1 //===- IndVarSimplify.cpp - Induction Variable Elimination ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This transformation analyzes and transforms the induction variables (and 11 // computations derived from them) into simpler forms suitable for subsequent 12 // analysis and transformation. 13 // 14 // If the trip count of a loop is computable, this pass also makes the following 15 // changes: 16 // 1. The exit condition for the loop is canonicalized to compare the 17 // induction value against the exit value. This turns loops like: 18 // 'for (i = 7; i*i < 1000; ++i)' into 'for (i = 0; i != 25; ++i)' 19 // 2. Any use outside of the loop of an expression derived from the indvar 20 // is changed to compute the derived value outside of the loop, eliminating 21 // the dependence on the exit value of the induction variable. If the only 22 // purpose of the loop is to compute the exit value of some derived 23 // expression, this transformation will make the loop dead. 24 // 25 //===----------------------------------------------------------------------===// 26 27 #include "llvm/Transforms/Scalar/IndVarSimplify.h" 28 #include "llvm/ADT/APFloat.h" 29 #include "llvm/ADT/APInt.h" 30 #include "llvm/ADT/ArrayRef.h" 31 #include "llvm/ADT/DenseMap.h" 32 #include "llvm/ADT/None.h" 33 #include "llvm/ADT/Optional.h" 34 #include "llvm/ADT/STLExtras.h" 35 #include "llvm/ADT/SmallSet.h" 36 #include "llvm/ADT/SmallPtrSet.h" 37 #include "llvm/ADT/SmallVector.h" 38 #include "llvm/ADT/Statistic.h" 39 #include "llvm/ADT/iterator_range.h" 40 #include "llvm/Analysis/LoopInfo.h" 41 #include "llvm/Analysis/LoopPass.h" 42 #include "llvm/Analysis/ScalarEvolution.h" 43 #include "llvm/Analysis/ScalarEvolutionExpander.h" 44 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 45 #include "llvm/Analysis/TargetLibraryInfo.h" 46 #include "llvm/Analysis/TargetTransformInfo.h" 47 #include "llvm/Analysis/ValueTracking.h" 48 #include "llvm/Transforms/Utils/Local.h" 49 #include "llvm/IR/BasicBlock.h" 50 #include "llvm/IR/Constant.h" 51 #include "llvm/IR/ConstantRange.h" 52 #include "llvm/IR/Constants.h" 53 #include "llvm/IR/DataLayout.h" 54 #include "llvm/IR/DerivedTypes.h" 55 #include "llvm/IR/Dominators.h" 56 #include "llvm/IR/Function.h" 57 #include "llvm/IR/IRBuilder.h" 58 #include "llvm/IR/InstrTypes.h" 59 #include "llvm/IR/Instruction.h" 60 #include "llvm/IR/Instructions.h" 61 #include "llvm/IR/IntrinsicInst.h" 62 #include "llvm/IR/Intrinsics.h" 63 #include "llvm/IR/Module.h" 64 #include "llvm/IR/Operator.h" 65 #include "llvm/IR/PassManager.h" 66 #include "llvm/IR/PatternMatch.h" 67 #include "llvm/IR/Type.h" 68 #include "llvm/IR/Use.h" 69 #include "llvm/IR/User.h" 70 #include "llvm/IR/Value.h" 71 #include "llvm/IR/ValueHandle.h" 72 #include "llvm/Pass.h" 73 #include "llvm/Support/Casting.h" 74 #include "llvm/Support/CommandLine.h" 75 #include "llvm/Support/Compiler.h" 76 #include "llvm/Support/Debug.h" 77 #include "llvm/Support/ErrorHandling.h" 78 #include "llvm/Support/MathExtras.h" 79 #include "llvm/Support/raw_ostream.h" 80 #include "llvm/Transforms/Scalar.h" 81 #include "llvm/Transforms/Scalar/LoopPassManager.h" 82 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 83 #include "llvm/Transforms/Utils/LoopUtils.h" 84 #include "llvm/Transforms/Utils/SimplifyIndVar.h" 85 #include <cassert> 86 #include <cstdint> 87 #include <utility> 88 89 using namespace llvm; 90 91 #define DEBUG_TYPE "indvars" 92 93 STATISTIC(NumWidened , "Number of indvars widened"); 94 STATISTIC(NumReplaced , "Number of exit values replaced"); 95 STATISTIC(NumLFTR , "Number of loop exit tests replaced"); 96 STATISTIC(NumElimExt , "Number of IV sign/zero extends eliminated"); 97 STATISTIC(NumElimIV , "Number of congruent IVs eliminated"); 98 99 // Trip count verification can be enabled by default under NDEBUG if we 100 // implement a strong expression equivalence checker in SCEV. Until then, we 101 // use the verify-indvars flag, which may assert in some cases. 102 static cl::opt<bool> VerifyIndvars( 103 "verify-indvars", cl::Hidden, 104 cl::desc("Verify the ScalarEvolution result after running indvars")); 105 106 enum ReplaceExitVal { NeverRepl, OnlyCheapRepl, AlwaysRepl }; 107 108 static cl::opt<ReplaceExitVal> ReplaceExitValue( 109 "replexitval", cl::Hidden, cl::init(OnlyCheapRepl), 110 cl::desc("Choose the strategy to replace exit value in IndVarSimplify"), 111 cl::values(clEnumValN(NeverRepl, "never", "never replace exit value"), 112 clEnumValN(OnlyCheapRepl, "cheap", 113 "only replace exit value when the cost is cheap"), 114 clEnumValN(AlwaysRepl, "always", 115 "always replace exit value whenever possible"))); 116 117 static cl::opt<bool> UsePostIncrementRanges( 118 "indvars-post-increment-ranges", cl::Hidden, 119 cl::desc("Use post increment control-dependent ranges in IndVarSimplify"), 120 cl::init(true)); 121 122 static cl::opt<bool> 123 DisableLFTR("disable-lftr", cl::Hidden, cl::init(false), 124 cl::desc("Disable Linear Function Test Replace optimization")); 125 126 namespace { 127 128 struct RewritePhi; 129 130 class IndVarSimplify { 131 LoopInfo *LI; 132 ScalarEvolution *SE; 133 DominatorTree *DT; 134 const DataLayout &DL; 135 TargetLibraryInfo *TLI; 136 const TargetTransformInfo *TTI; 137 138 SmallVector<WeakTrackingVH, 16> DeadInsts; 139 140 bool isValidRewrite(Value *FromVal, Value *ToVal); 141 142 bool handleFloatingPointIV(Loop *L, PHINode *PH); 143 bool rewriteNonIntegerIVs(Loop *L); 144 145 bool simplifyAndExtend(Loop *L, SCEVExpander &Rewriter, LoopInfo *LI); 146 147 bool canLoopBeDeleted(Loop *L, SmallVector<RewritePhi, 8> &RewritePhiSet); 148 bool rewriteLoopExitValues(Loop *L, SCEVExpander &Rewriter); 149 bool rewriteFirstIterationLoopExitValues(Loop *L); 150 bool hasHardUserWithinLoop(const Loop *L, const Instruction *I) const; 151 152 bool linearFunctionTestReplace(Loop *L, BasicBlock *ExitingBB, 153 const SCEV *ExitCount, 154 PHINode *IndVar, SCEVExpander &Rewriter); 155 156 bool sinkUnusedInvariants(Loop *L); 157 158 public: 159 IndVarSimplify(LoopInfo *LI, ScalarEvolution *SE, DominatorTree *DT, 160 const DataLayout &DL, TargetLibraryInfo *TLI, 161 TargetTransformInfo *TTI) 162 : LI(LI), SE(SE), DT(DT), DL(DL), TLI(TLI), TTI(TTI) {} 163 164 bool run(Loop *L); 165 }; 166 167 } // end anonymous namespace 168 169 /// Return true if the SCEV expansion generated by the rewriter can replace the 170 /// original value. SCEV guarantees that it produces the same value, but the way 171 /// it is produced may be illegal IR. Ideally, this function will only be 172 /// called for verification. 173 bool IndVarSimplify::isValidRewrite(Value *FromVal, Value *ToVal) { 174 // If an SCEV expression subsumed multiple pointers, its expansion could 175 // reassociate the GEP changing the base pointer. This is illegal because the 176 // final address produced by a GEP chain must be inbounds relative to its 177 // underlying object. Otherwise basic alias analysis, among other things, 178 // could fail in a dangerous way. Ultimately, SCEV will be improved to avoid 179 // producing an expression involving multiple pointers. Until then, we must 180 // bail out here. 181 // 182 // Retrieve the pointer operand of the GEP. Don't use GetUnderlyingObject 183 // because it understands lcssa phis while SCEV does not. 184 Value *FromPtr = FromVal; 185 Value *ToPtr = ToVal; 186 if (auto *GEP = dyn_cast<GEPOperator>(FromVal)) { 187 FromPtr = GEP->getPointerOperand(); 188 } 189 if (auto *GEP = dyn_cast<GEPOperator>(ToVal)) { 190 ToPtr = GEP->getPointerOperand(); 191 } 192 if (FromPtr != FromVal || ToPtr != ToVal) { 193 // Quickly check the common case 194 if (FromPtr == ToPtr) 195 return true; 196 197 // SCEV may have rewritten an expression that produces the GEP's pointer 198 // operand. That's ok as long as the pointer operand has the same base 199 // pointer. Unlike GetUnderlyingObject(), getPointerBase() will find the 200 // base of a recurrence. This handles the case in which SCEV expansion 201 // converts a pointer type recurrence into a nonrecurrent pointer base 202 // indexed by an integer recurrence. 203 204 // If the GEP base pointer is a vector of pointers, abort. 205 if (!FromPtr->getType()->isPointerTy() || !ToPtr->getType()->isPointerTy()) 206 return false; 207 208 const SCEV *FromBase = SE->getPointerBase(SE->getSCEV(FromPtr)); 209 const SCEV *ToBase = SE->getPointerBase(SE->getSCEV(ToPtr)); 210 if (FromBase == ToBase) 211 return true; 212 213 LLVM_DEBUG(dbgs() << "INDVARS: GEP rewrite bail out " << *FromBase 214 << " != " << *ToBase << "\n"); 215 216 return false; 217 } 218 return true; 219 } 220 221 /// Determine the insertion point for this user. By default, insert immediately 222 /// before the user. SCEVExpander or LICM will hoist loop invariants out of the 223 /// loop. For PHI nodes, there may be multiple uses, so compute the nearest 224 /// common dominator for the incoming blocks. 225 static Instruction *getInsertPointForUses(Instruction *User, Value *Def, 226 DominatorTree *DT, LoopInfo *LI) { 227 PHINode *PHI = dyn_cast<PHINode>(User); 228 if (!PHI) 229 return User; 230 231 Instruction *InsertPt = nullptr; 232 for (unsigned i = 0, e = PHI->getNumIncomingValues(); i != e; ++i) { 233 if (PHI->getIncomingValue(i) != Def) 234 continue; 235 236 BasicBlock *InsertBB = PHI->getIncomingBlock(i); 237 if (!InsertPt) { 238 InsertPt = InsertBB->getTerminator(); 239 continue; 240 } 241 InsertBB = DT->findNearestCommonDominator(InsertPt->getParent(), InsertBB); 242 InsertPt = InsertBB->getTerminator(); 243 } 244 assert(InsertPt && "Missing phi operand"); 245 246 auto *DefI = dyn_cast<Instruction>(Def); 247 if (!DefI) 248 return InsertPt; 249 250 assert(DT->dominates(DefI, InsertPt) && "def does not dominate all uses"); 251 252 auto *L = LI->getLoopFor(DefI->getParent()); 253 assert(!L || L->contains(LI->getLoopFor(InsertPt->getParent()))); 254 255 for (auto *DTN = (*DT)[InsertPt->getParent()]; DTN; DTN = DTN->getIDom()) 256 if (LI->getLoopFor(DTN->getBlock()) == L) 257 return DTN->getBlock()->getTerminator(); 258 259 llvm_unreachable("DefI dominates InsertPt!"); 260 } 261 262 //===----------------------------------------------------------------------===// 263 // rewriteNonIntegerIVs and helpers. Prefer integer IVs. 264 //===----------------------------------------------------------------------===// 265 266 /// Convert APF to an integer, if possible. 267 static bool ConvertToSInt(const APFloat &APF, int64_t &IntVal) { 268 bool isExact = false; 269 // See if we can convert this to an int64_t 270 uint64_t UIntVal; 271 if (APF.convertToInteger(makeMutableArrayRef(UIntVal), 64, true, 272 APFloat::rmTowardZero, &isExact) != APFloat::opOK || 273 !isExact) 274 return false; 275 IntVal = UIntVal; 276 return true; 277 } 278 279 /// If the loop has floating induction variable then insert corresponding 280 /// integer induction variable if possible. 281 /// For example, 282 /// for(double i = 0; i < 10000; ++i) 283 /// bar(i) 284 /// is converted into 285 /// for(int i = 0; i < 10000; ++i) 286 /// bar((double)i); 287 bool IndVarSimplify::handleFloatingPointIV(Loop *L, PHINode *PN) { 288 unsigned IncomingEdge = L->contains(PN->getIncomingBlock(0)); 289 unsigned BackEdge = IncomingEdge^1; 290 291 // Check incoming value. 292 auto *InitValueVal = dyn_cast<ConstantFP>(PN->getIncomingValue(IncomingEdge)); 293 294 int64_t InitValue; 295 if (!InitValueVal || !ConvertToSInt(InitValueVal->getValueAPF(), InitValue)) 296 return false; 297 298 // Check IV increment. Reject this PN if increment operation is not 299 // an add or increment value can not be represented by an integer. 300 auto *Incr = dyn_cast<BinaryOperator>(PN->getIncomingValue(BackEdge)); 301 if (Incr == nullptr || Incr->getOpcode() != Instruction::FAdd) return false; 302 303 // If this is not an add of the PHI with a constantfp, or if the constant fp 304 // is not an integer, bail out. 305 ConstantFP *IncValueVal = dyn_cast<ConstantFP>(Incr->getOperand(1)); 306 int64_t IncValue; 307 if (IncValueVal == nullptr || Incr->getOperand(0) != PN || 308 !ConvertToSInt(IncValueVal->getValueAPF(), IncValue)) 309 return false; 310 311 // Check Incr uses. One user is PN and the other user is an exit condition 312 // used by the conditional terminator. 313 Value::user_iterator IncrUse = Incr->user_begin(); 314 Instruction *U1 = cast<Instruction>(*IncrUse++); 315 if (IncrUse == Incr->user_end()) return false; 316 Instruction *U2 = cast<Instruction>(*IncrUse++); 317 if (IncrUse != Incr->user_end()) return false; 318 319 // Find exit condition, which is an fcmp. If it doesn't exist, or if it isn't 320 // only used by a branch, we can't transform it. 321 FCmpInst *Compare = dyn_cast<FCmpInst>(U1); 322 if (!Compare) 323 Compare = dyn_cast<FCmpInst>(U2); 324 if (!Compare || !Compare->hasOneUse() || 325 !isa<BranchInst>(Compare->user_back())) 326 return false; 327 328 BranchInst *TheBr = cast<BranchInst>(Compare->user_back()); 329 330 // We need to verify that the branch actually controls the iteration count 331 // of the loop. If not, the new IV can overflow and no one will notice. 332 // The branch block must be in the loop and one of the successors must be out 333 // of the loop. 334 assert(TheBr->isConditional() && "Can't use fcmp if not conditional"); 335 if (!L->contains(TheBr->getParent()) || 336 (L->contains(TheBr->getSuccessor(0)) && 337 L->contains(TheBr->getSuccessor(1)))) 338 return false; 339 340 // If it isn't a comparison with an integer-as-fp (the exit value), we can't 341 // transform it. 342 ConstantFP *ExitValueVal = dyn_cast<ConstantFP>(Compare->getOperand(1)); 343 int64_t ExitValue; 344 if (ExitValueVal == nullptr || 345 !ConvertToSInt(ExitValueVal->getValueAPF(), ExitValue)) 346 return false; 347 348 // Find new predicate for integer comparison. 349 CmpInst::Predicate NewPred = CmpInst::BAD_ICMP_PREDICATE; 350 switch (Compare->getPredicate()) { 351 default: return false; // Unknown comparison. 352 case CmpInst::FCMP_OEQ: 353 case CmpInst::FCMP_UEQ: NewPred = CmpInst::ICMP_EQ; break; 354 case CmpInst::FCMP_ONE: 355 case CmpInst::FCMP_UNE: NewPred = CmpInst::ICMP_NE; break; 356 case CmpInst::FCMP_OGT: 357 case CmpInst::FCMP_UGT: NewPred = CmpInst::ICMP_SGT; break; 358 case CmpInst::FCMP_OGE: 359 case CmpInst::FCMP_UGE: NewPred = CmpInst::ICMP_SGE; break; 360 case CmpInst::FCMP_OLT: 361 case CmpInst::FCMP_ULT: NewPred = CmpInst::ICMP_SLT; break; 362 case CmpInst::FCMP_OLE: 363 case CmpInst::FCMP_ULE: NewPred = CmpInst::ICMP_SLE; break; 364 } 365 366 // We convert the floating point induction variable to a signed i32 value if 367 // we can. This is only safe if the comparison will not overflow in a way 368 // that won't be trapped by the integer equivalent operations. Check for this 369 // now. 370 // TODO: We could use i64 if it is native and the range requires it. 371 372 // The start/stride/exit values must all fit in signed i32. 373 if (!isInt<32>(InitValue) || !isInt<32>(IncValue) || !isInt<32>(ExitValue)) 374 return false; 375 376 // If not actually striding (add x, 0.0), avoid touching the code. 377 if (IncValue == 0) 378 return false; 379 380 // Positive and negative strides have different safety conditions. 381 if (IncValue > 0) { 382 // If we have a positive stride, we require the init to be less than the 383 // exit value. 384 if (InitValue >= ExitValue) 385 return false; 386 387 uint32_t Range = uint32_t(ExitValue-InitValue); 388 // Check for infinite loop, either: 389 // while (i <= Exit) or until (i > Exit) 390 if (NewPred == CmpInst::ICMP_SLE || NewPred == CmpInst::ICMP_SGT) { 391 if (++Range == 0) return false; // Range overflows. 392 } 393 394 unsigned Leftover = Range % uint32_t(IncValue); 395 396 // If this is an equality comparison, we require that the strided value 397 // exactly land on the exit value, otherwise the IV condition will wrap 398 // around and do things the fp IV wouldn't. 399 if ((NewPred == CmpInst::ICMP_EQ || NewPred == CmpInst::ICMP_NE) && 400 Leftover != 0) 401 return false; 402 403 // If the stride would wrap around the i32 before exiting, we can't 404 // transform the IV. 405 if (Leftover != 0 && int32_t(ExitValue+IncValue) < ExitValue) 406 return false; 407 } else { 408 // If we have a negative stride, we require the init to be greater than the 409 // exit value. 410 if (InitValue <= ExitValue) 411 return false; 412 413 uint32_t Range = uint32_t(InitValue-ExitValue); 414 // Check for infinite loop, either: 415 // while (i >= Exit) or until (i < Exit) 416 if (NewPred == CmpInst::ICMP_SGE || NewPred == CmpInst::ICMP_SLT) { 417 if (++Range == 0) return false; // Range overflows. 418 } 419 420 unsigned Leftover = Range % uint32_t(-IncValue); 421 422 // If this is an equality comparison, we require that the strided value 423 // exactly land on the exit value, otherwise the IV condition will wrap 424 // around and do things the fp IV wouldn't. 425 if ((NewPred == CmpInst::ICMP_EQ || NewPred == CmpInst::ICMP_NE) && 426 Leftover != 0) 427 return false; 428 429 // If the stride would wrap around the i32 before exiting, we can't 430 // transform the IV. 431 if (Leftover != 0 && int32_t(ExitValue+IncValue) > ExitValue) 432 return false; 433 } 434 435 IntegerType *Int32Ty = Type::getInt32Ty(PN->getContext()); 436 437 // Insert new integer induction variable. 438 PHINode *NewPHI = PHINode::Create(Int32Ty, 2, PN->getName()+".int", PN); 439 NewPHI->addIncoming(ConstantInt::get(Int32Ty, InitValue), 440 PN->getIncomingBlock(IncomingEdge)); 441 442 Value *NewAdd = 443 BinaryOperator::CreateAdd(NewPHI, ConstantInt::get(Int32Ty, IncValue), 444 Incr->getName()+".int", Incr); 445 NewPHI->addIncoming(NewAdd, PN->getIncomingBlock(BackEdge)); 446 447 ICmpInst *NewCompare = new ICmpInst(TheBr, NewPred, NewAdd, 448 ConstantInt::get(Int32Ty, ExitValue), 449 Compare->getName()); 450 451 // In the following deletions, PN may become dead and may be deleted. 452 // Use a WeakTrackingVH to observe whether this happens. 453 WeakTrackingVH WeakPH = PN; 454 455 // Delete the old floating point exit comparison. The branch starts using the 456 // new comparison. 457 NewCompare->takeName(Compare); 458 Compare->replaceAllUsesWith(NewCompare); 459 RecursivelyDeleteTriviallyDeadInstructions(Compare, TLI); 460 461 // Delete the old floating point increment. 462 Incr->replaceAllUsesWith(UndefValue::get(Incr->getType())); 463 RecursivelyDeleteTriviallyDeadInstructions(Incr, TLI); 464 465 // If the FP induction variable still has uses, this is because something else 466 // in the loop uses its value. In order to canonicalize the induction 467 // variable, we chose to eliminate the IV and rewrite it in terms of an 468 // int->fp cast. 469 // 470 // We give preference to sitofp over uitofp because it is faster on most 471 // platforms. 472 if (WeakPH) { 473 Value *Conv = new SIToFPInst(NewPHI, PN->getType(), "indvar.conv", 474 &*PN->getParent()->getFirstInsertionPt()); 475 PN->replaceAllUsesWith(Conv); 476 RecursivelyDeleteTriviallyDeadInstructions(PN, TLI); 477 } 478 return true; 479 } 480 481 bool IndVarSimplify::rewriteNonIntegerIVs(Loop *L) { 482 // First step. Check to see if there are any floating-point recurrences. 483 // If there are, change them into integer recurrences, permitting analysis by 484 // the SCEV routines. 485 BasicBlock *Header = L->getHeader(); 486 487 SmallVector<WeakTrackingVH, 8> PHIs; 488 for (PHINode &PN : Header->phis()) 489 PHIs.push_back(&PN); 490 491 bool Changed = false; 492 for (unsigned i = 0, e = PHIs.size(); i != e; ++i) 493 if (PHINode *PN = dyn_cast_or_null<PHINode>(&*PHIs[i])) 494 Changed |= handleFloatingPointIV(L, PN); 495 496 // If the loop previously had floating-point IV, ScalarEvolution 497 // may not have been able to compute a trip count. Now that we've done some 498 // re-writing, the trip count may be computable. 499 if (Changed) 500 SE->forgetLoop(L); 501 return Changed; 502 } 503 504 namespace { 505 506 // Collect information about PHI nodes which can be transformed in 507 // rewriteLoopExitValues. 508 struct RewritePhi { 509 PHINode *PN; 510 511 // Ith incoming value. 512 unsigned Ith; 513 514 // Exit value after expansion. 515 Value *Val; 516 517 // High Cost when expansion. 518 bool HighCost; 519 520 RewritePhi(PHINode *P, unsigned I, Value *V, bool H) 521 : PN(P), Ith(I), Val(V), HighCost(H) {} 522 }; 523 524 } // end anonymous namespace 525 526 //===----------------------------------------------------------------------===// 527 // rewriteLoopExitValues - Optimize IV users outside the loop. 528 // As a side effect, reduces the amount of IV processing within the loop. 529 //===----------------------------------------------------------------------===// 530 531 bool IndVarSimplify::hasHardUserWithinLoop(const Loop *L, const Instruction *I) const { 532 SmallPtrSet<const Instruction *, 8> Visited; 533 SmallVector<const Instruction *, 8> WorkList; 534 Visited.insert(I); 535 WorkList.push_back(I); 536 while (!WorkList.empty()) { 537 const Instruction *Curr = WorkList.pop_back_val(); 538 // This use is outside the loop, nothing to do. 539 if (!L->contains(Curr)) 540 continue; 541 // Do we assume it is a "hard" use which will not be eliminated easily? 542 if (Curr->mayHaveSideEffects()) 543 return true; 544 // Otherwise, add all its users to worklist. 545 for (auto U : Curr->users()) { 546 auto *UI = cast<Instruction>(U); 547 if (Visited.insert(UI).second) 548 WorkList.push_back(UI); 549 } 550 } 551 return false; 552 } 553 554 /// Check to see if this loop has a computable loop-invariant execution count. 555 /// If so, this means that we can compute the final value of any expressions 556 /// that are recurrent in the loop, and substitute the exit values from the loop 557 /// into any instructions outside of the loop that use the final values of the 558 /// current expressions. 559 /// 560 /// This is mostly redundant with the regular IndVarSimplify activities that 561 /// happen later, except that it's more powerful in some cases, because it's 562 /// able to brute-force evaluate arbitrary instructions as long as they have 563 /// constant operands at the beginning of the loop. 564 bool IndVarSimplify::rewriteLoopExitValues(Loop *L, SCEVExpander &Rewriter) { 565 // Check a pre-condition. 566 assert(L->isRecursivelyLCSSAForm(*DT, *LI) && 567 "Indvars did not preserve LCSSA!"); 568 569 SmallVector<BasicBlock*, 8> ExitBlocks; 570 L->getUniqueExitBlocks(ExitBlocks); 571 572 SmallVector<RewritePhi, 8> RewritePhiSet; 573 // Find all values that are computed inside the loop, but used outside of it. 574 // Because of LCSSA, these values will only occur in LCSSA PHI Nodes. Scan 575 // the exit blocks of the loop to find them. 576 for (BasicBlock *ExitBB : ExitBlocks) { 577 // If there are no PHI nodes in this exit block, then no values defined 578 // inside the loop are used on this path, skip it. 579 PHINode *PN = dyn_cast<PHINode>(ExitBB->begin()); 580 if (!PN) continue; 581 582 unsigned NumPreds = PN->getNumIncomingValues(); 583 584 // Iterate over all of the PHI nodes. 585 BasicBlock::iterator BBI = ExitBB->begin(); 586 while ((PN = dyn_cast<PHINode>(BBI++))) { 587 if (PN->use_empty()) 588 continue; // dead use, don't replace it 589 590 if (!SE->isSCEVable(PN->getType())) 591 continue; 592 593 // It's necessary to tell ScalarEvolution about this explicitly so that 594 // it can walk the def-use list and forget all SCEVs, as it may not be 595 // watching the PHI itself. Once the new exit value is in place, there 596 // may not be a def-use connection between the loop and every instruction 597 // which got a SCEVAddRecExpr for that loop. 598 SE->forgetValue(PN); 599 600 // Iterate over all of the values in all the PHI nodes. 601 for (unsigned i = 0; i != NumPreds; ++i) { 602 // If the value being merged in is not integer or is not defined 603 // in the loop, skip it. 604 Value *InVal = PN->getIncomingValue(i); 605 if (!isa<Instruction>(InVal)) 606 continue; 607 608 // If this pred is for a subloop, not L itself, skip it. 609 if (LI->getLoopFor(PN->getIncomingBlock(i)) != L) 610 continue; // The Block is in a subloop, skip it. 611 612 // Check that InVal is defined in the loop. 613 Instruction *Inst = cast<Instruction>(InVal); 614 if (!L->contains(Inst)) 615 continue; 616 617 // Okay, this instruction has a user outside of the current loop 618 // and varies predictably *inside* the loop. Evaluate the value it 619 // contains when the loop exits, if possible. 620 const SCEV *ExitValue = SE->getSCEVAtScope(Inst, L->getParentLoop()); 621 if (!SE->isLoopInvariant(ExitValue, L) || 622 !isSafeToExpand(ExitValue, *SE)) 623 continue; 624 625 // Computing the value outside of the loop brings no benefit if it is 626 // definitely used inside the loop in a way which can not be optimized 627 // away. 628 if (!isa<SCEVConstant>(ExitValue) && hasHardUserWithinLoop(L, Inst)) 629 continue; 630 631 bool HighCost = Rewriter.isHighCostExpansion(ExitValue, L, Inst); 632 Value *ExitVal = Rewriter.expandCodeFor(ExitValue, PN->getType(), Inst); 633 634 LLVM_DEBUG(dbgs() << "INDVARS: RLEV: AfterLoopVal = " << *ExitVal 635 << '\n' 636 << " LoopVal = " << *Inst << "\n"); 637 638 if (!isValidRewrite(Inst, ExitVal)) { 639 DeadInsts.push_back(ExitVal); 640 continue; 641 } 642 643 #ifndef NDEBUG 644 // If we reuse an instruction from a loop which is neither L nor one of 645 // its containing loops, we end up breaking LCSSA form for this loop by 646 // creating a new use of its instruction. 647 if (auto *ExitInsn = dyn_cast<Instruction>(ExitVal)) 648 if (auto *EVL = LI->getLoopFor(ExitInsn->getParent())) 649 if (EVL != L) 650 assert(EVL->contains(L) && "LCSSA breach detected!"); 651 #endif 652 653 // Collect all the candidate PHINodes to be rewritten. 654 RewritePhiSet.emplace_back(PN, i, ExitVal, HighCost); 655 } 656 } 657 } 658 659 bool LoopCanBeDel = canLoopBeDeleted(L, RewritePhiSet); 660 661 bool Changed = false; 662 // Transformation. 663 for (const RewritePhi &Phi : RewritePhiSet) { 664 PHINode *PN = Phi.PN; 665 Value *ExitVal = Phi.Val; 666 667 // Only do the rewrite when the ExitValue can be expanded cheaply. 668 // If LoopCanBeDel is true, rewrite exit value aggressively. 669 if (ReplaceExitValue == OnlyCheapRepl && !LoopCanBeDel && Phi.HighCost) { 670 DeadInsts.push_back(ExitVal); 671 continue; 672 } 673 674 Changed = true; 675 ++NumReplaced; 676 Instruction *Inst = cast<Instruction>(PN->getIncomingValue(Phi.Ith)); 677 PN->setIncomingValue(Phi.Ith, ExitVal); 678 679 // If this instruction is dead now, delete it. Don't do it now to avoid 680 // invalidating iterators. 681 if (isInstructionTriviallyDead(Inst, TLI)) 682 DeadInsts.push_back(Inst); 683 684 // Replace PN with ExitVal if that is legal and does not break LCSSA. 685 if (PN->getNumIncomingValues() == 1 && 686 LI->replacementPreservesLCSSAForm(PN, ExitVal)) { 687 PN->replaceAllUsesWith(ExitVal); 688 PN->eraseFromParent(); 689 } 690 } 691 692 // The insertion point instruction may have been deleted; clear it out 693 // so that the rewriter doesn't trip over it later. 694 Rewriter.clearInsertPoint(); 695 return Changed; 696 } 697 698 //===---------------------------------------------------------------------===// 699 // rewriteFirstIterationLoopExitValues: Rewrite loop exit values if we know 700 // they will exit at the first iteration. 701 //===---------------------------------------------------------------------===// 702 703 /// Check to see if this loop has loop invariant conditions which lead to loop 704 /// exits. If so, we know that if the exit path is taken, it is at the first 705 /// loop iteration. This lets us predict exit values of PHI nodes that live in 706 /// loop header. 707 bool IndVarSimplify::rewriteFirstIterationLoopExitValues(Loop *L) { 708 // Verify the input to the pass is already in LCSSA form. 709 assert(L->isLCSSAForm(*DT)); 710 711 SmallVector<BasicBlock *, 8> ExitBlocks; 712 L->getUniqueExitBlocks(ExitBlocks); 713 auto *LoopHeader = L->getHeader(); 714 assert(LoopHeader && "Invalid loop"); 715 716 bool MadeAnyChanges = false; 717 for (auto *ExitBB : ExitBlocks) { 718 // If there are no more PHI nodes in this exit block, then no more 719 // values defined inside the loop are used on this path. 720 for (PHINode &PN : ExitBB->phis()) { 721 for (unsigned IncomingValIdx = 0, E = PN.getNumIncomingValues(); 722 IncomingValIdx != E; ++IncomingValIdx) { 723 auto *IncomingBB = PN.getIncomingBlock(IncomingValIdx); 724 725 // We currently only support loop exits from loop header. If the 726 // incoming block is not loop header, we need to recursively check 727 // all conditions starting from loop header are loop invariants. 728 // Additional support might be added in the future. 729 if (IncomingBB != LoopHeader) 730 continue; 731 732 // Get condition that leads to the exit path. 733 auto *TermInst = IncomingBB->getTerminator(); 734 735 Value *Cond = nullptr; 736 if (auto *BI = dyn_cast<BranchInst>(TermInst)) { 737 // Must be a conditional branch, otherwise the block 738 // should not be in the loop. 739 Cond = BI->getCondition(); 740 } else if (auto *SI = dyn_cast<SwitchInst>(TermInst)) 741 Cond = SI->getCondition(); 742 else 743 continue; 744 745 if (!L->isLoopInvariant(Cond)) 746 continue; 747 748 auto *ExitVal = dyn_cast<PHINode>(PN.getIncomingValue(IncomingValIdx)); 749 750 // Only deal with PHIs. 751 if (!ExitVal) 752 continue; 753 754 // If ExitVal is a PHI on the loop header, then we know its 755 // value along this exit because the exit can only be taken 756 // on the first iteration. 757 auto *LoopPreheader = L->getLoopPreheader(); 758 assert(LoopPreheader && "Invalid loop"); 759 int PreheaderIdx = ExitVal->getBasicBlockIndex(LoopPreheader); 760 if (PreheaderIdx != -1) { 761 assert(ExitVal->getParent() == LoopHeader && 762 "ExitVal must be in loop header"); 763 MadeAnyChanges = true; 764 PN.setIncomingValue(IncomingValIdx, 765 ExitVal->getIncomingValue(PreheaderIdx)); 766 } 767 } 768 } 769 } 770 return MadeAnyChanges; 771 } 772 773 /// Check whether it is possible to delete the loop after rewriting exit 774 /// value. If it is possible, ignore ReplaceExitValue and do rewriting 775 /// aggressively. 776 bool IndVarSimplify::canLoopBeDeleted( 777 Loop *L, SmallVector<RewritePhi, 8> &RewritePhiSet) { 778 BasicBlock *Preheader = L->getLoopPreheader(); 779 // If there is no preheader, the loop will not be deleted. 780 if (!Preheader) 781 return false; 782 783 // In LoopDeletion pass Loop can be deleted when ExitingBlocks.size() > 1. 784 // We obviate multiple ExitingBlocks case for simplicity. 785 // TODO: If we see testcase with multiple ExitingBlocks can be deleted 786 // after exit value rewriting, we can enhance the logic here. 787 SmallVector<BasicBlock *, 4> ExitingBlocks; 788 L->getExitingBlocks(ExitingBlocks); 789 SmallVector<BasicBlock *, 8> ExitBlocks; 790 L->getUniqueExitBlocks(ExitBlocks); 791 if (ExitBlocks.size() > 1 || ExitingBlocks.size() > 1) 792 return false; 793 794 BasicBlock *ExitBlock = ExitBlocks[0]; 795 BasicBlock::iterator BI = ExitBlock->begin(); 796 while (PHINode *P = dyn_cast<PHINode>(BI)) { 797 Value *Incoming = P->getIncomingValueForBlock(ExitingBlocks[0]); 798 799 // If the Incoming value of P is found in RewritePhiSet, we know it 800 // could be rewritten to use a loop invariant value in transformation 801 // phase later. Skip it in the loop invariant check below. 802 bool found = false; 803 for (const RewritePhi &Phi : RewritePhiSet) { 804 unsigned i = Phi.Ith; 805 if (Phi.PN == P && (Phi.PN)->getIncomingValue(i) == Incoming) { 806 found = true; 807 break; 808 } 809 } 810 811 Instruction *I; 812 if (!found && (I = dyn_cast<Instruction>(Incoming))) 813 if (!L->hasLoopInvariantOperands(I)) 814 return false; 815 816 ++BI; 817 } 818 819 for (auto *BB : L->blocks()) 820 if (llvm::any_of(*BB, [](Instruction &I) { 821 return I.mayHaveSideEffects(); 822 })) 823 return false; 824 825 return true; 826 } 827 828 //===----------------------------------------------------------------------===// 829 // IV Widening - Extend the width of an IV to cover its widest uses. 830 //===----------------------------------------------------------------------===// 831 832 namespace { 833 834 // Collect information about induction variables that are used by sign/zero 835 // extend operations. This information is recorded by CollectExtend and provides 836 // the input to WidenIV. 837 struct WideIVInfo { 838 PHINode *NarrowIV = nullptr; 839 840 // Widest integer type created [sz]ext 841 Type *WidestNativeType = nullptr; 842 843 // Was a sext user seen before a zext? 844 bool IsSigned = false; 845 }; 846 847 } // end anonymous namespace 848 849 /// Update information about the induction variable that is extended by this 850 /// sign or zero extend operation. This is used to determine the final width of 851 /// the IV before actually widening it. 852 static void visitIVCast(CastInst *Cast, WideIVInfo &WI, ScalarEvolution *SE, 853 const TargetTransformInfo *TTI) { 854 bool IsSigned = Cast->getOpcode() == Instruction::SExt; 855 if (!IsSigned && Cast->getOpcode() != Instruction::ZExt) 856 return; 857 858 Type *Ty = Cast->getType(); 859 uint64_t Width = SE->getTypeSizeInBits(Ty); 860 if (!Cast->getModule()->getDataLayout().isLegalInteger(Width)) 861 return; 862 863 // Check that `Cast` actually extends the induction variable (we rely on this 864 // later). This takes care of cases where `Cast` is extending a truncation of 865 // the narrow induction variable, and thus can end up being narrower than the 866 // "narrow" induction variable. 867 uint64_t NarrowIVWidth = SE->getTypeSizeInBits(WI.NarrowIV->getType()); 868 if (NarrowIVWidth >= Width) 869 return; 870 871 // Cast is either an sext or zext up to this point. 872 // We should not widen an indvar if arithmetics on the wider indvar are more 873 // expensive than those on the narrower indvar. We check only the cost of ADD 874 // because at least an ADD is required to increment the induction variable. We 875 // could compute more comprehensively the cost of all instructions on the 876 // induction variable when necessary. 877 if (TTI && 878 TTI->getArithmeticInstrCost(Instruction::Add, Ty) > 879 TTI->getArithmeticInstrCost(Instruction::Add, 880 Cast->getOperand(0)->getType())) { 881 return; 882 } 883 884 if (!WI.WidestNativeType) { 885 WI.WidestNativeType = SE->getEffectiveSCEVType(Ty); 886 WI.IsSigned = IsSigned; 887 return; 888 } 889 890 // We extend the IV to satisfy the sign of its first user, arbitrarily. 891 if (WI.IsSigned != IsSigned) 892 return; 893 894 if (Width > SE->getTypeSizeInBits(WI.WidestNativeType)) 895 WI.WidestNativeType = SE->getEffectiveSCEVType(Ty); 896 } 897 898 namespace { 899 900 /// Record a link in the Narrow IV def-use chain along with the WideIV that 901 /// computes the same value as the Narrow IV def. This avoids caching Use* 902 /// pointers. 903 struct NarrowIVDefUse { 904 Instruction *NarrowDef = nullptr; 905 Instruction *NarrowUse = nullptr; 906 Instruction *WideDef = nullptr; 907 908 // True if the narrow def is never negative. Tracking this information lets 909 // us use a sign extension instead of a zero extension or vice versa, when 910 // profitable and legal. 911 bool NeverNegative = false; 912 913 NarrowIVDefUse(Instruction *ND, Instruction *NU, Instruction *WD, 914 bool NeverNegative) 915 : NarrowDef(ND), NarrowUse(NU), WideDef(WD), 916 NeverNegative(NeverNegative) {} 917 }; 918 919 /// The goal of this transform is to remove sign and zero extends without 920 /// creating any new induction variables. To do this, it creates a new phi of 921 /// the wider type and redirects all users, either removing extends or inserting 922 /// truncs whenever we stop propagating the type. 923 class WidenIV { 924 // Parameters 925 PHINode *OrigPhi; 926 Type *WideType; 927 928 // Context 929 LoopInfo *LI; 930 Loop *L; 931 ScalarEvolution *SE; 932 DominatorTree *DT; 933 934 // Does the module have any calls to the llvm.experimental.guard intrinsic 935 // at all? If not we can avoid scanning instructions looking for guards. 936 bool HasGuards; 937 938 // Result 939 PHINode *WidePhi = nullptr; 940 Instruction *WideInc = nullptr; 941 const SCEV *WideIncExpr = nullptr; 942 SmallVectorImpl<WeakTrackingVH> &DeadInsts; 943 944 SmallPtrSet<Instruction *,16> Widened; 945 SmallVector<NarrowIVDefUse, 8> NarrowIVUsers; 946 947 enum ExtendKind { ZeroExtended, SignExtended, Unknown }; 948 949 // A map tracking the kind of extension used to widen each narrow IV 950 // and narrow IV user. 951 // Key: pointer to a narrow IV or IV user. 952 // Value: the kind of extension used to widen this Instruction. 953 DenseMap<AssertingVH<Instruction>, ExtendKind> ExtendKindMap; 954 955 using DefUserPair = std::pair<AssertingVH<Value>, AssertingVH<Instruction>>; 956 957 // A map with control-dependent ranges for post increment IV uses. The key is 958 // a pair of IV def and a use of this def denoting the context. The value is 959 // a ConstantRange representing possible values of the def at the given 960 // context. 961 DenseMap<DefUserPair, ConstantRange> PostIncRangeInfos; 962 963 Optional<ConstantRange> getPostIncRangeInfo(Value *Def, 964 Instruction *UseI) { 965 DefUserPair Key(Def, UseI); 966 auto It = PostIncRangeInfos.find(Key); 967 return It == PostIncRangeInfos.end() 968 ? Optional<ConstantRange>(None) 969 : Optional<ConstantRange>(It->second); 970 } 971 972 void calculatePostIncRanges(PHINode *OrigPhi); 973 void calculatePostIncRange(Instruction *NarrowDef, Instruction *NarrowUser); 974 975 void updatePostIncRangeInfo(Value *Def, Instruction *UseI, ConstantRange R) { 976 DefUserPair Key(Def, UseI); 977 auto It = PostIncRangeInfos.find(Key); 978 if (It == PostIncRangeInfos.end()) 979 PostIncRangeInfos.insert({Key, R}); 980 else 981 It->second = R.intersectWith(It->second); 982 } 983 984 public: 985 WidenIV(const WideIVInfo &WI, LoopInfo *LInfo, ScalarEvolution *SEv, 986 DominatorTree *DTree, SmallVectorImpl<WeakTrackingVH> &DI, 987 bool HasGuards) 988 : OrigPhi(WI.NarrowIV), WideType(WI.WidestNativeType), LI(LInfo), 989 L(LI->getLoopFor(OrigPhi->getParent())), SE(SEv), DT(DTree), 990 HasGuards(HasGuards), DeadInsts(DI) { 991 assert(L->getHeader() == OrigPhi->getParent() && "Phi must be an IV"); 992 ExtendKindMap[OrigPhi] = WI.IsSigned ? SignExtended : ZeroExtended; 993 } 994 995 PHINode *createWideIV(SCEVExpander &Rewriter); 996 997 protected: 998 Value *createExtendInst(Value *NarrowOper, Type *WideType, bool IsSigned, 999 Instruction *Use); 1000 1001 Instruction *cloneIVUser(NarrowIVDefUse DU, const SCEVAddRecExpr *WideAR); 1002 Instruction *cloneArithmeticIVUser(NarrowIVDefUse DU, 1003 const SCEVAddRecExpr *WideAR); 1004 Instruction *cloneBitwiseIVUser(NarrowIVDefUse DU); 1005 1006 ExtendKind getExtendKind(Instruction *I); 1007 1008 using WidenedRecTy = std::pair<const SCEVAddRecExpr *, ExtendKind>; 1009 1010 WidenedRecTy getWideRecurrence(NarrowIVDefUse DU); 1011 1012 WidenedRecTy getExtendedOperandRecurrence(NarrowIVDefUse DU); 1013 1014 const SCEV *getSCEVByOpCode(const SCEV *LHS, const SCEV *RHS, 1015 unsigned OpCode) const; 1016 1017 Instruction *widenIVUse(NarrowIVDefUse DU, SCEVExpander &Rewriter); 1018 1019 bool widenLoopCompare(NarrowIVDefUse DU); 1020 bool widenWithVariantLoadUse(NarrowIVDefUse DU); 1021 void widenWithVariantLoadUseCodegen(NarrowIVDefUse DU); 1022 1023 void pushNarrowIVUsers(Instruction *NarrowDef, Instruction *WideDef); 1024 }; 1025 1026 } // end anonymous namespace 1027 1028 Value *WidenIV::createExtendInst(Value *NarrowOper, Type *WideType, 1029 bool IsSigned, Instruction *Use) { 1030 // Set the debug location and conservative insertion point. 1031 IRBuilder<> Builder(Use); 1032 // Hoist the insertion point into loop preheaders as far as possible. 1033 for (const Loop *L = LI->getLoopFor(Use->getParent()); 1034 L && L->getLoopPreheader() && L->isLoopInvariant(NarrowOper); 1035 L = L->getParentLoop()) 1036 Builder.SetInsertPoint(L->getLoopPreheader()->getTerminator()); 1037 1038 return IsSigned ? Builder.CreateSExt(NarrowOper, WideType) : 1039 Builder.CreateZExt(NarrowOper, WideType); 1040 } 1041 1042 /// Instantiate a wide operation to replace a narrow operation. This only needs 1043 /// to handle operations that can evaluation to SCEVAddRec. It can safely return 1044 /// 0 for any operation we decide not to clone. 1045 Instruction *WidenIV::cloneIVUser(NarrowIVDefUse DU, 1046 const SCEVAddRecExpr *WideAR) { 1047 unsigned Opcode = DU.NarrowUse->getOpcode(); 1048 switch (Opcode) { 1049 default: 1050 return nullptr; 1051 case Instruction::Add: 1052 case Instruction::Mul: 1053 case Instruction::UDiv: 1054 case Instruction::Sub: 1055 return cloneArithmeticIVUser(DU, WideAR); 1056 1057 case Instruction::And: 1058 case Instruction::Or: 1059 case Instruction::Xor: 1060 case Instruction::Shl: 1061 case Instruction::LShr: 1062 case Instruction::AShr: 1063 return cloneBitwiseIVUser(DU); 1064 } 1065 } 1066 1067 Instruction *WidenIV::cloneBitwiseIVUser(NarrowIVDefUse DU) { 1068 Instruction *NarrowUse = DU.NarrowUse; 1069 Instruction *NarrowDef = DU.NarrowDef; 1070 Instruction *WideDef = DU.WideDef; 1071 1072 LLVM_DEBUG(dbgs() << "Cloning bitwise IVUser: " << *NarrowUse << "\n"); 1073 1074 // Replace NarrowDef operands with WideDef. Otherwise, we don't know anything 1075 // about the narrow operand yet so must insert a [sz]ext. It is probably loop 1076 // invariant and will be folded or hoisted. If it actually comes from a 1077 // widened IV, it should be removed during a future call to widenIVUse. 1078 bool IsSigned = getExtendKind(NarrowDef) == SignExtended; 1079 Value *LHS = (NarrowUse->getOperand(0) == NarrowDef) 1080 ? WideDef 1081 : createExtendInst(NarrowUse->getOperand(0), WideType, 1082 IsSigned, NarrowUse); 1083 Value *RHS = (NarrowUse->getOperand(1) == NarrowDef) 1084 ? WideDef 1085 : createExtendInst(NarrowUse->getOperand(1), WideType, 1086 IsSigned, NarrowUse); 1087 1088 auto *NarrowBO = cast<BinaryOperator>(NarrowUse); 1089 auto *WideBO = BinaryOperator::Create(NarrowBO->getOpcode(), LHS, RHS, 1090 NarrowBO->getName()); 1091 IRBuilder<> Builder(NarrowUse); 1092 Builder.Insert(WideBO); 1093 WideBO->copyIRFlags(NarrowBO); 1094 return WideBO; 1095 } 1096 1097 Instruction *WidenIV::cloneArithmeticIVUser(NarrowIVDefUse DU, 1098 const SCEVAddRecExpr *WideAR) { 1099 Instruction *NarrowUse = DU.NarrowUse; 1100 Instruction *NarrowDef = DU.NarrowDef; 1101 Instruction *WideDef = DU.WideDef; 1102 1103 LLVM_DEBUG(dbgs() << "Cloning arithmetic IVUser: " << *NarrowUse << "\n"); 1104 1105 unsigned IVOpIdx = (NarrowUse->getOperand(0) == NarrowDef) ? 0 : 1; 1106 1107 // We're trying to find X such that 1108 // 1109 // Widen(NarrowDef `op` NonIVNarrowDef) == WideAR == WideDef `op.wide` X 1110 // 1111 // We guess two solutions to X, sext(NonIVNarrowDef) and zext(NonIVNarrowDef), 1112 // and check using SCEV if any of them are correct. 1113 1114 // Returns true if extending NonIVNarrowDef according to `SignExt` is a 1115 // correct solution to X. 1116 auto GuessNonIVOperand = [&](bool SignExt) { 1117 const SCEV *WideLHS; 1118 const SCEV *WideRHS; 1119 1120 auto GetExtend = [this, SignExt](const SCEV *S, Type *Ty) { 1121 if (SignExt) 1122 return SE->getSignExtendExpr(S, Ty); 1123 return SE->getZeroExtendExpr(S, Ty); 1124 }; 1125 1126 if (IVOpIdx == 0) { 1127 WideLHS = SE->getSCEV(WideDef); 1128 const SCEV *NarrowRHS = SE->getSCEV(NarrowUse->getOperand(1)); 1129 WideRHS = GetExtend(NarrowRHS, WideType); 1130 } else { 1131 const SCEV *NarrowLHS = SE->getSCEV(NarrowUse->getOperand(0)); 1132 WideLHS = GetExtend(NarrowLHS, WideType); 1133 WideRHS = SE->getSCEV(WideDef); 1134 } 1135 1136 // WideUse is "WideDef `op.wide` X" as described in the comment. 1137 const SCEV *WideUse = nullptr; 1138 1139 switch (NarrowUse->getOpcode()) { 1140 default: 1141 llvm_unreachable("No other possibility!"); 1142 1143 case Instruction::Add: 1144 WideUse = SE->getAddExpr(WideLHS, WideRHS); 1145 break; 1146 1147 case Instruction::Mul: 1148 WideUse = SE->getMulExpr(WideLHS, WideRHS); 1149 break; 1150 1151 case Instruction::UDiv: 1152 WideUse = SE->getUDivExpr(WideLHS, WideRHS); 1153 break; 1154 1155 case Instruction::Sub: 1156 WideUse = SE->getMinusSCEV(WideLHS, WideRHS); 1157 break; 1158 } 1159 1160 return WideUse == WideAR; 1161 }; 1162 1163 bool SignExtend = getExtendKind(NarrowDef) == SignExtended; 1164 if (!GuessNonIVOperand(SignExtend)) { 1165 SignExtend = !SignExtend; 1166 if (!GuessNonIVOperand(SignExtend)) 1167 return nullptr; 1168 } 1169 1170 Value *LHS = (NarrowUse->getOperand(0) == NarrowDef) 1171 ? WideDef 1172 : createExtendInst(NarrowUse->getOperand(0), WideType, 1173 SignExtend, NarrowUse); 1174 Value *RHS = (NarrowUse->getOperand(1) == NarrowDef) 1175 ? WideDef 1176 : createExtendInst(NarrowUse->getOperand(1), WideType, 1177 SignExtend, NarrowUse); 1178 1179 auto *NarrowBO = cast<BinaryOperator>(NarrowUse); 1180 auto *WideBO = BinaryOperator::Create(NarrowBO->getOpcode(), LHS, RHS, 1181 NarrowBO->getName()); 1182 1183 IRBuilder<> Builder(NarrowUse); 1184 Builder.Insert(WideBO); 1185 WideBO->copyIRFlags(NarrowBO); 1186 return WideBO; 1187 } 1188 1189 WidenIV::ExtendKind WidenIV::getExtendKind(Instruction *I) { 1190 auto It = ExtendKindMap.find(I); 1191 assert(It != ExtendKindMap.end() && "Instruction not yet extended!"); 1192 return It->second; 1193 } 1194 1195 const SCEV *WidenIV::getSCEVByOpCode(const SCEV *LHS, const SCEV *RHS, 1196 unsigned OpCode) const { 1197 if (OpCode == Instruction::Add) 1198 return SE->getAddExpr(LHS, RHS); 1199 if (OpCode == Instruction::Sub) 1200 return SE->getMinusSCEV(LHS, RHS); 1201 if (OpCode == Instruction::Mul) 1202 return SE->getMulExpr(LHS, RHS); 1203 1204 llvm_unreachable("Unsupported opcode."); 1205 } 1206 1207 /// No-wrap operations can transfer sign extension of their result to their 1208 /// operands. Generate the SCEV value for the widened operation without 1209 /// actually modifying the IR yet. If the expression after extending the 1210 /// operands is an AddRec for this loop, return the AddRec and the kind of 1211 /// extension used. 1212 WidenIV::WidenedRecTy WidenIV::getExtendedOperandRecurrence(NarrowIVDefUse DU) { 1213 // Handle the common case of add<nsw/nuw> 1214 const unsigned OpCode = DU.NarrowUse->getOpcode(); 1215 // Only Add/Sub/Mul instructions supported yet. 1216 if (OpCode != Instruction::Add && OpCode != Instruction::Sub && 1217 OpCode != Instruction::Mul) 1218 return {nullptr, Unknown}; 1219 1220 // One operand (NarrowDef) has already been extended to WideDef. Now determine 1221 // if extending the other will lead to a recurrence. 1222 const unsigned ExtendOperIdx = 1223 DU.NarrowUse->getOperand(0) == DU.NarrowDef ? 1 : 0; 1224 assert(DU.NarrowUse->getOperand(1-ExtendOperIdx) == DU.NarrowDef && "bad DU"); 1225 1226 const SCEV *ExtendOperExpr = nullptr; 1227 const OverflowingBinaryOperator *OBO = 1228 cast<OverflowingBinaryOperator>(DU.NarrowUse); 1229 ExtendKind ExtKind = getExtendKind(DU.NarrowDef); 1230 if (ExtKind == SignExtended && OBO->hasNoSignedWrap()) 1231 ExtendOperExpr = SE->getSignExtendExpr( 1232 SE->getSCEV(DU.NarrowUse->getOperand(ExtendOperIdx)), WideType); 1233 else if(ExtKind == ZeroExtended && OBO->hasNoUnsignedWrap()) 1234 ExtendOperExpr = SE->getZeroExtendExpr( 1235 SE->getSCEV(DU.NarrowUse->getOperand(ExtendOperIdx)), WideType); 1236 else 1237 return {nullptr, Unknown}; 1238 1239 // When creating this SCEV expr, don't apply the current operations NSW or NUW 1240 // flags. This instruction may be guarded by control flow that the no-wrap 1241 // behavior depends on. Non-control-equivalent instructions can be mapped to 1242 // the same SCEV expression, and it would be incorrect to transfer NSW/NUW 1243 // semantics to those operations. 1244 const SCEV *lhs = SE->getSCEV(DU.WideDef); 1245 const SCEV *rhs = ExtendOperExpr; 1246 1247 // Let's swap operands to the initial order for the case of non-commutative 1248 // operations, like SUB. See PR21014. 1249 if (ExtendOperIdx == 0) 1250 std::swap(lhs, rhs); 1251 const SCEVAddRecExpr *AddRec = 1252 dyn_cast<SCEVAddRecExpr>(getSCEVByOpCode(lhs, rhs, OpCode)); 1253 1254 if (!AddRec || AddRec->getLoop() != L) 1255 return {nullptr, Unknown}; 1256 1257 return {AddRec, ExtKind}; 1258 } 1259 1260 /// Is this instruction potentially interesting for further simplification after 1261 /// widening it's type? In other words, can the extend be safely hoisted out of 1262 /// the loop with SCEV reducing the value to a recurrence on the same loop. If 1263 /// so, return the extended recurrence and the kind of extension used. Otherwise 1264 /// return {nullptr, Unknown}. 1265 WidenIV::WidenedRecTy WidenIV::getWideRecurrence(NarrowIVDefUse DU) { 1266 if (!SE->isSCEVable(DU.NarrowUse->getType())) 1267 return {nullptr, Unknown}; 1268 1269 const SCEV *NarrowExpr = SE->getSCEV(DU.NarrowUse); 1270 if (SE->getTypeSizeInBits(NarrowExpr->getType()) >= 1271 SE->getTypeSizeInBits(WideType)) { 1272 // NarrowUse implicitly widens its operand. e.g. a gep with a narrow 1273 // index. So don't follow this use. 1274 return {nullptr, Unknown}; 1275 } 1276 1277 const SCEV *WideExpr; 1278 ExtendKind ExtKind; 1279 if (DU.NeverNegative) { 1280 WideExpr = SE->getSignExtendExpr(NarrowExpr, WideType); 1281 if (isa<SCEVAddRecExpr>(WideExpr)) 1282 ExtKind = SignExtended; 1283 else { 1284 WideExpr = SE->getZeroExtendExpr(NarrowExpr, WideType); 1285 ExtKind = ZeroExtended; 1286 } 1287 } else if (getExtendKind(DU.NarrowDef) == SignExtended) { 1288 WideExpr = SE->getSignExtendExpr(NarrowExpr, WideType); 1289 ExtKind = SignExtended; 1290 } else { 1291 WideExpr = SE->getZeroExtendExpr(NarrowExpr, WideType); 1292 ExtKind = ZeroExtended; 1293 } 1294 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(WideExpr); 1295 if (!AddRec || AddRec->getLoop() != L) 1296 return {nullptr, Unknown}; 1297 return {AddRec, ExtKind}; 1298 } 1299 1300 /// This IV user cannot be widen. Replace this use of the original narrow IV 1301 /// with a truncation of the new wide IV to isolate and eliminate the narrow IV. 1302 static void truncateIVUse(NarrowIVDefUse DU, DominatorTree *DT, LoopInfo *LI) { 1303 LLVM_DEBUG(dbgs() << "INDVARS: Truncate IV " << *DU.WideDef << " for user " 1304 << *DU.NarrowUse << "\n"); 1305 IRBuilder<> Builder( 1306 getInsertPointForUses(DU.NarrowUse, DU.NarrowDef, DT, LI)); 1307 Value *Trunc = Builder.CreateTrunc(DU.WideDef, DU.NarrowDef->getType()); 1308 DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, Trunc); 1309 } 1310 1311 /// If the narrow use is a compare instruction, then widen the compare 1312 // (and possibly the other operand). The extend operation is hoisted into the 1313 // loop preheader as far as possible. 1314 bool WidenIV::widenLoopCompare(NarrowIVDefUse DU) { 1315 ICmpInst *Cmp = dyn_cast<ICmpInst>(DU.NarrowUse); 1316 if (!Cmp) 1317 return false; 1318 1319 // We can legally widen the comparison in the following two cases: 1320 // 1321 // - The signedness of the IV extension and comparison match 1322 // 1323 // - The narrow IV is always positive (and thus its sign extension is equal 1324 // to its zero extension). For instance, let's say we're zero extending 1325 // %narrow for the following use 1326 // 1327 // icmp slt i32 %narrow, %val ... (A) 1328 // 1329 // and %narrow is always positive. Then 1330 // 1331 // (A) == icmp slt i32 sext(%narrow), sext(%val) 1332 // == icmp slt i32 zext(%narrow), sext(%val) 1333 bool IsSigned = getExtendKind(DU.NarrowDef) == SignExtended; 1334 if (!(DU.NeverNegative || IsSigned == Cmp->isSigned())) 1335 return false; 1336 1337 Value *Op = Cmp->getOperand(Cmp->getOperand(0) == DU.NarrowDef ? 1 : 0); 1338 unsigned CastWidth = SE->getTypeSizeInBits(Op->getType()); 1339 unsigned IVWidth = SE->getTypeSizeInBits(WideType); 1340 assert(CastWidth <= IVWidth && "Unexpected width while widening compare."); 1341 1342 // Widen the compare instruction. 1343 IRBuilder<> Builder( 1344 getInsertPointForUses(DU.NarrowUse, DU.NarrowDef, DT, LI)); 1345 DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, DU.WideDef); 1346 1347 // Widen the other operand of the compare, if necessary. 1348 if (CastWidth < IVWidth) { 1349 Value *ExtOp = createExtendInst(Op, WideType, Cmp->isSigned(), Cmp); 1350 DU.NarrowUse->replaceUsesOfWith(Op, ExtOp); 1351 } 1352 return true; 1353 } 1354 1355 /// If the narrow use is an instruction whose two operands are the defining 1356 /// instruction of DU and a load instruction, then we have the following: 1357 /// if the load is hoisted outside the loop, then we do not reach this function 1358 /// as scalar evolution analysis works fine in widenIVUse with variables 1359 /// hoisted outside the loop and efficient code is subsequently generated by 1360 /// not emitting truncate instructions. But when the load is not hoisted 1361 /// (whether due to limitation in alias analysis or due to a true legality), 1362 /// then scalar evolution can not proceed with loop variant values and 1363 /// inefficient code is generated. This function handles the non-hoisted load 1364 /// special case by making the optimization generate the same type of code for 1365 /// hoisted and non-hoisted load (widen use and eliminate sign extend 1366 /// instruction). This special case is important especially when the induction 1367 /// variables are affecting addressing mode in code generation. 1368 bool WidenIV::widenWithVariantLoadUse(NarrowIVDefUse DU) { 1369 Instruction *NarrowUse = DU.NarrowUse; 1370 Instruction *NarrowDef = DU.NarrowDef; 1371 Instruction *WideDef = DU.WideDef; 1372 1373 // Handle the common case of add<nsw/nuw> 1374 const unsigned OpCode = NarrowUse->getOpcode(); 1375 // Only Add/Sub/Mul instructions are supported. 1376 if (OpCode != Instruction::Add && OpCode != Instruction::Sub && 1377 OpCode != Instruction::Mul) 1378 return false; 1379 1380 // The operand that is not defined by NarrowDef of DU. Let's call it the 1381 // other operand. 1382 unsigned ExtendOperIdx = DU.NarrowUse->getOperand(0) == NarrowDef ? 1 : 0; 1383 assert(DU.NarrowUse->getOperand(1 - ExtendOperIdx) == DU.NarrowDef && 1384 "bad DU"); 1385 1386 const SCEV *ExtendOperExpr = nullptr; 1387 const OverflowingBinaryOperator *OBO = 1388 cast<OverflowingBinaryOperator>(NarrowUse); 1389 ExtendKind ExtKind = getExtendKind(NarrowDef); 1390 if (ExtKind == SignExtended && OBO->hasNoSignedWrap()) 1391 ExtendOperExpr = SE->getSignExtendExpr( 1392 SE->getSCEV(NarrowUse->getOperand(ExtendOperIdx)), WideType); 1393 else if (ExtKind == ZeroExtended && OBO->hasNoUnsignedWrap()) 1394 ExtendOperExpr = SE->getZeroExtendExpr( 1395 SE->getSCEV(NarrowUse->getOperand(ExtendOperIdx)), WideType); 1396 else 1397 return false; 1398 1399 // We are interested in the other operand being a load instruction. 1400 // But, we should look into relaxing this restriction later on. 1401 auto *I = dyn_cast<Instruction>(NarrowUse->getOperand(ExtendOperIdx)); 1402 if (I && I->getOpcode() != Instruction::Load) 1403 return false; 1404 1405 // Verifying that Defining operand is an AddRec 1406 const SCEV *Op1 = SE->getSCEV(WideDef); 1407 const SCEVAddRecExpr *AddRecOp1 = dyn_cast<SCEVAddRecExpr>(Op1); 1408 if (!AddRecOp1 || AddRecOp1->getLoop() != L) 1409 return false; 1410 // Verifying that other operand is an Extend. 1411 if (ExtKind == SignExtended) { 1412 if (!isa<SCEVSignExtendExpr>(ExtendOperExpr)) 1413 return false; 1414 } else { 1415 if (!isa<SCEVZeroExtendExpr>(ExtendOperExpr)) 1416 return false; 1417 } 1418 1419 if (ExtKind == SignExtended) { 1420 for (Use &U : NarrowUse->uses()) { 1421 SExtInst *User = dyn_cast<SExtInst>(U.getUser()); 1422 if (!User || User->getType() != WideType) 1423 return false; 1424 } 1425 } else { // ExtKind == ZeroExtended 1426 for (Use &U : NarrowUse->uses()) { 1427 ZExtInst *User = dyn_cast<ZExtInst>(U.getUser()); 1428 if (!User || User->getType() != WideType) 1429 return false; 1430 } 1431 } 1432 1433 return true; 1434 } 1435 1436 /// Special Case for widening with variant Loads (see 1437 /// WidenIV::widenWithVariantLoadUse). This is the code generation part. 1438 void WidenIV::widenWithVariantLoadUseCodegen(NarrowIVDefUse DU) { 1439 Instruction *NarrowUse = DU.NarrowUse; 1440 Instruction *NarrowDef = DU.NarrowDef; 1441 Instruction *WideDef = DU.WideDef; 1442 1443 ExtendKind ExtKind = getExtendKind(NarrowDef); 1444 1445 LLVM_DEBUG(dbgs() << "Cloning arithmetic IVUser: " << *NarrowUse << "\n"); 1446 1447 // Generating a widening use instruction. 1448 Value *LHS = (NarrowUse->getOperand(0) == NarrowDef) 1449 ? WideDef 1450 : createExtendInst(NarrowUse->getOperand(0), WideType, 1451 ExtKind, NarrowUse); 1452 Value *RHS = (NarrowUse->getOperand(1) == NarrowDef) 1453 ? WideDef 1454 : createExtendInst(NarrowUse->getOperand(1), WideType, 1455 ExtKind, NarrowUse); 1456 1457 auto *NarrowBO = cast<BinaryOperator>(NarrowUse); 1458 auto *WideBO = BinaryOperator::Create(NarrowBO->getOpcode(), LHS, RHS, 1459 NarrowBO->getName()); 1460 IRBuilder<> Builder(NarrowUse); 1461 Builder.Insert(WideBO); 1462 WideBO->copyIRFlags(NarrowBO); 1463 1464 if (ExtKind == SignExtended) 1465 ExtendKindMap[NarrowUse] = SignExtended; 1466 else 1467 ExtendKindMap[NarrowUse] = ZeroExtended; 1468 1469 // Update the Use. 1470 if (ExtKind == SignExtended) { 1471 for (Use &U : NarrowUse->uses()) { 1472 SExtInst *User = dyn_cast<SExtInst>(U.getUser()); 1473 if (User && User->getType() == WideType) { 1474 LLVM_DEBUG(dbgs() << "INDVARS: eliminating " << *User << " replaced by " 1475 << *WideBO << "\n"); 1476 ++NumElimExt; 1477 User->replaceAllUsesWith(WideBO); 1478 DeadInsts.emplace_back(User); 1479 } 1480 } 1481 } else { // ExtKind == ZeroExtended 1482 for (Use &U : NarrowUse->uses()) { 1483 ZExtInst *User = dyn_cast<ZExtInst>(U.getUser()); 1484 if (User && User->getType() == WideType) { 1485 LLVM_DEBUG(dbgs() << "INDVARS: eliminating " << *User << " replaced by " 1486 << *WideBO << "\n"); 1487 ++NumElimExt; 1488 User->replaceAllUsesWith(WideBO); 1489 DeadInsts.emplace_back(User); 1490 } 1491 } 1492 } 1493 } 1494 1495 /// Determine whether an individual user of the narrow IV can be widened. If so, 1496 /// return the wide clone of the user. 1497 Instruction *WidenIV::widenIVUse(NarrowIVDefUse DU, SCEVExpander &Rewriter) { 1498 assert(ExtendKindMap.count(DU.NarrowDef) && 1499 "Should already know the kind of extension used to widen NarrowDef"); 1500 1501 // Stop traversing the def-use chain at inner-loop phis or post-loop phis. 1502 if (PHINode *UsePhi = dyn_cast<PHINode>(DU.NarrowUse)) { 1503 if (LI->getLoopFor(UsePhi->getParent()) != L) { 1504 // For LCSSA phis, sink the truncate outside the loop. 1505 // After SimplifyCFG most loop exit targets have a single predecessor. 1506 // Otherwise fall back to a truncate within the loop. 1507 if (UsePhi->getNumOperands() != 1) 1508 truncateIVUse(DU, DT, LI); 1509 else { 1510 // Widening the PHI requires us to insert a trunc. The logical place 1511 // for this trunc is in the same BB as the PHI. This is not possible if 1512 // the BB is terminated by a catchswitch. 1513 if (isa<CatchSwitchInst>(UsePhi->getParent()->getTerminator())) 1514 return nullptr; 1515 1516 PHINode *WidePhi = 1517 PHINode::Create(DU.WideDef->getType(), 1, UsePhi->getName() + ".wide", 1518 UsePhi); 1519 WidePhi->addIncoming(DU.WideDef, UsePhi->getIncomingBlock(0)); 1520 IRBuilder<> Builder(&*WidePhi->getParent()->getFirstInsertionPt()); 1521 Value *Trunc = Builder.CreateTrunc(WidePhi, DU.NarrowDef->getType()); 1522 UsePhi->replaceAllUsesWith(Trunc); 1523 DeadInsts.emplace_back(UsePhi); 1524 LLVM_DEBUG(dbgs() << "INDVARS: Widen lcssa phi " << *UsePhi << " to " 1525 << *WidePhi << "\n"); 1526 } 1527 return nullptr; 1528 } 1529 } 1530 1531 // This narrow use can be widened by a sext if it's non-negative or its narrow 1532 // def was widended by a sext. Same for zext. 1533 auto canWidenBySExt = [&]() { 1534 return DU.NeverNegative || getExtendKind(DU.NarrowDef) == SignExtended; 1535 }; 1536 auto canWidenByZExt = [&]() { 1537 return DU.NeverNegative || getExtendKind(DU.NarrowDef) == ZeroExtended; 1538 }; 1539 1540 // Our raison d'etre! Eliminate sign and zero extension. 1541 if ((isa<SExtInst>(DU.NarrowUse) && canWidenBySExt()) || 1542 (isa<ZExtInst>(DU.NarrowUse) && canWidenByZExt())) { 1543 Value *NewDef = DU.WideDef; 1544 if (DU.NarrowUse->getType() != WideType) { 1545 unsigned CastWidth = SE->getTypeSizeInBits(DU.NarrowUse->getType()); 1546 unsigned IVWidth = SE->getTypeSizeInBits(WideType); 1547 if (CastWidth < IVWidth) { 1548 // The cast isn't as wide as the IV, so insert a Trunc. 1549 IRBuilder<> Builder(DU.NarrowUse); 1550 NewDef = Builder.CreateTrunc(DU.WideDef, DU.NarrowUse->getType()); 1551 } 1552 else { 1553 // A wider extend was hidden behind a narrower one. This may induce 1554 // another round of IV widening in which the intermediate IV becomes 1555 // dead. It should be very rare. 1556 LLVM_DEBUG(dbgs() << "INDVARS: New IV " << *WidePhi 1557 << " not wide enough to subsume " << *DU.NarrowUse 1558 << "\n"); 1559 DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, DU.WideDef); 1560 NewDef = DU.NarrowUse; 1561 } 1562 } 1563 if (NewDef != DU.NarrowUse) { 1564 LLVM_DEBUG(dbgs() << "INDVARS: eliminating " << *DU.NarrowUse 1565 << " replaced by " << *DU.WideDef << "\n"); 1566 ++NumElimExt; 1567 DU.NarrowUse->replaceAllUsesWith(NewDef); 1568 DeadInsts.emplace_back(DU.NarrowUse); 1569 } 1570 // Now that the extend is gone, we want to expose it's uses for potential 1571 // further simplification. We don't need to directly inform SimplifyIVUsers 1572 // of the new users, because their parent IV will be processed later as a 1573 // new loop phi. If we preserved IVUsers analysis, we would also want to 1574 // push the uses of WideDef here. 1575 1576 // No further widening is needed. The deceased [sz]ext had done it for us. 1577 return nullptr; 1578 } 1579 1580 // Does this user itself evaluate to a recurrence after widening? 1581 WidenedRecTy WideAddRec = getExtendedOperandRecurrence(DU); 1582 if (!WideAddRec.first) 1583 WideAddRec = getWideRecurrence(DU); 1584 1585 assert((WideAddRec.first == nullptr) == (WideAddRec.second == Unknown)); 1586 if (!WideAddRec.first) { 1587 // If use is a loop condition, try to promote the condition instead of 1588 // truncating the IV first. 1589 if (widenLoopCompare(DU)) 1590 return nullptr; 1591 1592 // We are here about to generate a truncate instruction that may hurt 1593 // performance because the scalar evolution expression computed earlier 1594 // in WideAddRec.first does not indicate a polynomial induction expression. 1595 // In that case, look at the operands of the use instruction to determine 1596 // if we can still widen the use instead of truncating its operand. 1597 if (widenWithVariantLoadUse(DU)) { 1598 widenWithVariantLoadUseCodegen(DU); 1599 return nullptr; 1600 } 1601 1602 // This user does not evaluate to a recurrence after widening, so don't 1603 // follow it. Instead insert a Trunc to kill off the original use, 1604 // eventually isolating the original narrow IV so it can be removed. 1605 truncateIVUse(DU, DT, LI); 1606 return nullptr; 1607 } 1608 // Assume block terminators cannot evaluate to a recurrence. We can't to 1609 // insert a Trunc after a terminator if there happens to be a critical edge. 1610 assert(DU.NarrowUse != DU.NarrowUse->getParent()->getTerminator() && 1611 "SCEV is not expected to evaluate a block terminator"); 1612 1613 // Reuse the IV increment that SCEVExpander created as long as it dominates 1614 // NarrowUse. 1615 Instruction *WideUse = nullptr; 1616 if (WideAddRec.first == WideIncExpr && 1617 Rewriter.hoistIVInc(WideInc, DU.NarrowUse)) 1618 WideUse = WideInc; 1619 else { 1620 WideUse = cloneIVUser(DU, WideAddRec.first); 1621 if (!WideUse) 1622 return nullptr; 1623 } 1624 // Evaluation of WideAddRec ensured that the narrow expression could be 1625 // extended outside the loop without overflow. This suggests that the wide use 1626 // evaluates to the same expression as the extended narrow use, but doesn't 1627 // absolutely guarantee it. Hence the following failsafe check. In rare cases 1628 // where it fails, we simply throw away the newly created wide use. 1629 if (WideAddRec.first != SE->getSCEV(WideUse)) { 1630 LLVM_DEBUG(dbgs() << "Wide use expression mismatch: " << *WideUse << ": " 1631 << *SE->getSCEV(WideUse) << " != " << *WideAddRec.first 1632 << "\n"); 1633 DeadInsts.emplace_back(WideUse); 1634 return nullptr; 1635 } 1636 1637 ExtendKindMap[DU.NarrowUse] = WideAddRec.second; 1638 // Returning WideUse pushes it on the worklist. 1639 return WideUse; 1640 } 1641 1642 /// Add eligible users of NarrowDef to NarrowIVUsers. 1643 void WidenIV::pushNarrowIVUsers(Instruction *NarrowDef, Instruction *WideDef) { 1644 const SCEV *NarrowSCEV = SE->getSCEV(NarrowDef); 1645 bool NonNegativeDef = 1646 SE->isKnownPredicate(ICmpInst::ICMP_SGE, NarrowSCEV, 1647 SE->getConstant(NarrowSCEV->getType(), 0)); 1648 for (User *U : NarrowDef->users()) { 1649 Instruction *NarrowUser = cast<Instruction>(U); 1650 1651 // Handle data flow merges and bizarre phi cycles. 1652 if (!Widened.insert(NarrowUser).second) 1653 continue; 1654 1655 bool NonNegativeUse = false; 1656 if (!NonNegativeDef) { 1657 // We might have a control-dependent range information for this context. 1658 if (auto RangeInfo = getPostIncRangeInfo(NarrowDef, NarrowUser)) 1659 NonNegativeUse = RangeInfo->getSignedMin().isNonNegative(); 1660 } 1661 1662 NarrowIVUsers.emplace_back(NarrowDef, NarrowUser, WideDef, 1663 NonNegativeDef || NonNegativeUse); 1664 } 1665 } 1666 1667 /// Process a single induction variable. First use the SCEVExpander to create a 1668 /// wide induction variable that evaluates to the same recurrence as the 1669 /// original narrow IV. Then use a worklist to forward traverse the narrow IV's 1670 /// def-use chain. After widenIVUse has processed all interesting IV users, the 1671 /// narrow IV will be isolated for removal by DeleteDeadPHIs. 1672 /// 1673 /// It would be simpler to delete uses as they are processed, but we must avoid 1674 /// invalidating SCEV expressions. 1675 PHINode *WidenIV::createWideIV(SCEVExpander &Rewriter) { 1676 // Is this phi an induction variable? 1677 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(OrigPhi)); 1678 if (!AddRec) 1679 return nullptr; 1680 1681 // Widen the induction variable expression. 1682 const SCEV *WideIVExpr = getExtendKind(OrigPhi) == SignExtended 1683 ? SE->getSignExtendExpr(AddRec, WideType) 1684 : SE->getZeroExtendExpr(AddRec, WideType); 1685 1686 assert(SE->getEffectiveSCEVType(WideIVExpr->getType()) == WideType && 1687 "Expect the new IV expression to preserve its type"); 1688 1689 // Can the IV be extended outside the loop without overflow? 1690 AddRec = dyn_cast<SCEVAddRecExpr>(WideIVExpr); 1691 if (!AddRec || AddRec->getLoop() != L) 1692 return nullptr; 1693 1694 // An AddRec must have loop-invariant operands. Since this AddRec is 1695 // materialized by a loop header phi, the expression cannot have any post-loop 1696 // operands, so they must dominate the loop header. 1697 assert( 1698 SE->properlyDominates(AddRec->getStart(), L->getHeader()) && 1699 SE->properlyDominates(AddRec->getStepRecurrence(*SE), L->getHeader()) && 1700 "Loop header phi recurrence inputs do not dominate the loop"); 1701 1702 // Iterate over IV uses (including transitive ones) looking for IV increments 1703 // of the form 'add nsw %iv, <const>'. For each increment and each use of 1704 // the increment calculate control-dependent range information basing on 1705 // dominating conditions inside of the loop (e.g. a range check inside of the 1706 // loop). Calculated ranges are stored in PostIncRangeInfos map. 1707 // 1708 // Control-dependent range information is later used to prove that a narrow 1709 // definition is not negative (see pushNarrowIVUsers). It's difficult to do 1710 // this on demand because when pushNarrowIVUsers needs this information some 1711 // of the dominating conditions might be already widened. 1712 if (UsePostIncrementRanges) 1713 calculatePostIncRanges(OrigPhi); 1714 1715 // The rewriter provides a value for the desired IV expression. This may 1716 // either find an existing phi or materialize a new one. Either way, we 1717 // expect a well-formed cyclic phi-with-increments. i.e. any operand not part 1718 // of the phi-SCC dominates the loop entry. 1719 Instruction *InsertPt = &L->getHeader()->front(); 1720 WidePhi = cast<PHINode>(Rewriter.expandCodeFor(AddRec, WideType, InsertPt)); 1721 1722 // Remembering the WideIV increment generated by SCEVExpander allows 1723 // widenIVUse to reuse it when widening the narrow IV's increment. We don't 1724 // employ a general reuse mechanism because the call above is the only call to 1725 // SCEVExpander. Henceforth, we produce 1-to-1 narrow to wide uses. 1726 if (BasicBlock *LatchBlock = L->getLoopLatch()) { 1727 WideInc = 1728 cast<Instruction>(WidePhi->getIncomingValueForBlock(LatchBlock)); 1729 WideIncExpr = SE->getSCEV(WideInc); 1730 // Propagate the debug location associated with the original loop increment 1731 // to the new (widened) increment. 1732 auto *OrigInc = 1733 cast<Instruction>(OrigPhi->getIncomingValueForBlock(LatchBlock)); 1734 WideInc->setDebugLoc(OrigInc->getDebugLoc()); 1735 } 1736 1737 LLVM_DEBUG(dbgs() << "Wide IV: " << *WidePhi << "\n"); 1738 ++NumWidened; 1739 1740 // Traverse the def-use chain using a worklist starting at the original IV. 1741 assert(Widened.empty() && NarrowIVUsers.empty() && "expect initial state" ); 1742 1743 Widened.insert(OrigPhi); 1744 pushNarrowIVUsers(OrigPhi, WidePhi); 1745 1746 while (!NarrowIVUsers.empty()) { 1747 NarrowIVDefUse DU = NarrowIVUsers.pop_back_val(); 1748 1749 // Process a def-use edge. This may replace the use, so don't hold a 1750 // use_iterator across it. 1751 Instruction *WideUse = widenIVUse(DU, Rewriter); 1752 1753 // Follow all def-use edges from the previous narrow use. 1754 if (WideUse) 1755 pushNarrowIVUsers(DU.NarrowUse, WideUse); 1756 1757 // widenIVUse may have removed the def-use edge. 1758 if (DU.NarrowDef->use_empty()) 1759 DeadInsts.emplace_back(DU.NarrowDef); 1760 } 1761 1762 // Attach any debug information to the new PHI. Since OrigPhi and WidePHI 1763 // evaluate the same recurrence, we can just copy the debug info over. 1764 SmallVector<DbgValueInst *, 1> DbgValues; 1765 llvm::findDbgValues(DbgValues, OrigPhi); 1766 auto *MDPhi = MetadataAsValue::get(WidePhi->getContext(), 1767 ValueAsMetadata::get(WidePhi)); 1768 for (auto &DbgValue : DbgValues) 1769 DbgValue->setOperand(0, MDPhi); 1770 return WidePhi; 1771 } 1772 1773 /// Calculates control-dependent range for the given def at the given context 1774 /// by looking at dominating conditions inside of the loop 1775 void WidenIV::calculatePostIncRange(Instruction *NarrowDef, 1776 Instruction *NarrowUser) { 1777 using namespace llvm::PatternMatch; 1778 1779 Value *NarrowDefLHS; 1780 const APInt *NarrowDefRHS; 1781 if (!match(NarrowDef, m_NSWAdd(m_Value(NarrowDefLHS), 1782 m_APInt(NarrowDefRHS))) || 1783 !NarrowDefRHS->isNonNegative()) 1784 return; 1785 1786 auto UpdateRangeFromCondition = [&] (Value *Condition, 1787 bool TrueDest) { 1788 CmpInst::Predicate Pred; 1789 Value *CmpRHS; 1790 if (!match(Condition, m_ICmp(Pred, m_Specific(NarrowDefLHS), 1791 m_Value(CmpRHS)))) 1792 return; 1793 1794 CmpInst::Predicate P = 1795 TrueDest ? Pred : CmpInst::getInversePredicate(Pred); 1796 1797 auto CmpRHSRange = SE->getSignedRange(SE->getSCEV(CmpRHS)); 1798 auto CmpConstrainedLHSRange = 1799 ConstantRange::makeAllowedICmpRegion(P, CmpRHSRange); 1800 auto NarrowDefRange = 1801 CmpConstrainedLHSRange.addWithNoSignedWrap(*NarrowDefRHS); 1802 1803 updatePostIncRangeInfo(NarrowDef, NarrowUser, NarrowDefRange); 1804 }; 1805 1806 auto UpdateRangeFromGuards = [&](Instruction *Ctx) { 1807 if (!HasGuards) 1808 return; 1809 1810 for (Instruction &I : make_range(Ctx->getIterator().getReverse(), 1811 Ctx->getParent()->rend())) { 1812 Value *C = nullptr; 1813 if (match(&I, m_Intrinsic<Intrinsic::experimental_guard>(m_Value(C)))) 1814 UpdateRangeFromCondition(C, /*TrueDest=*/true); 1815 } 1816 }; 1817 1818 UpdateRangeFromGuards(NarrowUser); 1819 1820 BasicBlock *NarrowUserBB = NarrowUser->getParent(); 1821 // If NarrowUserBB is statically unreachable asking dominator queries may 1822 // yield surprising results. (e.g. the block may not have a dom tree node) 1823 if (!DT->isReachableFromEntry(NarrowUserBB)) 1824 return; 1825 1826 for (auto *DTB = (*DT)[NarrowUserBB]->getIDom(); 1827 L->contains(DTB->getBlock()); 1828 DTB = DTB->getIDom()) { 1829 auto *BB = DTB->getBlock(); 1830 auto *TI = BB->getTerminator(); 1831 UpdateRangeFromGuards(TI); 1832 1833 auto *BI = dyn_cast<BranchInst>(TI); 1834 if (!BI || !BI->isConditional()) 1835 continue; 1836 1837 auto *TrueSuccessor = BI->getSuccessor(0); 1838 auto *FalseSuccessor = BI->getSuccessor(1); 1839 1840 auto DominatesNarrowUser = [this, NarrowUser] (BasicBlockEdge BBE) { 1841 return BBE.isSingleEdge() && 1842 DT->dominates(BBE, NarrowUser->getParent()); 1843 }; 1844 1845 if (DominatesNarrowUser(BasicBlockEdge(BB, TrueSuccessor))) 1846 UpdateRangeFromCondition(BI->getCondition(), /*TrueDest=*/true); 1847 1848 if (DominatesNarrowUser(BasicBlockEdge(BB, FalseSuccessor))) 1849 UpdateRangeFromCondition(BI->getCondition(), /*TrueDest=*/false); 1850 } 1851 } 1852 1853 /// Calculates PostIncRangeInfos map for the given IV 1854 void WidenIV::calculatePostIncRanges(PHINode *OrigPhi) { 1855 SmallPtrSet<Instruction *, 16> Visited; 1856 SmallVector<Instruction *, 6> Worklist; 1857 Worklist.push_back(OrigPhi); 1858 Visited.insert(OrigPhi); 1859 1860 while (!Worklist.empty()) { 1861 Instruction *NarrowDef = Worklist.pop_back_val(); 1862 1863 for (Use &U : NarrowDef->uses()) { 1864 auto *NarrowUser = cast<Instruction>(U.getUser()); 1865 1866 // Don't go looking outside the current loop. 1867 auto *NarrowUserLoop = (*LI)[NarrowUser->getParent()]; 1868 if (!NarrowUserLoop || !L->contains(NarrowUserLoop)) 1869 continue; 1870 1871 if (!Visited.insert(NarrowUser).second) 1872 continue; 1873 1874 Worklist.push_back(NarrowUser); 1875 1876 calculatePostIncRange(NarrowDef, NarrowUser); 1877 } 1878 } 1879 } 1880 1881 //===----------------------------------------------------------------------===// 1882 // Live IV Reduction - Minimize IVs live across the loop. 1883 //===----------------------------------------------------------------------===// 1884 1885 //===----------------------------------------------------------------------===// 1886 // Simplification of IV users based on SCEV evaluation. 1887 //===----------------------------------------------------------------------===// 1888 1889 namespace { 1890 1891 class IndVarSimplifyVisitor : public IVVisitor { 1892 ScalarEvolution *SE; 1893 const TargetTransformInfo *TTI; 1894 PHINode *IVPhi; 1895 1896 public: 1897 WideIVInfo WI; 1898 1899 IndVarSimplifyVisitor(PHINode *IV, ScalarEvolution *SCEV, 1900 const TargetTransformInfo *TTI, 1901 const DominatorTree *DTree) 1902 : SE(SCEV), TTI(TTI), IVPhi(IV) { 1903 DT = DTree; 1904 WI.NarrowIV = IVPhi; 1905 } 1906 1907 // Implement the interface used by simplifyUsersOfIV. 1908 void visitCast(CastInst *Cast) override { visitIVCast(Cast, WI, SE, TTI); } 1909 }; 1910 1911 } // end anonymous namespace 1912 1913 /// Iteratively perform simplification on a worklist of IV users. Each 1914 /// successive simplification may push more users which may themselves be 1915 /// candidates for simplification. 1916 /// 1917 /// Sign/Zero extend elimination is interleaved with IV simplification. 1918 bool IndVarSimplify::simplifyAndExtend(Loop *L, 1919 SCEVExpander &Rewriter, 1920 LoopInfo *LI) { 1921 SmallVector<WideIVInfo, 8> WideIVs; 1922 1923 auto *GuardDecl = L->getBlocks()[0]->getModule()->getFunction( 1924 Intrinsic::getName(Intrinsic::experimental_guard)); 1925 bool HasGuards = GuardDecl && !GuardDecl->use_empty(); 1926 1927 SmallVector<PHINode*, 8> LoopPhis; 1928 for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) { 1929 LoopPhis.push_back(cast<PHINode>(I)); 1930 } 1931 // Each round of simplification iterates through the SimplifyIVUsers worklist 1932 // for all current phis, then determines whether any IVs can be 1933 // widened. Widening adds new phis to LoopPhis, inducing another round of 1934 // simplification on the wide IVs. 1935 bool Changed = false; 1936 while (!LoopPhis.empty()) { 1937 // Evaluate as many IV expressions as possible before widening any IVs. This 1938 // forces SCEV to set no-wrap flags before evaluating sign/zero 1939 // extension. The first time SCEV attempts to normalize sign/zero extension, 1940 // the result becomes final. So for the most predictable results, we delay 1941 // evaluation of sign/zero extend evaluation until needed, and avoid running 1942 // other SCEV based analysis prior to simplifyAndExtend. 1943 do { 1944 PHINode *CurrIV = LoopPhis.pop_back_val(); 1945 1946 // Information about sign/zero extensions of CurrIV. 1947 IndVarSimplifyVisitor Visitor(CurrIV, SE, TTI, DT); 1948 1949 Changed |= 1950 simplifyUsersOfIV(CurrIV, SE, DT, LI, DeadInsts, Rewriter, &Visitor); 1951 1952 if (Visitor.WI.WidestNativeType) { 1953 WideIVs.push_back(Visitor.WI); 1954 } 1955 } while(!LoopPhis.empty()); 1956 1957 for (; !WideIVs.empty(); WideIVs.pop_back()) { 1958 WidenIV Widener(WideIVs.back(), LI, SE, DT, DeadInsts, HasGuards); 1959 if (PHINode *WidePhi = Widener.createWideIV(Rewriter)) { 1960 Changed = true; 1961 LoopPhis.push_back(WidePhi); 1962 } 1963 } 1964 } 1965 return Changed; 1966 } 1967 1968 //===----------------------------------------------------------------------===// 1969 // linearFunctionTestReplace and its kin. Rewrite the loop exit condition. 1970 //===----------------------------------------------------------------------===// 1971 1972 /// Given an Value which is hoped to be part of an add recurance in the given 1973 /// loop, return the associated Phi node if so. Otherwise, return null. Note 1974 /// that this is less general than SCEVs AddRec checking. 1975 static PHINode *getLoopPhiForCounter(Value *IncV, Loop *L) { 1976 Instruction *IncI = dyn_cast<Instruction>(IncV); 1977 if (!IncI) 1978 return nullptr; 1979 1980 switch (IncI->getOpcode()) { 1981 case Instruction::Add: 1982 case Instruction::Sub: 1983 break; 1984 case Instruction::GetElementPtr: 1985 // An IV counter must preserve its type. 1986 if (IncI->getNumOperands() == 2) 1987 break; 1988 LLVM_FALLTHROUGH; 1989 default: 1990 return nullptr; 1991 } 1992 1993 PHINode *Phi = dyn_cast<PHINode>(IncI->getOperand(0)); 1994 if (Phi && Phi->getParent() == L->getHeader()) { 1995 if (L->isLoopInvariant(IncI->getOperand(1))) 1996 return Phi; 1997 return nullptr; 1998 } 1999 if (IncI->getOpcode() == Instruction::GetElementPtr) 2000 return nullptr; 2001 2002 // Allow add/sub to be commuted. 2003 Phi = dyn_cast<PHINode>(IncI->getOperand(1)); 2004 if (Phi && Phi->getParent() == L->getHeader()) { 2005 if (L->isLoopInvariant(IncI->getOperand(0))) 2006 return Phi; 2007 } 2008 return nullptr; 2009 } 2010 2011 /// Given a loop with one backedge and one exit, return the ICmpInst 2012 /// controlling the sole loop exit. There is no guarantee that the exiting 2013 /// block is also the latch. 2014 static ICmpInst *getLoopTest(Loop *L, BasicBlock *ExitingBB) { 2015 2016 BasicBlock *LatchBlock = L->getLoopLatch(); 2017 // Don't bother with LFTR if the loop is not properly simplified. 2018 if (!LatchBlock) 2019 return nullptr; 2020 2021 BranchInst *BI = dyn_cast<BranchInst>(ExitingBB->getTerminator()); 2022 assert(BI && "expected exit branch"); 2023 2024 return dyn_cast<ICmpInst>(BI->getCondition()); 2025 } 2026 2027 /// linearFunctionTestReplace policy. Return true unless we can show that the 2028 /// current exit test is already sufficiently canonical. 2029 static bool needsLFTR(Loop *L, BasicBlock *ExitingBB) { 2030 // Do LFTR to simplify the exit condition to an ICMP. 2031 ICmpInst *Cond = getLoopTest(L, ExitingBB); 2032 if (!Cond) 2033 return true; 2034 2035 // Do LFTR to simplify the exit ICMP to EQ/NE 2036 ICmpInst::Predicate Pred = Cond->getPredicate(); 2037 if (Pred != ICmpInst::ICMP_NE && Pred != ICmpInst::ICMP_EQ) 2038 return true; 2039 2040 // Look for a loop invariant RHS 2041 Value *LHS = Cond->getOperand(0); 2042 Value *RHS = Cond->getOperand(1); 2043 if (!L->isLoopInvariant(RHS)) { 2044 if (!L->isLoopInvariant(LHS)) 2045 return true; 2046 std::swap(LHS, RHS); 2047 } 2048 // Look for a simple IV counter LHS 2049 PHINode *Phi = dyn_cast<PHINode>(LHS); 2050 if (!Phi) 2051 Phi = getLoopPhiForCounter(LHS, L); 2052 2053 if (!Phi) 2054 return true; 2055 2056 // Do LFTR if PHI node is defined in the loop, but is *not* a counter. 2057 int Idx = Phi->getBasicBlockIndex(L->getLoopLatch()); 2058 if (Idx < 0) 2059 return true; 2060 2061 // Do LFTR if the exit condition's IV is *not* a simple counter. 2062 Value *IncV = Phi->getIncomingValue(Idx); 2063 return Phi != getLoopPhiForCounter(IncV, L); 2064 } 2065 2066 /// Return true if undefined behavior would provable be executed on the path to 2067 /// OnPathTo if Root produced a posion result. Note that this doesn't say 2068 /// anything about whether OnPathTo is actually executed or whether Root is 2069 /// actually poison. This can be used to assess whether a new use of Root can 2070 /// be added at a location which is control equivalent with OnPathTo (such as 2071 /// immediately before it) without introducing UB which didn't previously 2072 /// exist. Note that a false result conveys no information. 2073 static bool mustExecuteUBIfPoisonOnPathTo(Instruction *Root, 2074 Instruction *OnPathTo, 2075 DominatorTree *DT) { 2076 // Basic approach is to assume Root is poison, propagate poison forward 2077 // through all users we can easily track, and then check whether any of those 2078 // users are provable UB and must execute before out exiting block might 2079 // exit. 2080 2081 // The set of all recursive users we've visited (which are assumed to all be 2082 // poison because of said visit) 2083 SmallSet<const Value *, 16> KnownPoison; 2084 SmallVector<const Instruction*, 16> Worklist; 2085 Worklist.push_back(Root); 2086 while (!Worklist.empty()) { 2087 const Instruction *I = Worklist.pop_back_val(); 2088 2089 // If we know this must trigger UB on a path leading our target. 2090 if (mustTriggerUB(I, KnownPoison) && DT->dominates(I, OnPathTo)) 2091 return true; 2092 2093 // If we can't analyze propagation through this instruction, just skip it 2094 // and transitive users. Safe as false is a conservative result. 2095 if (!propagatesFullPoison(I) && I != Root) 2096 continue; 2097 2098 if (KnownPoison.insert(I).second) 2099 for (const User *User : I->users()) 2100 Worklist.push_back(cast<Instruction>(User)); 2101 } 2102 2103 // Might be non-UB, or might have a path we couldn't prove must execute on 2104 // way to exiting bb. 2105 return false; 2106 } 2107 2108 /// Recursive helper for hasConcreteDef(). Unfortunately, this currently boils 2109 /// down to checking that all operands are constant and listing instructions 2110 /// that may hide undef. 2111 static bool hasConcreteDefImpl(Value *V, SmallPtrSetImpl<Value*> &Visited, 2112 unsigned Depth) { 2113 if (isa<Constant>(V)) 2114 return !isa<UndefValue>(V); 2115 2116 if (Depth >= 6) 2117 return false; 2118 2119 // Conservatively handle non-constant non-instructions. For example, Arguments 2120 // may be undef. 2121 Instruction *I = dyn_cast<Instruction>(V); 2122 if (!I) 2123 return false; 2124 2125 // Load and return values may be undef. 2126 if(I->mayReadFromMemory() || isa<CallInst>(I) || isa<InvokeInst>(I)) 2127 return false; 2128 2129 // Optimistically handle other instructions. 2130 for (Value *Op : I->operands()) { 2131 if (!Visited.insert(Op).second) 2132 continue; 2133 if (!hasConcreteDefImpl(Op, Visited, Depth+1)) 2134 return false; 2135 } 2136 return true; 2137 } 2138 2139 /// Return true if the given value is concrete. We must prove that undef can 2140 /// never reach it. 2141 /// 2142 /// TODO: If we decide that this is a good approach to checking for undef, we 2143 /// may factor it into a common location. 2144 static bool hasConcreteDef(Value *V) { 2145 SmallPtrSet<Value*, 8> Visited; 2146 Visited.insert(V); 2147 return hasConcreteDefImpl(V, Visited, 0); 2148 } 2149 2150 /// Return true if this IV has any uses other than the (soon to be rewritten) 2151 /// loop exit test. 2152 static bool AlmostDeadIV(PHINode *Phi, BasicBlock *LatchBlock, Value *Cond) { 2153 int LatchIdx = Phi->getBasicBlockIndex(LatchBlock); 2154 Value *IncV = Phi->getIncomingValue(LatchIdx); 2155 2156 for (User *U : Phi->users()) 2157 if (U != Cond && U != IncV) return false; 2158 2159 for (User *U : IncV->users()) 2160 if (U != Cond && U != Phi) return false; 2161 return true; 2162 } 2163 2164 /// Return true if the given phi is a "counter" in L. A counter is an 2165 /// add recurance (of integer or pointer type) with an arbitrary start, and a 2166 /// step of 1. Note that L must have exactly one latch. 2167 static bool isLoopCounter(PHINode* Phi, Loop *L, 2168 ScalarEvolution *SE) { 2169 assert(Phi->getParent() == L->getHeader()); 2170 assert(L->getLoopLatch()); 2171 2172 if (!SE->isSCEVable(Phi->getType())) 2173 return false; 2174 2175 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Phi)); 2176 if (!AR || AR->getLoop() != L || !AR->isAffine()) 2177 return false; 2178 2179 const SCEV *Step = dyn_cast<SCEVConstant>(AR->getStepRecurrence(*SE)); 2180 if (!Step || !Step->isOne()) 2181 return false; 2182 2183 int LatchIdx = Phi->getBasicBlockIndex(L->getLoopLatch()); 2184 Value *IncV = Phi->getIncomingValue(LatchIdx); 2185 return (getLoopPhiForCounter(IncV, L) == Phi); 2186 } 2187 2188 /// Search the loop header for a loop counter (anadd rec w/step of one) 2189 /// suitable for use by LFTR. If multiple counters are available, select the 2190 /// "best" one based profitable heuristics. 2191 /// 2192 /// BECount may be an i8* pointer type. The pointer difference is already 2193 /// valid count without scaling the address stride, so it remains a pointer 2194 /// expression as far as SCEV is concerned. 2195 static PHINode *FindLoopCounter(Loop *L, BasicBlock *ExitingBB, 2196 const SCEV *BECount, 2197 ScalarEvolution *SE, DominatorTree *DT) { 2198 uint64_t BCWidth = SE->getTypeSizeInBits(BECount->getType()); 2199 2200 Value *Cond = cast<BranchInst>(ExitingBB->getTerminator())->getCondition(); 2201 2202 // Loop over all of the PHI nodes, looking for a simple counter. 2203 PHINode *BestPhi = nullptr; 2204 const SCEV *BestInit = nullptr; 2205 BasicBlock *LatchBlock = L->getLoopLatch(); 2206 assert(LatchBlock && "needsLFTR should guarantee a loop latch"); 2207 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); 2208 2209 for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) { 2210 PHINode *Phi = cast<PHINode>(I); 2211 if (!isLoopCounter(Phi, L, SE)) 2212 continue; 2213 2214 // Avoid comparing an integer IV against a pointer Limit. 2215 if (BECount->getType()->isPointerTy() && !Phi->getType()->isPointerTy()) 2216 continue; 2217 2218 const auto *AR = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Phi)); 2219 2220 // AR may be a pointer type, while BECount is an integer type. 2221 // AR may be wider than BECount. With eq/ne tests overflow is immaterial. 2222 // AR may not be a narrower type, or we may never exit. 2223 uint64_t PhiWidth = SE->getTypeSizeInBits(AR->getType()); 2224 if (PhiWidth < BCWidth || !DL.isLegalInteger(PhiWidth)) 2225 continue; 2226 2227 // Avoid reusing a potentially undef value to compute other values that may 2228 // have originally had a concrete definition. 2229 if (!hasConcreteDef(Phi)) { 2230 // We explicitly allow unknown phis as long as they are already used by 2231 // the loop test. In this case we assume that performing LFTR could not 2232 // increase the number of undef users. 2233 // TODO: Generalize this to allow *any* loop exit which is known to 2234 // execute on each iteration 2235 if (L->getExitingBlock()) 2236 if (ICmpInst *Cond = getLoopTest(L, ExitingBB)) 2237 if (Phi != getLoopPhiForCounter(Cond->getOperand(0), L) && 2238 Phi != getLoopPhiForCounter(Cond->getOperand(1), L)) 2239 continue; 2240 } 2241 2242 // Avoid introducing undefined behavior due to poison which didn't exist in 2243 // the original program. (Annoyingly, the rules for poison and undef 2244 // propagation are distinct, so this does NOT cover the undef case above.) 2245 // We have to ensure that we don't introduce UB by introducing a use on an 2246 // iteration where said IV produces poison. Our strategy here differs for 2247 // pointers and integer IVs. For integers, we strip and reinfer as needed, 2248 // see code in linearFunctionTestReplace. For pointers, we restrict 2249 // transforms as there is no good way to reinfer inbounds once lost. 2250 if (!Phi->getType()->isIntegerTy() && 2251 !mustExecuteUBIfPoisonOnPathTo(Phi, ExitingBB->getTerminator(), DT)) 2252 continue; 2253 2254 const SCEV *Init = AR->getStart(); 2255 2256 if (BestPhi && !AlmostDeadIV(BestPhi, LatchBlock, Cond)) { 2257 // Don't force a live loop counter if another IV can be used. 2258 if (AlmostDeadIV(Phi, LatchBlock, Cond)) 2259 continue; 2260 2261 // Prefer to count-from-zero. This is a more "canonical" counter form. It 2262 // also prefers integer to pointer IVs. 2263 if (BestInit->isZero() != Init->isZero()) { 2264 if (BestInit->isZero()) 2265 continue; 2266 } 2267 // If two IVs both count from zero or both count from nonzero then the 2268 // narrower is likely a dead phi that has been widened. Use the wider phi 2269 // to allow the other to be eliminated. 2270 else if (PhiWidth <= SE->getTypeSizeInBits(BestPhi->getType())) 2271 continue; 2272 } 2273 BestPhi = Phi; 2274 BestInit = Init; 2275 } 2276 return BestPhi; 2277 } 2278 2279 /// Insert an IR expression which computes the value held by the IV IndVar 2280 /// (which must be an loop counter w/unit stride) after the backedge of loop L 2281 /// is taken ExitCount times. 2282 static Value *genLoopLimit(PHINode *IndVar, BasicBlock *ExitingBB, 2283 const SCEV *ExitCount, bool UsePostInc, Loop *L, 2284 SCEVExpander &Rewriter, ScalarEvolution *SE) { 2285 assert(isLoopCounter(IndVar, L, SE)); 2286 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(SE->getSCEV(IndVar)); 2287 const SCEV *IVInit = AR->getStart(); 2288 2289 // IVInit may be a pointer while ExitCount is an integer when FindLoopCounter 2290 // finds a valid pointer IV. Sign extend ExitCount in order to materialize a 2291 // GEP. Avoid running SCEVExpander on a new pointer value, instead reusing 2292 // the existing GEPs whenever possible. 2293 if (IndVar->getType()->isPointerTy() && 2294 !ExitCount->getType()->isPointerTy()) { 2295 // IVOffset will be the new GEP offset that is interpreted by GEP as a 2296 // signed value. ExitCount on the other hand represents the loop trip count, 2297 // which is an unsigned value. FindLoopCounter only allows induction 2298 // variables that have a positive unit stride of one. This means we don't 2299 // have to handle the case of negative offsets (yet) and just need to zero 2300 // extend ExitCount. 2301 Type *OfsTy = SE->getEffectiveSCEVType(IVInit->getType()); 2302 const SCEV *IVOffset = SE->getTruncateOrZeroExtend(ExitCount, OfsTy); 2303 if (UsePostInc) 2304 IVOffset = SE->getAddExpr(IVOffset, SE->getOne(OfsTy)); 2305 2306 // Expand the code for the iteration count. 2307 assert(SE->isLoopInvariant(IVOffset, L) && 2308 "Computed iteration count is not loop invariant!"); 2309 BranchInst *BI = cast<BranchInst>(ExitingBB->getTerminator()); 2310 Value *GEPOffset = Rewriter.expandCodeFor(IVOffset, OfsTy, BI); 2311 2312 Value *GEPBase = IndVar->getIncomingValueForBlock(L->getLoopPreheader()); 2313 assert(AR->getStart() == SE->getSCEV(GEPBase) && "bad loop counter"); 2314 // We could handle pointer IVs other than i8*, but we need to compensate for 2315 // gep index scaling. 2316 assert(SE->getSizeOfExpr(IntegerType::getInt64Ty(IndVar->getContext()), 2317 cast<PointerType>(GEPBase->getType()) 2318 ->getElementType())->isOne() && 2319 "unit stride pointer IV must be i8*"); 2320 2321 IRBuilder<> Builder(L->getLoopPreheader()->getTerminator()); 2322 return Builder.CreateGEP(nullptr, GEPBase, GEPOffset, "lftr.limit"); 2323 } else { 2324 // In any other case, convert both IVInit and ExitCount to integers before 2325 // comparing. This may result in SCEV expansion of pointers, but in practice 2326 // SCEV will fold the pointer arithmetic away as such: 2327 // BECount = (IVEnd - IVInit - 1) => IVLimit = IVInit (postinc). 2328 // 2329 // Valid Cases: (1) both integers is most common; (2) both may be pointers 2330 // for simple memset-style loops. 2331 // 2332 // IVInit integer and ExitCount pointer would only occur if a canonical IV 2333 // were generated on top of case #2, which is not expected. 2334 2335 assert(AR->getStepRecurrence(*SE)->isOne() && "only handles unit stride"); 2336 // For unit stride, IVCount = Start + ExitCount with 2's complement 2337 // overflow. 2338 const SCEV *IVInit = AR->getStart(); 2339 2340 // For integer IVs, truncate the IV before computing IVInit + BECount. 2341 if (SE->getTypeSizeInBits(IVInit->getType()) 2342 > SE->getTypeSizeInBits(ExitCount->getType())) 2343 IVInit = SE->getTruncateExpr(IVInit, ExitCount->getType()); 2344 2345 const SCEV *IVLimit = SE->getAddExpr(IVInit, ExitCount); 2346 2347 if (UsePostInc) 2348 IVLimit = SE->getAddExpr(IVLimit, SE->getOne(IVLimit->getType())); 2349 2350 // Expand the code for the iteration count. 2351 BranchInst *BI = cast<BranchInst>(ExitingBB->getTerminator()); 2352 IRBuilder<> Builder(BI); 2353 assert(SE->isLoopInvariant(IVLimit, L) && 2354 "Computed iteration count is not loop invariant!"); 2355 // Ensure that we generate the same type as IndVar, or a smaller integer 2356 // type. In the presence of null pointer values, we have an integer type 2357 // SCEV expression (IVInit) for a pointer type IV value (IndVar). 2358 Type *LimitTy = ExitCount->getType()->isPointerTy() ? 2359 IndVar->getType() : ExitCount->getType(); 2360 return Rewriter.expandCodeFor(IVLimit, LimitTy, BI); 2361 } 2362 } 2363 2364 /// This method rewrites the exit condition of the loop to be a canonical != 2365 /// comparison against the incremented loop induction variable. This pass is 2366 /// able to rewrite the exit tests of any loop where the SCEV analysis can 2367 /// determine a loop-invariant trip count of the loop, which is actually a much 2368 /// broader range than just linear tests. 2369 bool IndVarSimplify:: 2370 linearFunctionTestReplace(Loop *L, BasicBlock *ExitingBB, 2371 const SCEV *ExitCount, 2372 PHINode *IndVar, SCEVExpander &Rewriter) { 2373 assert(L->getLoopLatch() && "Loop no longer in simplified form?"); 2374 assert(isLoopCounter(IndVar, L, SE)); 2375 Instruction * const IncVar = 2376 cast<Instruction>(IndVar->getIncomingValueForBlock(L->getLoopLatch())); 2377 2378 // Initialize CmpIndVar to the preincremented IV. 2379 Value *CmpIndVar = IndVar; 2380 bool UsePostInc = false; 2381 2382 // If the exiting block is the same as the backedge block, we prefer to 2383 // compare against the post-incremented value, otherwise we must compare 2384 // against the preincremented value. 2385 if (ExitingBB == L->getLoopLatch()) { 2386 bool SafeToPostInc = IndVar->getType()->isIntegerTy(); 2387 if (!SafeToPostInc) { 2388 // For pointer IVs, we chose to not strip inbounds which requires us not 2389 // to add a potentially UB introducing use. We need to either a) show 2390 // the loop test we're modifying is already in post-inc form, or b) show 2391 // that adding a use must not introduce UB. 2392 if (ICmpInst *LoopTest = getLoopTest(L, ExitingBB)) 2393 SafeToPostInc = LoopTest->getOperand(0) == IncVar || 2394 LoopTest->getOperand(1) == IncVar; 2395 if (!SafeToPostInc) 2396 SafeToPostInc = 2397 mustExecuteUBIfPoisonOnPathTo(IncVar, ExitingBB->getTerminator(), DT); 2398 } 2399 2400 if (SafeToPostInc) { 2401 UsePostInc = true; 2402 CmpIndVar = IncVar; 2403 } 2404 } 2405 2406 // It may be necessary to drop nowrap flags on the incrementing instruction 2407 // if either LFTR moves from a pre-inc check to a post-inc check (in which 2408 // case the increment might have previously been poison on the last iteration 2409 // only) or if LFTR switches to a different IV that was previously dynamically 2410 // dead (and as such may be arbitrarily poison). We remove any nowrap flags 2411 // that SCEV didn't infer for the post-inc addrec (even if we use a pre-inc 2412 // check), because the pre-inc addrec flags may be adopted from the original 2413 // instruction, while SCEV has to explicitly prove the post-inc nowrap flags. 2414 // TODO: This handling is inaccurate for one case: If we switch to a 2415 // dynamically dead IV that wraps on the first loop iteration only, which is 2416 // not covered by the post-inc addrec. (If the new IV was not dynamically 2417 // dead, it could not be poison on the first iteration in the first place.) 2418 if (auto *BO = dyn_cast<BinaryOperator>(IncVar)) { 2419 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(SE->getSCEV(IncVar)); 2420 if (BO->hasNoUnsignedWrap()) 2421 BO->setHasNoUnsignedWrap(AR->hasNoUnsignedWrap()); 2422 if (BO->hasNoSignedWrap()) 2423 BO->setHasNoSignedWrap(AR->hasNoSignedWrap()); 2424 } 2425 2426 Value *ExitCnt = genLoopLimit( 2427 IndVar, ExitingBB, ExitCount, UsePostInc, L, Rewriter, SE); 2428 assert(ExitCnt->getType()->isPointerTy() == 2429 IndVar->getType()->isPointerTy() && 2430 "genLoopLimit missed a cast"); 2431 2432 // Insert a new icmp_ne or icmp_eq instruction before the branch. 2433 BranchInst *BI = cast<BranchInst>(ExitingBB->getTerminator()); 2434 ICmpInst::Predicate P; 2435 if (L->contains(BI->getSuccessor(0))) 2436 P = ICmpInst::ICMP_NE; 2437 else 2438 P = ICmpInst::ICMP_EQ; 2439 2440 IRBuilder<> Builder(BI); 2441 2442 // The new loop exit condition should reuse the debug location of the 2443 // original loop exit condition. 2444 if (auto *Cond = dyn_cast<Instruction>(BI->getCondition())) 2445 Builder.SetCurrentDebugLocation(Cond->getDebugLoc()); 2446 2447 // LFTR can ignore IV overflow and truncate to the width of 2448 // ExitCount. This avoids materializing the add(zext(add)) expression. 2449 unsigned CmpIndVarSize = SE->getTypeSizeInBits(CmpIndVar->getType()); 2450 unsigned ExitCntSize = SE->getTypeSizeInBits(ExitCnt->getType()); 2451 if (CmpIndVarSize > ExitCntSize) { 2452 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(SE->getSCEV(IndVar)); 2453 const SCEV *ARStart = AR->getStart(); 2454 const SCEV *ARStep = AR->getStepRecurrence(*SE); 2455 // For constant ExitCount, avoid truncation. 2456 if (isa<SCEVConstant>(ARStart) && isa<SCEVConstant>(ExitCount)) { 2457 const APInt &Start = cast<SCEVConstant>(ARStart)->getAPInt(); 2458 APInt Count = cast<SCEVConstant>(ExitCount)->getAPInt(); 2459 Count = Count.zext(CmpIndVarSize); 2460 if (UsePostInc) 2461 ++Count; 2462 APInt NewLimit; 2463 if (cast<SCEVConstant>(ARStep)->getValue()->isNegative()) 2464 NewLimit = Start - Count; 2465 else 2466 NewLimit = Start + Count; 2467 ExitCnt = ConstantInt::get(CmpIndVar->getType(), NewLimit); 2468 2469 LLVM_DEBUG(dbgs() << " Widen RHS:\t" << *ExitCnt << "\n"); 2470 } else { 2471 // We try to extend trip count first. If that doesn't work we truncate IV. 2472 // Zext(trunc(IV)) == IV implies equivalence of the following two: 2473 // Trunc(IV) == ExitCnt and IV == zext(ExitCnt). Similarly for sext. If 2474 // one of the two holds, extend the trip count, otherwise we truncate IV. 2475 bool Extended = false; 2476 const SCEV *IV = SE->getSCEV(CmpIndVar); 2477 const SCEV *ZExtTrunc = 2478 SE->getZeroExtendExpr(SE->getTruncateExpr(SE->getSCEV(CmpIndVar), 2479 ExitCnt->getType()), 2480 CmpIndVar->getType()); 2481 2482 if (ZExtTrunc == IV) { 2483 Extended = true; 2484 ExitCnt = Builder.CreateZExt(ExitCnt, IndVar->getType(), 2485 "wide.trip.count"); 2486 } else { 2487 const SCEV *SExtTrunc = 2488 SE->getSignExtendExpr(SE->getTruncateExpr(SE->getSCEV(CmpIndVar), 2489 ExitCnt->getType()), 2490 CmpIndVar->getType()); 2491 if (SExtTrunc == IV) { 2492 Extended = true; 2493 ExitCnt = Builder.CreateSExt(ExitCnt, IndVar->getType(), 2494 "wide.trip.count"); 2495 } 2496 } 2497 2498 if (!Extended) 2499 CmpIndVar = Builder.CreateTrunc(CmpIndVar, ExitCnt->getType(), 2500 "lftr.wideiv"); 2501 } 2502 } 2503 LLVM_DEBUG(dbgs() << "INDVARS: Rewriting loop exit condition to:\n" 2504 << " LHS:" << *CmpIndVar << '\n' 2505 << " op:\t" << (P == ICmpInst::ICMP_NE ? "!=" : "==") 2506 << "\n" 2507 << " RHS:\t" << *ExitCnt << "\n" 2508 << "ExitCount:\t" << *ExitCount << "\n" 2509 << " was: " << *BI->getCondition() << "\n"); 2510 2511 Value *Cond = Builder.CreateICmp(P, CmpIndVar, ExitCnt, "exitcond"); 2512 Value *OrigCond = BI->getCondition(); 2513 // It's tempting to use replaceAllUsesWith here to fully replace the old 2514 // comparison, but that's not immediately safe, since users of the old 2515 // comparison may not be dominated by the new comparison. Instead, just 2516 // update the branch to use the new comparison; in the common case this 2517 // will make old comparison dead. 2518 BI->setCondition(Cond); 2519 DeadInsts.push_back(OrigCond); 2520 2521 ++NumLFTR; 2522 return true; 2523 } 2524 2525 //===----------------------------------------------------------------------===// 2526 // sinkUnusedInvariants. A late subpass to cleanup loop preheaders. 2527 //===----------------------------------------------------------------------===// 2528 2529 /// If there's a single exit block, sink any loop-invariant values that 2530 /// were defined in the preheader but not used inside the loop into the 2531 /// exit block to reduce register pressure in the loop. 2532 bool IndVarSimplify::sinkUnusedInvariants(Loop *L) { 2533 BasicBlock *ExitBlock = L->getExitBlock(); 2534 if (!ExitBlock) return false; 2535 2536 BasicBlock *Preheader = L->getLoopPreheader(); 2537 if (!Preheader) return false; 2538 2539 bool MadeAnyChanges = false; 2540 BasicBlock::iterator InsertPt = ExitBlock->getFirstInsertionPt(); 2541 BasicBlock::iterator I(Preheader->getTerminator()); 2542 while (I != Preheader->begin()) { 2543 --I; 2544 // New instructions were inserted at the end of the preheader. 2545 if (isa<PHINode>(I)) 2546 break; 2547 2548 // Don't move instructions which might have side effects, since the side 2549 // effects need to complete before instructions inside the loop. Also don't 2550 // move instructions which might read memory, since the loop may modify 2551 // memory. Note that it's okay if the instruction might have undefined 2552 // behavior: LoopSimplify guarantees that the preheader dominates the exit 2553 // block. 2554 if (I->mayHaveSideEffects() || I->mayReadFromMemory()) 2555 continue; 2556 2557 // Skip debug info intrinsics. 2558 if (isa<DbgInfoIntrinsic>(I)) 2559 continue; 2560 2561 // Skip eh pad instructions. 2562 if (I->isEHPad()) 2563 continue; 2564 2565 // Don't sink alloca: we never want to sink static alloca's out of the 2566 // entry block, and correctly sinking dynamic alloca's requires 2567 // checks for stacksave/stackrestore intrinsics. 2568 // FIXME: Refactor this check somehow? 2569 if (isa<AllocaInst>(I)) 2570 continue; 2571 2572 // Determine if there is a use in or before the loop (direct or 2573 // otherwise). 2574 bool UsedInLoop = false; 2575 for (Use &U : I->uses()) { 2576 Instruction *User = cast<Instruction>(U.getUser()); 2577 BasicBlock *UseBB = User->getParent(); 2578 if (PHINode *P = dyn_cast<PHINode>(User)) { 2579 unsigned i = 2580 PHINode::getIncomingValueNumForOperand(U.getOperandNo()); 2581 UseBB = P->getIncomingBlock(i); 2582 } 2583 if (UseBB == Preheader || L->contains(UseBB)) { 2584 UsedInLoop = true; 2585 break; 2586 } 2587 } 2588 2589 // If there is, the def must remain in the preheader. 2590 if (UsedInLoop) 2591 continue; 2592 2593 // Otherwise, sink it to the exit block. 2594 Instruction *ToMove = &*I; 2595 bool Done = false; 2596 2597 if (I != Preheader->begin()) { 2598 // Skip debug info intrinsics. 2599 do { 2600 --I; 2601 } while (isa<DbgInfoIntrinsic>(I) && I != Preheader->begin()); 2602 2603 if (isa<DbgInfoIntrinsic>(I) && I == Preheader->begin()) 2604 Done = true; 2605 } else { 2606 Done = true; 2607 } 2608 2609 MadeAnyChanges = true; 2610 ToMove->moveBefore(*ExitBlock, InsertPt); 2611 if (Done) break; 2612 InsertPt = ToMove->getIterator(); 2613 } 2614 2615 return MadeAnyChanges; 2616 } 2617 2618 //===----------------------------------------------------------------------===// 2619 // IndVarSimplify driver. Manage several subpasses of IV simplification. 2620 //===----------------------------------------------------------------------===// 2621 2622 bool IndVarSimplify::run(Loop *L) { 2623 // We need (and expect!) the incoming loop to be in LCSSA. 2624 assert(L->isRecursivelyLCSSAForm(*DT, *LI) && 2625 "LCSSA required to run indvars!"); 2626 bool Changed = false; 2627 2628 // If LoopSimplify form is not available, stay out of trouble. Some notes: 2629 // - LSR currently only supports LoopSimplify-form loops. Indvars' 2630 // canonicalization can be a pessimization without LSR to "clean up" 2631 // afterwards. 2632 // - We depend on having a preheader; in particular, 2633 // Loop::getCanonicalInductionVariable only supports loops with preheaders, 2634 // and we're in trouble if we can't find the induction variable even when 2635 // we've manually inserted one. 2636 // - LFTR relies on having a single backedge. 2637 if (!L->isLoopSimplifyForm()) 2638 return false; 2639 2640 // If there are any floating-point recurrences, attempt to 2641 // transform them to use integer recurrences. 2642 Changed |= rewriteNonIntegerIVs(L); 2643 2644 const SCEV *BackedgeTakenCount = SE->getBackedgeTakenCount(L); 2645 2646 // Create a rewriter object which we'll use to transform the code with. 2647 SCEVExpander Rewriter(*SE, DL, "indvars"); 2648 #ifndef NDEBUG 2649 Rewriter.setDebugType(DEBUG_TYPE); 2650 #endif 2651 2652 // Eliminate redundant IV users. 2653 // 2654 // Simplification works best when run before other consumers of SCEV. We 2655 // attempt to avoid evaluating SCEVs for sign/zero extend operations until 2656 // other expressions involving loop IVs have been evaluated. This helps SCEV 2657 // set no-wrap flags before normalizing sign/zero extension. 2658 Rewriter.disableCanonicalMode(); 2659 Changed |= simplifyAndExtend(L, Rewriter, LI); 2660 2661 // Check to see if this loop has a computable loop-invariant execution count. 2662 // If so, this means that we can compute the final value of any expressions 2663 // that are recurrent in the loop, and substitute the exit values from the 2664 // loop into any instructions outside of the loop that use the final values of 2665 // the current expressions. 2666 // 2667 if (ReplaceExitValue != NeverRepl && 2668 !isa<SCEVCouldNotCompute>(BackedgeTakenCount)) 2669 Changed |= rewriteLoopExitValues(L, Rewriter); 2670 2671 // Eliminate redundant IV cycles. 2672 NumElimIV += Rewriter.replaceCongruentIVs(L, DT, DeadInsts); 2673 2674 // If we have a trip count expression, rewrite the loop's exit condition 2675 // using it. 2676 if (!DisableLFTR) { 2677 // For the moment, we only do LFTR for single exit loops. The code is 2678 // structured as it is in the expectation of generalization to multi-exit 2679 // loops in the near future. See D62625 for context. 2680 SmallVector<BasicBlock*, 16> ExitingBlocks; 2681 if (auto *ExitingBB = L->getExitingBlock()) 2682 ExitingBlocks.push_back(ExitingBB); 2683 for (BasicBlock *ExitingBB : ExitingBlocks) { 2684 // Can't rewrite non-branch yet. 2685 if (!isa<BranchInst>(ExitingBB->getTerminator())) 2686 continue; 2687 2688 if (!needsLFTR(L, ExitingBB)) 2689 continue; 2690 2691 const SCEV *ExitCount = SE->getExitCount(L, ExitingBB); 2692 if (isa<SCEVCouldNotCompute>(ExitCount)) 2693 continue; 2694 2695 // Better to fold to true (TODO: do so!) 2696 if (ExitCount->isZero()) 2697 continue; 2698 2699 PHINode *IndVar = FindLoopCounter(L, ExitingBB, ExitCount, SE, DT); 2700 if (!IndVar) 2701 continue; 2702 2703 // Avoid high cost expansions. Note: This heuristic is questionable in 2704 // that our definition of "high cost" is not exactly principled. 2705 if (Rewriter.isHighCostExpansion(ExitCount, L)) 2706 continue; 2707 2708 // Check preconditions for proper SCEVExpander operation. SCEV does not 2709 // express SCEVExpander's dependencies, such as LoopSimplify. Instead 2710 // any pass that uses the SCEVExpander must do it. This does not work 2711 // well for loop passes because SCEVExpander makes assumptions about 2712 // all loops, while LoopPassManager only forces the current loop to be 2713 // simplified. 2714 // 2715 // FIXME: SCEV expansion has no way to bail out, so the caller must 2716 // explicitly check any assumptions made by SCEV. Brittle. 2717 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(ExitCount); 2718 if (!AR || AR->getLoop()->getLoopPreheader()) 2719 Changed |= linearFunctionTestReplace(L, ExitingBB, 2720 ExitCount, IndVar, 2721 Rewriter); 2722 } 2723 } 2724 // Clear the rewriter cache, because values that are in the rewriter's cache 2725 // can be deleted in the loop below, causing the AssertingVH in the cache to 2726 // trigger. 2727 Rewriter.clear(); 2728 2729 // Now that we're done iterating through lists, clean up any instructions 2730 // which are now dead. 2731 while (!DeadInsts.empty()) 2732 if (Instruction *Inst = 2733 dyn_cast_or_null<Instruction>(DeadInsts.pop_back_val())) 2734 Changed |= RecursivelyDeleteTriviallyDeadInstructions(Inst, TLI); 2735 2736 // The Rewriter may not be used from this point on. 2737 2738 // Loop-invariant instructions in the preheader that aren't used in the 2739 // loop may be sunk below the loop to reduce register pressure. 2740 Changed |= sinkUnusedInvariants(L); 2741 2742 // rewriteFirstIterationLoopExitValues does not rely on the computation of 2743 // trip count and therefore can further simplify exit values in addition to 2744 // rewriteLoopExitValues. 2745 Changed |= rewriteFirstIterationLoopExitValues(L); 2746 2747 // Clean up dead instructions. 2748 Changed |= DeleteDeadPHIs(L->getHeader(), TLI); 2749 2750 // Check a post-condition. 2751 assert(L->isRecursivelyLCSSAForm(*DT, *LI) && 2752 "Indvars did not preserve LCSSA!"); 2753 2754 // Verify that LFTR, and any other change have not interfered with SCEV's 2755 // ability to compute trip count. 2756 #ifndef NDEBUG 2757 if (VerifyIndvars && !isa<SCEVCouldNotCompute>(BackedgeTakenCount)) { 2758 SE->forgetLoop(L); 2759 const SCEV *NewBECount = SE->getBackedgeTakenCount(L); 2760 if (SE->getTypeSizeInBits(BackedgeTakenCount->getType()) < 2761 SE->getTypeSizeInBits(NewBECount->getType())) 2762 NewBECount = SE->getTruncateOrNoop(NewBECount, 2763 BackedgeTakenCount->getType()); 2764 else 2765 BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount, 2766 NewBECount->getType()); 2767 assert(BackedgeTakenCount == NewBECount && "indvars must preserve SCEV"); 2768 } 2769 #endif 2770 2771 return Changed; 2772 } 2773 2774 PreservedAnalyses IndVarSimplifyPass::run(Loop &L, LoopAnalysisManager &AM, 2775 LoopStandardAnalysisResults &AR, 2776 LPMUpdater &) { 2777 Function *F = L.getHeader()->getParent(); 2778 const DataLayout &DL = F->getParent()->getDataLayout(); 2779 2780 IndVarSimplify IVS(&AR.LI, &AR.SE, &AR.DT, DL, &AR.TLI, &AR.TTI); 2781 if (!IVS.run(&L)) 2782 return PreservedAnalyses::all(); 2783 2784 auto PA = getLoopPassPreservedAnalyses(); 2785 PA.preserveSet<CFGAnalyses>(); 2786 return PA; 2787 } 2788 2789 namespace { 2790 2791 struct IndVarSimplifyLegacyPass : public LoopPass { 2792 static char ID; // Pass identification, replacement for typeid 2793 2794 IndVarSimplifyLegacyPass() : LoopPass(ID) { 2795 initializeIndVarSimplifyLegacyPassPass(*PassRegistry::getPassRegistry()); 2796 } 2797 2798 bool runOnLoop(Loop *L, LPPassManager &LPM) override { 2799 if (skipLoop(L)) 2800 return false; 2801 2802 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 2803 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 2804 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 2805 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 2806 auto *TLI = TLIP ? &TLIP->getTLI() : nullptr; 2807 auto *TTIP = getAnalysisIfAvailable<TargetTransformInfoWrapperPass>(); 2808 auto *TTI = TTIP ? &TTIP->getTTI(*L->getHeader()->getParent()) : nullptr; 2809 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); 2810 2811 IndVarSimplify IVS(LI, SE, DT, DL, TLI, TTI); 2812 return IVS.run(L); 2813 } 2814 2815 void getAnalysisUsage(AnalysisUsage &AU) const override { 2816 AU.setPreservesCFG(); 2817 getLoopAnalysisUsage(AU); 2818 } 2819 }; 2820 2821 } // end anonymous namespace 2822 2823 char IndVarSimplifyLegacyPass::ID = 0; 2824 2825 INITIALIZE_PASS_BEGIN(IndVarSimplifyLegacyPass, "indvars", 2826 "Induction Variable Simplification", false, false) 2827 INITIALIZE_PASS_DEPENDENCY(LoopPass) 2828 INITIALIZE_PASS_END(IndVarSimplifyLegacyPass, "indvars", 2829 "Induction Variable Simplification", false, false) 2830 2831 Pass *llvm::createIndVarSimplifyPass() { 2832 return new IndVarSimplifyLegacyPass(); 2833 } 2834