1 //===- CloneFunction.cpp - Clone a function into another function ---------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the CloneFunctionInto interface, which is used as the 11 // low-level function cloner. This is used by the CloneFunction and function 12 // inliner to do the dirty work of copying the body of a function around. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "llvm/ADT/SetVector.h" 17 #include "llvm/ADT/SmallVector.h" 18 #include "llvm/Analysis/ConstantFolding.h" 19 #include "llvm/Analysis/InstructionSimplify.h" 20 #include "llvm/Analysis/LoopInfo.h" 21 #include "llvm/IR/CFG.h" 22 #include "llvm/IR/Constants.h" 23 #include "llvm/IR/DebugInfo.h" 24 #include "llvm/IR/DerivedTypes.h" 25 #include "llvm/IR/Function.h" 26 #include "llvm/IR/GlobalVariable.h" 27 #include "llvm/IR/Instructions.h" 28 #include "llvm/IR/IntrinsicInst.h" 29 #include "llvm/IR/LLVMContext.h" 30 #include "llvm/IR/Metadata.h" 31 #include "llvm/IR/Module.h" 32 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 33 #include "llvm/Transforms/Utils/Cloning.h" 34 #include "llvm/Transforms/Utils/Local.h" 35 #include "llvm/Transforms/Utils/ValueMapper.h" 36 #include <map> 37 using namespace llvm; 38 39 /// See comments in Cloning.h. 40 BasicBlock *llvm::CloneBasicBlock(const BasicBlock *BB, ValueToValueMapTy &VMap, 41 const Twine &NameSuffix, Function *F, 42 ClonedCodeInfo *CodeInfo, 43 DebugInfoFinder *DIFinder) { 44 DenseMap<const MDNode *, MDNode *> Cache; 45 BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), "", F); 46 if (BB->hasName()) NewBB->setName(BB->getName()+NameSuffix); 47 48 bool hasCalls = false, hasDynamicAllocas = false, hasStaticAllocas = false; 49 Module *TheModule = F ? F->getParent() : nullptr; 50 51 // Loop over all instructions, and copy them over. 52 for (BasicBlock::const_iterator II = BB->begin(), IE = BB->end(); 53 II != IE; ++II) { 54 55 if (DIFinder && TheModule) { 56 if (auto *DDI = dyn_cast<DbgDeclareInst>(II)) 57 DIFinder->processDeclare(*TheModule, DDI); 58 else if (auto *DVI = dyn_cast<DbgValueInst>(II)) 59 DIFinder->processValue(*TheModule, DVI); 60 61 if (auto DbgLoc = II->getDebugLoc()) 62 DIFinder->processLocation(*TheModule, DbgLoc.get()); 63 } 64 65 Instruction *NewInst = II->clone(); 66 if (II->hasName()) 67 NewInst->setName(II->getName()+NameSuffix); 68 NewBB->getInstList().push_back(NewInst); 69 VMap[&*II] = NewInst; // Add instruction map to value. 70 71 hasCalls |= (isa<CallInst>(II) && !isa<DbgInfoIntrinsic>(II)); 72 if (const AllocaInst *AI = dyn_cast<AllocaInst>(II)) { 73 if (isa<ConstantInt>(AI->getArraySize())) 74 hasStaticAllocas = true; 75 else 76 hasDynamicAllocas = true; 77 } 78 } 79 80 if (CodeInfo) { 81 CodeInfo->ContainsCalls |= hasCalls; 82 CodeInfo->ContainsDynamicAllocas |= hasDynamicAllocas; 83 CodeInfo->ContainsDynamicAllocas |= hasStaticAllocas && 84 BB != &BB->getParent()->getEntryBlock(); 85 } 86 return NewBB; 87 } 88 89 // Clone OldFunc into NewFunc, transforming the old arguments into references to 90 // VMap values. 91 // 92 void llvm::CloneFunctionInto(Function *NewFunc, const Function *OldFunc, 93 ValueToValueMapTy &VMap, 94 bool ModuleLevelChanges, 95 SmallVectorImpl<ReturnInst*> &Returns, 96 const char *NameSuffix, ClonedCodeInfo *CodeInfo, 97 ValueMapTypeRemapper *TypeMapper, 98 ValueMaterializer *Materializer) { 99 assert(NameSuffix && "NameSuffix cannot be null!"); 100 101 #ifndef NDEBUG 102 for (const Argument &I : OldFunc->args()) 103 assert(VMap.count(&I) && "No mapping from source argument specified!"); 104 #endif 105 106 // Copy all attributes other than those stored in the AttributeList. We need 107 // to remap the parameter indices of the AttributeList. 108 AttributeList NewAttrs = NewFunc->getAttributes(); 109 NewFunc->copyAttributesFrom(OldFunc); 110 NewFunc->setAttributes(NewAttrs); 111 112 // Fix up the personality function that got copied over. 113 if (OldFunc->hasPersonalityFn()) 114 NewFunc->setPersonalityFn( 115 MapValue(OldFunc->getPersonalityFn(), VMap, 116 ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges, 117 TypeMapper, Materializer)); 118 119 SmallVector<AttributeSet, 4> NewArgAttrs(NewFunc->arg_size()); 120 AttributeList OldAttrs = OldFunc->getAttributes(); 121 122 // Clone any argument attributes that are present in the VMap. 123 for (const Argument &OldArg : OldFunc->args()) { 124 if (Argument *NewArg = dyn_cast<Argument>(VMap[&OldArg])) { 125 NewArgAttrs[NewArg->getArgNo()] = 126 OldAttrs.getParamAttributes(OldArg.getArgNo()); 127 } 128 } 129 130 NewFunc->setAttributes( 131 AttributeList::get(NewFunc->getContext(), OldAttrs.getFnAttributes(), 132 OldAttrs.getRetAttributes(), NewArgAttrs)); 133 134 bool MustCloneSP = 135 OldFunc->getParent() && OldFunc->getParent() == NewFunc->getParent(); 136 DISubprogram *SP = OldFunc->getSubprogram(); 137 if (SP) { 138 assert(!MustCloneSP || ModuleLevelChanges); 139 // Add mappings for some DebugInfo nodes that we don't want duplicated 140 // even if they're distinct. 141 auto &MD = VMap.MD(); 142 MD[SP->getUnit()].reset(SP->getUnit()); 143 MD[SP->getType()].reset(SP->getType()); 144 MD[SP->getFile()].reset(SP->getFile()); 145 // If we're not cloning into the same module, no need to clone the 146 // subprogram 147 if (!MustCloneSP) 148 MD[SP].reset(SP); 149 } 150 151 SmallVector<std::pair<unsigned, MDNode *>, 1> MDs; 152 OldFunc->getAllMetadata(MDs); 153 for (auto MD : MDs) { 154 NewFunc->addMetadata( 155 MD.first, 156 *MapMetadata(MD.second, VMap, 157 ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges, 158 TypeMapper, Materializer)); 159 } 160 161 // When we remap instructions, we want to avoid duplicating inlined 162 // DISubprograms, so record all subprograms we find as we duplicate 163 // instructions and then freeze them in the MD map. 164 // We also record information about dbg.value and dbg.declare to avoid 165 // duplicating the types. 166 DebugInfoFinder DIFinder; 167 168 // Loop over all of the basic blocks in the function, cloning them as 169 // appropriate. Note that we save BE this way in order to handle cloning of 170 // recursive functions into themselves. 171 // 172 for (Function::const_iterator BI = OldFunc->begin(), BE = OldFunc->end(); 173 BI != BE; ++BI) { 174 const BasicBlock &BB = *BI; 175 176 // Create a new basic block and copy instructions into it! 177 BasicBlock *CBB = CloneBasicBlock(&BB, VMap, NameSuffix, NewFunc, CodeInfo, 178 SP ? &DIFinder : nullptr); 179 180 // Add basic block mapping. 181 VMap[&BB] = CBB; 182 183 // It is only legal to clone a function if a block address within that 184 // function is never referenced outside of the function. Given that, we 185 // want to map block addresses from the old function to block addresses in 186 // the clone. (This is different from the generic ValueMapper 187 // implementation, which generates an invalid blockaddress when 188 // cloning a function.) 189 if (BB.hasAddressTaken()) { 190 Constant *OldBBAddr = BlockAddress::get(const_cast<Function*>(OldFunc), 191 const_cast<BasicBlock*>(&BB)); 192 VMap[OldBBAddr] = BlockAddress::get(NewFunc, CBB); 193 } 194 195 // Note return instructions for the caller. 196 if (ReturnInst *RI = dyn_cast<ReturnInst>(CBB->getTerminator())) 197 Returns.push_back(RI); 198 } 199 200 for (DISubprogram *ISP : DIFinder.subprograms()) { 201 if (ISP != SP) { 202 VMap.MD()[ISP].reset(ISP); 203 } 204 } 205 206 for (auto *Type : DIFinder.types()) { 207 VMap.MD()[Type].reset(Type); 208 } 209 210 // Loop over all of the instructions in the function, fixing up operand 211 // references as we go. This uses VMap to do all the hard work. 212 for (Function::iterator BB = 213 cast<BasicBlock>(VMap[&OldFunc->front()])->getIterator(), 214 BE = NewFunc->end(); 215 BB != BE; ++BB) 216 // Loop over all instructions, fixing each one as we find it... 217 for (Instruction &II : *BB) 218 RemapInstruction(&II, VMap, 219 ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges, 220 TypeMapper, Materializer); 221 } 222 223 /// Return a copy of the specified function and add it to that function's 224 /// module. Also, any references specified in the VMap are changed to refer to 225 /// their mapped value instead of the original one. If any of the arguments to 226 /// the function are in the VMap, the arguments are deleted from the resultant 227 /// function. The VMap is updated to include mappings from all of the 228 /// instructions and basicblocks in the function from their old to new values. 229 /// 230 Function *llvm::CloneFunction(Function *F, ValueToValueMapTy &VMap, 231 ClonedCodeInfo *CodeInfo) { 232 std::vector<Type*> ArgTypes; 233 234 // The user might be deleting arguments to the function by specifying them in 235 // the VMap. If so, we need to not add the arguments to the arg ty vector 236 // 237 for (const Argument &I : F->args()) 238 if (VMap.count(&I) == 0) // Haven't mapped the argument to anything yet? 239 ArgTypes.push_back(I.getType()); 240 241 // Create a new function type... 242 FunctionType *FTy = FunctionType::get(F->getFunctionType()->getReturnType(), 243 ArgTypes, F->getFunctionType()->isVarArg()); 244 245 // Create the new function... 246 Function *NewF = 247 Function::Create(FTy, F->getLinkage(), F->getName(), F->getParent()); 248 249 // Loop over the arguments, copying the names of the mapped arguments over... 250 Function::arg_iterator DestI = NewF->arg_begin(); 251 for (const Argument & I : F->args()) 252 if (VMap.count(&I) == 0) { // Is this argument preserved? 253 DestI->setName(I.getName()); // Copy the name over... 254 VMap[&I] = &*DestI++; // Add mapping to VMap 255 } 256 257 SmallVector<ReturnInst*, 8> Returns; // Ignore returns cloned. 258 CloneFunctionInto(NewF, F, VMap, F->getSubprogram() != nullptr, Returns, "", 259 CodeInfo); 260 261 return NewF; 262 } 263 264 265 266 namespace { 267 /// This is a private class used to implement CloneAndPruneFunctionInto. 268 struct PruningFunctionCloner { 269 Function *NewFunc; 270 const Function *OldFunc; 271 ValueToValueMapTy &VMap; 272 bool ModuleLevelChanges; 273 const char *NameSuffix; 274 ClonedCodeInfo *CodeInfo; 275 276 public: 277 PruningFunctionCloner(Function *newFunc, const Function *oldFunc, 278 ValueToValueMapTy &valueMap, bool moduleLevelChanges, 279 const char *nameSuffix, ClonedCodeInfo *codeInfo) 280 : NewFunc(newFunc), OldFunc(oldFunc), VMap(valueMap), 281 ModuleLevelChanges(moduleLevelChanges), NameSuffix(nameSuffix), 282 CodeInfo(codeInfo) {} 283 284 /// The specified block is found to be reachable, clone it and 285 /// anything that it can reach. 286 void CloneBlock(const BasicBlock *BB, 287 BasicBlock::const_iterator StartingInst, 288 std::vector<const BasicBlock*> &ToClone); 289 }; 290 } 291 292 /// The specified block is found to be reachable, clone it and 293 /// anything that it can reach. 294 void PruningFunctionCloner::CloneBlock(const BasicBlock *BB, 295 BasicBlock::const_iterator StartingInst, 296 std::vector<const BasicBlock*> &ToClone){ 297 WeakTrackingVH &BBEntry = VMap[BB]; 298 299 // Have we already cloned this block? 300 if (BBEntry) return; 301 302 // Nope, clone it now. 303 BasicBlock *NewBB; 304 BBEntry = NewBB = BasicBlock::Create(BB->getContext()); 305 if (BB->hasName()) NewBB->setName(BB->getName()+NameSuffix); 306 307 // It is only legal to clone a function if a block address within that 308 // function is never referenced outside of the function. Given that, we 309 // want to map block addresses from the old function to block addresses in 310 // the clone. (This is different from the generic ValueMapper 311 // implementation, which generates an invalid blockaddress when 312 // cloning a function.) 313 // 314 // Note that we don't need to fix the mapping for unreachable blocks; 315 // the default mapping there is safe. 316 if (BB->hasAddressTaken()) { 317 Constant *OldBBAddr = BlockAddress::get(const_cast<Function*>(OldFunc), 318 const_cast<BasicBlock*>(BB)); 319 VMap[OldBBAddr] = BlockAddress::get(NewFunc, NewBB); 320 } 321 322 bool hasCalls = false, hasDynamicAllocas = false, hasStaticAllocas = false; 323 324 // Loop over all instructions, and copy them over, DCE'ing as we go. This 325 // loop doesn't include the terminator. 326 for (BasicBlock::const_iterator II = StartingInst, IE = --BB->end(); 327 II != IE; ++II) { 328 329 Instruction *NewInst = II->clone(); 330 331 // Eagerly remap operands to the newly cloned instruction, except for PHI 332 // nodes for which we defer processing until we update the CFG. 333 if (!isa<PHINode>(NewInst)) { 334 RemapInstruction(NewInst, VMap, 335 ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges); 336 337 // If we can simplify this instruction to some other value, simply add 338 // a mapping to that value rather than inserting a new instruction into 339 // the basic block. 340 if (Value *V = 341 SimplifyInstruction(NewInst, BB->getModule()->getDataLayout())) { 342 // On the off-chance that this simplifies to an instruction in the old 343 // function, map it back into the new function. 344 if (NewFunc != OldFunc) 345 if (Value *MappedV = VMap.lookup(V)) 346 V = MappedV; 347 348 if (!NewInst->mayHaveSideEffects()) { 349 VMap[&*II] = V; 350 NewInst->deleteValue(); 351 continue; 352 } 353 } 354 } 355 356 if (II->hasName()) 357 NewInst->setName(II->getName()+NameSuffix); 358 VMap[&*II] = NewInst; // Add instruction map to value. 359 NewBB->getInstList().push_back(NewInst); 360 hasCalls |= (isa<CallInst>(II) && !isa<DbgInfoIntrinsic>(II)); 361 362 if (CodeInfo) 363 if (auto CS = ImmutableCallSite(&*II)) 364 if (CS.hasOperandBundles()) 365 CodeInfo->OperandBundleCallSites.push_back(NewInst); 366 367 if (const AllocaInst *AI = dyn_cast<AllocaInst>(II)) { 368 if (isa<ConstantInt>(AI->getArraySize())) 369 hasStaticAllocas = true; 370 else 371 hasDynamicAllocas = true; 372 } 373 } 374 375 // Finally, clone over the terminator. 376 const TerminatorInst *OldTI = BB->getTerminator(); 377 bool TerminatorDone = false; 378 if (const BranchInst *BI = dyn_cast<BranchInst>(OldTI)) { 379 if (BI->isConditional()) { 380 // If the condition was a known constant in the callee... 381 ConstantInt *Cond = dyn_cast<ConstantInt>(BI->getCondition()); 382 // Or is a known constant in the caller... 383 if (!Cond) { 384 Value *V = VMap.lookup(BI->getCondition()); 385 Cond = dyn_cast_or_null<ConstantInt>(V); 386 } 387 388 // Constant fold to uncond branch! 389 if (Cond) { 390 BasicBlock *Dest = BI->getSuccessor(!Cond->getZExtValue()); 391 VMap[OldTI] = BranchInst::Create(Dest, NewBB); 392 ToClone.push_back(Dest); 393 TerminatorDone = true; 394 } 395 } 396 } else if (const SwitchInst *SI = dyn_cast<SwitchInst>(OldTI)) { 397 // If switching on a value known constant in the caller. 398 ConstantInt *Cond = dyn_cast<ConstantInt>(SI->getCondition()); 399 if (!Cond) { // Or known constant after constant prop in the callee... 400 Value *V = VMap.lookup(SI->getCondition()); 401 Cond = dyn_cast_or_null<ConstantInt>(V); 402 } 403 if (Cond) { // Constant fold to uncond branch! 404 SwitchInst::ConstCaseHandle Case = *SI->findCaseValue(Cond); 405 BasicBlock *Dest = const_cast<BasicBlock*>(Case.getCaseSuccessor()); 406 VMap[OldTI] = BranchInst::Create(Dest, NewBB); 407 ToClone.push_back(Dest); 408 TerminatorDone = true; 409 } 410 } 411 412 if (!TerminatorDone) { 413 Instruction *NewInst = OldTI->clone(); 414 if (OldTI->hasName()) 415 NewInst->setName(OldTI->getName()+NameSuffix); 416 NewBB->getInstList().push_back(NewInst); 417 VMap[OldTI] = NewInst; // Add instruction map to value. 418 419 if (CodeInfo) 420 if (auto CS = ImmutableCallSite(OldTI)) 421 if (CS.hasOperandBundles()) 422 CodeInfo->OperandBundleCallSites.push_back(NewInst); 423 424 // Recursively clone any reachable successor blocks. 425 const TerminatorInst *TI = BB->getTerminator(); 426 for (const BasicBlock *Succ : TI->successors()) 427 ToClone.push_back(Succ); 428 } 429 430 if (CodeInfo) { 431 CodeInfo->ContainsCalls |= hasCalls; 432 CodeInfo->ContainsDynamicAllocas |= hasDynamicAllocas; 433 CodeInfo->ContainsDynamicAllocas |= hasStaticAllocas && 434 BB != &BB->getParent()->front(); 435 } 436 } 437 438 /// This works like CloneAndPruneFunctionInto, except that it does not clone the 439 /// entire function. Instead it starts at an instruction provided by the caller 440 /// and copies (and prunes) only the code reachable from that instruction. 441 void llvm::CloneAndPruneIntoFromInst(Function *NewFunc, const Function *OldFunc, 442 const Instruction *StartingInst, 443 ValueToValueMapTy &VMap, 444 bool ModuleLevelChanges, 445 SmallVectorImpl<ReturnInst *> &Returns, 446 const char *NameSuffix, 447 ClonedCodeInfo *CodeInfo) { 448 assert(NameSuffix && "NameSuffix cannot be null!"); 449 450 ValueMapTypeRemapper *TypeMapper = nullptr; 451 ValueMaterializer *Materializer = nullptr; 452 453 #ifndef NDEBUG 454 // If the cloning starts at the beginning of the function, verify that 455 // the function arguments are mapped. 456 if (!StartingInst) 457 for (const Argument &II : OldFunc->args()) 458 assert(VMap.count(&II) && "No mapping from source argument specified!"); 459 #endif 460 461 PruningFunctionCloner PFC(NewFunc, OldFunc, VMap, ModuleLevelChanges, 462 NameSuffix, CodeInfo); 463 const BasicBlock *StartingBB; 464 if (StartingInst) 465 StartingBB = StartingInst->getParent(); 466 else { 467 StartingBB = &OldFunc->getEntryBlock(); 468 StartingInst = &StartingBB->front(); 469 } 470 471 // Clone the entry block, and anything recursively reachable from it. 472 std::vector<const BasicBlock*> CloneWorklist; 473 PFC.CloneBlock(StartingBB, StartingInst->getIterator(), CloneWorklist); 474 while (!CloneWorklist.empty()) { 475 const BasicBlock *BB = CloneWorklist.back(); 476 CloneWorklist.pop_back(); 477 PFC.CloneBlock(BB, BB->begin(), CloneWorklist); 478 } 479 480 // Loop over all of the basic blocks in the old function. If the block was 481 // reachable, we have cloned it and the old block is now in the value map: 482 // insert it into the new function in the right order. If not, ignore it. 483 // 484 // Defer PHI resolution until rest of function is resolved. 485 SmallVector<const PHINode*, 16> PHIToResolve; 486 for (const BasicBlock &BI : *OldFunc) { 487 Value *V = VMap.lookup(&BI); 488 BasicBlock *NewBB = cast_or_null<BasicBlock>(V); 489 if (!NewBB) continue; // Dead block. 490 491 // Add the new block to the new function. 492 NewFunc->getBasicBlockList().push_back(NewBB); 493 494 // Handle PHI nodes specially, as we have to remove references to dead 495 // blocks. 496 for (const PHINode &PN : BI.phis()) { 497 // PHI nodes may have been remapped to non-PHI nodes by the caller or 498 // during the cloning process. 499 if (isa<PHINode>(VMap[&PN])) 500 PHIToResolve.push_back(&PN); 501 else 502 break; 503 } 504 505 // Finally, remap the terminator instructions, as those can't be remapped 506 // until all BBs are mapped. 507 RemapInstruction(NewBB->getTerminator(), VMap, 508 ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges, 509 TypeMapper, Materializer); 510 } 511 512 // Defer PHI resolution until rest of function is resolved, PHI resolution 513 // requires the CFG to be up-to-date. 514 for (unsigned phino = 0, e = PHIToResolve.size(); phino != e; ) { 515 const PHINode *OPN = PHIToResolve[phino]; 516 unsigned NumPreds = OPN->getNumIncomingValues(); 517 const BasicBlock *OldBB = OPN->getParent(); 518 BasicBlock *NewBB = cast<BasicBlock>(VMap[OldBB]); 519 520 // Map operands for blocks that are live and remove operands for blocks 521 // that are dead. 522 for (; phino != PHIToResolve.size() && 523 PHIToResolve[phino]->getParent() == OldBB; ++phino) { 524 OPN = PHIToResolve[phino]; 525 PHINode *PN = cast<PHINode>(VMap[OPN]); 526 for (unsigned pred = 0, e = NumPreds; pred != e; ++pred) { 527 Value *V = VMap.lookup(PN->getIncomingBlock(pred)); 528 if (BasicBlock *MappedBlock = cast_or_null<BasicBlock>(V)) { 529 Value *InVal = MapValue(PN->getIncomingValue(pred), 530 VMap, 531 ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges); 532 assert(InVal && "Unknown input value?"); 533 PN->setIncomingValue(pred, InVal); 534 PN->setIncomingBlock(pred, MappedBlock); 535 } else { 536 PN->removeIncomingValue(pred, false); 537 --pred; // Revisit the next entry. 538 --e; 539 } 540 } 541 } 542 543 // The loop above has removed PHI entries for those blocks that are dead 544 // and has updated others. However, if a block is live (i.e. copied over) 545 // but its terminator has been changed to not go to this block, then our 546 // phi nodes will have invalid entries. Update the PHI nodes in this 547 // case. 548 PHINode *PN = cast<PHINode>(NewBB->begin()); 549 NumPreds = std::distance(pred_begin(NewBB), pred_end(NewBB)); 550 if (NumPreds != PN->getNumIncomingValues()) { 551 assert(NumPreds < PN->getNumIncomingValues()); 552 // Count how many times each predecessor comes to this block. 553 std::map<BasicBlock*, unsigned> PredCount; 554 for (pred_iterator PI = pred_begin(NewBB), E = pred_end(NewBB); 555 PI != E; ++PI) 556 --PredCount[*PI]; 557 558 // Figure out how many entries to remove from each PHI. 559 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 560 ++PredCount[PN->getIncomingBlock(i)]; 561 562 // At this point, the excess predecessor entries are positive in the 563 // map. Loop over all of the PHIs and remove excess predecessor 564 // entries. 565 BasicBlock::iterator I = NewBB->begin(); 566 for (; (PN = dyn_cast<PHINode>(I)); ++I) { 567 for (const auto &PCI : PredCount) { 568 BasicBlock *Pred = PCI.first; 569 for (unsigned NumToRemove = PCI.second; NumToRemove; --NumToRemove) 570 PN->removeIncomingValue(Pred, false); 571 } 572 } 573 } 574 575 // If the loops above have made these phi nodes have 0 or 1 operand, 576 // replace them with undef or the input value. We must do this for 577 // correctness, because 0-operand phis are not valid. 578 PN = cast<PHINode>(NewBB->begin()); 579 if (PN->getNumIncomingValues() == 0) { 580 BasicBlock::iterator I = NewBB->begin(); 581 BasicBlock::const_iterator OldI = OldBB->begin(); 582 while ((PN = dyn_cast<PHINode>(I++))) { 583 Value *NV = UndefValue::get(PN->getType()); 584 PN->replaceAllUsesWith(NV); 585 assert(VMap[&*OldI] == PN && "VMap mismatch"); 586 VMap[&*OldI] = NV; 587 PN->eraseFromParent(); 588 ++OldI; 589 } 590 } 591 } 592 593 // Make a second pass over the PHINodes now that all of them have been 594 // remapped into the new function, simplifying the PHINode and performing any 595 // recursive simplifications exposed. This will transparently update the 596 // WeakTrackingVH in the VMap. Notably, we rely on that so that if we coalesce 597 // two PHINodes, the iteration over the old PHIs remains valid, and the 598 // mapping will just map us to the new node (which may not even be a PHI 599 // node). 600 const DataLayout &DL = NewFunc->getParent()->getDataLayout(); 601 SmallSetVector<const Value *, 8> Worklist; 602 for (unsigned Idx = 0, Size = PHIToResolve.size(); Idx != Size; ++Idx) 603 if (isa<PHINode>(VMap[PHIToResolve[Idx]])) 604 Worklist.insert(PHIToResolve[Idx]); 605 606 // Note that we must test the size on each iteration, the worklist can grow. 607 for (unsigned Idx = 0; Idx != Worklist.size(); ++Idx) { 608 const Value *OrigV = Worklist[Idx]; 609 auto *I = dyn_cast_or_null<Instruction>(VMap.lookup(OrigV)); 610 if (!I) 611 continue; 612 613 // Skip over non-intrinsic callsites, we don't want to remove any nodes from 614 // the CGSCC. 615 CallSite CS = CallSite(I); 616 if (CS && CS.getCalledFunction() && !CS.getCalledFunction()->isIntrinsic()) 617 continue; 618 619 // See if this instruction simplifies. 620 Value *SimpleV = SimplifyInstruction(I, DL); 621 if (!SimpleV) 622 continue; 623 624 // Stash away all the uses of the old instruction so we can check them for 625 // recursive simplifications after a RAUW. This is cheaper than checking all 626 // uses of To on the recursive step in most cases. 627 for (const User *U : OrigV->users()) 628 Worklist.insert(cast<Instruction>(U)); 629 630 // Replace the instruction with its simplified value. 631 I->replaceAllUsesWith(SimpleV); 632 633 // If the original instruction had no side effects, remove it. 634 if (isInstructionTriviallyDead(I)) 635 I->eraseFromParent(); 636 else 637 VMap[OrigV] = I; 638 } 639 640 // Now that the inlined function body has been fully constructed, go through 641 // and zap unconditional fall-through branches. This happens all the time when 642 // specializing code: code specialization turns conditional branches into 643 // uncond branches, and this code folds them. 644 Function::iterator Begin = cast<BasicBlock>(VMap[StartingBB])->getIterator(); 645 Function::iterator I = Begin; 646 while (I != NewFunc->end()) { 647 // Check if this block has become dead during inlining or other 648 // simplifications. Note that the first block will appear dead, as it has 649 // not yet been wired up properly. 650 if (I != Begin && (pred_begin(&*I) == pred_end(&*I) || 651 I->getSinglePredecessor() == &*I)) { 652 BasicBlock *DeadBB = &*I++; 653 DeleteDeadBlock(DeadBB); 654 continue; 655 } 656 657 // We need to simplify conditional branches and switches with a constant 658 // operand. We try to prune these out when cloning, but if the 659 // simplification required looking through PHI nodes, those are only 660 // available after forming the full basic block. That may leave some here, 661 // and we still want to prune the dead code as early as possible. 662 ConstantFoldTerminator(&*I); 663 664 BranchInst *BI = dyn_cast<BranchInst>(I->getTerminator()); 665 if (!BI || BI->isConditional()) { ++I; continue; } 666 667 BasicBlock *Dest = BI->getSuccessor(0); 668 if (!Dest->getSinglePredecessor()) { 669 ++I; continue; 670 } 671 672 // We shouldn't be able to get single-entry PHI nodes here, as instsimplify 673 // above should have zapped all of them.. 674 assert(!isa<PHINode>(Dest->begin())); 675 676 // We know all single-entry PHI nodes in the inlined function have been 677 // removed, so we just need to splice the blocks. 678 BI->eraseFromParent(); 679 680 // Make all PHI nodes that referred to Dest now refer to I as their source. 681 Dest->replaceAllUsesWith(&*I); 682 683 // Move all the instructions in the succ to the pred. 684 I->getInstList().splice(I->end(), Dest->getInstList()); 685 686 // Remove the dest block. 687 Dest->eraseFromParent(); 688 689 // Do not increment I, iteratively merge all things this block branches to. 690 } 691 692 // Make a final pass over the basic blocks from the old function to gather 693 // any return instructions which survived folding. We have to do this here 694 // because we can iteratively remove and merge returns above. 695 for (Function::iterator I = cast<BasicBlock>(VMap[StartingBB])->getIterator(), 696 E = NewFunc->end(); 697 I != E; ++I) 698 if (ReturnInst *RI = dyn_cast<ReturnInst>(I->getTerminator())) 699 Returns.push_back(RI); 700 } 701 702 703 /// This works exactly like CloneFunctionInto, 704 /// except that it does some simple constant prop and DCE on the fly. The 705 /// effect of this is to copy significantly less code in cases where (for 706 /// example) a function call with constant arguments is inlined, and those 707 /// constant arguments cause a significant amount of code in the callee to be 708 /// dead. Since this doesn't produce an exact copy of the input, it can't be 709 /// used for things like CloneFunction or CloneModule. 710 void llvm::CloneAndPruneFunctionInto(Function *NewFunc, const Function *OldFunc, 711 ValueToValueMapTy &VMap, 712 bool ModuleLevelChanges, 713 SmallVectorImpl<ReturnInst*> &Returns, 714 const char *NameSuffix, 715 ClonedCodeInfo *CodeInfo, 716 Instruction *TheCall) { 717 CloneAndPruneIntoFromInst(NewFunc, OldFunc, &OldFunc->front().front(), VMap, 718 ModuleLevelChanges, Returns, NameSuffix, CodeInfo); 719 } 720 721 /// \brief Remaps instructions in \p Blocks using the mapping in \p VMap. 722 void llvm::remapInstructionsInBlocks( 723 const SmallVectorImpl<BasicBlock *> &Blocks, ValueToValueMapTy &VMap) { 724 // Rewrite the code to refer to itself. 725 for (auto *BB : Blocks) 726 for (auto &Inst : *BB) 727 RemapInstruction(&Inst, VMap, 728 RF_NoModuleLevelChanges | RF_IgnoreMissingLocals); 729 } 730 731 /// \brief Clones a loop \p OrigLoop. Returns the loop and the blocks in \p 732 /// Blocks. 733 /// 734 /// Updates LoopInfo and DominatorTree assuming the loop is dominated by block 735 /// \p LoopDomBB. Insert the new blocks before block specified in \p Before. 736 Loop *llvm::cloneLoopWithPreheader(BasicBlock *Before, BasicBlock *LoopDomBB, 737 Loop *OrigLoop, ValueToValueMapTy &VMap, 738 const Twine &NameSuffix, LoopInfo *LI, 739 DominatorTree *DT, 740 SmallVectorImpl<BasicBlock *> &Blocks) { 741 assert(OrigLoop->getSubLoops().empty() && 742 "Loop to be cloned cannot have inner loop"); 743 Function *F = OrigLoop->getHeader()->getParent(); 744 Loop *ParentLoop = OrigLoop->getParentLoop(); 745 746 Loop *NewLoop = LI->AllocateLoop(); 747 if (ParentLoop) 748 ParentLoop->addChildLoop(NewLoop); 749 else 750 LI->addTopLevelLoop(NewLoop); 751 752 BasicBlock *OrigPH = OrigLoop->getLoopPreheader(); 753 assert(OrigPH && "No preheader"); 754 BasicBlock *NewPH = CloneBasicBlock(OrigPH, VMap, NameSuffix, F); 755 // To rename the loop PHIs. 756 VMap[OrigPH] = NewPH; 757 Blocks.push_back(NewPH); 758 759 // Update LoopInfo. 760 if (ParentLoop) 761 ParentLoop->addBasicBlockToLoop(NewPH, *LI); 762 763 // Update DominatorTree. 764 DT->addNewBlock(NewPH, LoopDomBB); 765 766 for (BasicBlock *BB : OrigLoop->getBlocks()) { 767 BasicBlock *NewBB = CloneBasicBlock(BB, VMap, NameSuffix, F); 768 VMap[BB] = NewBB; 769 770 // Update LoopInfo. 771 NewLoop->addBasicBlockToLoop(NewBB, *LI); 772 773 // Add DominatorTree node. After seeing all blocks, update to correct IDom. 774 DT->addNewBlock(NewBB, NewPH); 775 776 Blocks.push_back(NewBB); 777 } 778 779 for (BasicBlock *BB : OrigLoop->getBlocks()) { 780 // Update DominatorTree. 781 BasicBlock *IDomBB = DT->getNode(BB)->getIDom()->getBlock(); 782 DT->changeImmediateDominator(cast<BasicBlock>(VMap[BB]), 783 cast<BasicBlock>(VMap[IDomBB])); 784 } 785 786 // Move them physically from the end of the block list. 787 F->getBasicBlockList().splice(Before->getIterator(), F->getBasicBlockList(), 788 NewPH); 789 F->getBasicBlockList().splice(Before->getIterator(), F->getBasicBlockList(), 790 NewLoop->getHeader()->getIterator(), F->end()); 791 792 return NewLoop; 793 } 794 795 /// \brief Duplicate non-Phi instructions from the beginning of block up to 796 /// StopAt instruction into a split block between BB and its predecessor. 797 BasicBlock * 798 llvm::DuplicateInstructionsInSplitBetween(BasicBlock *BB, BasicBlock *PredBB, 799 Instruction *StopAt, 800 ValueToValueMapTy &ValueMapping) { 801 // We are going to have to map operands from the original BB block to the new 802 // copy of the block 'NewBB'. If there are PHI nodes in BB, evaluate them to 803 // account for entry from PredBB. 804 BasicBlock::iterator BI = BB->begin(); 805 for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI) 806 ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB); 807 808 BasicBlock *NewBB = SplitEdge(PredBB, BB); 809 NewBB->setName(PredBB->getName() + ".split"); 810 Instruction *NewTerm = NewBB->getTerminator(); 811 812 // Clone the non-phi instructions of BB into NewBB, keeping track of the 813 // mapping and using it to remap operands in the cloned instructions. 814 for (; StopAt != &*BI; ++BI) { 815 Instruction *New = BI->clone(); 816 New->setName(BI->getName()); 817 New->insertBefore(NewTerm); 818 ValueMapping[&*BI] = New; 819 820 // Remap operands to patch up intra-block references. 821 for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i) 822 if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) { 823 auto I = ValueMapping.find(Inst); 824 if (I != ValueMapping.end()) 825 New->setOperand(i, I->second); 826 } 827 } 828 829 return NewBB; 830 } 831