1 //===- CloneFunction.cpp - Clone a function into another function ---------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the CloneFunctionInto interface, which is used as the
11 // low-level function cloner. This is used by the CloneFunction and function
12 // inliner to do the dirty work of copying the body of a function around.
13 //
14 //===----------------------------------------------------------------------===//
15
16 #include "llvm/ADT/SetVector.h"
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/Analysis/ConstantFolding.h"
19 #include "llvm/Analysis/InstructionSimplify.h"
20 #include "llvm/Analysis/LoopInfo.h"
21 #include "llvm/IR/CFG.h"
22 #include "llvm/IR/Constants.h"
23 #include "llvm/IR/DebugInfo.h"
24 #include "llvm/IR/DerivedTypes.h"
25 #include "llvm/IR/DomTreeUpdater.h"
26 #include "llvm/IR/Function.h"
27 #include "llvm/IR/GlobalVariable.h"
28 #include "llvm/IR/Instructions.h"
29 #include "llvm/IR/IntrinsicInst.h"
30 #include "llvm/IR/LLVMContext.h"
31 #include "llvm/IR/Metadata.h"
32 #include "llvm/IR/Module.h"
33 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
34 #include "llvm/Transforms/Utils/Cloning.h"
35 #include "llvm/Transforms/Utils/Local.h"
36 #include "llvm/Transforms/Utils/ValueMapper.h"
37 #include <map>
38 using namespace llvm;
39
40 /// See comments in Cloning.h.
CloneBasicBlock(const BasicBlock * BB,ValueToValueMapTy & VMap,const Twine & NameSuffix,Function * F,ClonedCodeInfo * CodeInfo,DebugInfoFinder * DIFinder)41 BasicBlock *llvm::CloneBasicBlock(const BasicBlock *BB, ValueToValueMapTy &VMap,
42 const Twine &NameSuffix, Function *F,
43 ClonedCodeInfo *CodeInfo,
44 DebugInfoFinder *DIFinder) {
45 DenseMap<const MDNode *, MDNode *> Cache;
46 BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), "", F);
47 if (BB->hasName())
48 NewBB->setName(BB->getName() + NameSuffix);
49
50 bool hasCalls = false, hasDynamicAllocas = false, hasStaticAllocas = false;
51 Module *TheModule = F ? F->getParent() : nullptr;
52
53 // Loop over all instructions, and copy them over.
54 for (const Instruction &I : *BB) {
55 if (DIFinder && TheModule)
56 DIFinder->processInstruction(*TheModule, I);
57
58 Instruction *NewInst = I.clone();
59 if (I.hasName())
60 NewInst->setName(I.getName() + NameSuffix);
61 NewBB->getInstList().push_back(NewInst);
62 VMap[&I] = NewInst; // Add instruction map to value.
63
64 hasCalls |= (isa<CallInst>(I) && !isa<DbgInfoIntrinsic>(I));
65 if (const AllocaInst *AI = dyn_cast<AllocaInst>(&I)) {
66 if (isa<ConstantInt>(AI->getArraySize()))
67 hasStaticAllocas = true;
68 else
69 hasDynamicAllocas = true;
70 }
71 }
72
73 if (CodeInfo) {
74 CodeInfo->ContainsCalls |= hasCalls;
75 CodeInfo->ContainsDynamicAllocas |= hasDynamicAllocas;
76 CodeInfo->ContainsDynamicAllocas |= hasStaticAllocas &&
77 BB != &BB->getParent()->getEntryBlock();
78 }
79 return NewBB;
80 }
81
82 // Clone OldFunc into NewFunc, transforming the old arguments into references to
83 // VMap values.
84 //
CloneFunctionInto(Function * NewFunc,const Function * OldFunc,ValueToValueMapTy & VMap,bool ModuleLevelChanges,SmallVectorImpl<ReturnInst * > & Returns,const char * NameSuffix,ClonedCodeInfo * CodeInfo,ValueMapTypeRemapper * TypeMapper,ValueMaterializer * Materializer)85 void llvm::CloneFunctionInto(Function *NewFunc, const Function *OldFunc,
86 ValueToValueMapTy &VMap,
87 bool ModuleLevelChanges,
88 SmallVectorImpl<ReturnInst*> &Returns,
89 const char *NameSuffix, ClonedCodeInfo *CodeInfo,
90 ValueMapTypeRemapper *TypeMapper,
91 ValueMaterializer *Materializer) {
92 assert(NameSuffix && "NameSuffix cannot be null!");
93
94 #ifndef NDEBUG
95 for (const Argument &I : OldFunc->args())
96 assert(VMap.count(&I) && "No mapping from source argument specified!");
97 #endif
98
99 // Copy all attributes other than those stored in the AttributeList. We need
100 // to remap the parameter indices of the AttributeList.
101 AttributeList NewAttrs = NewFunc->getAttributes();
102 NewFunc->copyAttributesFrom(OldFunc);
103 NewFunc->setAttributes(NewAttrs);
104
105 // Fix up the personality function that got copied over.
106 if (OldFunc->hasPersonalityFn())
107 NewFunc->setPersonalityFn(
108 MapValue(OldFunc->getPersonalityFn(), VMap,
109 ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges,
110 TypeMapper, Materializer));
111
112 SmallVector<AttributeSet, 4> NewArgAttrs(NewFunc->arg_size());
113 AttributeList OldAttrs = OldFunc->getAttributes();
114
115 // Clone any argument attributes that are present in the VMap.
116 for (const Argument &OldArg : OldFunc->args()) {
117 if (Argument *NewArg = dyn_cast<Argument>(VMap[&OldArg])) {
118 NewArgAttrs[NewArg->getArgNo()] =
119 OldAttrs.getParamAttributes(OldArg.getArgNo());
120 }
121 }
122
123 NewFunc->setAttributes(
124 AttributeList::get(NewFunc->getContext(), OldAttrs.getFnAttributes(),
125 OldAttrs.getRetAttributes(), NewArgAttrs));
126
127 bool MustCloneSP =
128 OldFunc->getParent() && OldFunc->getParent() == NewFunc->getParent();
129 DISubprogram *SP = OldFunc->getSubprogram();
130 if (SP) {
131 assert(!MustCloneSP || ModuleLevelChanges);
132 // Add mappings for some DebugInfo nodes that we don't want duplicated
133 // even if they're distinct.
134 auto &MD = VMap.MD();
135 MD[SP->getUnit()].reset(SP->getUnit());
136 MD[SP->getType()].reset(SP->getType());
137 MD[SP->getFile()].reset(SP->getFile());
138 // If we're not cloning into the same module, no need to clone the
139 // subprogram
140 if (!MustCloneSP)
141 MD[SP].reset(SP);
142 }
143
144 SmallVector<std::pair<unsigned, MDNode *>, 1> MDs;
145 OldFunc->getAllMetadata(MDs);
146 for (auto MD : MDs) {
147 NewFunc->addMetadata(
148 MD.first,
149 *MapMetadata(MD.second, VMap,
150 ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges,
151 TypeMapper, Materializer));
152 }
153
154 // When we remap instructions, we want to avoid duplicating inlined
155 // DISubprograms, so record all subprograms we find as we duplicate
156 // instructions and then freeze them in the MD map.
157 // We also record information about dbg.value and dbg.declare to avoid
158 // duplicating the types.
159 DebugInfoFinder DIFinder;
160
161 // Loop over all of the basic blocks in the function, cloning them as
162 // appropriate. Note that we save BE this way in order to handle cloning of
163 // recursive functions into themselves.
164 //
165 for (Function::const_iterator BI = OldFunc->begin(), BE = OldFunc->end();
166 BI != BE; ++BI) {
167 const BasicBlock &BB = *BI;
168
169 // Create a new basic block and copy instructions into it!
170 BasicBlock *CBB = CloneBasicBlock(&BB, VMap, NameSuffix, NewFunc, CodeInfo,
171 ModuleLevelChanges ? &DIFinder : nullptr);
172
173 // Add basic block mapping.
174 VMap[&BB] = CBB;
175
176 // It is only legal to clone a function if a block address within that
177 // function is never referenced outside of the function. Given that, we
178 // want to map block addresses from the old function to block addresses in
179 // the clone. (This is different from the generic ValueMapper
180 // implementation, which generates an invalid blockaddress when
181 // cloning a function.)
182 if (BB.hasAddressTaken()) {
183 Constant *OldBBAddr = BlockAddress::get(const_cast<Function*>(OldFunc),
184 const_cast<BasicBlock*>(&BB));
185 VMap[OldBBAddr] = BlockAddress::get(NewFunc, CBB);
186 }
187
188 // Note return instructions for the caller.
189 if (ReturnInst *RI = dyn_cast<ReturnInst>(CBB->getTerminator()))
190 Returns.push_back(RI);
191 }
192
193 for (DISubprogram *ISP : DIFinder.subprograms())
194 if (ISP != SP)
195 VMap.MD()[ISP].reset(ISP);
196
197 for (DICompileUnit *CU : DIFinder.compile_units())
198 VMap.MD()[CU].reset(CU);
199
200 for (DIType *Type : DIFinder.types())
201 VMap.MD()[Type].reset(Type);
202
203 // Loop over all of the instructions in the function, fixing up operand
204 // references as we go. This uses VMap to do all the hard work.
205 for (Function::iterator BB =
206 cast<BasicBlock>(VMap[&OldFunc->front()])->getIterator(),
207 BE = NewFunc->end();
208 BB != BE; ++BB)
209 // Loop over all instructions, fixing each one as we find it...
210 for (Instruction &II : *BB)
211 RemapInstruction(&II, VMap,
212 ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges,
213 TypeMapper, Materializer);
214 }
215
216 /// Return a copy of the specified function and add it to that function's
217 /// module. Also, any references specified in the VMap are changed to refer to
218 /// their mapped value instead of the original one. If any of the arguments to
219 /// the function are in the VMap, the arguments are deleted from the resultant
220 /// function. The VMap is updated to include mappings from all of the
221 /// instructions and basicblocks in the function from their old to new values.
222 ///
CloneFunction(Function * F,ValueToValueMapTy & VMap,ClonedCodeInfo * CodeInfo)223 Function *llvm::CloneFunction(Function *F, ValueToValueMapTy &VMap,
224 ClonedCodeInfo *CodeInfo) {
225 std::vector<Type*> ArgTypes;
226
227 // The user might be deleting arguments to the function by specifying them in
228 // the VMap. If so, we need to not add the arguments to the arg ty vector
229 //
230 for (const Argument &I : F->args())
231 if (VMap.count(&I) == 0) // Haven't mapped the argument to anything yet?
232 ArgTypes.push_back(I.getType());
233
234 // Create a new function type...
235 FunctionType *FTy = FunctionType::get(F->getFunctionType()->getReturnType(),
236 ArgTypes, F->getFunctionType()->isVarArg());
237
238 // Create the new function...
239 Function *NewF = Function::Create(FTy, F->getLinkage(), F->getAddressSpace(),
240 F->getName(), F->getParent());
241
242 // Loop over the arguments, copying the names of the mapped arguments over...
243 Function::arg_iterator DestI = NewF->arg_begin();
244 for (const Argument & I : F->args())
245 if (VMap.count(&I) == 0) { // Is this argument preserved?
246 DestI->setName(I.getName()); // Copy the name over...
247 VMap[&I] = &*DestI++; // Add mapping to VMap
248 }
249
250 SmallVector<ReturnInst*, 8> Returns; // Ignore returns cloned.
251 CloneFunctionInto(NewF, F, VMap, F->getSubprogram() != nullptr, Returns, "",
252 CodeInfo);
253
254 return NewF;
255 }
256
257
258
259 namespace {
260 /// This is a private class used to implement CloneAndPruneFunctionInto.
261 struct PruningFunctionCloner {
262 Function *NewFunc;
263 const Function *OldFunc;
264 ValueToValueMapTy &VMap;
265 bool ModuleLevelChanges;
266 const char *NameSuffix;
267 ClonedCodeInfo *CodeInfo;
268
269 public:
PruningFunctionCloner__anonf2c8084a0111::PruningFunctionCloner270 PruningFunctionCloner(Function *newFunc, const Function *oldFunc,
271 ValueToValueMapTy &valueMap, bool moduleLevelChanges,
272 const char *nameSuffix, ClonedCodeInfo *codeInfo)
273 : NewFunc(newFunc), OldFunc(oldFunc), VMap(valueMap),
274 ModuleLevelChanges(moduleLevelChanges), NameSuffix(nameSuffix),
275 CodeInfo(codeInfo) {}
276
277 /// The specified block is found to be reachable, clone it and
278 /// anything that it can reach.
279 void CloneBlock(const BasicBlock *BB,
280 BasicBlock::const_iterator StartingInst,
281 std::vector<const BasicBlock*> &ToClone);
282 };
283 }
284
285 /// The specified block is found to be reachable, clone it and
286 /// anything that it can reach.
CloneBlock(const BasicBlock * BB,BasicBlock::const_iterator StartingInst,std::vector<const BasicBlock * > & ToClone)287 void PruningFunctionCloner::CloneBlock(const BasicBlock *BB,
288 BasicBlock::const_iterator StartingInst,
289 std::vector<const BasicBlock*> &ToClone){
290 WeakTrackingVH &BBEntry = VMap[BB];
291
292 // Have we already cloned this block?
293 if (BBEntry) return;
294
295 // Nope, clone it now.
296 BasicBlock *NewBB;
297 BBEntry = NewBB = BasicBlock::Create(BB->getContext());
298 if (BB->hasName()) NewBB->setName(BB->getName()+NameSuffix);
299
300 // It is only legal to clone a function if a block address within that
301 // function is never referenced outside of the function. Given that, we
302 // want to map block addresses from the old function to block addresses in
303 // the clone. (This is different from the generic ValueMapper
304 // implementation, which generates an invalid blockaddress when
305 // cloning a function.)
306 //
307 // Note that we don't need to fix the mapping for unreachable blocks;
308 // the default mapping there is safe.
309 if (BB->hasAddressTaken()) {
310 Constant *OldBBAddr = BlockAddress::get(const_cast<Function*>(OldFunc),
311 const_cast<BasicBlock*>(BB));
312 VMap[OldBBAddr] = BlockAddress::get(NewFunc, NewBB);
313 }
314
315 bool hasCalls = false, hasDynamicAllocas = false, hasStaticAllocas = false;
316
317 // Loop over all instructions, and copy them over, DCE'ing as we go. This
318 // loop doesn't include the terminator.
319 for (BasicBlock::const_iterator II = StartingInst, IE = --BB->end();
320 II != IE; ++II) {
321
322 Instruction *NewInst = II->clone();
323
324 // Eagerly remap operands to the newly cloned instruction, except for PHI
325 // nodes for which we defer processing until we update the CFG.
326 if (!isa<PHINode>(NewInst)) {
327 RemapInstruction(NewInst, VMap,
328 ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges);
329
330 // If we can simplify this instruction to some other value, simply add
331 // a mapping to that value rather than inserting a new instruction into
332 // the basic block.
333 if (Value *V =
334 SimplifyInstruction(NewInst, BB->getModule()->getDataLayout())) {
335 // On the off-chance that this simplifies to an instruction in the old
336 // function, map it back into the new function.
337 if (NewFunc != OldFunc)
338 if (Value *MappedV = VMap.lookup(V))
339 V = MappedV;
340
341 if (!NewInst->mayHaveSideEffects()) {
342 VMap[&*II] = V;
343 NewInst->deleteValue();
344 continue;
345 }
346 }
347 }
348
349 if (II->hasName())
350 NewInst->setName(II->getName()+NameSuffix);
351 VMap[&*II] = NewInst; // Add instruction map to value.
352 NewBB->getInstList().push_back(NewInst);
353 hasCalls |= (isa<CallInst>(II) && !isa<DbgInfoIntrinsic>(II));
354
355 if (CodeInfo)
356 if (auto CS = ImmutableCallSite(&*II))
357 if (CS.hasOperandBundles())
358 CodeInfo->OperandBundleCallSites.push_back(NewInst);
359
360 if (const AllocaInst *AI = dyn_cast<AllocaInst>(II)) {
361 if (isa<ConstantInt>(AI->getArraySize()))
362 hasStaticAllocas = true;
363 else
364 hasDynamicAllocas = true;
365 }
366 }
367
368 // Finally, clone over the terminator.
369 const Instruction *OldTI = BB->getTerminator();
370 bool TerminatorDone = false;
371 if (const BranchInst *BI = dyn_cast<BranchInst>(OldTI)) {
372 if (BI->isConditional()) {
373 // If the condition was a known constant in the callee...
374 ConstantInt *Cond = dyn_cast<ConstantInt>(BI->getCondition());
375 // Or is a known constant in the caller...
376 if (!Cond) {
377 Value *V = VMap.lookup(BI->getCondition());
378 Cond = dyn_cast_or_null<ConstantInt>(V);
379 }
380
381 // Constant fold to uncond branch!
382 if (Cond) {
383 BasicBlock *Dest = BI->getSuccessor(!Cond->getZExtValue());
384 VMap[OldTI] = BranchInst::Create(Dest, NewBB);
385 ToClone.push_back(Dest);
386 TerminatorDone = true;
387 }
388 }
389 } else if (const SwitchInst *SI = dyn_cast<SwitchInst>(OldTI)) {
390 // If switching on a value known constant in the caller.
391 ConstantInt *Cond = dyn_cast<ConstantInt>(SI->getCondition());
392 if (!Cond) { // Or known constant after constant prop in the callee...
393 Value *V = VMap.lookup(SI->getCondition());
394 Cond = dyn_cast_or_null<ConstantInt>(V);
395 }
396 if (Cond) { // Constant fold to uncond branch!
397 SwitchInst::ConstCaseHandle Case = *SI->findCaseValue(Cond);
398 BasicBlock *Dest = const_cast<BasicBlock*>(Case.getCaseSuccessor());
399 VMap[OldTI] = BranchInst::Create(Dest, NewBB);
400 ToClone.push_back(Dest);
401 TerminatorDone = true;
402 }
403 }
404
405 if (!TerminatorDone) {
406 Instruction *NewInst = OldTI->clone();
407 if (OldTI->hasName())
408 NewInst->setName(OldTI->getName()+NameSuffix);
409 NewBB->getInstList().push_back(NewInst);
410 VMap[OldTI] = NewInst; // Add instruction map to value.
411
412 if (CodeInfo)
413 if (auto CS = ImmutableCallSite(OldTI))
414 if (CS.hasOperandBundles())
415 CodeInfo->OperandBundleCallSites.push_back(NewInst);
416
417 // Recursively clone any reachable successor blocks.
418 const Instruction *TI = BB->getTerminator();
419 for (const BasicBlock *Succ : successors(TI))
420 ToClone.push_back(Succ);
421 }
422
423 if (CodeInfo) {
424 CodeInfo->ContainsCalls |= hasCalls;
425 CodeInfo->ContainsDynamicAllocas |= hasDynamicAllocas;
426 CodeInfo->ContainsDynamicAllocas |= hasStaticAllocas &&
427 BB != &BB->getParent()->front();
428 }
429 }
430
431 /// This works like CloneAndPruneFunctionInto, except that it does not clone the
432 /// entire function. Instead it starts at an instruction provided by the caller
433 /// and copies (and prunes) only the code reachable from that instruction.
CloneAndPruneIntoFromInst(Function * NewFunc,const Function * OldFunc,const Instruction * StartingInst,ValueToValueMapTy & VMap,bool ModuleLevelChanges,SmallVectorImpl<ReturnInst * > & Returns,const char * NameSuffix,ClonedCodeInfo * CodeInfo)434 void llvm::CloneAndPruneIntoFromInst(Function *NewFunc, const Function *OldFunc,
435 const Instruction *StartingInst,
436 ValueToValueMapTy &VMap,
437 bool ModuleLevelChanges,
438 SmallVectorImpl<ReturnInst *> &Returns,
439 const char *NameSuffix,
440 ClonedCodeInfo *CodeInfo) {
441 assert(NameSuffix && "NameSuffix cannot be null!");
442
443 ValueMapTypeRemapper *TypeMapper = nullptr;
444 ValueMaterializer *Materializer = nullptr;
445
446 #ifndef NDEBUG
447 // If the cloning starts at the beginning of the function, verify that
448 // the function arguments are mapped.
449 if (!StartingInst)
450 for (const Argument &II : OldFunc->args())
451 assert(VMap.count(&II) && "No mapping from source argument specified!");
452 #endif
453
454 PruningFunctionCloner PFC(NewFunc, OldFunc, VMap, ModuleLevelChanges,
455 NameSuffix, CodeInfo);
456 const BasicBlock *StartingBB;
457 if (StartingInst)
458 StartingBB = StartingInst->getParent();
459 else {
460 StartingBB = &OldFunc->getEntryBlock();
461 StartingInst = &StartingBB->front();
462 }
463
464 // Clone the entry block, and anything recursively reachable from it.
465 std::vector<const BasicBlock*> CloneWorklist;
466 PFC.CloneBlock(StartingBB, StartingInst->getIterator(), CloneWorklist);
467 while (!CloneWorklist.empty()) {
468 const BasicBlock *BB = CloneWorklist.back();
469 CloneWorklist.pop_back();
470 PFC.CloneBlock(BB, BB->begin(), CloneWorklist);
471 }
472
473 // Loop over all of the basic blocks in the old function. If the block was
474 // reachable, we have cloned it and the old block is now in the value map:
475 // insert it into the new function in the right order. If not, ignore it.
476 //
477 // Defer PHI resolution until rest of function is resolved.
478 SmallVector<const PHINode*, 16> PHIToResolve;
479 for (const BasicBlock &BI : *OldFunc) {
480 Value *V = VMap.lookup(&BI);
481 BasicBlock *NewBB = cast_or_null<BasicBlock>(V);
482 if (!NewBB) continue; // Dead block.
483
484 // Add the new block to the new function.
485 NewFunc->getBasicBlockList().push_back(NewBB);
486
487 // Handle PHI nodes specially, as we have to remove references to dead
488 // blocks.
489 for (const PHINode &PN : BI.phis()) {
490 // PHI nodes may have been remapped to non-PHI nodes by the caller or
491 // during the cloning process.
492 if (isa<PHINode>(VMap[&PN]))
493 PHIToResolve.push_back(&PN);
494 else
495 break;
496 }
497
498 // Finally, remap the terminator instructions, as those can't be remapped
499 // until all BBs are mapped.
500 RemapInstruction(NewBB->getTerminator(), VMap,
501 ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges,
502 TypeMapper, Materializer);
503 }
504
505 // Defer PHI resolution until rest of function is resolved, PHI resolution
506 // requires the CFG to be up-to-date.
507 for (unsigned phino = 0, e = PHIToResolve.size(); phino != e; ) {
508 const PHINode *OPN = PHIToResolve[phino];
509 unsigned NumPreds = OPN->getNumIncomingValues();
510 const BasicBlock *OldBB = OPN->getParent();
511 BasicBlock *NewBB = cast<BasicBlock>(VMap[OldBB]);
512
513 // Map operands for blocks that are live and remove operands for blocks
514 // that are dead.
515 for (; phino != PHIToResolve.size() &&
516 PHIToResolve[phino]->getParent() == OldBB; ++phino) {
517 OPN = PHIToResolve[phino];
518 PHINode *PN = cast<PHINode>(VMap[OPN]);
519 for (unsigned pred = 0, e = NumPreds; pred != e; ++pred) {
520 Value *V = VMap.lookup(PN->getIncomingBlock(pred));
521 if (BasicBlock *MappedBlock = cast_or_null<BasicBlock>(V)) {
522 Value *InVal = MapValue(PN->getIncomingValue(pred),
523 VMap,
524 ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges);
525 assert(InVal && "Unknown input value?");
526 PN->setIncomingValue(pred, InVal);
527 PN->setIncomingBlock(pred, MappedBlock);
528 } else {
529 PN->removeIncomingValue(pred, false);
530 --pred; // Revisit the next entry.
531 --e;
532 }
533 }
534 }
535
536 // The loop above has removed PHI entries for those blocks that are dead
537 // and has updated others. However, if a block is live (i.e. copied over)
538 // but its terminator has been changed to not go to this block, then our
539 // phi nodes will have invalid entries. Update the PHI nodes in this
540 // case.
541 PHINode *PN = cast<PHINode>(NewBB->begin());
542 NumPreds = pred_size(NewBB);
543 if (NumPreds != PN->getNumIncomingValues()) {
544 assert(NumPreds < PN->getNumIncomingValues());
545 // Count how many times each predecessor comes to this block.
546 std::map<BasicBlock*, unsigned> PredCount;
547 for (pred_iterator PI = pred_begin(NewBB), E = pred_end(NewBB);
548 PI != E; ++PI)
549 --PredCount[*PI];
550
551 // Figure out how many entries to remove from each PHI.
552 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
553 ++PredCount[PN->getIncomingBlock(i)];
554
555 // At this point, the excess predecessor entries are positive in the
556 // map. Loop over all of the PHIs and remove excess predecessor
557 // entries.
558 BasicBlock::iterator I = NewBB->begin();
559 for (; (PN = dyn_cast<PHINode>(I)); ++I) {
560 for (const auto &PCI : PredCount) {
561 BasicBlock *Pred = PCI.first;
562 for (unsigned NumToRemove = PCI.second; NumToRemove; --NumToRemove)
563 PN->removeIncomingValue(Pred, false);
564 }
565 }
566 }
567
568 // If the loops above have made these phi nodes have 0 or 1 operand,
569 // replace them with undef or the input value. We must do this for
570 // correctness, because 0-operand phis are not valid.
571 PN = cast<PHINode>(NewBB->begin());
572 if (PN->getNumIncomingValues() == 0) {
573 BasicBlock::iterator I = NewBB->begin();
574 BasicBlock::const_iterator OldI = OldBB->begin();
575 while ((PN = dyn_cast<PHINode>(I++))) {
576 Value *NV = UndefValue::get(PN->getType());
577 PN->replaceAllUsesWith(NV);
578 assert(VMap[&*OldI] == PN && "VMap mismatch");
579 VMap[&*OldI] = NV;
580 PN->eraseFromParent();
581 ++OldI;
582 }
583 }
584 }
585
586 // Make a second pass over the PHINodes now that all of them have been
587 // remapped into the new function, simplifying the PHINode and performing any
588 // recursive simplifications exposed. This will transparently update the
589 // WeakTrackingVH in the VMap. Notably, we rely on that so that if we coalesce
590 // two PHINodes, the iteration over the old PHIs remains valid, and the
591 // mapping will just map us to the new node (which may not even be a PHI
592 // node).
593 const DataLayout &DL = NewFunc->getParent()->getDataLayout();
594 SmallSetVector<const Value *, 8> Worklist;
595 for (unsigned Idx = 0, Size = PHIToResolve.size(); Idx != Size; ++Idx)
596 if (isa<PHINode>(VMap[PHIToResolve[Idx]]))
597 Worklist.insert(PHIToResolve[Idx]);
598
599 // Note that we must test the size on each iteration, the worklist can grow.
600 for (unsigned Idx = 0; Idx != Worklist.size(); ++Idx) {
601 const Value *OrigV = Worklist[Idx];
602 auto *I = dyn_cast_or_null<Instruction>(VMap.lookup(OrigV));
603 if (!I)
604 continue;
605
606 // Skip over non-intrinsic callsites, we don't want to remove any nodes from
607 // the CGSCC.
608 CallSite CS = CallSite(I);
609 if (CS && CS.getCalledFunction() && !CS.getCalledFunction()->isIntrinsic())
610 continue;
611
612 // See if this instruction simplifies.
613 Value *SimpleV = SimplifyInstruction(I, DL);
614 if (!SimpleV)
615 continue;
616
617 // Stash away all the uses of the old instruction so we can check them for
618 // recursive simplifications after a RAUW. This is cheaper than checking all
619 // uses of To on the recursive step in most cases.
620 for (const User *U : OrigV->users())
621 Worklist.insert(cast<Instruction>(U));
622
623 // Replace the instruction with its simplified value.
624 I->replaceAllUsesWith(SimpleV);
625
626 // If the original instruction had no side effects, remove it.
627 if (isInstructionTriviallyDead(I))
628 I->eraseFromParent();
629 else
630 VMap[OrigV] = I;
631 }
632
633 // Now that the inlined function body has been fully constructed, go through
634 // and zap unconditional fall-through branches. This happens all the time when
635 // specializing code: code specialization turns conditional branches into
636 // uncond branches, and this code folds them.
637 Function::iterator Begin = cast<BasicBlock>(VMap[StartingBB])->getIterator();
638 Function::iterator I = Begin;
639 while (I != NewFunc->end()) {
640 // We need to simplify conditional branches and switches with a constant
641 // operand. We try to prune these out when cloning, but if the
642 // simplification required looking through PHI nodes, those are only
643 // available after forming the full basic block. That may leave some here,
644 // and we still want to prune the dead code as early as possible.
645 //
646 // Do the folding before we check if the block is dead since we want code
647 // like
648 // bb:
649 // br i1 undef, label %bb, label %bb
650 // to be simplified to
651 // bb:
652 // br label %bb
653 // before we call I->getSinglePredecessor().
654 ConstantFoldTerminator(&*I);
655
656 // Check if this block has become dead during inlining or other
657 // simplifications. Note that the first block will appear dead, as it has
658 // not yet been wired up properly.
659 if (I != Begin && (pred_begin(&*I) == pred_end(&*I) ||
660 I->getSinglePredecessor() == &*I)) {
661 BasicBlock *DeadBB = &*I++;
662 DeleteDeadBlock(DeadBB);
663 continue;
664 }
665
666 BranchInst *BI = dyn_cast<BranchInst>(I->getTerminator());
667 if (!BI || BI->isConditional()) { ++I; continue; }
668
669 BasicBlock *Dest = BI->getSuccessor(0);
670 if (!Dest->getSinglePredecessor()) {
671 ++I; continue;
672 }
673
674 // We shouldn't be able to get single-entry PHI nodes here, as instsimplify
675 // above should have zapped all of them..
676 assert(!isa<PHINode>(Dest->begin()));
677
678 // We know all single-entry PHI nodes in the inlined function have been
679 // removed, so we just need to splice the blocks.
680 BI->eraseFromParent();
681
682 // Make all PHI nodes that referred to Dest now refer to I as their source.
683 Dest->replaceAllUsesWith(&*I);
684
685 // Move all the instructions in the succ to the pred.
686 I->getInstList().splice(I->end(), Dest->getInstList());
687
688 // Remove the dest block.
689 Dest->eraseFromParent();
690
691 // Do not increment I, iteratively merge all things this block branches to.
692 }
693
694 // Make a final pass over the basic blocks from the old function to gather
695 // any return instructions which survived folding. We have to do this here
696 // because we can iteratively remove and merge returns above.
697 for (Function::iterator I = cast<BasicBlock>(VMap[StartingBB])->getIterator(),
698 E = NewFunc->end();
699 I != E; ++I)
700 if (ReturnInst *RI = dyn_cast<ReturnInst>(I->getTerminator()))
701 Returns.push_back(RI);
702 }
703
704
705 /// This works exactly like CloneFunctionInto,
706 /// except that it does some simple constant prop and DCE on the fly. The
707 /// effect of this is to copy significantly less code in cases where (for
708 /// example) a function call with constant arguments is inlined, and those
709 /// constant arguments cause a significant amount of code in the callee to be
710 /// dead. Since this doesn't produce an exact copy of the input, it can't be
711 /// used for things like CloneFunction or CloneModule.
CloneAndPruneFunctionInto(Function * NewFunc,const Function * OldFunc,ValueToValueMapTy & VMap,bool ModuleLevelChanges,SmallVectorImpl<ReturnInst * > & Returns,const char * NameSuffix,ClonedCodeInfo * CodeInfo,Instruction * TheCall)712 void llvm::CloneAndPruneFunctionInto(Function *NewFunc, const Function *OldFunc,
713 ValueToValueMapTy &VMap,
714 bool ModuleLevelChanges,
715 SmallVectorImpl<ReturnInst*> &Returns,
716 const char *NameSuffix,
717 ClonedCodeInfo *CodeInfo,
718 Instruction *TheCall) {
719 CloneAndPruneIntoFromInst(NewFunc, OldFunc, &OldFunc->front().front(), VMap,
720 ModuleLevelChanges, Returns, NameSuffix, CodeInfo);
721 }
722
723 /// Remaps instructions in \p Blocks using the mapping in \p VMap.
remapInstructionsInBlocks(const SmallVectorImpl<BasicBlock * > & Blocks,ValueToValueMapTy & VMap)724 void llvm::remapInstructionsInBlocks(
725 const SmallVectorImpl<BasicBlock *> &Blocks, ValueToValueMapTy &VMap) {
726 // Rewrite the code to refer to itself.
727 for (auto *BB : Blocks)
728 for (auto &Inst : *BB)
729 RemapInstruction(&Inst, VMap,
730 RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
731 }
732
733 /// Clones a loop \p OrigLoop. Returns the loop and the blocks in \p
734 /// Blocks.
735 ///
736 /// Updates LoopInfo and DominatorTree assuming the loop is dominated by block
737 /// \p LoopDomBB. Insert the new blocks before block specified in \p Before.
cloneLoopWithPreheader(BasicBlock * Before,BasicBlock * LoopDomBB,Loop * OrigLoop,ValueToValueMapTy & VMap,const Twine & NameSuffix,LoopInfo * LI,DominatorTree * DT,SmallVectorImpl<BasicBlock * > & Blocks)738 Loop *llvm::cloneLoopWithPreheader(BasicBlock *Before, BasicBlock *LoopDomBB,
739 Loop *OrigLoop, ValueToValueMapTy &VMap,
740 const Twine &NameSuffix, LoopInfo *LI,
741 DominatorTree *DT,
742 SmallVectorImpl<BasicBlock *> &Blocks) {
743 assert(OrigLoop->getSubLoops().empty() &&
744 "Loop to be cloned cannot have inner loop");
745 Function *F = OrigLoop->getHeader()->getParent();
746 Loop *ParentLoop = OrigLoop->getParentLoop();
747
748 Loop *NewLoop = LI->AllocateLoop();
749 if (ParentLoop)
750 ParentLoop->addChildLoop(NewLoop);
751 else
752 LI->addTopLevelLoop(NewLoop);
753
754 BasicBlock *OrigPH = OrigLoop->getLoopPreheader();
755 assert(OrigPH && "No preheader");
756 BasicBlock *NewPH = CloneBasicBlock(OrigPH, VMap, NameSuffix, F);
757 // To rename the loop PHIs.
758 VMap[OrigPH] = NewPH;
759 Blocks.push_back(NewPH);
760
761 // Update LoopInfo.
762 if (ParentLoop)
763 ParentLoop->addBasicBlockToLoop(NewPH, *LI);
764
765 // Update DominatorTree.
766 DT->addNewBlock(NewPH, LoopDomBB);
767
768 for (BasicBlock *BB : OrigLoop->getBlocks()) {
769 BasicBlock *NewBB = CloneBasicBlock(BB, VMap, NameSuffix, F);
770 VMap[BB] = NewBB;
771
772 // Update LoopInfo.
773 NewLoop->addBasicBlockToLoop(NewBB, *LI);
774
775 // Add DominatorTree node. After seeing all blocks, update to correct IDom.
776 DT->addNewBlock(NewBB, NewPH);
777
778 Blocks.push_back(NewBB);
779 }
780
781 for (BasicBlock *BB : OrigLoop->getBlocks()) {
782 // Update DominatorTree.
783 BasicBlock *IDomBB = DT->getNode(BB)->getIDom()->getBlock();
784 DT->changeImmediateDominator(cast<BasicBlock>(VMap[BB]),
785 cast<BasicBlock>(VMap[IDomBB]));
786 }
787
788 // Move them physically from the end of the block list.
789 F->getBasicBlockList().splice(Before->getIterator(), F->getBasicBlockList(),
790 NewPH);
791 F->getBasicBlockList().splice(Before->getIterator(), F->getBasicBlockList(),
792 NewLoop->getHeader()->getIterator(), F->end());
793
794 return NewLoop;
795 }
796
797 /// Duplicate non-Phi instructions from the beginning of block up to
798 /// StopAt instruction into a split block between BB and its predecessor.
DuplicateInstructionsInSplitBetween(BasicBlock * BB,BasicBlock * PredBB,Instruction * StopAt,ValueToValueMapTy & ValueMapping,DomTreeUpdater & DTU)799 BasicBlock *llvm::DuplicateInstructionsInSplitBetween(
800 BasicBlock *BB, BasicBlock *PredBB, Instruction *StopAt,
801 ValueToValueMapTy &ValueMapping, DomTreeUpdater &DTU) {
802
803 assert(count(successors(PredBB), BB) == 1 &&
804 "There must be a single edge between PredBB and BB!");
805 // We are going to have to map operands from the original BB block to the new
806 // copy of the block 'NewBB'. If there are PHI nodes in BB, evaluate them to
807 // account for entry from PredBB.
808 BasicBlock::iterator BI = BB->begin();
809 for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
810 ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB);
811
812 BasicBlock *NewBB = SplitEdge(PredBB, BB);
813 NewBB->setName(PredBB->getName() + ".split");
814 Instruction *NewTerm = NewBB->getTerminator();
815
816 // FIXME: SplitEdge does not yet take a DTU, so we include the split edge
817 // in the update set here.
818 DTU.applyUpdates({{DominatorTree::Delete, PredBB, BB},
819 {DominatorTree::Insert, PredBB, NewBB},
820 {DominatorTree::Insert, NewBB, BB}});
821
822 // Clone the non-phi instructions of BB into NewBB, keeping track of the
823 // mapping and using it to remap operands in the cloned instructions.
824 // Stop once we see the terminator too. This covers the case where BB's
825 // terminator gets replaced and StopAt == BB's terminator.
826 for (; StopAt != &*BI && BB->getTerminator() != &*BI; ++BI) {
827 Instruction *New = BI->clone();
828 New->setName(BI->getName());
829 New->insertBefore(NewTerm);
830 ValueMapping[&*BI] = New;
831
832 // Remap operands to patch up intra-block references.
833 for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
834 if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) {
835 auto I = ValueMapping.find(Inst);
836 if (I != ValueMapping.end())
837 New->setOperand(i, I->second);
838 }
839 }
840
841 return NewBB;
842 }
843