1 //===-- Local.cpp - Functions to perform local transformations ------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This family of functions perform various local transformations to the
11 // program.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/Transforms/Utils/Local.h"
16 #include "llvm/ADT/DenseMap.h"
17 #include "llvm/ADT/DenseSet.h"
18 #include "llvm/ADT/Hashing.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/ADT/SmallPtrSet.h"
21 #include "llvm/ADT/Statistic.h"
22 #include "llvm/Analysis/InstructionSimplify.h"
23 #include "llvm/Analysis/LibCallSemantics.h"
24 #include "llvm/Analysis/MemoryBuiltins.h"
25 #include "llvm/Analysis/ValueTracking.h"
26 #include "llvm/IR/CFG.h"
27 #include "llvm/IR/Constants.h"
28 #include "llvm/IR/DIBuilder.h"
29 #include "llvm/IR/DataLayout.h"
30 #include "llvm/IR/DebugInfo.h"
31 #include "llvm/IR/DerivedTypes.h"
32 #include "llvm/IR/Dominators.h"
33 #include "llvm/IR/GetElementPtrTypeIterator.h"
34 #include "llvm/IR/GlobalAlias.h"
35 #include "llvm/IR/GlobalVariable.h"
36 #include "llvm/IR/IRBuilder.h"
37 #include "llvm/IR/Instructions.h"
38 #include "llvm/IR/IntrinsicInst.h"
39 #include "llvm/IR/Intrinsics.h"
40 #include "llvm/IR/MDBuilder.h"
41 #include "llvm/IR/Metadata.h"
42 #include "llvm/IR/Operator.h"
43 #include "llvm/IR/ValueHandle.h"
44 #include "llvm/Support/Debug.h"
45 #include "llvm/Support/MathExtras.h"
46 #include "llvm/Support/raw_ostream.h"
47 using namespace llvm;
48 
49 #define DEBUG_TYPE "local"
50 
51 STATISTIC(NumRemoved, "Number of unreachable basic blocks removed");
52 
53 //===----------------------------------------------------------------------===//
54 //  Local constant propagation.
55 //
56 
57 /// ConstantFoldTerminator - If a terminator instruction is predicated on a
58 /// constant value, convert it into an unconditional branch to the constant
59 /// destination.  This is a nontrivial operation because the successors of this
60 /// basic block must have their PHI nodes updated.
61 /// Also calls RecursivelyDeleteTriviallyDeadInstructions() on any branch/switch
62 /// conditions and indirectbr addresses this might make dead if
63 /// DeleteDeadConditions is true.
64 bool llvm::ConstantFoldTerminator(BasicBlock *BB, bool DeleteDeadConditions,
65                                   const TargetLibraryInfo *TLI) {
66   TerminatorInst *T = BB->getTerminator();
67   IRBuilder<> Builder(T);
68 
69   // Branch - See if we are conditional jumping on constant
70   if (BranchInst *BI = dyn_cast<BranchInst>(T)) {
71     if (BI->isUnconditional()) return false;  // Can't optimize uncond branch
72     BasicBlock *Dest1 = BI->getSuccessor(0);
73     BasicBlock *Dest2 = BI->getSuccessor(1);
74 
75     if (ConstantInt *Cond = dyn_cast<ConstantInt>(BI->getCondition())) {
76       // Are we branching on constant?
77       // YES.  Change to unconditional branch...
78       BasicBlock *Destination = Cond->getZExtValue() ? Dest1 : Dest2;
79       BasicBlock *OldDest     = Cond->getZExtValue() ? Dest2 : Dest1;
80 
81       //cerr << "Function: " << T->getParent()->getParent()
82       //     << "\nRemoving branch from " << T->getParent()
83       //     << "\n\nTo: " << OldDest << endl;
84 
85       // Let the basic block know that we are letting go of it.  Based on this,
86       // it will adjust it's PHI nodes.
87       OldDest->removePredecessor(BB);
88 
89       // Replace the conditional branch with an unconditional one.
90       Builder.CreateBr(Destination);
91       BI->eraseFromParent();
92       return true;
93     }
94 
95     if (Dest2 == Dest1) {       // Conditional branch to same location?
96       // This branch matches something like this:
97       //     br bool %cond, label %Dest, label %Dest
98       // and changes it into:  br label %Dest
99 
100       // Let the basic block know that we are letting go of one copy of it.
101       assert(BI->getParent() && "Terminator not inserted in block!");
102       Dest1->removePredecessor(BI->getParent());
103 
104       // Replace the conditional branch with an unconditional one.
105       Builder.CreateBr(Dest1);
106       Value *Cond = BI->getCondition();
107       BI->eraseFromParent();
108       if (DeleteDeadConditions)
109         RecursivelyDeleteTriviallyDeadInstructions(Cond, TLI);
110       return true;
111     }
112     return false;
113   }
114 
115   if (SwitchInst *SI = dyn_cast<SwitchInst>(T)) {
116     // If we are switching on a constant, we can convert the switch to an
117     // unconditional branch.
118     ConstantInt *CI = dyn_cast<ConstantInt>(SI->getCondition());
119     BasicBlock *DefaultDest = SI->getDefaultDest();
120     BasicBlock *TheOnlyDest = DefaultDest;
121 
122     // If the default is unreachable, ignore it when searching for TheOnlyDest.
123     if (isa<UnreachableInst>(DefaultDest->getFirstNonPHIOrDbg()) &&
124         SI->getNumCases() > 0) {
125       TheOnlyDest = SI->case_begin().getCaseSuccessor();
126     }
127 
128     // Figure out which case it goes to.
129     for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end();
130          i != e; ++i) {
131       // Found case matching a constant operand?
132       if (i.getCaseValue() == CI) {
133         TheOnlyDest = i.getCaseSuccessor();
134         break;
135       }
136 
137       // Check to see if this branch is going to the same place as the default
138       // dest.  If so, eliminate it as an explicit compare.
139       if (i.getCaseSuccessor() == DefaultDest) {
140         MDNode *MD = SI->getMetadata(LLVMContext::MD_prof);
141         unsigned NCases = SI->getNumCases();
142         // Fold the case metadata into the default if there will be any branches
143         // left, unless the metadata doesn't match the switch.
144         if (NCases > 1 && MD && MD->getNumOperands() == 2 + NCases) {
145           // Collect branch weights into a vector.
146           SmallVector<uint32_t, 8> Weights;
147           for (unsigned MD_i = 1, MD_e = MD->getNumOperands(); MD_i < MD_e;
148                ++MD_i) {
149             ConstantInt *CI =
150                 mdconst::dyn_extract<ConstantInt>(MD->getOperand(MD_i));
151             assert(CI);
152             Weights.push_back(CI->getValue().getZExtValue());
153           }
154           // Merge weight of this case to the default weight.
155           unsigned idx = i.getCaseIndex();
156           Weights[0] += Weights[idx+1];
157           // Remove weight for this case.
158           std::swap(Weights[idx+1], Weights.back());
159           Weights.pop_back();
160           SI->setMetadata(LLVMContext::MD_prof,
161                           MDBuilder(BB->getContext()).
162                           createBranchWeights(Weights));
163         }
164         // Remove this entry.
165         DefaultDest->removePredecessor(SI->getParent());
166         SI->removeCase(i);
167         --i; --e;
168         continue;
169       }
170 
171       // Otherwise, check to see if the switch only branches to one destination.
172       // We do this by reseting "TheOnlyDest" to null when we find two non-equal
173       // destinations.
174       if (i.getCaseSuccessor() != TheOnlyDest) TheOnlyDest = nullptr;
175     }
176 
177     if (CI && !TheOnlyDest) {
178       // Branching on a constant, but not any of the cases, go to the default
179       // successor.
180       TheOnlyDest = SI->getDefaultDest();
181     }
182 
183     // If we found a single destination that we can fold the switch into, do so
184     // now.
185     if (TheOnlyDest) {
186       // Insert the new branch.
187       Builder.CreateBr(TheOnlyDest);
188       BasicBlock *BB = SI->getParent();
189 
190       // Remove entries from PHI nodes which we no longer branch to...
191       for (unsigned i = 0, e = SI->getNumSuccessors(); i != e; ++i) {
192         // Found case matching a constant operand?
193         BasicBlock *Succ = SI->getSuccessor(i);
194         if (Succ == TheOnlyDest)
195           TheOnlyDest = nullptr; // Don't modify the first branch to TheOnlyDest
196         else
197           Succ->removePredecessor(BB);
198       }
199 
200       // Delete the old switch.
201       Value *Cond = SI->getCondition();
202       SI->eraseFromParent();
203       if (DeleteDeadConditions)
204         RecursivelyDeleteTriviallyDeadInstructions(Cond, TLI);
205       return true;
206     }
207 
208     if (SI->getNumCases() == 1) {
209       // Otherwise, we can fold this switch into a conditional branch
210       // instruction if it has only one non-default destination.
211       SwitchInst::CaseIt FirstCase = SI->case_begin();
212       Value *Cond = Builder.CreateICmpEQ(SI->getCondition(),
213           FirstCase.getCaseValue(), "cond");
214 
215       // Insert the new branch.
216       BranchInst *NewBr = Builder.CreateCondBr(Cond,
217                                                FirstCase.getCaseSuccessor(),
218                                                SI->getDefaultDest());
219       MDNode *MD = SI->getMetadata(LLVMContext::MD_prof);
220       if (MD && MD->getNumOperands() == 3) {
221         ConstantInt *SICase =
222             mdconst::dyn_extract<ConstantInt>(MD->getOperand(2));
223         ConstantInt *SIDef =
224             mdconst::dyn_extract<ConstantInt>(MD->getOperand(1));
225         assert(SICase && SIDef);
226         // The TrueWeight should be the weight for the single case of SI.
227         NewBr->setMetadata(LLVMContext::MD_prof,
228                         MDBuilder(BB->getContext()).
229                         createBranchWeights(SICase->getValue().getZExtValue(),
230                                             SIDef->getValue().getZExtValue()));
231       }
232 
233       // Delete the old switch.
234       SI->eraseFromParent();
235       return true;
236     }
237     return false;
238   }
239 
240   if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(T)) {
241     // indirectbr blockaddress(@F, @BB) -> br label @BB
242     if (BlockAddress *BA =
243           dyn_cast<BlockAddress>(IBI->getAddress()->stripPointerCasts())) {
244       BasicBlock *TheOnlyDest = BA->getBasicBlock();
245       // Insert the new branch.
246       Builder.CreateBr(TheOnlyDest);
247 
248       for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) {
249         if (IBI->getDestination(i) == TheOnlyDest)
250           TheOnlyDest = nullptr;
251         else
252           IBI->getDestination(i)->removePredecessor(IBI->getParent());
253       }
254       Value *Address = IBI->getAddress();
255       IBI->eraseFromParent();
256       if (DeleteDeadConditions)
257         RecursivelyDeleteTriviallyDeadInstructions(Address, TLI);
258 
259       // If we didn't find our destination in the IBI successor list, then we
260       // have undefined behavior.  Replace the unconditional branch with an
261       // 'unreachable' instruction.
262       if (TheOnlyDest) {
263         BB->getTerminator()->eraseFromParent();
264         new UnreachableInst(BB->getContext(), BB);
265       }
266 
267       return true;
268     }
269   }
270 
271   return false;
272 }
273 
274 
275 //===----------------------------------------------------------------------===//
276 //  Local dead code elimination.
277 //
278 
279 /// isInstructionTriviallyDead - Return true if the result produced by the
280 /// instruction is not used, and the instruction has no side effects.
281 ///
282 bool llvm::isInstructionTriviallyDead(Instruction *I,
283                                       const TargetLibraryInfo *TLI) {
284   if (!I->use_empty() || isa<TerminatorInst>(I)) return false;
285 
286   // We don't want the landingpad instruction removed by anything this general.
287   if (isa<LandingPadInst>(I))
288     return false;
289 
290   // We don't want debug info removed by anything this general, unless
291   // debug info is empty.
292   if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(I)) {
293     if (DDI->getAddress())
294       return false;
295     return true;
296   }
297   if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(I)) {
298     if (DVI->getValue())
299       return false;
300     return true;
301   }
302 
303   if (!I->mayHaveSideEffects()) return true;
304 
305   // Special case intrinsics that "may have side effects" but can be deleted
306   // when dead.
307   if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
308     // Safe to delete llvm.stacksave if dead.
309     if (II->getIntrinsicID() == Intrinsic::stacksave)
310       return true;
311 
312     // Lifetime intrinsics are dead when their right-hand is undef.
313     if (II->getIntrinsicID() == Intrinsic::lifetime_start ||
314         II->getIntrinsicID() == Intrinsic::lifetime_end)
315       return isa<UndefValue>(II->getArgOperand(1));
316 
317     // Assumptions are dead if their condition is trivially true.
318     if (II->getIntrinsicID() == Intrinsic::assume) {
319       if (ConstantInt *Cond = dyn_cast<ConstantInt>(II->getArgOperand(0)))
320         return !Cond->isZero();
321 
322       return false;
323     }
324   }
325 
326   if (isAllocLikeFn(I, TLI)) return true;
327 
328   if (CallInst *CI = isFreeCall(I, TLI))
329     if (Constant *C = dyn_cast<Constant>(CI->getArgOperand(0)))
330       return C->isNullValue() || isa<UndefValue>(C);
331 
332   return false;
333 }
334 
335 /// RecursivelyDeleteTriviallyDeadInstructions - If the specified value is a
336 /// trivially dead instruction, delete it.  If that makes any of its operands
337 /// trivially dead, delete them too, recursively.  Return true if any
338 /// instructions were deleted.
339 bool
340 llvm::RecursivelyDeleteTriviallyDeadInstructions(Value *V,
341                                                  const TargetLibraryInfo *TLI) {
342   Instruction *I = dyn_cast<Instruction>(V);
343   if (!I || !I->use_empty() || !isInstructionTriviallyDead(I, TLI))
344     return false;
345 
346   SmallVector<Instruction*, 16> DeadInsts;
347   DeadInsts.push_back(I);
348 
349   do {
350     I = DeadInsts.pop_back_val();
351 
352     // Null out all of the instruction's operands to see if any operand becomes
353     // dead as we go.
354     for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
355       Value *OpV = I->getOperand(i);
356       I->setOperand(i, nullptr);
357 
358       if (!OpV->use_empty()) continue;
359 
360       // If the operand is an instruction that became dead as we nulled out the
361       // operand, and if it is 'trivially' dead, delete it in a future loop
362       // iteration.
363       if (Instruction *OpI = dyn_cast<Instruction>(OpV))
364         if (isInstructionTriviallyDead(OpI, TLI))
365           DeadInsts.push_back(OpI);
366     }
367 
368     I->eraseFromParent();
369   } while (!DeadInsts.empty());
370 
371   return true;
372 }
373 
374 /// areAllUsesEqual - Check whether the uses of a value are all the same.
375 /// This is similar to Instruction::hasOneUse() except this will also return
376 /// true when there are no uses or multiple uses that all refer to the same
377 /// value.
378 static bool areAllUsesEqual(Instruction *I) {
379   Value::user_iterator UI = I->user_begin();
380   Value::user_iterator UE = I->user_end();
381   if (UI == UE)
382     return true;
383 
384   User *TheUse = *UI;
385   for (++UI; UI != UE; ++UI) {
386     if (*UI != TheUse)
387       return false;
388   }
389   return true;
390 }
391 
392 /// RecursivelyDeleteDeadPHINode - If the specified value is an effectively
393 /// dead PHI node, due to being a def-use chain of single-use nodes that
394 /// either forms a cycle or is terminated by a trivially dead instruction,
395 /// delete it.  If that makes any of its operands trivially dead, delete them
396 /// too, recursively.  Return true if a change was made.
397 bool llvm::RecursivelyDeleteDeadPHINode(PHINode *PN,
398                                         const TargetLibraryInfo *TLI) {
399   SmallPtrSet<Instruction*, 4> Visited;
400   for (Instruction *I = PN; areAllUsesEqual(I) && !I->mayHaveSideEffects();
401        I = cast<Instruction>(*I->user_begin())) {
402     if (I->use_empty())
403       return RecursivelyDeleteTriviallyDeadInstructions(I, TLI);
404 
405     // If we find an instruction more than once, we're on a cycle that
406     // won't prove fruitful.
407     if (!Visited.insert(I).second) {
408       // Break the cycle and delete the instruction and its operands.
409       I->replaceAllUsesWith(UndefValue::get(I->getType()));
410       (void)RecursivelyDeleteTriviallyDeadInstructions(I, TLI);
411       return true;
412     }
413   }
414   return false;
415 }
416 
417 /// SimplifyInstructionsInBlock - Scan the specified basic block and try to
418 /// simplify any instructions in it and recursively delete dead instructions.
419 ///
420 /// This returns true if it changed the code, note that it can delete
421 /// instructions in other blocks as well in this block.
422 bool llvm::SimplifyInstructionsInBlock(BasicBlock *BB,
423                                        const TargetLibraryInfo *TLI) {
424   bool MadeChange = false;
425 
426 #ifndef NDEBUG
427   // In debug builds, ensure that the terminator of the block is never replaced
428   // or deleted by these simplifications. The idea of simplification is that it
429   // cannot introduce new instructions, and there is no way to replace the
430   // terminator of a block without introducing a new instruction.
431   AssertingVH<Instruction> TerminatorVH(--BB->end());
432 #endif
433 
434   for (BasicBlock::iterator BI = BB->begin(), E = --BB->end(); BI != E; ) {
435     assert(!BI->isTerminator());
436     Instruction *Inst = BI++;
437 
438     WeakVH BIHandle(BI);
439     if (recursivelySimplifyInstruction(Inst, TLI)) {
440       MadeChange = true;
441       if (BIHandle != BI)
442         BI = BB->begin();
443       continue;
444     }
445 
446     MadeChange |= RecursivelyDeleteTriviallyDeadInstructions(Inst, TLI);
447     if (BIHandle != BI)
448       BI = BB->begin();
449   }
450   return MadeChange;
451 }
452 
453 //===----------------------------------------------------------------------===//
454 //  Control Flow Graph Restructuring.
455 //
456 
457 
458 /// RemovePredecessorAndSimplify - Like BasicBlock::removePredecessor, this
459 /// method is called when we're about to delete Pred as a predecessor of BB.  If
460 /// BB contains any PHI nodes, this drops the entries in the PHI nodes for Pred.
461 ///
462 /// Unlike the removePredecessor method, this attempts to simplify uses of PHI
463 /// nodes that collapse into identity values.  For example, if we have:
464 ///   x = phi(1, 0, 0, 0)
465 ///   y = and x, z
466 ///
467 /// .. and delete the predecessor corresponding to the '1', this will attempt to
468 /// recursively fold the and to 0.
469 void llvm::RemovePredecessorAndSimplify(BasicBlock *BB, BasicBlock *Pred) {
470   // This only adjusts blocks with PHI nodes.
471   if (!isa<PHINode>(BB->begin()))
472     return;
473 
474   // Remove the entries for Pred from the PHI nodes in BB, but do not simplify
475   // them down.  This will leave us with single entry phi nodes and other phis
476   // that can be removed.
477   BB->removePredecessor(Pred, true);
478 
479   WeakVH PhiIt = &BB->front();
480   while (PHINode *PN = dyn_cast<PHINode>(PhiIt)) {
481     PhiIt = &*++BasicBlock::iterator(cast<Instruction>(PhiIt));
482     Value *OldPhiIt = PhiIt;
483 
484     if (!recursivelySimplifyInstruction(PN))
485       continue;
486 
487     // If recursive simplification ended up deleting the next PHI node we would
488     // iterate to, then our iterator is invalid, restart scanning from the top
489     // of the block.
490     if (PhiIt != OldPhiIt) PhiIt = &BB->front();
491   }
492 }
493 
494 
495 /// MergeBasicBlockIntoOnlyPred - DestBB is a block with one predecessor and its
496 /// predecessor is known to have one successor (DestBB!).  Eliminate the edge
497 /// between them, moving the instructions in the predecessor into DestBB and
498 /// deleting the predecessor block.
499 ///
500 void llvm::MergeBasicBlockIntoOnlyPred(BasicBlock *DestBB, DominatorTree *DT) {
501   // If BB has single-entry PHI nodes, fold them.
502   while (PHINode *PN = dyn_cast<PHINode>(DestBB->begin())) {
503     Value *NewVal = PN->getIncomingValue(0);
504     // Replace self referencing PHI with undef, it must be dead.
505     if (NewVal == PN) NewVal = UndefValue::get(PN->getType());
506     PN->replaceAllUsesWith(NewVal);
507     PN->eraseFromParent();
508   }
509 
510   BasicBlock *PredBB = DestBB->getSinglePredecessor();
511   assert(PredBB && "Block doesn't have a single predecessor!");
512 
513   // Zap anything that took the address of DestBB.  Not doing this will give the
514   // address an invalid value.
515   if (DestBB->hasAddressTaken()) {
516     BlockAddress *BA = BlockAddress::get(DestBB);
517     Constant *Replacement =
518       ConstantInt::get(llvm::Type::getInt32Ty(BA->getContext()), 1);
519     BA->replaceAllUsesWith(ConstantExpr::getIntToPtr(Replacement,
520                                                      BA->getType()));
521     BA->destroyConstant();
522   }
523 
524   // Anything that branched to PredBB now branches to DestBB.
525   PredBB->replaceAllUsesWith(DestBB);
526 
527   // Splice all the instructions from PredBB to DestBB.
528   PredBB->getTerminator()->eraseFromParent();
529   DestBB->getInstList().splice(DestBB->begin(), PredBB->getInstList());
530 
531   // If the PredBB is the entry block of the function, move DestBB up to
532   // become the entry block after we erase PredBB.
533   if (PredBB == &DestBB->getParent()->getEntryBlock())
534     DestBB->moveAfter(PredBB);
535 
536   if (DT) {
537     BasicBlock *PredBBIDom = DT->getNode(PredBB)->getIDom()->getBlock();
538     DT->changeImmediateDominator(DestBB, PredBBIDom);
539     DT->eraseNode(PredBB);
540   }
541   // Nuke BB.
542   PredBB->eraseFromParent();
543 }
544 
545 /// CanMergeValues - Return true if we can choose one of these values to use
546 /// in place of the other. Note that we will always choose the non-undef
547 /// value to keep.
548 static bool CanMergeValues(Value *First, Value *Second) {
549   return First == Second || isa<UndefValue>(First) || isa<UndefValue>(Second);
550 }
551 
552 /// CanPropagatePredecessorsForPHIs - Return true if we can fold BB, an
553 /// almost-empty BB ending in an unconditional branch to Succ, into Succ.
554 ///
555 /// Assumption: Succ is the single successor for BB.
556 ///
557 static bool CanPropagatePredecessorsForPHIs(BasicBlock *BB, BasicBlock *Succ) {
558   assert(*succ_begin(BB) == Succ && "Succ is not successor of BB!");
559 
560   DEBUG(dbgs() << "Looking to fold " << BB->getName() << " into "
561         << Succ->getName() << "\n");
562   // Shortcut, if there is only a single predecessor it must be BB and merging
563   // is always safe
564   if (Succ->getSinglePredecessor()) return true;
565 
566   // Make a list of the predecessors of BB
567   SmallPtrSet<BasicBlock*, 16> BBPreds(pred_begin(BB), pred_end(BB));
568 
569   // Look at all the phi nodes in Succ, to see if they present a conflict when
570   // merging these blocks
571   for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) {
572     PHINode *PN = cast<PHINode>(I);
573 
574     // If the incoming value from BB is again a PHINode in
575     // BB which has the same incoming value for *PI as PN does, we can
576     // merge the phi nodes and then the blocks can still be merged
577     PHINode *BBPN = dyn_cast<PHINode>(PN->getIncomingValueForBlock(BB));
578     if (BBPN && BBPN->getParent() == BB) {
579       for (unsigned PI = 0, PE = PN->getNumIncomingValues(); PI != PE; ++PI) {
580         BasicBlock *IBB = PN->getIncomingBlock(PI);
581         if (BBPreds.count(IBB) &&
582             !CanMergeValues(BBPN->getIncomingValueForBlock(IBB),
583                             PN->getIncomingValue(PI))) {
584           DEBUG(dbgs() << "Can't fold, phi node " << PN->getName() << " in "
585                 << Succ->getName() << " is conflicting with "
586                 << BBPN->getName() << " with regard to common predecessor "
587                 << IBB->getName() << "\n");
588           return false;
589         }
590       }
591     } else {
592       Value* Val = PN->getIncomingValueForBlock(BB);
593       for (unsigned PI = 0, PE = PN->getNumIncomingValues(); PI != PE; ++PI) {
594         // See if the incoming value for the common predecessor is equal to the
595         // one for BB, in which case this phi node will not prevent the merging
596         // of the block.
597         BasicBlock *IBB = PN->getIncomingBlock(PI);
598         if (BBPreds.count(IBB) &&
599             !CanMergeValues(Val, PN->getIncomingValue(PI))) {
600           DEBUG(dbgs() << "Can't fold, phi node " << PN->getName() << " in "
601                 << Succ->getName() << " is conflicting with regard to common "
602                 << "predecessor " << IBB->getName() << "\n");
603           return false;
604         }
605       }
606     }
607   }
608 
609   return true;
610 }
611 
612 typedef SmallVector<BasicBlock *, 16> PredBlockVector;
613 typedef DenseMap<BasicBlock *, Value *> IncomingValueMap;
614 
615 /// \brief Determines the value to use as the phi node input for a block.
616 ///
617 /// Select between \p OldVal any value that we know flows from \p BB
618 /// to a particular phi on the basis of which one (if either) is not
619 /// undef. Update IncomingValues based on the selected value.
620 ///
621 /// \param OldVal The value we are considering selecting.
622 /// \param BB The block that the value flows in from.
623 /// \param IncomingValues A map from block-to-value for other phi inputs
624 /// that we have examined.
625 ///
626 /// \returns the selected value.
627 static Value *selectIncomingValueForBlock(Value *OldVal, BasicBlock *BB,
628                                           IncomingValueMap &IncomingValues) {
629   if (!isa<UndefValue>(OldVal)) {
630     assert((!IncomingValues.count(BB) ||
631             IncomingValues.find(BB)->second == OldVal) &&
632            "Expected OldVal to match incoming value from BB!");
633 
634     IncomingValues.insert(std::make_pair(BB, OldVal));
635     return OldVal;
636   }
637 
638   IncomingValueMap::const_iterator It = IncomingValues.find(BB);
639   if (It != IncomingValues.end()) return It->second;
640 
641   return OldVal;
642 }
643 
644 /// \brief Create a map from block to value for the operands of a
645 /// given phi.
646 ///
647 /// Create a map from block to value for each non-undef value flowing
648 /// into \p PN.
649 ///
650 /// \param PN The phi we are collecting the map for.
651 /// \param IncomingValues [out] The map from block to value for this phi.
652 static void gatherIncomingValuesToPhi(PHINode *PN,
653                                       IncomingValueMap &IncomingValues) {
654   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
655     BasicBlock *BB = PN->getIncomingBlock(i);
656     Value *V = PN->getIncomingValue(i);
657 
658     if (!isa<UndefValue>(V))
659       IncomingValues.insert(std::make_pair(BB, V));
660   }
661 }
662 
663 /// \brief Replace the incoming undef values to a phi with the values
664 /// from a block-to-value map.
665 ///
666 /// \param PN The phi we are replacing the undefs in.
667 /// \param IncomingValues A map from block to value.
668 static void replaceUndefValuesInPhi(PHINode *PN,
669                                     const IncomingValueMap &IncomingValues) {
670   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
671     Value *V = PN->getIncomingValue(i);
672 
673     if (!isa<UndefValue>(V)) continue;
674 
675     BasicBlock *BB = PN->getIncomingBlock(i);
676     IncomingValueMap::const_iterator It = IncomingValues.find(BB);
677     if (It == IncomingValues.end()) continue;
678 
679     PN->setIncomingValue(i, It->second);
680   }
681 }
682 
683 /// \brief Replace a value flowing from a block to a phi with
684 /// potentially multiple instances of that value flowing from the
685 /// block's predecessors to the phi.
686 ///
687 /// \param BB The block with the value flowing into the phi.
688 /// \param BBPreds The predecessors of BB.
689 /// \param PN The phi that we are updating.
690 static void redirectValuesFromPredecessorsToPhi(BasicBlock *BB,
691                                                 const PredBlockVector &BBPreds,
692                                                 PHINode *PN) {
693   Value *OldVal = PN->removeIncomingValue(BB, false);
694   assert(OldVal && "No entry in PHI for Pred BB!");
695 
696   IncomingValueMap IncomingValues;
697 
698   // We are merging two blocks - BB, and the block containing PN - and
699   // as a result we need to redirect edges from the predecessors of BB
700   // to go to the block containing PN, and update PN
701   // accordingly. Since we allow merging blocks in the case where the
702   // predecessor and successor blocks both share some predecessors,
703   // and where some of those common predecessors might have undef
704   // values flowing into PN, we want to rewrite those values to be
705   // consistent with the non-undef values.
706 
707   gatherIncomingValuesToPhi(PN, IncomingValues);
708 
709   // If this incoming value is one of the PHI nodes in BB, the new entries
710   // in the PHI node are the entries from the old PHI.
711   if (isa<PHINode>(OldVal) && cast<PHINode>(OldVal)->getParent() == BB) {
712     PHINode *OldValPN = cast<PHINode>(OldVal);
713     for (unsigned i = 0, e = OldValPN->getNumIncomingValues(); i != e; ++i) {
714       // Note that, since we are merging phi nodes and BB and Succ might
715       // have common predecessors, we could end up with a phi node with
716       // identical incoming branches. This will be cleaned up later (and
717       // will trigger asserts if we try to clean it up now, without also
718       // simplifying the corresponding conditional branch).
719       BasicBlock *PredBB = OldValPN->getIncomingBlock(i);
720       Value *PredVal = OldValPN->getIncomingValue(i);
721       Value *Selected = selectIncomingValueForBlock(PredVal, PredBB,
722                                                     IncomingValues);
723 
724       // And add a new incoming value for this predecessor for the
725       // newly retargeted branch.
726       PN->addIncoming(Selected, PredBB);
727     }
728   } else {
729     for (unsigned i = 0, e = BBPreds.size(); i != e; ++i) {
730       // Update existing incoming values in PN for this
731       // predecessor of BB.
732       BasicBlock *PredBB = BBPreds[i];
733       Value *Selected = selectIncomingValueForBlock(OldVal, PredBB,
734                                                     IncomingValues);
735 
736       // And add a new incoming value for this predecessor for the
737       // newly retargeted branch.
738       PN->addIncoming(Selected, PredBB);
739     }
740   }
741 
742   replaceUndefValuesInPhi(PN, IncomingValues);
743 }
744 
745 /// TryToSimplifyUncondBranchFromEmptyBlock - BB is known to contain an
746 /// unconditional branch, and contains no instructions other than PHI nodes,
747 /// potential side-effect free intrinsics and the branch.  If possible,
748 /// eliminate BB by rewriting all the predecessors to branch to the successor
749 /// block and return true.  If we can't transform, return false.
750 bool llvm::TryToSimplifyUncondBranchFromEmptyBlock(BasicBlock *BB) {
751   assert(BB != &BB->getParent()->getEntryBlock() &&
752          "TryToSimplifyUncondBranchFromEmptyBlock called on entry block!");
753 
754   // We can't eliminate infinite loops.
755   BasicBlock *Succ = cast<BranchInst>(BB->getTerminator())->getSuccessor(0);
756   if (BB == Succ) return false;
757 
758   // Check to see if merging these blocks would cause conflicts for any of the
759   // phi nodes in BB or Succ. If not, we can safely merge.
760   if (!CanPropagatePredecessorsForPHIs(BB, Succ)) return false;
761 
762   // Check for cases where Succ has multiple predecessors and a PHI node in BB
763   // has uses which will not disappear when the PHI nodes are merged.  It is
764   // possible to handle such cases, but difficult: it requires checking whether
765   // BB dominates Succ, which is non-trivial to calculate in the case where
766   // Succ has multiple predecessors.  Also, it requires checking whether
767   // constructing the necessary self-referential PHI node doesn't introduce any
768   // conflicts; this isn't too difficult, but the previous code for doing this
769   // was incorrect.
770   //
771   // Note that if this check finds a live use, BB dominates Succ, so BB is
772   // something like a loop pre-header (or rarely, a part of an irreducible CFG);
773   // folding the branch isn't profitable in that case anyway.
774   if (!Succ->getSinglePredecessor()) {
775     BasicBlock::iterator BBI = BB->begin();
776     while (isa<PHINode>(*BBI)) {
777       for (Use &U : BBI->uses()) {
778         if (PHINode* PN = dyn_cast<PHINode>(U.getUser())) {
779           if (PN->getIncomingBlock(U) != BB)
780             return false;
781         } else {
782           return false;
783         }
784       }
785       ++BBI;
786     }
787   }
788 
789   DEBUG(dbgs() << "Killing Trivial BB: \n" << *BB);
790 
791   if (isa<PHINode>(Succ->begin())) {
792     // If there is more than one pred of succ, and there are PHI nodes in
793     // the successor, then we need to add incoming edges for the PHI nodes
794     //
795     const PredBlockVector BBPreds(pred_begin(BB), pred_end(BB));
796 
797     // Loop over all of the PHI nodes in the successor of BB.
798     for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) {
799       PHINode *PN = cast<PHINode>(I);
800 
801       redirectValuesFromPredecessorsToPhi(BB, BBPreds, PN);
802     }
803   }
804 
805   if (Succ->getSinglePredecessor()) {
806     // BB is the only predecessor of Succ, so Succ will end up with exactly
807     // the same predecessors BB had.
808 
809     // Copy over any phi, debug or lifetime instruction.
810     BB->getTerminator()->eraseFromParent();
811     Succ->getInstList().splice(Succ->getFirstNonPHI(), BB->getInstList());
812   } else {
813     while (PHINode *PN = dyn_cast<PHINode>(&BB->front())) {
814       // We explicitly check for such uses in CanPropagatePredecessorsForPHIs.
815       assert(PN->use_empty() && "There shouldn't be any uses here!");
816       PN->eraseFromParent();
817     }
818   }
819 
820   // Everything that jumped to BB now goes to Succ.
821   BB->replaceAllUsesWith(Succ);
822   if (!Succ->hasName()) Succ->takeName(BB);
823   BB->eraseFromParent();              // Delete the old basic block.
824   return true;
825 }
826 
827 /// EliminateDuplicatePHINodes - Check for and eliminate duplicate PHI
828 /// nodes in this block. This doesn't try to be clever about PHI nodes
829 /// which differ only in the order of the incoming values, but instcombine
830 /// orders them so it usually won't matter.
831 ///
832 bool llvm::EliminateDuplicatePHINodes(BasicBlock *BB) {
833   // This implementation doesn't currently consider undef operands
834   // specially. Theoretically, two phis which are identical except for
835   // one having an undef where the other doesn't could be collapsed.
836 
837   struct PHIDenseMapInfo {
838     static PHINode *getEmptyKey() {
839       return DenseMapInfo<PHINode *>::getEmptyKey();
840     }
841     static PHINode *getTombstoneKey() {
842       return DenseMapInfo<PHINode *>::getTombstoneKey();
843     }
844     static unsigned getHashValue(PHINode *PN) {
845       // Compute a hash value on the operands. Instcombine will likely have
846       // sorted them, which helps expose duplicates, but we have to check all
847       // the operands to be safe in case instcombine hasn't run.
848       return static_cast<unsigned>(hash_combine(
849           hash_combine_range(PN->value_op_begin(), PN->value_op_end()),
850           hash_combine_range(PN->block_begin(), PN->block_end())));
851     }
852     static bool isEqual(PHINode *LHS, PHINode *RHS) {
853       if (LHS == getEmptyKey() || LHS == getTombstoneKey() ||
854           RHS == getEmptyKey() || RHS == getTombstoneKey())
855         return LHS == RHS;
856       return LHS->isIdenticalTo(RHS);
857     }
858   };
859 
860   // Set of unique PHINodes.
861   DenseSet<PHINode *, PHIDenseMapInfo> PHISet;
862 
863   // Examine each PHI.
864   bool Changed = false;
865   for (auto I = BB->begin(); PHINode *PN = dyn_cast<PHINode>(I++);) {
866     auto Inserted = PHISet.insert(PN);
867     if (!Inserted.second) {
868       // A duplicate. Replace this PHI with its duplicate.
869       PN->replaceAllUsesWith(*Inserted.first);
870       PN->eraseFromParent();
871       Changed = true;
872 
873       // The RAUW can change PHIs that we already visited. Start over from the
874       // beginning.
875       PHISet.clear();
876       I = BB->begin();
877     }
878   }
879 
880   return Changed;
881 }
882 
883 /// enforceKnownAlignment - If the specified pointer points to an object that
884 /// we control, modify the object's alignment to PrefAlign. This isn't
885 /// often possible though. If alignment is important, a more reliable approach
886 /// is to simply align all global variables and allocation instructions to
887 /// their preferred alignment from the beginning.
888 ///
889 static unsigned enforceKnownAlignment(Value *V, unsigned Align,
890                                       unsigned PrefAlign,
891                                       const DataLayout &DL) {
892   V = V->stripPointerCasts();
893 
894   if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
895     // If the preferred alignment is greater than the natural stack alignment
896     // then don't round up. This avoids dynamic stack realignment.
897     if (DL.exceedsNaturalStackAlignment(PrefAlign))
898       return Align;
899     // If there is a requested alignment and if this is an alloca, round up.
900     if (AI->getAlignment() >= PrefAlign)
901       return AI->getAlignment();
902     AI->setAlignment(PrefAlign);
903     return PrefAlign;
904   }
905 
906   if (auto *GO = dyn_cast<GlobalObject>(V)) {
907     // If there is a large requested alignment and we can, bump up the alignment
908     // of the global.  If the memory we set aside for the global may not be the
909     // memory used by the final program then it is impossible for us to reliably
910     // enforce the preferred alignment.
911     if (!GO->isStrongDefinitionForLinker())
912       return Align;
913 
914     if (GO->getAlignment() >= PrefAlign)
915       return GO->getAlignment();
916     // We can only increase the alignment of the global if it has no alignment
917     // specified or if it is not assigned a section.  If it is assigned a
918     // section, the global could be densely packed with other objects in the
919     // section, increasing the alignment could cause padding issues.
920     if (!GO->hasSection() || GO->getAlignment() == 0)
921       GO->setAlignment(PrefAlign);
922     return GO->getAlignment();
923   }
924 
925   return Align;
926 }
927 
928 /// getOrEnforceKnownAlignment - If the specified pointer has an alignment that
929 /// we can determine, return it, otherwise return 0.  If PrefAlign is specified,
930 /// and it is more than the alignment of the ultimate object, see if we can
931 /// increase the alignment of the ultimate object, making this check succeed.
932 unsigned llvm::getOrEnforceKnownAlignment(Value *V, unsigned PrefAlign,
933                                           const DataLayout &DL,
934                                           const Instruction *CxtI,
935                                           AssumptionCache *AC,
936                                           const DominatorTree *DT) {
937   assert(V->getType()->isPointerTy() &&
938          "getOrEnforceKnownAlignment expects a pointer!");
939   unsigned BitWidth = DL.getPointerTypeSizeInBits(V->getType());
940 
941   APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
942   computeKnownBits(V, KnownZero, KnownOne, DL, 0, AC, CxtI, DT);
943   unsigned TrailZ = KnownZero.countTrailingOnes();
944 
945   // Avoid trouble with ridiculously large TrailZ values, such as
946   // those computed from a null pointer.
947   TrailZ = std::min(TrailZ, unsigned(sizeof(unsigned) * CHAR_BIT - 1));
948 
949   unsigned Align = 1u << std::min(BitWidth - 1, TrailZ);
950 
951   // LLVM doesn't support alignments larger than this currently.
952   Align = std::min(Align, +Value::MaximumAlignment);
953 
954   if (PrefAlign > Align)
955     Align = enforceKnownAlignment(V, Align, PrefAlign, DL);
956 
957   // We don't need to make any adjustment.
958   return Align;
959 }
960 
961 ///===---------------------------------------------------------------------===//
962 ///  Dbg Intrinsic utilities
963 ///
964 
965 /// See if there is a dbg.value intrinsic for DIVar before I.
966 static bool LdStHasDebugValue(const DILocalVariable *DIVar, Instruction *I) {
967   // Since we can't guarantee that the original dbg.declare instrinsic
968   // is removed by LowerDbgDeclare(), we need to make sure that we are
969   // not inserting the same dbg.value intrinsic over and over.
970   llvm::BasicBlock::InstListType::iterator PrevI(I);
971   if (PrevI != I->getParent()->getInstList().begin()) {
972     --PrevI;
973     if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(PrevI))
974       if (DVI->getValue() == I->getOperand(0) &&
975           DVI->getOffset() == 0 &&
976           DVI->getVariable() == DIVar)
977         return true;
978   }
979   return false;
980 }
981 
982 /// Inserts a llvm.dbg.value intrinsic before a store to an alloca'd value
983 /// that has an associated llvm.dbg.decl intrinsic.
984 bool llvm::ConvertDebugDeclareToDebugValue(DbgDeclareInst *DDI,
985                                            StoreInst *SI, DIBuilder &Builder) {
986   auto *DIVar = DDI->getVariable();
987   auto *DIExpr = DDI->getExpression();
988   assert(DIVar && "Missing variable");
989 
990   if (LdStHasDebugValue(DIVar, SI))
991     return true;
992 
993   // If an argument is zero extended then use argument directly. The ZExt
994   // may be zapped by an optimization pass in future.
995   Argument *ExtendedArg = nullptr;
996   if (ZExtInst *ZExt = dyn_cast<ZExtInst>(SI->getOperand(0)))
997     ExtendedArg = dyn_cast<Argument>(ZExt->getOperand(0));
998   if (SExtInst *SExt = dyn_cast<SExtInst>(SI->getOperand(0)))
999     ExtendedArg = dyn_cast<Argument>(SExt->getOperand(0));
1000   if (ExtendedArg)
1001     Builder.insertDbgValueIntrinsic(ExtendedArg, 0, DIVar, DIExpr,
1002                                     DDI->getDebugLoc(), SI);
1003   else
1004     Builder.insertDbgValueIntrinsic(SI->getOperand(0), 0, DIVar, DIExpr,
1005                                     DDI->getDebugLoc(), SI);
1006   return true;
1007 }
1008 
1009 /// Inserts a llvm.dbg.value intrinsic before a load of an alloca'd value
1010 /// that has an associated llvm.dbg.decl intrinsic.
1011 bool llvm::ConvertDebugDeclareToDebugValue(DbgDeclareInst *DDI,
1012                                            LoadInst *LI, DIBuilder &Builder) {
1013   auto *DIVar = DDI->getVariable();
1014   auto *DIExpr = DDI->getExpression();
1015   assert(DIVar && "Missing variable");
1016 
1017   if (LdStHasDebugValue(DIVar, LI))
1018     return true;
1019 
1020   Builder.insertDbgValueIntrinsic(LI->getOperand(0), 0, DIVar, DIExpr,
1021                                   DDI->getDebugLoc(), LI);
1022   return true;
1023 }
1024 
1025 /// Determine whether this alloca is either a VLA or an array.
1026 static bool isArray(AllocaInst *AI) {
1027   return AI->isArrayAllocation() ||
1028     AI->getType()->getElementType()->isArrayTy();
1029 }
1030 
1031 /// LowerDbgDeclare - Lowers llvm.dbg.declare intrinsics into appropriate set
1032 /// of llvm.dbg.value intrinsics.
1033 bool llvm::LowerDbgDeclare(Function &F) {
1034   DIBuilder DIB(*F.getParent(), /*AllowUnresolved*/ false);
1035   SmallVector<DbgDeclareInst *, 4> Dbgs;
1036   for (auto &FI : F)
1037     for (BasicBlock::iterator BI : FI)
1038       if (auto DDI = dyn_cast<DbgDeclareInst>(BI))
1039         Dbgs.push_back(DDI);
1040 
1041   if (Dbgs.empty())
1042     return false;
1043 
1044   for (auto &I : Dbgs) {
1045     DbgDeclareInst *DDI = I;
1046     AllocaInst *AI = dyn_cast_or_null<AllocaInst>(DDI->getAddress());
1047     // If this is an alloca for a scalar variable, insert a dbg.value
1048     // at each load and store to the alloca and erase the dbg.declare.
1049     // The dbg.values allow tracking a variable even if it is not
1050     // stored on the stack, while the dbg.declare can only describe
1051     // the stack slot (and at a lexical-scope granularity). Later
1052     // passes will attempt to elide the stack slot.
1053     if (AI && !isArray(AI)) {
1054       for (User *U : AI->users())
1055         if (StoreInst *SI = dyn_cast<StoreInst>(U))
1056           ConvertDebugDeclareToDebugValue(DDI, SI, DIB);
1057         else if (LoadInst *LI = dyn_cast<LoadInst>(U))
1058           ConvertDebugDeclareToDebugValue(DDI, LI, DIB);
1059         else if (CallInst *CI = dyn_cast<CallInst>(U)) {
1060           // This is a call by-value or some other instruction that
1061           // takes a pointer to the variable. Insert a *value*
1062           // intrinsic that describes the alloca.
1063           DIB.insertDbgValueIntrinsic(AI, 0, DDI->getVariable(),
1064                                       DDI->getExpression(), DDI->getDebugLoc(),
1065                                       CI);
1066         }
1067       DDI->eraseFromParent();
1068     }
1069   }
1070   return true;
1071 }
1072 
1073 /// FindAllocaDbgDeclare - Finds the llvm.dbg.declare intrinsic describing the
1074 /// alloca 'V', if any.
1075 DbgDeclareInst *llvm::FindAllocaDbgDeclare(Value *V) {
1076   if (auto *L = LocalAsMetadata::getIfExists(V))
1077     if (auto *MDV = MetadataAsValue::getIfExists(V->getContext(), L))
1078       for (User *U : MDV->users())
1079         if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(U))
1080           return DDI;
1081 
1082   return nullptr;
1083 }
1084 
1085 bool llvm::replaceDbgDeclareForAlloca(AllocaInst *AI, Value *NewAllocaAddress,
1086                                       DIBuilder &Builder, bool Deref) {
1087   DbgDeclareInst *DDI = FindAllocaDbgDeclare(AI);
1088   if (!DDI)
1089     return false;
1090   DebugLoc Loc = DDI->getDebugLoc();
1091   auto *DIVar = DDI->getVariable();
1092   auto *DIExpr = DDI->getExpression();
1093   assert(DIVar && "Missing variable");
1094 
1095   if (Deref) {
1096     // Create a copy of the original DIDescriptor for user variable, prepending
1097     // "deref" operation to a list of address elements, as new llvm.dbg.declare
1098     // will take a value storing address of the memory for variable, not
1099     // alloca itself.
1100     SmallVector<uint64_t, 4> NewDIExpr;
1101     NewDIExpr.push_back(dwarf::DW_OP_deref);
1102     if (DIExpr)
1103       NewDIExpr.append(DIExpr->elements_begin(), DIExpr->elements_end());
1104     DIExpr = Builder.createExpression(NewDIExpr);
1105   }
1106 
1107   // Insert llvm.dbg.declare in the same basic block as the original alloca,
1108   // and remove old llvm.dbg.declare.
1109   BasicBlock *BB = AI->getParent();
1110   Builder.insertDeclare(NewAllocaAddress, DIVar, DIExpr, Loc, BB);
1111   DDI->eraseFromParent();
1112   return true;
1113 }
1114 
1115 /// changeToUnreachable - Insert an unreachable instruction before the specified
1116 /// instruction, making it and the rest of the code in the block dead.
1117 static void changeToUnreachable(Instruction *I, bool UseLLVMTrap) {
1118   BasicBlock *BB = I->getParent();
1119   // Loop over all of the successors, removing BB's entry from any PHI
1120   // nodes.
1121   for (succ_iterator SI = succ_begin(BB), SE = succ_end(BB); SI != SE; ++SI)
1122     (*SI)->removePredecessor(BB);
1123 
1124   // Insert a call to llvm.trap right before this.  This turns the undefined
1125   // behavior into a hard fail instead of falling through into random code.
1126   if (UseLLVMTrap) {
1127     Function *TrapFn =
1128       Intrinsic::getDeclaration(BB->getParent()->getParent(), Intrinsic::trap);
1129     CallInst *CallTrap = CallInst::Create(TrapFn, "", I);
1130     CallTrap->setDebugLoc(I->getDebugLoc());
1131   }
1132   new UnreachableInst(I->getContext(), I);
1133 
1134   // All instructions after this are dead.
1135   BasicBlock::iterator BBI = I, BBE = BB->end();
1136   while (BBI != BBE) {
1137     if (!BBI->use_empty())
1138       BBI->replaceAllUsesWith(UndefValue::get(BBI->getType()));
1139     BB->getInstList().erase(BBI++);
1140   }
1141 }
1142 
1143 /// changeToCall - Convert the specified invoke into a normal call.
1144 static void changeToCall(InvokeInst *II) {
1145   SmallVector<Value*, 8> Args(II->op_begin(), II->op_end() - 3);
1146   CallInst *NewCall = CallInst::Create(II->getCalledValue(), Args, "", II);
1147   NewCall->takeName(II);
1148   NewCall->setCallingConv(II->getCallingConv());
1149   NewCall->setAttributes(II->getAttributes());
1150   NewCall->setDebugLoc(II->getDebugLoc());
1151   II->replaceAllUsesWith(NewCall);
1152 
1153   // Follow the call by a branch to the normal destination.
1154   BranchInst::Create(II->getNormalDest(), II);
1155 
1156   // Update PHI nodes in the unwind destination
1157   II->getUnwindDest()->removePredecessor(II->getParent());
1158   II->eraseFromParent();
1159 }
1160 
1161 static bool markAliveBlocks(Function &F,
1162                             SmallPtrSetImpl<BasicBlock*> &Reachable) {
1163 
1164   SmallVector<BasicBlock*, 128> Worklist;
1165   BasicBlock *BB = F.begin();
1166   Worklist.push_back(BB);
1167   Reachable.insert(BB);
1168   bool Changed = false;
1169   do {
1170     BB = Worklist.pop_back_val();
1171 
1172     // Do a quick scan of the basic block, turning any obviously unreachable
1173     // instructions into LLVM unreachable insts.  The instruction combining pass
1174     // canonicalizes unreachable insts into stores to null or undef.
1175     for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E;++BBI){
1176       // Assumptions that are known to be false are equivalent to unreachable.
1177       // Also, if the condition is undefined, then we make the choice most
1178       // beneficial to the optimizer, and choose that to also be unreachable.
1179       if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(BBI))
1180         if (II->getIntrinsicID() == Intrinsic::assume) {
1181           bool MakeUnreachable = false;
1182           if (isa<UndefValue>(II->getArgOperand(0)))
1183             MakeUnreachable = true;
1184           else if (ConstantInt *Cond =
1185                    dyn_cast<ConstantInt>(II->getArgOperand(0)))
1186             MakeUnreachable = Cond->isZero();
1187 
1188           if (MakeUnreachable) {
1189             // Don't insert a call to llvm.trap right before the unreachable.
1190             changeToUnreachable(BBI, false);
1191             Changed = true;
1192             break;
1193           }
1194         }
1195 
1196       if (CallInst *CI = dyn_cast<CallInst>(BBI)) {
1197         if (CI->doesNotReturn()) {
1198           // If we found a call to a no-return function, insert an unreachable
1199           // instruction after it.  Make sure there isn't *already* one there
1200           // though.
1201           ++BBI;
1202           if (!isa<UnreachableInst>(BBI)) {
1203             // Don't insert a call to llvm.trap right before the unreachable.
1204             changeToUnreachable(BBI, false);
1205             Changed = true;
1206           }
1207           break;
1208         }
1209       }
1210 
1211       // Store to undef and store to null are undefined and used to signal that
1212       // they should be changed to unreachable by passes that can't modify the
1213       // CFG.
1214       if (StoreInst *SI = dyn_cast<StoreInst>(BBI)) {
1215         // Don't touch volatile stores.
1216         if (SI->isVolatile()) continue;
1217 
1218         Value *Ptr = SI->getOperand(1);
1219 
1220         if (isa<UndefValue>(Ptr) ||
1221             (isa<ConstantPointerNull>(Ptr) &&
1222              SI->getPointerAddressSpace() == 0)) {
1223           changeToUnreachable(SI, true);
1224           Changed = true;
1225           break;
1226         }
1227       }
1228     }
1229 
1230     // Turn invokes that call 'nounwind' functions into ordinary calls.
1231     if (InvokeInst *II = dyn_cast<InvokeInst>(BB->getTerminator())) {
1232       Value *Callee = II->getCalledValue();
1233       if (isa<ConstantPointerNull>(Callee) || isa<UndefValue>(Callee)) {
1234         changeToUnreachable(II, true);
1235         Changed = true;
1236       } else if (II->doesNotThrow() && canSimplifyInvokeNoUnwind(&F)) {
1237         if (II->use_empty() && II->onlyReadsMemory()) {
1238           // jump to the normal destination branch.
1239           BranchInst::Create(II->getNormalDest(), II);
1240           II->getUnwindDest()->removePredecessor(II->getParent());
1241           II->eraseFromParent();
1242         } else
1243           changeToCall(II);
1244         Changed = true;
1245       }
1246     }
1247 
1248     Changed |= ConstantFoldTerminator(BB, true);
1249     for (succ_iterator SI = succ_begin(BB), SE = succ_end(BB); SI != SE; ++SI)
1250       if (Reachable.insert(*SI).second)
1251         Worklist.push_back(*SI);
1252   } while (!Worklist.empty());
1253   return Changed;
1254 }
1255 
1256 /// removeUnreachableBlocksFromFn - Remove blocks that are not reachable, even
1257 /// if they are in a dead cycle.  Return true if a change was made, false
1258 /// otherwise.
1259 bool llvm::removeUnreachableBlocks(Function &F) {
1260   SmallPtrSet<BasicBlock*, 128> Reachable;
1261   bool Changed = markAliveBlocks(F, Reachable);
1262 
1263   // If there are unreachable blocks in the CFG...
1264   if (Reachable.size() == F.size())
1265     return Changed;
1266 
1267   assert(Reachable.size() < F.size());
1268   NumRemoved += F.size()-Reachable.size();
1269 
1270   // Loop over all of the basic blocks that are not reachable, dropping all of
1271   // their internal references...
1272   for (Function::iterator BB = ++F.begin(), E = F.end(); BB != E; ++BB) {
1273     if (Reachable.count(BB))
1274       continue;
1275 
1276     for (succ_iterator SI = succ_begin(BB), SE = succ_end(BB); SI != SE; ++SI)
1277       if (Reachable.count(*SI))
1278         (*SI)->removePredecessor(BB);
1279     BB->dropAllReferences();
1280   }
1281 
1282   for (Function::iterator I = ++F.begin(); I != F.end();)
1283     if (!Reachable.count(I))
1284       I = F.getBasicBlockList().erase(I);
1285     else
1286       ++I;
1287 
1288   return true;
1289 }
1290 
1291 void llvm::combineMetadata(Instruction *K, const Instruction *J, ArrayRef<unsigned> KnownIDs) {
1292   SmallVector<std::pair<unsigned, MDNode *>, 4> Metadata;
1293   K->dropUnknownMetadata(KnownIDs);
1294   K->getAllMetadataOtherThanDebugLoc(Metadata);
1295   for (unsigned i = 0, n = Metadata.size(); i < n; ++i) {
1296     unsigned Kind = Metadata[i].first;
1297     MDNode *JMD = J->getMetadata(Kind);
1298     MDNode *KMD = Metadata[i].second;
1299 
1300     switch (Kind) {
1301       default:
1302         K->setMetadata(Kind, nullptr); // Remove unknown metadata
1303         break;
1304       case LLVMContext::MD_dbg:
1305         llvm_unreachable("getAllMetadataOtherThanDebugLoc returned a MD_dbg");
1306       case LLVMContext::MD_tbaa:
1307         K->setMetadata(Kind, MDNode::getMostGenericTBAA(JMD, KMD));
1308         break;
1309       case LLVMContext::MD_alias_scope:
1310         K->setMetadata(Kind, MDNode::getMostGenericAliasScope(JMD, KMD));
1311         break;
1312       case LLVMContext::MD_noalias:
1313         K->setMetadata(Kind, MDNode::intersect(JMD, KMD));
1314         break;
1315       case LLVMContext::MD_range:
1316         K->setMetadata(Kind, MDNode::getMostGenericRange(JMD, KMD));
1317         break;
1318       case LLVMContext::MD_fpmath:
1319         K->setMetadata(Kind, MDNode::getMostGenericFPMath(JMD, KMD));
1320         break;
1321       case LLVMContext::MD_invariant_load:
1322         // Only set the !invariant.load if it is present in both instructions.
1323         K->setMetadata(Kind, JMD);
1324         break;
1325       case LLVMContext::MD_nonnull:
1326         // Only set the !nonnull if it is present in both instructions.
1327         K->setMetadata(Kind, JMD);
1328         break;
1329     }
1330   }
1331 }
1332 
1333 unsigned llvm::replaceDominatedUsesWith(Value *From, Value *To,
1334                                         DominatorTree &DT,
1335                                         const BasicBlockEdge &Root) {
1336   assert(From->getType() == To->getType());
1337 
1338   unsigned Count = 0;
1339   for (Value::use_iterator UI = From->use_begin(), UE = From->use_end();
1340        UI != UE; ) {
1341     Use &U = *UI++;
1342     if (DT.dominates(Root, U)) {
1343       U.set(To);
1344       DEBUG(dbgs() << "Replace dominated use of '"
1345             << From->getName() << "' as "
1346             << *To << " in " << *U << "\n");
1347       ++Count;
1348     }
1349   }
1350   return Count;
1351 }
1352