1 //===- Local.cpp - Functions to perform local transformations -------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This family of functions perform various local transformations to the
11 // program.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #include "llvm/Transforms/Utils/Local.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/DenseMapInfo.h"
19 #include "llvm/ADT/DenseSet.h"
20 #include "llvm/ADT/Hashing.h"
21 #include "llvm/ADT/None.h"
22 #include "llvm/ADT/Optional.h"
23 #include "llvm/ADT/STLExtras.h"
24 #include "llvm/ADT/SetVector.h"
25 #include "llvm/ADT/SmallPtrSet.h"
26 #include "llvm/ADT/SmallVector.h"
27 #include "llvm/ADT/Statistic.h"
28 #include "llvm/ADT/TinyPtrVector.h"
29 #include "llvm/Analysis/ConstantFolding.h"
30 #include "llvm/Analysis/EHPersonalities.h"
31 #include "llvm/Analysis/InstructionSimplify.h"
32 #include "llvm/Analysis/LazyValueInfo.h"
33 #include "llvm/Analysis/MemoryBuiltins.h"
34 #include "llvm/Analysis/MemorySSAUpdater.h"
35 #include "llvm/Analysis/TargetLibraryInfo.h"
36 #include "llvm/Analysis/ValueTracking.h"
37 #include "llvm/Analysis/VectorUtils.h"
38 #include "llvm/BinaryFormat/Dwarf.h"
39 #include "llvm/IR/Argument.h"
40 #include "llvm/IR/Attributes.h"
41 #include "llvm/IR/BasicBlock.h"
42 #include "llvm/IR/CFG.h"
43 #include "llvm/IR/CallSite.h"
44 #include "llvm/IR/Constant.h"
45 #include "llvm/IR/ConstantRange.h"
46 #include "llvm/IR/Constants.h"
47 #include "llvm/IR/DIBuilder.h"
48 #include "llvm/IR/DataLayout.h"
49 #include "llvm/IR/DebugInfoMetadata.h"
50 #include "llvm/IR/DebugLoc.h"
51 #include "llvm/IR/DerivedTypes.h"
52 #include "llvm/IR/DomTreeUpdater.h"
53 #include "llvm/IR/Dominators.h"
54 #include "llvm/IR/Function.h"
55 #include "llvm/IR/GetElementPtrTypeIterator.h"
56 #include "llvm/IR/GlobalObject.h"
57 #include "llvm/IR/IRBuilder.h"
58 #include "llvm/IR/InstrTypes.h"
59 #include "llvm/IR/Instruction.h"
60 #include "llvm/IR/Instructions.h"
61 #include "llvm/IR/IntrinsicInst.h"
62 #include "llvm/IR/Intrinsics.h"
63 #include "llvm/IR/LLVMContext.h"
64 #include "llvm/IR/MDBuilder.h"
65 #include "llvm/IR/Metadata.h"
66 #include "llvm/IR/Module.h"
67 #include "llvm/IR/Operator.h"
68 #include "llvm/IR/PatternMatch.h"
69 #include "llvm/IR/Type.h"
70 #include "llvm/IR/Use.h"
71 #include "llvm/IR/User.h"
72 #include "llvm/IR/Value.h"
73 #include "llvm/IR/ValueHandle.h"
74 #include "llvm/Support/Casting.h"
75 #include "llvm/Support/Debug.h"
76 #include "llvm/Support/ErrorHandling.h"
77 #include "llvm/Support/KnownBits.h"
78 #include "llvm/Support/raw_ostream.h"
79 #include "llvm/Transforms/Utils/ValueMapper.h"
80 #include <algorithm>
81 #include <cassert>
82 #include <climits>
83 #include <cstdint>
84 #include <iterator>
85 #include <map>
86 #include <utility>
87
88 using namespace llvm;
89 using namespace llvm::PatternMatch;
90
91 #define DEBUG_TYPE "local"
92
93 STATISTIC(NumRemoved, "Number of unreachable basic blocks removed");
94
95 //===----------------------------------------------------------------------===//
96 // Local constant propagation.
97 //
98
99 /// ConstantFoldTerminator - If a terminator instruction is predicated on a
100 /// constant value, convert it into an unconditional branch to the constant
101 /// destination. This is a nontrivial operation because the successors of this
102 /// basic block must have their PHI nodes updated.
103 /// Also calls RecursivelyDeleteTriviallyDeadInstructions() on any branch/switch
104 /// conditions and indirectbr addresses this might make dead if
105 /// DeleteDeadConditions is true.
ConstantFoldTerminator(BasicBlock * BB,bool DeleteDeadConditions,const TargetLibraryInfo * TLI,DomTreeUpdater * DTU)106 bool llvm::ConstantFoldTerminator(BasicBlock *BB, bool DeleteDeadConditions,
107 const TargetLibraryInfo *TLI,
108 DomTreeUpdater *DTU) {
109 Instruction *T = BB->getTerminator();
110 IRBuilder<> Builder(T);
111
112 // Branch - See if we are conditional jumping on constant
113 if (auto *BI = dyn_cast<BranchInst>(T)) {
114 if (BI->isUnconditional()) return false; // Can't optimize uncond branch
115 BasicBlock *Dest1 = BI->getSuccessor(0);
116 BasicBlock *Dest2 = BI->getSuccessor(1);
117
118 if (auto *Cond = dyn_cast<ConstantInt>(BI->getCondition())) {
119 // Are we branching on constant?
120 // YES. Change to unconditional branch...
121 BasicBlock *Destination = Cond->getZExtValue() ? Dest1 : Dest2;
122 BasicBlock *OldDest = Cond->getZExtValue() ? Dest2 : Dest1;
123
124 // Let the basic block know that we are letting go of it. Based on this,
125 // it will adjust it's PHI nodes.
126 OldDest->removePredecessor(BB);
127
128 // Replace the conditional branch with an unconditional one.
129 Builder.CreateBr(Destination);
130 BI->eraseFromParent();
131 if (DTU)
132 DTU->deleteEdgeRelaxed(BB, OldDest);
133 return true;
134 }
135
136 if (Dest2 == Dest1) { // Conditional branch to same location?
137 // This branch matches something like this:
138 // br bool %cond, label %Dest, label %Dest
139 // and changes it into: br label %Dest
140
141 // Let the basic block know that we are letting go of one copy of it.
142 assert(BI->getParent() && "Terminator not inserted in block!");
143 Dest1->removePredecessor(BI->getParent());
144
145 // Replace the conditional branch with an unconditional one.
146 Builder.CreateBr(Dest1);
147 Value *Cond = BI->getCondition();
148 BI->eraseFromParent();
149 if (DeleteDeadConditions)
150 RecursivelyDeleteTriviallyDeadInstructions(Cond, TLI);
151 return true;
152 }
153 return false;
154 }
155
156 if (auto *SI = dyn_cast<SwitchInst>(T)) {
157 // If we are switching on a constant, we can convert the switch to an
158 // unconditional branch.
159 auto *CI = dyn_cast<ConstantInt>(SI->getCondition());
160 BasicBlock *DefaultDest = SI->getDefaultDest();
161 BasicBlock *TheOnlyDest = DefaultDest;
162
163 // If the default is unreachable, ignore it when searching for TheOnlyDest.
164 if (isa<UnreachableInst>(DefaultDest->getFirstNonPHIOrDbg()) &&
165 SI->getNumCases() > 0) {
166 TheOnlyDest = SI->case_begin()->getCaseSuccessor();
167 }
168
169 // Figure out which case it goes to.
170 for (auto i = SI->case_begin(), e = SI->case_end(); i != e;) {
171 // Found case matching a constant operand?
172 if (i->getCaseValue() == CI) {
173 TheOnlyDest = i->getCaseSuccessor();
174 break;
175 }
176
177 // Check to see if this branch is going to the same place as the default
178 // dest. If so, eliminate it as an explicit compare.
179 if (i->getCaseSuccessor() == DefaultDest) {
180 MDNode *MD = SI->getMetadata(LLVMContext::MD_prof);
181 unsigned NCases = SI->getNumCases();
182 // Fold the case metadata into the default if there will be any branches
183 // left, unless the metadata doesn't match the switch.
184 if (NCases > 1 && MD && MD->getNumOperands() == 2 + NCases) {
185 // Collect branch weights into a vector.
186 SmallVector<uint32_t, 8> Weights;
187 for (unsigned MD_i = 1, MD_e = MD->getNumOperands(); MD_i < MD_e;
188 ++MD_i) {
189 auto *CI = mdconst::extract<ConstantInt>(MD->getOperand(MD_i));
190 Weights.push_back(CI->getValue().getZExtValue());
191 }
192 // Merge weight of this case to the default weight.
193 unsigned idx = i->getCaseIndex();
194 Weights[0] += Weights[idx+1];
195 // Remove weight for this case.
196 std::swap(Weights[idx+1], Weights.back());
197 Weights.pop_back();
198 SI->setMetadata(LLVMContext::MD_prof,
199 MDBuilder(BB->getContext()).
200 createBranchWeights(Weights));
201 }
202 // Remove this entry.
203 BasicBlock *ParentBB = SI->getParent();
204 DefaultDest->removePredecessor(ParentBB);
205 i = SI->removeCase(i);
206 e = SI->case_end();
207 if (DTU)
208 DTU->deleteEdgeRelaxed(ParentBB, DefaultDest);
209 continue;
210 }
211
212 // Otherwise, check to see if the switch only branches to one destination.
213 // We do this by reseting "TheOnlyDest" to null when we find two non-equal
214 // destinations.
215 if (i->getCaseSuccessor() != TheOnlyDest)
216 TheOnlyDest = nullptr;
217
218 // Increment this iterator as we haven't removed the case.
219 ++i;
220 }
221
222 if (CI && !TheOnlyDest) {
223 // Branching on a constant, but not any of the cases, go to the default
224 // successor.
225 TheOnlyDest = SI->getDefaultDest();
226 }
227
228 // If we found a single destination that we can fold the switch into, do so
229 // now.
230 if (TheOnlyDest) {
231 // Insert the new branch.
232 Builder.CreateBr(TheOnlyDest);
233 BasicBlock *BB = SI->getParent();
234 std::vector <DominatorTree::UpdateType> Updates;
235 if (DTU)
236 Updates.reserve(SI->getNumSuccessors() - 1);
237
238 // Remove entries from PHI nodes which we no longer branch to...
239 for (BasicBlock *Succ : successors(SI)) {
240 // Found case matching a constant operand?
241 if (Succ == TheOnlyDest) {
242 TheOnlyDest = nullptr; // Don't modify the first branch to TheOnlyDest
243 } else {
244 Succ->removePredecessor(BB);
245 if (DTU)
246 Updates.push_back({DominatorTree::Delete, BB, Succ});
247 }
248 }
249
250 // Delete the old switch.
251 Value *Cond = SI->getCondition();
252 SI->eraseFromParent();
253 if (DeleteDeadConditions)
254 RecursivelyDeleteTriviallyDeadInstructions(Cond, TLI);
255 if (DTU)
256 DTU->applyUpdates(Updates, /*ForceRemoveDuplicates*/ true);
257 return true;
258 }
259
260 if (SI->getNumCases() == 1) {
261 // Otherwise, we can fold this switch into a conditional branch
262 // instruction if it has only one non-default destination.
263 auto FirstCase = *SI->case_begin();
264 Value *Cond = Builder.CreateICmpEQ(SI->getCondition(),
265 FirstCase.getCaseValue(), "cond");
266
267 // Insert the new branch.
268 BranchInst *NewBr = Builder.CreateCondBr(Cond,
269 FirstCase.getCaseSuccessor(),
270 SI->getDefaultDest());
271 MDNode *MD = SI->getMetadata(LLVMContext::MD_prof);
272 if (MD && MD->getNumOperands() == 3) {
273 ConstantInt *SICase =
274 mdconst::dyn_extract<ConstantInt>(MD->getOperand(2));
275 ConstantInt *SIDef =
276 mdconst::dyn_extract<ConstantInt>(MD->getOperand(1));
277 assert(SICase && SIDef);
278 // The TrueWeight should be the weight for the single case of SI.
279 NewBr->setMetadata(LLVMContext::MD_prof,
280 MDBuilder(BB->getContext()).
281 createBranchWeights(SICase->getValue().getZExtValue(),
282 SIDef->getValue().getZExtValue()));
283 }
284
285 // Update make.implicit metadata to the newly-created conditional branch.
286 MDNode *MakeImplicitMD = SI->getMetadata(LLVMContext::MD_make_implicit);
287 if (MakeImplicitMD)
288 NewBr->setMetadata(LLVMContext::MD_make_implicit, MakeImplicitMD);
289
290 // Delete the old switch.
291 SI->eraseFromParent();
292 return true;
293 }
294 return false;
295 }
296
297 if (auto *IBI = dyn_cast<IndirectBrInst>(T)) {
298 // indirectbr blockaddress(@F, @BB) -> br label @BB
299 if (auto *BA =
300 dyn_cast<BlockAddress>(IBI->getAddress()->stripPointerCasts())) {
301 BasicBlock *TheOnlyDest = BA->getBasicBlock();
302 std::vector <DominatorTree::UpdateType> Updates;
303 if (DTU)
304 Updates.reserve(IBI->getNumDestinations() - 1);
305
306 // Insert the new branch.
307 Builder.CreateBr(TheOnlyDest);
308
309 for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) {
310 if (IBI->getDestination(i) == TheOnlyDest) {
311 TheOnlyDest = nullptr;
312 } else {
313 BasicBlock *ParentBB = IBI->getParent();
314 BasicBlock *DestBB = IBI->getDestination(i);
315 DestBB->removePredecessor(ParentBB);
316 if (DTU)
317 Updates.push_back({DominatorTree::Delete, ParentBB, DestBB});
318 }
319 }
320 Value *Address = IBI->getAddress();
321 IBI->eraseFromParent();
322 if (DeleteDeadConditions)
323 RecursivelyDeleteTriviallyDeadInstructions(Address, TLI);
324
325 // If we didn't find our destination in the IBI successor list, then we
326 // have undefined behavior. Replace the unconditional branch with an
327 // 'unreachable' instruction.
328 if (TheOnlyDest) {
329 BB->getTerminator()->eraseFromParent();
330 new UnreachableInst(BB->getContext(), BB);
331 }
332
333 if (DTU)
334 DTU->applyUpdates(Updates, /*ForceRemoveDuplicates*/ true);
335 return true;
336 }
337 }
338
339 return false;
340 }
341
342 //===----------------------------------------------------------------------===//
343 // Local dead code elimination.
344 //
345
346 /// isInstructionTriviallyDead - Return true if the result produced by the
347 /// instruction is not used, and the instruction has no side effects.
348 ///
isInstructionTriviallyDead(Instruction * I,const TargetLibraryInfo * TLI)349 bool llvm::isInstructionTriviallyDead(Instruction *I,
350 const TargetLibraryInfo *TLI) {
351 if (!I->use_empty())
352 return false;
353 return wouldInstructionBeTriviallyDead(I, TLI);
354 }
355
wouldInstructionBeTriviallyDead(Instruction * I,const TargetLibraryInfo * TLI)356 bool llvm::wouldInstructionBeTriviallyDead(Instruction *I,
357 const TargetLibraryInfo *TLI) {
358 if (I->isTerminator())
359 return false;
360
361 // We don't want the landingpad-like instructions removed by anything this
362 // general.
363 if (I->isEHPad())
364 return false;
365
366 // We don't want debug info removed by anything this general, unless
367 // debug info is empty.
368 if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(I)) {
369 if (DDI->getAddress())
370 return false;
371 return true;
372 }
373 if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(I)) {
374 if (DVI->getValue())
375 return false;
376 return true;
377 }
378 if (DbgLabelInst *DLI = dyn_cast<DbgLabelInst>(I)) {
379 if (DLI->getLabel())
380 return false;
381 return true;
382 }
383
384 if (!I->mayHaveSideEffects())
385 return true;
386
387 // Special case intrinsics that "may have side effects" but can be deleted
388 // when dead.
389 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
390 // Safe to delete llvm.stacksave and launder.invariant.group if dead.
391 if (II->getIntrinsicID() == Intrinsic::stacksave ||
392 II->getIntrinsicID() == Intrinsic::launder_invariant_group)
393 return true;
394
395 // Lifetime intrinsics are dead when their right-hand is undef.
396 if (II->isLifetimeStartOrEnd())
397 return isa<UndefValue>(II->getArgOperand(1));
398
399 // Assumptions are dead if their condition is trivially true. Guards on
400 // true are operationally no-ops. In the future we can consider more
401 // sophisticated tradeoffs for guards considering potential for check
402 // widening, but for now we keep things simple.
403 if (II->getIntrinsicID() == Intrinsic::assume ||
404 II->getIntrinsicID() == Intrinsic::experimental_guard) {
405 if (ConstantInt *Cond = dyn_cast<ConstantInt>(II->getArgOperand(0)))
406 return !Cond->isZero();
407
408 return false;
409 }
410 }
411
412 if (isAllocLikeFn(I, TLI))
413 return true;
414
415 if (CallInst *CI = isFreeCall(I, TLI))
416 if (Constant *C = dyn_cast<Constant>(CI->getArgOperand(0)))
417 return C->isNullValue() || isa<UndefValue>(C);
418
419 if (CallSite CS = CallSite(I))
420 if (isMathLibCallNoop(CS, TLI))
421 return true;
422
423 return false;
424 }
425
426 /// RecursivelyDeleteTriviallyDeadInstructions - If the specified value is a
427 /// trivially dead instruction, delete it. If that makes any of its operands
428 /// trivially dead, delete them too, recursively. Return true if any
429 /// instructions were deleted.
RecursivelyDeleteTriviallyDeadInstructions(Value * V,const TargetLibraryInfo * TLI,MemorySSAUpdater * MSSAU)430 bool llvm::RecursivelyDeleteTriviallyDeadInstructions(
431 Value *V, const TargetLibraryInfo *TLI, MemorySSAUpdater *MSSAU) {
432 Instruction *I = dyn_cast<Instruction>(V);
433 if (!I || !I->use_empty() || !isInstructionTriviallyDead(I, TLI))
434 return false;
435
436 SmallVector<Instruction*, 16> DeadInsts;
437 DeadInsts.push_back(I);
438 RecursivelyDeleteTriviallyDeadInstructions(DeadInsts, TLI, MSSAU);
439
440 return true;
441 }
442
RecursivelyDeleteTriviallyDeadInstructions(SmallVectorImpl<Instruction * > & DeadInsts,const TargetLibraryInfo * TLI,MemorySSAUpdater * MSSAU)443 void llvm::RecursivelyDeleteTriviallyDeadInstructions(
444 SmallVectorImpl<Instruction *> &DeadInsts, const TargetLibraryInfo *TLI,
445 MemorySSAUpdater *MSSAU) {
446 // Process the dead instruction list until empty.
447 while (!DeadInsts.empty()) {
448 Instruction &I = *DeadInsts.pop_back_val();
449 assert(I.use_empty() && "Instructions with uses are not dead.");
450 assert(isInstructionTriviallyDead(&I, TLI) &&
451 "Live instruction found in dead worklist!");
452
453 // Don't lose the debug info while deleting the instructions.
454 salvageDebugInfo(I);
455
456 // Null out all of the instruction's operands to see if any operand becomes
457 // dead as we go.
458 for (Use &OpU : I.operands()) {
459 Value *OpV = OpU.get();
460 OpU.set(nullptr);
461
462 if (!OpV->use_empty())
463 continue;
464
465 // If the operand is an instruction that became dead as we nulled out the
466 // operand, and if it is 'trivially' dead, delete it in a future loop
467 // iteration.
468 if (Instruction *OpI = dyn_cast<Instruction>(OpV))
469 if (isInstructionTriviallyDead(OpI, TLI))
470 DeadInsts.push_back(OpI);
471 }
472 if (MSSAU)
473 MSSAU->removeMemoryAccess(&I);
474
475 I.eraseFromParent();
476 }
477 }
478
replaceDbgUsesWithUndef(Instruction * I)479 bool llvm::replaceDbgUsesWithUndef(Instruction *I) {
480 SmallVector<DbgVariableIntrinsic *, 1> DbgUsers;
481 findDbgUsers(DbgUsers, I);
482 for (auto *DII : DbgUsers) {
483 Value *Undef = UndefValue::get(I->getType());
484 DII->setOperand(0, MetadataAsValue::get(DII->getContext(),
485 ValueAsMetadata::get(Undef)));
486 }
487 return !DbgUsers.empty();
488 }
489
490 /// areAllUsesEqual - Check whether the uses of a value are all the same.
491 /// This is similar to Instruction::hasOneUse() except this will also return
492 /// true when there are no uses or multiple uses that all refer to the same
493 /// value.
areAllUsesEqual(Instruction * I)494 static bool areAllUsesEqual(Instruction *I) {
495 Value::user_iterator UI = I->user_begin();
496 Value::user_iterator UE = I->user_end();
497 if (UI == UE)
498 return true;
499
500 User *TheUse = *UI;
501 for (++UI; UI != UE; ++UI) {
502 if (*UI != TheUse)
503 return false;
504 }
505 return true;
506 }
507
508 /// RecursivelyDeleteDeadPHINode - If the specified value is an effectively
509 /// dead PHI node, due to being a def-use chain of single-use nodes that
510 /// either forms a cycle or is terminated by a trivially dead instruction,
511 /// delete it. If that makes any of its operands trivially dead, delete them
512 /// too, recursively. Return true if a change was made.
RecursivelyDeleteDeadPHINode(PHINode * PN,const TargetLibraryInfo * TLI)513 bool llvm::RecursivelyDeleteDeadPHINode(PHINode *PN,
514 const TargetLibraryInfo *TLI) {
515 SmallPtrSet<Instruction*, 4> Visited;
516 for (Instruction *I = PN; areAllUsesEqual(I) && !I->mayHaveSideEffects();
517 I = cast<Instruction>(*I->user_begin())) {
518 if (I->use_empty())
519 return RecursivelyDeleteTriviallyDeadInstructions(I, TLI);
520
521 // If we find an instruction more than once, we're on a cycle that
522 // won't prove fruitful.
523 if (!Visited.insert(I).second) {
524 // Break the cycle and delete the instruction and its operands.
525 I->replaceAllUsesWith(UndefValue::get(I->getType()));
526 (void)RecursivelyDeleteTriviallyDeadInstructions(I, TLI);
527 return true;
528 }
529 }
530 return false;
531 }
532
533 static bool
simplifyAndDCEInstruction(Instruction * I,SmallSetVector<Instruction *,16> & WorkList,const DataLayout & DL,const TargetLibraryInfo * TLI)534 simplifyAndDCEInstruction(Instruction *I,
535 SmallSetVector<Instruction *, 16> &WorkList,
536 const DataLayout &DL,
537 const TargetLibraryInfo *TLI) {
538 if (isInstructionTriviallyDead(I, TLI)) {
539 salvageDebugInfo(*I);
540
541 // Null out all of the instruction's operands to see if any operand becomes
542 // dead as we go.
543 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
544 Value *OpV = I->getOperand(i);
545 I->setOperand(i, nullptr);
546
547 if (!OpV->use_empty() || I == OpV)
548 continue;
549
550 // If the operand is an instruction that became dead as we nulled out the
551 // operand, and if it is 'trivially' dead, delete it in a future loop
552 // iteration.
553 if (Instruction *OpI = dyn_cast<Instruction>(OpV))
554 if (isInstructionTriviallyDead(OpI, TLI))
555 WorkList.insert(OpI);
556 }
557
558 I->eraseFromParent();
559
560 return true;
561 }
562
563 if (Value *SimpleV = SimplifyInstruction(I, DL)) {
564 // Add the users to the worklist. CAREFUL: an instruction can use itself,
565 // in the case of a phi node.
566 for (User *U : I->users()) {
567 if (U != I) {
568 WorkList.insert(cast<Instruction>(U));
569 }
570 }
571
572 // Replace the instruction with its simplified value.
573 bool Changed = false;
574 if (!I->use_empty()) {
575 I->replaceAllUsesWith(SimpleV);
576 Changed = true;
577 }
578 if (isInstructionTriviallyDead(I, TLI)) {
579 I->eraseFromParent();
580 Changed = true;
581 }
582 return Changed;
583 }
584 return false;
585 }
586
587 /// SimplifyInstructionsInBlock - Scan the specified basic block and try to
588 /// simplify any instructions in it and recursively delete dead instructions.
589 ///
590 /// This returns true if it changed the code, note that it can delete
591 /// instructions in other blocks as well in this block.
SimplifyInstructionsInBlock(BasicBlock * BB,const TargetLibraryInfo * TLI)592 bool llvm::SimplifyInstructionsInBlock(BasicBlock *BB,
593 const TargetLibraryInfo *TLI) {
594 bool MadeChange = false;
595 const DataLayout &DL = BB->getModule()->getDataLayout();
596
597 #ifndef NDEBUG
598 // In debug builds, ensure that the terminator of the block is never replaced
599 // or deleted by these simplifications. The idea of simplification is that it
600 // cannot introduce new instructions, and there is no way to replace the
601 // terminator of a block without introducing a new instruction.
602 AssertingVH<Instruction> TerminatorVH(&BB->back());
603 #endif
604
605 SmallSetVector<Instruction *, 16> WorkList;
606 // Iterate over the original function, only adding insts to the worklist
607 // if they actually need to be revisited. This avoids having to pre-init
608 // the worklist with the entire function's worth of instructions.
609 for (BasicBlock::iterator BI = BB->begin(), E = std::prev(BB->end());
610 BI != E;) {
611 assert(!BI->isTerminator());
612 Instruction *I = &*BI;
613 ++BI;
614
615 // We're visiting this instruction now, so make sure it's not in the
616 // worklist from an earlier visit.
617 if (!WorkList.count(I))
618 MadeChange |= simplifyAndDCEInstruction(I, WorkList, DL, TLI);
619 }
620
621 while (!WorkList.empty()) {
622 Instruction *I = WorkList.pop_back_val();
623 MadeChange |= simplifyAndDCEInstruction(I, WorkList, DL, TLI);
624 }
625 return MadeChange;
626 }
627
628 //===----------------------------------------------------------------------===//
629 // Control Flow Graph Restructuring.
630 //
631
632 /// RemovePredecessorAndSimplify - Like BasicBlock::removePredecessor, this
633 /// method is called when we're about to delete Pred as a predecessor of BB. If
634 /// BB contains any PHI nodes, this drops the entries in the PHI nodes for Pred.
635 ///
636 /// Unlike the removePredecessor method, this attempts to simplify uses of PHI
637 /// nodes that collapse into identity values. For example, if we have:
638 /// x = phi(1, 0, 0, 0)
639 /// y = and x, z
640 ///
641 /// .. and delete the predecessor corresponding to the '1', this will attempt to
642 /// recursively fold the and to 0.
RemovePredecessorAndSimplify(BasicBlock * BB,BasicBlock * Pred,DomTreeUpdater * DTU)643 void llvm::RemovePredecessorAndSimplify(BasicBlock *BB, BasicBlock *Pred,
644 DomTreeUpdater *DTU) {
645 // This only adjusts blocks with PHI nodes.
646 if (!isa<PHINode>(BB->begin()))
647 return;
648
649 // Remove the entries for Pred from the PHI nodes in BB, but do not simplify
650 // them down. This will leave us with single entry phi nodes and other phis
651 // that can be removed.
652 BB->removePredecessor(Pred, true);
653
654 WeakTrackingVH PhiIt = &BB->front();
655 while (PHINode *PN = dyn_cast<PHINode>(PhiIt)) {
656 PhiIt = &*++BasicBlock::iterator(cast<Instruction>(PhiIt));
657 Value *OldPhiIt = PhiIt;
658
659 if (!recursivelySimplifyInstruction(PN))
660 continue;
661
662 // If recursive simplification ended up deleting the next PHI node we would
663 // iterate to, then our iterator is invalid, restart scanning from the top
664 // of the block.
665 if (PhiIt != OldPhiIt) PhiIt = &BB->front();
666 }
667 if (DTU)
668 DTU->deleteEdgeRelaxed(Pred, BB);
669 }
670
671 /// MergeBasicBlockIntoOnlyPred - DestBB is a block with one predecessor and its
672 /// predecessor is known to have one successor (DestBB!). Eliminate the edge
673 /// between them, moving the instructions in the predecessor into DestBB and
674 /// deleting the predecessor block.
MergeBasicBlockIntoOnlyPred(BasicBlock * DestBB,DomTreeUpdater * DTU)675 void llvm::MergeBasicBlockIntoOnlyPred(BasicBlock *DestBB,
676 DomTreeUpdater *DTU) {
677
678 // If BB has single-entry PHI nodes, fold them.
679 while (PHINode *PN = dyn_cast<PHINode>(DestBB->begin())) {
680 Value *NewVal = PN->getIncomingValue(0);
681 // Replace self referencing PHI with undef, it must be dead.
682 if (NewVal == PN) NewVal = UndefValue::get(PN->getType());
683 PN->replaceAllUsesWith(NewVal);
684 PN->eraseFromParent();
685 }
686
687 BasicBlock *PredBB = DestBB->getSinglePredecessor();
688 assert(PredBB && "Block doesn't have a single predecessor!");
689
690 bool ReplaceEntryBB = false;
691 if (PredBB == &DestBB->getParent()->getEntryBlock())
692 ReplaceEntryBB = true;
693
694 // DTU updates: Collect all the edges that enter
695 // PredBB. These dominator edges will be redirected to DestBB.
696 SmallVector<DominatorTree::UpdateType, 32> Updates;
697
698 if (DTU) {
699 Updates.push_back({DominatorTree::Delete, PredBB, DestBB});
700 for (auto I = pred_begin(PredBB), E = pred_end(PredBB); I != E; ++I) {
701 Updates.push_back({DominatorTree::Delete, *I, PredBB});
702 // This predecessor of PredBB may already have DestBB as a successor.
703 if (llvm::find(successors(*I), DestBB) == succ_end(*I))
704 Updates.push_back({DominatorTree::Insert, *I, DestBB});
705 }
706 }
707
708 // Zap anything that took the address of DestBB. Not doing this will give the
709 // address an invalid value.
710 if (DestBB->hasAddressTaken()) {
711 BlockAddress *BA = BlockAddress::get(DestBB);
712 Constant *Replacement =
713 ConstantInt::get(Type::getInt32Ty(BA->getContext()), 1);
714 BA->replaceAllUsesWith(ConstantExpr::getIntToPtr(Replacement,
715 BA->getType()));
716 BA->destroyConstant();
717 }
718
719 // Anything that branched to PredBB now branches to DestBB.
720 PredBB->replaceAllUsesWith(DestBB);
721
722 // Splice all the instructions from PredBB to DestBB.
723 PredBB->getTerminator()->eraseFromParent();
724 DestBB->getInstList().splice(DestBB->begin(), PredBB->getInstList());
725 new UnreachableInst(PredBB->getContext(), PredBB);
726
727 // If the PredBB is the entry block of the function, move DestBB up to
728 // become the entry block after we erase PredBB.
729 if (ReplaceEntryBB)
730 DestBB->moveAfter(PredBB);
731
732 if (DTU) {
733 assert(PredBB->getInstList().size() == 1 &&
734 isa<UnreachableInst>(PredBB->getTerminator()) &&
735 "The successor list of PredBB isn't empty before "
736 "applying corresponding DTU updates.");
737 DTU->applyUpdates(Updates, /*ForceRemoveDuplicates*/ true);
738 DTU->deleteBB(PredBB);
739 // Recalculation of DomTree is needed when updating a forward DomTree and
740 // the Entry BB is replaced.
741 if (ReplaceEntryBB && DTU->hasDomTree()) {
742 // The entry block was removed and there is no external interface for
743 // the dominator tree to be notified of this change. In this corner-case
744 // we recalculate the entire tree.
745 DTU->recalculate(*(DestBB->getParent()));
746 }
747 }
748
749 else {
750 PredBB->eraseFromParent(); // Nuke BB if DTU is nullptr.
751 }
752 }
753
754 /// CanMergeValues - Return true if we can choose one of these values to use
755 /// in place of the other. Note that we will always choose the non-undef
756 /// value to keep.
CanMergeValues(Value * First,Value * Second)757 static bool CanMergeValues(Value *First, Value *Second) {
758 return First == Second || isa<UndefValue>(First) || isa<UndefValue>(Second);
759 }
760
761 /// CanPropagatePredecessorsForPHIs - Return true if we can fold BB, an
762 /// almost-empty BB ending in an unconditional branch to Succ, into Succ.
763 ///
764 /// Assumption: Succ is the single successor for BB.
CanPropagatePredecessorsForPHIs(BasicBlock * BB,BasicBlock * Succ)765 static bool CanPropagatePredecessorsForPHIs(BasicBlock *BB, BasicBlock *Succ) {
766 assert(*succ_begin(BB) == Succ && "Succ is not successor of BB!");
767
768 LLVM_DEBUG(dbgs() << "Looking to fold " << BB->getName() << " into "
769 << Succ->getName() << "\n");
770 // Shortcut, if there is only a single predecessor it must be BB and merging
771 // is always safe
772 if (Succ->getSinglePredecessor()) return true;
773
774 // Make a list of the predecessors of BB
775 SmallPtrSet<BasicBlock*, 16> BBPreds(pred_begin(BB), pred_end(BB));
776
777 // Look at all the phi nodes in Succ, to see if they present a conflict when
778 // merging these blocks
779 for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) {
780 PHINode *PN = cast<PHINode>(I);
781
782 // If the incoming value from BB is again a PHINode in
783 // BB which has the same incoming value for *PI as PN does, we can
784 // merge the phi nodes and then the blocks can still be merged
785 PHINode *BBPN = dyn_cast<PHINode>(PN->getIncomingValueForBlock(BB));
786 if (BBPN && BBPN->getParent() == BB) {
787 for (unsigned PI = 0, PE = PN->getNumIncomingValues(); PI != PE; ++PI) {
788 BasicBlock *IBB = PN->getIncomingBlock(PI);
789 if (BBPreds.count(IBB) &&
790 !CanMergeValues(BBPN->getIncomingValueForBlock(IBB),
791 PN->getIncomingValue(PI))) {
792 LLVM_DEBUG(dbgs()
793 << "Can't fold, phi node " << PN->getName() << " in "
794 << Succ->getName() << " is conflicting with "
795 << BBPN->getName() << " with regard to common predecessor "
796 << IBB->getName() << "\n");
797 return false;
798 }
799 }
800 } else {
801 Value* Val = PN->getIncomingValueForBlock(BB);
802 for (unsigned PI = 0, PE = PN->getNumIncomingValues(); PI != PE; ++PI) {
803 // See if the incoming value for the common predecessor is equal to the
804 // one for BB, in which case this phi node will not prevent the merging
805 // of the block.
806 BasicBlock *IBB = PN->getIncomingBlock(PI);
807 if (BBPreds.count(IBB) &&
808 !CanMergeValues(Val, PN->getIncomingValue(PI))) {
809 LLVM_DEBUG(dbgs() << "Can't fold, phi node " << PN->getName()
810 << " in " << Succ->getName()
811 << " is conflicting with regard to common "
812 << "predecessor " << IBB->getName() << "\n");
813 return false;
814 }
815 }
816 }
817 }
818
819 return true;
820 }
821
822 using PredBlockVector = SmallVector<BasicBlock *, 16>;
823 using IncomingValueMap = DenseMap<BasicBlock *, Value *>;
824
825 /// Determines the value to use as the phi node input for a block.
826 ///
827 /// Select between \p OldVal any value that we know flows from \p BB
828 /// to a particular phi on the basis of which one (if either) is not
829 /// undef. Update IncomingValues based on the selected value.
830 ///
831 /// \param OldVal The value we are considering selecting.
832 /// \param BB The block that the value flows in from.
833 /// \param IncomingValues A map from block-to-value for other phi inputs
834 /// that we have examined.
835 ///
836 /// \returns the selected value.
selectIncomingValueForBlock(Value * OldVal,BasicBlock * BB,IncomingValueMap & IncomingValues)837 static Value *selectIncomingValueForBlock(Value *OldVal, BasicBlock *BB,
838 IncomingValueMap &IncomingValues) {
839 if (!isa<UndefValue>(OldVal)) {
840 assert((!IncomingValues.count(BB) ||
841 IncomingValues.find(BB)->second == OldVal) &&
842 "Expected OldVal to match incoming value from BB!");
843
844 IncomingValues.insert(std::make_pair(BB, OldVal));
845 return OldVal;
846 }
847
848 IncomingValueMap::const_iterator It = IncomingValues.find(BB);
849 if (It != IncomingValues.end()) return It->second;
850
851 return OldVal;
852 }
853
854 /// Create a map from block to value for the operands of a
855 /// given phi.
856 ///
857 /// Create a map from block to value for each non-undef value flowing
858 /// into \p PN.
859 ///
860 /// \param PN The phi we are collecting the map for.
861 /// \param IncomingValues [out] The map from block to value for this phi.
gatherIncomingValuesToPhi(PHINode * PN,IncomingValueMap & IncomingValues)862 static void gatherIncomingValuesToPhi(PHINode *PN,
863 IncomingValueMap &IncomingValues) {
864 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
865 BasicBlock *BB = PN->getIncomingBlock(i);
866 Value *V = PN->getIncomingValue(i);
867
868 if (!isa<UndefValue>(V))
869 IncomingValues.insert(std::make_pair(BB, V));
870 }
871 }
872
873 /// Replace the incoming undef values to a phi with the values
874 /// from a block-to-value map.
875 ///
876 /// \param PN The phi we are replacing the undefs in.
877 /// \param IncomingValues A map from block to value.
replaceUndefValuesInPhi(PHINode * PN,const IncomingValueMap & IncomingValues)878 static void replaceUndefValuesInPhi(PHINode *PN,
879 const IncomingValueMap &IncomingValues) {
880 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
881 Value *V = PN->getIncomingValue(i);
882
883 if (!isa<UndefValue>(V)) continue;
884
885 BasicBlock *BB = PN->getIncomingBlock(i);
886 IncomingValueMap::const_iterator It = IncomingValues.find(BB);
887 if (It == IncomingValues.end()) continue;
888
889 PN->setIncomingValue(i, It->second);
890 }
891 }
892
893 /// Replace a value flowing from a block to a phi with
894 /// potentially multiple instances of that value flowing from the
895 /// block's predecessors to the phi.
896 ///
897 /// \param BB The block with the value flowing into the phi.
898 /// \param BBPreds The predecessors of BB.
899 /// \param PN The phi that we are updating.
redirectValuesFromPredecessorsToPhi(BasicBlock * BB,const PredBlockVector & BBPreds,PHINode * PN)900 static void redirectValuesFromPredecessorsToPhi(BasicBlock *BB,
901 const PredBlockVector &BBPreds,
902 PHINode *PN) {
903 Value *OldVal = PN->removeIncomingValue(BB, false);
904 assert(OldVal && "No entry in PHI for Pred BB!");
905
906 IncomingValueMap IncomingValues;
907
908 // We are merging two blocks - BB, and the block containing PN - and
909 // as a result we need to redirect edges from the predecessors of BB
910 // to go to the block containing PN, and update PN
911 // accordingly. Since we allow merging blocks in the case where the
912 // predecessor and successor blocks both share some predecessors,
913 // and where some of those common predecessors might have undef
914 // values flowing into PN, we want to rewrite those values to be
915 // consistent with the non-undef values.
916
917 gatherIncomingValuesToPhi(PN, IncomingValues);
918
919 // If this incoming value is one of the PHI nodes in BB, the new entries
920 // in the PHI node are the entries from the old PHI.
921 if (isa<PHINode>(OldVal) && cast<PHINode>(OldVal)->getParent() == BB) {
922 PHINode *OldValPN = cast<PHINode>(OldVal);
923 for (unsigned i = 0, e = OldValPN->getNumIncomingValues(); i != e; ++i) {
924 // Note that, since we are merging phi nodes and BB and Succ might
925 // have common predecessors, we could end up with a phi node with
926 // identical incoming branches. This will be cleaned up later (and
927 // will trigger asserts if we try to clean it up now, without also
928 // simplifying the corresponding conditional branch).
929 BasicBlock *PredBB = OldValPN->getIncomingBlock(i);
930 Value *PredVal = OldValPN->getIncomingValue(i);
931 Value *Selected = selectIncomingValueForBlock(PredVal, PredBB,
932 IncomingValues);
933
934 // And add a new incoming value for this predecessor for the
935 // newly retargeted branch.
936 PN->addIncoming(Selected, PredBB);
937 }
938 } else {
939 for (unsigned i = 0, e = BBPreds.size(); i != e; ++i) {
940 // Update existing incoming values in PN for this
941 // predecessor of BB.
942 BasicBlock *PredBB = BBPreds[i];
943 Value *Selected = selectIncomingValueForBlock(OldVal, PredBB,
944 IncomingValues);
945
946 // And add a new incoming value for this predecessor for the
947 // newly retargeted branch.
948 PN->addIncoming(Selected, PredBB);
949 }
950 }
951
952 replaceUndefValuesInPhi(PN, IncomingValues);
953 }
954
955 /// TryToSimplifyUncondBranchFromEmptyBlock - BB is known to contain an
956 /// unconditional branch, and contains no instructions other than PHI nodes,
957 /// potential side-effect free intrinsics and the branch. If possible,
958 /// eliminate BB by rewriting all the predecessors to branch to the successor
959 /// block and return true. If we can't transform, return false.
TryToSimplifyUncondBranchFromEmptyBlock(BasicBlock * BB,DomTreeUpdater * DTU)960 bool llvm::TryToSimplifyUncondBranchFromEmptyBlock(BasicBlock *BB,
961 DomTreeUpdater *DTU) {
962 assert(BB != &BB->getParent()->getEntryBlock() &&
963 "TryToSimplifyUncondBranchFromEmptyBlock called on entry block!");
964
965 // We can't eliminate infinite loops.
966 BasicBlock *Succ = cast<BranchInst>(BB->getTerminator())->getSuccessor(0);
967 if (BB == Succ) return false;
968
969 // Check to see if merging these blocks would cause conflicts for any of the
970 // phi nodes in BB or Succ. If not, we can safely merge.
971 if (!CanPropagatePredecessorsForPHIs(BB, Succ)) return false;
972
973 // Check for cases where Succ has multiple predecessors and a PHI node in BB
974 // has uses which will not disappear when the PHI nodes are merged. It is
975 // possible to handle such cases, but difficult: it requires checking whether
976 // BB dominates Succ, which is non-trivial to calculate in the case where
977 // Succ has multiple predecessors. Also, it requires checking whether
978 // constructing the necessary self-referential PHI node doesn't introduce any
979 // conflicts; this isn't too difficult, but the previous code for doing this
980 // was incorrect.
981 //
982 // Note that if this check finds a live use, BB dominates Succ, so BB is
983 // something like a loop pre-header (or rarely, a part of an irreducible CFG);
984 // folding the branch isn't profitable in that case anyway.
985 if (!Succ->getSinglePredecessor()) {
986 BasicBlock::iterator BBI = BB->begin();
987 while (isa<PHINode>(*BBI)) {
988 for (Use &U : BBI->uses()) {
989 if (PHINode* PN = dyn_cast<PHINode>(U.getUser())) {
990 if (PN->getIncomingBlock(U) != BB)
991 return false;
992 } else {
993 return false;
994 }
995 }
996 ++BBI;
997 }
998 }
999
1000 LLVM_DEBUG(dbgs() << "Killing Trivial BB: \n" << *BB);
1001
1002 SmallVector<DominatorTree::UpdateType, 32> Updates;
1003 if (DTU) {
1004 Updates.push_back({DominatorTree::Delete, BB, Succ});
1005 // All predecessors of BB will be moved to Succ.
1006 for (auto I = pred_begin(BB), E = pred_end(BB); I != E; ++I) {
1007 Updates.push_back({DominatorTree::Delete, *I, BB});
1008 // This predecessor of BB may already have Succ as a successor.
1009 if (llvm::find(successors(*I), Succ) == succ_end(*I))
1010 Updates.push_back({DominatorTree::Insert, *I, Succ});
1011 }
1012 }
1013
1014 if (isa<PHINode>(Succ->begin())) {
1015 // If there is more than one pred of succ, and there are PHI nodes in
1016 // the successor, then we need to add incoming edges for the PHI nodes
1017 //
1018 const PredBlockVector BBPreds(pred_begin(BB), pred_end(BB));
1019
1020 // Loop over all of the PHI nodes in the successor of BB.
1021 for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) {
1022 PHINode *PN = cast<PHINode>(I);
1023
1024 redirectValuesFromPredecessorsToPhi(BB, BBPreds, PN);
1025 }
1026 }
1027
1028 if (Succ->getSinglePredecessor()) {
1029 // BB is the only predecessor of Succ, so Succ will end up with exactly
1030 // the same predecessors BB had.
1031
1032 // Copy over any phi, debug or lifetime instruction.
1033 BB->getTerminator()->eraseFromParent();
1034 Succ->getInstList().splice(Succ->getFirstNonPHI()->getIterator(),
1035 BB->getInstList());
1036 } else {
1037 while (PHINode *PN = dyn_cast<PHINode>(&BB->front())) {
1038 // We explicitly check for such uses in CanPropagatePredecessorsForPHIs.
1039 assert(PN->use_empty() && "There shouldn't be any uses here!");
1040 PN->eraseFromParent();
1041 }
1042 }
1043
1044 // If the unconditional branch we replaced contains llvm.loop metadata, we
1045 // add the metadata to the branch instructions in the predecessors.
1046 unsigned LoopMDKind = BB->getContext().getMDKindID("llvm.loop");
1047 Instruction *TI = BB->getTerminator();
1048 if (TI)
1049 if (MDNode *LoopMD = TI->getMetadata(LoopMDKind))
1050 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
1051 BasicBlock *Pred = *PI;
1052 Pred->getTerminator()->setMetadata(LoopMDKind, LoopMD);
1053 }
1054
1055 // Everything that jumped to BB now goes to Succ.
1056 BB->replaceAllUsesWith(Succ);
1057 if (!Succ->hasName()) Succ->takeName(BB);
1058
1059 // Clear the successor list of BB to match updates applying to DTU later.
1060 if (BB->getTerminator())
1061 BB->getInstList().pop_back();
1062 new UnreachableInst(BB->getContext(), BB);
1063 assert(succ_empty(BB) && "The successor list of BB isn't empty before "
1064 "applying corresponding DTU updates.");
1065
1066 if (DTU) {
1067 DTU->applyUpdates(Updates, /*ForceRemoveDuplicates*/ true);
1068 DTU->deleteBB(BB);
1069 } else {
1070 BB->eraseFromParent(); // Delete the old basic block.
1071 }
1072 return true;
1073 }
1074
1075 /// EliminateDuplicatePHINodes - Check for and eliminate duplicate PHI
1076 /// nodes in this block. This doesn't try to be clever about PHI nodes
1077 /// which differ only in the order of the incoming values, but instcombine
1078 /// orders them so it usually won't matter.
EliminateDuplicatePHINodes(BasicBlock * BB)1079 bool llvm::EliminateDuplicatePHINodes(BasicBlock *BB) {
1080 // This implementation doesn't currently consider undef operands
1081 // specially. Theoretically, two phis which are identical except for
1082 // one having an undef where the other doesn't could be collapsed.
1083
1084 struct PHIDenseMapInfo {
1085 static PHINode *getEmptyKey() {
1086 return DenseMapInfo<PHINode *>::getEmptyKey();
1087 }
1088
1089 static PHINode *getTombstoneKey() {
1090 return DenseMapInfo<PHINode *>::getTombstoneKey();
1091 }
1092
1093 static unsigned getHashValue(PHINode *PN) {
1094 // Compute a hash value on the operands. Instcombine will likely have
1095 // sorted them, which helps expose duplicates, but we have to check all
1096 // the operands to be safe in case instcombine hasn't run.
1097 return static_cast<unsigned>(hash_combine(
1098 hash_combine_range(PN->value_op_begin(), PN->value_op_end()),
1099 hash_combine_range(PN->block_begin(), PN->block_end())));
1100 }
1101
1102 static bool isEqual(PHINode *LHS, PHINode *RHS) {
1103 if (LHS == getEmptyKey() || LHS == getTombstoneKey() ||
1104 RHS == getEmptyKey() || RHS == getTombstoneKey())
1105 return LHS == RHS;
1106 return LHS->isIdenticalTo(RHS);
1107 }
1108 };
1109
1110 // Set of unique PHINodes.
1111 DenseSet<PHINode *, PHIDenseMapInfo> PHISet;
1112
1113 // Examine each PHI.
1114 bool Changed = false;
1115 for (auto I = BB->begin(); PHINode *PN = dyn_cast<PHINode>(I++);) {
1116 auto Inserted = PHISet.insert(PN);
1117 if (!Inserted.second) {
1118 // A duplicate. Replace this PHI with its duplicate.
1119 PN->replaceAllUsesWith(*Inserted.first);
1120 PN->eraseFromParent();
1121 Changed = true;
1122
1123 // The RAUW can change PHIs that we already visited. Start over from the
1124 // beginning.
1125 PHISet.clear();
1126 I = BB->begin();
1127 }
1128 }
1129
1130 return Changed;
1131 }
1132
1133 /// enforceKnownAlignment - If the specified pointer points to an object that
1134 /// we control, modify the object's alignment to PrefAlign. This isn't
1135 /// often possible though. If alignment is important, a more reliable approach
1136 /// is to simply align all global variables and allocation instructions to
1137 /// their preferred alignment from the beginning.
enforceKnownAlignment(Value * V,unsigned Align,unsigned PrefAlign,const DataLayout & DL)1138 static unsigned enforceKnownAlignment(Value *V, unsigned Align,
1139 unsigned PrefAlign,
1140 const DataLayout &DL) {
1141 assert(PrefAlign > Align);
1142
1143 V = V->stripPointerCasts();
1144
1145 if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1146 // TODO: ideally, computeKnownBits ought to have used
1147 // AllocaInst::getAlignment() in its computation already, making
1148 // the below max redundant. But, as it turns out,
1149 // stripPointerCasts recurses through infinite layers of bitcasts,
1150 // while computeKnownBits is not allowed to traverse more than 6
1151 // levels.
1152 Align = std::max(AI->getAlignment(), Align);
1153 if (PrefAlign <= Align)
1154 return Align;
1155
1156 // If the preferred alignment is greater than the natural stack alignment
1157 // then don't round up. This avoids dynamic stack realignment.
1158 if (DL.exceedsNaturalStackAlignment(PrefAlign))
1159 return Align;
1160 AI->setAlignment(PrefAlign);
1161 return PrefAlign;
1162 }
1163
1164 if (auto *GO = dyn_cast<GlobalObject>(V)) {
1165 // TODO: as above, this shouldn't be necessary.
1166 Align = std::max(GO->getAlignment(), Align);
1167 if (PrefAlign <= Align)
1168 return Align;
1169
1170 // If there is a large requested alignment and we can, bump up the alignment
1171 // of the global. If the memory we set aside for the global may not be the
1172 // memory used by the final program then it is impossible for us to reliably
1173 // enforce the preferred alignment.
1174 if (!GO->canIncreaseAlignment())
1175 return Align;
1176
1177 GO->setAlignment(PrefAlign);
1178 return PrefAlign;
1179 }
1180
1181 return Align;
1182 }
1183
getOrEnforceKnownAlignment(Value * V,unsigned PrefAlign,const DataLayout & DL,const Instruction * CxtI,AssumptionCache * AC,const DominatorTree * DT)1184 unsigned llvm::getOrEnforceKnownAlignment(Value *V, unsigned PrefAlign,
1185 const DataLayout &DL,
1186 const Instruction *CxtI,
1187 AssumptionCache *AC,
1188 const DominatorTree *DT) {
1189 assert(V->getType()->isPointerTy() &&
1190 "getOrEnforceKnownAlignment expects a pointer!");
1191
1192 KnownBits Known = computeKnownBits(V, DL, 0, AC, CxtI, DT);
1193 unsigned TrailZ = Known.countMinTrailingZeros();
1194
1195 // Avoid trouble with ridiculously large TrailZ values, such as
1196 // those computed from a null pointer.
1197 TrailZ = std::min(TrailZ, unsigned(sizeof(unsigned) * CHAR_BIT - 1));
1198
1199 unsigned Align = 1u << std::min(Known.getBitWidth() - 1, TrailZ);
1200
1201 // LLVM doesn't support alignments larger than this currently.
1202 Align = std::min(Align, +Value::MaximumAlignment);
1203
1204 if (PrefAlign > Align)
1205 Align = enforceKnownAlignment(V, Align, PrefAlign, DL);
1206
1207 // We don't need to make any adjustment.
1208 return Align;
1209 }
1210
1211 ///===---------------------------------------------------------------------===//
1212 /// Dbg Intrinsic utilities
1213 ///
1214
1215 /// See if there is a dbg.value intrinsic for DIVar before I.
LdStHasDebugValue(DILocalVariable * DIVar,DIExpression * DIExpr,Instruction * I)1216 static bool LdStHasDebugValue(DILocalVariable *DIVar, DIExpression *DIExpr,
1217 Instruction *I) {
1218 // Since we can't guarantee that the original dbg.declare instrinsic
1219 // is removed by LowerDbgDeclare(), we need to make sure that we are
1220 // not inserting the same dbg.value intrinsic over and over.
1221 BasicBlock::InstListType::iterator PrevI(I);
1222 if (PrevI != I->getParent()->getInstList().begin()) {
1223 --PrevI;
1224 if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(PrevI))
1225 if (DVI->getValue() == I->getOperand(0) &&
1226 DVI->getVariable() == DIVar &&
1227 DVI->getExpression() == DIExpr)
1228 return true;
1229 }
1230 return false;
1231 }
1232
1233 /// See if there is a dbg.value intrinsic for DIVar for the PHI node.
PhiHasDebugValue(DILocalVariable * DIVar,DIExpression * DIExpr,PHINode * APN)1234 static bool PhiHasDebugValue(DILocalVariable *DIVar,
1235 DIExpression *DIExpr,
1236 PHINode *APN) {
1237 // Since we can't guarantee that the original dbg.declare instrinsic
1238 // is removed by LowerDbgDeclare(), we need to make sure that we are
1239 // not inserting the same dbg.value intrinsic over and over.
1240 SmallVector<DbgValueInst *, 1> DbgValues;
1241 findDbgValues(DbgValues, APN);
1242 for (auto *DVI : DbgValues) {
1243 assert(DVI->getValue() == APN);
1244 if ((DVI->getVariable() == DIVar) && (DVI->getExpression() == DIExpr))
1245 return true;
1246 }
1247 return false;
1248 }
1249
1250 /// Check if the alloc size of \p ValTy is large enough to cover the variable
1251 /// (or fragment of the variable) described by \p DII.
1252 ///
1253 /// This is primarily intended as a helper for the different
1254 /// ConvertDebugDeclareToDebugValue functions. The dbg.declare/dbg.addr that is
1255 /// converted describes an alloca'd variable, so we need to use the
1256 /// alloc size of the value when doing the comparison. E.g. an i1 value will be
1257 /// identified as covering an n-bit fragment, if the store size of i1 is at
1258 /// least n bits.
valueCoversEntireFragment(Type * ValTy,DbgVariableIntrinsic * DII)1259 static bool valueCoversEntireFragment(Type *ValTy, DbgVariableIntrinsic *DII) {
1260 const DataLayout &DL = DII->getModule()->getDataLayout();
1261 uint64_t ValueSize = DL.getTypeAllocSizeInBits(ValTy);
1262 if (auto FragmentSize = DII->getFragmentSizeInBits())
1263 return ValueSize >= *FragmentSize;
1264 // We can't always calculate the size of the DI variable (e.g. if it is a
1265 // VLA). Try to use the size of the alloca that the dbg intrinsic describes
1266 // intead.
1267 if (DII->isAddressOfVariable())
1268 if (auto *AI = dyn_cast_or_null<AllocaInst>(DII->getVariableLocation()))
1269 if (auto FragmentSize = AI->getAllocationSizeInBits(DL))
1270 return ValueSize >= *FragmentSize;
1271 // Could not determine size of variable. Conservatively return false.
1272 return false;
1273 }
1274
1275 /// Inserts a llvm.dbg.value intrinsic before a store to an alloca'd value
1276 /// that has an associated llvm.dbg.declare or llvm.dbg.addr intrinsic.
ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic * DII,StoreInst * SI,DIBuilder & Builder)1277 void llvm::ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic *DII,
1278 StoreInst *SI, DIBuilder &Builder) {
1279 assert(DII->isAddressOfVariable());
1280 auto *DIVar = DII->getVariable();
1281 assert(DIVar && "Missing variable");
1282 auto *DIExpr = DII->getExpression();
1283 Value *DV = SI->getOperand(0);
1284
1285 if (!valueCoversEntireFragment(SI->getValueOperand()->getType(), DII)) {
1286 // FIXME: If storing to a part of the variable described by the dbg.declare,
1287 // then we want to insert a dbg.value for the corresponding fragment.
1288 LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to dbg.value: "
1289 << *DII << '\n');
1290 // For now, when there is a store to parts of the variable (but we do not
1291 // know which part) we insert an dbg.value instrinsic to indicate that we
1292 // know nothing about the variable's content.
1293 DV = UndefValue::get(DV->getType());
1294 if (!LdStHasDebugValue(DIVar, DIExpr, SI))
1295 Builder.insertDbgValueIntrinsic(DV, DIVar, DIExpr, DII->getDebugLoc(),
1296 SI);
1297 return;
1298 }
1299
1300 if (!LdStHasDebugValue(DIVar, DIExpr, SI))
1301 Builder.insertDbgValueIntrinsic(DV, DIVar, DIExpr, DII->getDebugLoc(),
1302 SI);
1303 }
1304
1305 /// Inserts a llvm.dbg.value intrinsic before a load of an alloca'd value
1306 /// that has an associated llvm.dbg.declare or llvm.dbg.addr intrinsic.
ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic * DII,LoadInst * LI,DIBuilder & Builder)1307 void llvm::ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic *DII,
1308 LoadInst *LI, DIBuilder &Builder) {
1309 auto *DIVar = DII->getVariable();
1310 auto *DIExpr = DII->getExpression();
1311 assert(DIVar && "Missing variable");
1312
1313 if (LdStHasDebugValue(DIVar, DIExpr, LI))
1314 return;
1315
1316 if (!valueCoversEntireFragment(LI->getType(), DII)) {
1317 // FIXME: If only referring to a part of the variable described by the
1318 // dbg.declare, then we want to insert a dbg.value for the corresponding
1319 // fragment.
1320 LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to dbg.value: "
1321 << *DII << '\n');
1322 return;
1323 }
1324
1325 // We are now tracking the loaded value instead of the address. In the
1326 // future if multi-location support is added to the IR, it might be
1327 // preferable to keep tracking both the loaded value and the original
1328 // address in case the alloca can not be elided.
1329 Instruction *DbgValue = Builder.insertDbgValueIntrinsic(
1330 LI, DIVar, DIExpr, DII->getDebugLoc(), (Instruction *)nullptr);
1331 DbgValue->insertAfter(LI);
1332 }
1333
1334 /// Inserts a llvm.dbg.value intrinsic after a phi that has an associated
1335 /// llvm.dbg.declare or llvm.dbg.addr intrinsic.
ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic * DII,PHINode * APN,DIBuilder & Builder)1336 void llvm::ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic *DII,
1337 PHINode *APN, DIBuilder &Builder) {
1338 auto *DIVar = DII->getVariable();
1339 auto *DIExpr = DII->getExpression();
1340 assert(DIVar && "Missing variable");
1341
1342 if (PhiHasDebugValue(DIVar, DIExpr, APN))
1343 return;
1344
1345 if (!valueCoversEntireFragment(APN->getType(), DII)) {
1346 // FIXME: If only referring to a part of the variable described by the
1347 // dbg.declare, then we want to insert a dbg.value for the corresponding
1348 // fragment.
1349 LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to dbg.value: "
1350 << *DII << '\n');
1351 return;
1352 }
1353
1354 BasicBlock *BB = APN->getParent();
1355 auto InsertionPt = BB->getFirstInsertionPt();
1356
1357 // The block may be a catchswitch block, which does not have a valid
1358 // insertion point.
1359 // FIXME: Insert dbg.value markers in the successors when appropriate.
1360 if (InsertionPt != BB->end())
1361 Builder.insertDbgValueIntrinsic(APN, DIVar, DIExpr, DII->getDebugLoc(),
1362 &*InsertionPt);
1363 }
1364
1365 /// Determine whether this alloca is either a VLA or an array.
isArray(AllocaInst * AI)1366 static bool isArray(AllocaInst *AI) {
1367 return AI->isArrayAllocation() ||
1368 AI->getType()->getElementType()->isArrayTy();
1369 }
1370
1371 /// LowerDbgDeclare - Lowers llvm.dbg.declare intrinsics into appropriate set
1372 /// of llvm.dbg.value intrinsics.
LowerDbgDeclare(Function & F)1373 bool llvm::LowerDbgDeclare(Function &F) {
1374 DIBuilder DIB(*F.getParent(), /*AllowUnresolved*/ false);
1375 SmallVector<DbgDeclareInst *, 4> Dbgs;
1376 for (auto &FI : F)
1377 for (Instruction &BI : FI)
1378 if (auto DDI = dyn_cast<DbgDeclareInst>(&BI))
1379 Dbgs.push_back(DDI);
1380
1381 if (Dbgs.empty())
1382 return false;
1383
1384 for (auto &I : Dbgs) {
1385 DbgDeclareInst *DDI = I;
1386 AllocaInst *AI = dyn_cast_or_null<AllocaInst>(DDI->getAddress());
1387 // If this is an alloca for a scalar variable, insert a dbg.value
1388 // at each load and store to the alloca and erase the dbg.declare.
1389 // The dbg.values allow tracking a variable even if it is not
1390 // stored on the stack, while the dbg.declare can only describe
1391 // the stack slot (and at a lexical-scope granularity). Later
1392 // passes will attempt to elide the stack slot.
1393 if (!AI || isArray(AI))
1394 continue;
1395
1396 // A volatile load/store means that the alloca can't be elided anyway.
1397 if (llvm::any_of(AI->users(), [](User *U) -> bool {
1398 if (LoadInst *LI = dyn_cast<LoadInst>(U))
1399 return LI->isVolatile();
1400 if (StoreInst *SI = dyn_cast<StoreInst>(U))
1401 return SI->isVolatile();
1402 return false;
1403 }))
1404 continue;
1405
1406 for (auto &AIUse : AI->uses()) {
1407 User *U = AIUse.getUser();
1408 if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
1409 if (AIUse.getOperandNo() == 1)
1410 ConvertDebugDeclareToDebugValue(DDI, SI, DIB);
1411 } else if (LoadInst *LI = dyn_cast<LoadInst>(U)) {
1412 ConvertDebugDeclareToDebugValue(DDI, LI, DIB);
1413 } else if (CallInst *CI = dyn_cast<CallInst>(U)) {
1414 // This is a call by-value or some other instruction that takes a
1415 // pointer to the variable. Insert a *value* intrinsic that describes
1416 // the variable by dereferencing the alloca.
1417 auto *DerefExpr =
1418 DIExpression::append(DDI->getExpression(), dwarf::DW_OP_deref);
1419 DIB.insertDbgValueIntrinsic(AI, DDI->getVariable(), DerefExpr,
1420 DDI->getDebugLoc(), CI);
1421 }
1422 }
1423 DDI->eraseFromParent();
1424 }
1425 return true;
1426 }
1427
1428 /// Propagate dbg.value intrinsics through the newly inserted PHIs.
insertDebugValuesForPHIs(BasicBlock * BB,SmallVectorImpl<PHINode * > & InsertedPHIs)1429 void llvm::insertDebugValuesForPHIs(BasicBlock *BB,
1430 SmallVectorImpl<PHINode *> &InsertedPHIs) {
1431 assert(BB && "No BasicBlock to clone dbg.value(s) from.");
1432 if (InsertedPHIs.size() == 0)
1433 return;
1434
1435 // Map existing PHI nodes to their dbg.values.
1436 ValueToValueMapTy DbgValueMap;
1437 for (auto &I : *BB) {
1438 if (auto DbgII = dyn_cast<DbgVariableIntrinsic>(&I)) {
1439 if (auto *Loc = dyn_cast_or_null<PHINode>(DbgII->getVariableLocation()))
1440 DbgValueMap.insert({Loc, DbgII});
1441 }
1442 }
1443 if (DbgValueMap.size() == 0)
1444 return;
1445
1446 // Then iterate through the new PHIs and look to see if they use one of the
1447 // previously mapped PHIs. If so, insert a new dbg.value intrinsic that will
1448 // propagate the info through the new PHI.
1449 LLVMContext &C = BB->getContext();
1450 for (auto PHI : InsertedPHIs) {
1451 BasicBlock *Parent = PHI->getParent();
1452 // Avoid inserting an intrinsic into an EH block.
1453 if (Parent->getFirstNonPHI()->isEHPad())
1454 continue;
1455 auto PhiMAV = MetadataAsValue::get(C, ValueAsMetadata::get(PHI));
1456 for (auto VI : PHI->operand_values()) {
1457 auto V = DbgValueMap.find(VI);
1458 if (V != DbgValueMap.end()) {
1459 auto *DbgII = cast<DbgVariableIntrinsic>(V->second);
1460 Instruction *NewDbgII = DbgII->clone();
1461 NewDbgII->setOperand(0, PhiMAV);
1462 auto InsertionPt = Parent->getFirstInsertionPt();
1463 assert(InsertionPt != Parent->end() && "Ill-formed basic block");
1464 NewDbgII->insertBefore(&*InsertionPt);
1465 }
1466 }
1467 }
1468 }
1469
1470 /// Finds all intrinsics declaring local variables as living in the memory that
1471 /// 'V' points to. This may include a mix of dbg.declare and
1472 /// dbg.addr intrinsics.
FindDbgAddrUses(Value * V)1473 TinyPtrVector<DbgVariableIntrinsic *> llvm::FindDbgAddrUses(Value *V) {
1474 // This function is hot. Check whether the value has any metadata to avoid a
1475 // DenseMap lookup.
1476 if (!V->isUsedByMetadata())
1477 return {};
1478 auto *L = LocalAsMetadata::getIfExists(V);
1479 if (!L)
1480 return {};
1481 auto *MDV = MetadataAsValue::getIfExists(V->getContext(), L);
1482 if (!MDV)
1483 return {};
1484
1485 TinyPtrVector<DbgVariableIntrinsic *> Declares;
1486 for (User *U : MDV->users()) {
1487 if (auto *DII = dyn_cast<DbgVariableIntrinsic>(U))
1488 if (DII->isAddressOfVariable())
1489 Declares.push_back(DII);
1490 }
1491
1492 return Declares;
1493 }
1494
findDbgValues(SmallVectorImpl<DbgValueInst * > & DbgValues,Value * V)1495 void llvm::findDbgValues(SmallVectorImpl<DbgValueInst *> &DbgValues, Value *V) {
1496 // This function is hot. Check whether the value has any metadata to avoid a
1497 // DenseMap lookup.
1498 if (!V->isUsedByMetadata())
1499 return;
1500 if (auto *L = LocalAsMetadata::getIfExists(V))
1501 if (auto *MDV = MetadataAsValue::getIfExists(V->getContext(), L))
1502 for (User *U : MDV->users())
1503 if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(U))
1504 DbgValues.push_back(DVI);
1505 }
1506
findDbgUsers(SmallVectorImpl<DbgVariableIntrinsic * > & DbgUsers,Value * V)1507 void llvm::findDbgUsers(SmallVectorImpl<DbgVariableIntrinsic *> &DbgUsers,
1508 Value *V) {
1509 // This function is hot. Check whether the value has any metadata to avoid a
1510 // DenseMap lookup.
1511 if (!V->isUsedByMetadata())
1512 return;
1513 if (auto *L = LocalAsMetadata::getIfExists(V))
1514 if (auto *MDV = MetadataAsValue::getIfExists(V->getContext(), L))
1515 for (User *U : MDV->users())
1516 if (DbgVariableIntrinsic *DII = dyn_cast<DbgVariableIntrinsic>(U))
1517 DbgUsers.push_back(DII);
1518 }
1519
replaceDbgDeclare(Value * Address,Value * NewAddress,Instruction * InsertBefore,DIBuilder & Builder,bool DerefBefore,int Offset,bool DerefAfter)1520 bool llvm::replaceDbgDeclare(Value *Address, Value *NewAddress,
1521 Instruction *InsertBefore, DIBuilder &Builder,
1522 bool DerefBefore, int Offset, bool DerefAfter) {
1523 auto DbgAddrs = FindDbgAddrUses(Address);
1524 for (DbgVariableIntrinsic *DII : DbgAddrs) {
1525 DebugLoc Loc = DII->getDebugLoc();
1526 auto *DIVar = DII->getVariable();
1527 auto *DIExpr = DII->getExpression();
1528 assert(DIVar && "Missing variable");
1529 DIExpr = DIExpression::prepend(DIExpr, DerefBefore, Offset, DerefAfter);
1530 // Insert llvm.dbg.declare immediately before InsertBefore, and remove old
1531 // llvm.dbg.declare.
1532 Builder.insertDeclare(NewAddress, DIVar, DIExpr, Loc, InsertBefore);
1533 if (DII == InsertBefore)
1534 InsertBefore = InsertBefore->getNextNode();
1535 DII->eraseFromParent();
1536 }
1537 return !DbgAddrs.empty();
1538 }
1539
replaceDbgDeclareForAlloca(AllocaInst * AI,Value * NewAllocaAddress,DIBuilder & Builder,bool DerefBefore,int Offset,bool DerefAfter)1540 bool llvm::replaceDbgDeclareForAlloca(AllocaInst *AI, Value *NewAllocaAddress,
1541 DIBuilder &Builder, bool DerefBefore,
1542 int Offset, bool DerefAfter) {
1543 return replaceDbgDeclare(AI, NewAllocaAddress, AI->getNextNode(), Builder,
1544 DerefBefore, Offset, DerefAfter);
1545 }
1546
replaceOneDbgValueForAlloca(DbgValueInst * DVI,Value * NewAddress,DIBuilder & Builder,int Offset)1547 static void replaceOneDbgValueForAlloca(DbgValueInst *DVI, Value *NewAddress,
1548 DIBuilder &Builder, int Offset) {
1549 DebugLoc Loc = DVI->getDebugLoc();
1550 auto *DIVar = DVI->getVariable();
1551 auto *DIExpr = DVI->getExpression();
1552 assert(DIVar && "Missing variable");
1553
1554 // This is an alloca-based llvm.dbg.value. The first thing it should do with
1555 // the alloca pointer is dereference it. Otherwise we don't know how to handle
1556 // it and give up.
1557 if (!DIExpr || DIExpr->getNumElements() < 1 ||
1558 DIExpr->getElement(0) != dwarf::DW_OP_deref)
1559 return;
1560
1561 // Insert the offset immediately after the first deref.
1562 // We could just change the offset argument of dbg.value, but it's unsigned...
1563 if (Offset) {
1564 SmallVector<uint64_t, 4> Ops;
1565 Ops.push_back(dwarf::DW_OP_deref);
1566 DIExpression::appendOffset(Ops, Offset);
1567 Ops.append(DIExpr->elements_begin() + 1, DIExpr->elements_end());
1568 DIExpr = Builder.createExpression(Ops);
1569 }
1570
1571 Builder.insertDbgValueIntrinsic(NewAddress, DIVar, DIExpr, Loc, DVI);
1572 DVI->eraseFromParent();
1573 }
1574
replaceDbgValueForAlloca(AllocaInst * AI,Value * NewAllocaAddress,DIBuilder & Builder,int Offset)1575 void llvm::replaceDbgValueForAlloca(AllocaInst *AI, Value *NewAllocaAddress,
1576 DIBuilder &Builder, int Offset) {
1577 if (auto *L = LocalAsMetadata::getIfExists(AI))
1578 if (auto *MDV = MetadataAsValue::getIfExists(AI->getContext(), L))
1579 for (auto UI = MDV->use_begin(), UE = MDV->use_end(); UI != UE;) {
1580 Use &U = *UI++;
1581 if (auto *DVI = dyn_cast<DbgValueInst>(U.getUser()))
1582 replaceOneDbgValueForAlloca(DVI, NewAllocaAddress, Builder, Offset);
1583 }
1584 }
1585
1586 /// Wrap \p V in a ValueAsMetadata instance.
wrapValueInMetadata(LLVMContext & C,Value * V)1587 static MetadataAsValue *wrapValueInMetadata(LLVMContext &C, Value *V) {
1588 return MetadataAsValue::get(C, ValueAsMetadata::get(V));
1589 }
1590
salvageDebugInfo(Instruction & I)1591 bool llvm::salvageDebugInfo(Instruction &I) {
1592 SmallVector<DbgVariableIntrinsic *, 1> DbgUsers;
1593 findDbgUsers(DbgUsers, &I);
1594 if (DbgUsers.empty())
1595 return false;
1596
1597 auto &M = *I.getModule();
1598 auto &DL = M.getDataLayout();
1599 auto &Ctx = I.getContext();
1600 auto wrapMD = [&](Value *V) { return wrapValueInMetadata(Ctx, V); };
1601
1602 auto doSalvage = [&](DbgVariableIntrinsic *DII, SmallVectorImpl<uint64_t> &Ops) {
1603 auto *DIExpr = DII->getExpression();
1604 if (!Ops.empty()) {
1605 // Do not add DW_OP_stack_value for DbgDeclare and DbgAddr, because they
1606 // are implicitly pointing out the value as a DWARF memory location
1607 // description.
1608 bool WithStackValue = isa<DbgValueInst>(DII);
1609 DIExpr = DIExpression::prependOpcodes(DIExpr, Ops, WithStackValue);
1610 }
1611 DII->setOperand(0, wrapMD(I.getOperand(0)));
1612 DII->setOperand(2, MetadataAsValue::get(Ctx, DIExpr));
1613 LLVM_DEBUG(dbgs() << "SALVAGE: " << *DII << '\n');
1614 };
1615
1616 auto applyOffset = [&](DbgVariableIntrinsic *DII, uint64_t Offset) {
1617 SmallVector<uint64_t, 8> Ops;
1618 DIExpression::appendOffset(Ops, Offset);
1619 doSalvage(DII, Ops);
1620 };
1621
1622 auto applyOps = [&](DbgVariableIntrinsic *DII,
1623 std::initializer_list<uint64_t> Opcodes) {
1624 SmallVector<uint64_t, 8> Ops(Opcodes);
1625 doSalvage(DII, Ops);
1626 };
1627
1628 if (auto *CI = dyn_cast<CastInst>(&I)) {
1629 if (!CI->isNoopCast(DL))
1630 return false;
1631
1632 // No-op casts are irrelevant for debug info.
1633 MetadataAsValue *CastSrc = wrapMD(I.getOperand(0));
1634 for (auto *DII : DbgUsers) {
1635 DII->setOperand(0, CastSrc);
1636 LLVM_DEBUG(dbgs() << "SALVAGE: " << *DII << '\n');
1637 }
1638 return true;
1639 } else if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) {
1640 unsigned BitWidth =
1641 M.getDataLayout().getIndexSizeInBits(GEP->getPointerAddressSpace());
1642 // Rewrite a constant GEP into a DIExpression. Since we are performing
1643 // arithmetic to compute the variable's *value* in the DIExpression, we
1644 // need to mark the expression with a DW_OP_stack_value.
1645 APInt Offset(BitWidth, 0);
1646 if (GEP->accumulateConstantOffset(M.getDataLayout(), Offset))
1647 for (auto *DII : DbgUsers)
1648 applyOffset(DII, Offset.getSExtValue());
1649 return true;
1650 } else if (auto *BI = dyn_cast<BinaryOperator>(&I)) {
1651 // Rewrite binary operations with constant integer operands.
1652 auto *ConstInt = dyn_cast<ConstantInt>(I.getOperand(1));
1653 if (!ConstInt || ConstInt->getBitWidth() > 64)
1654 return false;
1655
1656 uint64_t Val = ConstInt->getSExtValue();
1657 for (auto *DII : DbgUsers) {
1658 switch (BI->getOpcode()) {
1659 case Instruction::Add:
1660 applyOffset(DII, Val);
1661 break;
1662 case Instruction::Sub:
1663 applyOffset(DII, -int64_t(Val));
1664 break;
1665 case Instruction::Mul:
1666 applyOps(DII, {dwarf::DW_OP_constu, Val, dwarf::DW_OP_mul});
1667 break;
1668 case Instruction::SDiv:
1669 applyOps(DII, {dwarf::DW_OP_constu, Val, dwarf::DW_OP_div});
1670 break;
1671 case Instruction::SRem:
1672 applyOps(DII, {dwarf::DW_OP_constu, Val, dwarf::DW_OP_mod});
1673 break;
1674 case Instruction::Or:
1675 applyOps(DII, {dwarf::DW_OP_constu, Val, dwarf::DW_OP_or});
1676 break;
1677 case Instruction::And:
1678 applyOps(DII, {dwarf::DW_OP_constu, Val, dwarf::DW_OP_and});
1679 break;
1680 case Instruction::Xor:
1681 applyOps(DII, {dwarf::DW_OP_constu, Val, dwarf::DW_OP_xor});
1682 break;
1683 case Instruction::Shl:
1684 applyOps(DII, {dwarf::DW_OP_constu, Val, dwarf::DW_OP_shl});
1685 break;
1686 case Instruction::LShr:
1687 applyOps(DII, {dwarf::DW_OP_constu, Val, dwarf::DW_OP_shr});
1688 break;
1689 case Instruction::AShr:
1690 applyOps(DII, {dwarf::DW_OP_constu, Val, dwarf::DW_OP_shra});
1691 break;
1692 default:
1693 // TODO: Salvage constants from each kind of binop we know about.
1694 return false;
1695 }
1696 }
1697 return true;
1698 } else if (isa<LoadInst>(&I)) {
1699 MetadataAsValue *AddrMD = wrapMD(I.getOperand(0));
1700 for (auto *DII : DbgUsers) {
1701 // Rewrite the load into DW_OP_deref.
1702 auto *DIExpr = DII->getExpression();
1703 DIExpr = DIExpression::prepend(DIExpr, DIExpression::WithDeref);
1704 DII->setOperand(0, AddrMD);
1705 DII->setOperand(2, MetadataAsValue::get(Ctx, DIExpr));
1706 LLVM_DEBUG(dbgs() << "SALVAGE: " << *DII << '\n');
1707 }
1708 return true;
1709 }
1710 return false;
1711 }
1712
1713 /// A replacement for a dbg.value expression.
1714 using DbgValReplacement = Optional<DIExpression *>;
1715
1716 /// Point debug users of \p From to \p To using exprs given by \p RewriteExpr,
1717 /// possibly moving/deleting users to prevent use-before-def. Returns true if
1718 /// changes are made.
rewriteDebugUsers(Instruction & From,Value & To,Instruction & DomPoint,DominatorTree & DT,function_ref<DbgValReplacement (DbgVariableIntrinsic & DII)> RewriteExpr)1719 static bool rewriteDebugUsers(
1720 Instruction &From, Value &To, Instruction &DomPoint, DominatorTree &DT,
1721 function_ref<DbgValReplacement(DbgVariableIntrinsic &DII)> RewriteExpr) {
1722 // Find debug users of From.
1723 SmallVector<DbgVariableIntrinsic *, 1> Users;
1724 findDbgUsers(Users, &From);
1725 if (Users.empty())
1726 return false;
1727
1728 // Prevent use-before-def of To.
1729 bool Changed = false;
1730 SmallPtrSet<DbgVariableIntrinsic *, 1> DeleteOrSalvage;
1731 if (isa<Instruction>(&To)) {
1732 bool DomPointAfterFrom = From.getNextNonDebugInstruction() == &DomPoint;
1733
1734 for (auto *DII : Users) {
1735 // It's common to see a debug user between From and DomPoint. Move it
1736 // after DomPoint to preserve the variable update without any reordering.
1737 if (DomPointAfterFrom && DII->getNextNonDebugInstruction() == &DomPoint) {
1738 LLVM_DEBUG(dbgs() << "MOVE: " << *DII << '\n');
1739 DII->moveAfter(&DomPoint);
1740 Changed = true;
1741
1742 // Users which otherwise aren't dominated by the replacement value must
1743 // be salvaged or deleted.
1744 } else if (!DT.dominates(&DomPoint, DII)) {
1745 DeleteOrSalvage.insert(DII);
1746 }
1747 }
1748 }
1749
1750 // Update debug users without use-before-def risk.
1751 for (auto *DII : Users) {
1752 if (DeleteOrSalvage.count(DII))
1753 continue;
1754
1755 LLVMContext &Ctx = DII->getContext();
1756 DbgValReplacement DVR = RewriteExpr(*DII);
1757 if (!DVR)
1758 continue;
1759
1760 DII->setOperand(0, wrapValueInMetadata(Ctx, &To));
1761 DII->setOperand(2, MetadataAsValue::get(Ctx, *DVR));
1762 LLVM_DEBUG(dbgs() << "REWRITE: " << *DII << '\n');
1763 Changed = true;
1764 }
1765
1766 if (!DeleteOrSalvage.empty()) {
1767 // Try to salvage the remaining debug users.
1768 Changed |= salvageDebugInfo(From);
1769
1770 // Delete the debug users which weren't salvaged.
1771 for (auto *DII : DeleteOrSalvage) {
1772 if (DII->getVariableLocation() == &From) {
1773 LLVM_DEBUG(dbgs() << "Erased UseBeforeDef: " << *DII << '\n');
1774 DII->eraseFromParent();
1775 Changed = true;
1776 }
1777 }
1778 }
1779
1780 return Changed;
1781 }
1782
1783 /// Check if a bitcast between a value of type \p FromTy to type \p ToTy would
1784 /// losslessly preserve the bits and semantics of the value. This predicate is
1785 /// symmetric, i.e swapping \p FromTy and \p ToTy should give the same result.
1786 ///
1787 /// Note that Type::canLosslesslyBitCastTo is not suitable here because it
1788 /// allows semantically unequivalent bitcasts, such as <2 x i64> -> <4 x i32>,
1789 /// and also does not allow lossless pointer <-> integer conversions.
isBitCastSemanticsPreserving(const DataLayout & DL,Type * FromTy,Type * ToTy)1790 static bool isBitCastSemanticsPreserving(const DataLayout &DL, Type *FromTy,
1791 Type *ToTy) {
1792 // Trivially compatible types.
1793 if (FromTy == ToTy)
1794 return true;
1795
1796 // Handle compatible pointer <-> integer conversions.
1797 if (FromTy->isIntOrPtrTy() && ToTy->isIntOrPtrTy()) {
1798 bool SameSize = DL.getTypeSizeInBits(FromTy) == DL.getTypeSizeInBits(ToTy);
1799 bool LosslessConversion = !DL.isNonIntegralPointerType(FromTy) &&
1800 !DL.isNonIntegralPointerType(ToTy);
1801 return SameSize && LosslessConversion;
1802 }
1803
1804 // TODO: This is not exhaustive.
1805 return false;
1806 }
1807
replaceAllDbgUsesWith(Instruction & From,Value & To,Instruction & DomPoint,DominatorTree & DT)1808 bool llvm::replaceAllDbgUsesWith(Instruction &From, Value &To,
1809 Instruction &DomPoint, DominatorTree &DT) {
1810 // Exit early if From has no debug users.
1811 if (!From.isUsedByMetadata())
1812 return false;
1813
1814 assert(&From != &To && "Can't replace something with itself");
1815
1816 Type *FromTy = From.getType();
1817 Type *ToTy = To.getType();
1818
1819 auto Identity = [&](DbgVariableIntrinsic &DII) -> DbgValReplacement {
1820 return DII.getExpression();
1821 };
1822
1823 // Handle no-op conversions.
1824 Module &M = *From.getModule();
1825 const DataLayout &DL = M.getDataLayout();
1826 if (isBitCastSemanticsPreserving(DL, FromTy, ToTy))
1827 return rewriteDebugUsers(From, To, DomPoint, DT, Identity);
1828
1829 // Handle integer-to-integer widening and narrowing.
1830 // FIXME: Use DW_OP_convert when it's available everywhere.
1831 if (FromTy->isIntegerTy() && ToTy->isIntegerTy()) {
1832 uint64_t FromBits = FromTy->getPrimitiveSizeInBits();
1833 uint64_t ToBits = ToTy->getPrimitiveSizeInBits();
1834 assert(FromBits != ToBits && "Unexpected no-op conversion");
1835
1836 // When the width of the result grows, assume that a debugger will only
1837 // access the low `FromBits` bits when inspecting the source variable.
1838 if (FromBits < ToBits)
1839 return rewriteDebugUsers(From, To, DomPoint, DT, Identity);
1840
1841 // The width of the result has shrunk. Use sign/zero extension to describe
1842 // the source variable's high bits.
1843 auto SignOrZeroExt = [&](DbgVariableIntrinsic &DII) -> DbgValReplacement {
1844 DILocalVariable *Var = DII.getVariable();
1845
1846 // Without knowing signedness, sign/zero extension isn't possible.
1847 auto Signedness = Var->getSignedness();
1848 if (!Signedness)
1849 return None;
1850
1851 bool Signed = *Signedness == DIBasicType::Signedness::Signed;
1852
1853 if (!Signed) {
1854 // In the unsigned case, assume that a debugger will initialize the
1855 // high bits to 0 and do a no-op conversion.
1856 return Identity(DII);
1857 } else {
1858 // In the signed case, the high bits are given by sign extension, i.e:
1859 // (To >> (ToBits - 1)) * ((2 ^ FromBits) - 1)
1860 // Calculate the high bits and OR them together with the low bits.
1861 SmallVector<uint64_t, 8> Ops({dwarf::DW_OP_dup, dwarf::DW_OP_constu,
1862 (ToBits - 1), dwarf::DW_OP_shr,
1863 dwarf::DW_OP_lit0, dwarf::DW_OP_not,
1864 dwarf::DW_OP_mul, dwarf::DW_OP_or});
1865 return DIExpression::appendToStack(DII.getExpression(), Ops);
1866 }
1867 };
1868 return rewriteDebugUsers(From, To, DomPoint, DT, SignOrZeroExt);
1869 }
1870
1871 // TODO: Floating-point conversions, vectors.
1872 return false;
1873 }
1874
removeAllNonTerminatorAndEHPadInstructions(BasicBlock * BB)1875 unsigned llvm::removeAllNonTerminatorAndEHPadInstructions(BasicBlock *BB) {
1876 unsigned NumDeadInst = 0;
1877 // Delete the instructions backwards, as it has a reduced likelihood of
1878 // having to update as many def-use and use-def chains.
1879 Instruction *EndInst = BB->getTerminator(); // Last not to be deleted.
1880 while (EndInst != &BB->front()) {
1881 // Delete the next to last instruction.
1882 Instruction *Inst = &*--EndInst->getIterator();
1883 if (!Inst->use_empty() && !Inst->getType()->isTokenTy())
1884 Inst->replaceAllUsesWith(UndefValue::get(Inst->getType()));
1885 if (Inst->isEHPad() || Inst->getType()->isTokenTy()) {
1886 EndInst = Inst;
1887 continue;
1888 }
1889 if (!isa<DbgInfoIntrinsic>(Inst))
1890 ++NumDeadInst;
1891 Inst->eraseFromParent();
1892 }
1893 return NumDeadInst;
1894 }
1895
changeToUnreachable(Instruction * I,bool UseLLVMTrap,bool PreserveLCSSA,DomTreeUpdater * DTU)1896 unsigned llvm::changeToUnreachable(Instruction *I, bool UseLLVMTrap,
1897 bool PreserveLCSSA, DomTreeUpdater *DTU) {
1898 BasicBlock *BB = I->getParent();
1899 std::vector <DominatorTree::UpdateType> Updates;
1900
1901 // Loop over all of the successors, removing BB's entry from any PHI
1902 // nodes.
1903 if (DTU)
1904 Updates.reserve(BB->getTerminator()->getNumSuccessors());
1905 for (BasicBlock *Successor : successors(BB)) {
1906 Successor->removePredecessor(BB, PreserveLCSSA);
1907 if (DTU)
1908 Updates.push_back({DominatorTree::Delete, BB, Successor});
1909 }
1910 // Insert a call to llvm.trap right before this. This turns the undefined
1911 // behavior into a hard fail instead of falling through into random code.
1912 if (UseLLVMTrap) {
1913 Function *TrapFn =
1914 Intrinsic::getDeclaration(BB->getParent()->getParent(), Intrinsic::trap);
1915 CallInst *CallTrap = CallInst::Create(TrapFn, "", I);
1916 CallTrap->setDebugLoc(I->getDebugLoc());
1917 }
1918 auto *UI = new UnreachableInst(I->getContext(), I);
1919 UI->setDebugLoc(I->getDebugLoc());
1920
1921 // All instructions after this are dead.
1922 unsigned NumInstrsRemoved = 0;
1923 BasicBlock::iterator BBI = I->getIterator(), BBE = BB->end();
1924 while (BBI != BBE) {
1925 if (!BBI->use_empty())
1926 BBI->replaceAllUsesWith(UndefValue::get(BBI->getType()));
1927 BB->getInstList().erase(BBI++);
1928 ++NumInstrsRemoved;
1929 }
1930 if (DTU)
1931 DTU->applyUpdates(Updates, /*ForceRemoveDuplicates*/ true);
1932 return NumInstrsRemoved;
1933 }
1934
1935 /// changeToCall - Convert the specified invoke into a normal call.
changeToCall(InvokeInst * II,DomTreeUpdater * DTU=nullptr)1936 static void changeToCall(InvokeInst *II, DomTreeUpdater *DTU = nullptr) {
1937 SmallVector<Value*, 8> Args(II->arg_begin(), II->arg_end());
1938 SmallVector<OperandBundleDef, 1> OpBundles;
1939 II->getOperandBundlesAsDefs(OpBundles);
1940 CallInst *NewCall = CallInst::Create(II->getCalledValue(), Args, OpBundles,
1941 "", II);
1942 NewCall->takeName(II);
1943 NewCall->setCallingConv(II->getCallingConv());
1944 NewCall->setAttributes(II->getAttributes());
1945 NewCall->setDebugLoc(II->getDebugLoc());
1946 NewCall->copyMetadata(*II);
1947 II->replaceAllUsesWith(NewCall);
1948
1949 // Follow the call by a branch to the normal destination.
1950 BasicBlock *NormalDestBB = II->getNormalDest();
1951 BranchInst::Create(NormalDestBB, II);
1952
1953 // Update PHI nodes in the unwind destination
1954 BasicBlock *BB = II->getParent();
1955 BasicBlock *UnwindDestBB = II->getUnwindDest();
1956 UnwindDestBB->removePredecessor(BB);
1957 II->eraseFromParent();
1958 if (DTU)
1959 DTU->deleteEdgeRelaxed(BB, UnwindDestBB);
1960 }
1961
changeToInvokeAndSplitBasicBlock(CallInst * CI,BasicBlock * UnwindEdge)1962 BasicBlock *llvm::changeToInvokeAndSplitBasicBlock(CallInst *CI,
1963 BasicBlock *UnwindEdge) {
1964 BasicBlock *BB = CI->getParent();
1965
1966 // Convert this function call into an invoke instruction. First, split the
1967 // basic block.
1968 BasicBlock *Split =
1969 BB->splitBasicBlock(CI->getIterator(), CI->getName() + ".noexc");
1970
1971 // Delete the unconditional branch inserted by splitBasicBlock
1972 BB->getInstList().pop_back();
1973
1974 // Create the new invoke instruction.
1975 SmallVector<Value *, 8> InvokeArgs(CI->arg_begin(), CI->arg_end());
1976 SmallVector<OperandBundleDef, 1> OpBundles;
1977
1978 CI->getOperandBundlesAsDefs(OpBundles);
1979
1980 // Note: we're round tripping operand bundles through memory here, and that
1981 // can potentially be avoided with a cleverer API design that we do not have
1982 // as of this time.
1983
1984 InvokeInst *II = InvokeInst::Create(CI->getCalledValue(), Split, UnwindEdge,
1985 InvokeArgs, OpBundles, CI->getName(), BB);
1986 II->setDebugLoc(CI->getDebugLoc());
1987 II->setCallingConv(CI->getCallingConv());
1988 II->setAttributes(CI->getAttributes());
1989
1990 // Make sure that anything using the call now uses the invoke! This also
1991 // updates the CallGraph if present, because it uses a WeakTrackingVH.
1992 CI->replaceAllUsesWith(II);
1993
1994 // Delete the original call
1995 Split->getInstList().pop_front();
1996 return Split;
1997 }
1998
markAliveBlocks(Function & F,SmallPtrSetImpl<BasicBlock * > & Reachable,DomTreeUpdater * DTU=nullptr)1999 static bool markAliveBlocks(Function &F,
2000 SmallPtrSetImpl<BasicBlock *> &Reachable,
2001 DomTreeUpdater *DTU = nullptr) {
2002 SmallVector<BasicBlock*, 128> Worklist;
2003 BasicBlock *BB = &F.front();
2004 Worklist.push_back(BB);
2005 Reachable.insert(BB);
2006 bool Changed = false;
2007 do {
2008 BB = Worklist.pop_back_val();
2009
2010 // Do a quick scan of the basic block, turning any obviously unreachable
2011 // instructions into LLVM unreachable insts. The instruction combining pass
2012 // canonicalizes unreachable insts into stores to null or undef.
2013 for (Instruction &I : *BB) {
2014 if (auto *CI = dyn_cast<CallInst>(&I)) {
2015 Value *Callee = CI->getCalledValue();
2016 // Handle intrinsic calls.
2017 if (Function *F = dyn_cast<Function>(Callee)) {
2018 auto IntrinsicID = F->getIntrinsicID();
2019 // Assumptions that are known to be false are equivalent to
2020 // unreachable. Also, if the condition is undefined, then we make the
2021 // choice most beneficial to the optimizer, and choose that to also be
2022 // unreachable.
2023 if (IntrinsicID == Intrinsic::assume) {
2024 if (match(CI->getArgOperand(0), m_CombineOr(m_Zero(), m_Undef()))) {
2025 // Don't insert a call to llvm.trap right before the unreachable.
2026 changeToUnreachable(CI, false, false, DTU);
2027 Changed = true;
2028 break;
2029 }
2030 } else if (IntrinsicID == Intrinsic::experimental_guard) {
2031 // A call to the guard intrinsic bails out of the current
2032 // compilation unit if the predicate passed to it is false. If the
2033 // predicate is a constant false, then we know the guard will bail
2034 // out of the current compile unconditionally, so all code following
2035 // it is dead.
2036 //
2037 // Note: unlike in llvm.assume, it is not "obviously profitable" for
2038 // guards to treat `undef` as `false` since a guard on `undef` can
2039 // still be useful for widening.
2040 if (match(CI->getArgOperand(0), m_Zero()))
2041 if (!isa<UnreachableInst>(CI->getNextNode())) {
2042 changeToUnreachable(CI->getNextNode(), /*UseLLVMTrap=*/false,
2043 false, DTU);
2044 Changed = true;
2045 break;
2046 }
2047 }
2048 } else if ((isa<ConstantPointerNull>(Callee) &&
2049 !NullPointerIsDefined(CI->getFunction())) ||
2050 isa<UndefValue>(Callee)) {
2051 changeToUnreachable(CI, /*UseLLVMTrap=*/false, false, DTU);
2052 Changed = true;
2053 break;
2054 }
2055 if (CI->doesNotReturn()) {
2056 // If we found a call to a no-return function, insert an unreachable
2057 // instruction after it. Make sure there isn't *already* one there
2058 // though.
2059 if (!isa<UnreachableInst>(CI->getNextNode())) {
2060 // Don't insert a call to llvm.trap right before the unreachable.
2061 changeToUnreachable(CI->getNextNode(), false, false, DTU);
2062 Changed = true;
2063 }
2064 break;
2065 }
2066 } else if (auto *SI = dyn_cast<StoreInst>(&I)) {
2067 // Store to undef and store to null are undefined and used to signal
2068 // that they should be changed to unreachable by passes that can't
2069 // modify the CFG.
2070
2071 // Don't touch volatile stores.
2072 if (SI->isVolatile()) continue;
2073
2074 Value *Ptr = SI->getOperand(1);
2075
2076 if (isa<UndefValue>(Ptr) ||
2077 (isa<ConstantPointerNull>(Ptr) &&
2078 !NullPointerIsDefined(SI->getFunction(),
2079 SI->getPointerAddressSpace()))) {
2080 changeToUnreachable(SI, true, false, DTU);
2081 Changed = true;
2082 break;
2083 }
2084 }
2085 }
2086
2087 Instruction *Terminator = BB->getTerminator();
2088 if (auto *II = dyn_cast<InvokeInst>(Terminator)) {
2089 // Turn invokes that call 'nounwind' functions into ordinary calls.
2090 Value *Callee = II->getCalledValue();
2091 if ((isa<ConstantPointerNull>(Callee) &&
2092 !NullPointerIsDefined(BB->getParent())) ||
2093 isa<UndefValue>(Callee)) {
2094 changeToUnreachable(II, true, false, DTU);
2095 Changed = true;
2096 } else if (II->doesNotThrow() && canSimplifyInvokeNoUnwind(&F)) {
2097 if (II->use_empty() && II->onlyReadsMemory()) {
2098 // jump to the normal destination branch.
2099 BasicBlock *NormalDestBB = II->getNormalDest();
2100 BasicBlock *UnwindDestBB = II->getUnwindDest();
2101 BranchInst::Create(NormalDestBB, II);
2102 UnwindDestBB->removePredecessor(II->getParent());
2103 II->eraseFromParent();
2104 if (DTU)
2105 DTU->deleteEdgeRelaxed(BB, UnwindDestBB);
2106 } else
2107 changeToCall(II, DTU);
2108 Changed = true;
2109 }
2110 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Terminator)) {
2111 // Remove catchpads which cannot be reached.
2112 struct CatchPadDenseMapInfo {
2113 static CatchPadInst *getEmptyKey() {
2114 return DenseMapInfo<CatchPadInst *>::getEmptyKey();
2115 }
2116
2117 static CatchPadInst *getTombstoneKey() {
2118 return DenseMapInfo<CatchPadInst *>::getTombstoneKey();
2119 }
2120
2121 static unsigned getHashValue(CatchPadInst *CatchPad) {
2122 return static_cast<unsigned>(hash_combine_range(
2123 CatchPad->value_op_begin(), CatchPad->value_op_end()));
2124 }
2125
2126 static bool isEqual(CatchPadInst *LHS, CatchPadInst *RHS) {
2127 if (LHS == getEmptyKey() || LHS == getTombstoneKey() ||
2128 RHS == getEmptyKey() || RHS == getTombstoneKey())
2129 return LHS == RHS;
2130 return LHS->isIdenticalTo(RHS);
2131 }
2132 };
2133
2134 // Set of unique CatchPads.
2135 SmallDenseMap<CatchPadInst *, detail::DenseSetEmpty, 4,
2136 CatchPadDenseMapInfo, detail::DenseSetPair<CatchPadInst *>>
2137 HandlerSet;
2138 detail::DenseSetEmpty Empty;
2139 for (CatchSwitchInst::handler_iterator I = CatchSwitch->handler_begin(),
2140 E = CatchSwitch->handler_end();
2141 I != E; ++I) {
2142 BasicBlock *HandlerBB = *I;
2143 auto *CatchPad = cast<CatchPadInst>(HandlerBB->getFirstNonPHI());
2144 if (!HandlerSet.insert({CatchPad, Empty}).second) {
2145 CatchSwitch->removeHandler(I);
2146 --I;
2147 --E;
2148 Changed = true;
2149 }
2150 }
2151 }
2152
2153 Changed |= ConstantFoldTerminator(BB, true, nullptr, DTU);
2154 for (BasicBlock *Successor : successors(BB))
2155 if (Reachable.insert(Successor).second)
2156 Worklist.push_back(Successor);
2157 } while (!Worklist.empty());
2158 return Changed;
2159 }
2160
removeUnwindEdge(BasicBlock * BB,DomTreeUpdater * DTU)2161 void llvm::removeUnwindEdge(BasicBlock *BB, DomTreeUpdater *DTU) {
2162 Instruction *TI = BB->getTerminator();
2163
2164 if (auto *II = dyn_cast<InvokeInst>(TI)) {
2165 changeToCall(II, DTU);
2166 return;
2167 }
2168
2169 Instruction *NewTI;
2170 BasicBlock *UnwindDest;
2171
2172 if (auto *CRI = dyn_cast<CleanupReturnInst>(TI)) {
2173 NewTI = CleanupReturnInst::Create(CRI->getCleanupPad(), nullptr, CRI);
2174 UnwindDest = CRI->getUnwindDest();
2175 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(TI)) {
2176 auto *NewCatchSwitch = CatchSwitchInst::Create(
2177 CatchSwitch->getParentPad(), nullptr, CatchSwitch->getNumHandlers(),
2178 CatchSwitch->getName(), CatchSwitch);
2179 for (BasicBlock *PadBB : CatchSwitch->handlers())
2180 NewCatchSwitch->addHandler(PadBB);
2181
2182 NewTI = NewCatchSwitch;
2183 UnwindDest = CatchSwitch->getUnwindDest();
2184 } else {
2185 llvm_unreachable("Could not find unwind successor");
2186 }
2187
2188 NewTI->takeName(TI);
2189 NewTI->setDebugLoc(TI->getDebugLoc());
2190 UnwindDest->removePredecessor(BB);
2191 TI->replaceAllUsesWith(NewTI);
2192 TI->eraseFromParent();
2193 if (DTU)
2194 DTU->deleteEdgeRelaxed(BB, UnwindDest);
2195 }
2196
2197 /// removeUnreachableBlocks - Remove blocks that are not reachable, even
2198 /// if they are in a dead cycle. Return true if a change was made, false
2199 /// otherwise. If `LVI` is passed, this function preserves LazyValueInfo
2200 /// after modifying the CFG.
removeUnreachableBlocks(Function & F,LazyValueInfo * LVI,DomTreeUpdater * DTU,MemorySSAUpdater * MSSAU)2201 bool llvm::removeUnreachableBlocks(Function &F, LazyValueInfo *LVI,
2202 DomTreeUpdater *DTU,
2203 MemorySSAUpdater *MSSAU) {
2204 SmallPtrSet<BasicBlock*, 16> Reachable;
2205 bool Changed = markAliveBlocks(F, Reachable, DTU);
2206
2207 // If there are unreachable blocks in the CFG...
2208 if (Reachable.size() == F.size())
2209 return Changed;
2210
2211 assert(Reachable.size() < F.size());
2212 NumRemoved += F.size()-Reachable.size();
2213
2214 SmallPtrSet<BasicBlock *, 16> DeadBlockSet;
2215 for (Function::iterator I = ++F.begin(), E = F.end(); I != E; ++I) {
2216 auto *BB = &*I;
2217 if (Reachable.count(BB))
2218 continue;
2219 DeadBlockSet.insert(BB);
2220 }
2221
2222 if (MSSAU)
2223 MSSAU->removeBlocks(DeadBlockSet);
2224
2225 // Loop over all of the basic blocks that are not reachable, dropping all of
2226 // their internal references. Update DTU and LVI if available.
2227 std::vector<DominatorTree::UpdateType> Updates;
2228 for (auto *BB : DeadBlockSet) {
2229 for (BasicBlock *Successor : successors(BB)) {
2230 if (!DeadBlockSet.count(Successor))
2231 Successor->removePredecessor(BB);
2232 if (DTU)
2233 Updates.push_back({DominatorTree::Delete, BB, Successor});
2234 }
2235 if (LVI)
2236 LVI->eraseBlock(BB);
2237 BB->dropAllReferences();
2238 }
2239 for (Function::iterator I = ++F.begin(); I != F.end();) {
2240 auto *BB = &*I;
2241 if (Reachable.count(BB)) {
2242 ++I;
2243 continue;
2244 }
2245 if (DTU) {
2246 // Remove the terminator of BB to clear the successor list of BB.
2247 if (BB->getTerminator())
2248 BB->getInstList().pop_back();
2249 new UnreachableInst(BB->getContext(), BB);
2250 assert(succ_empty(BB) && "The successor list of BB isn't empty before "
2251 "applying corresponding DTU updates.");
2252 ++I;
2253 } else {
2254 I = F.getBasicBlockList().erase(I);
2255 }
2256 }
2257
2258 if (DTU) {
2259 DTU->applyUpdates(Updates, /*ForceRemoveDuplicates*/ true);
2260 bool Deleted = false;
2261 for (auto *BB : DeadBlockSet) {
2262 if (DTU->isBBPendingDeletion(BB))
2263 --NumRemoved;
2264 else
2265 Deleted = true;
2266 DTU->deleteBB(BB);
2267 }
2268 if (!Deleted)
2269 return false;
2270 }
2271 return true;
2272 }
2273
combineMetadata(Instruction * K,const Instruction * J,ArrayRef<unsigned> KnownIDs,bool DoesKMove)2274 void llvm::combineMetadata(Instruction *K, const Instruction *J,
2275 ArrayRef<unsigned> KnownIDs, bool DoesKMove) {
2276 SmallVector<std::pair<unsigned, MDNode *>, 4> Metadata;
2277 K->dropUnknownNonDebugMetadata(KnownIDs);
2278 K->getAllMetadataOtherThanDebugLoc(Metadata);
2279 for (const auto &MD : Metadata) {
2280 unsigned Kind = MD.first;
2281 MDNode *JMD = J->getMetadata(Kind);
2282 MDNode *KMD = MD.second;
2283
2284 switch (Kind) {
2285 default:
2286 K->setMetadata(Kind, nullptr); // Remove unknown metadata
2287 break;
2288 case LLVMContext::MD_dbg:
2289 llvm_unreachable("getAllMetadataOtherThanDebugLoc returned a MD_dbg");
2290 case LLVMContext::MD_tbaa:
2291 K->setMetadata(Kind, MDNode::getMostGenericTBAA(JMD, KMD));
2292 break;
2293 case LLVMContext::MD_alias_scope:
2294 K->setMetadata(Kind, MDNode::getMostGenericAliasScope(JMD, KMD));
2295 break;
2296 case LLVMContext::MD_noalias:
2297 case LLVMContext::MD_mem_parallel_loop_access:
2298 K->setMetadata(Kind, MDNode::intersect(JMD, KMD));
2299 break;
2300 case LLVMContext::MD_access_group:
2301 K->setMetadata(LLVMContext::MD_access_group,
2302 intersectAccessGroups(K, J));
2303 break;
2304 case LLVMContext::MD_range:
2305
2306 // If K does move, use most generic range. Otherwise keep the range of
2307 // K.
2308 if (DoesKMove)
2309 // FIXME: If K does move, we should drop the range info and nonnull.
2310 // Currently this function is used with DoesKMove in passes
2311 // doing hoisting/sinking and the current behavior of using the
2312 // most generic range is correct in those cases.
2313 K->setMetadata(Kind, MDNode::getMostGenericRange(JMD, KMD));
2314 break;
2315 case LLVMContext::MD_fpmath:
2316 K->setMetadata(Kind, MDNode::getMostGenericFPMath(JMD, KMD));
2317 break;
2318 case LLVMContext::MD_invariant_load:
2319 // Only set the !invariant.load if it is present in both instructions.
2320 K->setMetadata(Kind, JMD);
2321 break;
2322 case LLVMContext::MD_nonnull:
2323 // If K does move, keep nonull if it is present in both instructions.
2324 if (DoesKMove)
2325 K->setMetadata(Kind, JMD);
2326 break;
2327 case LLVMContext::MD_invariant_group:
2328 // Preserve !invariant.group in K.
2329 break;
2330 case LLVMContext::MD_align:
2331 K->setMetadata(Kind,
2332 MDNode::getMostGenericAlignmentOrDereferenceable(JMD, KMD));
2333 break;
2334 case LLVMContext::MD_dereferenceable:
2335 case LLVMContext::MD_dereferenceable_or_null:
2336 K->setMetadata(Kind,
2337 MDNode::getMostGenericAlignmentOrDereferenceable(JMD, KMD));
2338 break;
2339 }
2340 }
2341 // Set !invariant.group from J if J has it. If both instructions have it
2342 // then we will just pick it from J - even when they are different.
2343 // Also make sure that K is load or store - f.e. combining bitcast with load
2344 // could produce bitcast with invariant.group metadata, which is invalid.
2345 // FIXME: we should try to preserve both invariant.group md if they are
2346 // different, but right now instruction can only have one invariant.group.
2347 if (auto *JMD = J->getMetadata(LLVMContext::MD_invariant_group))
2348 if (isa<LoadInst>(K) || isa<StoreInst>(K))
2349 K->setMetadata(LLVMContext::MD_invariant_group, JMD);
2350 }
2351
combineMetadataForCSE(Instruction * K,const Instruction * J,bool KDominatesJ)2352 void llvm::combineMetadataForCSE(Instruction *K, const Instruction *J,
2353 bool KDominatesJ) {
2354 unsigned KnownIDs[] = {
2355 LLVMContext::MD_tbaa, LLVMContext::MD_alias_scope,
2356 LLVMContext::MD_noalias, LLVMContext::MD_range,
2357 LLVMContext::MD_invariant_load, LLVMContext::MD_nonnull,
2358 LLVMContext::MD_invariant_group, LLVMContext::MD_align,
2359 LLVMContext::MD_dereferenceable,
2360 LLVMContext::MD_dereferenceable_or_null,
2361 LLVMContext::MD_access_group};
2362 combineMetadata(K, J, KnownIDs, KDominatesJ);
2363 }
2364
patchReplacementInstruction(Instruction * I,Value * Repl)2365 void llvm::patchReplacementInstruction(Instruction *I, Value *Repl) {
2366 auto *ReplInst = dyn_cast<Instruction>(Repl);
2367 if (!ReplInst)
2368 return;
2369
2370 // Patch the replacement so that it is not more restrictive than the value
2371 // being replaced.
2372 // Note that if 'I' is a load being replaced by some operation,
2373 // for example, by an arithmetic operation, then andIRFlags()
2374 // would just erase all math flags from the original arithmetic
2375 // operation, which is clearly not wanted and not needed.
2376 if (!isa<LoadInst>(I))
2377 ReplInst->andIRFlags(I);
2378
2379 // FIXME: If both the original and replacement value are part of the
2380 // same control-flow region (meaning that the execution of one
2381 // guarantees the execution of the other), then we can combine the
2382 // noalias scopes here and do better than the general conservative
2383 // answer used in combineMetadata().
2384
2385 // In general, GVN unifies expressions over different control-flow
2386 // regions, and so we need a conservative combination of the noalias
2387 // scopes.
2388 static const unsigned KnownIDs[] = {
2389 LLVMContext::MD_tbaa, LLVMContext::MD_alias_scope,
2390 LLVMContext::MD_noalias, LLVMContext::MD_range,
2391 LLVMContext::MD_fpmath, LLVMContext::MD_invariant_load,
2392 LLVMContext::MD_invariant_group, LLVMContext::MD_nonnull,
2393 LLVMContext::MD_access_group};
2394 combineMetadata(ReplInst, I, KnownIDs, false);
2395 }
2396
2397 template <typename RootType, typename DominatesFn>
replaceDominatedUsesWith(Value * From,Value * To,const RootType & Root,const DominatesFn & Dominates)2398 static unsigned replaceDominatedUsesWith(Value *From, Value *To,
2399 const RootType &Root,
2400 const DominatesFn &Dominates) {
2401 assert(From->getType() == To->getType());
2402
2403 unsigned Count = 0;
2404 for (Value::use_iterator UI = From->use_begin(), UE = From->use_end();
2405 UI != UE;) {
2406 Use &U = *UI++;
2407 if (!Dominates(Root, U))
2408 continue;
2409 U.set(To);
2410 LLVM_DEBUG(dbgs() << "Replace dominated use of '" << From->getName()
2411 << "' as " << *To << " in " << *U << "\n");
2412 ++Count;
2413 }
2414 return Count;
2415 }
2416
replaceNonLocalUsesWith(Instruction * From,Value * To)2417 unsigned llvm::replaceNonLocalUsesWith(Instruction *From, Value *To) {
2418 assert(From->getType() == To->getType());
2419 auto *BB = From->getParent();
2420 unsigned Count = 0;
2421
2422 for (Value::use_iterator UI = From->use_begin(), UE = From->use_end();
2423 UI != UE;) {
2424 Use &U = *UI++;
2425 auto *I = cast<Instruction>(U.getUser());
2426 if (I->getParent() == BB)
2427 continue;
2428 U.set(To);
2429 ++Count;
2430 }
2431 return Count;
2432 }
2433
replaceDominatedUsesWith(Value * From,Value * To,DominatorTree & DT,const BasicBlockEdge & Root)2434 unsigned llvm::replaceDominatedUsesWith(Value *From, Value *To,
2435 DominatorTree &DT,
2436 const BasicBlockEdge &Root) {
2437 auto Dominates = [&DT](const BasicBlockEdge &Root, const Use &U) {
2438 return DT.dominates(Root, U);
2439 };
2440 return ::replaceDominatedUsesWith(From, To, Root, Dominates);
2441 }
2442
replaceDominatedUsesWith(Value * From,Value * To,DominatorTree & DT,const BasicBlock * BB)2443 unsigned llvm::replaceDominatedUsesWith(Value *From, Value *To,
2444 DominatorTree &DT,
2445 const BasicBlock *BB) {
2446 auto ProperlyDominates = [&DT](const BasicBlock *BB, const Use &U) {
2447 auto *I = cast<Instruction>(U.getUser())->getParent();
2448 return DT.properlyDominates(BB, I);
2449 };
2450 return ::replaceDominatedUsesWith(From, To, BB, ProperlyDominates);
2451 }
2452
callsGCLeafFunction(ImmutableCallSite CS,const TargetLibraryInfo & TLI)2453 bool llvm::callsGCLeafFunction(ImmutableCallSite CS,
2454 const TargetLibraryInfo &TLI) {
2455 // Check if the function is specifically marked as a gc leaf function.
2456 if (CS.hasFnAttr("gc-leaf-function"))
2457 return true;
2458 if (const Function *F = CS.getCalledFunction()) {
2459 if (F->hasFnAttribute("gc-leaf-function"))
2460 return true;
2461
2462 if (auto IID = F->getIntrinsicID())
2463 // Most LLVM intrinsics do not take safepoints.
2464 return IID != Intrinsic::experimental_gc_statepoint &&
2465 IID != Intrinsic::experimental_deoptimize;
2466 }
2467
2468 // Lib calls can be materialized by some passes, and won't be
2469 // marked as 'gc-leaf-function.' All available Libcalls are
2470 // GC-leaf.
2471 LibFunc LF;
2472 if (TLI.getLibFunc(CS, LF)) {
2473 return TLI.has(LF);
2474 }
2475
2476 return false;
2477 }
2478
copyNonnullMetadata(const LoadInst & OldLI,MDNode * N,LoadInst & NewLI)2479 void llvm::copyNonnullMetadata(const LoadInst &OldLI, MDNode *N,
2480 LoadInst &NewLI) {
2481 auto *NewTy = NewLI.getType();
2482
2483 // This only directly applies if the new type is also a pointer.
2484 if (NewTy->isPointerTy()) {
2485 NewLI.setMetadata(LLVMContext::MD_nonnull, N);
2486 return;
2487 }
2488
2489 // The only other translation we can do is to integral loads with !range
2490 // metadata.
2491 if (!NewTy->isIntegerTy())
2492 return;
2493
2494 MDBuilder MDB(NewLI.getContext());
2495 const Value *Ptr = OldLI.getPointerOperand();
2496 auto *ITy = cast<IntegerType>(NewTy);
2497 auto *NullInt = ConstantExpr::getPtrToInt(
2498 ConstantPointerNull::get(cast<PointerType>(Ptr->getType())), ITy);
2499 auto *NonNullInt = ConstantExpr::getAdd(NullInt, ConstantInt::get(ITy, 1));
2500 NewLI.setMetadata(LLVMContext::MD_range,
2501 MDB.createRange(NonNullInt, NullInt));
2502 }
2503
copyRangeMetadata(const DataLayout & DL,const LoadInst & OldLI,MDNode * N,LoadInst & NewLI)2504 void llvm::copyRangeMetadata(const DataLayout &DL, const LoadInst &OldLI,
2505 MDNode *N, LoadInst &NewLI) {
2506 auto *NewTy = NewLI.getType();
2507
2508 // Give up unless it is converted to a pointer where there is a single very
2509 // valuable mapping we can do reliably.
2510 // FIXME: It would be nice to propagate this in more ways, but the type
2511 // conversions make it hard.
2512 if (!NewTy->isPointerTy())
2513 return;
2514
2515 unsigned BitWidth = DL.getIndexTypeSizeInBits(NewTy);
2516 if (!getConstantRangeFromMetadata(*N).contains(APInt(BitWidth, 0))) {
2517 MDNode *NN = MDNode::get(OldLI.getContext(), None);
2518 NewLI.setMetadata(LLVMContext::MD_nonnull, NN);
2519 }
2520 }
2521
dropDebugUsers(Instruction & I)2522 void llvm::dropDebugUsers(Instruction &I) {
2523 SmallVector<DbgVariableIntrinsic *, 1> DbgUsers;
2524 findDbgUsers(DbgUsers, &I);
2525 for (auto *DII : DbgUsers)
2526 DII->eraseFromParent();
2527 }
2528
hoistAllInstructionsInto(BasicBlock * DomBlock,Instruction * InsertPt,BasicBlock * BB)2529 void llvm::hoistAllInstructionsInto(BasicBlock *DomBlock, Instruction *InsertPt,
2530 BasicBlock *BB) {
2531 // Since we are moving the instructions out of its basic block, we do not
2532 // retain their original debug locations (DILocations) and debug intrinsic
2533 // instructions (dbg.values).
2534 //
2535 // Doing so would degrade the debugging experience and adversely affect the
2536 // accuracy of profiling information.
2537 //
2538 // Currently, when hoisting the instructions, we take the following actions:
2539 // - Remove their dbg.values.
2540 // - Set their debug locations to the values from the insertion point.
2541 //
2542 // As per PR39141 (comment #8), the more fundamental reason why the dbg.values
2543 // need to be deleted, is because there will not be any instructions with a
2544 // DILocation in either branch left after performing the transformation. We
2545 // can only insert a dbg.value after the two branches are joined again.
2546 //
2547 // See PR38762, PR39243 for more details.
2548 //
2549 // TODO: Extend llvm.dbg.value to take more than one SSA Value (PR39141) to
2550 // encode predicated DIExpressions that yield different results on different
2551 // code paths.
2552 for (BasicBlock::iterator II = BB->begin(), IE = BB->end(); II != IE;) {
2553 Instruction *I = &*II;
2554 I->dropUnknownNonDebugMetadata();
2555 if (I->isUsedByMetadata())
2556 dropDebugUsers(*I);
2557 if (isa<DbgVariableIntrinsic>(I)) {
2558 // Remove DbgInfo Intrinsics.
2559 II = I->eraseFromParent();
2560 continue;
2561 }
2562 I->setDebugLoc(InsertPt->getDebugLoc());
2563 ++II;
2564 }
2565 DomBlock->getInstList().splice(InsertPt->getIterator(), BB->getInstList(),
2566 BB->begin(),
2567 BB->getTerminator()->getIterator());
2568 }
2569
2570 namespace {
2571
2572 /// A potential constituent of a bitreverse or bswap expression. See
2573 /// collectBitParts for a fuller explanation.
2574 struct BitPart {
BitPart__anon799a4a1e0a11::BitPart2575 BitPart(Value *P, unsigned BW) : Provider(P) {
2576 Provenance.resize(BW);
2577 }
2578
2579 /// The Value that this is a bitreverse/bswap of.
2580 Value *Provider;
2581
2582 /// The "provenance" of each bit. Provenance[A] = B means that bit A
2583 /// in Provider becomes bit B in the result of this expression.
2584 SmallVector<int8_t, 32> Provenance; // int8_t means max size is i128.
2585
2586 enum { Unset = -1 };
2587 };
2588
2589 } // end anonymous namespace
2590
2591 /// Analyze the specified subexpression and see if it is capable of providing
2592 /// pieces of a bswap or bitreverse. The subexpression provides a potential
2593 /// piece of a bswap or bitreverse if it can be proven that each non-zero bit in
2594 /// the output of the expression came from a corresponding bit in some other
2595 /// value. This function is recursive, and the end result is a mapping of
2596 /// bitnumber to bitnumber. It is the caller's responsibility to validate that
2597 /// the bitnumber to bitnumber mapping is correct for a bswap or bitreverse.
2598 ///
2599 /// For example, if the current subexpression if "(shl i32 %X, 24)" then we know
2600 /// that the expression deposits the low byte of %X into the high byte of the
2601 /// result and that all other bits are zero. This expression is accepted and a
2602 /// BitPart is returned with Provider set to %X and Provenance[24-31] set to
2603 /// [0-7].
2604 ///
2605 /// To avoid revisiting values, the BitPart results are memoized into the
2606 /// provided map. To avoid unnecessary copying of BitParts, BitParts are
2607 /// constructed in-place in the \c BPS map. Because of this \c BPS needs to
2608 /// store BitParts objects, not pointers. As we need the concept of a nullptr
2609 /// BitParts (Value has been analyzed and the analysis failed), we an Optional
2610 /// type instead to provide the same functionality.
2611 ///
2612 /// Because we pass around references into \c BPS, we must use a container that
2613 /// does not invalidate internal references (std::map instead of DenseMap).
2614 static const Optional<BitPart> &
collectBitParts(Value * V,bool MatchBSwaps,bool MatchBitReversals,std::map<Value *,Optional<BitPart>> & BPS)2615 collectBitParts(Value *V, bool MatchBSwaps, bool MatchBitReversals,
2616 std::map<Value *, Optional<BitPart>> &BPS) {
2617 auto I = BPS.find(V);
2618 if (I != BPS.end())
2619 return I->second;
2620
2621 auto &Result = BPS[V] = None;
2622 auto BitWidth = cast<IntegerType>(V->getType())->getBitWidth();
2623
2624 if (Instruction *I = dyn_cast<Instruction>(V)) {
2625 // If this is an or instruction, it may be an inner node of the bswap.
2626 if (I->getOpcode() == Instruction::Or) {
2627 auto &A = collectBitParts(I->getOperand(0), MatchBSwaps,
2628 MatchBitReversals, BPS);
2629 auto &B = collectBitParts(I->getOperand(1), MatchBSwaps,
2630 MatchBitReversals, BPS);
2631 if (!A || !B)
2632 return Result;
2633
2634 // Try and merge the two together.
2635 if (!A->Provider || A->Provider != B->Provider)
2636 return Result;
2637
2638 Result = BitPart(A->Provider, BitWidth);
2639 for (unsigned i = 0; i < A->Provenance.size(); ++i) {
2640 if (A->Provenance[i] != BitPart::Unset &&
2641 B->Provenance[i] != BitPart::Unset &&
2642 A->Provenance[i] != B->Provenance[i])
2643 return Result = None;
2644
2645 if (A->Provenance[i] == BitPart::Unset)
2646 Result->Provenance[i] = B->Provenance[i];
2647 else
2648 Result->Provenance[i] = A->Provenance[i];
2649 }
2650
2651 return Result;
2652 }
2653
2654 // If this is a logical shift by a constant, recurse then shift the result.
2655 if (I->isLogicalShift() && isa<ConstantInt>(I->getOperand(1))) {
2656 unsigned BitShift =
2657 cast<ConstantInt>(I->getOperand(1))->getLimitedValue(~0U);
2658 // Ensure the shift amount is defined.
2659 if (BitShift > BitWidth)
2660 return Result;
2661
2662 auto &Res = collectBitParts(I->getOperand(0), MatchBSwaps,
2663 MatchBitReversals, BPS);
2664 if (!Res)
2665 return Result;
2666 Result = Res;
2667
2668 // Perform the "shift" on BitProvenance.
2669 auto &P = Result->Provenance;
2670 if (I->getOpcode() == Instruction::Shl) {
2671 P.erase(std::prev(P.end(), BitShift), P.end());
2672 P.insert(P.begin(), BitShift, BitPart::Unset);
2673 } else {
2674 P.erase(P.begin(), std::next(P.begin(), BitShift));
2675 P.insert(P.end(), BitShift, BitPart::Unset);
2676 }
2677
2678 return Result;
2679 }
2680
2681 // If this is a logical 'and' with a mask that clears bits, recurse then
2682 // unset the appropriate bits.
2683 if (I->getOpcode() == Instruction::And &&
2684 isa<ConstantInt>(I->getOperand(1))) {
2685 APInt Bit(I->getType()->getPrimitiveSizeInBits(), 1);
2686 const APInt &AndMask = cast<ConstantInt>(I->getOperand(1))->getValue();
2687
2688 // Check that the mask allows a multiple of 8 bits for a bswap, for an
2689 // early exit.
2690 unsigned NumMaskedBits = AndMask.countPopulation();
2691 if (!MatchBitReversals && NumMaskedBits % 8 != 0)
2692 return Result;
2693
2694 auto &Res = collectBitParts(I->getOperand(0), MatchBSwaps,
2695 MatchBitReversals, BPS);
2696 if (!Res)
2697 return Result;
2698 Result = Res;
2699
2700 for (unsigned i = 0; i < BitWidth; ++i, Bit <<= 1)
2701 // If the AndMask is zero for this bit, clear the bit.
2702 if ((AndMask & Bit) == 0)
2703 Result->Provenance[i] = BitPart::Unset;
2704 return Result;
2705 }
2706
2707 // If this is a zext instruction zero extend the result.
2708 if (I->getOpcode() == Instruction::ZExt) {
2709 auto &Res = collectBitParts(I->getOperand(0), MatchBSwaps,
2710 MatchBitReversals, BPS);
2711 if (!Res)
2712 return Result;
2713
2714 Result = BitPart(Res->Provider, BitWidth);
2715 auto NarrowBitWidth =
2716 cast<IntegerType>(cast<ZExtInst>(I)->getSrcTy())->getBitWidth();
2717 for (unsigned i = 0; i < NarrowBitWidth; ++i)
2718 Result->Provenance[i] = Res->Provenance[i];
2719 for (unsigned i = NarrowBitWidth; i < BitWidth; ++i)
2720 Result->Provenance[i] = BitPart::Unset;
2721 return Result;
2722 }
2723 }
2724
2725 // Okay, we got to something that isn't a shift, 'or' or 'and'. This must be
2726 // the input value to the bswap/bitreverse.
2727 Result = BitPart(V, BitWidth);
2728 for (unsigned i = 0; i < BitWidth; ++i)
2729 Result->Provenance[i] = i;
2730 return Result;
2731 }
2732
bitTransformIsCorrectForBSwap(unsigned From,unsigned To,unsigned BitWidth)2733 static bool bitTransformIsCorrectForBSwap(unsigned From, unsigned To,
2734 unsigned BitWidth) {
2735 if (From % 8 != To % 8)
2736 return false;
2737 // Convert from bit indices to byte indices and check for a byte reversal.
2738 From >>= 3;
2739 To >>= 3;
2740 BitWidth >>= 3;
2741 return From == BitWidth - To - 1;
2742 }
2743
bitTransformIsCorrectForBitReverse(unsigned From,unsigned To,unsigned BitWidth)2744 static bool bitTransformIsCorrectForBitReverse(unsigned From, unsigned To,
2745 unsigned BitWidth) {
2746 return From == BitWidth - To - 1;
2747 }
2748
recognizeBSwapOrBitReverseIdiom(Instruction * I,bool MatchBSwaps,bool MatchBitReversals,SmallVectorImpl<Instruction * > & InsertedInsts)2749 bool llvm::recognizeBSwapOrBitReverseIdiom(
2750 Instruction *I, bool MatchBSwaps, bool MatchBitReversals,
2751 SmallVectorImpl<Instruction *> &InsertedInsts) {
2752 if (Operator::getOpcode(I) != Instruction::Or)
2753 return false;
2754 if (!MatchBSwaps && !MatchBitReversals)
2755 return false;
2756 IntegerType *ITy = dyn_cast<IntegerType>(I->getType());
2757 if (!ITy || ITy->getBitWidth() > 128)
2758 return false; // Can't do vectors or integers > 128 bits.
2759 unsigned BW = ITy->getBitWidth();
2760
2761 unsigned DemandedBW = BW;
2762 IntegerType *DemandedTy = ITy;
2763 if (I->hasOneUse()) {
2764 if (TruncInst *Trunc = dyn_cast<TruncInst>(I->user_back())) {
2765 DemandedTy = cast<IntegerType>(Trunc->getType());
2766 DemandedBW = DemandedTy->getBitWidth();
2767 }
2768 }
2769
2770 // Try to find all the pieces corresponding to the bswap.
2771 std::map<Value *, Optional<BitPart>> BPS;
2772 auto Res = collectBitParts(I, MatchBSwaps, MatchBitReversals, BPS);
2773 if (!Res)
2774 return false;
2775 auto &BitProvenance = Res->Provenance;
2776
2777 // Now, is the bit permutation correct for a bswap or a bitreverse? We can
2778 // only byteswap values with an even number of bytes.
2779 bool OKForBSwap = DemandedBW % 16 == 0, OKForBitReverse = true;
2780 for (unsigned i = 0; i < DemandedBW; ++i) {
2781 OKForBSwap &=
2782 bitTransformIsCorrectForBSwap(BitProvenance[i], i, DemandedBW);
2783 OKForBitReverse &=
2784 bitTransformIsCorrectForBitReverse(BitProvenance[i], i, DemandedBW);
2785 }
2786
2787 Intrinsic::ID Intrin;
2788 if (OKForBSwap && MatchBSwaps)
2789 Intrin = Intrinsic::bswap;
2790 else if (OKForBitReverse && MatchBitReversals)
2791 Intrin = Intrinsic::bitreverse;
2792 else
2793 return false;
2794
2795 if (ITy != DemandedTy) {
2796 Function *F = Intrinsic::getDeclaration(I->getModule(), Intrin, DemandedTy);
2797 Value *Provider = Res->Provider;
2798 IntegerType *ProviderTy = cast<IntegerType>(Provider->getType());
2799 // We may need to truncate the provider.
2800 if (DemandedTy != ProviderTy) {
2801 auto *Trunc = CastInst::Create(Instruction::Trunc, Provider, DemandedTy,
2802 "trunc", I);
2803 InsertedInsts.push_back(Trunc);
2804 Provider = Trunc;
2805 }
2806 auto *CI = CallInst::Create(F, Provider, "rev", I);
2807 InsertedInsts.push_back(CI);
2808 auto *ExtInst = CastInst::Create(Instruction::ZExt, CI, ITy, "zext", I);
2809 InsertedInsts.push_back(ExtInst);
2810 return true;
2811 }
2812
2813 Function *F = Intrinsic::getDeclaration(I->getModule(), Intrin, ITy);
2814 InsertedInsts.push_back(CallInst::Create(F, Res->Provider, "rev", I));
2815 return true;
2816 }
2817
2818 // CodeGen has special handling for some string functions that may replace
2819 // them with target-specific intrinsics. Since that'd skip our interceptors
2820 // in ASan/MSan/TSan/DFSan, and thus make us miss some memory accesses,
2821 // we mark affected calls as NoBuiltin, which will disable optimization
2822 // in CodeGen.
maybeMarkSanitizerLibraryCallNoBuiltin(CallInst * CI,const TargetLibraryInfo * TLI)2823 void llvm::maybeMarkSanitizerLibraryCallNoBuiltin(
2824 CallInst *CI, const TargetLibraryInfo *TLI) {
2825 Function *F = CI->getCalledFunction();
2826 LibFunc Func;
2827 if (F && !F->hasLocalLinkage() && F->hasName() &&
2828 TLI->getLibFunc(F->getName(), Func) && TLI->hasOptimizedCodeGen(Func) &&
2829 !F->doesNotAccessMemory())
2830 CI->addAttribute(AttributeList::FunctionIndex, Attribute::NoBuiltin);
2831 }
2832
canReplaceOperandWithVariable(const Instruction * I,unsigned OpIdx)2833 bool llvm::canReplaceOperandWithVariable(const Instruction *I, unsigned OpIdx) {
2834 // We can't have a PHI with a metadata type.
2835 if (I->getOperand(OpIdx)->getType()->isMetadataTy())
2836 return false;
2837
2838 // Early exit.
2839 if (!isa<Constant>(I->getOperand(OpIdx)))
2840 return true;
2841
2842 switch (I->getOpcode()) {
2843 default:
2844 return true;
2845 case Instruction::Call:
2846 case Instruction::Invoke:
2847 // Can't handle inline asm. Skip it.
2848 if (isa<InlineAsm>(ImmutableCallSite(I).getCalledValue()))
2849 return false;
2850 // Many arithmetic intrinsics have no issue taking a
2851 // variable, however it's hard to distingish these from
2852 // specials such as @llvm.frameaddress that require a constant.
2853 if (isa<IntrinsicInst>(I))
2854 return false;
2855
2856 // Constant bundle operands may need to retain their constant-ness for
2857 // correctness.
2858 if (ImmutableCallSite(I).isBundleOperand(OpIdx))
2859 return false;
2860 return true;
2861 case Instruction::ShuffleVector:
2862 // Shufflevector masks are constant.
2863 return OpIdx != 2;
2864 case Instruction::Switch:
2865 case Instruction::ExtractValue:
2866 // All operands apart from the first are constant.
2867 return OpIdx == 0;
2868 case Instruction::InsertValue:
2869 // All operands apart from the first and the second are constant.
2870 return OpIdx < 2;
2871 case Instruction::Alloca:
2872 // Static allocas (constant size in the entry block) are handled by
2873 // prologue/epilogue insertion so they're free anyway. We definitely don't
2874 // want to make them non-constant.
2875 return !cast<AllocaInst>(I)->isStaticAlloca();
2876 case Instruction::GetElementPtr:
2877 if (OpIdx == 0)
2878 return true;
2879 gep_type_iterator It = gep_type_begin(I);
2880 for (auto E = std::next(It, OpIdx); It != E; ++It)
2881 if (It.isStruct())
2882 return false;
2883 return true;
2884 }
2885 }
2886