1 //===- IndVarSimplify.cpp - Induction Variable Elimination ----------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This transformation analyzes and transforms the induction variables (and
11 // computations derived from them) into simpler forms suitable for subsequent
12 // analysis and transformation.
13 //
14 // If the trip count of a loop is computable, this pass also makes the following
15 // changes:
16 // 1. The exit condition for the loop is canonicalized to compare the
17 // induction value against the exit value. This turns loops like:
18 // 'for (i = 7; i*i < 1000; ++i)' into 'for (i = 0; i != 25; ++i)'
19 // 2. Any use outside of the loop of an expression derived from the indvar
20 // is changed to compute the derived value outside of the loop, eliminating
21 // the dependence on the exit value of the induction variable. If the only
22 // purpose of the loop is to compute the exit value of some derived
23 // expression, this transformation will make the loop dead.
24 //
25 //===----------------------------------------------------------------------===//
26
27 #include "llvm/Transforms/Scalar/IndVarSimplify.h"
28 #include "llvm/ADT/APFloat.h"
29 #include "llvm/ADT/APInt.h"
30 #include "llvm/ADT/ArrayRef.h"
31 #include "llvm/ADT/DenseMap.h"
32 #include "llvm/ADT/None.h"
33 #include "llvm/ADT/Optional.h"
34 #include "llvm/ADT/STLExtras.h"
35 #include "llvm/ADT/SmallSet.h"
36 #include "llvm/ADT/SmallPtrSet.h"
37 #include "llvm/ADT/SmallVector.h"
38 #include "llvm/ADT/Statistic.h"
39 #include "llvm/ADT/iterator_range.h"
40 #include "llvm/Analysis/LoopInfo.h"
41 #include "llvm/Analysis/LoopPass.h"
42 #include "llvm/Analysis/ScalarEvolution.h"
43 #include "llvm/Analysis/ScalarEvolutionExpander.h"
44 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
45 #include "llvm/Analysis/TargetLibraryInfo.h"
46 #include "llvm/Analysis/TargetTransformInfo.h"
47 #include "llvm/Analysis/ValueTracking.h"
48 #include "llvm/Transforms/Utils/Local.h"
49 #include "llvm/IR/BasicBlock.h"
50 #include "llvm/IR/Constant.h"
51 #include "llvm/IR/ConstantRange.h"
52 #include "llvm/IR/Constants.h"
53 #include "llvm/IR/DataLayout.h"
54 #include "llvm/IR/DerivedTypes.h"
55 #include "llvm/IR/Dominators.h"
56 #include "llvm/IR/Function.h"
57 #include "llvm/IR/IRBuilder.h"
58 #include "llvm/IR/InstrTypes.h"
59 #include "llvm/IR/Instruction.h"
60 #include "llvm/IR/Instructions.h"
61 #include "llvm/IR/IntrinsicInst.h"
62 #include "llvm/IR/Intrinsics.h"
63 #include "llvm/IR/Module.h"
64 #include "llvm/IR/Operator.h"
65 #include "llvm/IR/PassManager.h"
66 #include "llvm/IR/PatternMatch.h"
67 #include "llvm/IR/Type.h"
68 #include "llvm/IR/Use.h"
69 #include "llvm/IR/User.h"
70 #include "llvm/IR/Value.h"
71 #include "llvm/IR/ValueHandle.h"
72 #include "llvm/Pass.h"
73 #include "llvm/Support/Casting.h"
74 #include "llvm/Support/CommandLine.h"
75 #include "llvm/Support/Compiler.h"
76 #include "llvm/Support/Debug.h"
77 #include "llvm/Support/ErrorHandling.h"
78 #include "llvm/Support/MathExtras.h"
79 #include "llvm/Support/raw_ostream.h"
80 #include "llvm/Transforms/Scalar.h"
81 #include "llvm/Transforms/Scalar/LoopPassManager.h"
82 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
83 #include "llvm/Transforms/Utils/LoopUtils.h"
84 #include "llvm/Transforms/Utils/SimplifyIndVar.h"
85 #include <cassert>
86 #include <cstdint>
87 #include <utility>
88
89 using namespace llvm;
90
91 #define DEBUG_TYPE "indvars"
92
93 STATISTIC(NumWidened , "Number of indvars widened");
94 STATISTIC(NumReplaced , "Number of exit values replaced");
95 STATISTIC(NumLFTR , "Number of loop exit tests replaced");
96 STATISTIC(NumElimExt , "Number of IV sign/zero extends eliminated");
97 STATISTIC(NumElimIV , "Number of congruent IVs eliminated");
98
99 // Trip count verification can be enabled by default under NDEBUG if we
100 // implement a strong expression equivalence checker in SCEV. Until then, we
101 // use the verify-indvars flag, which may assert in some cases.
102 static cl::opt<bool> VerifyIndvars(
103 "verify-indvars", cl::Hidden,
104 cl::desc("Verify the ScalarEvolution result after running indvars"));
105
106 enum ReplaceExitVal { NeverRepl, OnlyCheapRepl, AlwaysRepl };
107
108 static cl::opt<ReplaceExitVal> ReplaceExitValue(
109 "replexitval", cl::Hidden, cl::init(OnlyCheapRepl),
110 cl::desc("Choose the strategy to replace exit value in IndVarSimplify"),
111 cl::values(clEnumValN(NeverRepl, "never", "never replace exit value"),
112 clEnumValN(OnlyCheapRepl, "cheap",
113 "only replace exit value when the cost is cheap"),
114 clEnumValN(AlwaysRepl, "always",
115 "always replace exit value whenever possible")));
116
117 static cl::opt<bool> UsePostIncrementRanges(
118 "indvars-post-increment-ranges", cl::Hidden,
119 cl::desc("Use post increment control-dependent ranges in IndVarSimplify"),
120 cl::init(true));
121
122 static cl::opt<bool>
123 DisableLFTR("disable-lftr", cl::Hidden, cl::init(false),
124 cl::desc("Disable Linear Function Test Replace optimization"));
125
126 namespace {
127
128 struct RewritePhi;
129
130 class IndVarSimplify {
131 LoopInfo *LI;
132 ScalarEvolution *SE;
133 DominatorTree *DT;
134 const DataLayout &DL;
135 TargetLibraryInfo *TLI;
136 const TargetTransformInfo *TTI;
137
138 SmallVector<WeakTrackingVH, 16> DeadInsts;
139
140 bool isValidRewrite(Value *FromVal, Value *ToVal);
141
142 bool handleFloatingPointIV(Loop *L, PHINode *PH);
143 bool rewriteNonIntegerIVs(Loop *L);
144
145 bool simplifyAndExtend(Loop *L, SCEVExpander &Rewriter, LoopInfo *LI);
146
147 bool canLoopBeDeleted(Loop *L, SmallVector<RewritePhi, 8> &RewritePhiSet);
148 bool rewriteLoopExitValues(Loop *L, SCEVExpander &Rewriter);
149 bool rewriteFirstIterationLoopExitValues(Loop *L);
150 bool hasHardUserWithinLoop(const Loop *L, const Instruction *I) const;
151
152 bool linearFunctionTestReplace(Loop *L, BasicBlock *ExitingBB,
153 const SCEV *ExitCount,
154 PHINode *IndVar, SCEVExpander &Rewriter);
155
156 bool sinkUnusedInvariants(Loop *L);
157
158 public:
IndVarSimplify(LoopInfo * LI,ScalarEvolution * SE,DominatorTree * DT,const DataLayout & DL,TargetLibraryInfo * TLI,TargetTransformInfo * TTI)159 IndVarSimplify(LoopInfo *LI, ScalarEvolution *SE, DominatorTree *DT,
160 const DataLayout &DL, TargetLibraryInfo *TLI,
161 TargetTransformInfo *TTI)
162 : LI(LI), SE(SE), DT(DT), DL(DL), TLI(TLI), TTI(TTI) {}
163
164 bool run(Loop *L);
165 };
166
167 } // end anonymous namespace
168
169 /// Return true if the SCEV expansion generated by the rewriter can replace the
170 /// original value. SCEV guarantees that it produces the same value, but the way
171 /// it is produced may be illegal IR. Ideally, this function will only be
172 /// called for verification.
isValidRewrite(Value * FromVal,Value * ToVal)173 bool IndVarSimplify::isValidRewrite(Value *FromVal, Value *ToVal) {
174 // If an SCEV expression subsumed multiple pointers, its expansion could
175 // reassociate the GEP changing the base pointer. This is illegal because the
176 // final address produced by a GEP chain must be inbounds relative to its
177 // underlying object. Otherwise basic alias analysis, among other things,
178 // could fail in a dangerous way. Ultimately, SCEV will be improved to avoid
179 // producing an expression involving multiple pointers. Until then, we must
180 // bail out here.
181 //
182 // Retrieve the pointer operand of the GEP. Don't use GetUnderlyingObject
183 // because it understands lcssa phis while SCEV does not.
184 Value *FromPtr = FromVal;
185 Value *ToPtr = ToVal;
186 if (auto *GEP = dyn_cast<GEPOperator>(FromVal)) {
187 FromPtr = GEP->getPointerOperand();
188 }
189 if (auto *GEP = dyn_cast<GEPOperator>(ToVal)) {
190 ToPtr = GEP->getPointerOperand();
191 }
192 if (FromPtr != FromVal || ToPtr != ToVal) {
193 // Quickly check the common case
194 if (FromPtr == ToPtr)
195 return true;
196
197 // SCEV may have rewritten an expression that produces the GEP's pointer
198 // operand. That's ok as long as the pointer operand has the same base
199 // pointer. Unlike GetUnderlyingObject(), getPointerBase() will find the
200 // base of a recurrence. This handles the case in which SCEV expansion
201 // converts a pointer type recurrence into a nonrecurrent pointer base
202 // indexed by an integer recurrence.
203
204 // If the GEP base pointer is a vector of pointers, abort.
205 if (!FromPtr->getType()->isPointerTy() || !ToPtr->getType()->isPointerTy())
206 return false;
207
208 const SCEV *FromBase = SE->getPointerBase(SE->getSCEV(FromPtr));
209 const SCEV *ToBase = SE->getPointerBase(SE->getSCEV(ToPtr));
210 if (FromBase == ToBase)
211 return true;
212
213 LLVM_DEBUG(dbgs() << "INDVARS: GEP rewrite bail out " << *FromBase
214 << " != " << *ToBase << "\n");
215
216 return false;
217 }
218 return true;
219 }
220
221 /// Determine the insertion point for this user. By default, insert immediately
222 /// before the user. SCEVExpander or LICM will hoist loop invariants out of the
223 /// loop. For PHI nodes, there may be multiple uses, so compute the nearest
224 /// common dominator for the incoming blocks.
getInsertPointForUses(Instruction * User,Value * Def,DominatorTree * DT,LoopInfo * LI)225 static Instruction *getInsertPointForUses(Instruction *User, Value *Def,
226 DominatorTree *DT, LoopInfo *LI) {
227 PHINode *PHI = dyn_cast<PHINode>(User);
228 if (!PHI)
229 return User;
230
231 Instruction *InsertPt = nullptr;
232 for (unsigned i = 0, e = PHI->getNumIncomingValues(); i != e; ++i) {
233 if (PHI->getIncomingValue(i) != Def)
234 continue;
235
236 BasicBlock *InsertBB = PHI->getIncomingBlock(i);
237 if (!InsertPt) {
238 InsertPt = InsertBB->getTerminator();
239 continue;
240 }
241 InsertBB = DT->findNearestCommonDominator(InsertPt->getParent(), InsertBB);
242 InsertPt = InsertBB->getTerminator();
243 }
244 assert(InsertPt && "Missing phi operand");
245
246 auto *DefI = dyn_cast<Instruction>(Def);
247 if (!DefI)
248 return InsertPt;
249
250 assert(DT->dominates(DefI, InsertPt) && "def does not dominate all uses");
251
252 auto *L = LI->getLoopFor(DefI->getParent());
253 assert(!L || L->contains(LI->getLoopFor(InsertPt->getParent())));
254
255 for (auto *DTN = (*DT)[InsertPt->getParent()]; DTN; DTN = DTN->getIDom())
256 if (LI->getLoopFor(DTN->getBlock()) == L)
257 return DTN->getBlock()->getTerminator();
258
259 llvm_unreachable("DefI dominates InsertPt!");
260 }
261
262 //===----------------------------------------------------------------------===//
263 // rewriteNonIntegerIVs and helpers. Prefer integer IVs.
264 //===----------------------------------------------------------------------===//
265
266 /// Convert APF to an integer, if possible.
ConvertToSInt(const APFloat & APF,int64_t & IntVal)267 static bool ConvertToSInt(const APFloat &APF, int64_t &IntVal) {
268 bool isExact = false;
269 // See if we can convert this to an int64_t
270 uint64_t UIntVal;
271 if (APF.convertToInteger(makeMutableArrayRef(UIntVal), 64, true,
272 APFloat::rmTowardZero, &isExact) != APFloat::opOK ||
273 !isExact)
274 return false;
275 IntVal = UIntVal;
276 return true;
277 }
278
279 /// If the loop has floating induction variable then insert corresponding
280 /// integer induction variable if possible.
281 /// For example,
282 /// for(double i = 0; i < 10000; ++i)
283 /// bar(i)
284 /// is converted into
285 /// for(int i = 0; i < 10000; ++i)
286 /// bar((double)i);
handleFloatingPointIV(Loop * L,PHINode * PN)287 bool IndVarSimplify::handleFloatingPointIV(Loop *L, PHINode *PN) {
288 unsigned IncomingEdge = L->contains(PN->getIncomingBlock(0));
289 unsigned BackEdge = IncomingEdge^1;
290
291 // Check incoming value.
292 auto *InitValueVal = dyn_cast<ConstantFP>(PN->getIncomingValue(IncomingEdge));
293
294 int64_t InitValue;
295 if (!InitValueVal || !ConvertToSInt(InitValueVal->getValueAPF(), InitValue))
296 return false;
297
298 // Check IV increment. Reject this PN if increment operation is not
299 // an add or increment value can not be represented by an integer.
300 auto *Incr = dyn_cast<BinaryOperator>(PN->getIncomingValue(BackEdge));
301 if (Incr == nullptr || Incr->getOpcode() != Instruction::FAdd) return false;
302
303 // If this is not an add of the PHI with a constantfp, or if the constant fp
304 // is not an integer, bail out.
305 ConstantFP *IncValueVal = dyn_cast<ConstantFP>(Incr->getOperand(1));
306 int64_t IncValue;
307 if (IncValueVal == nullptr || Incr->getOperand(0) != PN ||
308 !ConvertToSInt(IncValueVal->getValueAPF(), IncValue))
309 return false;
310
311 // Check Incr uses. One user is PN and the other user is an exit condition
312 // used by the conditional terminator.
313 Value::user_iterator IncrUse = Incr->user_begin();
314 Instruction *U1 = cast<Instruction>(*IncrUse++);
315 if (IncrUse == Incr->user_end()) return false;
316 Instruction *U2 = cast<Instruction>(*IncrUse++);
317 if (IncrUse != Incr->user_end()) return false;
318
319 // Find exit condition, which is an fcmp. If it doesn't exist, or if it isn't
320 // only used by a branch, we can't transform it.
321 FCmpInst *Compare = dyn_cast<FCmpInst>(U1);
322 if (!Compare)
323 Compare = dyn_cast<FCmpInst>(U2);
324 if (!Compare || !Compare->hasOneUse() ||
325 !isa<BranchInst>(Compare->user_back()))
326 return false;
327
328 BranchInst *TheBr = cast<BranchInst>(Compare->user_back());
329
330 // We need to verify that the branch actually controls the iteration count
331 // of the loop. If not, the new IV can overflow and no one will notice.
332 // The branch block must be in the loop and one of the successors must be out
333 // of the loop.
334 assert(TheBr->isConditional() && "Can't use fcmp if not conditional");
335 if (!L->contains(TheBr->getParent()) ||
336 (L->contains(TheBr->getSuccessor(0)) &&
337 L->contains(TheBr->getSuccessor(1))))
338 return false;
339
340 // If it isn't a comparison with an integer-as-fp (the exit value), we can't
341 // transform it.
342 ConstantFP *ExitValueVal = dyn_cast<ConstantFP>(Compare->getOperand(1));
343 int64_t ExitValue;
344 if (ExitValueVal == nullptr ||
345 !ConvertToSInt(ExitValueVal->getValueAPF(), ExitValue))
346 return false;
347
348 // Find new predicate for integer comparison.
349 CmpInst::Predicate NewPred = CmpInst::BAD_ICMP_PREDICATE;
350 switch (Compare->getPredicate()) {
351 default: return false; // Unknown comparison.
352 case CmpInst::FCMP_OEQ:
353 case CmpInst::FCMP_UEQ: NewPred = CmpInst::ICMP_EQ; break;
354 case CmpInst::FCMP_ONE:
355 case CmpInst::FCMP_UNE: NewPred = CmpInst::ICMP_NE; break;
356 case CmpInst::FCMP_OGT:
357 case CmpInst::FCMP_UGT: NewPred = CmpInst::ICMP_SGT; break;
358 case CmpInst::FCMP_OGE:
359 case CmpInst::FCMP_UGE: NewPred = CmpInst::ICMP_SGE; break;
360 case CmpInst::FCMP_OLT:
361 case CmpInst::FCMP_ULT: NewPred = CmpInst::ICMP_SLT; break;
362 case CmpInst::FCMP_OLE:
363 case CmpInst::FCMP_ULE: NewPred = CmpInst::ICMP_SLE; break;
364 }
365
366 // We convert the floating point induction variable to a signed i32 value if
367 // we can. This is only safe if the comparison will not overflow in a way
368 // that won't be trapped by the integer equivalent operations. Check for this
369 // now.
370 // TODO: We could use i64 if it is native and the range requires it.
371
372 // The start/stride/exit values must all fit in signed i32.
373 if (!isInt<32>(InitValue) || !isInt<32>(IncValue) || !isInt<32>(ExitValue))
374 return false;
375
376 // If not actually striding (add x, 0.0), avoid touching the code.
377 if (IncValue == 0)
378 return false;
379
380 // Positive and negative strides have different safety conditions.
381 if (IncValue > 0) {
382 // If we have a positive stride, we require the init to be less than the
383 // exit value.
384 if (InitValue >= ExitValue)
385 return false;
386
387 uint32_t Range = uint32_t(ExitValue-InitValue);
388 // Check for infinite loop, either:
389 // while (i <= Exit) or until (i > Exit)
390 if (NewPred == CmpInst::ICMP_SLE || NewPred == CmpInst::ICMP_SGT) {
391 if (++Range == 0) return false; // Range overflows.
392 }
393
394 unsigned Leftover = Range % uint32_t(IncValue);
395
396 // If this is an equality comparison, we require that the strided value
397 // exactly land on the exit value, otherwise the IV condition will wrap
398 // around and do things the fp IV wouldn't.
399 if ((NewPred == CmpInst::ICMP_EQ || NewPred == CmpInst::ICMP_NE) &&
400 Leftover != 0)
401 return false;
402
403 // If the stride would wrap around the i32 before exiting, we can't
404 // transform the IV.
405 if (Leftover != 0 && int32_t(ExitValue+IncValue) < ExitValue)
406 return false;
407 } else {
408 // If we have a negative stride, we require the init to be greater than the
409 // exit value.
410 if (InitValue <= ExitValue)
411 return false;
412
413 uint32_t Range = uint32_t(InitValue-ExitValue);
414 // Check for infinite loop, either:
415 // while (i >= Exit) or until (i < Exit)
416 if (NewPred == CmpInst::ICMP_SGE || NewPred == CmpInst::ICMP_SLT) {
417 if (++Range == 0) return false; // Range overflows.
418 }
419
420 unsigned Leftover = Range % uint32_t(-IncValue);
421
422 // If this is an equality comparison, we require that the strided value
423 // exactly land on the exit value, otherwise the IV condition will wrap
424 // around and do things the fp IV wouldn't.
425 if ((NewPred == CmpInst::ICMP_EQ || NewPred == CmpInst::ICMP_NE) &&
426 Leftover != 0)
427 return false;
428
429 // If the stride would wrap around the i32 before exiting, we can't
430 // transform the IV.
431 if (Leftover != 0 && int32_t(ExitValue+IncValue) > ExitValue)
432 return false;
433 }
434
435 IntegerType *Int32Ty = Type::getInt32Ty(PN->getContext());
436
437 // Insert new integer induction variable.
438 PHINode *NewPHI = PHINode::Create(Int32Ty, 2, PN->getName()+".int", PN);
439 NewPHI->addIncoming(ConstantInt::get(Int32Ty, InitValue),
440 PN->getIncomingBlock(IncomingEdge));
441
442 Value *NewAdd =
443 BinaryOperator::CreateAdd(NewPHI, ConstantInt::get(Int32Ty, IncValue),
444 Incr->getName()+".int", Incr);
445 NewPHI->addIncoming(NewAdd, PN->getIncomingBlock(BackEdge));
446
447 ICmpInst *NewCompare = new ICmpInst(TheBr, NewPred, NewAdd,
448 ConstantInt::get(Int32Ty, ExitValue),
449 Compare->getName());
450
451 // In the following deletions, PN may become dead and may be deleted.
452 // Use a WeakTrackingVH to observe whether this happens.
453 WeakTrackingVH WeakPH = PN;
454
455 // Delete the old floating point exit comparison. The branch starts using the
456 // new comparison.
457 NewCompare->takeName(Compare);
458 Compare->replaceAllUsesWith(NewCompare);
459 RecursivelyDeleteTriviallyDeadInstructions(Compare, TLI);
460
461 // Delete the old floating point increment.
462 Incr->replaceAllUsesWith(UndefValue::get(Incr->getType()));
463 RecursivelyDeleteTriviallyDeadInstructions(Incr, TLI);
464
465 // If the FP induction variable still has uses, this is because something else
466 // in the loop uses its value. In order to canonicalize the induction
467 // variable, we chose to eliminate the IV and rewrite it in terms of an
468 // int->fp cast.
469 //
470 // We give preference to sitofp over uitofp because it is faster on most
471 // platforms.
472 if (WeakPH) {
473 Value *Conv = new SIToFPInst(NewPHI, PN->getType(), "indvar.conv",
474 &*PN->getParent()->getFirstInsertionPt());
475 PN->replaceAllUsesWith(Conv);
476 RecursivelyDeleteTriviallyDeadInstructions(PN, TLI);
477 }
478 return true;
479 }
480
rewriteNonIntegerIVs(Loop * L)481 bool IndVarSimplify::rewriteNonIntegerIVs(Loop *L) {
482 // First step. Check to see if there are any floating-point recurrences.
483 // If there are, change them into integer recurrences, permitting analysis by
484 // the SCEV routines.
485 BasicBlock *Header = L->getHeader();
486
487 SmallVector<WeakTrackingVH, 8> PHIs;
488 for (PHINode &PN : Header->phis())
489 PHIs.push_back(&PN);
490
491 bool Changed = false;
492 for (unsigned i = 0, e = PHIs.size(); i != e; ++i)
493 if (PHINode *PN = dyn_cast_or_null<PHINode>(&*PHIs[i]))
494 Changed |= handleFloatingPointIV(L, PN);
495
496 // If the loop previously had floating-point IV, ScalarEvolution
497 // may not have been able to compute a trip count. Now that we've done some
498 // re-writing, the trip count may be computable.
499 if (Changed)
500 SE->forgetLoop(L);
501 return Changed;
502 }
503
504 namespace {
505
506 // Collect information about PHI nodes which can be transformed in
507 // rewriteLoopExitValues.
508 struct RewritePhi {
509 PHINode *PN;
510
511 // Ith incoming value.
512 unsigned Ith;
513
514 // Exit value after expansion.
515 Value *Val;
516
517 // High Cost when expansion.
518 bool HighCost;
519
RewritePhi__anonc65a48c90211::RewritePhi520 RewritePhi(PHINode *P, unsigned I, Value *V, bool H)
521 : PN(P), Ith(I), Val(V), HighCost(H) {}
522 };
523
524 } // end anonymous namespace
525
526 //===----------------------------------------------------------------------===//
527 // rewriteLoopExitValues - Optimize IV users outside the loop.
528 // As a side effect, reduces the amount of IV processing within the loop.
529 //===----------------------------------------------------------------------===//
530
hasHardUserWithinLoop(const Loop * L,const Instruction * I) const531 bool IndVarSimplify::hasHardUserWithinLoop(const Loop *L, const Instruction *I) const {
532 SmallPtrSet<const Instruction *, 8> Visited;
533 SmallVector<const Instruction *, 8> WorkList;
534 Visited.insert(I);
535 WorkList.push_back(I);
536 while (!WorkList.empty()) {
537 const Instruction *Curr = WorkList.pop_back_val();
538 // This use is outside the loop, nothing to do.
539 if (!L->contains(Curr))
540 continue;
541 // Do we assume it is a "hard" use which will not be eliminated easily?
542 if (Curr->mayHaveSideEffects())
543 return true;
544 // Otherwise, add all its users to worklist.
545 for (auto U : Curr->users()) {
546 auto *UI = cast<Instruction>(U);
547 if (Visited.insert(UI).second)
548 WorkList.push_back(UI);
549 }
550 }
551 return false;
552 }
553
554 /// Check to see if this loop has a computable loop-invariant execution count.
555 /// If so, this means that we can compute the final value of any expressions
556 /// that are recurrent in the loop, and substitute the exit values from the loop
557 /// into any instructions outside of the loop that use the final values of the
558 /// current expressions.
559 ///
560 /// This is mostly redundant with the regular IndVarSimplify activities that
561 /// happen later, except that it's more powerful in some cases, because it's
562 /// able to brute-force evaluate arbitrary instructions as long as they have
563 /// constant operands at the beginning of the loop.
rewriteLoopExitValues(Loop * L,SCEVExpander & Rewriter)564 bool IndVarSimplify::rewriteLoopExitValues(Loop *L, SCEVExpander &Rewriter) {
565 // Check a pre-condition.
566 assert(L->isRecursivelyLCSSAForm(*DT, *LI) &&
567 "Indvars did not preserve LCSSA!");
568
569 SmallVector<BasicBlock*, 8> ExitBlocks;
570 L->getUniqueExitBlocks(ExitBlocks);
571
572 SmallVector<RewritePhi, 8> RewritePhiSet;
573 // Find all values that are computed inside the loop, but used outside of it.
574 // Because of LCSSA, these values will only occur in LCSSA PHI Nodes. Scan
575 // the exit blocks of the loop to find them.
576 for (BasicBlock *ExitBB : ExitBlocks) {
577 // If there are no PHI nodes in this exit block, then no values defined
578 // inside the loop are used on this path, skip it.
579 PHINode *PN = dyn_cast<PHINode>(ExitBB->begin());
580 if (!PN) continue;
581
582 unsigned NumPreds = PN->getNumIncomingValues();
583
584 // Iterate over all of the PHI nodes.
585 BasicBlock::iterator BBI = ExitBB->begin();
586 while ((PN = dyn_cast<PHINode>(BBI++))) {
587 if (PN->use_empty())
588 continue; // dead use, don't replace it
589
590 if (!SE->isSCEVable(PN->getType()))
591 continue;
592
593 // It's necessary to tell ScalarEvolution about this explicitly so that
594 // it can walk the def-use list and forget all SCEVs, as it may not be
595 // watching the PHI itself. Once the new exit value is in place, there
596 // may not be a def-use connection between the loop and every instruction
597 // which got a SCEVAddRecExpr for that loop.
598 SE->forgetValue(PN);
599
600 // Iterate over all of the values in all the PHI nodes.
601 for (unsigned i = 0; i != NumPreds; ++i) {
602 // If the value being merged in is not integer or is not defined
603 // in the loop, skip it.
604 Value *InVal = PN->getIncomingValue(i);
605 if (!isa<Instruction>(InVal))
606 continue;
607
608 // If this pred is for a subloop, not L itself, skip it.
609 if (LI->getLoopFor(PN->getIncomingBlock(i)) != L)
610 continue; // The Block is in a subloop, skip it.
611
612 // Check that InVal is defined in the loop.
613 Instruction *Inst = cast<Instruction>(InVal);
614 if (!L->contains(Inst))
615 continue;
616
617 // Okay, this instruction has a user outside of the current loop
618 // and varies predictably *inside* the loop. Evaluate the value it
619 // contains when the loop exits, if possible.
620 const SCEV *ExitValue = SE->getSCEVAtScope(Inst, L->getParentLoop());
621 if (!SE->isLoopInvariant(ExitValue, L) ||
622 !isSafeToExpand(ExitValue, *SE))
623 continue;
624
625 // Computing the value outside of the loop brings no benefit if it is
626 // definitely used inside the loop in a way which can not be optimized
627 // away.
628 if (!isa<SCEVConstant>(ExitValue) && hasHardUserWithinLoop(L, Inst))
629 continue;
630
631 bool HighCost = Rewriter.isHighCostExpansion(ExitValue, L, Inst);
632 Value *ExitVal = Rewriter.expandCodeFor(ExitValue, PN->getType(), Inst);
633
634 LLVM_DEBUG(dbgs() << "INDVARS: RLEV: AfterLoopVal = " << *ExitVal
635 << '\n'
636 << " LoopVal = " << *Inst << "\n");
637
638 if (!isValidRewrite(Inst, ExitVal)) {
639 DeadInsts.push_back(ExitVal);
640 continue;
641 }
642
643 #ifndef NDEBUG
644 // If we reuse an instruction from a loop which is neither L nor one of
645 // its containing loops, we end up breaking LCSSA form for this loop by
646 // creating a new use of its instruction.
647 if (auto *ExitInsn = dyn_cast<Instruction>(ExitVal))
648 if (auto *EVL = LI->getLoopFor(ExitInsn->getParent()))
649 if (EVL != L)
650 assert(EVL->contains(L) && "LCSSA breach detected!");
651 #endif
652
653 // Collect all the candidate PHINodes to be rewritten.
654 RewritePhiSet.emplace_back(PN, i, ExitVal, HighCost);
655 }
656 }
657 }
658
659 bool LoopCanBeDel = canLoopBeDeleted(L, RewritePhiSet);
660
661 bool Changed = false;
662 // Transformation.
663 for (const RewritePhi &Phi : RewritePhiSet) {
664 PHINode *PN = Phi.PN;
665 Value *ExitVal = Phi.Val;
666
667 // Only do the rewrite when the ExitValue can be expanded cheaply.
668 // If LoopCanBeDel is true, rewrite exit value aggressively.
669 if (ReplaceExitValue == OnlyCheapRepl && !LoopCanBeDel && Phi.HighCost) {
670 DeadInsts.push_back(ExitVal);
671 continue;
672 }
673
674 Changed = true;
675 ++NumReplaced;
676 Instruction *Inst = cast<Instruction>(PN->getIncomingValue(Phi.Ith));
677 PN->setIncomingValue(Phi.Ith, ExitVal);
678
679 // If this instruction is dead now, delete it. Don't do it now to avoid
680 // invalidating iterators.
681 if (isInstructionTriviallyDead(Inst, TLI))
682 DeadInsts.push_back(Inst);
683
684 // Replace PN with ExitVal if that is legal and does not break LCSSA.
685 if (PN->getNumIncomingValues() == 1 &&
686 LI->replacementPreservesLCSSAForm(PN, ExitVal)) {
687 PN->replaceAllUsesWith(ExitVal);
688 PN->eraseFromParent();
689 }
690 }
691
692 // The insertion point instruction may have been deleted; clear it out
693 // so that the rewriter doesn't trip over it later.
694 Rewriter.clearInsertPoint();
695 return Changed;
696 }
697
698 //===---------------------------------------------------------------------===//
699 // rewriteFirstIterationLoopExitValues: Rewrite loop exit values if we know
700 // they will exit at the first iteration.
701 //===---------------------------------------------------------------------===//
702
703 /// Check to see if this loop has loop invariant conditions which lead to loop
704 /// exits. If so, we know that if the exit path is taken, it is at the first
705 /// loop iteration. This lets us predict exit values of PHI nodes that live in
706 /// loop header.
rewriteFirstIterationLoopExitValues(Loop * L)707 bool IndVarSimplify::rewriteFirstIterationLoopExitValues(Loop *L) {
708 // Verify the input to the pass is already in LCSSA form.
709 assert(L->isLCSSAForm(*DT));
710
711 SmallVector<BasicBlock *, 8> ExitBlocks;
712 L->getUniqueExitBlocks(ExitBlocks);
713 auto *LoopHeader = L->getHeader();
714 assert(LoopHeader && "Invalid loop");
715
716 bool MadeAnyChanges = false;
717 for (auto *ExitBB : ExitBlocks) {
718 // If there are no more PHI nodes in this exit block, then no more
719 // values defined inside the loop are used on this path.
720 for (PHINode &PN : ExitBB->phis()) {
721 for (unsigned IncomingValIdx = 0, E = PN.getNumIncomingValues();
722 IncomingValIdx != E; ++IncomingValIdx) {
723 auto *IncomingBB = PN.getIncomingBlock(IncomingValIdx);
724
725 // We currently only support loop exits from loop header. If the
726 // incoming block is not loop header, we need to recursively check
727 // all conditions starting from loop header are loop invariants.
728 // Additional support might be added in the future.
729 if (IncomingBB != LoopHeader)
730 continue;
731
732 // Get condition that leads to the exit path.
733 auto *TermInst = IncomingBB->getTerminator();
734
735 Value *Cond = nullptr;
736 if (auto *BI = dyn_cast<BranchInst>(TermInst)) {
737 // Must be a conditional branch, otherwise the block
738 // should not be in the loop.
739 Cond = BI->getCondition();
740 } else if (auto *SI = dyn_cast<SwitchInst>(TermInst))
741 Cond = SI->getCondition();
742 else
743 continue;
744
745 if (!L->isLoopInvariant(Cond))
746 continue;
747
748 auto *ExitVal = dyn_cast<PHINode>(PN.getIncomingValue(IncomingValIdx));
749
750 // Only deal with PHIs.
751 if (!ExitVal)
752 continue;
753
754 // If ExitVal is a PHI on the loop header, then we know its
755 // value along this exit because the exit can only be taken
756 // on the first iteration.
757 auto *LoopPreheader = L->getLoopPreheader();
758 assert(LoopPreheader && "Invalid loop");
759 int PreheaderIdx = ExitVal->getBasicBlockIndex(LoopPreheader);
760 if (PreheaderIdx != -1) {
761 assert(ExitVal->getParent() == LoopHeader &&
762 "ExitVal must be in loop header");
763 MadeAnyChanges = true;
764 PN.setIncomingValue(IncomingValIdx,
765 ExitVal->getIncomingValue(PreheaderIdx));
766 }
767 }
768 }
769 }
770 return MadeAnyChanges;
771 }
772
773 /// Check whether it is possible to delete the loop after rewriting exit
774 /// value. If it is possible, ignore ReplaceExitValue and do rewriting
775 /// aggressively.
canLoopBeDeleted(Loop * L,SmallVector<RewritePhi,8> & RewritePhiSet)776 bool IndVarSimplify::canLoopBeDeleted(
777 Loop *L, SmallVector<RewritePhi, 8> &RewritePhiSet) {
778 BasicBlock *Preheader = L->getLoopPreheader();
779 // If there is no preheader, the loop will not be deleted.
780 if (!Preheader)
781 return false;
782
783 // In LoopDeletion pass Loop can be deleted when ExitingBlocks.size() > 1.
784 // We obviate multiple ExitingBlocks case for simplicity.
785 // TODO: If we see testcase with multiple ExitingBlocks can be deleted
786 // after exit value rewriting, we can enhance the logic here.
787 SmallVector<BasicBlock *, 4> ExitingBlocks;
788 L->getExitingBlocks(ExitingBlocks);
789 SmallVector<BasicBlock *, 8> ExitBlocks;
790 L->getUniqueExitBlocks(ExitBlocks);
791 if (ExitBlocks.size() > 1 || ExitingBlocks.size() > 1)
792 return false;
793
794 BasicBlock *ExitBlock = ExitBlocks[0];
795 BasicBlock::iterator BI = ExitBlock->begin();
796 while (PHINode *P = dyn_cast<PHINode>(BI)) {
797 Value *Incoming = P->getIncomingValueForBlock(ExitingBlocks[0]);
798
799 // If the Incoming value of P is found in RewritePhiSet, we know it
800 // could be rewritten to use a loop invariant value in transformation
801 // phase later. Skip it in the loop invariant check below.
802 bool found = false;
803 for (const RewritePhi &Phi : RewritePhiSet) {
804 unsigned i = Phi.Ith;
805 if (Phi.PN == P && (Phi.PN)->getIncomingValue(i) == Incoming) {
806 found = true;
807 break;
808 }
809 }
810
811 Instruction *I;
812 if (!found && (I = dyn_cast<Instruction>(Incoming)))
813 if (!L->hasLoopInvariantOperands(I))
814 return false;
815
816 ++BI;
817 }
818
819 for (auto *BB : L->blocks())
820 if (llvm::any_of(*BB, [](Instruction &I) {
821 return I.mayHaveSideEffects();
822 }))
823 return false;
824
825 return true;
826 }
827
828 //===----------------------------------------------------------------------===//
829 // IV Widening - Extend the width of an IV to cover its widest uses.
830 //===----------------------------------------------------------------------===//
831
832 namespace {
833
834 // Collect information about induction variables that are used by sign/zero
835 // extend operations. This information is recorded by CollectExtend and provides
836 // the input to WidenIV.
837 struct WideIVInfo {
838 PHINode *NarrowIV = nullptr;
839
840 // Widest integer type created [sz]ext
841 Type *WidestNativeType = nullptr;
842
843 // Was a sext user seen before a zext?
844 bool IsSigned = false;
845 };
846
847 } // end anonymous namespace
848
849 /// Update information about the induction variable that is extended by this
850 /// sign or zero extend operation. This is used to determine the final width of
851 /// the IV before actually widening it.
visitIVCast(CastInst * Cast,WideIVInfo & WI,ScalarEvolution * SE,const TargetTransformInfo * TTI)852 static void visitIVCast(CastInst *Cast, WideIVInfo &WI, ScalarEvolution *SE,
853 const TargetTransformInfo *TTI) {
854 bool IsSigned = Cast->getOpcode() == Instruction::SExt;
855 if (!IsSigned && Cast->getOpcode() != Instruction::ZExt)
856 return;
857
858 Type *Ty = Cast->getType();
859 uint64_t Width = SE->getTypeSizeInBits(Ty);
860 if (!Cast->getModule()->getDataLayout().isLegalInteger(Width))
861 return;
862
863 // Check that `Cast` actually extends the induction variable (we rely on this
864 // later). This takes care of cases where `Cast` is extending a truncation of
865 // the narrow induction variable, and thus can end up being narrower than the
866 // "narrow" induction variable.
867 uint64_t NarrowIVWidth = SE->getTypeSizeInBits(WI.NarrowIV->getType());
868 if (NarrowIVWidth >= Width)
869 return;
870
871 // Cast is either an sext or zext up to this point.
872 // We should not widen an indvar if arithmetics on the wider indvar are more
873 // expensive than those on the narrower indvar. We check only the cost of ADD
874 // because at least an ADD is required to increment the induction variable. We
875 // could compute more comprehensively the cost of all instructions on the
876 // induction variable when necessary.
877 if (TTI &&
878 TTI->getArithmeticInstrCost(Instruction::Add, Ty) >
879 TTI->getArithmeticInstrCost(Instruction::Add,
880 Cast->getOperand(0)->getType())) {
881 return;
882 }
883
884 if (!WI.WidestNativeType) {
885 WI.WidestNativeType = SE->getEffectiveSCEVType(Ty);
886 WI.IsSigned = IsSigned;
887 return;
888 }
889
890 // We extend the IV to satisfy the sign of its first user, arbitrarily.
891 if (WI.IsSigned != IsSigned)
892 return;
893
894 if (Width > SE->getTypeSizeInBits(WI.WidestNativeType))
895 WI.WidestNativeType = SE->getEffectiveSCEVType(Ty);
896 }
897
898 namespace {
899
900 /// Record a link in the Narrow IV def-use chain along with the WideIV that
901 /// computes the same value as the Narrow IV def. This avoids caching Use*
902 /// pointers.
903 struct NarrowIVDefUse {
904 Instruction *NarrowDef = nullptr;
905 Instruction *NarrowUse = nullptr;
906 Instruction *WideDef = nullptr;
907
908 // True if the narrow def is never negative. Tracking this information lets
909 // us use a sign extension instead of a zero extension or vice versa, when
910 // profitable and legal.
911 bool NeverNegative = false;
912
NarrowIVDefUse__anonc65a48c90511::NarrowIVDefUse913 NarrowIVDefUse(Instruction *ND, Instruction *NU, Instruction *WD,
914 bool NeverNegative)
915 : NarrowDef(ND), NarrowUse(NU), WideDef(WD),
916 NeverNegative(NeverNegative) {}
917 };
918
919 /// The goal of this transform is to remove sign and zero extends without
920 /// creating any new induction variables. To do this, it creates a new phi of
921 /// the wider type and redirects all users, either removing extends or inserting
922 /// truncs whenever we stop propagating the type.
923 class WidenIV {
924 // Parameters
925 PHINode *OrigPhi;
926 Type *WideType;
927
928 // Context
929 LoopInfo *LI;
930 Loop *L;
931 ScalarEvolution *SE;
932 DominatorTree *DT;
933
934 // Does the module have any calls to the llvm.experimental.guard intrinsic
935 // at all? If not we can avoid scanning instructions looking for guards.
936 bool HasGuards;
937
938 // Result
939 PHINode *WidePhi = nullptr;
940 Instruction *WideInc = nullptr;
941 const SCEV *WideIncExpr = nullptr;
942 SmallVectorImpl<WeakTrackingVH> &DeadInsts;
943
944 SmallPtrSet<Instruction *,16> Widened;
945 SmallVector<NarrowIVDefUse, 8> NarrowIVUsers;
946
947 enum ExtendKind { ZeroExtended, SignExtended, Unknown };
948
949 // A map tracking the kind of extension used to widen each narrow IV
950 // and narrow IV user.
951 // Key: pointer to a narrow IV or IV user.
952 // Value: the kind of extension used to widen this Instruction.
953 DenseMap<AssertingVH<Instruction>, ExtendKind> ExtendKindMap;
954
955 using DefUserPair = std::pair<AssertingVH<Value>, AssertingVH<Instruction>>;
956
957 // A map with control-dependent ranges for post increment IV uses. The key is
958 // a pair of IV def and a use of this def denoting the context. The value is
959 // a ConstantRange representing possible values of the def at the given
960 // context.
961 DenseMap<DefUserPair, ConstantRange> PostIncRangeInfos;
962
getPostIncRangeInfo(Value * Def,Instruction * UseI)963 Optional<ConstantRange> getPostIncRangeInfo(Value *Def,
964 Instruction *UseI) {
965 DefUserPair Key(Def, UseI);
966 auto It = PostIncRangeInfos.find(Key);
967 return It == PostIncRangeInfos.end()
968 ? Optional<ConstantRange>(None)
969 : Optional<ConstantRange>(It->second);
970 }
971
972 void calculatePostIncRanges(PHINode *OrigPhi);
973 void calculatePostIncRange(Instruction *NarrowDef, Instruction *NarrowUser);
974
updatePostIncRangeInfo(Value * Def,Instruction * UseI,ConstantRange R)975 void updatePostIncRangeInfo(Value *Def, Instruction *UseI, ConstantRange R) {
976 DefUserPair Key(Def, UseI);
977 auto It = PostIncRangeInfos.find(Key);
978 if (It == PostIncRangeInfos.end())
979 PostIncRangeInfos.insert({Key, R});
980 else
981 It->second = R.intersectWith(It->second);
982 }
983
984 public:
WidenIV(const WideIVInfo & WI,LoopInfo * LInfo,ScalarEvolution * SEv,DominatorTree * DTree,SmallVectorImpl<WeakTrackingVH> & DI,bool HasGuards)985 WidenIV(const WideIVInfo &WI, LoopInfo *LInfo, ScalarEvolution *SEv,
986 DominatorTree *DTree, SmallVectorImpl<WeakTrackingVH> &DI,
987 bool HasGuards)
988 : OrigPhi(WI.NarrowIV), WideType(WI.WidestNativeType), LI(LInfo),
989 L(LI->getLoopFor(OrigPhi->getParent())), SE(SEv), DT(DTree),
990 HasGuards(HasGuards), DeadInsts(DI) {
991 assert(L->getHeader() == OrigPhi->getParent() && "Phi must be an IV");
992 ExtendKindMap[OrigPhi] = WI.IsSigned ? SignExtended : ZeroExtended;
993 }
994
995 PHINode *createWideIV(SCEVExpander &Rewriter);
996
997 protected:
998 Value *createExtendInst(Value *NarrowOper, Type *WideType, bool IsSigned,
999 Instruction *Use);
1000
1001 Instruction *cloneIVUser(NarrowIVDefUse DU, const SCEVAddRecExpr *WideAR);
1002 Instruction *cloneArithmeticIVUser(NarrowIVDefUse DU,
1003 const SCEVAddRecExpr *WideAR);
1004 Instruction *cloneBitwiseIVUser(NarrowIVDefUse DU);
1005
1006 ExtendKind getExtendKind(Instruction *I);
1007
1008 using WidenedRecTy = std::pair<const SCEVAddRecExpr *, ExtendKind>;
1009
1010 WidenedRecTy getWideRecurrence(NarrowIVDefUse DU);
1011
1012 WidenedRecTy getExtendedOperandRecurrence(NarrowIVDefUse DU);
1013
1014 const SCEV *getSCEVByOpCode(const SCEV *LHS, const SCEV *RHS,
1015 unsigned OpCode) const;
1016
1017 Instruction *widenIVUse(NarrowIVDefUse DU, SCEVExpander &Rewriter);
1018
1019 bool widenLoopCompare(NarrowIVDefUse DU);
1020 bool widenWithVariantLoadUse(NarrowIVDefUse DU);
1021 void widenWithVariantLoadUseCodegen(NarrowIVDefUse DU);
1022
1023 void pushNarrowIVUsers(Instruction *NarrowDef, Instruction *WideDef);
1024 };
1025
1026 } // end anonymous namespace
1027
createExtendInst(Value * NarrowOper,Type * WideType,bool IsSigned,Instruction * Use)1028 Value *WidenIV::createExtendInst(Value *NarrowOper, Type *WideType,
1029 bool IsSigned, Instruction *Use) {
1030 // Set the debug location and conservative insertion point.
1031 IRBuilder<> Builder(Use);
1032 // Hoist the insertion point into loop preheaders as far as possible.
1033 for (const Loop *L = LI->getLoopFor(Use->getParent());
1034 L && L->getLoopPreheader() && L->isLoopInvariant(NarrowOper);
1035 L = L->getParentLoop())
1036 Builder.SetInsertPoint(L->getLoopPreheader()->getTerminator());
1037
1038 return IsSigned ? Builder.CreateSExt(NarrowOper, WideType) :
1039 Builder.CreateZExt(NarrowOper, WideType);
1040 }
1041
1042 /// Instantiate a wide operation to replace a narrow operation. This only needs
1043 /// to handle operations that can evaluation to SCEVAddRec. It can safely return
1044 /// 0 for any operation we decide not to clone.
cloneIVUser(NarrowIVDefUse DU,const SCEVAddRecExpr * WideAR)1045 Instruction *WidenIV::cloneIVUser(NarrowIVDefUse DU,
1046 const SCEVAddRecExpr *WideAR) {
1047 unsigned Opcode = DU.NarrowUse->getOpcode();
1048 switch (Opcode) {
1049 default:
1050 return nullptr;
1051 case Instruction::Add:
1052 case Instruction::Mul:
1053 case Instruction::UDiv:
1054 case Instruction::Sub:
1055 return cloneArithmeticIVUser(DU, WideAR);
1056
1057 case Instruction::And:
1058 case Instruction::Or:
1059 case Instruction::Xor:
1060 case Instruction::Shl:
1061 case Instruction::LShr:
1062 case Instruction::AShr:
1063 return cloneBitwiseIVUser(DU);
1064 }
1065 }
1066
cloneBitwiseIVUser(NarrowIVDefUse DU)1067 Instruction *WidenIV::cloneBitwiseIVUser(NarrowIVDefUse DU) {
1068 Instruction *NarrowUse = DU.NarrowUse;
1069 Instruction *NarrowDef = DU.NarrowDef;
1070 Instruction *WideDef = DU.WideDef;
1071
1072 LLVM_DEBUG(dbgs() << "Cloning bitwise IVUser: " << *NarrowUse << "\n");
1073
1074 // Replace NarrowDef operands with WideDef. Otherwise, we don't know anything
1075 // about the narrow operand yet so must insert a [sz]ext. It is probably loop
1076 // invariant and will be folded or hoisted. If it actually comes from a
1077 // widened IV, it should be removed during a future call to widenIVUse.
1078 bool IsSigned = getExtendKind(NarrowDef) == SignExtended;
1079 Value *LHS = (NarrowUse->getOperand(0) == NarrowDef)
1080 ? WideDef
1081 : createExtendInst(NarrowUse->getOperand(0), WideType,
1082 IsSigned, NarrowUse);
1083 Value *RHS = (NarrowUse->getOperand(1) == NarrowDef)
1084 ? WideDef
1085 : createExtendInst(NarrowUse->getOperand(1), WideType,
1086 IsSigned, NarrowUse);
1087
1088 auto *NarrowBO = cast<BinaryOperator>(NarrowUse);
1089 auto *WideBO = BinaryOperator::Create(NarrowBO->getOpcode(), LHS, RHS,
1090 NarrowBO->getName());
1091 IRBuilder<> Builder(NarrowUse);
1092 Builder.Insert(WideBO);
1093 WideBO->copyIRFlags(NarrowBO);
1094 return WideBO;
1095 }
1096
cloneArithmeticIVUser(NarrowIVDefUse DU,const SCEVAddRecExpr * WideAR)1097 Instruction *WidenIV::cloneArithmeticIVUser(NarrowIVDefUse DU,
1098 const SCEVAddRecExpr *WideAR) {
1099 Instruction *NarrowUse = DU.NarrowUse;
1100 Instruction *NarrowDef = DU.NarrowDef;
1101 Instruction *WideDef = DU.WideDef;
1102
1103 LLVM_DEBUG(dbgs() << "Cloning arithmetic IVUser: " << *NarrowUse << "\n");
1104
1105 unsigned IVOpIdx = (NarrowUse->getOperand(0) == NarrowDef) ? 0 : 1;
1106
1107 // We're trying to find X such that
1108 //
1109 // Widen(NarrowDef `op` NonIVNarrowDef) == WideAR == WideDef `op.wide` X
1110 //
1111 // We guess two solutions to X, sext(NonIVNarrowDef) and zext(NonIVNarrowDef),
1112 // and check using SCEV if any of them are correct.
1113
1114 // Returns true if extending NonIVNarrowDef according to `SignExt` is a
1115 // correct solution to X.
1116 auto GuessNonIVOperand = [&](bool SignExt) {
1117 const SCEV *WideLHS;
1118 const SCEV *WideRHS;
1119
1120 auto GetExtend = [this, SignExt](const SCEV *S, Type *Ty) {
1121 if (SignExt)
1122 return SE->getSignExtendExpr(S, Ty);
1123 return SE->getZeroExtendExpr(S, Ty);
1124 };
1125
1126 if (IVOpIdx == 0) {
1127 WideLHS = SE->getSCEV(WideDef);
1128 const SCEV *NarrowRHS = SE->getSCEV(NarrowUse->getOperand(1));
1129 WideRHS = GetExtend(NarrowRHS, WideType);
1130 } else {
1131 const SCEV *NarrowLHS = SE->getSCEV(NarrowUse->getOperand(0));
1132 WideLHS = GetExtend(NarrowLHS, WideType);
1133 WideRHS = SE->getSCEV(WideDef);
1134 }
1135
1136 // WideUse is "WideDef `op.wide` X" as described in the comment.
1137 const SCEV *WideUse = nullptr;
1138
1139 switch (NarrowUse->getOpcode()) {
1140 default:
1141 llvm_unreachable("No other possibility!");
1142
1143 case Instruction::Add:
1144 WideUse = SE->getAddExpr(WideLHS, WideRHS);
1145 break;
1146
1147 case Instruction::Mul:
1148 WideUse = SE->getMulExpr(WideLHS, WideRHS);
1149 break;
1150
1151 case Instruction::UDiv:
1152 WideUse = SE->getUDivExpr(WideLHS, WideRHS);
1153 break;
1154
1155 case Instruction::Sub:
1156 WideUse = SE->getMinusSCEV(WideLHS, WideRHS);
1157 break;
1158 }
1159
1160 return WideUse == WideAR;
1161 };
1162
1163 bool SignExtend = getExtendKind(NarrowDef) == SignExtended;
1164 if (!GuessNonIVOperand(SignExtend)) {
1165 SignExtend = !SignExtend;
1166 if (!GuessNonIVOperand(SignExtend))
1167 return nullptr;
1168 }
1169
1170 Value *LHS = (NarrowUse->getOperand(0) == NarrowDef)
1171 ? WideDef
1172 : createExtendInst(NarrowUse->getOperand(0), WideType,
1173 SignExtend, NarrowUse);
1174 Value *RHS = (NarrowUse->getOperand(1) == NarrowDef)
1175 ? WideDef
1176 : createExtendInst(NarrowUse->getOperand(1), WideType,
1177 SignExtend, NarrowUse);
1178
1179 auto *NarrowBO = cast<BinaryOperator>(NarrowUse);
1180 auto *WideBO = BinaryOperator::Create(NarrowBO->getOpcode(), LHS, RHS,
1181 NarrowBO->getName());
1182
1183 IRBuilder<> Builder(NarrowUse);
1184 Builder.Insert(WideBO);
1185 WideBO->copyIRFlags(NarrowBO);
1186 return WideBO;
1187 }
1188
getExtendKind(Instruction * I)1189 WidenIV::ExtendKind WidenIV::getExtendKind(Instruction *I) {
1190 auto It = ExtendKindMap.find(I);
1191 assert(It != ExtendKindMap.end() && "Instruction not yet extended!");
1192 return It->second;
1193 }
1194
getSCEVByOpCode(const SCEV * LHS,const SCEV * RHS,unsigned OpCode) const1195 const SCEV *WidenIV::getSCEVByOpCode(const SCEV *LHS, const SCEV *RHS,
1196 unsigned OpCode) const {
1197 if (OpCode == Instruction::Add)
1198 return SE->getAddExpr(LHS, RHS);
1199 if (OpCode == Instruction::Sub)
1200 return SE->getMinusSCEV(LHS, RHS);
1201 if (OpCode == Instruction::Mul)
1202 return SE->getMulExpr(LHS, RHS);
1203
1204 llvm_unreachable("Unsupported opcode.");
1205 }
1206
1207 /// No-wrap operations can transfer sign extension of their result to their
1208 /// operands. Generate the SCEV value for the widened operation without
1209 /// actually modifying the IR yet. If the expression after extending the
1210 /// operands is an AddRec for this loop, return the AddRec and the kind of
1211 /// extension used.
getExtendedOperandRecurrence(NarrowIVDefUse DU)1212 WidenIV::WidenedRecTy WidenIV::getExtendedOperandRecurrence(NarrowIVDefUse DU) {
1213 // Handle the common case of add<nsw/nuw>
1214 const unsigned OpCode = DU.NarrowUse->getOpcode();
1215 // Only Add/Sub/Mul instructions supported yet.
1216 if (OpCode != Instruction::Add && OpCode != Instruction::Sub &&
1217 OpCode != Instruction::Mul)
1218 return {nullptr, Unknown};
1219
1220 // One operand (NarrowDef) has already been extended to WideDef. Now determine
1221 // if extending the other will lead to a recurrence.
1222 const unsigned ExtendOperIdx =
1223 DU.NarrowUse->getOperand(0) == DU.NarrowDef ? 1 : 0;
1224 assert(DU.NarrowUse->getOperand(1-ExtendOperIdx) == DU.NarrowDef && "bad DU");
1225
1226 const SCEV *ExtendOperExpr = nullptr;
1227 const OverflowingBinaryOperator *OBO =
1228 cast<OverflowingBinaryOperator>(DU.NarrowUse);
1229 ExtendKind ExtKind = getExtendKind(DU.NarrowDef);
1230 if (ExtKind == SignExtended && OBO->hasNoSignedWrap())
1231 ExtendOperExpr = SE->getSignExtendExpr(
1232 SE->getSCEV(DU.NarrowUse->getOperand(ExtendOperIdx)), WideType);
1233 else if(ExtKind == ZeroExtended && OBO->hasNoUnsignedWrap())
1234 ExtendOperExpr = SE->getZeroExtendExpr(
1235 SE->getSCEV(DU.NarrowUse->getOperand(ExtendOperIdx)), WideType);
1236 else
1237 return {nullptr, Unknown};
1238
1239 // When creating this SCEV expr, don't apply the current operations NSW or NUW
1240 // flags. This instruction may be guarded by control flow that the no-wrap
1241 // behavior depends on. Non-control-equivalent instructions can be mapped to
1242 // the same SCEV expression, and it would be incorrect to transfer NSW/NUW
1243 // semantics to those operations.
1244 const SCEV *lhs = SE->getSCEV(DU.WideDef);
1245 const SCEV *rhs = ExtendOperExpr;
1246
1247 // Let's swap operands to the initial order for the case of non-commutative
1248 // operations, like SUB. See PR21014.
1249 if (ExtendOperIdx == 0)
1250 std::swap(lhs, rhs);
1251 const SCEVAddRecExpr *AddRec =
1252 dyn_cast<SCEVAddRecExpr>(getSCEVByOpCode(lhs, rhs, OpCode));
1253
1254 if (!AddRec || AddRec->getLoop() != L)
1255 return {nullptr, Unknown};
1256
1257 return {AddRec, ExtKind};
1258 }
1259
1260 /// Is this instruction potentially interesting for further simplification after
1261 /// widening it's type? In other words, can the extend be safely hoisted out of
1262 /// the loop with SCEV reducing the value to a recurrence on the same loop. If
1263 /// so, return the extended recurrence and the kind of extension used. Otherwise
1264 /// return {nullptr, Unknown}.
getWideRecurrence(NarrowIVDefUse DU)1265 WidenIV::WidenedRecTy WidenIV::getWideRecurrence(NarrowIVDefUse DU) {
1266 if (!SE->isSCEVable(DU.NarrowUse->getType()))
1267 return {nullptr, Unknown};
1268
1269 const SCEV *NarrowExpr = SE->getSCEV(DU.NarrowUse);
1270 if (SE->getTypeSizeInBits(NarrowExpr->getType()) >=
1271 SE->getTypeSizeInBits(WideType)) {
1272 // NarrowUse implicitly widens its operand. e.g. a gep with a narrow
1273 // index. So don't follow this use.
1274 return {nullptr, Unknown};
1275 }
1276
1277 const SCEV *WideExpr;
1278 ExtendKind ExtKind;
1279 if (DU.NeverNegative) {
1280 WideExpr = SE->getSignExtendExpr(NarrowExpr, WideType);
1281 if (isa<SCEVAddRecExpr>(WideExpr))
1282 ExtKind = SignExtended;
1283 else {
1284 WideExpr = SE->getZeroExtendExpr(NarrowExpr, WideType);
1285 ExtKind = ZeroExtended;
1286 }
1287 } else if (getExtendKind(DU.NarrowDef) == SignExtended) {
1288 WideExpr = SE->getSignExtendExpr(NarrowExpr, WideType);
1289 ExtKind = SignExtended;
1290 } else {
1291 WideExpr = SE->getZeroExtendExpr(NarrowExpr, WideType);
1292 ExtKind = ZeroExtended;
1293 }
1294 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(WideExpr);
1295 if (!AddRec || AddRec->getLoop() != L)
1296 return {nullptr, Unknown};
1297 return {AddRec, ExtKind};
1298 }
1299
1300 /// This IV user cannot be widen. Replace this use of the original narrow IV
1301 /// with a truncation of the new wide IV to isolate and eliminate the narrow IV.
truncateIVUse(NarrowIVDefUse DU,DominatorTree * DT,LoopInfo * LI)1302 static void truncateIVUse(NarrowIVDefUse DU, DominatorTree *DT, LoopInfo *LI) {
1303 LLVM_DEBUG(dbgs() << "INDVARS: Truncate IV " << *DU.WideDef << " for user "
1304 << *DU.NarrowUse << "\n");
1305 IRBuilder<> Builder(
1306 getInsertPointForUses(DU.NarrowUse, DU.NarrowDef, DT, LI));
1307 Value *Trunc = Builder.CreateTrunc(DU.WideDef, DU.NarrowDef->getType());
1308 DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, Trunc);
1309 }
1310
1311 /// If the narrow use is a compare instruction, then widen the compare
1312 // (and possibly the other operand). The extend operation is hoisted into the
1313 // loop preheader as far as possible.
widenLoopCompare(NarrowIVDefUse DU)1314 bool WidenIV::widenLoopCompare(NarrowIVDefUse DU) {
1315 ICmpInst *Cmp = dyn_cast<ICmpInst>(DU.NarrowUse);
1316 if (!Cmp)
1317 return false;
1318
1319 // We can legally widen the comparison in the following two cases:
1320 //
1321 // - The signedness of the IV extension and comparison match
1322 //
1323 // - The narrow IV is always positive (and thus its sign extension is equal
1324 // to its zero extension). For instance, let's say we're zero extending
1325 // %narrow for the following use
1326 //
1327 // icmp slt i32 %narrow, %val ... (A)
1328 //
1329 // and %narrow is always positive. Then
1330 //
1331 // (A) == icmp slt i32 sext(%narrow), sext(%val)
1332 // == icmp slt i32 zext(%narrow), sext(%val)
1333 bool IsSigned = getExtendKind(DU.NarrowDef) == SignExtended;
1334 if (!(DU.NeverNegative || IsSigned == Cmp->isSigned()))
1335 return false;
1336
1337 Value *Op = Cmp->getOperand(Cmp->getOperand(0) == DU.NarrowDef ? 1 : 0);
1338 unsigned CastWidth = SE->getTypeSizeInBits(Op->getType());
1339 unsigned IVWidth = SE->getTypeSizeInBits(WideType);
1340 assert(CastWidth <= IVWidth && "Unexpected width while widening compare.");
1341
1342 // Widen the compare instruction.
1343 IRBuilder<> Builder(
1344 getInsertPointForUses(DU.NarrowUse, DU.NarrowDef, DT, LI));
1345 DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, DU.WideDef);
1346
1347 // Widen the other operand of the compare, if necessary.
1348 if (CastWidth < IVWidth) {
1349 Value *ExtOp = createExtendInst(Op, WideType, Cmp->isSigned(), Cmp);
1350 DU.NarrowUse->replaceUsesOfWith(Op, ExtOp);
1351 }
1352 return true;
1353 }
1354
1355 /// If the narrow use is an instruction whose two operands are the defining
1356 /// instruction of DU and a load instruction, then we have the following:
1357 /// if the load is hoisted outside the loop, then we do not reach this function
1358 /// as scalar evolution analysis works fine in widenIVUse with variables
1359 /// hoisted outside the loop and efficient code is subsequently generated by
1360 /// not emitting truncate instructions. But when the load is not hoisted
1361 /// (whether due to limitation in alias analysis or due to a true legality),
1362 /// then scalar evolution can not proceed with loop variant values and
1363 /// inefficient code is generated. This function handles the non-hoisted load
1364 /// special case by making the optimization generate the same type of code for
1365 /// hoisted and non-hoisted load (widen use and eliminate sign extend
1366 /// instruction). This special case is important especially when the induction
1367 /// variables are affecting addressing mode in code generation.
widenWithVariantLoadUse(NarrowIVDefUse DU)1368 bool WidenIV::widenWithVariantLoadUse(NarrowIVDefUse DU) {
1369 Instruction *NarrowUse = DU.NarrowUse;
1370 Instruction *NarrowDef = DU.NarrowDef;
1371 Instruction *WideDef = DU.WideDef;
1372
1373 // Handle the common case of add<nsw/nuw>
1374 const unsigned OpCode = NarrowUse->getOpcode();
1375 // Only Add/Sub/Mul instructions are supported.
1376 if (OpCode != Instruction::Add && OpCode != Instruction::Sub &&
1377 OpCode != Instruction::Mul)
1378 return false;
1379
1380 // The operand that is not defined by NarrowDef of DU. Let's call it the
1381 // other operand.
1382 unsigned ExtendOperIdx = DU.NarrowUse->getOperand(0) == NarrowDef ? 1 : 0;
1383 assert(DU.NarrowUse->getOperand(1 - ExtendOperIdx) == DU.NarrowDef &&
1384 "bad DU");
1385
1386 const SCEV *ExtendOperExpr = nullptr;
1387 const OverflowingBinaryOperator *OBO =
1388 cast<OverflowingBinaryOperator>(NarrowUse);
1389 ExtendKind ExtKind = getExtendKind(NarrowDef);
1390 if (ExtKind == SignExtended && OBO->hasNoSignedWrap())
1391 ExtendOperExpr = SE->getSignExtendExpr(
1392 SE->getSCEV(NarrowUse->getOperand(ExtendOperIdx)), WideType);
1393 else if (ExtKind == ZeroExtended && OBO->hasNoUnsignedWrap())
1394 ExtendOperExpr = SE->getZeroExtendExpr(
1395 SE->getSCEV(NarrowUse->getOperand(ExtendOperIdx)), WideType);
1396 else
1397 return false;
1398
1399 // We are interested in the other operand being a load instruction.
1400 // But, we should look into relaxing this restriction later on.
1401 auto *I = dyn_cast<Instruction>(NarrowUse->getOperand(ExtendOperIdx));
1402 if (I && I->getOpcode() != Instruction::Load)
1403 return false;
1404
1405 // Verifying that Defining operand is an AddRec
1406 const SCEV *Op1 = SE->getSCEV(WideDef);
1407 const SCEVAddRecExpr *AddRecOp1 = dyn_cast<SCEVAddRecExpr>(Op1);
1408 if (!AddRecOp1 || AddRecOp1->getLoop() != L)
1409 return false;
1410 // Verifying that other operand is an Extend.
1411 if (ExtKind == SignExtended) {
1412 if (!isa<SCEVSignExtendExpr>(ExtendOperExpr))
1413 return false;
1414 } else {
1415 if (!isa<SCEVZeroExtendExpr>(ExtendOperExpr))
1416 return false;
1417 }
1418
1419 if (ExtKind == SignExtended) {
1420 for (Use &U : NarrowUse->uses()) {
1421 SExtInst *User = dyn_cast<SExtInst>(U.getUser());
1422 if (!User || User->getType() != WideType)
1423 return false;
1424 }
1425 } else { // ExtKind == ZeroExtended
1426 for (Use &U : NarrowUse->uses()) {
1427 ZExtInst *User = dyn_cast<ZExtInst>(U.getUser());
1428 if (!User || User->getType() != WideType)
1429 return false;
1430 }
1431 }
1432
1433 return true;
1434 }
1435
1436 /// Special Case for widening with variant Loads (see
1437 /// WidenIV::widenWithVariantLoadUse). This is the code generation part.
widenWithVariantLoadUseCodegen(NarrowIVDefUse DU)1438 void WidenIV::widenWithVariantLoadUseCodegen(NarrowIVDefUse DU) {
1439 Instruction *NarrowUse = DU.NarrowUse;
1440 Instruction *NarrowDef = DU.NarrowDef;
1441 Instruction *WideDef = DU.WideDef;
1442
1443 ExtendKind ExtKind = getExtendKind(NarrowDef);
1444
1445 LLVM_DEBUG(dbgs() << "Cloning arithmetic IVUser: " << *NarrowUse << "\n");
1446
1447 // Generating a widening use instruction.
1448 Value *LHS = (NarrowUse->getOperand(0) == NarrowDef)
1449 ? WideDef
1450 : createExtendInst(NarrowUse->getOperand(0), WideType,
1451 ExtKind, NarrowUse);
1452 Value *RHS = (NarrowUse->getOperand(1) == NarrowDef)
1453 ? WideDef
1454 : createExtendInst(NarrowUse->getOperand(1), WideType,
1455 ExtKind, NarrowUse);
1456
1457 auto *NarrowBO = cast<BinaryOperator>(NarrowUse);
1458 auto *WideBO = BinaryOperator::Create(NarrowBO->getOpcode(), LHS, RHS,
1459 NarrowBO->getName());
1460 IRBuilder<> Builder(NarrowUse);
1461 Builder.Insert(WideBO);
1462 WideBO->copyIRFlags(NarrowBO);
1463
1464 if (ExtKind == SignExtended)
1465 ExtendKindMap[NarrowUse] = SignExtended;
1466 else
1467 ExtendKindMap[NarrowUse] = ZeroExtended;
1468
1469 // Update the Use.
1470 if (ExtKind == SignExtended) {
1471 for (Use &U : NarrowUse->uses()) {
1472 SExtInst *User = dyn_cast<SExtInst>(U.getUser());
1473 if (User && User->getType() == WideType) {
1474 LLVM_DEBUG(dbgs() << "INDVARS: eliminating " << *User << " replaced by "
1475 << *WideBO << "\n");
1476 ++NumElimExt;
1477 User->replaceAllUsesWith(WideBO);
1478 DeadInsts.emplace_back(User);
1479 }
1480 }
1481 } else { // ExtKind == ZeroExtended
1482 for (Use &U : NarrowUse->uses()) {
1483 ZExtInst *User = dyn_cast<ZExtInst>(U.getUser());
1484 if (User && User->getType() == WideType) {
1485 LLVM_DEBUG(dbgs() << "INDVARS: eliminating " << *User << " replaced by "
1486 << *WideBO << "\n");
1487 ++NumElimExt;
1488 User->replaceAllUsesWith(WideBO);
1489 DeadInsts.emplace_back(User);
1490 }
1491 }
1492 }
1493 }
1494
1495 /// Determine whether an individual user of the narrow IV can be widened. If so,
1496 /// return the wide clone of the user.
widenIVUse(NarrowIVDefUse DU,SCEVExpander & Rewriter)1497 Instruction *WidenIV::widenIVUse(NarrowIVDefUse DU, SCEVExpander &Rewriter) {
1498 assert(ExtendKindMap.count(DU.NarrowDef) &&
1499 "Should already know the kind of extension used to widen NarrowDef");
1500
1501 // Stop traversing the def-use chain at inner-loop phis or post-loop phis.
1502 if (PHINode *UsePhi = dyn_cast<PHINode>(DU.NarrowUse)) {
1503 if (LI->getLoopFor(UsePhi->getParent()) != L) {
1504 // For LCSSA phis, sink the truncate outside the loop.
1505 // After SimplifyCFG most loop exit targets have a single predecessor.
1506 // Otherwise fall back to a truncate within the loop.
1507 if (UsePhi->getNumOperands() != 1)
1508 truncateIVUse(DU, DT, LI);
1509 else {
1510 // Widening the PHI requires us to insert a trunc. The logical place
1511 // for this trunc is in the same BB as the PHI. This is not possible if
1512 // the BB is terminated by a catchswitch.
1513 if (isa<CatchSwitchInst>(UsePhi->getParent()->getTerminator()))
1514 return nullptr;
1515
1516 PHINode *WidePhi =
1517 PHINode::Create(DU.WideDef->getType(), 1, UsePhi->getName() + ".wide",
1518 UsePhi);
1519 WidePhi->addIncoming(DU.WideDef, UsePhi->getIncomingBlock(0));
1520 IRBuilder<> Builder(&*WidePhi->getParent()->getFirstInsertionPt());
1521 Value *Trunc = Builder.CreateTrunc(WidePhi, DU.NarrowDef->getType());
1522 UsePhi->replaceAllUsesWith(Trunc);
1523 DeadInsts.emplace_back(UsePhi);
1524 LLVM_DEBUG(dbgs() << "INDVARS: Widen lcssa phi " << *UsePhi << " to "
1525 << *WidePhi << "\n");
1526 }
1527 return nullptr;
1528 }
1529 }
1530
1531 // This narrow use can be widened by a sext if it's non-negative or its narrow
1532 // def was widended by a sext. Same for zext.
1533 auto canWidenBySExt = [&]() {
1534 return DU.NeverNegative || getExtendKind(DU.NarrowDef) == SignExtended;
1535 };
1536 auto canWidenByZExt = [&]() {
1537 return DU.NeverNegative || getExtendKind(DU.NarrowDef) == ZeroExtended;
1538 };
1539
1540 // Our raison d'etre! Eliminate sign and zero extension.
1541 if ((isa<SExtInst>(DU.NarrowUse) && canWidenBySExt()) ||
1542 (isa<ZExtInst>(DU.NarrowUse) && canWidenByZExt())) {
1543 Value *NewDef = DU.WideDef;
1544 if (DU.NarrowUse->getType() != WideType) {
1545 unsigned CastWidth = SE->getTypeSizeInBits(DU.NarrowUse->getType());
1546 unsigned IVWidth = SE->getTypeSizeInBits(WideType);
1547 if (CastWidth < IVWidth) {
1548 // The cast isn't as wide as the IV, so insert a Trunc.
1549 IRBuilder<> Builder(DU.NarrowUse);
1550 NewDef = Builder.CreateTrunc(DU.WideDef, DU.NarrowUse->getType());
1551 }
1552 else {
1553 // A wider extend was hidden behind a narrower one. This may induce
1554 // another round of IV widening in which the intermediate IV becomes
1555 // dead. It should be very rare.
1556 LLVM_DEBUG(dbgs() << "INDVARS: New IV " << *WidePhi
1557 << " not wide enough to subsume " << *DU.NarrowUse
1558 << "\n");
1559 DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, DU.WideDef);
1560 NewDef = DU.NarrowUse;
1561 }
1562 }
1563 if (NewDef != DU.NarrowUse) {
1564 LLVM_DEBUG(dbgs() << "INDVARS: eliminating " << *DU.NarrowUse
1565 << " replaced by " << *DU.WideDef << "\n");
1566 ++NumElimExt;
1567 DU.NarrowUse->replaceAllUsesWith(NewDef);
1568 DeadInsts.emplace_back(DU.NarrowUse);
1569 }
1570 // Now that the extend is gone, we want to expose it's uses for potential
1571 // further simplification. We don't need to directly inform SimplifyIVUsers
1572 // of the new users, because their parent IV will be processed later as a
1573 // new loop phi. If we preserved IVUsers analysis, we would also want to
1574 // push the uses of WideDef here.
1575
1576 // No further widening is needed. The deceased [sz]ext had done it for us.
1577 return nullptr;
1578 }
1579
1580 // Does this user itself evaluate to a recurrence after widening?
1581 WidenedRecTy WideAddRec = getExtendedOperandRecurrence(DU);
1582 if (!WideAddRec.first)
1583 WideAddRec = getWideRecurrence(DU);
1584
1585 assert((WideAddRec.first == nullptr) == (WideAddRec.second == Unknown));
1586 if (!WideAddRec.first) {
1587 // If use is a loop condition, try to promote the condition instead of
1588 // truncating the IV first.
1589 if (widenLoopCompare(DU))
1590 return nullptr;
1591
1592 // We are here about to generate a truncate instruction that may hurt
1593 // performance because the scalar evolution expression computed earlier
1594 // in WideAddRec.first does not indicate a polynomial induction expression.
1595 // In that case, look at the operands of the use instruction to determine
1596 // if we can still widen the use instead of truncating its operand.
1597 if (widenWithVariantLoadUse(DU)) {
1598 widenWithVariantLoadUseCodegen(DU);
1599 return nullptr;
1600 }
1601
1602 // This user does not evaluate to a recurrence after widening, so don't
1603 // follow it. Instead insert a Trunc to kill off the original use,
1604 // eventually isolating the original narrow IV so it can be removed.
1605 truncateIVUse(DU, DT, LI);
1606 return nullptr;
1607 }
1608 // Assume block terminators cannot evaluate to a recurrence. We can't to
1609 // insert a Trunc after a terminator if there happens to be a critical edge.
1610 assert(DU.NarrowUse != DU.NarrowUse->getParent()->getTerminator() &&
1611 "SCEV is not expected to evaluate a block terminator");
1612
1613 // Reuse the IV increment that SCEVExpander created as long as it dominates
1614 // NarrowUse.
1615 Instruction *WideUse = nullptr;
1616 if (WideAddRec.first == WideIncExpr &&
1617 Rewriter.hoistIVInc(WideInc, DU.NarrowUse))
1618 WideUse = WideInc;
1619 else {
1620 WideUse = cloneIVUser(DU, WideAddRec.first);
1621 if (!WideUse)
1622 return nullptr;
1623 }
1624 // Evaluation of WideAddRec ensured that the narrow expression could be
1625 // extended outside the loop without overflow. This suggests that the wide use
1626 // evaluates to the same expression as the extended narrow use, but doesn't
1627 // absolutely guarantee it. Hence the following failsafe check. In rare cases
1628 // where it fails, we simply throw away the newly created wide use.
1629 if (WideAddRec.first != SE->getSCEV(WideUse)) {
1630 LLVM_DEBUG(dbgs() << "Wide use expression mismatch: " << *WideUse << ": "
1631 << *SE->getSCEV(WideUse) << " != " << *WideAddRec.first
1632 << "\n");
1633 DeadInsts.emplace_back(WideUse);
1634 return nullptr;
1635 }
1636
1637 ExtendKindMap[DU.NarrowUse] = WideAddRec.second;
1638 // Returning WideUse pushes it on the worklist.
1639 return WideUse;
1640 }
1641
1642 /// Add eligible users of NarrowDef to NarrowIVUsers.
pushNarrowIVUsers(Instruction * NarrowDef,Instruction * WideDef)1643 void WidenIV::pushNarrowIVUsers(Instruction *NarrowDef, Instruction *WideDef) {
1644 const SCEV *NarrowSCEV = SE->getSCEV(NarrowDef);
1645 bool NonNegativeDef =
1646 SE->isKnownPredicate(ICmpInst::ICMP_SGE, NarrowSCEV,
1647 SE->getConstant(NarrowSCEV->getType(), 0));
1648 for (User *U : NarrowDef->users()) {
1649 Instruction *NarrowUser = cast<Instruction>(U);
1650
1651 // Handle data flow merges and bizarre phi cycles.
1652 if (!Widened.insert(NarrowUser).second)
1653 continue;
1654
1655 bool NonNegativeUse = false;
1656 if (!NonNegativeDef) {
1657 // We might have a control-dependent range information for this context.
1658 if (auto RangeInfo = getPostIncRangeInfo(NarrowDef, NarrowUser))
1659 NonNegativeUse = RangeInfo->getSignedMin().isNonNegative();
1660 }
1661
1662 NarrowIVUsers.emplace_back(NarrowDef, NarrowUser, WideDef,
1663 NonNegativeDef || NonNegativeUse);
1664 }
1665 }
1666
1667 /// Process a single induction variable. First use the SCEVExpander to create a
1668 /// wide induction variable that evaluates to the same recurrence as the
1669 /// original narrow IV. Then use a worklist to forward traverse the narrow IV's
1670 /// def-use chain. After widenIVUse has processed all interesting IV users, the
1671 /// narrow IV will be isolated for removal by DeleteDeadPHIs.
1672 ///
1673 /// It would be simpler to delete uses as they are processed, but we must avoid
1674 /// invalidating SCEV expressions.
createWideIV(SCEVExpander & Rewriter)1675 PHINode *WidenIV::createWideIV(SCEVExpander &Rewriter) {
1676 // Is this phi an induction variable?
1677 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(OrigPhi));
1678 if (!AddRec)
1679 return nullptr;
1680
1681 // Widen the induction variable expression.
1682 const SCEV *WideIVExpr = getExtendKind(OrigPhi) == SignExtended
1683 ? SE->getSignExtendExpr(AddRec, WideType)
1684 : SE->getZeroExtendExpr(AddRec, WideType);
1685
1686 assert(SE->getEffectiveSCEVType(WideIVExpr->getType()) == WideType &&
1687 "Expect the new IV expression to preserve its type");
1688
1689 // Can the IV be extended outside the loop without overflow?
1690 AddRec = dyn_cast<SCEVAddRecExpr>(WideIVExpr);
1691 if (!AddRec || AddRec->getLoop() != L)
1692 return nullptr;
1693
1694 // An AddRec must have loop-invariant operands. Since this AddRec is
1695 // materialized by a loop header phi, the expression cannot have any post-loop
1696 // operands, so they must dominate the loop header.
1697 assert(
1698 SE->properlyDominates(AddRec->getStart(), L->getHeader()) &&
1699 SE->properlyDominates(AddRec->getStepRecurrence(*SE), L->getHeader()) &&
1700 "Loop header phi recurrence inputs do not dominate the loop");
1701
1702 // Iterate over IV uses (including transitive ones) looking for IV increments
1703 // of the form 'add nsw %iv, <const>'. For each increment and each use of
1704 // the increment calculate control-dependent range information basing on
1705 // dominating conditions inside of the loop (e.g. a range check inside of the
1706 // loop). Calculated ranges are stored in PostIncRangeInfos map.
1707 //
1708 // Control-dependent range information is later used to prove that a narrow
1709 // definition is not negative (see pushNarrowIVUsers). It's difficult to do
1710 // this on demand because when pushNarrowIVUsers needs this information some
1711 // of the dominating conditions might be already widened.
1712 if (UsePostIncrementRanges)
1713 calculatePostIncRanges(OrigPhi);
1714
1715 // The rewriter provides a value for the desired IV expression. This may
1716 // either find an existing phi or materialize a new one. Either way, we
1717 // expect a well-formed cyclic phi-with-increments. i.e. any operand not part
1718 // of the phi-SCC dominates the loop entry.
1719 Instruction *InsertPt = &L->getHeader()->front();
1720 WidePhi = cast<PHINode>(Rewriter.expandCodeFor(AddRec, WideType, InsertPt));
1721
1722 // Remembering the WideIV increment generated by SCEVExpander allows
1723 // widenIVUse to reuse it when widening the narrow IV's increment. We don't
1724 // employ a general reuse mechanism because the call above is the only call to
1725 // SCEVExpander. Henceforth, we produce 1-to-1 narrow to wide uses.
1726 if (BasicBlock *LatchBlock = L->getLoopLatch()) {
1727 WideInc =
1728 cast<Instruction>(WidePhi->getIncomingValueForBlock(LatchBlock));
1729 WideIncExpr = SE->getSCEV(WideInc);
1730 // Propagate the debug location associated with the original loop increment
1731 // to the new (widened) increment.
1732 auto *OrigInc =
1733 cast<Instruction>(OrigPhi->getIncomingValueForBlock(LatchBlock));
1734 WideInc->setDebugLoc(OrigInc->getDebugLoc());
1735 }
1736
1737 LLVM_DEBUG(dbgs() << "Wide IV: " << *WidePhi << "\n");
1738 ++NumWidened;
1739
1740 // Traverse the def-use chain using a worklist starting at the original IV.
1741 assert(Widened.empty() && NarrowIVUsers.empty() && "expect initial state" );
1742
1743 Widened.insert(OrigPhi);
1744 pushNarrowIVUsers(OrigPhi, WidePhi);
1745
1746 while (!NarrowIVUsers.empty()) {
1747 NarrowIVDefUse DU = NarrowIVUsers.pop_back_val();
1748
1749 // Process a def-use edge. This may replace the use, so don't hold a
1750 // use_iterator across it.
1751 Instruction *WideUse = widenIVUse(DU, Rewriter);
1752
1753 // Follow all def-use edges from the previous narrow use.
1754 if (WideUse)
1755 pushNarrowIVUsers(DU.NarrowUse, WideUse);
1756
1757 // widenIVUse may have removed the def-use edge.
1758 if (DU.NarrowDef->use_empty())
1759 DeadInsts.emplace_back(DU.NarrowDef);
1760 }
1761
1762 // Attach any debug information to the new PHI. Since OrigPhi and WidePHI
1763 // evaluate the same recurrence, we can just copy the debug info over.
1764 SmallVector<DbgValueInst *, 1> DbgValues;
1765 llvm::findDbgValues(DbgValues, OrigPhi);
1766 auto *MDPhi = MetadataAsValue::get(WidePhi->getContext(),
1767 ValueAsMetadata::get(WidePhi));
1768 for (auto &DbgValue : DbgValues)
1769 DbgValue->setOperand(0, MDPhi);
1770 return WidePhi;
1771 }
1772
1773 /// Calculates control-dependent range for the given def at the given context
1774 /// by looking at dominating conditions inside of the loop
calculatePostIncRange(Instruction * NarrowDef,Instruction * NarrowUser)1775 void WidenIV::calculatePostIncRange(Instruction *NarrowDef,
1776 Instruction *NarrowUser) {
1777 using namespace llvm::PatternMatch;
1778
1779 Value *NarrowDefLHS;
1780 const APInt *NarrowDefRHS;
1781 if (!match(NarrowDef, m_NSWAdd(m_Value(NarrowDefLHS),
1782 m_APInt(NarrowDefRHS))) ||
1783 !NarrowDefRHS->isNonNegative())
1784 return;
1785
1786 auto UpdateRangeFromCondition = [&] (Value *Condition,
1787 bool TrueDest) {
1788 CmpInst::Predicate Pred;
1789 Value *CmpRHS;
1790 if (!match(Condition, m_ICmp(Pred, m_Specific(NarrowDefLHS),
1791 m_Value(CmpRHS))))
1792 return;
1793
1794 CmpInst::Predicate P =
1795 TrueDest ? Pred : CmpInst::getInversePredicate(Pred);
1796
1797 auto CmpRHSRange = SE->getSignedRange(SE->getSCEV(CmpRHS));
1798 auto CmpConstrainedLHSRange =
1799 ConstantRange::makeAllowedICmpRegion(P, CmpRHSRange);
1800 auto NarrowDefRange =
1801 CmpConstrainedLHSRange.addWithNoSignedWrap(*NarrowDefRHS);
1802
1803 updatePostIncRangeInfo(NarrowDef, NarrowUser, NarrowDefRange);
1804 };
1805
1806 auto UpdateRangeFromGuards = [&](Instruction *Ctx) {
1807 if (!HasGuards)
1808 return;
1809
1810 for (Instruction &I : make_range(Ctx->getIterator().getReverse(),
1811 Ctx->getParent()->rend())) {
1812 Value *C = nullptr;
1813 if (match(&I, m_Intrinsic<Intrinsic::experimental_guard>(m_Value(C))))
1814 UpdateRangeFromCondition(C, /*TrueDest=*/true);
1815 }
1816 };
1817
1818 UpdateRangeFromGuards(NarrowUser);
1819
1820 BasicBlock *NarrowUserBB = NarrowUser->getParent();
1821 // If NarrowUserBB is statically unreachable asking dominator queries may
1822 // yield surprising results. (e.g. the block may not have a dom tree node)
1823 if (!DT->isReachableFromEntry(NarrowUserBB))
1824 return;
1825
1826 for (auto *DTB = (*DT)[NarrowUserBB]->getIDom();
1827 L->contains(DTB->getBlock());
1828 DTB = DTB->getIDom()) {
1829 auto *BB = DTB->getBlock();
1830 auto *TI = BB->getTerminator();
1831 UpdateRangeFromGuards(TI);
1832
1833 auto *BI = dyn_cast<BranchInst>(TI);
1834 if (!BI || !BI->isConditional())
1835 continue;
1836
1837 auto *TrueSuccessor = BI->getSuccessor(0);
1838 auto *FalseSuccessor = BI->getSuccessor(1);
1839
1840 auto DominatesNarrowUser = [this, NarrowUser] (BasicBlockEdge BBE) {
1841 return BBE.isSingleEdge() &&
1842 DT->dominates(BBE, NarrowUser->getParent());
1843 };
1844
1845 if (DominatesNarrowUser(BasicBlockEdge(BB, TrueSuccessor)))
1846 UpdateRangeFromCondition(BI->getCondition(), /*TrueDest=*/true);
1847
1848 if (DominatesNarrowUser(BasicBlockEdge(BB, FalseSuccessor)))
1849 UpdateRangeFromCondition(BI->getCondition(), /*TrueDest=*/false);
1850 }
1851 }
1852
1853 /// Calculates PostIncRangeInfos map for the given IV
calculatePostIncRanges(PHINode * OrigPhi)1854 void WidenIV::calculatePostIncRanges(PHINode *OrigPhi) {
1855 SmallPtrSet<Instruction *, 16> Visited;
1856 SmallVector<Instruction *, 6> Worklist;
1857 Worklist.push_back(OrigPhi);
1858 Visited.insert(OrigPhi);
1859
1860 while (!Worklist.empty()) {
1861 Instruction *NarrowDef = Worklist.pop_back_val();
1862
1863 for (Use &U : NarrowDef->uses()) {
1864 auto *NarrowUser = cast<Instruction>(U.getUser());
1865
1866 // Don't go looking outside the current loop.
1867 auto *NarrowUserLoop = (*LI)[NarrowUser->getParent()];
1868 if (!NarrowUserLoop || !L->contains(NarrowUserLoop))
1869 continue;
1870
1871 if (!Visited.insert(NarrowUser).second)
1872 continue;
1873
1874 Worklist.push_back(NarrowUser);
1875
1876 calculatePostIncRange(NarrowDef, NarrowUser);
1877 }
1878 }
1879 }
1880
1881 //===----------------------------------------------------------------------===//
1882 // Live IV Reduction - Minimize IVs live across the loop.
1883 //===----------------------------------------------------------------------===//
1884
1885 //===----------------------------------------------------------------------===//
1886 // Simplification of IV users based on SCEV evaluation.
1887 //===----------------------------------------------------------------------===//
1888
1889 namespace {
1890
1891 class IndVarSimplifyVisitor : public IVVisitor {
1892 ScalarEvolution *SE;
1893 const TargetTransformInfo *TTI;
1894 PHINode *IVPhi;
1895
1896 public:
1897 WideIVInfo WI;
1898
IndVarSimplifyVisitor(PHINode * IV,ScalarEvolution * SCEV,const TargetTransformInfo * TTI,const DominatorTree * DTree)1899 IndVarSimplifyVisitor(PHINode *IV, ScalarEvolution *SCEV,
1900 const TargetTransformInfo *TTI,
1901 const DominatorTree *DTree)
1902 : SE(SCEV), TTI(TTI), IVPhi(IV) {
1903 DT = DTree;
1904 WI.NarrowIV = IVPhi;
1905 }
1906
1907 // Implement the interface used by simplifyUsersOfIV.
visitCast(CastInst * Cast)1908 void visitCast(CastInst *Cast) override { visitIVCast(Cast, WI, SE, TTI); }
1909 };
1910
1911 } // end anonymous namespace
1912
1913 /// Iteratively perform simplification on a worklist of IV users. Each
1914 /// successive simplification may push more users which may themselves be
1915 /// candidates for simplification.
1916 ///
1917 /// Sign/Zero extend elimination is interleaved with IV simplification.
simplifyAndExtend(Loop * L,SCEVExpander & Rewriter,LoopInfo * LI)1918 bool IndVarSimplify::simplifyAndExtend(Loop *L,
1919 SCEVExpander &Rewriter,
1920 LoopInfo *LI) {
1921 SmallVector<WideIVInfo, 8> WideIVs;
1922
1923 auto *GuardDecl = L->getBlocks()[0]->getModule()->getFunction(
1924 Intrinsic::getName(Intrinsic::experimental_guard));
1925 bool HasGuards = GuardDecl && !GuardDecl->use_empty();
1926
1927 SmallVector<PHINode*, 8> LoopPhis;
1928 for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) {
1929 LoopPhis.push_back(cast<PHINode>(I));
1930 }
1931 // Each round of simplification iterates through the SimplifyIVUsers worklist
1932 // for all current phis, then determines whether any IVs can be
1933 // widened. Widening adds new phis to LoopPhis, inducing another round of
1934 // simplification on the wide IVs.
1935 bool Changed = false;
1936 while (!LoopPhis.empty()) {
1937 // Evaluate as many IV expressions as possible before widening any IVs. This
1938 // forces SCEV to set no-wrap flags before evaluating sign/zero
1939 // extension. The first time SCEV attempts to normalize sign/zero extension,
1940 // the result becomes final. So for the most predictable results, we delay
1941 // evaluation of sign/zero extend evaluation until needed, and avoid running
1942 // other SCEV based analysis prior to simplifyAndExtend.
1943 do {
1944 PHINode *CurrIV = LoopPhis.pop_back_val();
1945
1946 // Information about sign/zero extensions of CurrIV.
1947 IndVarSimplifyVisitor Visitor(CurrIV, SE, TTI, DT);
1948
1949 Changed |=
1950 simplifyUsersOfIV(CurrIV, SE, DT, LI, DeadInsts, Rewriter, &Visitor);
1951
1952 if (Visitor.WI.WidestNativeType) {
1953 WideIVs.push_back(Visitor.WI);
1954 }
1955 } while(!LoopPhis.empty());
1956
1957 for (; !WideIVs.empty(); WideIVs.pop_back()) {
1958 WidenIV Widener(WideIVs.back(), LI, SE, DT, DeadInsts, HasGuards);
1959 if (PHINode *WidePhi = Widener.createWideIV(Rewriter)) {
1960 Changed = true;
1961 LoopPhis.push_back(WidePhi);
1962 }
1963 }
1964 }
1965 return Changed;
1966 }
1967
1968 //===----------------------------------------------------------------------===//
1969 // linearFunctionTestReplace and its kin. Rewrite the loop exit condition.
1970 //===----------------------------------------------------------------------===//
1971
1972 /// Given an Value which is hoped to be part of an add recurance in the given
1973 /// loop, return the associated Phi node if so. Otherwise, return null. Note
1974 /// that this is less general than SCEVs AddRec checking.
getLoopPhiForCounter(Value * IncV,Loop * L)1975 static PHINode *getLoopPhiForCounter(Value *IncV, Loop *L) {
1976 Instruction *IncI = dyn_cast<Instruction>(IncV);
1977 if (!IncI)
1978 return nullptr;
1979
1980 switch (IncI->getOpcode()) {
1981 case Instruction::Add:
1982 case Instruction::Sub:
1983 break;
1984 case Instruction::GetElementPtr:
1985 // An IV counter must preserve its type.
1986 if (IncI->getNumOperands() == 2)
1987 break;
1988 LLVM_FALLTHROUGH;
1989 default:
1990 return nullptr;
1991 }
1992
1993 PHINode *Phi = dyn_cast<PHINode>(IncI->getOperand(0));
1994 if (Phi && Phi->getParent() == L->getHeader()) {
1995 if (L->isLoopInvariant(IncI->getOperand(1)))
1996 return Phi;
1997 return nullptr;
1998 }
1999 if (IncI->getOpcode() == Instruction::GetElementPtr)
2000 return nullptr;
2001
2002 // Allow add/sub to be commuted.
2003 Phi = dyn_cast<PHINode>(IncI->getOperand(1));
2004 if (Phi && Phi->getParent() == L->getHeader()) {
2005 if (L->isLoopInvariant(IncI->getOperand(0)))
2006 return Phi;
2007 }
2008 return nullptr;
2009 }
2010
2011 /// Given a loop with one backedge and one exit, return the ICmpInst
2012 /// controlling the sole loop exit. There is no guarantee that the exiting
2013 /// block is also the latch.
getLoopTest(Loop * L,BasicBlock * ExitingBB)2014 static ICmpInst *getLoopTest(Loop *L, BasicBlock *ExitingBB) {
2015
2016 BasicBlock *LatchBlock = L->getLoopLatch();
2017 // Don't bother with LFTR if the loop is not properly simplified.
2018 if (!LatchBlock)
2019 return nullptr;
2020
2021 BranchInst *BI = dyn_cast<BranchInst>(ExitingBB->getTerminator());
2022 assert(BI && "expected exit branch");
2023
2024 return dyn_cast<ICmpInst>(BI->getCondition());
2025 }
2026
2027 /// linearFunctionTestReplace policy. Return true unless we can show that the
2028 /// current exit test is already sufficiently canonical.
needsLFTR(Loop * L,BasicBlock * ExitingBB)2029 static bool needsLFTR(Loop *L, BasicBlock *ExitingBB) {
2030 // Do LFTR to simplify the exit condition to an ICMP.
2031 ICmpInst *Cond = getLoopTest(L, ExitingBB);
2032 if (!Cond)
2033 return true;
2034
2035 // Do LFTR to simplify the exit ICMP to EQ/NE
2036 ICmpInst::Predicate Pred = Cond->getPredicate();
2037 if (Pred != ICmpInst::ICMP_NE && Pred != ICmpInst::ICMP_EQ)
2038 return true;
2039
2040 // Look for a loop invariant RHS
2041 Value *LHS = Cond->getOperand(0);
2042 Value *RHS = Cond->getOperand(1);
2043 if (!L->isLoopInvariant(RHS)) {
2044 if (!L->isLoopInvariant(LHS))
2045 return true;
2046 std::swap(LHS, RHS);
2047 }
2048 // Look for a simple IV counter LHS
2049 PHINode *Phi = dyn_cast<PHINode>(LHS);
2050 if (!Phi)
2051 Phi = getLoopPhiForCounter(LHS, L);
2052
2053 if (!Phi)
2054 return true;
2055
2056 // Do LFTR if PHI node is defined in the loop, but is *not* a counter.
2057 int Idx = Phi->getBasicBlockIndex(L->getLoopLatch());
2058 if (Idx < 0)
2059 return true;
2060
2061 // Do LFTR if the exit condition's IV is *not* a simple counter.
2062 Value *IncV = Phi->getIncomingValue(Idx);
2063 return Phi != getLoopPhiForCounter(IncV, L);
2064 }
2065
2066 /// Return true if undefined behavior would provable be executed on the path to
2067 /// OnPathTo if Root produced a posion result. Note that this doesn't say
2068 /// anything about whether OnPathTo is actually executed or whether Root is
2069 /// actually poison. This can be used to assess whether a new use of Root can
2070 /// be added at a location which is control equivalent with OnPathTo (such as
2071 /// immediately before it) without introducing UB which didn't previously
2072 /// exist. Note that a false result conveys no information.
mustExecuteUBIfPoisonOnPathTo(Instruction * Root,Instruction * OnPathTo,DominatorTree * DT)2073 static bool mustExecuteUBIfPoisonOnPathTo(Instruction *Root,
2074 Instruction *OnPathTo,
2075 DominatorTree *DT) {
2076 // Basic approach is to assume Root is poison, propagate poison forward
2077 // through all users we can easily track, and then check whether any of those
2078 // users are provable UB and must execute before out exiting block might
2079 // exit.
2080
2081 // The set of all recursive users we've visited (which are assumed to all be
2082 // poison because of said visit)
2083 SmallSet<const Value *, 16> KnownPoison;
2084 SmallVector<const Instruction*, 16> Worklist;
2085 Worklist.push_back(Root);
2086 while (!Worklist.empty()) {
2087 const Instruction *I = Worklist.pop_back_val();
2088
2089 // If we know this must trigger UB on a path leading our target.
2090 if (mustTriggerUB(I, KnownPoison) && DT->dominates(I, OnPathTo))
2091 return true;
2092
2093 // If we can't analyze propagation through this instruction, just skip it
2094 // and transitive users. Safe as false is a conservative result.
2095 if (!propagatesFullPoison(I) && I != Root)
2096 continue;
2097
2098 if (KnownPoison.insert(I).second)
2099 for (const User *User : I->users())
2100 Worklist.push_back(cast<Instruction>(User));
2101 }
2102
2103 // Might be non-UB, or might have a path we couldn't prove must execute on
2104 // way to exiting bb.
2105 return false;
2106 }
2107
2108 /// Recursive helper for hasConcreteDef(). Unfortunately, this currently boils
2109 /// down to checking that all operands are constant and listing instructions
2110 /// that may hide undef.
hasConcreteDefImpl(Value * V,SmallPtrSetImpl<Value * > & Visited,unsigned Depth)2111 static bool hasConcreteDefImpl(Value *V, SmallPtrSetImpl<Value*> &Visited,
2112 unsigned Depth) {
2113 if (isa<Constant>(V))
2114 return !isa<UndefValue>(V);
2115
2116 if (Depth >= 6)
2117 return false;
2118
2119 // Conservatively handle non-constant non-instructions. For example, Arguments
2120 // may be undef.
2121 Instruction *I = dyn_cast<Instruction>(V);
2122 if (!I)
2123 return false;
2124
2125 // Load and return values may be undef.
2126 if(I->mayReadFromMemory() || isa<CallInst>(I) || isa<InvokeInst>(I))
2127 return false;
2128
2129 // Optimistically handle other instructions.
2130 for (Value *Op : I->operands()) {
2131 if (!Visited.insert(Op).second)
2132 continue;
2133 if (!hasConcreteDefImpl(Op, Visited, Depth+1))
2134 return false;
2135 }
2136 return true;
2137 }
2138
2139 /// Return true if the given value is concrete. We must prove that undef can
2140 /// never reach it.
2141 ///
2142 /// TODO: If we decide that this is a good approach to checking for undef, we
2143 /// may factor it into a common location.
hasConcreteDef(Value * V)2144 static bool hasConcreteDef(Value *V) {
2145 SmallPtrSet<Value*, 8> Visited;
2146 Visited.insert(V);
2147 return hasConcreteDefImpl(V, Visited, 0);
2148 }
2149
2150 /// Return true if this IV has any uses other than the (soon to be rewritten)
2151 /// loop exit test.
AlmostDeadIV(PHINode * Phi,BasicBlock * LatchBlock,Value * Cond)2152 static bool AlmostDeadIV(PHINode *Phi, BasicBlock *LatchBlock, Value *Cond) {
2153 int LatchIdx = Phi->getBasicBlockIndex(LatchBlock);
2154 Value *IncV = Phi->getIncomingValue(LatchIdx);
2155
2156 for (User *U : Phi->users())
2157 if (U != Cond && U != IncV) return false;
2158
2159 for (User *U : IncV->users())
2160 if (U != Cond && U != Phi) return false;
2161 return true;
2162 }
2163
2164 /// Return true if the given phi is a "counter" in L. A counter is an
2165 /// add recurance (of integer or pointer type) with an arbitrary start, and a
2166 /// step of 1. Note that L must have exactly one latch.
isLoopCounter(PHINode * Phi,Loop * L,ScalarEvolution * SE)2167 static bool isLoopCounter(PHINode* Phi, Loop *L,
2168 ScalarEvolution *SE) {
2169 assert(Phi->getParent() == L->getHeader());
2170 assert(L->getLoopLatch());
2171
2172 if (!SE->isSCEVable(Phi->getType()))
2173 return false;
2174
2175 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Phi));
2176 if (!AR || AR->getLoop() != L || !AR->isAffine())
2177 return false;
2178
2179 const SCEV *Step = dyn_cast<SCEVConstant>(AR->getStepRecurrence(*SE));
2180 if (!Step || !Step->isOne())
2181 return false;
2182
2183 int LatchIdx = Phi->getBasicBlockIndex(L->getLoopLatch());
2184 Value *IncV = Phi->getIncomingValue(LatchIdx);
2185 return (getLoopPhiForCounter(IncV, L) == Phi);
2186 }
2187
2188 /// Search the loop header for a loop counter (anadd rec w/step of one)
2189 /// suitable for use by LFTR. If multiple counters are available, select the
2190 /// "best" one based profitable heuristics.
2191 ///
2192 /// BECount may be an i8* pointer type. The pointer difference is already
2193 /// valid count without scaling the address stride, so it remains a pointer
2194 /// expression as far as SCEV is concerned.
FindLoopCounter(Loop * L,BasicBlock * ExitingBB,const SCEV * BECount,ScalarEvolution * SE,DominatorTree * DT)2195 static PHINode *FindLoopCounter(Loop *L, BasicBlock *ExitingBB,
2196 const SCEV *BECount,
2197 ScalarEvolution *SE, DominatorTree *DT) {
2198 uint64_t BCWidth = SE->getTypeSizeInBits(BECount->getType());
2199
2200 Value *Cond = cast<BranchInst>(ExitingBB->getTerminator())->getCondition();
2201
2202 // Loop over all of the PHI nodes, looking for a simple counter.
2203 PHINode *BestPhi = nullptr;
2204 const SCEV *BestInit = nullptr;
2205 BasicBlock *LatchBlock = L->getLoopLatch();
2206 assert(LatchBlock && "needsLFTR should guarantee a loop latch");
2207 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
2208
2209 for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) {
2210 PHINode *Phi = cast<PHINode>(I);
2211 if (!isLoopCounter(Phi, L, SE))
2212 continue;
2213
2214 // Avoid comparing an integer IV against a pointer Limit.
2215 if (BECount->getType()->isPointerTy() && !Phi->getType()->isPointerTy())
2216 continue;
2217
2218 const auto *AR = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Phi));
2219
2220 // AR may be a pointer type, while BECount is an integer type.
2221 // AR may be wider than BECount. With eq/ne tests overflow is immaterial.
2222 // AR may not be a narrower type, or we may never exit.
2223 uint64_t PhiWidth = SE->getTypeSizeInBits(AR->getType());
2224 if (PhiWidth < BCWidth || !DL.isLegalInteger(PhiWidth))
2225 continue;
2226
2227 // Avoid reusing a potentially undef value to compute other values that may
2228 // have originally had a concrete definition.
2229 if (!hasConcreteDef(Phi)) {
2230 // We explicitly allow unknown phis as long as they are already used by
2231 // the loop test. In this case we assume that performing LFTR could not
2232 // increase the number of undef users.
2233 // TODO: Generalize this to allow *any* loop exit which is known to
2234 // execute on each iteration
2235 if (L->getExitingBlock())
2236 if (ICmpInst *Cond = getLoopTest(L, ExitingBB))
2237 if (Phi != getLoopPhiForCounter(Cond->getOperand(0), L) &&
2238 Phi != getLoopPhiForCounter(Cond->getOperand(1), L))
2239 continue;
2240 }
2241
2242 // Avoid introducing undefined behavior due to poison which didn't exist in
2243 // the original program. (Annoyingly, the rules for poison and undef
2244 // propagation are distinct, so this does NOT cover the undef case above.)
2245 // We have to ensure that we don't introduce UB by introducing a use on an
2246 // iteration where said IV produces poison. Our strategy here differs for
2247 // pointers and integer IVs. For integers, we strip and reinfer as needed,
2248 // see code in linearFunctionTestReplace. For pointers, we restrict
2249 // transforms as there is no good way to reinfer inbounds once lost.
2250 if (!Phi->getType()->isIntegerTy() &&
2251 !mustExecuteUBIfPoisonOnPathTo(Phi, ExitingBB->getTerminator(), DT))
2252 continue;
2253
2254 const SCEV *Init = AR->getStart();
2255
2256 if (BestPhi && !AlmostDeadIV(BestPhi, LatchBlock, Cond)) {
2257 // Don't force a live loop counter if another IV can be used.
2258 if (AlmostDeadIV(Phi, LatchBlock, Cond))
2259 continue;
2260
2261 // Prefer to count-from-zero. This is a more "canonical" counter form. It
2262 // also prefers integer to pointer IVs.
2263 if (BestInit->isZero() != Init->isZero()) {
2264 if (BestInit->isZero())
2265 continue;
2266 }
2267 // If two IVs both count from zero or both count from nonzero then the
2268 // narrower is likely a dead phi that has been widened. Use the wider phi
2269 // to allow the other to be eliminated.
2270 else if (PhiWidth <= SE->getTypeSizeInBits(BestPhi->getType()))
2271 continue;
2272 }
2273 BestPhi = Phi;
2274 BestInit = Init;
2275 }
2276 return BestPhi;
2277 }
2278
2279 /// Insert an IR expression which computes the value held by the IV IndVar
2280 /// (which must be an loop counter w/unit stride) after the backedge of loop L
2281 /// is taken ExitCount times.
genLoopLimit(PHINode * IndVar,BasicBlock * ExitingBB,const SCEV * ExitCount,bool UsePostInc,Loop * L,SCEVExpander & Rewriter,ScalarEvolution * SE)2282 static Value *genLoopLimit(PHINode *IndVar, BasicBlock *ExitingBB,
2283 const SCEV *ExitCount, bool UsePostInc, Loop *L,
2284 SCEVExpander &Rewriter, ScalarEvolution *SE) {
2285 assert(isLoopCounter(IndVar, L, SE));
2286 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(SE->getSCEV(IndVar));
2287 const SCEV *IVInit = AR->getStart();
2288
2289 // IVInit may be a pointer while ExitCount is an integer when FindLoopCounter
2290 // finds a valid pointer IV. Sign extend ExitCount in order to materialize a
2291 // GEP. Avoid running SCEVExpander on a new pointer value, instead reusing
2292 // the existing GEPs whenever possible.
2293 if (IndVar->getType()->isPointerTy() &&
2294 !ExitCount->getType()->isPointerTy()) {
2295 // IVOffset will be the new GEP offset that is interpreted by GEP as a
2296 // signed value. ExitCount on the other hand represents the loop trip count,
2297 // which is an unsigned value. FindLoopCounter only allows induction
2298 // variables that have a positive unit stride of one. This means we don't
2299 // have to handle the case of negative offsets (yet) and just need to zero
2300 // extend ExitCount.
2301 Type *OfsTy = SE->getEffectiveSCEVType(IVInit->getType());
2302 const SCEV *IVOffset = SE->getTruncateOrZeroExtend(ExitCount, OfsTy);
2303 if (UsePostInc)
2304 IVOffset = SE->getAddExpr(IVOffset, SE->getOne(OfsTy));
2305
2306 // Expand the code for the iteration count.
2307 assert(SE->isLoopInvariant(IVOffset, L) &&
2308 "Computed iteration count is not loop invariant!");
2309 BranchInst *BI = cast<BranchInst>(ExitingBB->getTerminator());
2310 Value *GEPOffset = Rewriter.expandCodeFor(IVOffset, OfsTy, BI);
2311
2312 Value *GEPBase = IndVar->getIncomingValueForBlock(L->getLoopPreheader());
2313 assert(AR->getStart() == SE->getSCEV(GEPBase) && "bad loop counter");
2314 // We could handle pointer IVs other than i8*, but we need to compensate for
2315 // gep index scaling.
2316 assert(SE->getSizeOfExpr(IntegerType::getInt64Ty(IndVar->getContext()),
2317 cast<PointerType>(GEPBase->getType())
2318 ->getElementType())->isOne() &&
2319 "unit stride pointer IV must be i8*");
2320
2321 IRBuilder<> Builder(L->getLoopPreheader()->getTerminator());
2322 return Builder.CreateGEP(nullptr, GEPBase, GEPOffset, "lftr.limit");
2323 } else {
2324 // In any other case, convert both IVInit and ExitCount to integers before
2325 // comparing. This may result in SCEV expansion of pointers, but in practice
2326 // SCEV will fold the pointer arithmetic away as such:
2327 // BECount = (IVEnd - IVInit - 1) => IVLimit = IVInit (postinc).
2328 //
2329 // Valid Cases: (1) both integers is most common; (2) both may be pointers
2330 // for simple memset-style loops.
2331 //
2332 // IVInit integer and ExitCount pointer would only occur if a canonical IV
2333 // were generated on top of case #2, which is not expected.
2334
2335 assert(AR->getStepRecurrence(*SE)->isOne() && "only handles unit stride");
2336 // For unit stride, IVCount = Start + ExitCount with 2's complement
2337 // overflow.
2338 const SCEV *IVInit = AR->getStart();
2339
2340 // For integer IVs, truncate the IV before computing IVInit + BECount.
2341 if (SE->getTypeSizeInBits(IVInit->getType())
2342 > SE->getTypeSizeInBits(ExitCount->getType()))
2343 IVInit = SE->getTruncateExpr(IVInit, ExitCount->getType());
2344
2345 const SCEV *IVLimit = SE->getAddExpr(IVInit, ExitCount);
2346
2347 if (UsePostInc)
2348 IVLimit = SE->getAddExpr(IVLimit, SE->getOne(IVLimit->getType()));
2349
2350 // Expand the code for the iteration count.
2351 BranchInst *BI = cast<BranchInst>(ExitingBB->getTerminator());
2352 IRBuilder<> Builder(BI);
2353 assert(SE->isLoopInvariant(IVLimit, L) &&
2354 "Computed iteration count is not loop invariant!");
2355 // Ensure that we generate the same type as IndVar, or a smaller integer
2356 // type. In the presence of null pointer values, we have an integer type
2357 // SCEV expression (IVInit) for a pointer type IV value (IndVar).
2358 Type *LimitTy = ExitCount->getType()->isPointerTy() ?
2359 IndVar->getType() : ExitCount->getType();
2360 return Rewriter.expandCodeFor(IVLimit, LimitTy, BI);
2361 }
2362 }
2363
2364 /// This method rewrites the exit condition of the loop to be a canonical !=
2365 /// comparison against the incremented loop induction variable. This pass is
2366 /// able to rewrite the exit tests of any loop where the SCEV analysis can
2367 /// determine a loop-invariant trip count of the loop, which is actually a much
2368 /// broader range than just linear tests.
2369 bool IndVarSimplify::
linearFunctionTestReplace(Loop * L,BasicBlock * ExitingBB,const SCEV * ExitCount,PHINode * IndVar,SCEVExpander & Rewriter)2370 linearFunctionTestReplace(Loop *L, BasicBlock *ExitingBB,
2371 const SCEV *ExitCount,
2372 PHINode *IndVar, SCEVExpander &Rewriter) {
2373 assert(L->getLoopLatch() && "Loop no longer in simplified form?");
2374 assert(isLoopCounter(IndVar, L, SE));
2375 Instruction * const IncVar =
2376 cast<Instruction>(IndVar->getIncomingValueForBlock(L->getLoopLatch()));
2377
2378 // Initialize CmpIndVar to the preincremented IV.
2379 Value *CmpIndVar = IndVar;
2380 bool UsePostInc = false;
2381
2382 // If the exiting block is the same as the backedge block, we prefer to
2383 // compare against the post-incremented value, otherwise we must compare
2384 // against the preincremented value.
2385 if (ExitingBB == L->getLoopLatch()) {
2386 bool SafeToPostInc = IndVar->getType()->isIntegerTy();
2387 if (!SafeToPostInc) {
2388 // For pointer IVs, we chose to not strip inbounds which requires us not
2389 // to add a potentially UB introducing use. We need to either a) show
2390 // the loop test we're modifying is already in post-inc form, or b) show
2391 // that adding a use must not introduce UB.
2392 if (ICmpInst *LoopTest = getLoopTest(L, ExitingBB))
2393 SafeToPostInc = LoopTest->getOperand(0) == IncVar ||
2394 LoopTest->getOperand(1) == IncVar;
2395 if (!SafeToPostInc)
2396 SafeToPostInc =
2397 mustExecuteUBIfPoisonOnPathTo(IncVar, ExitingBB->getTerminator(), DT);
2398 }
2399
2400 if (SafeToPostInc) {
2401 UsePostInc = true;
2402 CmpIndVar = IncVar;
2403 }
2404 }
2405
2406 // It may be necessary to drop nowrap flags on the incrementing instruction
2407 // if either LFTR moves from a pre-inc check to a post-inc check (in which
2408 // case the increment might have previously been poison on the last iteration
2409 // only) or if LFTR switches to a different IV that was previously dynamically
2410 // dead (and as such may be arbitrarily poison). We remove any nowrap flags
2411 // that SCEV didn't infer for the post-inc addrec (even if we use a pre-inc
2412 // check), because the pre-inc addrec flags may be adopted from the original
2413 // instruction, while SCEV has to explicitly prove the post-inc nowrap flags.
2414 // TODO: This handling is inaccurate for one case: If we switch to a
2415 // dynamically dead IV that wraps on the first loop iteration only, which is
2416 // not covered by the post-inc addrec. (If the new IV was not dynamically
2417 // dead, it could not be poison on the first iteration in the first place.)
2418 if (auto *BO = dyn_cast<BinaryOperator>(IncVar)) {
2419 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(SE->getSCEV(IncVar));
2420 if (BO->hasNoUnsignedWrap())
2421 BO->setHasNoUnsignedWrap(AR->hasNoUnsignedWrap());
2422 if (BO->hasNoSignedWrap())
2423 BO->setHasNoSignedWrap(AR->hasNoSignedWrap());
2424 }
2425
2426 Value *ExitCnt = genLoopLimit(
2427 IndVar, ExitingBB, ExitCount, UsePostInc, L, Rewriter, SE);
2428 assert(ExitCnt->getType()->isPointerTy() ==
2429 IndVar->getType()->isPointerTy() &&
2430 "genLoopLimit missed a cast");
2431
2432 // Insert a new icmp_ne or icmp_eq instruction before the branch.
2433 BranchInst *BI = cast<BranchInst>(ExitingBB->getTerminator());
2434 ICmpInst::Predicate P;
2435 if (L->contains(BI->getSuccessor(0)))
2436 P = ICmpInst::ICMP_NE;
2437 else
2438 P = ICmpInst::ICMP_EQ;
2439
2440 IRBuilder<> Builder(BI);
2441
2442 // The new loop exit condition should reuse the debug location of the
2443 // original loop exit condition.
2444 if (auto *Cond = dyn_cast<Instruction>(BI->getCondition()))
2445 Builder.SetCurrentDebugLocation(Cond->getDebugLoc());
2446
2447 // LFTR can ignore IV overflow and truncate to the width of
2448 // ExitCount. This avoids materializing the add(zext(add)) expression.
2449 unsigned CmpIndVarSize = SE->getTypeSizeInBits(CmpIndVar->getType());
2450 unsigned ExitCntSize = SE->getTypeSizeInBits(ExitCnt->getType());
2451 if (CmpIndVarSize > ExitCntSize) {
2452 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(SE->getSCEV(IndVar));
2453 const SCEV *ARStart = AR->getStart();
2454 const SCEV *ARStep = AR->getStepRecurrence(*SE);
2455 // For constant ExitCount, avoid truncation.
2456 if (isa<SCEVConstant>(ARStart) && isa<SCEVConstant>(ExitCount)) {
2457 const APInt &Start = cast<SCEVConstant>(ARStart)->getAPInt();
2458 APInt Count = cast<SCEVConstant>(ExitCount)->getAPInt();
2459 Count = Count.zext(CmpIndVarSize);
2460 if (UsePostInc)
2461 ++Count;
2462 APInt NewLimit;
2463 if (cast<SCEVConstant>(ARStep)->getValue()->isNegative())
2464 NewLimit = Start - Count;
2465 else
2466 NewLimit = Start + Count;
2467 ExitCnt = ConstantInt::get(CmpIndVar->getType(), NewLimit);
2468
2469 LLVM_DEBUG(dbgs() << " Widen RHS:\t" << *ExitCnt << "\n");
2470 } else {
2471 // We try to extend trip count first. If that doesn't work we truncate IV.
2472 // Zext(trunc(IV)) == IV implies equivalence of the following two:
2473 // Trunc(IV) == ExitCnt and IV == zext(ExitCnt). Similarly for sext. If
2474 // one of the two holds, extend the trip count, otherwise we truncate IV.
2475 bool Extended = false;
2476 const SCEV *IV = SE->getSCEV(CmpIndVar);
2477 const SCEV *ZExtTrunc =
2478 SE->getZeroExtendExpr(SE->getTruncateExpr(SE->getSCEV(CmpIndVar),
2479 ExitCnt->getType()),
2480 CmpIndVar->getType());
2481
2482 if (ZExtTrunc == IV) {
2483 Extended = true;
2484 ExitCnt = Builder.CreateZExt(ExitCnt, IndVar->getType(),
2485 "wide.trip.count");
2486 } else {
2487 const SCEV *SExtTrunc =
2488 SE->getSignExtendExpr(SE->getTruncateExpr(SE->getSCEV(CmpIndVar),
2489 ExitCnt->getType()),
2490 CmpIndVar->getType());
2491 if (SExtTrunc == IV) {
2492 Extended = true;
2493 ExitCnt = Builder.CreateSExt(ExitCnt, IndVar->getType(),
2494 "wide.trip.count");
2495 }
2496 }
2497
2498 if (!Extended)
2499 CmpIndVar = Builder.CreateTrunc(CmpIndVar, ExitCnt->getType(),
2500 "lftr.wideiv");
2501 }
2502 }
2503 LLVM_DEBUG(dbgs() << "INDVARS: Rewriting loop exit condition to:\n"
2504 << " LHS:" << *CmpIndVar << '\n'
2505 << " op:\t" << (P == ICmpInst::ICMP_NE ? "!=" : "==")
2506 << "\n"
2507 << " RHS:\t" << *ExitCnt << "\n"
2508 << "ExitCount:\t" << *ExitCount << "\n"
2509 << " was: " << *BI->getCondition() << "\n");
2510
2511 Value *Cond = Builder.CreateICmp(P, CmpIndVar, ExitCnt, "exitcond");
2512 Value *OrigCond = BI->getCondition();
2513 // It's tempting to use replaceAllUsesWith here to fully replace the old
2514 // comparison, but that's not immediately safe, since users of the old
2515 // comparison may not be dominated by the new comparison. Instead, just
2516 // update the branch to use the new comparison; in the common case this
2517 // will make old comparison dead.
2518 BI->setCondition(Cond);
2519 DeadInsts.push_back(OrigCond);
2520
2521 ++NumLFTR;
2522 return true;
2523 }
2524
2525 //===----------------------------------------------------------------------===//
2526 // sinkUnusedInvariants. A late subpass to cleanup loop preheaders.
2527 //===----------------------------------------------------------------------===//
2528
2529 /// If there's a single exit block, sink any loop-invariant values that
2530 /// were defined in the preheader but not used inside the loop into the
2531 /// exit block to reduce register pressure in the loop.
sinkUnusedInvariants(Loop * L)2532 bool IndVarSimplify::sinkUnusedInvariants(Loop *L) {
2533 BasicBlock *ExitBlock = L->getExitBlock();
2534 if (!ExitBlock) return false;
2535
2536 BasicBlock *Preheader = L->getLoopPreheader();
2537 if (!Preheader) return false;
2538
2539 bool MadeAnyChanges = false;
2540 BasicBlock::iterator InsertPt = ExitBlock->getFirstInsertionPt();
2541 BasicBlock::iterator I(Preheader->getTerminator());
2542 while (I != Preheader->begin()) {
2543 --I;
2544 // New instructions were inserted at the end of the preheader.
2545 if (isa<PHINode>(I))
2546 break;
2547
2548 // Don't move instructions which might have side effects, since the side
2549 // effects need to complete before instructions inside the loop. Also don't
2550 // move instructions which might read memory, since the loop may modify
2551 // memory. Note that it's okay if the instruction might have undefined
2552 // behavior: LoopSimplify guarantees that the preheader dominates the exit
2553 // block.
2554 if (I->mayHaveSideEffects() || I->mayReadFromMemory())
2555 continue;
2556
2557 // Skip debug info intrinsics.
2558 if (isa<DbgInfoIntrinsic>(I))
2559 continue;
2560
2561 // Skip eh pad instructions.
2562 if (I->isEHPad())
2563 continue;
2564
2565 // Don't sink alloca: we never want to sink static alloca's out of the
2566 // entry block, and correctly sinking dynamic alloca's requires
2567 // checks for stacksave/stackrestore intrinsics.
2568 // FIXME: Refactor this check somehow?
2569 if (isa<AllocaInst>(I))
2570 continue;
2571
2572 // Determine if there is a use in or before the loop (direct or
2573 // otherwise).
2574 bool UsedInLoop = false;
2575 for (Use &U : I->uses()) {
2576 Instruction *User = cast<Instruction>(U.getUser());
2577 BasicBlock *UseBB = User->getParent();
2578 if (PHINode *P = dyn_cast<PHINode>(User)) {
2579 unsigned i =
2580 PHINode::getIncomingValueNumForOperand(U.getOperandNo());
2581 UseBB = P->getIncomingBlock(i);
2582 }
2583 if (UseBB == Preheader || L->contains(UseBB)) {
2584 UsedInLoop = true;
2585 break;
2586 }
2587 }
2588
2589 // If there is, the def must remain in the preheader.
2590 if (UsedInLoop)
2591 continue;
2592
2593 // Otherwise, sink it to the exit block.
2594 Instruction *ToMove = &*I;
2595 bool Done = false;
2596
2597 if (I != Preheader->begin()) {
2598 // Skip debug info intrinsics.
2599 do {
2600 --I;
2601 } while (isa<DbgInfoIntrinsic>(I) && I != Preheader->begin());
2602
2603 if (isa<DbgInfoIntrinsic>(I) && I == Preheader->begin())
2604 Done = true;
2605 } else {
2606 Done = true;
2607 }
2608
2609 MadeAnyChanges = true;
2610 ToMove->moveBefore(*ExitBlock, InsertPt);
2611 if (Done) break;
2612 InsertPt = ToMove->getIterator();
2613 }
2614
2615 return MadeAnyChanges;
2616 }
2617
2618 //===----------------------------------------------------------------------===//
2619 // IndVarSimplify driver. Manage several subpasses of IV simplification.
2620 //===----------------------------------------------------------------------===//
2621
run(Loop * L)2622 bool IndVarSimplify::run(Loop *L) {
2623 // We need (and expect!) the incoming loop to be in LCSSA.
2624 assert(L->isRecursivelyLCSSAForm(*DT, *LI) &&
2625 "LCSSA required to run indvars!");
2626 bool Changed = false;
2627
2628 // If LoopSimplify form is not available, stay out of trouble. Some notes:
2629 // - LSR currently only supports LoopSimplify-form loops. Indvars'
2630 // canonicalization can be a pessimization without LSR to "clean up"
2631 // afterwards.
2632 // - We depend on having a preheader; in particular,
2633 // Loop::getCanonicalInductionVariable only supports loops with preheaders,
2634 // and we're in trouble if we can't find the induction variable even when
2635 // we've manually inserted one.
2636 // - LFTR relies on having a single backedge.
2637 if (!L->isLoopSimplifyForm())
2638 return false;
2639
2640 // If there are any floating-point recurrences, attempt to
2641 // transform them to use integer recurrences.
2642 Changed |= rewriteNonIntegerIVs(L);
2643
2644 const SCEV *BackedgeTakenCount = SE->getBackedgeTakenCount(L);
2645
2646 // Create a rewriter object which we'll use to transform the code with.
2647 SCEVExpander Rewriter(*SE, DL, "indvars");
2648 #ifndef NDEBUG
2649 Rewriter.setDebugType(DEBUG_TYPE);
2650 #endif
2651
2652 // Eliminate redundant IV users.
2653 //
2654 // Simplification works best when run before other consumers of SCEV. We
2655 // attempt to avoid evaluating SCEVs for sign/zero extend operations until
2656 // other expressions involving loop IVs have been evaluated. This helps SCEV
2657 // set no-wrap flags before normalizing sign/zero extension.
2658 Rewriter.disableCanonicalMode();
2659 Changed |= simplifyAndExtend(L, Rewriter, LI);
2660
2661 // Check to see if this loop has a computable loop-invariant execution count.
2662 // If so, this means that we can compute the final value of any expressions
2663 // that are recurrent in the loop, and substitute the exit values from the
2664 // loop into any instructions outside of the loop that use the final values of
2665 // the current expressions.
2666 //
2667 if (ReplaceExitValue != NeverRepl &&
2668 !isa<SCEVCouldNotCompute>(BackedgeTakenCount))
2669 Changed |= rewriteLoopExitValues(L, Rewriter);
2670
2671 // Eliminate redundant IV cycles.
2672 NumElimIV += Rewriter.replaceCongruentIVs(L, DT, DeadInsts);
2673
2674 // If we have a trip count expression, rewrite the loop's exit condition
2675 // using it.
2676 if (!DisableLFTR) {
2677 // For the moment, we only do LFTR for single exit loops. The code is
2678 // structured as it is in the expectation of generalization to multi-exit
2679 // loops in the near future. See D62625 for context.
2680 SmallVector<BasicBlock*, 16> ExitingBlocks;
2681 if (auto *ExitingBB = L->getExitingBlock())
2682 ExitingBlocks.push_back(ExitingBB);
2683 for (BasicBlock *ExitingBB : ExitingBlocks) {
2684 // Can't rewrite non-branch yet.
2685 if (!isa<BranchInst>(ExitingBB->getTerminator()))
2686 continue;
2687
2688 if (!needsLFTR(L, ExitingBB))
2689 continue;
2690
2691 const SCEV *ExitCount = SE->getExitCount(L, ExitingBB);
2692 if (isa<SCEVCouldNotCompute>(ExitCount))
2693 continue;
2694
2695 // Better to fold to true (TODO: do so!)
2696 if (ExitCount->isZero())
2697 continue;
2698
2699 PHINode *IndVar = FindLoopCounter(L, ExitingBB, ExitCount, SE, DT);
2700 if (!IndVar)
2701 continue;
2702
2703 // Avoid high cost expansions. Note: This heuristic is questionable in
2704 // that our definition of "high cost" is not exactly principled.
2705 if (Rewriter.isHighCostExpansion(ExitCount, L))
2706 continue;
2707
2708 // Check preconditions for proper SCEVExpander operation. SCEV does not
2709 // express SCEVExpander's dependencies, such as LoopSimplify. Instead
2710 // any pass that uses the SCEVExpander must do it. This does not work
2711 // well for loop passes because SCEVExpander makes assumptions about
2712 // all loops, while LoopPassManager only forces the current loop to be
2713 // simplified.
2714 //
2715 // FIXME: SCEV expansion has no way to bail out, so the caller must
2716 // explicitly check any assumptions made by SCEV. Brittle.
2717 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(ExitCount);
2718 if (!AR || AR->getLoop()->getLoopPreheader())
2719 Changed |= linearFunctionTestReplace(L, ExitingBB,
2720 ExitCount, IndVar,
2721 Rewriter);
2722 }
2723 }
2724 // Clear the rewriter cache, because values that are in the rewriter's cache
2725 // can be deleted in the loop below, causing the AssertingVH in the cache to
2726 // trigger.
2727 Rewriter.clear();
2728
2729 // Now that we're done iterating through lists, clean up any instructions
2730 // which are now dead.
2731 while (!DeadInsts.empty())
2732 if (Instruction *Inst =
2733 dyn_cast_or_null<Instruction>(DeadInsts.pop_back_val()))
2734 Changed |= RecursivelyDeleteTriviallyDeadInstructions(Inst, TLI);
2735
2736 // The Rewriter may not be used from this point on.
2737
2738 // Loop-invariant instructions in the preheader that aren't used in the
2739 // loop may be sunk below the loop to reduce register pressure.
2740 Changed |= sinkUnusedInvariants(L);
2741
2742 // rewriteFirstIterationLoopExitValues does not rely on the computation of
2743 // trip count and therefore can further simplify exit values in addition to
2744 // rewriteLoopExitValues.
2745 Changed |= rewriteFirstIterationLoopExitValues(L);
2746
2747 // Clean up dead instructions.
2748 Changed |= DeleteDeadPHIs(L->getHeader(), TLI);
2749
2750 // Check a post-condition.
2751 assert(L->isRecursivelyLCSSAForm(*DT, *LI) &&
2752 "Indvars did not preserve LCSSA!");
2753
2754 // Verify that LFTR, and any other change have not interfered with SCEV's
2755 // ability to compute trip count.
2756 #ifndef NDEBUG
2757 if (VerifyIndvars && !isa<SCEVCouldNotCompute>(BackedgeTakenCount)) {
2758 SE->forgetLoop(L);
2759 const SCEV *NewBECount = SE->getBackedgeTakenCount(L);
2760 if (SE->getTypeSizeInBits(BackedgeTakenCount->getType()) <
2761 SE->getTypeSizeInBits(NewBECount->getType()))
2762 NewBECount = SE->getTruncateOrNoop(NewBECount,
2763 BackedgeTakenCount->getType());
2764 else
2765 BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount,
2766 NewBECount->getType());
2767 assert(BackedgeTakenCount == NewBECount && "indvars must preserve SCEV");
2768 }
2769 #endif
2770
2771 return Changed;
2772 }
2773
run(Loop & L,LoopAnalysisManager & AM,LoopStandardAnalysisResults & AR,LPMUpdater &)2774 PreservedAnalyses IndVarSimplifyPass::run(Loop &L, LoopAnalysisManager &AM,
2775 LoopStandardAnalysisResults &AR,
2776 LPMUpdater &) {
2777 Function *F = L.getHeader()->getParent();
2778 const DataLayout &DL = F->getParent()->getDataLayout();
2779
2780 IndVarSimplify IVS(&AR.LI, &AR.SE, &AR.DT, DL, &AR.TLI, &AR.TTI);
2781 if (!IVS.run(&L))
2782 return PreservedAnalyses::all();
2783
2784 auto PA = getLoopPassPreservedAnalyses();
2785 PA.preserveSet<CFGAnalyses>();
2786 return PA;
2787 }
2788
2789 namespace {
2790
2791 struct IndVarSimplifyLegacyPass : public LoopPass {
2792 static char ID; // Pass identification, replacement for typeid
2793
IndVarSimplifyLegacyPass__anonc65a48c90e11::IndVarSimplifyLegacyPass2794 IndVarSimplifyLegacyPass() : LoopPass(ID) {
2795 initializeIndVarSimplifyLegacyPassPass(*PassRegistry::getPassRegistry());
2796 }
2797
runOnLoop__anonc65a48c90e11::IndVarSimplifyLegacyPass2798 bool runOnLoop(Loop *L, LPPassManager &LPM) override {
2799 if (skipLoop(L))
2800 return false;
2801
2802 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
2803 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
2804 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
2805 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>();
2806 auto *TLI = TLIP ? &TLIP->getTLI() : nullptr;
2807 auto *TTIP = getAnalysisIfAvailable<TargetTransformInfoWrapperPass>();
2808 auto *TTI = TTIP ? &TTIP->getTTI(*L->getHeader()->getParent()) : nullptr;
2809 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
2810
2811 IndVarSimplify IVS(LI, SE, DT, DL, TLI, TTI);
2812 return IVS.run(L);
2813 }
2814
getAnalysisUsage__anonc65a48c90e11::IndVarSimplifyLegacyPass2815 void getAnalysisUsage(AnalysisUsage &AU) const override {
2816 AU.setPreservesCFG();
2817 getLoopAnalysisUsage(AU);
2818 }
2819 };
2820
2821 } // end anonymous namespace
2822
2823 char IndVarSimplifyLegacyPass::ID = 0;
2824
2825 INITIALIZE_PASS_BEGIN(IndVarSimplifyLegacyPass, "indvars",
2826 "Induction Variable Simplification", false, false)
INITIALIZE_PASS_DEPENDENCY(LoopPass)2827 INITIALIZE_PASS_DEPENDENCY(LoopPass)
2828 INITIALIZE_PASS_END(IndVarSimplifyLegacyPass, "indvars",
2829 "Induction Variable Simplification", false, false)
2830
2831 Pass *llvm::createIndVarSimplifyPass() {
2832 return new IndVarSimplifyLegacyPass();
2833 }
2834