1 //===- Local.cpp - Functions to perform local transformations -------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This family of functions perform various local transformations to the 11 // program. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Transforms/Utils/Local.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/DenseMapInfo.h" 19 #include "llvm/ADT/DenseSet.h" 20 #include "llvm/ADT/Hashing.h" 21 #include "llvm/ADT/None.h" 22 #include "llvm/ADT/Optional.h" 23 #include "llvm/ADT/STLExtras.h" 24 #include "llvm/ADT/SetVector.h" 25 #include "llvm/ADT/SmallPtrSet.h" 26 #include "llvm/ADT/SmallVector.h" 27 #include "llvm/ADT/Statistic.h" 28 #include "llvm/ADT/TinyPtrVector.h" 29 #include "llvm/Analysis/ConstantFolding.h" 30 #include "llvm/Analysis/EHPersonalities.h" 31 #include "llvm/Analysis/InstructionSimplify.h" 32 #include "llvm/Analysis/LazyValueInfo.h" 33 #include "llvm/Analysis/MemoryBuiltins.h" 34 #include "llvm/Analysis/TargetLibraryInfo.h" 35 #include "llvm/Analysis/ValueTracking.h" 36 #include "llvm/BinaryFormat/Dwarf.h" 37 #include "llvm/IR/Argument.h" 38 #include "llvm/IR/Attributes.h" 39 #include "llvm/IR/BasicBlock.h" 40 #include "llvm/IR/CFG.h" 41 #include "llvm/IR/CallSite.h" 42 #include "llvm/IR/Constant.h" 43 #include "llvm/IR/ConstantRange.h" 44 #include "llvm/IR/Constants.h" 45 #include "llvm/IR/DIBuilder.h" 46 #include "llvm/IR/DataLayout.h" 47 #include "llvm/IR/DebugInfoMetadata.h" 48 #include "llvm/IR/DebugLoc.h" 49 #include "llvm/IR/DerivedTypes.h" 50 #include "llvm/IR/Dominators.h" 51 #include "llvm/IR/Function.h" 52 #include "llvm/IR/GetElementPtrTypeIterator.h" 53 #include "llvm/IR/GlobalObject.h" 54 #include "llvm/IR/IRBuilder.h" 55 #include "llvm/IR/InstrTypes.h" 56 #include "llvm/IR/Instruction.h" 57 #include "llvm/IR/Instructions.h" 58 #include "llvm/IR/IntrinsicInst.h" 59 #include "llvm/IR/Intrinsics.h" 60 #include "llvm/IR/LLVMContext.h" 61 #include "llvm/IR/MDBuilder.h" 62 #include "llvm/IR/Metadata.h" 63 #include "llvm/IR/Module.h" 64 #include "llvm/IR/Operator.h" 65 #include "llvm/IR/PatternMatch.h" 66 #include "llvm/IR/Type.h" 67 #include "llvm/IR/Use.h" 68 #include "llvm/IR/User.h" 69 #include "llvm/IR/Value.h" 70 #include "llvm/IR/ValueHandle.h" 71 #include "llvm/Support/Casting.h" 72 #include "llvm/Support/Debug.h" 73 #include "llvm/Support/ErrorHandling.h" 74 #include "llvm/Support/KnownBits.h" 75 #include "llvm/Support/raw_ostream.h" 76 #include <algorithm> 77 #include <cassert> 78 #include <climits> 79 #include <cstdint> 80 #include <iterator> 81 #include <map> 82 #include <utility> 83 84 using namespace llvm; 85 using namespace llvm::PatternMatch; 86 87 #define DEBUG_TYPE "local" 88 89 STATISTIC(NumRemoved, "Number of unreachable basic blocks removed"); 90 91 //===----------------------------------------------------------------------===// 92 // Local constant propagation. 93 // 94 95 /// ConstantFoldTerminator - If a terminator instruction is predicated on a 96 /// constant value, convert it into an unconditional branch to the constant 97 /// destination. This is a nontrivial operation because the successors of this 98 /// basic block must have their PHI nodes updated. 99 /// Also calls RecursivelyDeleteTriviallyDeadInstructions() on any branch/switch 100 /// conditions and indirectbr addresses this might make dead if 101 /// DeleteDeadConditions is true. 102 bool llvm::ConstantFoldTerminator(BasicBlock *BB, bool DeleteDeadConditions, 103 const TargetLibraryInfo *TLI) { 104 TerminatorInst *T = BB->getTerminator(); 105 IRBuilder<> Builder(T); 106 107 // Branch - See if we are conditional jumping on constant 108 if (auto *BI = dyn_cast<BranchInst>(T)) { 109 if (BI->isUnconditional()) return false; // Can't optimize uncond branch 110 BasicBlock *Dest1 = BI->getSuccessor(0); 111 BasicBlock *Dest2 = BI->getSuccessor(1); 112 113 if (auto *Cond = dyn_cast<ConstantInt>(BI->getCondition())) { 114 // Are we branching on constant? 115 // YES. Change to unconditional branch... 116 BasicBlock *Destination = Cond->getZExtValue() ? Dest1 : Dest2; 117 BasicBlock *OldDest = Cond->getZExtValue() ? Dest2 : Dest1; 118 119 // Let the basic block know that we are letting go of it. Based on this, 120 // it will adjust it's PHI nodes. 121 OldDest->removePredecessor(BB); 122 123 // Replace the conditional branch with an unconditional one. 124 Builder.CreateBr(Destination); 125 BI->eraseFromParent(); 126 return true; 127 } 128 129 if (Dest2 == Dest1) { // Conditional branch to same location? 130 // This branch matches something like this: 131 // br bool %cond, label %Dest, label %Dest 132 // and changes it into: br label %Dest 133 134 // Let the basic block know that we are letting go of one copy of it. 135 assert(BI->getParent() && "Terminator not inserted in block!"); 136 Dest1->removePredecessor(BI->getParent()); 137 138 // Replace the conditional branch with an unconditional one. 139 Builder.CreateBr(Dest1); 140 Value *Cond = BI->getCondition(); 141 BI->eraseFromParent(); 142 if (DeleteDeadConditions) 143 RecursivelyDeleteTriviallyDeadInstructions(Cond, TLI); 144 return true; 145 } 146 return false; 147 } 148 149 if (auto *SI = dyn_cast<SwitchInst>(T)) { 150 // If we are switching on a constant, we can convert the switch to an 151 // unconditional branch. 152 auto *CI = dyn_cast<ConstantInt>(SI->getCondition()); 153 BasicBlock *DefaultDest = SI->getDefaultDest(); 154 BasicBlock *TheOnlyDest = DefaultDest; 155 156 // If the default is unreachable, ignore it when searching for TheOnlyDest. 157 if (isa<UnreachableInst>(DefaultDest->getFirstNonPHIOrDbg()) && 158 SI->getNumCases() > 0) { 159 TheOnlyDest = SI->case_begin()->getCaseSuccessor(); 160 } 161 162 // Figure out which case it goes to. 163 for (auto i = SI->case_begin(), e = SI->case_end(); i != e;) { 164 // Found case matching a constant operand? 165 if (i->getCaseValue() == CI) { 166 TheOnlyDest = i->getCaseSuccessor(); 167 break; 168 } 169 170 // Check to see if this branch is going to the same place as the default 171 // dest. If so, eliminate it as an explicit compare. 172 if (i->getCaseSuccessor() == DefaultDest) { 173 MDNode *MD = SI->getMetadata(LLVMContext::MD_prof); 174 unsigned NCases = SI->getNumCases(); 175 // Fold the case metadata into the default if there will be any branches 176 // left, unless the metadata doesn't match the switch. 177 if (NCases > 1 && MD && MD->getNumOperands() == 2 + NCases) { 178 // Collect branch weights into a vector. 179 SmallVector<uint32_t, 8> Weights; 180 for (unsigned MD_i = 1, MD_e = MD->getNumOperands(); MD_i < MD_e; 181 ++MD_i) { 182 auto *CI = mdconst::extract<ConstantInt>(MD->getOperand(MD_i)); 183 Weights.push_back(CI->getValue().getZExtValue()); 184 } 185 // Merge weight of this case to the default weight. 186 unsigned idx = i->getCaseIndex(); 187 Weights[0] += Weights[idx+1]; 188 // Remove weight for this case. 189 std::swap(Weights[idx+1], Weights.back()); 190 Weights.pop_back(); 191 SI->setMetadata(LLVMContext::MD_prof, 192 MDBuilder(BB->getContext()). 193 createBranchWeights(Weights)); 194 } 195 // Remove this entry. 196 DefaultDest->removePredecessor(SI->getParent()); 197 i = SI->removeCase(i); 198 e = SI->case_end(); 199 continue; 200 } 201 202 // Otherwise, check to see if the switch only branches to one destination. 203 // We do this by reseting "TheOnlyDest" to null when we find two non-equal 204 // destinations. 205 if (i->getCaseSuccessor() != TheOnlyDest) 206 TheOnlyDest = nullptr; 207 208 // Increment this iterator as we haven't removed the case. 209 ++i; 210 } 211 212 if (CI && !TheOnlyDest) { 213 // Branching on a constant, but not any of the cases, go to the default 214 // successor. 215 TheOnlyDest = SI->getDefaultDest(); 216 } 217 218 // If we found a single destination that we can fold the switch into, do so 219 // now. 220 if (TheOnlyDest) { 221 // Insert the new branch. 222 Builder.CreateBr(TheOnlyDest); 223 BasicBlock *BB = SI->getParent(); 224 225 // Remove entries from PHI nodes which we no longer branch to... 226 for (BasicBlock *Succ : SI->successors()) { 227 // Found case matching a constant operand? 228 if (Succ == TheOnlyDest) 229 TheOnlyDest = nullptr; // Don't modify the first branch to TheOnlyDest 230 else 231 Succ->removePredecessor(BB); 232 } 233 234 // Delete the old switch. 235 Value *Cond = SI->getCondition(); 236 SI->eraseFromParent(); 237 if (DeleteDeadConditions) 238 RecursivelyDeleteTriviallyDeadInstructions(Cond, TLI); 239 return true; 240 } 241 242 if (SI->getNumCases() == 1) { 243 // Otherwise, we can fold this switch into a conditional branch 244 // instruction if it has only one non-default destination. 245 auto FirstCase = *SI->case_begin(); 246 Value *Cond = Builder.CreateICmpEQ(SI->getCondition(), 247 FirstCase.getCaseValue(), "cond"); 248 249 // Insert the new branch. 250 BranchInst *NewBr = Builder.CreateCondBr(Cond, 251 FirstCase.getCaseSuccessor(), 252 SI->getDefaultDest()); 253 MDNode *MD = SI->getMetadata(LLVMContext::MD_prof); 254 if (MD && MD->getNumOperands() == 3) { 255 ConstantInt *SICase = 256 mdconst::dyn_extract<ConstantInt>(MD->getOperand(2)); 257 ConstantInt *SIDef = 258 mdconst::dyn_extract<ConstantInt>(MD->getOperand(1)); 259 assert(SICase && SIDef); 260 // The TrueWeight should be the weight for the single case of SI. 261 NewBr->setMetadata(LLVMContext::MD_prof, 262 MDBuilder(BB->getContext()). 263 createBranchWeights(SICase->getValue().getZExtValue(), 264 SIDef->getValue().getZExtValue())); 265 } 266 267 // Update make.implicit metadata to the newly-created conditional branch. 268 MDNode *MakeImplicitMD = SI->getMetadata(LLVMContext::MD_make_implicit); 269 if (MakeImplicitMD) 270 NewBr->setMetadata(LLVMContext::MD_make_implicit, MakeImplicitMD); 271 272 // Delete the old switch. 273 SI->eraseFromParent(); 274 return true; 275 } 276 return false; 277 } 278 279 if (auto *IBI = dyn_cast<IndirectBrInst>(T)) { 280 // indirectbr blockaddress(@F, @BB) -> br label @BB 281 if (auto *BA = 282 dyn_cast<BlockAddress>(IBI->getAddress()->stripPointerCasts())) { 283 BasicBlock *TheOnlyDest = BA->getBasicBlock(); 284 // Insert the new branch. 285 Builder.CreateBr(TheOnlyDest); 286 287 for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) { 288 if (IBI->getDestination(i) == TheOnlyDest) 289 TheOnlyDest = nullptr; 290 else 291 IBI->getDestination(i)->removePredecessor(IBI->getParent()); 292 } 293 Value *Address = IBI->getAddress(); 294 IBI->eraseFromParent(); 295 if (DeleteDeadConditions) 296 RecursivelyDeleteTriviallyDeadInstructions(Address, TLI); 297 298 // If we didn't find our destination in the IBI successor list, then we 299 // have undefined behavior. Replace the unconditional branch with an 300 // 'unreachable' instruction. 301 if (TheOnlyDest) { 302 BB->getTerminator()->eraseFromParent(); 303 new UnreachableInst(BB->getContext(), BB); 304 } 305 306 return true; 307 } 308 } 309 310 return false; 311 } 312 313 //===----------------------------------------------------------------------===// 314 // Local dead code elimination. 315 // 316 317 /// isInstructionTriviallyDead - Return true if the result produced by the 318 /// instruction is not used, and the instruction has no side effects. 319 /// 320 bool llvm::isInstructionTriviallyDead(Instruction *I, 321 const TargetLibraryInfo *TLI) { 322 if (!I->use_empty()) 323 return false; 324 return wouldInstructionBeTriviallyDead(I, TLI); 325 } 326 327 bool llvm::wouldInstructionBeTriviallyDead(Instruction *I, 328 const TargetLibraryInfo *TLI) { 329 if (isa<TerminatorInst>(I)) 330 return false; 331 332 // We don't want the landingpad-like instructions removed by anything this 333 // general. 334 if (I->isEHPad()) 335 return false; 336 337 // We don't want debug info removed by anything this general, unless 338 // debug info is empty. 339 if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(I)) { 340 if (DDI->getAddress()) 341 return false; 342 return true; 343 } 344 if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(I)) { 345 if (DVI->getValue()) 346 return false; 347 return true; 348 } 349 350 if (!I->mayHaveSideEffects()) 351 return true; 352 353 // Special case intrinsics that "may have side effects" but can be deleted 354 // when dead. 355 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 356 // Safe to delete llvm.stacksave if dead. 357 if (II->getIntrinsicID() == Intrinsic::stacksave) 358 return true; 359 360 // Lifetime intrinsics are dead when their right-hand is undef. 361 if (II->getIntrinsicID() == Intrinsic::lifetime_start || 362 II->getIntrinsicID() == Intrinsic::lifetime_end) 363 return isa<UndefValue>(II->getArgOperand(1)); 364 365 // Assumptions are dead if their condition is trivially true. Guards on 366 // true are operationally no-ops. In the future we can consider more 367 // sophisticated tradeoffs for guards considering potential for check 368 // widening, but for now we keep things simple. 369 if (II->getIntrinsicID() == Intrinsic::assume || 370 II->getIntrinsicID() == Intrinsic::experimental_guard) { 371 if (ConstantInt *Cond = dyn_cast<ConstantInt>(II->getArgOperand(0))) 372 return !Cond->isZero(); 373 374 return false; 375 } 376 } 377 378 if (isAllocLikeFn(I, TLI)) 379 return true; 380 381 if (CallInst *CI = isFreeCall(I, TLI)) 382 if (Constant *C = dyn_cast<Constant>(CI->getArgOperand(0))) 383 return C->isNullValue() || isa<UndefValue>(C); 384 385 if (CallSite CS = CallSite(I)) 386 if (isMathLibCallNoop(CS, TLI)) 387 return true; 388 389 return false; 390 } 391 392 /// RecursivelyDeleteTriviallyDeadInstructions - If the specified value is a 393 /// trivially dead instruction, delete it. If that makes any of its operands 394 /// trivially dead, delete them too, recursively. Return true if any 395 /// instructions were deleted. 396 bool 397 llvm::RecursivelyDeleteTriviallyDeadInstructions(Value *V, 398 const TargetLibraryInfo *TLI) { 399 Instruction *I = dyn_cast<Instruction>(V); 400 if (!I || !I->use_empty() || !isInstructionTriviallyDead(I, TLI)) 401 return false; 402 403 SmallVector<Instruction*, 16> DeadInsts; 404 DeadInsts.push_back(I); 405 406 do { 407 I = DeadInsts.pop_back_val(); 408 409 // Null out all of the instruction's operands to see if any operand becomes 410 // dead as we go. 411 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 412 Value *OpV = I->getOperand(i); 413 I->setOperand(i, nullptr); 414 415 if (!OpV->use_empty()) continue; 416 417 // If the operand is an instruction that became dead as we nulled out the 418 // operand, and if it is 'trivially' dead, delete it in a future loop 419 // iteration. 420 if (Instruction *OpI = dyn_cast<Instruction>(OpV)) 421 if (isInstructionTriviallyDead(OpI, TLI)) 422 DeadInsts.push_back(OpI); 423 } 424 425 I->eraseFromParent(); 426 } while (!DeadInsts.empty()); 427 428 return true; 429 } 430 431 /// areAllUsesEqual - Check whether the uses of a value are all the same. 432 /// This is similar to Instruction::hasOneUse() except this will also return 433 /// true when there are no uses or multiple uses that all refer to the same 434 /// value. 435 static bool areAllUsesEqual(Instruction *I) { 436 Value::user_iterator UI = I->user_begin(); 437 Value::user_iterator UE = I->user_end(); 438 if (UI == UE) 439 return true; 440 441 User *TheUse = *UI; 442 for (++UI; UI != UE; ++UI) { 443 if (*UI != TheUse) 444 return false; 445 } 446 return true; 447 } 448 449 /// RecursivelyDeleteDeadPHINode - If the specified value is an effectively 450 /// dead PHI node, due to being a def-use chain of single-use nodes that 451 /// either forms a cycle or is terminated by a trivially dead instruction, 452 /// delete it. If that makes any of its operands trivially dead, delete them 453 /// too, recursively. Return true if a change was made. 454 bool llvm::RecursivelyDeleteDeadPHINode(PHINode *PN, 455 const TargetLibraryInfo *TLI) { 456 SmallPtrSet<Instruction*, 4> Visited; 457 for (Instruction *I = PN; areAllUsesEqual(I) && !I->mayHaveSideEffects(); 458 I = cast<Instruction>(*I->user_begin())) { 459 if (I->use_empty()) 460 return RecursivelyDeleteTriviallyDeadInstructions(I, TLI); 461 462 // If we find an instruction more than once, we're on a cycle that 463 // won't prove fruitful. 464 if (!Visited.insert(I).second) { 465 // Break the cycle and delete the instruction and its operands. 466 I->replaceAllUsesWith(UndefValue::get(I->getType())); 467 (void)RecursivelyDeleteTriviallyDeadInstructions(I, TLI); 468 return true; 469 } 470 } 471 return false; 472 } 473 474 static bool 475 simplifyAndDCEInstruction(Instruction *I, 476 SmallSetVector<Instruction *, 16> &WorkList, 477 const DataLayout &DL, 478 const TargetLibraryInfo *TLI) { 479 if (isInstructionTriviallyDead(I, TLI)) { 480 // Null out all of the instruction's operands to see if any operand becomes 481 // dead as we go. 482 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 483 Value *OpV = I->getOperand(i); 484 I->setOperand(i, nullptr); 485 486 if (!OpV->use_empty() || I == OpV) 487 continue; 488 489 // If the operand is an instruction that became dead as we nulled out the 490 // operand, and if it is 'trivially' dead, delete it in a future loop 491 // iteration. 492 if (Instruction *OpI = dyn_cast<Instruction>(OpV)) 493 if (isInstructionTriviallyDead(OpI, TLI)) 494 WorkList.insert(OpI); 495 } 496 497 I->eraseFromParent(); 498 499 return true; 500 } 501 502 if (Value *SimpleV = SimplifyInstruction(I, DL)) { 503 // Add the users to the worklist. CAREFUL: an instruction can use itself, 504 // in the case of a phi node. 505 for (User *U : I->users()) { 506 if (U != I) { 507 WorkList.insert(cast<Instruction>(U)); 508 } 509 } 510 511 // Replace the instruction with its simplified value. 512 bool Changed = false; 513 if (!I->use_empty()) { 514 I->replaceAllUsesWith(SimpleV); 515 Changed = true; 516 } 517 if (isInstructionTriviallyDead(I, TLI)) { 518 I->eraseFromParent(); 519 Changed = true; 520 } 521 return Changed; 522 } 523 return false; 524 } 525 526 /// SimplifyInstructionsInBlock - Scan the specified basic block and try to 527 /// simplify any instructions in it and recursively delete dead instructions. 528 /// 529 /// This returns true if it changed the code, note that it can delete 530 /// instructions in other blocks as well in this block. 531 bool llvm::SimplifyInstructionsInBlock(BasicBlock *BB, 532 const TargetLibraryInfo *TLI) { 533 bool MadeChange = false; 534 const DataLayout &DL = BB->getModule()->getDataLayout(); 535 536 #ifndef NDEBUG 537 // In debug builds, ensure that the terminator of the block is never replaced 538 // or deleted by these simplifications. The idea of simplification is that it 539 // cannot introduce new instructions, and there is no way to replace the 540 // terminator of a block without introducing a new instruction. 541 AssertingVH<Instruction> TerminatorVH(&BB->back()); 542 #endif 543 544 SmallSetVector<Instruction *, 16> WorkList; 545 // Iterate over the original function, only adding insts to the worklist 546 // if they actually need to be revisited. This avoids having to pre-init 547 // the worklist with the entire function's worth of instructions. 548 for (BasicBlock::iterator BI = BB->begin(), E = std::prev(BB->end()); 549 BI != E;) { 550 assert(!BI->isTerminator()); 551 Instruction *I = &*BI; 552 ++BI; 553 554 // We're visiting this instruction now, so make sure it's not in the 555 // worklist from an earlier visit. 556 if (!WorkList.count(I)) 557 MadeChange |= simplifyAndDCEInstruction(I, WorkList, DL, TLI); 558 } 559 560 while (!WorkList.empty()) { 561 Instruction *I = WorkList.pop_back_val(); 562 MadeChange |= simplifyAndDCEInstruction(I, WorkList, DL, TLI); 563 } 564 return MadeChange; 565 } 566 567 //===----------------------------------------------------------------------===// 568 // Control Flow Graph Restructuring. 569 // 570 571 /// RemovePredecessorAndSimplify - Like BasicBlock::removePredecessor, this 572 /// method is called when we're about to delete Pred as a predecessor of BB. If 573 /// BB contains any PHI nodes, this drops the entries in the PHI nodes for Pred. 574 /// 575 /// Unlike the removePredecessor method, this attempts to simplify uses of PHI 576 /// nodes that collapse into identity values. For example, if we have: 577 /// x = phi(1, 0, 0, 0) 578 /// y = and x, z 579 /// 580 /// .. and delete the predecessor corresponding to the '1', this will attempt to 581 /// recursively fold the and to 0. 582 void llvm::RemovePredecessorAndSimplify(BasicBlock *BB, BasicBlock *Pred) { 583 // This only adjusts blocks with PHI nodes. 584 if (!isa<PHINode>(BB->begin())) 585 return; 586 587 // Remove the entries for Pred from the PHI nodes in BB, but do not simplify 588 // them down. This will leave us with single entry phi nodes and other phis 589 // that can be removed. 590 BB->removePredecessor(Pred, true); 591 592 WeakTrackingVH PhiIt = &BB->front(); 593 while (PHINode *PN = dyn_cast<PHINode>(PhiIt)) { 594 PhiIt = &*++BasicBlock::iterator(cast<Instruction>(PhiIt)); 595 Value *OldPhiIt = PhiIt; 596 597 if (!recursivelySimplifyInstruction(PN)) 598 continue; 599 600 // If recursive simplification ended up deleting the next PHI node we would 601 // iterate to, then our iterator is invalid, restart scanning from the top 602 // of the block. 603 if (PhiIt != OldPhiIt) PhiIt = &BB->front(); 604 } 605 } 606 607 /// MergeBasicBlockIntoOnlyPred - DestBB is a block with one predecessor and its 608 /// predecessor is known to have one successor (DestBB!). Eliminate the edge 609 /// between them, moving the instructions in the predecessor into DestBB and 610 /// deleting the predecessor block. 611 void llvm::MergeBasicBlockIntoOnlyPred(BasicBlock *DestBB, DominatorTree *DT) { 612 // If BB has single-entry PHI nodes, fold them. 613 while (PHINode *PN = dyn_cast<PHINode>(DestBB->begin())) { 614 Value *NewVal = PN->getIncomingValue(0); 615 // Replace self referencing PHI with undef, it must be dead. 616 if (NewVal == PN) NewVal = UndefValue::get(PN->getType()); 617 PN->replaceAllUsesWith(NewVal); 618 PN->eraseFromParent(); 619 } 620 621 BasicBlock *PredBB = DestBB->getSinglePredecessor(); 622 assert(PredBB && "Block doesn't have a single predecessor!"); 623 624 // Zap anything that took the address of DestBB. Not doing this will give the 625 // address an invalid value. 626 if (DestBB->hasAddressTaken()) { 627 BlockAddress *BA = BlockAddress::get(DestBB); 628 Constant *Replacement = 629 ConstantInt::get(Type::getInt32Ty(BA->getContext()), 1); 630 BA->replaceAllUsesWith(ConstantExpr::getIntToPtr(Replacement, 631 BA->getType())); 632 BA->destroyConstant(); 633 } 634 635 // Anything that branched to PredBB now branches to DestBB. 636 PredBB->replaceAllUsesWith(DestBB); 637 638 // Splice all the instructions from PredBB to DestBB. 639 PredBB->getTerminator()->eraseFromParent(); 640 DestBB->getInstList().splice(DestBB->begin(), PredBB->getInstList()); 641 642 // If the PredBB is the entry block of the function, move DestBB up to 643 // become the entry block after we erase PredBB. 644 if (PredBB == &DestBB->getParent()->getEntryBlock()) 645 DestBB->moveAfter(PredBB); 646 647 if (DT) { 648 // For some irreducible CFG we end up having forward-unreachable blocks 649 // so check if getNode returns a valid node before updating the domtree. 650 if (DomTreeNode *DTN = DT->getNode(PredBB)) { 651 BasicBlock *PredBBIDom = DTN->getIDom()->getBlock(); 652 DT->changeImmediateDominator(DestBB, PredBBIDom); 653 DT->eraseNode(PredBB); 654 } 655 } 656 // Nuke BB. 657 PredBB->eraseFromParent(); 658 } 659 660 /// CanMergeValues - Return true if we can choose one of these values to use 661 /// in place of the other. Note that we will always choose the non-undef 662 /// value to keep. 663 static bool CanMergeValues(Value *First, Value *Second) { 664 return First == Second || isa<UndefValue>(First) || isa<UndefValue>(Second); 665 } 666 667 /// CanPropagatePredecessorsForPHIs - Return true if we can fold BB, an 668 /// almost-empty BB ending in an unconditional branch to Succ, into Succ. 669 /// 670 /// Assumption: Succ is the single successor for BB. 671 static bool CanPropagatePredecessorsForPHIs(BasicBlock *BB, BasicBlock *Succ) { 672 assert(*succ_begin(BB) == Succ && "Succ is not successor of BB!"); 673 674 DEBUG(dbgs() << "Looking to fold " << BB->getName() << " into " 675 << Succ->getName() << "\n"); 676 // Shortcut, if there is only a single predecessor it must be BB and merging 677 // is always safe 678 if (Succ->getSinglePredecessor()) return true; 679 680 // Make a list of the predecessors of BB 681 SmallPtrSet<BasicBlock*, 16> BBPreds(pred_begin(BB), pred_end(BB)); 682 683 // Look at all the phi nodes in Succ, to see if they present a conflict when 684 // merging these blocks 685 for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) { 686 PHINode *PN = cast<PHINode>(I); 687 688 // If the incoming value from BB is again a PHINode in 689 // BB which has the same incoming value for *PI as PN does, we can 690 // merge the phi nodes and then the blocks can still be merged 691 PHINode *BBPN = dyn_cast<PHINode>(PN->getIncomingValueForBlock(BB)); 692 if (BBPN && BBPN->getParent() == BB) { 693 for (unsigned PI = 0, PE = PN->getNumIncomingValues(); PI != PE; ++PI) { 694 BasicBlock *IBB = PN->getIncomingBlock(PI); 695 if (BBPreds.count(IBB) && 696 !CanMergeValues(BBPN->getIncomingValueForBlock(IBB), 697 PN->getIncomingValue(PI))) { 698 DEBUG(dbgs() << "Can't fold, phi node " << PN->getName() << " in " 699 << Succ->getName() << " is conflicting with " 700 << BBPN->getName() << " with regard to common predecessor " 701 << IBB->getName() << "\n"); 702 return false; 703 } 704 } 705 } else { 706 Value* Val = PN->getIncomingValueForBlock(BB); 707 for (unsigned PI = 0, PE = PN->getNumIncomingValues(); PI != PE; ++PI) { 708 // See if the incoming value for the common predecessor is equal to the 709 // one for BB, in which case this phi node will not prevent the merging 710 // of the block. 711 BasicBlock *IBB = PN->getIncomingBlock(PI); 712 if (BBPreds.count(IBB) && 713 !CanMergeValues(Val, PN->getIncomingValue(PI))) { 714 DEBUG(dbgs() << "Can't fold, phi node " << PN->getName() << " in " 715 << Succ->getName() << " is conflicting with regard to common " 716 << "predecessor " << IBB->getName() << "\n"); 717 return false; 718 } 719 } 720 } 721 } 722 723 return true; 724 } 725 726 using PredBlockVector = SmallVector<BasicBlock *, 16>; 727 using IncomingValueMap = DenseMap<BasicBlock *, Value *>; 728 729 /// \brief Determines the value to use as the phi node input for a block. 730 /// 731 /// Select between \p OldVal any value that we know flows from \p BB 732 /// to a particular phi on the basis of which one (if either) is not 733 /// undef. Update IncomingValues based on the selected value. 734 /// 735 /// \param OldVal The value we are considering selecting. 736 /// \param BB The block that the value flows in from. 737 /// \param IncomingValues A map from block-to-value for other phi inputs 738 /// that we have examined. 739 /// 740 /// \returns the selected value. 741 static Value *selectIncomingValueForBlock(Value *OldVal, BasicBlock *BB, 742 IncomingValueMap &IncomingValues) { 743 if (!isa<UndefValue>(OldVal)) { 744 assert((!IncomingValues.count(BB) || 745 IncomingValues.find(BB)->second == OldVal) && 746 "Expected OldVal to match incoming value from BB!"); 747 748 IncomingValues.insert(std::make_pair(BB, OldVal)); 749 return OldVal; 750 } 751 752 IncomingValueMap::const_iterator It = IncomingValues.find(BB); 753 if (It != IncomingValues.end()) return It->second; 754 755 return OldVal; 756 } 757 758 /// \brief Create a map from block to value for the operands of a 759 /// given phi. 760 /// 761 /// Create a map from block to value for each non-undef value flowing 762 /// into \p PN. 763 /// 764 /// \param PN The phi we are collecting the map for. 765 /// \param IncomingValues [out] The map from block to value for this phi. 766 static void gatherIncomingValuesToPhi(PHINode *PN, 767 IncomingValueMap &IncomingValues) { 768 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 769 BasicBlock *BB = PN->getIncomingBlock(i); 770 Value *V = PN->getIncomingValue(i); 771 772 if (!isa<UndefValue>(V)) 773 IncomingValues.insert(std::make_pair(BB, V)); 774 } 775 } 776 777 /// \brief Replace the incoming undef values to a phi with the values 778 /// from a block-to-value map. 779 /// 780 /// \param PN The phi we are replacing the undefs in. 781 /// \param IncomingValues A map from block to value. 782 static void replaceUndefValuesInPhi(PHINode *PN, 783 const IncomingValueMap &IncomingValues) { 784 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 785 Value *V = PN->getIncomingValue(i); 786 787 if (!isa<UndefValue>(V)) continue; 788 789 BasicBlock *BB = PN->getIncomingBlock(i); 790 IncomingValueMap::const_iterator It = IncomingValues.find(BB); 791 if (It == IncomingValues.end()) continue; 792 793 PN->setIncomingValue(i, It->second); 794 } 795 } 796 797 /// \brief Replace a value flowing from a block to a phi with 798 /// potentially multiple instances of that value flowing from the 799 /// block's predecessors to the phi. 800 /// 801 /// \param BB The block with the value flowing into the phi. 802 /// \param BBPreds The predecessors of BB. 803 /// \param PN The phi that we are updating. 804 static void redirectValuesFromPredecessorsToPhi(BasicBlock *BB, 805 const PredBlockVector &BBPreds, 806 PHINode *PN) { 807 Value *OldVal = PN->removeIncomingValue(BB, false); 808 assert(OldVal && "No entry in PHI for Pred BB!"); 809 810 IncomingValueMap IncomingValues; 811 812 // We are merging two blocks - BB, and the block containing PN - and 813 // as a result we need to redirect edges from the predecessors of BB 814 // to go to the block containing PN, and update PN 815 // accordingly. Since we allow merging blocks in the case where the 816 // predecessor and successor blocks both share some predecessors, 817 // and where some of those common predecessors might have undef 818 // values flowing into PN, we want to rewrite those values to be 819 // consistent with the non-undef values. 820 821 gatherIncomingValuesToPhi(PN, IncomingValues); 822 823 // If this incoming value is one of the PHI nodes in BB, the new entries 824 // in the PHI node are the entries from the old PHI. 825 if (isa<PHINode>(OldVal) && cast<PHINode>(OldVal)->getParent() == BB) { 826 PHINode *OldValPN = cast<PHINode>(OldVal); 827 for (unsigned i = 0, e = OldValPN->getNumIncomingValues(); i != e; ++i) { 828 // Note that, since we are merging phi nodes and BB and Succ might 829 // have common predecessors, we could end up with a phi node with 830 // identical incoming branches. This will be cleaned up later (and 831 // will trigger asserts if we try to clean it up now, without also 832 // simplifying the corresponding conditional branch). 833 BasicBlock *PredBB = OldValPN->getIncomingBlock(i); 834 Value *PredVal = OldValPN->getIncomingValue(i); 835 Value *Selected = selectIncomingValueForBlock(PredVal, PredBB, 836 IncomingValues); 837 838 // And add a new incoming value for this predecessor for the 839 // newly retargeted branch. 840 PN->addIncoming(Selected, PredBB); 841 } 842 } else { 843 for (unsigned i = 0, e = BBPreds.size(); i != e; ++i) { 844 // Update existing incoming values in PN for this 845 // predecessor of BB. 846 BasicBlock *PredBB = BBPreds[i]; 847 Value *Selected = selectIncomingValueForBlock(OldVal, PredBB, 848 IncomingValues); 849 850 // And add a new incoming value for this predecessor for the 851 // newly retargeted branch. 852 PN->addIncoming(Selected, PredBB); 853 } 854 } 855 856 replaceUndefValuesInPhi(PN, IncomingValues); 857 } 858 859 /// TryToSimplifyUncondBranchFromEmptyBlock - BB is known to contain an 860 /// unconditional branch, and contains no instructions other than PHI nodes, 861 /// potential side-effect free intrinsics and the branch. If possible, 862 /// eliminate BB by rewriting all the predecessors to branch to the successor 863 /// block and return true. If we can't transform, return false. 864 bool llvm::TryToSimplifyUncondBranchFromEmptyBlock(BasicBlock *BB) { 865 assert(BB != &BB->getParent()->getEntryBlock() && 866 "TryToSimplifyUncondBranchFromEmptyBlock called on entry block!"); 867 868 // We can't eliminate infinite loops. 869 BasicBlock *Succ = cast<BranchInst>(BB->getTerminator())->getSuccessor(0); 870 if (BB == Succ) return false; 871 872 // Check to see if merging these blocks would cause conflicts for any of the 873 // phi nodes in BB or Succ. If not, we can safely merge. 874 if (!CanPropagatePredecessorsForPHIs(BB, Succ)) return false; 875 876 // Check for cases where Succ has multiple predecessors and a PHI node in BB 877 // has uses which will not disappear when the PHI nodes are merged. It is 878 // possible to handle such cases, but difficult: it requires checking whether 879 // BB dominates Succ, which is non-trivial to calculate in the case where 880 // Succ has multiple predecessors. Also, it requires checking whether 881 // constructing the necessary self-referential PHI node doesn't introduce any 882 // conflicts; this isn't too difficult, but the previous code for doing this 883 // was incorrect. 884 // 885 // Note that if this check finds a live use, BB dominates Succ, so BB is 886 // something like a loop pre-header (or rarely, a part of an irreducible CFG); 887 // folding the branch isn't profitable in that case anyway. 888 if (!Succ->getSinglePredecessor()) { 889 BasicBlock::iterator BBI = BB->begin(); 890 while (isa<PHINode>(*BBI)) { 891 for (Use &U : BBI->uses()) { 892 if (PHINode* PN = dyn_cast<PHINode>(U.getUser())) { 893 if (PN->getIncomingBlock(U) != BB) 894 return false; 895 } else { 896 return false; 897 } 898 } 899 ++BBI; 900 } 901 } 902 903 DEBUG(dbgs() << "Killing Trivial BB: \n" << *BB); 904 905 if (isa<PHINode>(Succ->begin())) { 906 // If there is more than one pred of succ, and there are PHI nodes in 907 // the successor, then we need to add incoming edges for the PHI nodes 908 // 909 const PredBlockVector BBPreds(pred_begin(BB), pred_end(BB)); 910 911 // Loop over all of the PHI nodes in the successor of BB. 912 for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) { 913 PHINode *PN = cast<PHINode>(I); 914 915 redirectValuesFromPredecessorsToPhi(BB, BBPreds, PN); 916 } 917 } 918 919 if (Succ->getSinglePredecessor()) { 920 // BB is the only predecessor of Succ, so Succ will end up with exactly 921 // the same predecessors BB had. 922 923 // Copy over any phi, debug or lifetime instruction. 924 BB->getTerminator()->eraseFromParent(); 925 Succ->getInstList().splice(Succ->getFirstNonPHI()->getIterator(), 926 BB->getInstList()); 927 } else { 928 while (PHINode *PN = dyn_cast<PHINode>(&BB->front())) { 929 // We explicitly check for such uses in CanPropagatePredecessorsForPHIs. 930 assert(PN->use_empty() && "There shouldn't be any uses here!"); 931 PN->eraseFromParent(); 932 } 933 } 934 935 // If the unconditional branch we replaced contains llvm.loop metadata, we 936 // add the metadata to the branch instructions in the predecessors. 937 unsigned LoopMDKind = BB->getContext().getMDKindID("llvm.loop"); 938 Instruction *TI = BB->getTerminator(); 939 if (TI) 940 if (MDNode *LoopMD = TI->getMetadata(LoopMDKind)) 941 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { 942 BasicBlock *Pred = *PI; 943 Pred->getTerminator()->setMetadata(LoopMDKind, LoopMD); 944 } 945 946 // Everything that jumped to BB now goes to Succ. 947 BB->replaceAllUsesWith(Succ); 948 if (!Succ->hasName()) Succ->takeName(BB); 949 BB->eraseFromParent(); // Delete the old basic block. 950 return true; 951 } 952 953 /// EliminateDuplicatePHINodes - Check for and eliminate duplicate PHI 954 /// nodes in this block. This doesn't try to be clever about PHI nodes 955 /// which differ only in the order of the incoming values, but instcombine 956 /// orders them so it usually won't matter. 957 bool llvm::EliminateDuplicatePHINodes(BasicBlock *BB) { 958 // This implementation doesn't currently consider undef operands 959 // specially. Theoretically, two phis which are identical except for 960 // one having an undef where the other doesn't could be collapsed. 961 962 struct PHIDenseMapInfo { 963 static PHINode *getEmptyKey() { 964 return DenseMapInfo<PHINode *>::getEmptyKey(); 965 } 966 967 static PHINode *getTombstoneKey() { 968 return DenseMapInfo<PHINode *>::getTombstoneKey(); 969 } 970 971 static unsigned getHashValue(PHINode *PN) { 972 // Compute a hash value on the operands. Instcombine will likely have 973 // sorted them, which helps expose duplicates, but we have to check all 974 // the operands to be safe in case instcombine hasn't run. 975 return static_cast<unsigned>(hash_combine( 976 hash_combine_range(PN->value_op_begin(), PN->value_op_end()), 977 hash_combine_range(PN->block_begin(), PN->block_end()))); 978 } 979 980 static bool isEqual(PHINode *LHS, PHINode *RHS) { 981 if (LHS == getEmptyKey() || LHS == getTombstoneKey() || 982 RHS == getEmptyKey() || RHS == getTombstoneKey()) 983 return LHS == RHS; 984 return LHS->isIdenticalTo(RHS); 985 } 986 }; 987 988 // Set of unique PHINodes. 989 DenseSet<PHINode *, PHIDenseMapInfo> PHISet; 990 991 // Examine each PHI. 992 bool Changed = false; 993 for (auto I = BB->begin(); PHINode *PN = dyn_cast<PHINode>(I++);) { 994 auto Inserted = PHISet.insert(PN); 995 if (!Inserted.second) { 996 // A duplicate. Replace this PHI with its duplicate. 997 PN->replaceAllUsesWith(*Inserted.first); 998 PN->eraseFromParent(); 999 Changed = true; 1000 1001 // The RAUW can change PHIs that we already visited. Start over from the 1002 // beginning. 1003 PHISet.clear(); 1004 I = BB->begin(); 1005 } 1006 } 1007 1008 return Changed; 1009 } 1010 1011 /// enforceKnownAlignment - If the specified pointer points to an object that 1012 /// we control, modify the object's alignment to PrefAlign. This isn't 1013 /// often possible though. If alignment is important, a more reliable approach 1014 /// is to simply align all global variables and allocation instructions to 1015 /// their preferred alignment from the beginning. 1016 static unsigned enforceKnownAlignment(Value *V, unsigned Align, 1017 unsigned PrefAlign, 1018 const DataLayout &DL) { 1019 assert(PrefAlign > Align); 1020 1021 V = V->stripPointerCasts(); 1022 1023 if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1024 // TODO: ideally, computeKnownBits ought to have used 1025 // AllocaInst::getAlignment() in its computation already, making 1026 // the below max redundant. But, as it turns out, 1027 // stripPointerCasts recurses through infinite layers of bitcasts, 1028 // while computeKnownBits is not allowed to traverse more than 6 1029 // levels. 1030 Align = std::max(AI->getAlignment(), Align); 1031 if (PrefAlign <= Align) 1032 return Align; 1033 1034 // If the preferred alignment is greater than the natural stack alignment 1035 // then don't round up. This avoids dynamic stack realignment. 1036 if (DL.exceedsNaturalStackAlignment(PrefAlign)) 1037 return Align; 1038 AI->setAlignment(PrefAlign); 1039 return PrefAlign; 1040 } 1041 1042 if (auto *GO = dyn_cast<GlobalObject>(V)) { 1043 // TODO: as above, this shouldn't be necessary. 1044 Align = std::max(GO->getAlignment(), Align); 1045 if (PrefAlign <= Align) 1046 return Align; 1047 1048 // If there is a large requested alignment and we can, bump up the alignment 1049 // of the global. If the memory we set aside for the global may not be the 1050 // memory used by the final program then it is impossible for us to reliably 1051 // enforce the preferred alignment. 1052 if (!GO->canIncreaseAlignment()) 1053 return Align; 1054 1055 GO->setAlignment(PrefAlign); 1056 return PrefAlign; 1057 } 1058 1059 return Align; 1060 } 1061 1062 unsigned llvm::getOrEnforceKnownAlignment(Value *V, unsigned PrefAlign, 1063 const DataLayout &DL, 1064 const Instruction *CxtI, 1065 AssumptionCache *AC, 1066 const DominatorTree *DT) { 1067 assert(V->getType()->isPointerTy() && 1068 "getOrEnforceKnownAlignment expects a pointer!"); 1069 1070 KnownBits Known = computeKnownBits(V, DL, 0, AC, CxtI, DT); 1071 unsigned TrailZ = Known.countMinTrailingZeros(); 1072 1073 // Avoid trouble with ridiculously large TrailZ values, such as 1074 // those computed from a null pointer. 1075 TrailZ = std::min(TrailZ, unsigned(sizeof(unsigned) * CHAR_BIT - 1)); 1076 1077 unsigned Align = 1u << std::min(Known.getBitWidth() - 1, TrailZ); 1078 1079 // LLVM doesn't support alignments larger than this currently. 1080 Align = std::min(Align, +Value::MaximumAlignment); 1081 1082 if (PrefAlign > Align) 1083 Align = enforceKnownAlignment(V, Align, PrefAlign, DL); 1084 1085 // We don't need to make any adjustment. 1086 return Align; 1087 } 1088 1089 ///===---------------------------------------------------------------------===// 1090 /// Dbg Intrinsic utilities 1091 /// 1092 1093 /// See if there is a dbg.value intrinsic for DIVar before I. 1094 static bool LdStHasDebugValue(DILocalVariable *DIVar, DIExpression *DIExpr, 1095 Instruction *I) { 1096 // Since we can't guarantee that the original dbg.declare instrinsic 1097 // is removed by LowerDbgDeclare(), we need to make sure that we are 1098 // not inserting the same dbg.value intrinsic over and over. 1099 BasicBlock::InstListType::iterator PrevI(I); 1100 if (PrevI != I->getParent()->getInstList().begin()) { 1101 --PrevI; 1102 if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(PrevI)) 1103 if (DVI->getValue() == I->getOperand(0) && 1104 DVI->getVariable() == DIVar && 1105 DVI->getExpression() == DIExpr) 1106 return true; 1107 } 1108 return false; 1109 } 1110 1111 /// See if there is a dbg.value intrinsic for DIVar for the PHI node. 1112 static bool PhiHasDebugValue(DILocalVariable *DIVar, 1113 DIExpression *DIExpr, 1114 PHINode *APN) { 1115 // Since we can't guarantee that the original dbg.declare instrinsic 1116 // is removed by LowerDbgDeclare(), we need to make sure that we are 1117 // not inserting the same dbg.value intrinsic over and over. 1118 SmallVector<DbgValueInst *, 1> DbgValues; 1119 findDbgValues(DbgValues, APN); 1120 for (auto *DVI : DbgValues) { 1121 assert(DVI->getValue() == APN); 1122 if ((DVI->getVariable() == DIVar) && (DVI->getExpression() == DIExpr)) 1123 return true; 1124 } 1125 return false; 1126 } 1127 1128 /// Inserts a llvm.dbg.value intrinsic before a store to an alloca'd value 1129 /// that has an associated llvm.dbg.declare or llvm.dbg.addr intrinsic. 1130 void llvm::ConvertDebugDeclareToDebugValue(DbgInfoIntrinsic *DII, 1131 StoreInst *SI, DIBuilder &Builder) { 1132 assert(DII->isAddressOfVariable()); 1133 auto *DIVar = DII->getVariable(); 1134 assert(DIVar && "Missing variable"); 1135 auto *DIExpr = DII->getExpression(); 1136 Value *DV = SI->getOperand(0); 1137 1138 // If an argument is zero extended then use argument directly. The ZExt 1139 // may be zapped by an optimization pass in future. 1140 Argument *ExtendedArg = nullptr; 1141 if (ZExtInst *ZExt = dyn_cast<ZExtInst>(SI->getOperand(0))) 1142 ExtendedArg = dyn_cast<Argument>(ZExt->getOperand(0)); 1143 if (SExtInst *SExt = dyn_cast<SExtInst>(SI->getOperand(0))) 1144 ExtendedArg = dyn_cast<Argument>(SExt->getOperand(0)); 1145 if (ExtendedArg) { 1146 // If this DII was already describing only a fragment of a variable, ensure 1147 // that fragment is appropriately narrowed here. 1148 // But if a fragment wasn't used, describe the value as the original 1149 // argument (rather than the zext or sext) so that it remains described even 1150 // if the sext/zext is optimized away. This widens the variable description, 1151 // leaving it up to the consumer to know how the smaller value may be 1152 // represented in a larger register. 1153 if (auto Fragment = DIExpr->getFragmentInfo()) { 1154 unsigned FragmentOffset = Fragment->OffsetInBits; 1155 SmallVector<uint64_t, 3> Ops(DIExpr->elements_begin(), 1156 DIExpr->elements_end() - 3); 1157 Ops.push_back(dwarf::DW_OP_LLVM_fragment); 1158 Ops.push_back(FragmentOffset); 1159 const DataLayout &DL = DII->getModule()->getDataLayout(); 1160 Ops.push_back(DL.getTypeSizeInBits(ExtendedArg->getType())); 1161 DIExpr = Builder.createExpression(Ops); 1162 } 1163 DV = ExtendedArg; 1164 } 1165 if (!LdStHasDebugValue(DIVar, DIExpr, SI)) 1166 Builder.insertDbgValueIntrinsic(DV, DIVar, DIExpr, DII->getDebugLoc(), 1167 SI); 1168 } 1169 1170 /// Inserts a llvm.dbg.value intrinsic before a load of an alloca'd value 1171 /// that has an associated llvm.dbg.declare or llvm.dbg.addr intrinsic. 1172 void llvm::ConvertDebugDeclareToDebugValue(DbgInfoIntrinsic *DII, 1173 LoadInst *LI, DIBuilder &Builder) { 1174 auto *DIVar = DII->getVariable(); 1175 auto *DIExpr = DII->getExpression(); 1176 assert(DIVar && "Missing variable"); 1177 1178 if (LdStHasDebugValue(DIVar, DIExpr, LI)) 1179 return; 1180 1181 // We are now tracking the loaded value instead of the address. In the 1182 // future if multi-location support is added to the IR, it might be 1183 // preferable to keep tracking both the loaded value and the original 1184 // address in case the alloca can not be elided. 1185 Instruction *DbgValue = Builder.insertDbgValueIntrinsic( 1186 LI, DIVar, DIExpr, DII->getDebugLoc(), (Instruction *)nullptr); 1187 DbgValue->insertAfter(LI); 1188 } 1189 1190 /// Inserts a llvm.dbg.value intrinsic after a phi that has an associated 1191 /// llvm.dbg.declare or llvm.dbg.addr intrinsic. 1192 void llvm::ConvertDebugDeclareToDebugValue(DbgInfoIntrinsic *DII, 1193 PHINode *APN, DIBuilder &Builder) { 1194 auto *DIVar = DII->getVariable(); 1195 auto *DIExpr = DII->getExpression(); 1196 assert(DIVar && "Missing variable"); 1197 1198 if (PhiHasDebugValue(DIVar, DIExpr, APN)) 1199 return; 1200 1201 BasicBlock *BB = APN->getParent(); 1202 auto InsertionPt = BB->getFirstInsertionPt(); 1203 1204 // The block may be a catchswitch block, which does not have a valid 1205 // insertion point. 1206 // FIXME: Insert dbg.value markers in the successors when appropriate. 1207 if (InsertionPt != BB->end()) 1208 Builder.insertDbgValueIntrinsic(APN, DIVar, DIExpr, DII->getDebugLoc(), 1209 &*InsertionPt); 1210 } 1211 1212 /// Determine whether this alloca is either a VLA or an array. 1213 static bool isArray(AllocaInst *AI) { 1214 return AI->isArrayAllocation() || 1215 AI->getType()->getElementType()->isArrayTy(); 1216 } 1217 1218 /// LowerDbgDeclare - Lowers llvm.dbg.declare intrinsics into appropriate set 1219 /// of llvm.dbg.value intrinsics. 1220 bool llvm::LowerDbgDeclare(Function &F) { 1221 DIBuilder DIB(*F.getParent(), /*AllowUnresolved*/ false); 1222 SmallVector<DbgDeclareInst *, 4> Dbgs; 1223 for (auto &FI : F) 1224 for (Instruction &BI : FI) 1225 if (auto DDI = dyn_cast<DbgDeclareInst>(&BI)) 1226 Dbgs.push_back(DDI); 1227 1228 if (Dbgs.empty()) 1229 return false; 1230 1231 for (auto &I : Dbgs) { 1232 DbgDeclareInst *DDI = I; 1233 AllocaInst *AI = dyn_cast_or_null<AllocaInst>(DDI->getAddress()); 1234 // If this is an alloca for a scalar variable, insert a dbg.value 1235 // at each load and store to the alloca and erase the dbg.declare. 1236 // The dbg.values allow tracking a variable even if it is not 1237 // stored on the stack, while the dbg.declare can only describe 1238 // the stack slot (and at a lexical-scope granularity). Later 1239 // passes will attempt to elide the stack slot. 1240 if (AI && !isArray(AI)) { 1241 for (auto &AIUse : AI->uses()) { 1242 User *U = AIUse.getUser(); 1243 if (StoreInst *SI = dyn_cast<StoreInst>(U)) { 1244 if (AIUse.getOperandNo() == 1) 1245 ConvertDebugDeclareToDebugValue(DDI, SI, DIB); 1246 } else if (LoadInst *LI = dyn_cast<LoadInst>(U)) { 1247 ConvertDebugDeclareToDebugValue(DDI, LI, DIB); 1248 } else if (CallInst *CI = dyn_cast<CallInst>(U)) { 1249 // This is a call by-value or some other instruction that 1250 // takes a pointer to the variable. Insert a *value* 1251 // intrinsic that describes the alloca. 1252 DIB.insertDbgValueIntrinsic(AI, DDI->getVariable(), 1253 DDI->getExpression(), DDI->getDebugLoc(), 1254 CI); 1255 } 1256 } 1257 DDI->eraseFromParent(); 1258 } 1259 } 1260 return true; 1261 } 1262 1263 /// Finds all intrinsics declaring local variables as living in the memory that 1264 /// 'V' points to. This may include a mix of dbg.declare and 1265 /// dbg.addr intrinsics. 1266 TinyPtrVector<DbgInfoIntrinsic *> llvm::FindDbgAddrUses(Value *V) { 1267 auto *L = LocalAsMetadata::getIfExists(V); 1268 if (!L) 1269 return {}; 1270 auto *MDV = MetadataAsValue::getIfExists(V->getContext(), L); 1271 if (!MDV) 1272 return {}; 1273 1274 TinyPtrVector<DbgInfoIntrinsic *> Declares; 1275 for (User *U : MDV->users()) { 1276 if (auto *DII = dyn_cast<DbgInfoIntrinsic>(U)) 1277 if (DII->isAddressOfVariable()) 1278 Declares.push_back(DII); 1279 } 1280 1281 return Declares; 1282 } 1283 1284 void llvm::findDbgValues(SmallVectorImpl<DbgValueInst *> &DbgValues, Value *V) { 1285 if (auto *L = LocalAsMetadata::getIfExists(V)) 1286 if (auto *MDV = MetadataAsValue::getIfExists(V->getContext(), L)) 1287 for (User *U : MDV->users()) 1288 if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(U)) 1289 DbgValues.push_back(DVI); 1290 } 1291 1292 static void findDbgUsers(SmallVectorImpl<DbgInfoIntrinsic *> &DbgUsers, 1293 Value *V) { 1294 if (auto *L = LocalAsMetadata::getIfExists(V)) 1295 if (auto *MDV = MetadataAsValue::getIfExists(V->getContext(), L)) 1296 for (User *U : MDV->users()) 1297 if (DbgInfoIntrinsic *DII = dyn_cast<DbgInfoIntrinsic>(U)) 1298 DbgUsers.push_back(DII); 1299 } 1300 1301 bool llvm::replaceDbgDeclare(Value *Address, Value *NewAddress, 1302 Instruction *InsertBefore, DIBuilder &Builder, 1303 bool DerefBefore, int Offset, bool DerefAfter) { 1304 auto DbgAddrs = FindDbgAddrUses(Address); 1305 for (DbgInfoIntrinsic *DII : DbgAddrs) { 1306 DebugLoc Loc = DII->getDebugLoc(); 1307 auto *DIVar = DII->getVariable(); 1308 auto *DIExpr = DII->getExpression(); 1309 assert(DIVar && "Missing variable"); 1310 DIExpr = DIExpression::prepend(DIExpr, DerefBefore, Offset, DerefAfter); 1311 // Insert llvm.dbg.declare immediately after InsertBefore, and remove old 1312 // llvm.dbg.declare. 1313 Builder.insertDeclare(NewAddress, DIVar, DIExpr, Loc, InsertBefore); 1314 if (DII == InsertBefore) 1315 InsertBefore = &*std::next(InsertBefore->getIterator()); 1316 DII->eraseFromParent(); 1317 } 1318 return !DbgAddrs.empty(); 1319 } 1320 1321 bool llvm::replaceDbgDeclareForAlloca(AllocaInst *AI, Value *NewAllocaAddress, 1322 DIBuilder &Builder, bool DerefBefore, 1323 int Offset, bool DerefAfter) { 1324 return replaceDbgDeclare(AI, NewAllocaAddress, AI->getNextNode(), Builder, 1325 DerefBefore, Offset, DerefAfter); 1326 } 1327 1328 static void replaceOneDbgValueForAlloca(DbgValueInst *DVI, Value *NewAddress, 1329 DIBuilder &Builder, int Offset) { 1330 DebugLoc Loc = DVI->getDebugLoc(); 1331 auto *DIVar = DVI->getVariable(); 1332 auto *DIExpr = DVI->getExpression(); 1333 assert(DIVar && "Missing variable"); 1334 1335 // This is an alloca-based llvm.dbg.value. The first thing it should do with 1336 // the alloca pointer is dereference it. Otherwise we don't know how to handle 1337 // it and give up. 1338 if (!DIExpr || DIExpr->getNumElements() < 1 || 1339 DIExpr->getElement(0) != dwarf::DW_OP_deref) 1340 return; 1341 1342 // Insert the offset immediately after the first deref. 1343 // We could just change the offset argument of dbg.value, but it's unsigned... 1344 if (Offset) { 1345 SmallVector<uint64_t, 4> Ops; 1346 Ops.push_back(dwarf::DW_OP_deref); 1347 DIExpression::appendOffset(Ops, Offset); 1348 Ops.append(DIExpr->elements_begin() + 1, DIExpr->elements_end()); 1349 DIExpr = Builder.createExpression(Ops); 1350 } 1351 1352 Builder.insertDbgValueIntrinsic(NewAddress, DIVar, DIExpr, Loc, DVI); 1353 DVI->eraseFromParent(); 1354 } 1355 1356 void llvm::replaceDbgValueForAlloca(AllocaInst *AI, Value *NewAllocaAddress, 1357 DIBuilder &Builder, int Offset) { 1358 if (auto *L = LocalAsMetadata::getIfExists(AI)) 1359 if (auto *MDV = MetadataAsValue::getIfExists(AI->getContext(), L)) 1360 for (auto UI = MDV->use_begin(), UE = MDV->use_end(); UI != UE;) { 1361 Use &U = *UI++; 1362 if (auto *DVI = dyn_cast<DbgValueInst>(U.getUser())) 1363 replaceOneDbgValueForAlloca(DVI, NewAllocaAddress, Builder, Offset); 1364 } 1365 } 1366 1367 void llvm::salvageDebugInfo(Instruction &I) { 1368 SmallVector<DbgValueInst *, 1> DbgValues; 1369 auto &M = *I.getModule(); 1370 1371 auto wrapMD = [&](Value *V) { 1372 return MetadataAsValue::get(I.getContext(), ValueAsMetadata::get(V)); 1373 }; 1374 1375 auto applyOffset = [&](DbgValueInst *DVI, uint64_t Offset) { 1376 auto *DIExpr = DVI->getExpression(); 1377 DIExpr = DIExpression::prepend(DIExpr, DIExpression::NoDeref, Offset, 1378 DIExpression::NoDeref, 1379 DIExpression::WithStackValue); 1380 DVI->setOperand(0, wrapMD(I.getOperand(0))); 1381 DVI->setOperand(2, MetadataAsValue::get(I.getContext(), DIExpr)); 1382 DEBUG(dbgs() << "SALVAGE: " << *DVI << '\n'); 1383 }; 1384 1385 if (isa<BitCastInst>(&I) || isa<IntToPtrInst>(&I)) { 1386 // Bitcasts are entirely irrelevant for debug info. Rewrite dbg.value, 1387 // dbg.addr, and dbg.declare to use the cast's source. 1388 SmallVector<DbgInfoIntrinsic *, 1> DbgUsers; 1389 findDbgUsers(DbgUsers, &I); 1390 for (auto *DII : DbgUsers) { 1391 DII->setOperand(0, wrapMD(I.getOperand(0))); 1392 DEBUG(dbgs() << "SALVAGE: " << *DII << '\n'); 1393 } 1394 } else if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) { 1395 findDbgValues(DbgValues, &I); 1396 for (auto *DVI : DbgValues) { 1397 unsigned BitWidth = 1398 M.getDataLayout().getPointerSizeInBits(GEP->getPointerAddressSpace()); 1399 APInt Offset(BitWidth, 0); 1400 // Rewrite a constant GEP into a DIExpression. Since we are performing 1401 // arithmetic to compute the variable's *value* in the DIExpression, we 1402 // need to mark the expression with a DW_OP_stack_value. 1403 if (GEP->accumulateConstantOffset(M.getDataLayout(), Offset)) 1404 // GEP offsets are i32 and thus always fit into an int64_t. 1405 applyOffset(DVI, Offset.getSExtValue()); 1406 } 1407 } else if (auto *BI = dyn_cast<BinaryOperator>(&I)) { 1408 if (BI->getOpcode() == Instruction::Add) 1409 if (auto *ConstInt = dyn_cast<ConstantInt>(I.getOperand(1))) 1410 if (ConstInt->getBitWidth() <= 64) { 1411 APInt Offset = ConstInt->getValue(); 1412 findDbgValues(DbgValues, &I); 1413 for (auto *DVI : DbgValues) 1414 applyOffset(DVI, Offset.getSExtValue()); 1415 } 1416 } else if (isa<LoadInst>(&I)) { 1417 findDbgValues(DbgValues, &I); 1418 for (auto *DVI : DbgValues) { 1419 // Rewrite the load into DW_OP_deref. 1420 auto *DIExpr = DVI->getExpression(); 1421 DIExpr = DIExpression::prepend(DIExpr, DIExpression::WithDeref); 1422 DVI->setOperand(0, wrapMD(I.getOperand(0))); 1423 DVI->setOperand(2, MetadataAsValue::get(I.getContext(), DIExpr)); 1424 DEBUG(dbgs() << "SALVAGE: " << *DVI << '\n'); 1425 } 1426 } 1427 } 1428 1429 unsigned llvm::removeAllNonTerminatorAndEHPadInstructions(BasicBlock *BB) { 1430 unsigned NumDeadInst = 0; 1431 // Delete the instructions backwards, as it has a reduced likelihood of 1432 // having to update as many def-use and use-def chains. 1433 Instruction *EndInst = BB->getTerminator(); // Last not to be deleted. 1434 while (EndInst != &BB->front()) { 1435 // Delete the next to last instruction. 1436 Instruction *Inst = &*--EndInst->getIterator(); 1437 if (!Inst->use_empty() && !Inst->getType()->isTokenTy()) 1438 Inst->replaceAllUsesWith(UndefValue::get(Inst->getType())); 1439 if (Inst->isEHPad() || Inst->getType()->isTokenTy()) { 1440 EndInst = Inst; 1441 continue; 1442 } 1443 if (!isa<DbgInfoIntrinsic>(Inst)) 1444 ++NumDeadInst; 1445 Inst->eraseFromParent(); 1446 } 1447 return NumDeadInst; 1448 } 1449 1450 unsigned llvm::changeToUnreachable(Instruction *I, bool UseLLVMTrap, 1451 bool PreserveLCSSA) { 1452 BasicBlock *BB = I->getParent(); 1453 // Loop over all of the successors, removing BB's entry from any PHI 1454 // nodes. 1455 for (BasicBlock *Successor : successors(BB)) 1456 Successor->removePredecessor(BB, PreserveLCSSA); 1457 1458 // Insert a call to llvm.trap right before this. This turns the undefined 1459 // behavior into a hard fail instead of falling through into random code. 1460 if (UseLLVMTrap) { 1461 Function *TrapFn = 1462 Intrinsic::getDeclaration(BB->getParent()->getParent(), Intrinsic::trap); 1463 CallInst *CallTrap = CallInst::Create(TrapFn, "", I); 1464 CallTrap->setDebugLoc(I->getDebugLoc()); 1465 } 1466 new UnreachableInst(I->getContext(), I); 1467 1468 // All instructions after this are dead. 1469 unsigned NumInstrsRemoved = 0; 1470 BasicBlock::iterator BBI = I->getIterator(), BBE = BB->end(); 1471 while (BBI != BBE) { 1472 if (!BBI->use_empty()) 1473 BBI->replaceAllUsesWith(UndefValue::get(BBI->getType())); 1474 BB->getInstList().erase(BBI++); 1475 ++NumInstrsRemoved; 1476 } 1477 return NumInstrsRemoved; 1478 } 1479 1480 /// changeToCall - Convert the specified invoke into a normal call. 1481 static void changeToCall(InvokeInst *II) { 1482 SmallVector<Value*, 8> Args(II->arg_begin(), II->arg_end()); 1483 SmallVector<OperandBundleDef, 1> OpBundles; 1484 II->getOperandBundlesAsDefs(OpBundles); 1485 CallInst *NewCall = CallInst::Create(II->getCalledValue(), Args, OpBundles, 1486 "", II); 1487 NewCall->takeName(II); 1488 NewCall->setCallingConv(II->getCallingConv()); 1489 NewCall->setAttributes(II->getAttributes()); 1490 NewCall->setDebugLoc(II->getDebugLoc()); 1491 II->replaceAllUsesWith(NewCall); 1492 1493 // Follow the call by a branch to the normal destination. 1494 BranchInst::Create(II->getNormalDest(), II); 1495 1496 // Update PHI nodes in the unwind destination 1497 II->getUnwindDest()->removePredecessor(II->getParent()); 1498 II->eraseFromParent(); 1499 } 1500 1501 BasicBlock *llvm::changeToInvokeAndSplitBasicBlock(CallInst *CI, 1502 BasicBlock *UnwindEdge) { 1503 BasicBlock *BB = CI->getParent(); 1504 1505 // Convert this function call into an invoke instruction. First, split the 1506 // basic block. 1507 BasicBlock *Split = 1508 BB->splitBasicBlock(CI->getIterator(), CI->getName() + ".noexc"); 1509 1510 // Delete the unconditional branch inserted by splitBasicBlock 1511 BB->getInstList().pop_back(); 1512 1513 // Create the new invoke instruction. 1514 SmallVector<Value *, 8> InvokeArgs(CI->arg_begin(), CI->arg_end()); 1515 SmallVector<OperandBundleDef, 1> OpBundles; 1516 1517 CI->getOperandBundlesAsDefs(OpBundles); 1518 1519 // Note: we're round tripping operand bundles through memory here, and that 1520 // can potentially be avoided with a cleverer API design that we do not have 1521 // as of this time. 1522 1523 InvokeInst *II = InvokeInst::Create(CI->getCalledValue(), Split, UnwindEdge, 1524 InvokeArgs, OpBundles, CI->getName(), BB); 1525 II->setDebugLoc(CI->getDebugLoc()); 1526 II->setCallingConv(CI->getCallingConv()); 1527 II->setAttributes(CI->getAttributes()); 1528 1529 // Make sure that anything using the call now uses the invoke! This also 1530 // updates the CallGraph if present, because it uses a WeakTrackingVH. 1531 CI->replaceAllUsesWith(II); 1532 1533 // Delete the original call 1534 Split->getInstList().pop_front(); 1535 return Split; 1536 } 1537 1538 static bool markAliveBlocks(Function &F, 1539 SmallPtrSetImpl<BasicBlock*> &Reachable) { 1540 SmallVector<BasicBlock*, 128> Worklist; 1541 BasicBlock *BB = &F.front(); 1542 Worklist.push_back(BB); 1543 Reachable.insert(BB); 1544 bool Changed = false; 1545 do { 1546 BB = Worklist.pop_back_val(); 1547 1548 // Do a quick scan of the basic block, turning any obviously unreachable 1549 // instructions into LLVM unreachable insts. The instruction combining pass 1550 // canonicalizes unreachable insts into stores to null or undef. 1551 for (Instruction &I : *BB) { 1552 // Assumptions that are known to be false are equivalent to unreachable. 1553 // Also, if the condition is undefined, then we make the choice most 1554 // beneficial to the optimizer, and choose that to also be unreachable. 1555 if (auto *II = dyn_cast<IntrinsicInst>(&I)) { 1556 if (II->getIntrinsicID() == Intrinsic::assume) { 1557 if (match(II->getArgOperand(0), m_CombineOr(m_Zero(), m_Undef()))) { 1558 // Don't insert a call to llvm.trap right before the unreachable. 1559 changeToUnreachable(II, false); 1560 Changed = true; 1561 break; 1562 } 1563 } 1564 1565 if (II->getIntrinsicID() == Intrinsic::experimental_guard) { 1566 // A call to the guard intrinsic bails out of the current compilation 1567 // unit if the predicate passed to it is false. If the predicate is a 1568 // constant false, then we know the guard will bail out of the current 1569 // compile unconditionally, so all code following it is dead. 1570 // 1571 // Note: unlike in llvm.assume, it is not "obviously profitable" for 1572 // guards to treat `undef` as `false` since a guard on `undef` can 1573 // still be useful for widening. 1574 if (match(II->getArgOperand(0), m_Zero())) 1575 if (!isa<UnreachableInst>(II->getNextNode())) { 1576 changeToUnreachable(II->getNextNode(), /*UseLLVMTrap=*/ false); 1577 Changed = true; 1578 break; 1579 } 1580 } 1581 } 1582 1583 if (auto *CI = dyn_cast<CallInst>(&I)) { 1584 Value *Callee = CI->getCalledValue(); 1585 if (isa<ConstantPointerNull>(Callee) || isa<UndefValue>(Callee)) { 1586 changeToUnreachable(CI, /*UseLLVMTrap=*/false); 1587 Changed = true; 1588 break; 1589 } 1590 if (CI->doesNotReturn()) { 1591 // If we found a call to a no-return function, insert an unreachable 1592 // instruction after it. Make sure there isn't *already* one there 1593 // though. 1594 if (!isa<UnreachableInst>(CI->getNextNode())) { 1595 // Don't insert a call to llvm.trap right before the unreachable. 1596 changeToUnreachable(CI->getNextNode(), false); 1597 Changed = true; 1598 } 1599 break; 1600 } 1601 } 1602 1603 // Store to undef and store to null are undefined and used to signal that 1604 // they should be changed to unreachable by passes that can't modify the 1605 // CFG. 1606 if (auto *SI = dyn_cast<StoreInst>(&I)) { 1607 // Don't touch volatile stores. 1608 if (SI->isVolatile()) continue; 1609 1610 Value *Ptr = SI->getOperand(1); 1611 1612 if (isa<UndefValue>(Ptr) || 1613 (isa<ConstantPointerNull>(Ptr) && 1614 SI->getPointerAddressSpace() == 0)) { 1615 changeToUnreachable(SI, true); 1616 Changed = true; 1617 break; 1618 } 1619 } 1620 } 1621 1622 TerminatorInst *Terminator = BB->getTerminator(); 1623 if (auto *II = dyn_cast<InvokeInst>(Terminator)) { 1624 // Turn invokes that call 'nounwind' functions into ordinary calls. 1625 Value *Callee = II->getCalledValue(); 1626 if (isa<ConstantPointerNull>(Callee) || isa<UndefValue>(Callee)) { 1627 changeToUnreachable(II, true); 1628 Changed = true; 1629 } else if (II->doesNotThrow() && canSimplifyInvokeNoUnwind(&F)) { 1630 if (II->use_empty() && II->onlyReadsMemory()) { 1631 // jump to the normal destination branch. 1632 BranchInst::Create(II->getNormalDest(), II); 1633 II->getUnwindDest()->removePredecessor(II->getParent()); 1634 II->eraseFromParent(); 1635 } else 1636 changeToCall(II); 1637 Changed = true; 1638 } 1639 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Terminator)) { 1640 // Remove catchpads which cannot be reached. 1641 struct CatchPadDenseMapInfo { 1642 static CatchPadInst *getEmptyKey() { 1643 return DenseMapInfo<CatchPadInst *>::getEmptyKey(); 1644 } 1645 1646 static CatchPadInst *getTombstoneKey() { 1647 return DenseMapInfo<CatchPadInst *>::getTombstoneKey(); 1648 } 1649 1650 static unsigned getHashValue(CatchPadInst *CatchPad) { 1651 return static_cast<unsigned>(hash_combine_range( 1652 CatchPad->value_op_begin(), CatchPad->value_op_end())); 1653 } 1654 1655 static bool isEqual(CatchPadInst *LHS, CatchPadInst *RHS) { 1656 if (LHS == getEmptyKey() || LHS == getTombstoneKey() || 1657 RHS == getEmptyKey() || RHS == getTombstoneKey()) 1658 return LHS == RHS; 1659 return LHS->isIdenticalTo(RHS); 1660 } 1661 }; 1662 1663 // Set of unique CatchPads. 1664 SmallDenseMap<CatchPadInst *, detail::DenseSetEmpty, 4, 1665 CatchPadDenseMapInfo, detail::DenseSetPair<CatchPadInst *>> 1666 HandlerSet; 1667 detail::DenseSetEmpty Empty; 1668 for (CatchSwitchInst::handler_iterator I = CatchSwitch->handler_begin(), 1669 E = CatchSwitch->handler_end(); 1670 I != E; ++I) { 1671 BasicBlock *HandlerBB = *I; 1672 auto *CatchPad = cast<CatchPadInst>(HandlerBB->getFirstNonPHI()); 1673 if (!HandlerSet.insert({CatchPad, Empty}).second) { 1674 CatchSwitch->removeHandler(I); 1675 --I; 1676 --E; 1677 Changed = true; 1678 } 1679 } 1680 } 1681 1682 Changed |= ConstantFoldTerminator(BB, true); 1683 for (BasicBlock *Successor : successors(BB)) 1684 if (Reachable.insert(Successor).second) 1685 Worklist.push_back(Successor); 1686 } while (!Worklist.empty()); 1687 return Changed; 1688 } 1689 1690 void llvm::removeUnwindEdge(BasicBlock *BB) { 1691 TerminatorInst *TI = BB->getTerminator(); 1692 1693 if (auto *II = dyn_cast<InvokeInst>(TI)) { 1694 changeToCall(II); 1695 return; 1696 } 1697 1698 TerminatorInst *NewTI; 1699 BasicBlock *UnwindDest; 1700 1701 if (auto *CRI = dyn_cast<CleanupReturnInst>(TI)) { 1702 NewTI = CleanupReturnInst::Create(CRI->getCleanupPad(), nullptr, CRI); 1703 UnwindDest = CRI->getUnwindDest(); 1704 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(TI)) { 1705 auto *NewCatchSwitch = CatchSwitchInst::Create( 1706 CatchSwitch->getParentPad(), nullptr, CatchSwitch->getNumHandlers(), 1707 CatchSwitch->getName(), CatchSwitch); 1708 for (BasicBlock *PadBB : CatchSwitch->handlers()) 1709 NewCatchSwitch->addHandler(PadBB); 1710 1711 NewTI = NewCatchSwitch; 1712 UnwindDest = CatchSwitch->getUnwindDest(); 1713 } else { 1714 llvm_unreachable("Could not find unwind successor"); 1715 } 1716 1717 NewTI->takeName(TI); 1718 NewTI->setDebugLoc(TI->getDebugLoc()); 1719 UnwindDest->removePredecessor(BB); 1720 TI->replaceAllUsesWith(NewTI); 1721 TI->eraseFromParent(); 1722 } 1723 1724 /// removeUnreachableBlocks - Remove blocks that are not reachable, even 1725 /// if they are in a dead cycle. Return true if a change was made, false 1726 /// otherwise. If `LVI` is passed, this function preserves LazyValueInfo 1727 /// after modifying the CFG. 1728 bool llvm::removeUnreachableBlocks(Function &F, LazyValueInfo *LVI) { 1729 SmallPtrSet<BasicBlock*, 16> Reachable; 1730 bool Changed = markAliveBlocks(F, Reachable); 1731 1732 // If there are unreachable blocks in the CFG... 1733 if (Reachable.size() == F.size()) 1734 return Changed; 1735 1736 assert(Reachable.size() < F.size()); 1737 NumRemoved += F.size()-Reachable.size(); 1738 1739 // Loop over all of the basic blocks that are not reachable, dropping all of 1740 // their internal references... 1741 for (Function::iterator BB = ++F.begin(), E = F.end(); BB != E; ++BB) { 1742 if (Reachable.count(&*BB)) 1743 continue; 1744 1745 for (BasicBlock *Successor : successors(&*BB)) 1746 if (Reachable.count(Successor)) 1747 Successor->removePredecessor(&*BB); 1748 if (LVI) 1749 LVI->eraseBlock(&*BB); 1750 BB->dropAllReferences(); 1751 } 1752 1753 for (Function::iterator I = ++F.begin(); I != F.end();) 1754 if (!Reachable.count(&*I)) 1755 I = F.getBasicBlockList().erase(I); 1756 else 1757 ++I; 1758 1759 return true; 1760 } 1761 1762 void llvm::combineMetadata(Instruction *K, const Instruction *J, 1763 ArrayRef<unsigned> KnownIDs) { 1764 SmallVector<std::pair<unsigned, MDNode *>, 4> Metadata; 1765 K->dropUnknownNonDebugMetadata(KnownIDs); 1766 K->getAllMetadataOtherThanDebugLoc(Metadata); 1767 for (const auto &MD : Metadata) { 1768 unsigned Kind = MD.first; 1769 MDNode *JMD = J->getMetadata(Kind); 1770 MDNode *KMD = MD.second; 1771 1772 switch (Kind) { 1773 default: 1774 K->setMetadata(Kind, nullptr); // Remove unknown metadata 1775 break; 1776 case LLVMContext::MD_dbg: 1777 llvm_unreachable("getAllMetadataOtherThanDebugLoc returned a MD_dbg"); 1778 case LLVMContext::MD_tbaa: 1779 K->setMetadata(Kind, MDNode::getMostGenericTBAA(JMD, KMD)); 1780 break; 1781 case LLVMContext::MD_alias_scope: 1782 K->setMetadata(Kind, MDNode::getMostGenericAliasScope(JMD, KMD)); 1783 break; 1784 case LLVMContext::MD_noalias: 1785 case LLVMContext::MD_mem_parallel_loop_access: 1786 K->setMetadata(Kind, MDNode::intersect(JMD, KMD)); 1787 break; 1788 case LLVMContext::MD_range: 1789 K->setMetadata(Kind, MDNode::getMostGenericRange(JMD, KMD)); 1790 break; 1791 case LLVMContext::MD_fpmath: 1792 K->setMetadata(Kind, MDNode::getMostGenericFPMath(JMD, KMD)); 1793 break; 1794 case LLVMContext::MD_invariant_load: 1795 // Only set the !invariant.load if it is present in both instructions. 1796 K->setMetadata(Kind, JMD); 1797 break; 1798 case LLVMContext::MD_nonnull: 1799 // Only set the !nonnull if it is present in both instructions. 1800 K->setMetadata(Kind, JMD); 1801 break; 1802 case LLVMContext::MD_invariant_group: 1803 // Preserve !invariant.group in K. 1804 break; 1805 case LLVMContext::MD_align: 1806 K->setMetadata(Kind, 1807 MDNode::getMostGenericAlignmentOrDereferenceable(JMD, KMD)); 1808 break; 1809 case LLVMContext::MD_dereferenceable: 1810 case LLVMContext::MD_dereferenceable_or_null: 1811 K->setMetadata(Kind, 1812 MDNode::getMostGenericAlignmentOrDereferenceable(JMD, KMD)); 1813 break; 1814 } 1815 } 1816 // Set !invariant.group from J if J has it. If both instructions have it 1817 // then we will just pick it from J - even when they are different. 1818 // Also make sure that K is load or store - f.e. combining bitcast with load 1819 // could produce bitcast with invariant.group metadata, which is invalid. 1820 // FIXME: we should try to preserve both invariant.group md if they are 1821 // different, but right now instruction can only have one invariant.group. 1822 if (auto *JMD = J->getMetadata(LLVMContext::MD_invariant_group)) 1823 if (isa<LoadInst>(K) || isa<StoreInst>(K)) 1824 K->setMetadata(LLVMContext::MD_invariant_group, JMD); 1825 } 1826 1827 void llvm::combineMetadataForCSE(Instruction *K, const Instruction *J) { 1828 unsigned KnownIDs[] = { 1829 LLVMContext::MD_tbaa, LLVMContext::MD_alias_scope, 1830 LLVMContext::MD_noalias, LLVMContext::MD_range, 1831 LLVMContext::MD_invariant_load, LLVMContext::MD_nonnull, 1832 LLVMContext::MD_invariant_group, LLVMContext::MD_align, 1833 LLVMContext::MD_dereferenceable, 1834 LLVMContext::MD_dereferenceable_or_null}; 1835 combineMetadata(K, J, KnownIDs); 1836 } 1837 1838 template <typename RootType, typename DominatesFn> 1839 static unsigned replaceDominatedUsesWith(Value *From, Value *To, 1840 const RootType &Root, 1841 const DominatesFn &Dominates) { 1842 assert(From->getType() == To->getType()); 1843 1844 unsigned Count = 0; 1845 for (Value::use_iterator UI = From->use_begin(), UE = From->use_end(); 1846 UI != UE;) { 1847 Use &U = *UI++; 1848 if (!Dominates(Root, U)) 1849 continue; 1850 U.set(To); 1851 DEBUG(dbgs() << "Replace dominated use of '" << From->getName() << "' as " 1852 << *To << " in " << *U << "\n"); 1853 ++Count; 1854 } 1855 return Count; 1856 } 1857 1858 unsigned llvm::replaceNonLocalUsesWith(Instruction *From, Value *To) { 1859 assert(From->getType() == To->getType()); 1860 auto *BB = From->getParent(); 1861 unsigned Count = 0; 1862 1863 for (Value::use_iterator UI = From->use_begin(), UE = From->use_end(); 1864 UI != UE;) { 1865 Use &U = *UI++; 1866 auto *I = cast<Instruction>(U.getUser()); 1867 if (I->getParent() == BB) 1868 continue; 1869 U.set(To); 1870 ++Count; 1871 } 1872 return Count; 1873 } 1874 1875 unsigned llvm::replaceDominatedUsesWith(Value *From, Value *To, 1876 DominatorTree &DT, 1877 const BasicBlockEdge &Root) { 1878 auto Dominates = [&DT](const BasicBlockEdge &Root, const Use &U) { 1879 return DT.dominates(Root, U); 1880 }; 1881 return ::replaceDominatedUsesWith(From, To, Root, Dominates); 1882 } 1883 1884 unsigned llvm::replaceDominatedUsesWith(Value *From, Value *To, 1885 DominatorTree &DT, 1886 const BasicBlock *BB) { 1887 auto ProperlyDominates = [&DT](const BasicBlock *BB, const Use &U) { 1888 auto *I = cast<Instruction>(U.getUser())->getParent(); 1889 return DT.properlyDominates(BB, I); 1890 }; 1891 return ::replaceDominatedUsesWith(From, To, BB, ProperlyDominates); 1892 } 1893 1894 bool llvm::callsGCLeafFunction(ImmutableCallSite CS, 1895 const TargetLibraryInfo &TLI) { 1896 // Check if the function is specifically marked as a gc leaf function. 1897 if (CS.hasFnAttr("gc-leaf-function")) 1898 return true; 1899 if (const Function *F = CS.getCalledFunction()) { 1900 if (F->hasFnAttribute("gc-leaf-function")) 1901 return true; 1902 1903 if (auto IID = F->getIntrinsicID()) 1904 // Most LLVM intrinsics do not take safepoints. 1905 return IID != Intrinsic::experimental_gc_statepoint && 1906 IID != Intrinsic::experimental_deoptimize; 1907 } 1908 1909 // Lib calls can be materialized by some passes, and won't be 1910 // marked as 'gc-leaf-function.' All available Libcalls are 1911 // GC-leaf. 1912 LibFunc LF; 1913 if (TLI.getLibFunc(CS, LF)) { 1914 return TLI.has(LF); 1915 } 1916 1917 return false; 1918 } 1919 1920 void llvm::copyNonnullMetadata(const LoadInst &OldLI, MDNode *N, 1921 LoadInst &NewLI) { 1922 auto *NewTy = NewLI.getType(); 1923 1924 // This only directly applies if the new type is also a pointer. 1925 if (NewTy->isPointerTy()) { 1926 NewLI.setMetadata(LLVMContext::MD_nonnull, N); 1927 return; 1928 } 1929 1930 // The only other translation we can do is to integral loads with !range 1931 // metadata. 1932 if (!NewTy->isIntegerTy()) 1933 return; 1934 1935 MDBuilder MDB(NewLI.getContext()); 1936 const Value *Ptr = OldLI.getPointerOperand(); 1937 auto *ITy = cast<IntegerType>(NewTy); 1938 auto *NullInt = ConstantExpr::getPtrToInt( 1939 ConstantPointerNull::get(cast<PointerType>(Ptr->getType())), ITy); 1940 auto *NonNullInt = ConstantExpr::getAdd(NullInt, ConstantInt::get(ITy, 1)); 1941 NewLI.setMetadata(LLVMContext::MD_range, 1942 MDB.createRange(NonNullInt, NullInt)); 1943 } 1944 1945 void llvm::copyRangeMetadata(const DataLayout &DL, const LoadInst &OldLI, 1946 MDNode *N, LoadInst &NewLI) { 1947 auto *NewTy = NewLI.getType(); 1948 1949 // Give up unless it is converted to a pointer where there is a single very 1950 // valuable mapping we can do reliably. 1951 // FIXME: It would be nice to propagate this in more ways, but the type 1952 // conversions make it hard. 1953 if (!NewTy->isPointerTy()) 1954 return; 1955 1956 unsigned BitWidth = DL.getTypeSizeInBits(NewTy); 1957 if (!getConstantRangeFromMetadata(*N).contains(APInt(BitWidth, 0))) { 1958 MDNode *NN = MDNode::get(OldLI.getContext(), None); 1959 NewLI.setMetadata(LLVMContext::MD_nonnull, NN); 1960 } 1961 } 1962 1963 namespace { 1964 1965 /// A potential constituent of a bitreverse or bswap expression. See 1966 /// collectBitParts for a fuller explanation. 1967 struct BitPart { 1968 BitPart(Value *P, unsigned BW) : Provider(P) { 1969 Provenance.resize(BW); 1970 } 1971 1972 /// The Value that this is a bitreverse/bswap of. 1973 Value *Provider; 1974 1975 /// The "provenance" of each bit. Provenance[A] = B means that bit A 1976 /// in Provider becomes bit B in the result of this expression. 1977 SmallVector<int8_t, 32> Provenance; // int8_t means max size is i128. 1978 1979 enum { Unset = -1 }; 1980 }; 1981 1982 } // end anonymous namespace 1983 1984 /// Analyze the specified subexpression and see if it is capable of providing 1985 /// pieces of a bswap or bitreverse. The subexpression provides a potential 1986 /// piece of a bswap or bitreverse if it can be proven that each non-zero bit in 1987 /// the output of the expression came from a corresponding bit in some other 1988 /// value. This function is recursive, and the end result is a mapping of 1989 /// bitnumber to bitnumber. It is the caller's responsibility to validate that 1990 /// the bitnumber to bitnumber mapping is correct for a bswap or bitreverse. 1991 /// 1992 /// For example, if the current subexpression if "(shl i32 %X, 24)" then we know 1993 /// that the expression deposits the low byte of %X into the high byte of the 1994 /// result and that all other bits are zero. This expression is accepted and a 1995 /// BitPart is returned with Provider set to %X and Provenance[24-31] set to 1996 /// [0-7]. 1997 /// 1998 /// To avoid revisiting values, the BitPart results are memoized into the 1999 /// provided map. To avoid unnecessary copying of BitParts, BitParts are 2000 /// constructed in-place in the \c BPS map. Because of this \c BPS needs to 2001 /// store BitParts objects, not pointers. As we need the concept of a nullptr 2002 /// BitParts (Value has been analyzed and the analysis failed), we an Optional 2003 /// type instead to provide the same functionality. 2004 /// 2005 /// Because we pass around references into \c BPS, we must use a container that 2006 /// does not invalidate internal references (std::map instead of DenseMap). 2007 static const Optional<BitPart> & 2008 collectBitParts(Value *V, bool MatchBSwaps, bool MatchBitReversals, 2009 std::map<Value *, Optional<BitPart>> &BPS) { 2010 auto I = BPS.find(V); 2011 if (I != BPS.end()) 2012 return I->second; 2013 2014 auto &Result = BPS[V] = None; 2015 auto BitWidth = cast<IntegerType>(V->getType())->getBitWidth(); 2016 2017 if (Instruction *I = dyn_cast<Instruction>(V)) { 2018 // If this is an or instruction, it may be an inner node of the bswap. 2019 if (I->getOpcode() == Instruction::Or) { 2020 auto &A = collectBitParts(I->getOperand(0), MatchBSwaps, 2021 MatchBitReversals, BPS); 2022 auto &B = collectBitParts(I->getOperand(1), MatchBSwaps, 2023 MatchBitReversals, BPS); 2024 if (!A || !B) 2025 return Result; 2026 2027 // Try and merge the two together. 2028 if (!A->Provider || A->Provider != B->Provider) 2029 return Result; 2030 2031 Result = BitPart(A->Provider, BitWidth); 2032 for (unsigned i = 0; i < A->Provenance.size(); ++i) { 2033 if (A->Provenance[i] != BitPart::Unset && 2034 B->Provenance[i] != BitPart::Unset && 2035 A->Provenance[i] != B->Provenance[i]) 2036 return Result = None; 2037 2038 if (A->Provenance[i] == BitPart::Unset) 2039 Result->Provenance[i] = B->Provenance[i]; 2040 else 2041 Result->Provenance[i] = A->Provenance[i]; 2042 } 2043 2044 return Result; 2045 } 2046 2047 // If this is a logical shift by a constant, recurse then shift the result. 2048 if (I->isLogicalShift() && isa<ConstantInt>(I->getOperand(1))) { 2049 unsigned BitShift = 2050 cast<ConstantInt>(I->getOperand(1))->getLimitedValue(~0U); 2051 // Ensure the shift amount is defined. 2052 if (BitShift > BitWidth) 2053 return Result; 2054 2055 auto &Res = collectBitParts(I->getOperand(0), MatchBSwaps, 2056 MatchBitReversals, BPS); 2057 if (!Res) 2058 return Result; 2059 Result = Res; 2060 2061 // Perform the "shift" on BitProvenance. 2062 auto &P = Result->Provenance; 2063 if (I->getOpcode() == Instruction::Shl) { 2064 P.erase(std::prev(P.end(), BitShift), P.end()); 2065 P.insert(P.begin(), BitShift, BitPart::Unset); 2066 } else { 2067 P.erase(P.begin(), std::next(P.begin(), BitShift)); 2068 P.insert(P.end(), BitShift, BitPart::Unset); 2069 } 2070 2071 return Result; 2072 } 2073 2074 // If this is a logical 'and' with a mask that clears bits, recurse then 2075 // unset the appropriate bits. 2076 if (I->getOpcode() == Instruction::And && 2077 isa<ConstantInt>(I->getOperand(1))) { 2078 APInt Bit(I->getType()->getPrimitiveSizeInBits(), 1); 2079 const APInt &AndMask = cast<ConstantInt>(I->getOperand(1))->getValue(); 2080 2081 // Check that the mask allows a multiple of 8 bits for a bswap, for an 2082 // early exit. 2083 unsigned NumMaskedBits = AndMask.countPopulation(); 2084 if (!MatchBitReversals && NumMaskedBits % 8 != 0) 2085 return Result; 2086 2087 auto &Res = collectBitParts(I->getOperand(0), MatchBSwaps, 2088 MatchBitReversals, BPS); 2089 if (!Res) 2090 return Result; 2091 Result = Res; 2092 2093 for (unsigned i = 0; i < BitWidth; ++i, Bit <<= 1) 2094 // If the AndMask is zero for this bit, clear the bit. 2095 if ((AndMask & Bit) == 0) 2096 Result->Provenance[i] = BitPart::Unset; 2097 return Result; 2098 } 2099 2100 // If this is a zext instruction zero extend the result. 2101 if (I->getOpcode() == Instruction::ZExt) { 2102 auto &Res = collectBitParts(I->getOperand(0), MatchBSwaps, 2103 MatchBitReversals, BPS); 2104 if (!Res) 2105 return Result; 2106 2107 Result = BitPart(Res->Provider, BitWidth); 2108 auto NarrowBitWidth = 2109 cast<IntegerType>(cast<ZExtInst>(I)->getSrcTy())->getBitWidth(); 2110 for (unsigned i = 0; i < NarrowBitWidth; ++i) 2111 Result->Provenance[i] = Res->Provenance[i]; 2112 for (unsigned i = NarrowBitWidth; i < BitWidth; ++i) 2113 Result->Provenance[i] = BitPart::Unset; 2114 return Result; 2115 } 2116 } 2117 2118 // Okay, we got to something that isn't a shift, 'or' or 'and'. This must be 2119 // the input value to the bswap/bitreverse. 2120 Result = BitPart(V, BitWidth); 2121 for (unsigned i = 0; i < BitWidth; ++i) 2122 Result->Provenance[i] = i; 2123 return Result; 2124 } 2125 2126 static bool bitTransformIsCorrectForBSwap(unsigned From, unsigned To, 2127 unsigned BitWidth) { 2128 if (From % 8 != To % 8) 2129 return false; 2130 // Convert from bit indices to byte indices and check for a byte reversal. 2131 From >>= 3; 2132 To >>= 3; 2133 BitWidth >>= 3; 2134 return From == BitWidth - To - 1; 2135 } 2136 2137 static bool bitTransformIsCorrectForBitReverse(unsigned From, unsigned To, 2138 unsigned BitWidth) { 2139 return From == BitWidth - To - 1; 2140 } 2141 2142 bool llvm::recognizeBSwapOrBitReverseIdiom( 2143 Instruction *I, bool MatchBSwaps, bool MatchBitReversals, 2144 SmallVectorImpl<Instruction *> &InsertedInsts) { 2145 if (Operator::getOpcode(I) != Instruction::Or) 2146 return false; 2147 if (!MatchBSwaps && !MatchBitReversals) 2148 return false; 2149 IntegerType *ITy = dyn_cast<IntegerType>(I->getType()); 2150 if (!ITy || ITy->getBitWidth() > 128) 2151 return false; // Can't do vectors or integers > 128 bits. 2152 unsigned BW = ITy->getBitWidth(); 2153 2154 unsigned DemandedBW = BW; 2155 IntegerType *DemandedTy = ITy; 2156 if (I->hasOneUse()) { 2157 if (TruncInst *Trunc = dyn_cast<TruncInst>(I->user_back())) { 2158 DemandedTy = cast<IntegerType>(Trunc->getType()); 2159 DemandedBW = DemandedTy->getBitWidth(); 2160 } 2161 } 2162 2163 // Try to find all the pieces corresponding to the bswap. 2164 std::map<Value *, Optional<BitPart>> BPS; 2165 auto Res = collectBitParts(I, MatchBSwaps, MatchBitReversals, BPS); 2166 if (!Res) 2167 return false; 2168 auto &BitProvenance = Res->Provenance; 2169 2170 // Now, is the bit permutation correct for a bswap or a bitreverse? We can 2171 // only byteswap values with an even number of bytes. 2172 bool OKForBSwap = DemandedBW % 16 == 0, OKForBitReverse = true; 2173 for (unsigned i = 0; i < DemandedBW; ++i) { 2174 OKForBSwap &= 2175 bitTransformIsCorrectForBSwap(BitProvenance[i], i, DemandedBW); 2176 OKForBitReverse &= 2177 bitTransformIsCorrectForBitReverse(BitProvenance[i], i, DemandedBW); 2178 } 2179 2180 Intrinsic::ID Intrin; 2181 if (OKForBSwap && MatchBSwaps) 2182 Intrin = Intrinsic::bswap; 2183 else if (OKForBitReverse && MatchBitReversals) 2184 Intrin = Intrinsic::bitreverse; 2185 else 2186 return false; 2187 2188 if (ITy != DemandedTy) { 2189 Function *F = Intrinsic::getDeclaration(I->getModule(), Intrin, DemandedTy); 2190 Value *Provider = Res->Provider; 2191 IntegerType *ProviderTy = cast<IntegerType>(Provider->getType()); 2192 // We may need to truncate the provider. 2193 if (DemandedTy != ProviderTy) { 2194 auto *Trunc = CastInst::Create(Instruction::Trunc, Provider, DemandedTy, 2195 "trunc", I); 2196 InsertedInsts.push_back(Trunc); 2197 Provider = Trunc; 2198 } 2199 auto *CI = CallInst::Create(F, Provider, "rev", I); 2200 InsertedInsts.push_back(CI); 2201 auto *ExtInst = CastInst::Create(Instruction::ZExt, CI, ITy, "zext", I); 2202 InsertedInsts.push_back(ExtInst); 2203 return true; 2204 } 2205 2206 Function *F = Intrinsic::getDeclaration(I->getModule(), Intrin, ITy); 2207 InsertedInsts.push_back(CallInst::Create(F, Res->Provider, "rev", I)); 2208 return true; 2209 } 2210 2211 // CodeGen has special handling for some string functions that may replace 2212 // them with target-specific intrinsics. Since that'd skip our interceptors 2213 // in ASan/MSan/TSan/DFSan, and thus make us miss some memory accesses, 2214 // we mark affected calls as NoBuiltin, which will disable optimization 2215 // in CodeGen. 2216 void llvm::maybeMarkSanitizerLibraryCallNoBuiltin( 2217 CallInst *CI, const TargetLibraryInfo *TLI) { 2218 Function *F = CI->getCalledFunction(); 2219 LibFunc Func; 2220 if (F && !F->hasLocalLinkage() && F->hasName() && 2221 TLI->getLibFunc(F->getName(), Func) && TLI->hasOptimizedCodeGen(Func) && 2222 !F->doesNotAccessMemory()) 2223 CI->addAttribute(AttributeList::FunctionIndex, Attribute::NoBuiltin); 2224 } 2225 2226 bool llvm::canReplaceOperandWithVariable(const Instruction *I, unsigned OpIdx) { 2227 // We can't have a PHI with a metadata type. 2228 if (I->getOperand(OpIdx)->getType()->isMetadataTy()) 2229 return false; 2230 2231 // Early exit. 2232 if (!isa<Constant>(I->getOperand(OpIdx))) 2233 return true; 2234 2235 switch (I->getOpcode()) { 2236 default: 2237 return true; 2238 case Instruction::Call: 2239 case Instruction::Invoke: 2240 // Can't handle inline asm. Skip it. 2241 if (isa<InlineAsm>(ImmutableCallSite(I).getCalledValue())) 2242 return false; 2243 // Many arithmetic intrinsics have no issue taking a 2244 // variable, however it's hard to distingish these from 2245 // specials such as @llvm.frameaddress that require a constant. 2246 if (isa<IntrinsicInst>(I)) 2247 return false; 2248 2249 // Constant bundle operands may need to retain their constant-ness for 2250 // correctness. 2251 if (ImmutableCallSite(I).isBundleOperand(OpIdx)) 2252 return false; 2253 return true; 2254 case Instruction::ShuffleVector: 2255 // Shufflevector masks are constant. 2256 return OpIdx != 2; 2257 case Instruction::Switch: 2258 case Instruction::ExtractValue: 2259 // All operands apart from the first are constant. 2260 return OpIdx == 0; 2261 case Instruction::InsertValue: 2262 // All operands apart from the first and the second are constant. 2263 return OpIdx < 2; 2264 case Instruction::Alloca: 2265 // Static allocas (constant size in the entry block) are handled by 2266 // prologue/epilogue insertion so they're free anyway. We definitely don't 2267 // want to make them non-constant. 2268 return !dyn_cast<AllocaInst>(I)->isStaticAlloca(); 2269 case Instruction::GetElementPtr: 2270 if (OpIdx == 0) 2271 return true; 2272 gep_type_iterator It = gep_type_begin(I); 2273 for (auto E = std::next(It, OpIdx); It != E; ++It) 2274 if (It.isStruct()) 2275 return false; 2276 return true; 2277 } 2278 } 2279