {
430 if (const CFGBlock *PredBlock = *I) {
431 unsigned blockID = PredBlock->getBlockID();
432 if (Visited[blockID]) {
433 isDeadRoot = false;
434 continue;
435 }
436 if (!Reachable[blockID]) {
437 isDeadRoot = false;
438 Visited[blockID] = true;
439 WorkList.push_back(PredBlock);
440 continue;
441 }
442 }
443 }
444
445 return isDeadRoot;
446 }
447
isValidDeadStmt(const Stmt * S)448 static bool isValidDeadStmt(const Stmt *S) {
449 if (S->getBeginLoc().isInvalid())
450 return false;
451 if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(S))
452 return BO->getOpcode() != BO_Comma;
453 return true;
454 }
455
findDeadCode(const clang::CFGBlock * Block)456 const Stmt *DeadCodeScan::findDeadCode(const clang::CFGBlock *Block) {
457 for (CFGBlock::const_iterator I = Block->begin(), E = Block->end(); I!=E; ++I)
458 if (Optional<CFGStmt> CS = I->getAs<CFGStmt>()) {
459 const Stmt *S = CS->getStmt();
460 if (isValidDeadStmt(S))
461 return S;
462 }
463
464 if (CFGTerminator T = Block->getTerminator()) {
465 if (!T.isTemporaryDtorsBranch()) {
466 const Stmt *S = T.getStmt();
467 if (isValidDeadStmt(S))
468 return S;
469 }
470 }
471
472 return nullptr;
473 }
474
SrcCmp(const std::pair<const CFGBlock *,const Stmt * > * p1,const std::pair<const CFGBlock *,const Stmt * > * p2)475 static int SrcCmp(const std::pair<const CFGBlock *, const Stmt *> *p1,
476 const std::pair<const CFGBlock *, const Stmt *> *p2) {
477 if (p1->second->getBeginLoc() < p2->second->getBeginLoc())
478 return -1;
479 if (p2->second->getBeginLoc() < p1->second->getBeginLoc())
480 return 1;
481 return 0;
482 }
483
scanBackwards(const clang::CFGBlock * Start,clang::reachable_code::Callback & CB)484 unsigned DeadCodeScan::scanBackwards(const clang::CFGBlock *Start,
485 clang::reachable_code::Callback &CB) {
486
487 unsigned count = 0;
488 enqueue(Start);
489
490 while (!WorkList.empty()) {
491 const CFGBlock *Block = WorkList.pop_back_val();
492
493 // It is possible that this block has been marked reachable after
494 // it was enqueued.
495 if (Reachable[Block->getBlockID()])
496 continue;
497
498 // Look for any dead code within the block.
499 const Stmt *S = findDeadCode(Block);
500
501 if (!S) {
502 // No dead code. Possibly an empty block. Look at dead predecessors.
503 for (CFGBlock::const_pred_iterator I = Block->pred_begin(),
504 E = Block->pred_end(); I != E; ++I) {
505 if (const CFGBlock *predBlock = *I)
506 enqueue(predBlock);
507 }
508 continue;
509 }
510
511 // Specially handle macro-expanded code.
512 if (S->getBeginLoc().isMacroID()) {
513 count += scanMaybeReachableFromBlock(Block, PP, Reachable);
514 continue;
515 }
516
517 if (isDeadCodeRoot(Block)) {
518 reportDeadCode(Block, S, CB);
519 count += scanMaybeReachableFromBlock(Block, PP, Reachable);
520 }
521 else {
522 // Record this statement as the possibly best location in a
523 // strongly-connected component of dead code for emitting a
524 // warning.
525 DeferredLocs.push_back(std::make_pair(Block, S));
526 }
527 }
528
529 // If we didn't find a dead root, then report the dead code with the
530 // earliest location.
531 if (!DeferredLocs.empty()) {
532 llvm::array_pod_sort(DeferredLocs.begin(), DeferredLocs.end(), SrcCmp);
533 for (DeferredLocsTy::iterator I = DeferredLocs.begin(),
534 E = DeferredLocs.end(); I != E; ++I) {
535 const CFGBlock *Block = I->first;
536 if (Reachable[Block->getBlockID()])
537 continue;
538 reportDeadCode(Block, I->second, CB);
539 count += scanMaybeReachableFromBlock(Block, PP, Reachable);
540 }
541 }
542
543 return count;
544 }
545
GetUnreachableLoc(const Stmt * S,SourceRange & R1,SourceRange & R2)546 static SourceLocation GetUnreachableLoc(const Stmt *S,
547 SourceRange &R1,
548 SourceRange &R2) {
549 R1 = R2 = SourceRange();
550
551 if (const Expr *Ex = dyn_cast<Expr>(S))
552 S = Ex->IgnoreParenImpCasts();
553
554 switch (S->getStmtClass()) {
555 case Expr::BinaryOperatorClass: {
556 const BinaryOperator *BO = cast<BinaryOperator>(S);
557 return BO->getOperatorLoc();
558 }
559 case Expr::UnaryOperatorClass: {
560 const UnaryOperator *UO = cast<UnaryOperator>(S);
561 R1 = UO->getSubExpr()->getSourceRange();
562 return UO->getOperatorLoc();
563 }
564 case Expr::CompoundAssignOperatorClass: {
565 const CompoundAssignOperator *CAO = cast<CompoundAssignOperator>(S);
566 R1 = CAO->getLHS()->getSourceRange();
567 R2 = CAO->getRHS()->getSourceRange();
568 return CAO->getOperatorLoc();
569 }
570 case Expr::BinaryConditionalOperatorClass:
571 case Expr::ConditionalOperatorClass: {
572 const AbstractConditionalOperator *CO =
573 cast<AbstractConditionalOperator>(S);
574 return CO->getQuestionLoc();
575 }
576 case Expr::MemberExprClass: {
577 const MemberExpr *ME = cast<MemberExpr>(S);
578 R1 = ME->getSourceRange();
579 return ME->getMemberLoc();
580 }
581 case Expr::ArraySubscriptExprClass: {
582 const ArraySubscriptExpr *ASE = cast<ArraySubscriptExpr>(S);
583 R1 = ASE->getLHS()->getSourceRange();
584 R2 = ASE->getRHS()->getSourceRange();
585 return ASE->getRBracketLoc();
586 }
587 case Expr::CStyleCastExprClass: {
588 const CStyleCastExpr *CSC = cast<CStyleCastExpr>(S);
589 R1 = CSC->getSubExpr()->getSourceRange();
590 return CSC->getLParenLoc();
591 }
592 case Expr::CXXFunctionalCastExprClass: {
593 const CXXFunctionalCastExpr *CE = cast <CXXFunctionalCastExpr>(S);
594 R1 = CE->getSubExpr()->getSourceRange();
595 return CE->getBeginLoc();
596 }
597 case Stmt::CXXTryStmtClass: {
598 return cast<CXXTryStmt>(S)->getHandler(0)->getCatchLoc();
599 }
600 case Expr::ObjCBridgedCastExprClass: {
601 const ObjCBridgedCastExpr *CSC = cast<ObjCBridgedCastExpr>(S);
602 R1 = CSC->getSubExpr()->getSourceRange();
603 return CSC->getLParenLoc();
604 }
605 default: ;
606 }
607 R1 = S->getSourceRange();
608 return S->getBeginLoc();
609 }
610
reportDeadCode(const CFGBlock * B,const Stmt * S,clang::reachable_code::Callback & CB)611 void DeadCodeScan::reportDeadCode(const CFGBlock *B,
612 const Stmt *S,
613 clang::reachable_code::Callback &CB) {
614 // Classify the unreachable code found, or suppress it in some cases.
615 reachable_code::UnreachableKind UK = reachable_code::UK_Other;
616
617 if (isa<BreakStmt>(S)) {
618 UK = reachable_code::UK_Break;
619 } else if (isTrivialDoWhile(B, S) || isBuiltinUnreachable(S) ||
620 isBuiltinAssumeFalse(B, S, C)) {
621 return;
622 }
623 else if (isDeadReturn(B, S)) {
624 UK = reachable_code::UK_Return;
625 }
626
627 SourceRange SilenceableCondVal;
628
629 if (UK == reachable_code::UK_Other) {
630 // Check if the dead code is part of the "loop target" of
631 // a for/for-range loop. This is the block that contains
632 // the increment code.
633 if (const Stmt *LoopTarget = B->getLoopTarget()) {
634 SourceLocation Loc = LoopTarget->getBeginLoc();
635 SourceRange R1(Loc, Loc), R2;
636
637 if (const ForStmt *FS = dyn_cast<ForStmt>(LoopTarget)) {
638 const Expr *Inc = FS->getInc();
639 Loc = Inc->getBeginLoc();
640 R2 = Inc->getSourceRange();
641 }
642
643 CB.HandleUnreachable(reachable_code::UK_Loop_Increment,
644 Loc, SourceRange(), SourceRange(Loc, Loc), R2);
645 return;
646 }
647
648 // Check if the dead block has a predecessor whose branch has
649 // a configuration value that *could* be modified to
650 // silence the warning.
651 CFGBlock::const_pred_iterator PI = B->pred_begin();
652 if (PI != B->pred_end()) {
653 if (const CFGBlock *PredBlock = PI->getPossiblyUnreachableBlock()) {
654 const Stmt *TermCond =
655 PredBlock->getTerminatorCondition(/* strip parens */ false);
656 isConfigurationValue(TermCond, PP, &SilenceableCondVal);
657 }
658 }
659 }
660
661 SourceRange R1, R2;
662 SourceLocation Loc = GetUnreachableLoc(S, R1, R2);
663 CB.HandleUnreachable(UK, Loc, SilenceableCondVal, R1, R2);
664 }
665
666 //===----------------------------------------------------------------------===//
667 // Reachability APIs.
668 //===----------------------------------------------------------------------===//
669
670 namespace clang { namespace reachable_code {
671
anchor()672 void Callback::anchor() { }
673
ScanReachableFromBlock(const CFGBlock * Start,llvm::BitVector & Reachable)674 unsigned ScanReachableFromBlock(const CFGBlock *Start,
675 llvm::BitVector &Reachable) {
676 return scanFromBlock(Start, Reachable, /* SourceManager* */ nullptr, false);
677 }
678
FindUnreachableCode(AnalysisDeclContext & AC,Preprocessor & PP,Callback & CB)679 void FindUnreachableCode(AnalysisDeclContext &AC, Preprocessor &PP,
680 Callback &CB) {
681
682 CFG *cfg = AC.getCFG();
683 if (!cfg)
684 return;
685
686 // Scan for reachable blocks from the entrance of the CFG.
687 // If there are no unreachable blocks, we're done.
688 llvm::BitVector reachable(cfg->getNumBlockIDs());
689 unsigned numReachable =
690 scanMaybeReachableFromBlock(&cfg->getEntry(), PP, reachable);
691 if (numReachable == cfg->getNumBlockIDs())
692 return;
693
694 // If there aren't explicit EH edges, we should include the 'try' dispatch
695 // blocks as roots.
696 if (!AC.getCFGBuildOptions().AddEHEdges) {
697 for (CFG::try_block_iterator I = cfg->try_blocks_begin(),
698 E = cfg->try_blocks_end() ; I != E; ++I) {
699 numReachable += scanMaybeReachableFromBlock(*I, PP, reachable);
700 }
701 if (numReachable == cfg->getNumBlockIDs())
702 return;
703 }
704
705 // There are some unreachable blocks. We need to find the root blocks that
706 // contain code that should be considered unreachable.
707 for (CFG::iterator I = cfg->begin(), E = cfg->end(); I != E; ++I) {
708 const CFGBlock *block = *I;
709 // A block may have been marked reachable during this loop.
710 if (reachable[block->getBlockID()])
711 continue;
712
713 DeadCodeScan DS(reachable, PP, AC.getASTContext());
714 numReachable += DS.scanBackwards(block, CB);
715
716 if (numReachable == cfg->getNumBlockIDs())
717 return;
718 }
719 }
720
721 }} // end namespace clang::reachable_code
722