1 //===- EarlyCSE.cpp - Simple and fast CSE pass ----------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass performs a simple dominator tree walk that eliminates trivially
11 // redundant instructions.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/Transforms/Scalar/EarlyCSE.h"
16 #include "llvm/ADT/DenseMapInfo.h"
17 #include "llvm/ADT/Hashing.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/ScopedHashTable.h"
20 #include "llvm/ADT/SetVector.h"
21 #include "llvm/ADT/SmallVector.h"
22 #include "llvm/ADT/Statistic.h"
23 #include "llvm/Analysis/AssumptionCache.h"
24 #include "llvm/Analysis/GlobalsModRef.h"
25 #include "llvm/Analysis/GuardUtils.h"
26 #include "llvm/Analysis/InstructionSimplify.h"
27 #include "llvm/Analysis/MemorySSA.h"
28 #include "llvm/Analysis/MemorySSAUpdater.h"
29 #include "llvm/Analysis/TargetLibraryInfo.h"
30 #include "llvm/Analysis/TargetTransformInfo.h"
31 #include "llvm/Transforms/Utils/Local.h"
32 #include "llvm/Analysis/ValueTracking.h"
33 #include "llvm/IR/BasicBlock.h"
34 #include "llvm/IR/Constants.h"
35 #include "llvm/IR/DataLayout.h"
36 #include "llvm/IR/Dominators.h"
37 #include "llvm/IR/Function.h"
38 #include "llvm/IR/InstrTypes.h"
39 #include "llvm/IR/Instruction.h"
40 #include "llvm/IR/Instructions.h"
41 #include "llvm/IR/IntrinsicInst.h"
42 #include "llvm/IR/Intrinsics.h"
43 #include "llvm/IR/LLVMContext.h"
44 #include "llvm/IR/PassManager.h"
45 #include "llvm/IR/PatternMatch.h"
46 #include "llvm/IR/Type.h"
47 #include "llvm/IR/Use.h"
48 #include "llvm/IR/Value.h"
49 #include "llvm/Pass.h"
50 #include "llvm/Support/Allocator.h"
51 #include "llvm/Support/AtomicOrdering.h"
52 #include "llvm/Support/Casting.h"
53 #include "llvm/Support/Debug.h"
54 #include "llvm/Support/DebugCounter.h"
55 #include "llvm/Support/RecyclingAllocator.h"
56 #include "llvm/Support/raw_ostream.h"
57 #include "llvm/Transforms/Scalar.h"
58 #include "llvm/Transforms/Utils/GuardUtils.h"
59 #include <cassert>
60 #include <deque>
61 #include <memory>
62 #include <utility>
63 
64 using namespace llvm;
65 using namespace llvm::PatternMatch;
66 
67 #define DEBUG_TYPE "early-cse"
68 
69 STATISTIC(NumSimplify, "Number of instructions simplified or DCE'd");
70 STATISTIC(NumCSE,      "Number of instructions CSE'd");
71 STATISTIC(NumCSECVP,   "Number of compare instructions CVP'd");
72 STATISTIC(NumCSELoad,  "Number of load instructions CSE'd");
73 STATISTIC(NumCSECall,  "Number of call instructions CSE'd");
74 STATISTIC(NumDSE,      "Number of trivial dead stores removed");
75 
76 DEBUG_COUNTER(CSECounter, "early-cse",
77               "Controls which instructions are removed");
78 
79 //===----------------------------------------------------------------------===//
80 // SimpleValue
81 //===----------------------------------------------------------------------===//
82 
83 namespace {
84 
85 /// Struct representing the available values in the scoped hash table.
86 struct SimpleValue {
87   Instruction *Inst;
88 
SimpleValue__anonb85134700111::SimpleValue89   SimpleValue(Instruction *I) : Inst(I) {
90     assert((isSentinel() || canHandle(I)) && "Inst can't be handled!");
91   }
92 
isSentinel__anonb85134700111::SimpleValue93   bool isSentinel() const {
94     return Inst == DenseMapInfo<Instruction *>::getEmptyKey() ||
95            Inst == DenseMapInfo<Instruction *>::getTombstoneKey();
96   }
97 
canHandle__anonb85134700111::SimpleValue98   static bool canHandle(Instruction *Inst) {
99     // This can only handle non-void readnone functions.
100     if (CallInst *CI = dyn_cast<CallInst>(Inst))
101       return CI->doesNotAccessMemory() && !CI->getType()->isVoidTy();
102     return isa<CastInst>(Inst) || isa<BinaryOperator>(Inst) ||
103            isa<GetElementPtrInst>(Inst) || isa<CmpInst>(Inst) ||
104            isa<SelectInst>(Inst) || isa<ExtractElementInst>(Inst) ||
105            isa<InsertElementInst>(Inst) || isa<ShuffleVectorInst>(Inst) ||
106            isa<ExtractValueInst>(Inst) || isa<InsertValueInst>(Inst);
107   }
108 };
109 
110 } // end anonymous namespace
111 
112 namespace llvm {
113 
114 template <> struct DenseMapInfo<SimpleValue> {
getEmptyKeyllvm::DenseMapInfo115   static inline SimpleValue getEmptyKey() {
116     return DenseMapInfo<Instruction *>::getEmptyKey();
117   }
118 
getTombstoneKeyllvm::DenseMapInfo119   static inline SimpleValue getTombstoneKey() {
120     return DenseMapInfo<Instruction *>::getTombstoneKey();
121   }
122 
123   static unsigned getHashValue(SimpleValue Val);
124   static bool isEqual(SimpleValue LHS, SimpleValue RHS);
125 };
126 
127 } // end namespace llvm
128 
getHashValue(SimpleValue Val)129 unsigned DenseMapInfo<SimpleValue>::getHashValue(SimpleValue Val) {
130   Instruction *Inst = Val.Inst;
131   // Hash in all of the operands as pointers.
132   if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Inst)) {
133     Value *LHS = BinOp->getOperand(0);
134     Value *RHS = BinOp->getOperand(1);
135     if (BinOp->isCommutative() && BinOp->getOperand(0) > BinOp->getOperand(1))
136       std::swap(LHS, RHS);
137 
138     return hash_combine(BinOp->getOpcode(), LHS, RHS);
139   }
140 
141   if (CmpInst *CI = dyn_cast<CmpInst>(Inst)) {
142     Value *LHS = CI->getOperand(0);
143     Value *RHS = CI->getOperand(1);
144     CmpInst::Predicate Pred = CI->getPredicate();
145     if (Inst->getOperand(0) > Inst->getOperand(1)) {
146       std::swap(LHS, RHS);
147       Pred = CI->getSwappedPredicate();
148     }
149     return hash_combine(Inst->getOpcode(), Pred, LHS, RHS);
150   }
151 
152   // Hash min/max/abs (cmp + select) to allow for commuted operands.
153   // Min/max may also have non-canonical compare predicate (eg, the compare for
154   // smin may use 'sgt' rather than 'slt'), and non-canonical operands in the
155   // compare.
156   Value *A, *B;
157   SelectPatternFlavor SPF = matchSelectPattern(Inst, A, B).Flavor;
158   // TODO: We should also detect FP min/max.
159   if (SPF == SPF_SMIN || SPF == SPF_SMAX ||
160       SPF == SPF_UMIN || SPF == SPF_UMAX) {
161     if (A > B)
162       std::swap(A, B);
163     return hash_combine(Inst->getOpcode(), SPF, A, B);
164   }
165   if (SPF == SPF_ABS || SPF == SPF_NABS) {
166     // ABS/NABS always puts the input in A and its negation in B.
167     return hash_combine(Inst->getOpcode(), SPF, A, B);
168   }
169 
170   if (CastInst *CI = dyn_cast<CastInst>(Inst))
171     return hash_combine(CI->getOpcode(), CI->getType(), CI->getOperand(0));
172 
173   if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(Inst))
174     return hash_combine(EVI->getOpcode(), EVI->getOperand(0),
175                         hash_combine_range(EVI->idx_begin(), EVI->idx_end()));
176 
177   if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(Inst))
178     return hash_combine(IVI->getOpcode(), IVI->getOperand(0),
179                         IVI->getOperand(1),
180                         hash_combine_range(IVI->idx_begin(), IVI->idx_end()));
181 
182   assert((isa<CallInst>(Inst) || isa<BinaryOperator>(Inst) ||
183           isa<GetElementPtrInst>(Inst) || isa<SelectInst>(Inst) ||
184           isa<ExtractElementInst>(Inst) || isa<InsertElementInst>(Inst) ||
185           isa<ShuffleVectorInst>(Inst)) &&
186          "Invalid/unknown instruction");
187 
188   // Mix in the opcode.
189   return hash_combine(
190       Inst->getOpcode(),
191       hash_combine_range(Inst->value_op_begin(), Inst->value_op_end()));
192 }
193 
isEqual(SimpleValue LHS,SimpleValue RHS)194 bool DenseMapInfo<SimpleValue>::isEqual(SimpleValue LHS, SimpleValue RHS) {
195   Instruction *LHSI = LHS.Inst, *RHSI = RHS.Inst;
196 
197   if (LHS.isSentinel() || RHS.isSentinel())
198     return LHSI == RHSI;
199 
200   if (LHSI->getOpcode() != RHSI->getOpcode())
201     return false;
202   if (LHSI->isIdenticalToWhenDefined(RHSI))
203     return true;
204 
205   // If we're not strictly identical, we still might be a commutable instruction
206   if (BinaryOperator *LHSBinOp = dyn_cast<BinaryOperator>(LHSI)) {
207     if (!LHSBinOp->isCommutative())
208       return false;
209 
210     assert(isa<BinaryOperator>(RHSI) &&
211            "same opcode, but different instruction type?");
212     BinaryOperator *RHSBinOp = cast<BinaryOperator>(RHSI);
213 
214     // Commuted equality
215     return LHSBinOp->getOperand(0) == RHSBinOp->getOperand(1) &&
216            LHSBinOp->getOperand(1) == RHSBinOp->getOperand(0);
217   }
218   if (CmpInst *LHSCmp = dyn_cast<CmpInst>(LHSI)) {
219     assert(isa<CmpInst>(RHSI) &&
220            "same opcode, but different instruction type?");
221     CmpInst *RHSCmp = cast<CmpInst>(RHSI);
222     // Commuted equality
223     return LHSCmp->getOperand(0) == RHSCmp->getOperand(1) &&
224            LHSCmp->getOperand(1) == RHSCmp->getOperand(0) &&
225            LHSCmp->getSwappedPredicate() == RHSCmp->getPredicate();
226   }
227 
228   // Min/max/abs can occur with commuted operands, non-canonical predicates,
229   // and/or non-canonical operands.
230   Value *LHSA, *LHSB;
231   SelectPatternFlavor LSPF = matchSelectPattern(LHSI, LHSA, LHSB).Flavor;
232   // TODO: We should also detect FP min/max.
233   if (LSPF == SPF_SMIN || LSPF == SPF_SMAX ||
234       LSPF == SPF_UMIN || LSPF == SPF_UMAX ||
235       LSPF == SPF_ABS || LSPF == SPF_NABS) {
236     Value *RHSA, *RHSB;
237     SelectPatternFlavor RSPF = matchSelectPattern(RHSI, RHSA, RHSB).Flavor;
238     if (LSPF == RSPF) {
239       // Abs results are placed in a defined order by matchSelectPattern.
240       if (LSPF == SPF_ABS || LSPF == SPF_NABS)
241         return LHSA == RHSA && LHSB == RHSB;
242       return ((LHSA == RHSA && LHSB == RHSB) ||
243               (LHSA == RHSB && LHSB == RHSA));
244     }
245   }
246 
247   return false;
248 }
249 
250 //===----------------------------------------------------------------------===//
251 // CallValue
252 //===----------------------------------------------------------------------===//
253 
254 namespace {
255 
256 /// Struct representing the available call values in the scoped hash
257 /// table.
258 struct CallValue {
259   Instruction *Inst;
260 
CallValue__anonb85134700211::CallValue261   CallValue(Instruction *I) : Inst(I) {
262     assert((isSentinel() || canHandle(I)) && "Inst can't be handled!");
263   }
264 
isSentinel__anonb85134700211::CallValue265   bool isSentinel() const {
266     return Inst == DenseMapInfo<Instruction *>::getEmptyKey() ||
267            Inst == DenseMapInfo<Instruction *>::getTombstoneKey();
268   }
269 
canHandle__anonb85134700211::CallValue270   static bool canHandle(Instruction *Inst) {
271     // Don't value number anything that returns void.
272     if (Inst->getType()->isVoidTy())
273       return false;
274 
275     CallInst *CI = dyn_cast<CallInst>(Inst);
276     if (!CI || !CI->onlyReadsMemory())
277       return false;
278     return true;
279   }
280 };
281 
282 } // end anonymous namespace
283 
284 namespace llvm {
285 
286 template <> struct DenseMapInfo<CallValue> {
getEmptyKeyllvm::DenseMapInfo287   static inline CallValue getEmptyKey() {
288     return DenseMapInfo<Instruction *>::getEmptyKey();
289   }
290 
getTombstoneKeyllvm::DenseMapInfo291   static inline CallValue getTombstoneKey() {
292     return DenseMapInfo<Instruction *>::getTombstoneKey();
293   }
294 
295   static unsigned getHashValue(CallValue Val);
296   static bool isEqual(CallValue LHS, CallValue RHS);
297 };
298 
299 } // end namespace llvm
300 
getHashValue(CallValue Val)301 unsigned DenseMapInfo<CallValue>::getHashValue(CallValue Val) {
302   Instruction *Inst = Val.Inst;
303   // Hash all of the operands as pointers and mix in the opcode.
304   return hash_combine(
305       Inst->getOpcode(),
306       hash_combine_range(Inst->value_op_begin(), Inst->value_op_end()));
307 }
308 
isEqual(CallValue LHS,CallValue RHS)309 bool DenseMapInfo<CallValue>::isEqual(CallValue LHS, CallValue RHS) {
310   Instruction *LHSI = LHS.Inst, *RHSI = RHS.Inst;
311   if (LHS.isSentinel() || RHS.isSentinel())
312     return LHSI == RHSI;
313   return LHSI->isIdenticalTo(RHSI);
314 }
315 
316 //===----------------------------------------------------------------------===//
317 // EarlyCSE implementation
318 //===----------------------------------------------------------------------===//
319 
320 namespace {
321 
322 /// A simple and fast domtree-based CSE pass.
323 ///
324 /// This pass does a simple depth-first walk over the dominator tree,
325 /// eliminating trivially redundant instructions and using instsimplify to
326 /// canonicalize things as it goes. It is intended to be fast and catch obvious
327 /// cases so that instcombine and other passes are more effective. It is
328 /// expected that a later pass of GVN will catch the interesting/hard cases.
329 class EarlyCSE {
330 public:
331   const TargetLibraryInfo &TLI;
332   const TargetTransformInfo &TTI;
333   DominatorTree &DT;
334   AssumptionCache &AC;
335   const SimplifyQuery SQ;
336   MemorySSA *MSSA;
337   std::unique_ptr<MemorySSAUpdater> MSSAUpdater;
338 
339   using AllocatorTy =
340       RecyclingAllocator<BumpPtrAllocator,
341                          ScopedHashTableVal<SimpleValue, Value *>>;
342   using ScopedHTType =
343       ScopedHashTable<SimpleValue, Value *, DenseMapInfo<SimpleValue>,
344                       AllocatorTy>;
345 
346   /// A scoped hash table of the current values of all of our simple
347   /// scalar expressions.
348   ///
349   /// As we walk down the domtree, we look to see if instructions are in this:
350   /// if so, we replace them with what we find, otherwise we insert them so
351   /// that dominated values can succeed in their lookup.
352   ScopedHTType AvailableValues;
353 
354   /// A scoped hash table of the current values of previously encountered
355   /// memory locations.
356   ///
357   /// This allows us to get efficient access to dominating loads or stores when
358   /// we have a fully redundant load.  In addition to the most recent load, we
359   /// keep track of a generation count of the read, which is compared against
360   /// the current generation count.  The current generation count is incremented
361   /// after every possibly writing memory operation, which ensures that we only
362   /// CSE loads with other loads that have no intervening store.  Ordering
363   /// events (such as fences or atomic instructions) increment the generation
364   /// count as well; essentially, we model these as writes to all possible
365   /// locations.  Note that atomic and/or volatile loads and stores can be
366   /// present the table; it is the responsibility of the consumer to inspect
367   /// the atomicity/volatility if needed.
368   struct LoadValue {
369     Instruction *DefInst = nullptr;
370     unsigned Generation = 0;
371     int MatchingId = -1;
372     bool IsAtomic = false;
373 
374     LoadValue() = default;
LoadValue__anonb85134700311::EarlyCSE::LoadValue375     LoadValue(Instruction *Inst, unsigned Generation, unsigned MatchingId,
376               bool IsAtomic)
377         : DefInst(Inst), Generation(Generation), MatchingId(MatchingId),
378           IsAtomic(IsAtomic) {}
379   };
380 
381   using LoadMapAllocator =
382       RecyclingAllocator<BumpPtrAllocator,
383                          ScopedHashTableVal<Value *, LoadValue>>;
384   using LoadHTType =
385       ScopedHashTable<Value *, LoadValue, DenseMapInfo<Value *>,
386                       LoadMapAllocator>;
387 
388   LoadHTType AvailableLoads;
389 
390   // A scoped hash table mapping memory locations (represented as typed
391   // addresses) to generation numbers at which that memory location became
392   // (henceforth indefinitely) invariant.
393   using InvariantMapAllocator =
394       RecyclingAllocator<BumpPtrAllocator,
395                          ScopedHashTableVal<MemoryLocation, unsigned>>;
396   using InvariantHTType =
397       ScopedHashTable<MemoryLocation, unsigned, DenseMapInfo<MemoryLocation>,
398                       InvariantMapAllocator>;
399   InvariantHTType AvailableInvariants;
400 
401   /// A scoped hash table of the current values of read-only call
402   /// values.
403   ///
404   /// It uses the same generation count as loads.
405   using CallHTType =
406       ScopedHashTable<CallValue, std::pair<Instruction *, unsigned>>;
407   CallHTType AvailableCalls;
408 
409   /// This is the current generation of the memory value.
410   unsigned CurrentGeneration = 0;
411 
412   /// Set up the EarlyCSE runner for a particular function.
EarlyCSE(const DataLayout & DL,const TargetLibraryInfo & TLI,const TargetTransformInfo & TTI,DominatorTree & DT,AssumptionCache & AC,MemorySSA * MSSA)413   EarlyCSE(const DataLayout &DL, const TargetLibraryInfo &TLI,
414            const TargetTransformInfo &TTI, DominatorTree &DT,
415            AssumptionCache &AC, MemorySSA *MSSA)
416       : TLI(TLI), TTI(TTI), DT(DT), AC(AC), SQ(DL, &TLI, &DT, &AC), MSSA(MSSA),
417         MSSAUpdater(llvm::make_unique<MemorySSAUpdater>(MSSA)) {}
418 
419   bool run();
420 
421 private:
422   // Almost a POD, but needs to call the constructors for the scoped hash
423   // tables so that a new scope gets pushed on. These are RAII so that the
424   // scope gets popped when the NodeScope is destroyed.
425   class NodeScope {
426   public:
NodeScope(ScopedHTType & AvailableValues,LoadHTType & AvailableLoads,InvariantHTType & AvailableInvariants,CallHTType & AvailableCalls)427     NodeScope(ScopedHTType &AvailableValues, LoadHTType &AvailableLoads,
428               InvariantHTType &AvailableInvariants, CallHTType &AvailableCalls)
429       : Scope(AvailableValues), LoadScope(AvailableLoads),
430         InvariantScope(AvailableInvariants), CallScope(AvailableCalls) {}
431     NodeScope(const NodeScope &) = delete;
432     NodeScope &operator=(const NodeScope &) = delete;
433 
434   private:
435     ScopedHTType::ScopeTy Scope;
436     LoadHTType::ScopeTy LoadScope;
437     InvariantHTType::ScopeTy InvariantScope;
438     CallHTType::ScopeTy CallScope;
439   };
440 
441   // Contains all the needed information to create a stack for doing a depth
442   // first traversal of the tree. This includes scopes for values, loads, and
443   // calls as well as the generation. There is a child iterator so that the
444   // children do not need to be store separately.
445   class StackNode {
446   public:
StackNode(ScopedHTType & AvailableValues,LoadHTType & AvailableLoads,InvariantHTType & AvailableInvariants,CallHTType & AvailableCalls,unsigned cg,DomTreeNode * n,DomTreeNode::iterator child,DomTreeNode::iterator end)447     StackNode(ScopedHTType &AvailableValues, LoadHTType &AvailableLoads,
448               InvariantHTType &AvailableInvariants, CallHTType &AvailableCalls,
449               unsigned cg, DomTreeNode *n, DomTreeNode::iterator child,
450               DomTreeNode::iterator end)
451         : CurrentGeneration(cg), ChildGeneration(cg), Node(n), ChildIter(child),
452           EndIter(end),
453           Scopes(AvailableValues, AvailableLoads, AvailableInvariants,
454                  AvailableCalls)
455           {}
456     StackNode(const StackNode &) = delete;
457     StackNode &operator=(const StackNode &) = delete;
458 
459     // Accessors.
currentGeneration()460     unsigned currentGeneration() { return CurrentGeneration; }
childGeneration()461     unsigned childGeneration() { return ChildGeneration; }
childGeneration(unsigned generation)462     void childGeneration(unsigned generation) { ChildGeneration = generation; }
node()463     DomTreeNode *node() { return Node; }
childIter()464     DomTreeNode::iterator childIter() { return ChildIter; }
465 
nextChild()466     DomTreeNode *nextChild() {
467       DomTreeNode *child = *ChildIter;
468       ++ChildIter;
469       return child;
470     }
471 
end()472     DomTreeNode::iterator end() { return EndIter; }
isProcessed()473     bool isProcessed() { return Processed; }
process()474     void process() { Processed = true; }
475 
476   private:
477     unsigned CurrentGeneration;
478     unsigned ChildGeneration;
479     DomTreeNode *Node;
480     DomTreeNode::iterator ChildIter;
481     DomTreeNode::iterator EndIter;
482     NodeScope Scopes;
483     bool Processed = false;
484   };
485 
486   /// Wrapper class to handle memory instructions, including loads,
487   /// stores and intrinsic loads and stores defined by the target.
488   class ParseMemoryInst {
489   public:
ParseMemoryInst(Instruction * Inst,const TargetTransformInfo & TTI)490     ParseMemoryInst(Instruction *Inst, const TargetTransformInfo &TTI)
491       : Inst(Inst) {
492       if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst))
493         if (TTI.getTgtMemIntrinsic(II, Info))
494           IsTargetMemInst = true;
495     }
496 
isLoad() const497     bool isLoad() const {
498       if (IsTargetMemInst) return Info.ReadMem;
499       return isa<LoadInst>(Inst);
500     }
501 
isStore() const502     bool isStore() const {
503       if (IsTargetMemInst) return Info.WriteMem;
504       return isa<StoreInst>(Inst);
505     }
506 
isAtomic() const507     bool isAtomic() const {
508       if (IsTargetMemInst)
509         return Info.Ordering != AtomicOrdering::NotAtomic;
510       return Inst->isAtomic();
511     }
512 
isUnordered() const513     bool isUnordered() const {
514       if (IsTargetMemInst)
515         return Info.isUnordered();
516 
517       if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
518         return LI->isUnordered();
519       } else if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
520         return SI->isUnordered();
521       }
522       // Conservative answer
523       return !Inst->isAtomic();
524     }
525 
isVolatile() const526     bool isVolatile() const {
527       if (IsTargetMemInst)
528         return Info.IsVolatile;
529 
530       if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
531         return LI->isVolatile();
532       } else if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
533         return SI->isVolatile();
534       }
535       // Conservative answer
536       return true;
537     }
538 
isInvariantLoad() const539     bool isInvariantLoad() const {
540       if (auto *LI = dyn_cast<LoadInst>(Inst))
541         return LI->getMetadata(LLVMContext::MD_invariant_load) != nullptr;
542       return false;
543     }
544 
isMatchingMemLoc(const ParseMemoryInst & Inst) const545     bool isMatchingMemLoc(const ParseMemoryInst &Inst) const {
546       return (getPointerOperand() == Inst.getPointerOperand() &&
547               getMatchingId() == Inst.getMatchingId());
548     }
549 
isValid() const550     bool isValid() const { return getPointerOperand() != nullptr; }
551 
552     // For regular (non-intrinsic) loads/stores, this is set to -1. For
553     // intrinsic loads/stores, the id is retrieved from the corresponding
554     // field in the MemIntrinsicInfo structure.  That field contains
555     // non-negative values only.
getMatchingId() const556     int getMatchingId() const {
557       if (IsTargetMemInst) return Info.MatchingId;
558       return -1;
559     }
560 
getPointerOperand() const561     Value *getPointerOperand() const {
562       if (IsTargetMemInst) return Info.PtrVal;
563       return getLoadStorePointerOperand(Inst);
564     }
565 
mayReadFromMemory() const566     bool mayReadFromMemory() const {
567       if (IsTargetMemInst) return Info.ReadMem;
568       return Inst->mayReadFromMemory();
569     }
570 
mayWriteToMemory() const571     bool mayWriteToMemory() const {
572       if (IsTargetMemInst) return Info.WriteMem;
573       return Inst->mayWriteToMemory();
574     }
575 
576   private:
577     bool IsTargetMemInst = false;
578     MemIntrinsicInfo Info;
579     Instruction *Inst;
580   };
581 
582   bool processNode(DomTreeNode *Node);
583 
584   bool handleBranchCondition(Instruction *CondInst, const BranchInst *BI,
585                              const BasicBlock *BB, const BasicBlock *Pred);
586 
getOrCreateResult(Value * Inst,Type * ExpectedType) const587   Value *getOrCreateResult(Value *Inst, Type *ExpectedType) const {
588     if (auto *LI = dyn_cast<LoadInst>(Inst))
589       return LI;
590     if (auto *SI = dyn_cast<StoreInst>(Inst))
591       return SI->getValueOperand();
592     assert(isa<IntrinsicInst>(Inst) && "Instruction not supported");
593     return TTI.getOrCreateResultFromMemIntrinsic(cast<IntrinsicInst>(Inst),
594                                                  ExpectedType);
595   }
596 
597   /// Return true if the instruction is known to only operate on memory
598   /// provably invariant in the given "generation".
599   bool isOperatingOnInvariantMemAt(Instruction *I, unsigned GenAt);
600 
601   bool isSameMemGeneration(unsigned EarlierGeneration, unsigned LaterGeneration,
602                            Instruction *EarlierInst, Instruction *LaterInst);
603 
removeMSSA(Instruction * Inst)604   void removeMSSA(Instruction *Inst) {
605     if (!MSSA)
606       return;
607     if (VerifyMemorySSA)
608       MSSA->verifyMemorySSA();
609     // Removing a store here can leave MemorySSA in an unoptimized state by
610     // creating MemoryPhis that have identical arguments and by creating
611     // MemoryUses whose defining access is not an actual clobber.  We handle the
612     // phi case eagerly here.  The non-optimized MemoryUse case is lazily
613     // updated by MemorySSA getClobberingMemoryAccess.
614     if (MemoryAccess *MA = MSSA->getMemoryAccess(Inst)) {
615       // Optimize MemoryPhi nodes that may become redundant by having all the
616       // same input values once MA is removed.
617       SmallSetVector<MemoryPhi *, 4> PhisToCheck;
618       SmallVector<MemoryAccess *, 8> WorkQueue;
619       WorkQueue.push_back(MA);
620       // Process MemoryPhi nodes in FIFO order using a ever-growing vector since
621       // we shouldn't be processing that many phis and this will avoid an
622       // allocation in almost all cases.
623       for (unsigned I = 0; I < WorkQueue.size(); ++I) {
624         MemoryAccess *WI = WorkQueue[I];
625 
626         for (auto *U : WI->users())
627           if (MemoryPhi *MP = dyn_cast<MemoryPhi>(U))
628             PhisToCheck.insert(MP);
629 
630         MSSAUpdater->removeMemoryAccess(WI);
631 
632         for (MemoryPhi *MP : PhisToCheck) {
633           MemoryAccess *FirstIn = MP->getIncomingValue(0);
634           if (llvm::all_of(MP->incoming_values(),
635                            [=](Use &In) { return In == FirstIn; }))
636             WorkQueue.push_back(MP);
637         }
638         PhisToCheck.clear();
639       }
640     }
641   }
642 };
643 
644 } // end anonymous namespace
645 
646 /// Determine if the memory referenced by LaterInst is from the same heap
647 /// version as EarlierInst.
648 /// This is currently called in two scenarios:
649 ///
650 ///   load p
651 ///   ...
652 ///   load p
653 ///
654 /// and
655 ///
656 ///   x = load p
657 ///   ...
658 ///   store x, p
659 ///
660 /// in both cases we want to verify that there are no possible writes to the
661 /// memory referenced by p between the earlier and later instruction.
isSameMemGeneration(unsigned EarlierGeneration,unsigned LaterGeneration,Instruction * EarlierInst,Instruction * LaterInst)662 bool EarlyCSE::isSameMemGeneration(unsigned EarlierGeneration,
663                                    unsigned LaterGeneration,
664                                    Instruction *EarlierInst,
665                                    Instruction *LaterInst) {
666   // Check the simple memory generation tracking first.
667   if (EarlierGeneration == LaterGeneration)
668     return true;
669 
670   if (!MSSA)
671     return false;
672 
673   // If MemorySSA has determined that one of EarlierInst or LaterInst does not
674   // read/write memory, then we can safely return true here.
675   // FIXME: We could be more aggressive when checking doesNotAccessMemory(),
676   // onlyReadsMemory(), mayReadFromMemory(), and mayWriteToMemory() in this pass
677   // by also checking the MemorySSA MemoryAccess on the instruction.  Initial
678   // experiments suggest this isn't worthwhile, at least for C/C++ code compiled
679   // with the default optimization pipeline.
680   auto *EarlierMA = MSSA->getMemoryAccess(EarlierInst);
681   if (!EarlierMA)
682     return true;
683   auto *LaterMA = MSSA->getMemoryAccess(LaterInst);
684   if (!LaterMA)
685     return true;
686 
687   // Since we know LaterDef dominates LaterInst and EarlierInst dominates
688   // LaterInst, if LaterDef dominates EarlierInst then it can't occur between
689   // EarlierInst and LaterInst and neither can any other write that potentially
690   // clobbers LaterInst.
691   MemoryAccess *LaterDef =
692       MSSA->getWalker()->getClobberingMemoryAccess(LaterInst);
693   return MSSA->dominates(LaterDef, EarlierMA);
694 }
695 
isOperatingOnInvariantMemAt(Instruction * I,unsigned GenAt)696 bool EarlyCSE::isOperatingOnInvariantMemAt(Instruction *I, unsigned GenAt) {
697   // A location loaded from with an invariant_load is assumed to *never* change
698   // within the visible scope of the compilation.
699   if (auto *LI = dyn_cast<LoadInst>(I))
700     if (LI->getMetadata(LLVMContext::MD_invariant_load))
701       return true;
702 
703   auto MemLocOpt = MemoryLocation::getOrNone(I);
704   if (!MemLocOpt)
705     // "target" intrinsic forms of loads aren't currently known to
706     // MemoryLocation::get.  TODO
707     return false;
708   MemoryLocation MemLoc = *MemLocOpt;
709   if (!AvailableInvariants.count(MemLoc))
710     return false;
711 
712   // Is the generation at which this became invariant older than the
713   // current one?
714   return AvailableInvariants.lookup(MemLoc) <= GenAt;
715 }
716 
handleBranchCondition(Instruction * CondInst,const BranchInst * BI,const BasicBlock * BB,const BasicBlock * Pred)717 bool EarlyCSE::handleBranchCondition(Instruction *CondInst,
718                                      const BranchInst *BI, const BasicBlock *BB,
719                                      const BasicBlock *Pred) {
720   assert(BI->isConditional() && "Should be a conditional branch!");
721   assert(BI->getCondition() == CondInst && "Wrong condition?");
722   assert(BI->getSuccessor(0) == BB || BI->getSuccessor(1) == BB);
723   auto *TorF = (BI->getSuccessor(0) == BB)
724                    ? ConstantInt::getTrue(BB->getContext())
725                    : ConstantInt::getFalse(BB->getContext());
726   auto MatchBinOp = [](Instruction *I, unsigned Opcode) {
727     if (BinaryOperator *BOp = dyn_cast<BinaryOperator>(I))
728       return BOp->getOpcode() == Opcode;
729     return false;
730   };
731   // If the condition is AND operation, we can propagate its operands into the
732   // true branch. If it is OR operation, we can propagate them into the false
733   // branch.
734   unsigned PropagateOpcode =
735       (BI->getSuccessor(0) == BB) ? Instruction::And : Instruction::Or;
736 
737   bool MadeChanges = false;
738   SmallVector<Instruction *, 4> WorkList;
739   SmallPtrSet<Instruction *, 4> Visited;
740   WorkList.push_back(CondInst);
741   while (!WorkList.empty()) {
742     Instruction *Curr = WorkList.pop_back_val();
743 
744     AvailableValues.insert(Curr, TorF);
745     LLVM_DEBUG(dbgs() << "EarlyCSE CVP: Add conditional value for '"
746                       << Curr->getName() << "' as " << *TorF << " in "
747                       << BB->getName() << "\n");
748     if (!DebugCounter::shouldExecute(CSECounter)) {
749       LLVM_DEBUG(dbgs() << "Skipping due to debug counter\n");
750     } else {
751       // Replace all dominated uses with the known value.
752       if (unsigned Count = replaceDominatedUsesWith(Curr, TorF, DT,
753                                                     BasicBlockEdge(Pred, BB))) {
754         NumCSECVP += Count;
755         MadeChanges = true;
756       }
757     }
758 
759     if (MatchBinOp(Curr, PropagateOpcode))
760       for (auto &Op : cast<BinaryOperator>(Curr)->operands())
761         if (Instruction *OPI = dyn_cast<Instruction>(Op))
762           if (SimpleValue::canHandle(OPI) && Visited.insert(OPI).second)
763             WorkList.push_back(OPI);
764   }
765 
766   return MadeChanges;
767 }
768 
processNode(DomTreeNode * Node)769 bool EarlyCSE::processNode(DomTreeNode *Node) {
770   bool Changed = false;
771   BasicBlock *BB = Node->getBlock();
772 
773   // If this block has a single predecessor, then the predecessor is the parent
774   // of the domtree node and all of the live out memory values are still current
775   // in this block.  If this block has multiple predecessors, then they could
776   // have invalidated the live-out memory values of our parent value.  For now,
777   // just be conservative and invalidate memory if this block has multiple
778   // predecessors.
779   if (!BB->getSinglePredecessor())
780     ++CurrentGeneration;
781 
782   // If this node has a single predecessor which ends in a conditional branch,
783   // we can infer the value of the branch condition given that we took this
784   // path.  We need the single predecessor to ensure there's not another path
785   // which reaches this block where the condition might hold a different
786   // value.  Since we're adding this to the scoped hash table (like any other
787   // def), it will have been popped if we encounter a future merge block.
788   if (BasicBlock *Pred = BB->getSinglePredecessor()) {
789     auto *BI = dyn_cast<BranchInst>(Pred->getTerminator());
790     if (BI && BI->isConditional()) {
791       auto *CondInst = dyn_cast<Instruction>(BI->getCondition());
792       if (CondInst && SimpleValue::canHandle(CondInst))
793         Changed |= handleBranchCondition(CondInst, BI, BB, Pred);
794     }
795   }
796 
797   /// LastStore - Keep track of the last non-volatile store that we saw... for
798   /// as long as there in no instruction that reads memory.  If we see a store
799   /// to the same location, we delete the dead store.  This zaps trivial dead
800   /// stores which can occur in bitfield code among other things.
801   Instruction *LastStore = nullptr;
802 
803   // See if any instructions in the block can be eliminated.  If so, do it.  If
804   // not, add them to AvailableValues.
805   for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) {
806     Instruction *Inst = &*I++;
807 
808     // Dead instructions should just be removed.
809     if (isInstructionTriviallyDead(Inst, &TLI)) {
810       LLVM_DEBUG(dbgs() << "EarlyCSE DCE: " << *Inst << '\n');
811       if (!DebugCounter::shouldExecute(CSECounter)) {
812         LLVM_DEBUG(dbgs() << "Skipping due to debug counter\n");
813         continue;
814       }
815       if (!salvageDebugInfo(*Inst))
816         replaceDbgUsesWithUndef(Inst);
817       removeMSSA(Inst);
818       Inst->eraseFromParent();
819       Changed = true;
820       ++NumSimplify;
821       continue;
822     }
823 
824     // Skip assume intrinsics, they don't really have side effects (although
825     // they're marked as such to ensure preservation of control dependencies),
826     // and this pass will not bother with its removal. However, we should mark
827     // its condition as true for all dominated blocks.
828     if (match(Inst, m_Intrinsic<Intrinsic::assume>())) {
829       auto *CondI =
830           dyn_cast<Instruction>(cast<CallInst>(Inst)->getArgOperand(0));
831       if (CondI && SimpleValue::canHandle(CondI)) {
832         LLVM_DEBUG(dbgs() << "EarlyCSE considering assumption: " << *Inst
833                           << '\n');
834         AvailableValues.insert(CondI, ConstantInt::getTrue(BB->getContext()));
835       } else
836         LLVM_DEBUG(dbgs() << "EarlyCSE skipping assumption: " << *Inst << '\n');
837       continue;
838     }
839 
840     // Skip sideeffect intrinsics, for the same reason as assume intrinsics.
841     if (match(Inst, m_Intrinsic<Intrinsic::sideeffect>())) {
842       LLVM_DEBUG(dbgs() << "EarlyCSE skipping sideeffect: " << *Inst << '\n');
843       continue;
844     }
845 
846     // We can skip all invariant.start intrinsics since they only read memory,
847     // and we can forward values across it. For invariant starts without
848     // invariant ends, we can use the fact that the invariantness never ends to
849     // start a scope in the current generaton which is true for all future
850     // generations.  Also, we dont need to consume the last store since the
851     // semantics of invariant.start allow us to perform   DSE of the last
852     // store, if there was a store following invariant.start. Consider:
853     //
854     // store 30, i8* p
855     // invariant.start(p)
856     // store 40, i8* p
857     // We can DSE the store to 30, since the store 40 to invariant location p
858     // causes undefined behaviour.
859     if (match(Inst, m_Intrinsic<Intrinsic::invariant_start>())) {
860       // If there are any uses, the scope might end.
861       if (!Inst->use_empty())
862         continue;
863       auto *CI = cast<CallInst>(Inst);
864       MemoryLocation MemLoc = MemoryLocation::getForArgument(CI, 1, TLI);
865       // Don't start a scope if we already have a better one pushed
866       if (!AvailableInvariants.count(MemLoc))
867         AvailableInvariants.insert(MemLoc, CurrentGeneration);
868       continue;
869     }
870 
871     if (isGuard(Inst)) {
872       if (auto *CondI =
873               dyn_cast<Instruction>(cast<CallInst>(Inst)->getArgOperand(0))) {
874         if (SimpleValue::canHandle(CondI)) {
875           // Do we already know the actual value of this condition?
876           if (auto *KnownCond = AvailableValues.lookup(CondI)) {
877             // Is the condition known to be true?
878             if (isa<ConstantInt>(KnownCond) &&
879                 cast<ConstantInt>(KnownCond)->isOne()) {
880               LLVM_DEBUG(dbgs()
881                          << "EarlyCSE removing guard: " << *Inst << '\n');
882               removeMSSA(Inst);
883               Inst->eraseFromParent();
884               Changed = true;
885               continue;
886             } else
887               // Use the known value if it wasn't true.
888               cast<CallInst>(Inst)->setArgOperand(0, KnownCond);
889           }
890           // The condition we're on guarding here is true for all dominated
891           // locations.
892           AvailableValues.insert(CondI, ConstantInt::getTrue(BB->getContext()));
893         }
894       }
895 
896       // Guard intrinsics read all memory, but don't write any memory.
897       // Accordingly, don't update the generation but consume the last store (to
898       // avoid an incorrect DSE).
899       LastStore = nullptr;
900       continue;
901     }
902 
903     // If the instruction can be simplified (e.g. X+0 = X) then replace it with
904     // its simpler value.
905     if (Value *V = SimplifyInstruction(Inst, SQ)) {
906       LLVM_DEBUG(dbgs() << "EarlyCSE Simplify: " << *Inst << "  to: " << *V
907                         << '\n');
908       if (!DebugCounter::shouldExecute(CSECounter)) {
909         LLVM_DEBUG(dbgs() << "Skipping due to debug counter\n");
910       } else {
911         bool Killed = false;
912         if (!Inst->use_empty()) {
913           Inst->replaceAllUsesWith(V);
914           Changed = true;
915         }
916         if (isInstructionTriviallyDead(Inst, &TLI)) {
917           removeMSSA(Inst);
918           Inst->eraseFromParent();
919           Changed = true;
920           Killed = true;
921         }
922         if (Changed)
923           ++NumSimplify;
924         if (Killed)
925           continue;
926       }
927     }
928 
929     // If this is a simple instruction that we can value number, process it.
930     if (SimpleValue::canHandle(Inst)) {
931       // See if the instruction has an available value.  If so, use it.
932       if (Value *V = AvailableValues.lookup(Inst)) {
933         LLVM_DEBUG(dbgs() << "EarlyCSE CSE: " << *Inst << "  to: " << *V
934                           << '\n');
935         if (!DebugCounter::shouldExecute(CSECounter)) {
936           LLVM_DEBUG(dbgs() << "Skipping due to debug counter\n");
937           continue;
938         }
939         if (auto *I = dyn_cast<Instruction>(V))
940           I->andIRFlags(Inst);
941         Inst->replaceAllUsesWith(V);
942         removeMSSA(Inst);
943         Inst->eraseFromParent();
944         Changed = true;
945         ++NumCSE;
946         continue;
947       }
948 
949       // Otherwise, just remember that this value is available.
950       AvailableValues.insert(Inst, Inst);
951       continue;
952     }
953 
954     ParseMemoryInst MemInst(Inst, TTI);
955     // If this is a non-volatile load, process it.
956     if (MemInst.isValid() && MemInst.isLoad()) {
957       // (conservatively) we can't peak past the ordering implied by this
958       // operation, but we can add this load to our set of available values
959       if (MemInst.isVolatile() || !MemInst.isUnordered()) {
960         LastStore = nullptr;
961         ++CurrentGeneration;
962       }
963 
964       if (MemInst.isInvariantLoad()) {
965         // If we pass an invariant load, we know that memory location is
966         // indefinitely constant from the moment of first dereferenceability.
967         // We conservatively treat the invariant_load as that moment.  If we
968         // pass a invariant load after already establishing a scope, don't
969         // restart it since we want to preserve the earliest point seen.
970         auto MemLoc = MemoryLocation::get(Inst);
971         if (!AvailableInvariants.count(MemLoc))
972           AvailableInvariants.insert(MemLoc, CurrentGeneration);
973       }
974 
975       // If we have an available version of this load, and if it is the right
976       // generation or the load is known to be from an invariant location,
977       // replace this instruction.
978       //
979       // If either the dominating load or the current load are invariant, then
980       // we can assume the current load loads the same value as the dominating
981       // load.
982       LoadValue InVal = AvailableLoads.lookup(MemInst.getPointerOperand());
983       if (InVal.DefInst != nullptr &&
984           InVal.MatchingId == MemInst.getMatchingId() &&
985           // We don't yet handle removing loads with ordering of any kind.
986           !MemInst.isVolatile() && MemInst.isUnordered() &&
987           // We can't replace an atomic load with one which isn't also atomic.
988           InVal.IsAtomic >= MemInst.isAtomic() &&
989           (isOperatingOnInvariantMemAt(Inst, InVal.Generation) ||
990            isSameMemGeneration(InVal.Generation, CurrentGeneration,
991                                InVal.DefInst, Inst))) {
992         Value *Op = getOrCreateResult(InVal.DefInst, Inst->getType());
993         if (Op != nullptr) {
994           LLVM_DEBUG(dbgs() << "EarlyCSE CSE LOAD: " << *Inst
995                             << "  to: " << *InVal.DefInst << '\n');
996           if (!DebugCounter::shouldExecute(CSECounter)) {
997             LLVM_DEBUG(dbgs() << "Skipping due to debug counter\n");
998             continue;
999           }
1000           if (!Inst->use_empty())
1001             Inst->replaceAllUsesWith(Op);
1002           removeMSSA(Inst);
1003           Inst->eraseFromParent();
1004           Changed = true;
1005           ++NumCSELoad;
1006           continue;
1007         }
1008       }
1009 
1010       // Otherwise, remember that we have this instruction.
1011       AvailableLoads.insert(
1012           MemInst.getPointerOperand(),
1013           LoadValue(Inst, CurrentGeneration, MemInst.getMatchingId(),
1014                     MemInst.isAtomic()));
1015       LastStore = nullptr;
1016       continue;
1017     }
1018 
1019     // If this instruction may read from memory or throw (and potentially read
1020     // from memory in the exception handler), forget LastStore.  Load/store
1021     // intrinsics will indicate both a read and a write to memory.  The target
1022     // may override this (e.g. so that a store intrinsic does not read from
1023     // memory, and thus will be treated the same as a regular store for
1024     // commoning purposes).
1025     if ((Inst->mayReadFromMemory() || Inst->mayThrow()) &&
1026         !(MemInst.isValid() && !MemInst.mayReadFromMemory()))
1027       LastStore = nullptr;
1028 
1029     // If this is a read-only call, process it.
1030     if (CallValue::canHandle(Inst)) {
1031       // If we have an available version of this call, and if it is the right
1032       // generation, replace this instruction.
1033       std::pair<Instruction *, unsigned> InVal = AvailableCalls.lookup(Inst);
1034       if (InVal.first != nullptr &&
1035           isSameMemGeneration(InVal.second, CurrentGeneration, InVal.first,
1036                               Inst)) {
1037         LLVM_DEBUG(dbgs() << "EarlyCSE CSE CALL: " << *Inst
1038                           << "  to: " << *InVal.first << '\n');
1039         if (!DebugCounter::shouldExecute(CSECounter)) {
1040           LLVM_DEBUG(dbgs() << "Skipping due to debug counter\n");
1041           continue;
1042         }
1043         if (!Inst->use_empty())
1044           Inst->replaceAllUsesWith(InVal.first);
1045         removeMSSA(Inst);
1046         Inst->eraseFromParent();
1047         Changed = true;
1048         ++NumCSECall;
1049         continue;
1050       }
1051 
1052       // Otherwise, remember that we have this instruction.
1053       AvailableCalls.insert(
1054           Inst, std::pair<Instruction *, unsigned>(Inst, CurrentGeneration));
1055       continue;
1056     }
1057 
1058     // A release fence requires that all stores complete before it, but does
1059     // not prevent the reordering of following loads 'before' the fence.  As a
1060     // result, we don't need to consider it as writing to memory and don't need
1061     // to advance the generation.  We do need to prevent DSE across the fence,
1062     // but that's handled above.
1063     if (FenceInst *FI = dyn_cast<FenceInst>(Inst))
1064       if (FI->getOrdering() == AtomicOrdering::Release) {
1065         assert(Inst->mayReadFromMemory() && "relied on to prevent DSE above");
1066         continue;
1067       }
1068 
1069     // write back DSE - If we write back the same value we just loaded from
1070     // the same location and haven't passed any intervening writes or ordering
1071     // operations, we can remove the write.  The primary benefit is in allowing
1072     // the available load table to remain valid and value forward past where
1073     // the store originally was.
1074     if (MemInst.isValid() && MemInst.isStore()) {
1075       LoadValue InVal = AvailableLoads.lookup(MemInst.getPointerOperand());
1076       if (InVal.DefInst &&
1077           InVal.DefInst == getOrCreateResult(Inst, InVal.DefInst->getType()) &&
1078           InVal.MatchingId == MemInst.getMatchingId() &&
1079           // We don't yet handle removing stores with ordering of any kind.
1080           !MemInst.isVolatile() && MemInst.isUnordered() &&
1081           (isOperatingOnInvariantMemAt(Inst, InVal.Generation) ||
1082            isSameMemGeneration(InVal.Generation, CurrentGeneration,
1083                                InVal.DefInst, Inst))) {
1084         // It is okay to have a LastStore to a different pointer here if MemorySSA
1085         // tells us that the load and store are from the same memory generation.
1086         // In that case, LastStore should keep its present value since we're
1087         // removing the current store.
1088         assert((!LastStore ||
1089                 ParseMemoryInst(LastStore, TTI).getPointerOperand() ==
1090                     MemInst.getPointerOperand() ||
1091                 MSSA) &&
1092                "can't have an intervening store if not using MemorySSA!");
1093         LLVM_DEBUG(dbgs() << "EarlyCSE DSE (writeback): " << *Inst << '\n');
1094         if (!DebugCounter::shouldExecute(CSECounter)) {
1095           LLVM_DEBUG(dbgs() << "Skipping due to debug counter\n");
1096           continue;
1097         }
1098         removeMSSA(Inst);
1099         Inst->eraseFromParent();
1100         Changed = true;
1101         ++NumDSE;
1102         // We can avoid incrementing the generation count since we were able
1103         // to eliminate this store.
1104         continue;
1105       }
1106     }
1107 
1108     // Okay, this isn't something we can CSE at all.  Check to see if it is
1109     // something that could modify memory.  If so, our available memory values
1110     // cannot be used so bump the generation count.
1111     if (Inst->mayWriteToMemory()) {
1112       ++CurrentGeneration;
1113 
1114       if (MemInst.isValid() && MemInst.isStore()) {
1115         // We do a trivial form of DSE if there are two stores to the same
1116         // location with no intervening loads.  Delete the earlier store.
1117         // At the moment, we don't remove ordered stores, but do remove
1118         // unordered atomic stores.  There's no special requirement (for
1119         // unordered atomics) about removing atomic stores only in favor of
1120         // other atomic stores since we we're going to execute the non-atomic
1121         // one anyway and the atomic one might never have become visible.
1122         if (LastStore) {
1123           ParseMemoryInst LastStoreMemInst(LastStore, TTI);
1124           assert(LastStoreMemInst.isUnordered() &&
1125                  !LastStoreMemInst.isVolatile() &&
1126                  "Violated invariant");
1127           if (LastStoreMemInst.isMatchingMemLoc(MemInst)) {
1128             LLVM_DEBUG(dbgs() << "EarlyCSE DEAD STORE: " << *LastStore
1129                               << "  due to: " << *Inst << '\n');
1130             if (!DebugCounter::shouldExecute(CSECounter)) {
1131               LLVM_DEBUG(dbgs() << "Skipping due to debug counter\n");
1132             } else {
1133               removeMSSA(LastStore);
1134               LastStore->eraseFromParent();
1135               Changed = true;
1136               ++NumDSE;
1137               LastStore = nullptr;
1138             }
1139           }
1140           // fallthrough - we can exploit information about this store
1141         }
1142 
1143         // Okay, we just invalidated anything we knew about loaded values.  Try
1144         // to salvage *something* by remembering that the stored value is a live
1145         // version of the pointer.  It is safe to forward from volatile stores
1146         // to non-volatile loads, so we don't have to check for volatility of
1147         // the store.
1148         AvailableLoads.insert(
1149             MemInst.getPointerOperand(),
1150             LoadValue(Inst, CurrentGeneration, MemInst.getMatchingId(),
1151                       MemInst.isAtomic()));
1152 
1153         // Remember that this was the last unordered store we saw for DSE. We
1154         // don't yet handle DSE on ordered or volatile stores since we don't
1155         // have a good way to model the ordering requirement for following
1156         // passes  once the store is removed.  We could insert a fence, but
1157         // since fences are slightly stronger than stores in their ordering,
1158         // it's not clear this is a profitable transform. Another option would
1159         // be to merge the ordering with that of the post dominating store.
1160         if (MemInst.isUnordered() && !MemInst.isVolatile())
1161           LastStore = Inst;
1162         else
1163           LastStore = nullptr;
1164       }
1165     }
1166   }
1167 
1168   return Changed;
1169 }
1170 
run()1171 bool EarlyCSE::run() {
1172   // Note, deque is being used here because there is significant performance
1173   // gains over vector when the container becomes very large due to the
1174   // specific access patterns. For more information see the mailing list
1175   // discussion on this:
1176   // http://lists.llvm.org/pipermail/llvm-commits/Week-of-Mon-20120116/135228.html
1177   std::deque<StackNode *> nodesToProcess;
1178 
1179   bool Changed = false;
1180 
1181   // Process the root node.
1182   nodesToProcess.push_back(new StackNode(
1183       AvailableValues, AvailableLoads, AvailableInvariants, AvailableCalls,
1184       CurrentGeneration, DT.getRootNode(),
1185       DT.getRootNode()->begin(), DT.getRootNode()->end()));
1186 
1187   // Save the current generation.
1188   unsigned LiveOutGeneration = CurrentGeneration;
1189 
1190   // Process the stack.
1191   while (!nodesToProcess.empty()) {
1192     // Grab the first item off the stack. Set the current generation, remove
1193     // the node from the stack, and process it.
1194     StackNode *NodeToProcess = nodesToProcess.back();
1195 
1196     // Initialize class members.
1197     CurrentGeneration = NodeToProcess->currentGeneration();
1198 
1199     // Check if the node needs to be processed.
1200     if (!NodeToProcess->isProcessed()) {
1201       // Process the node.
1202       Changed |= processNode(NodeToProcess->node());
1203       NodeToProcess->childGeneration(CurrentGeneration);
1204       NodeToProcess->process();
1205     } else if (NodeToProcess->childIter() != NodeToProcess->end()) {
1206       // Push the next child onto the stack.
1207       DomTreeNode *child = NodeToProcess->nextChild();
1208       nodesToProcess.push_back(
1209           new StackNode(AvailableValues, AvailableLoads, AvailableInvariants,
1210                         AvailableCalls, NodeToProcess->childGeneration(),
1211                         child, child->begin(), child->end()));
1212     } else {
1213       // It has been processed, and there are no more children to process,
1214       // so delete it and pop it off the stack.
1215       delete NodeToProcess;
1216       nodesToProcess.pop_back();
1217     }
1218   } // while (!nodes...)
1219 
1220   // Reset the current generation.
1221   CurrentGeneration = LiveOutGeneration;
1222 
1223   return Changed;
1224 }
1225 
run(Function & F,FunctionAnalysisManager & AM)1226 PreservedAnalyses EarlyCSEPass::run(Function &F,
1227                                     FunctionAnalysisManager &AM) {
1228   auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
1229   auto &TTI = AM.getResult<TargetIRAnalysis>(F);
1230   auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
1231   auto &AC = AM.getResult<AssumptionAnalysis>(F);
1232   auto *MSSA =
1233       UseMemorySSA ? &AM.getResult<MemorySSAAnalysis>(F).getMSSA() : nullptr;
1234 
1235   EarlyCSE CSE(F.getParent()->getDataLayout(), TLI, TTI, DT, AC, MSSA);
1236 
1237   if (!CSE.run())
1238     return PreservedAnalyses::all();
1239 
1240   PreservedAnalyses PA;
1241   PA.preserveSet<CFGAnalyses>();
1242   PA.preserve<GlobalsAA>();
1243   if (UseMemorySSA)
1244     PA.preserve<MemorySSAAnalysis>();
1245   return PA;
1246 }
1247 
1248 namespace {
1249 
1250 /// A simple and fast domtree-based CSE pass.
1251 ///
1252 /// This pass does a simple depth-first walk over the dominator tree,
1253 /// eliminating trivially redundant instructions and using instsimplify to
1254 /// canonicalize things as it goes. It is intended to be fast and catch obvious
1255 /// cases so that instcombine and other passes are more effective. It is
1256 /// expected that a later pass of GVN will catch the interesting/hard cases.
1257 template<bool UseMemorySSA>
1258 class EarlyCSELegacyCommonPass : public FunctionPass {
1259 public:
1260   static char ID;
1261 
EarlyCSELegacyCommonPass()1262   EarlyCSELegacyCommonPass() : FunctionPass(ID) {
1263     if (UseMemorySSA)
1264       initializeEarlyCSEMemSSALegacyPassPass(*PassRegistry::getPassRegistry());
1265     else
1266       initializeEarlyCSELegacyPassPass(*PassRegistry::getPassRegistry());
1267   }
1268 
runOnFunction(Function & F)1269   bool runOnFunction(Function &F) override {
1270     if (skipFunction(F))
1271       return false;
1272 
1273     auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
1274     auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
1275     auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
1276     auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
1277     auto *MSSA =
1278         UseMemorySSA ? &getAnalysis<MemorySSAWrapperPass>().getMSSA() : nullptr;
1279 
1280     EarlyCSE CSE(F.getParent()->getDataLayout(), TLI, TTI, DT, AC, MSSA);
1281 
1282     return CSE.run();
1283   }
1284 
getAnalysisUsage(AnalysisUsage & AU) const1285   void getAnalysisUsage(AnalysisUsage &AU) const override {
1286     AU.addRequired<AssumptionCacheTracker>();
1287     AU.addRequired<DominatorTreeWrapperPass>();
1288     AU.addRequired<TargetLibraryInfoWrapperPass>();
1289     AU.addRequired<TargetTransformInfoWrapperPass>();
1290     if (UseMemorySSA) {
1291       AU.addRequired<MemorySSAWrapperPass>();
1292       AU.addPreserved<MemorySSAWrapperPass>();
1293     }
1294     AU.addPreserved<GlobalsAAWrapperPass>();
1295     AU.setPreservesCFG();
1296   }
1297 };
1298 
1299 } // end anonymous namespace
1300 
1301 using EarlyCSELegacyPass = EarlyCSELegacyCommonPass</*UseMemorySSA=*/false>;
1302 
1303 template<>
1304 char EarlyCSELegacyPass::ID = 0;
1305 
1306 INITIALIZE_PASS_BEGIN(EarlyCSELegacyPass, "early-cse", "Early CSE", false,
1307                       false)
1308 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
1309 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
1310 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
1311 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
1312 INITIALIZE_PASS_END(EarlyCSELegacyPass, "early-cse", "Early CSE", false, false)
1313 
1314 using EarlyCSEMemSSALegacyPass =
1315     EarlyCSELegacyCommonPass</*UseMemorySSA=*/true>;
1316 
1317 template<>
1318 char EarlyCSEMemSSALegacyPass::ID = 0;
1319 
createEarlyCSEPass(bool UseMemorySSA)1320 FunctionPass *llvm::createEarlyCSEPass(bool UseMemorySSA) {
1321   if (UseMemorySSA)
1322     return new EarlyCSEMemSSALegacyPass();
1323   else
1324     return new EarlyCSELegacyPass();
1325 }
1326 
1327 INITIALIZE_PASS_BEGIN(EarlyCSEMemSSALegacyPass, "early-cse-memssa",
1328                       "Early CSE w/ MemorySSA", false, false)
1329 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
1330 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
1331 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
1332 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
1333 INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass)
1334 INITIALIZE_PASS_END(EarlyCSEMemSSALegacyPass, "early-cse-memssa",
1335                     "Early CSE w/ MemorySSA", false, false)
1336