1 //===- DeadStoreElimination.cpp - Fast Dead Store Elimination -------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements a trivial dead store elimination that only considers
11 // basic-block local redundant stores.
12 //
13 // FIXME: This should eventually be extended to be a post-dominator tree
14 // traversal.  Doing so would be pretty trivial.
15 //
16 //===----------------------------------------------------------------------===//
17 
18 #include "llvm/Transforms/Scalar/DeadStoreElimination.h"
19 #include "llvm/ADT/APInt.h"
20 #include "llvm/ADT/DenseMap.h"
21 #include "llvm/ADT/SetVector.h"
22 #include "llvm/ADT/SmallPtrSet.h"
23 #include "llvm/ADT/SmallVector.h"
24 #include "llvm/ADT/Statistic.h"
25 #include "llvm/ADT/StringRef.h"
26 #include "llvm/Analysis/AliasAnalysis.h"
27 #include "llvm/Analysis/CaptureTracking.h"
28 #include "llvm/Analysis/GlobalsModRef.h"
29 #include "llvm/Analysis/MemoryBuiltins.h"
30 #include "llvm/Analysis/MemoryDependenceAnalysis.h"
31 #include "llvm/Analysis/MemoryLocation.h"
32 #include "llvm/Analysis/TargetLibraryInfo.h"
33 #include "llvm/Transforms/Utils/Local.h"
34 #include "llvm/Analysis/ValueTracking.h"
35 #include "llvm/IR/Argument.h"
36 #include "llvm/IR/BasicBlock.h"
37 #include "llvm/IR/CallSite.h"
38 #include "llvm/IR/Constant.h"
39 #include "llvm/IR/Constants.h"
40 #include "llvm/IR/DataLayout.h"
41 #include "llvm/IR/Dominators.h"
42 #include "llvm/IR/Function.h"
43 #include "llvm/IR/InstrTypes.h"
44 #include "llvm/IR/Instruction.h"
45 #include "llvm/IR/Instructions.h"
46 #include "llvm/IR/IntrinsicInst.h"
47 #include "llvm/IR/Intrinsics.h"
48 #include "llvm/IR/LLVMContext.h"
49 #include "llvm/IR/Module.h"
50 #include "llvm/IR/PassManager.h"
51 #include "llvm/IR/Value.h"
52 #include "llvm/Pass.h"
53 #include "llvm/Support/Casting.h"
54 #include "llvm/Support/CommandLine.h"
55 #include "llvm/Support/Debug.h"
56 #include "llvm/Support/ErrorHandling.h"
57 #include "llvm/Support/MathExtras.h"
58 #include "llvm/Support/raw_ostream.h"
59 #include "llvm/Transforms/Scalar.h"
60 #include <algorithm>
61 #include <cassert>
62 #include <cstddef>
63 #include <cstdint>
64 #include <iterator>
65 #include <map>
66 #include <utility>
67 
68 using namespace llvm;
69 
70 #define DEBUG_TYPE "dse"
71 
72 STATISTIC(NumRedundantStores, "Number of redundant stores deleted");
73 STATISTIC(NumFastStores, "Number of stores deleted");
74 STATISTIC(NumFastOther, "Number of other instrs removed");
75 STATISTIC(NumCompletePartials, "Number of stores dead by later partials");
76 STATISTIC(NumModifiedStores, "Number of stores modified");
77 
78 static cl::opt<bool>
79 EnablePartialOverwriteTracking("enable-dse-partial-overwrite-tracking",
80   cl::init(true), cl::Hidden,
81   cl::desc("Enable partial-overwrite tracking in DSE"));
82 
83 static cl::opt<bool>
84 EnablePartialStoreMerging("enable-dse-partial-store-merging",
85   cl::init(true), cl::Hidden,
86   cl::desc("Enable partial store merging in DSE"));
87 
88 //===----------------------------------------------------------------------===//
89 // Helper functions
90 //===----------------------------------------------------------------------===//
91 using OverlapIntervalsTy = std::map<int64_t, int64_t>;
92 using InstOverlapIntervalsTy = DenseMap<Instruction *, OverlapIntervalsTy>;
93 
94 /// Delete this instruction.  Before we do, go through and zero out all the
95 /// operands of this instruction.  If any of them become dead, delete them and
96 /// the computation tree that feeds them.
97 /// If ValueSet is non-null, remove any deleted instructions from it as well.
98 static void
deleteDeadInstruction(Instruction * I,BasicBlock::iterator * BBI,MemoryDependenceResults & MD,const TargetLibraryInfo & TLI,InstOverlapIntervalsTy & IOL,DenseMap<Instruction *,size_t> * InstrOrdering,SmallSetVector<Value *,16> * ValueSet=nullptr)99 deleteDeadInstruction(Instruction *I, BasicBlock::iterator *BBI,
100                       MemoryDependenceResults &MD, const TargetLibraryInfo &TLI,
101                       InstOverlapIntervalsTy &IOL,
102                       DenseMap<Instruction*, size_t> *InstrOrdering,
103                       SmallSetVector<Value *, 16> *ValueSet = nullptr) {
104   SmallVector<Instruction*, 32> NowDeadInsts;
105 
106   NowDeadInsts.push_back(I);
107   --NumFastOther;
108 
109   // Keeping the iterator straight is a pain, so we let this routine tell the
110   // caller what the next instruction is after we're done mucking about.
111   BasicBlock::iterator NewIter = *BBI;
112 
113   // Before we touch this instruction, remove it from memdep!
114   do {
115     Instruction *DeadInst = NowDeadInsts.pop_back_val();
116     ++NumFastOther;
117 
118     // Try to preserve debug information attached to the dead instruction.
119     salvageDebugInfo(*DeadInst);
120 
121     // This instruction is dead, zap it, in stages.  Start by removing it from
122     // MemDep, which needs to know the operands and needs it to be in the
123     // function.
124     MD.removeInstruction(DeadInst);
125 
126     for (unsigned op = 0, e = DeadInst->getNumOperands(); op != e; ++op) {
127       Value *Op = DeadInst->getOperand(op);
128       DeadInst->setOperand(op, nullptr);
129 
130       // If this operand just became dead, add it to the NowDeadInsts list.
131       if (!Op->use_empty()) continue;
132 
133       if (Instruction *OpI = dyn_cast<Instruction>(Op))
134         if (isInstructionTriviallyDead(OpI, &TLI))
135           NowDeadInsts.push_back(OpI);
136     }
137 
138     if (ValueSet) ValueSet->remove(DeadInst);
139     InstrOrdering->erase(DeadInst);
140     IOL.erase(DeadInst);
141 
142     if (NewIter == DeadInst->getIterator())
143       NewIter = DeadInst->eraseFromParent();
144     else
145       DeadInst->eraseFromParent();
146   } while (!NowDeadInsts.empty());
147   *BBI = NewIter;
148 }
149 
150 /// Does this instruction write some memory?  This only returns true for things
151 /// that we can analyze with other helpers below.
hasAnalyzableMemoryWrite(Instruction * I,const TargetLibraryInfo & TLI)152 static bool hasAnalyzableMemoryWrite(Instruction *I,
153                                      const TargetLibraryInfo &TLI) {
154   if (isa<StoreInst>(I))
155     return true;
156   if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
157     switch (II->getIntrinsicID()) {
158     default:
159       return false;
160     case Intrinsic::memset:
161     case Intrinsic::memmove:
162     case Intrinsic::memcpy:
163     case Intrinsic::memcpy_element_unordered_atomic:
164     case Intrinsic::memmove_element_unordered_atomic:
165     case Intrinsic::memset_element_unordered_atomic:
166     case Intrinsic::init_trampoline:
167     case Intrinsic::lifetime_end:
168       return true;
169     }
170   }
171   if (auto CS = CallSite(I)) {
172     if (Function *F = CS.getCalledFunction()) {
173       StringRef FnName = F->getName();
174       if (TLI.has(LibFunc_strcpy) && FnName == TLI.getName(LibFunc_strcpy))
175         return true;
176       if (TLI.has(LibFunc_strncpy) && FnName == TLI.getName(LibFunc_strncpy))
177         return true;
178       if (TLI.has(LibFunc_strcat) && FnName == TLI.getName(LibFunc_strcat))
179         return true;
180       if (TLI.has(LibFunc_strncat) && FnName == TLI.getName(LibFunc_strncat))
181         return true;
182     }
183   }
184   return false;
185 }
186 
187 /// Return a Location stored to by the specified instruction. If isRemovable
188 /// returns true, this function and getLocForRead completely describe the memory
189 /// operations for this instruction.
getLocForWrite(Instruction * Inst)190 static MemoryLocation getLocForWrite(Instruction *Inst) {
191 
192   if (StoreInst *SI = dyn_cast<StoreInst>(Inst))
193     return MemoryLocation::get(SI);
194 
195   if (auto *MI = dyn_cast<AnyMemIntrinsic>(Inst)) {
196     // memcpy/memmove/memset.
197     MemoryLocation Loc = MemoryLocation::getForDest(MI);
198     return Loc;
199   }
200 
201   if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
202     switch (II->getIntrinsicID()) {
203     default:
204       return MemoryLocation(); // Unhandled intrinsic.
205     case Intrinsic::init_trampoline:
206       return MemoryLocation(II->getArgOperand(0));
207     case Intrinsic::lifetime_end: {
208       uint64_t Len = cast<ConstantInt>(II->getArgOperand(0))->getZExtValue();
209       return MemoryLocation(II->getArgOperand(1), Len);
210     }
211     }
212   }
213   if (auto CS = CallSite(Inst))
214     // All the supported TLI functions so far happen to have dest as their
215     // first argument.
216     return MemoryLocation(CS.getArgument(0));
217   return MemoryLocation();
218 }
219 
220 /// Return the location read by the specified "hasAnalyzableMemoryWrite"
221 /// instruction if any.
getLocForRead(Instruction * Inst,const TargetLibraryInfo & TLI)222 static MemoryLocation getLocForRead(Instruction *Inst,
223                                     const TargetLibraryInfo &TLI) {
224   assert(hasAnalyzableMemoryWrite(Inst, TLI) && "Unknown instruction case");
225 
226   // The only instructions that both read and write are the mem transfer
227   // instructions (memcpy/memmove).
228   if (auto *MTI = dyn_cast<AnyMemTransferInst>(Inst))
229     return MemoryLocation::getForSource(MTI);
230   return MemoryLocation();
231 }
232 
233 /// If the value of this instruction and the memory it writes to is unused, may
234 /// we delete this instruction?
isRemovable(Instruction * I)235 static bool isRemovable(Instruction *I) {
236   // Don't remove volatile/atomic stores.
237   if (StoreInst *SI = dyn_cast<StoreInst>(I))
238     return SI->isUnordered();
239 
240   if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
241     switch (II->getIntrinsicID()) {
242     default: llvm_unreachable("doesn't pass 'hasAnalyzableMemoryWrite' predicate");
243     case Intrinsic::lifetime_end:
244       // Never remove dead lifetime_end's, e.g. because it is followed by a
245       // free.
246       return false;
247     case Intrinsic::init_trampoline:
248       // Always safe to remove init_trampoline.
249       return true;
250     case Intrinsic::memset:
251     case Intrinsic::memmove:
252     case Intrinsic::memcpy:
253       // Don't remove volatile memory intrinsics.
254       return !cast<MemIntrinsic>(II)->isVolatile();
255     case Intrinsic::memcpy_element_unordered_atomic:
256     case Intrinsic::memmove_element_unordered_atomic:
257     case Intrinsic::memset_element_unordered_atomic:
258       return true;
259     }
260   }
261 
262   // note: only get here for calls with analyzable writes - i.e. libcalls
263   if (auto CS = CallSite(I))
264     return CS.getInstruction()->use_empty();
265 
266   return false;
267 }
268 
269 /// Returns true if the end of this instruction can be safely shortened in
270 /// length.
isShortenableAtTheEnd(Instruction * I)271 static bool isShortenableAtTheEnd(Instruction *I) {
272   // Don't shorten stores for now
273   if (isa<StoreInst>(I))
274     return false;
275 
276   if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
277     switch (II->getIntrinsicID()) {
278       default: return false;
279       case Intrinsic::memset:
280       case Intrinsic::memcpy:
281       case Intrinsic::memcpy_element_unordered_atomic:
282       case Intrinsic::memset_element_unordered_atomic:
283         // Do shorten memory intrinsics.
284         // FIXME: Add memmove if it's also safe to transform.
285         return true;
286     }
287   }
288 
289   // Don't shorten libcalls calls for now.
290 
291   return false;
292 }
293 
294 /// Returns true if the beginning of this instruction can be safely shortened
295 /// in length.
isShortenableAtTheBeginning(Instruction * I)296 static bool isShortenableAtTheBeginning(Instruction *I) {
297   // FIXME: Handle only memset for now. Supporting memcpy/memmove should be
298   // easily done by offsetting the source address.
299   return isa<AnyMemSetInst>(I);
300 }
301 
302 /// Return the pointer that is being written to.
getStoredPointerOperand(Instruction * I)303 static Value *getStoredPointerOperand(Instruction *I) {
304   //TODO: factor this to reuse getLocForWrite
305   MemoryLocation Loc = getLocForWrite(I);
306   assert(Loc.Ptr &&
307          "unable to find pointer written for analyzable instruction?");
308   // TODO: most APIs don't expect const Value *
309   return const_cast<Value*>(Loc.Ptr);
310 }
311 
getPointerSize(const Value * V,const DataLayout & DL,const TargetLibraryInfo & TLI,const Function * F)312 static uint64_t getPointerSize(const Value *V, const DataLayout &DL,
313                                const TargetLibraryInfo &TLI,
314                                const Function *F) {
315   uint64_t Size;
316   ObjectSizeOpts Opts;
317   Opts.NullIsUnknownSize = NullPointerIsDefined(F);
318 
319   if (getObjectSize(V, Size, DL, &TLI, Opts))
320     return Size;
321   return MemoryLocation::UnknownSize;
322 }
323 
324 namespace {
325 
326 enum OverwriteResult {
327   OW_Begin,
328   OW_Complete,
329   OW_End,
330   OW_PartialEarlierWithFullLater,
331   OW_Unknown
332 };
333 
334 } // end anonymous namespace
335 
336 /// Return 'OW_Complete' if a store to the 'Later' location completely
337 /// overwrites a store to the 'Earlier' location, 'OW_End' if the end of the
338 /// 'Earlier' location is completely overwritten by 'Later', 'OW_Begin' if the
339 /// beginning of the 'Earlier' location is overwritten by 'Later'.
340 /// 'OW_PartialEarlierWithFullLater' means that an earlier (big) store was
341 /// overwritten by a latter (smaller) store which doesn't write outside the big
342 /// store's memory locations. Returns 'OW_Unknown' if nothing can be determined.
isOverwrite(const MemoryLocation & Later,const MemoryLocation & Earlier,const DataLayout & DL,const TargetLibraryInfo & TLI,int64_t & EarlierOff,int64_t & LaterOff,Instruction * DepWrite,InstOverlapIntervalsTy & IOL,AliasAnalysis & AA,const Function * F)343 static OverwriteResult isOverwrite(const MemoryLocation &Later,
344                                    const MemoryLocation &Earlier,
345                                    const DataLayout &DL,
346                                    const TargetLibraryInfo &TLI,
347                                    int64_t &EarlierOff, int64_t &LaterOff,
348                                    Instruction *DepWrite,
349                                    InstOverlapIntervalsTy &IOL,
350                                    AliasAnalysis &AA,
351                                    const Function *F) {
352   // FIXME: Vet that this works for size upper-bounds. Seems unlikely that we'll
353   // get imprecise values here, though (except for unknown sizes).
354   if (!Later.Size.isPrecise() || !Earlier.Size.isPrecise())
355     return OW_Unknown;
356 
357   const uint64_t LaterSize = Later.Size.getValue();
358   const uint64_t EarlierSize = Earlier.Size.getValue();
359 
360   const Value *P1 = Earlier.Ptr->stripPointerCasts();
361   const Value *P2 = Later.Ptr->stripPointerCasts();
362 
363   // If the start pointers are the same, we just have to compare sizes to see if
364   // the later store was larger than the earlier store.
365   if (P1 == P2 || AA.isMustAlias(P1, P2)) {
366     // Make sure that the Later size is >= the Earlier size.
367     if (LaterSize >= EarlierSize)
368       return OW_Complete;
369   }
370 
371   // Check to see if the later store is to the entire object (either a global,
372   // an alloca, or a byval/inalloca argument).  If so, then it clearly
373   // overwrites any other store to the same object.
374   const Value *UO1 = GetUnderlyingObject(P1, DL),
375               *UO2 = GetUnderlyingObject(P2, DL);
376 
377   // If we can't resolve the same pointers to the same object, then we can't
378   // analyze them at all.
379   if (UO1 != UO2)
380     return OW_Unknown;
381 
382   // If the "Later" store is to a recognizable object, get its size.
383   uint64_t ObjectSize = getPointerSize(UO2, DL, TLI, F);
384   if (ObjectSize != MemoryLocation::UnknownSize)
385     if (ObjectSize == LaterSize && ObjectSize >= EarlierSize)
386       return OW_Complete;
387 
388   // Okay, we have stores to two completely different pointers.  Try to
389   // decompose the pointer into a "base + constant_offset" form.  If the base
390   // pointers are equal, then we can reason about the two stores.
391   EarlierOff = 0;
392   LaterOff = 0;
393   const Value *BP1 = GetPointerBaseWithConstantOffset(P1, EarlierOff, DL);
394   const Value *BP2 = GetPointerBaseWithConstantOffset(P2, LaterOff, DL);
395 
396   // If the base pointers still differ, we have two completely different stores.
397   if (BP1 != BP2)
398     return OW_Unknown;
399 
400   // The later store completely overlaps the earlier store if:
401   //
402   // 1. Both start at the same offset and the later one's size is greater than
403   //    or equal to the earlier one's, or
404   //
405   //      |--earlier--|
406   //      |--   later   --|
407   //
408   // 2. The earlier store has an offset greater than the later offset, but which
409   //    still lies completely within the later store.
410   //
411   //        |--earlier--|
412   //    |-----  later  ------|
413   //
414   // We have to be careful here as *Off is signed while *.Size is unsigned.
415   if (EarlierOff >= LaterOff &&
416       LaterSize >= EarlierSize &&
417       uint64_t(EarlierOff - LaterOff) + EarlierSize <= LaterSize)
418     return OW_Complete;
419 
420   // We may now overlap, although the overlap is not complete. There might also
421   // be other incomplete overlaps, and together, they might cover the complete
422   // earlier write.
423   // Note: The correctness of this logic depends on the fact that this function
424   // is not even called providing DepWrite when there are any intervening reads.
425   if (EnablePartialOverwriteTracking &&
426       LaterOff < int64_t(EarlierOff + EarlierSize) &&
427       int64_t(LaterOff + LaterSize) >= EarlierOff) {
428 
429     // Insert our part of the overlap into the map.
430     auto &IM = IOL[DepWrite];
431     LLVM_DEBUG(dbgs() << "DSE: Partial overwrite: Earlier [" << EarlierOff
432                       << ", " << int64_t(EarlierOff + EarlierSize)
433                       << ") Later [" << LaterOff << ", "
434                       << int64_t(LaterOff + LaterSize) << ")\n");
435 
436     // Make sure that we only insert non-overlapping intervals and combine
437     // adjacent intervals. The intervals are stored in the map with the ending
438     // offset as the key (in the half-open sense) and the starting offset as
439     // the value.
440     int64_t LaterIntStart = LaterOff, LaterIntEnd = LaterOff + LaterSize;
441 
442     // Find any intervals ending at, or after, LaterIntStart which start
443     // before LaterIntEnd.
444     auto ILI = IM.lower_bound(LaterIntStart);
445     if (ILI != IM.end() && ILI->second <= LaterIntEnd) {
446       // This existing interval is overlapped with the current store somewhere
447       // in [LaterIntStart, LaterIntEnd]. Merge them by erasing the existing
448       // intervals and adjusting our start and end.
449       LaterIntStart = std::min(LaterIntStart, ILI->second);
450       LaterIntEnd = std::max(LaterIntEnd, ILI->first);
451       ILI = IM.erase(ILI);
452 
453       // Continue erasing and adjusting our end in case other previous
454       // intervals are also overlapped with the current store.
455       //
456       // |--- ealier 1 ---|  |--- ealier 2 ---|
457       //     |------- later---------|
458       //
459       while (ILI != IM.end() && ILI->second <= LaterIntEnd) {
460         assert(ILI->second > LaterIntStart && "Unexpected interval");
461         LaterIntEnd = std::max(LaterIntEnd, ILI->first);
462         ILI = IM.erase(ILI);
463       }
464     }
465 
466     IM[LaterIntEnd] = LaterIntStart;
467 
468     ILI = IM.begin();
469     if (ILI->second <= EarlierOff &&
470         ILI->first >= int64_t(EarlierOff + EarlierSize)) {
471       LLVM_DEBUG(dbgs() << "DSE: Full overwrite from partials: Earlier ["
472                         << EarlierOff << ", "
473                         << int64_t(EarlierOff + EarlierSize)
474                         << ") Composite Later [" << ILI->second << ", "
475                         << ILI->first << ")\n");
476       ++NumCompletePartials;
477       return OW_Complete;
478     }
479   }
480 
481   // Check for an earlier store which writes to all the memory locations that
482   // the later store writes to.
483   if (EnablePartialStoreMerging && LaterOff >= EarlierOff &&
484       int64_t(EarlierOff + EarlierSize) > LaterOff &&
485       uint64_t(LaterOff - EarlierOff) + LaterSize <= EarlierSize) {
486     LLVM_DEBUG(dbgs() << "DSE: Partial overwrite an earlier load ["
487                       << EarlierOff << ", "
488                       << int64_t(EarlierOff + EarlierSize)
489                       << ") by a later store [" << LaterOff << ", "
490                       << int64_t(LaterOff + LaterSize) << ")\n");
491     // TODO: Maybe come up with a better name?
492     return OW_PartialEarlierWithFullLater;
493   }
494 
495   // Another interesting case is if the later store overwrites the end of the
496   // earlier store.
497   //
498   //      |--earlier--|
499   //                |--   later   --|
500   //
501   // In this case we may want to trim the size of earlier to avoid generating
502   // writes to addresses which will definitely be overwritten later
503   if (!EnablePartialOverwriteTracking &&
504       (LaterOff > EarlierOff && LaterOff < int64_t(EarlierOff + EarlierSize) &&
505        int64_t(LaterOff + LaterSize) >= int64_t(EarlierOff + EarlierSize)))
506     return OW_End;
507 
508   // Finally, we also need to check if the later store overwrites the beginning
509   // of the earlier store.
510   //
511   //                |--earlier--|
512   //      |--   later   --|
513   //
514   // In this case we may want to move the destination address and trim the size
515   // of earlier to avoid generating writes to addresses which will definitely
516   // be overwritten later.
517   if (!EnablePartialOverwriteTracking &&
518       (LaterOff <= EarlierOff && int64_t(LaterOff + LaterSize) > EarlierOff)) {
519     assert(int64_t(LaterOff + LaterSize) < int64_t(EarlierOff + EarlierSize) &&
520            "Expect to be handled as OW_Complete");
521     return OW_Begin;
522   }
523   // Otherwise, they don't completely overlap.
524   return OW_Unknown;
525 }
526 
527 /// If 'Inst' might be a self read (i.e. a noop copy of a
528 /// memory region into an identical pointer) then it doesn't actually make its
529 /// input dead in the traditional sense.  Consider this case:
530 ///
531 ///   memmove(A <- B)
532 ///   memmove(A <- A)
533 ///
534 /// In this case, the second store to A does not make the first store to A dead.
535 /// The usual situation isn't an explicit A<-A store like this (which can be
536 /// trivially removed) but a case where two pointers may alias.
537 ///
538 /// This function detects when it is unsafe to remove a dependent instruction
539 /// because the DSE inducing instruction may be a self-read.
isPossibleSelfRead(Instruction * Inst,const MemoryLocation & InstStoreLoc,Instruction * DepWrite,const TargetLibraryInfo & TLI,AliasAnalysis & AA)540 static bool isPossibleSelfRead(Instruction *Inst,
541                                const MemoryLocation &InstStoreLoc,
542                                Instruction *DepWrite,
543                                const TargetLibraryInfo &TLI,
544                                AliasAnalysis &AA) {
545   // Self reads can only happen for instructions that read memory.  Get the
546   // location read.
547   MemoryLocation InstReadLoc = getLocForRead(Inst, TLI);
548   if (!InstReadLoc.Ptr)
549     return false; // Not a reading instruction.
550 
551   // If the read and written loc obviously don't alias, it isn't a read.
552   if (AA.isNoAlias(InstReadLoc, InstStoreLoc))
553     return false;
554 
555   if (isa<AnyMemCpyInst>(Inst)) {
556     // LLVM's memcpy overlap semantics are not fully fleshed out (see PR11763)
557     // but in practice memcpy(A <- B) either means that A and B are disjoint or
558     // are equal (i.e. there are not partial overlaps).  Given that, if we have:
559     //
560     //   memcpy/memmove(A <- B)  // DepWrite
561     //   memcpy(A <- B)  // Inst
562     //
563     // with Inst reading/writing a >= size than DepWrite, we can reason as
564     // follows:
565     //
566     //   - If A == B then both the copies are no-ops, so the DepWrite can be
567     //     removed.
568     //   - If A != B then A and B are disjoint locations in Inst.  Since
569     //     Inst.size >= DepWrite.size A and B are disjoint in DepWrite too.
570     //     Therefore DepWrite can be removed.
571     MemoryLocation DepReadLoc = getLocForRead(DepWrite, TLI);
572 
573     if (DepReadLoc.Ptr && AA.isMustAlias(InstReadLoc.Ptr, DepReadLoc.Ptr))
574       return false;
575   }
576 
577   // If DepWrite doesn't read memory or if we can't prove it is a must alias,
578   // then it can't be considered dead.
579   return true;
580 }
581 
582 /// Returns true if the memory which is accessed by the second instruction is not
583 /// modified between the first and the second instruction.
584 /// Precondition: Second instruction must be dominated by the first
585 /// instruction.
memoryIsNotModifiedBetween(Instruction * FirstI,Instruction * SecondI,AliasAnalysis * AA)586 static bool memoryIsNotModifiedBetween(Instruction *FirstI,
587                                        Instruction *SecondI,
588                                        AliasAnalysis *AA) {
589   SmallVector<BasicBlock *, 16> WorkList;
590   SmallPtrSet<BasicBlock *, 8> Visited;
591   BasicBlock::iterator FirstBBI(FirstI);
592   ++FirstBBI;
593   BasicBlock::iterator SecondBBI(SecondI);
594   BasicBlock *FirstBB = FirstI->getParent();
595   BasicBlock *SecondBB = SecondI->getParent();
596   MemoryLocation MemLoc = MemoryLocation::get(SecondI);
597 
598   // Start checking the store-block.
599   WorkList.push_back(SecondBB);
600   bool isFirstBlock = true;
601 
602   // Check all blocks going backward until we reach the load-block.
603   while (!WorkList.empty()) {
604     BasicBlock *B = WorkList.pop_back_val();
605 
606     // Ignore instructions before LI if this is the FirstBB.
607     BasicBlock::iterator BI = (B == FirstBB ? FirstBBI : B->begin());
608 
609     BasicBlock::iterator EI;
610     if (isFirstBlock) {
611       // Ignore instructions after SI if this is the first visit of SecondBB.
612       assert(B == SecondBB && "first block is not the store block");
613       EI = SecondBBI;
614       isFirstBlock = false;
615     } else {
616       // It's not SecondBB or (in case of a loop) the second visit of SecondBB.
617       // In this case we also have to look at instructions after SI.
618       EI = B->end();
619     }
620     for (; BI != EI; ++BI) {
621       Instruction *I = &*BI;
622       if (I->mayWriteToMemory() && I != SecondI)
623         if (isModSet(AA->getModRefInfo(I, MemLoc)))
624           return false;
625     }
626     if (B != FirstBB) {
627       assert(B != &FirstBB->getParent()->getEntryBlock() &&
628           "Should not hit the entry block because SI must be dominated by LI");
629       for (auto PredI = pred_begin(B), PE = pred_end(B); PredI != PE; ++PredI) {
630         if (!Visited.insert(*PredI).second)
631           continue;
632         WorkList.push_back(*PredI);
633       }
634     }
635   }
636   return true;
637 }
638 
639 /// Find all blocks that will unconditionally lead to the block BB and append
640 /// them to F.
findUnconditionalPreds(SmallVectorImpl<BasicBlock * > & Blocks,BasicBlock * BB,DominatorTree * DT)641 static void findUnconditionalPreds(SmallVectorImpl<BasicBlock *> &Blocks,
642                                    BasicBlock *BB, DominatorTree *DT) {
643   for (pred_iterator I = pred_begin(BB), E = pred_end(BB); I != E; ++I) {
644     BasicBlock *Pred = *I;
645     if (Pred == BB) continue;
646     Instruction *PredTI = Pred->getTerminator();
647     if (PredTI->getNumSuccessors() != 1)
648       continue;
649 
650     if (DT->isReachableFromEntry(Pred))
651       Blocks.push_back(Pred);
652   }
653 }
654 
655 /// Handle frees of entire structures whose dependency is a store
656 /// to a field of that structure.
handleFree(CallInst * F,AliasAnalysis * AA,MemoryDependenceResults * MD,DominatorTree * DT,const TargetLibraryInfo * TLI,InstOverlapIntervalsTy & IOL,DenseMap<Instruction *,size_t> * InstrOrdering)657 static bool handleFree(CallInst *F, AliasAnalysis *AA,
658                        MemoryDependenceResults *MD, DominatorTree *DT,
659                        const TargetLibraryInfo *TLI,
660                        InstOverlapIntervalsTy &IOL,
661                        DenseMap<Instruction*, size_t> *InstrOrdering) {
662   bool MadeChange = false;
663 
664   MemoryLocation Loc = MemoryLocation(F->getOperand(0));
665   SmallVector<BasicBlock *, 16> Blocks;
666   Blocks.push_back(F->getParent());
667   const DataLayout &DL = F->getModule()->getDataLayout();
668 
669   while (!Blocks.empty()) {
670     BasicBlock *BB = Blocks.pop_back_val();
671     Instruction *InstPt = BB->getTerminator();
672     if (BB == F->getParent()) InstPt = F;
673 
674     MemDepResult Dep =
675         MD->getPointerDependencyFrom(Loc, false, InstPt->getIterator(), BB);
676     while (Dep.isDef() || Dep.isClobber()) {
677       Instruction *Dependency = Dep.getInst();
678       if (!hasAnalyzableMemoryWrite(Dependency, *TLI) ||
679           !isRemovable(Dependency))
680         break;
681 
682       Value *DepPointer =
683           GetUnderlyingObject(getStoredPointerOperand(Dependency), DL);
684 
685       // Check for aliasing.
686       if (!AA->isMustAlias(F->getArgOperand(0), DepPointer))
687         break;
688 
689       LLVM_DEBUG(
690           dbgs() << "DSE: Dead Store to soon to be freed memory:\n  DEAD: "
691                  << *Dependency << '\n');
692 
693       // DCE instructions only used to calculate that store.
694       BasicBlock::iterator BBI(Dependency);
695       deleteDeadInstruction(Dependency, &BBI, *MD, *TLI, IOL, InstrOrdering);
696       ++NumFastStores;
697       MadeChange = true;
698 
699       // Inst's old Dependency is now deleted. Compute the next dependency,
700       // which may also be dead, as in
701       //    s[0] = 0;
702       //    s[1] = 0; // This has just been deleted.
703       //    free(s);
704       Dep = MD->getPointerDependencyFrom(Loc, false, BBI, BB);
705     }
706 
707     if (Dep.isNonLocal())
708       findUnconditionalPreds(Blocks, BB, DT);
709   }
710 
711   return MadeChange;
712 }
713 
714 /// Check to see if the specified location may alias any of the stack objects in
715 /// the DeadStackObjects set. If so, they become live because the location is
716 /// being loaded.
removeAccessedObjects(const MemoryLocation & LoadedLoc,SmallSetVector<Value *,16> & DeadStackObjects,const DataLayout & DL,AliasAnalysis * AA,const TargetLibraryInfo * TLI,const Function * F)717 static void removeAccessedObjects(const MemoryLocation &LoadedLoc,
718                                   SmallSetVector<Value *, 16> &DeadStackObjects,
719                                   const DataLayout &DL, AliasAnalysis *AA,
720                                   const TargetLibraryInfo *TLI,
721                                   const Function *F) {
722   const Value *UnderlyingPointer = GetUnderlyingObject(LoadedLoc.Ptr, DL);
723 
724   // A constant can't be in the dead pointer set.
725   if (isa<Constant>(UnderlyingPointer))
726     return;
727 
728   // If the kill pointer can be easily reduced to an alloca, don't bother doing
729   // extraneous AA queries.
730   if (isa<AllocaInst>(UnderlyingPointer) || isa<Argument>(UnderlyingPointer)) {
731     DeadStackObjects.remove(const_cast<Value*>(UnderlyingPointer));
732     return;
733   }
734 
735   // Remove objects that could alias LoadedLoc.
736   DeadStackObjects.remove_if([&](Value *I) {
737     // See if the loaded location could alias the stack location.
738     MemoryLocation StackLoc(I, getPointerSize(I, DL, *TLI, F));
739     return !AA->isNoAlias(StackLoc, LoadedLoc);
740   });
741 }
742 
743 /// Remove dead stores to stack-allocated locations in the function end block.
744 /// Ex:
745 /// %A = alloca i32
746 /// ...
747 /// store i32 1, i32* %A
748 /// ret void
handleEndBlock(BasicBlock & BB,AliasAnalysis * AA,MemoryDependenceResults * MD,const TargetLibraryInfo * TLI,InstOverlapIntervalsTy & IOL,DenseMap<Instruction *,size_t> * InstrOrdering)749 static bool handleEndBlock(BasicBlock &BB, AliasAnalysis *AA,
750                              MemoryDependenceResults *MD,
751                              const TargetLibraryInfo *TLI,
752                              InstOverlapIntervalsTy &IOL,
753                              DenseMap<Instruction*, size_t> *InstrOrdering) {
754   bool MadeChange = false;
755 
756   // Keep track of all of the stack objects that are dead at the end of the
757   // function.
758   SmallSetVector<Value*, 16> DeadStackObjects;
759 
760   // Find all of the alloca'd pointers in the entry block.
761   BasicBlock &Entry = BB.getParent()->front();
762   for (Instruction &I : Entry) {
763     if (isa<AllocaInst>(&I))
764       DeadStackObjects.insert(&I);
765 
766     // Okay, so these are dead heap objects, but if the pointer never escapes
767     // then it's leaked by this function anyways.
768     else if (isAllocLikeFn(&I, TLI) && !PointerMayBeCaptured(&I, true, true))
769       DeadStackObjects.insert(&I);
770   }
771 
772   // Treat byval or inalloca arguments the same, stores to them are dead at the
773   // end of the function.
774   for (Argument &AI : BB.getParent()->args())
775     if (AI.hasByValOrInAllocaAttr())
776       DeadStackObjects.insert(&AI);
777 
778   const DataLayout &DL = BB.getModule()->getDataLayout();
779 
780   // Scan the basic block backwards
781   for (BasicBlock::iterator BBI = BB.end(); BBI != BB.begin(); ){
782     --BBI;
783 
784     // If we find a store, check to see if it points into a dead stack value.
785     if (hasAnalyzableMemoryWrite(&*BBI, *TLI) && isRemovable(&*BBI)) {
786       // See through pointer-to-pointer bitcasts
787       SmallVector<Value *, 4> Pointers;
788       GetUnderlyingObjects(getStoredPointerOperand(&*BBI), Pointers, DL);
789 
790       // Stores to stack values are valid candidates for removal.
791       bool AllDead = true;
792       for (Value *Pointer : Pointers)
793         if (!DeadStackObjects.count(Pointer)) {
794           AllDead = false;
795           break;
796         }
797 
798       if (AllDead) {
799         Instruction *Dead = &*BBI;
800 
801         LLVM_DEBUG(dbgs() << "DSE: Dead Store at End of Block:\n  DEAD: "
802                           << *Dead << "\n  Objects: ";
803                    for (SmallVectorImpl<Value *>::iterator I = Pointers.begin(),
804                         E = Pointers.end();
805                         I != E; ++I) {
806                      dbgs() << **I;
807                      if (std::next(I) != E)
808                        dbgs() << ", ";
809                    } dbgs()
810                    << '\n');
811 
812         // DCE instructions only used to calculate that store.
813         deleteDeadInstruction(Dead, &BBI, *MD, *TLI, IOL, InstrOrdering, &DeadStackObjects);
814         ++NumFastStores;
815         MadeChange = true;
816         continue;
817       }
818     }
819 
820     // Remove any dead non-memory-mutating instructions.
821     if (isInstructionTriviallyDead(&*BBI, TLI)) {
822       LLVM_DEBUG(dbgs() << "DSE: Removing trivially dead instruction:\n  DEAD: "
823                         << *&*BBI << '\n');
824       deleteDeadInstruction(&*BBI, &BBI, *MD, *TLI, IOL, InstrOrdering, &DeadStackObjects);
825       ++NumFastOther;
826       MadeChange = true;
827       continue;
828     }
829 
830     if (isa<AllocaInst>(BBI)) {
831       // Remove allocas from the list of dead stack objects; there can't be
832       // any references before the definition.
833       DeadStackObjects.remove(&*BBI);
834       continue;
835     }
836 
837     if (auto *Call = dyn_cast<CallBase>(&*BBI)) {
838       // Remove allocation function calls from the list of dead stack objects;
839       // there can't be any references before the definition.
840       if (isAllocLikeFn(&*BBI, TLI))
841         DeadStackObjects.remove(&*BBI);
842 
843       // If this call does not access memory, it can't be loading any of our
844       // pointers.
845       if (AA->doesNotAccessMemory(Call))
846         continue;
847 
848       // If the call might load from any of our allocas, then any store above
849       // the call is live.
850       DeadStackObjects.remove_if([&](Value *I) {
851         // See if the call site touches the value.
852         return isRefSet(AA->getModRefInfo(
853             Call, I, getPointerSize(I, DL, *TLI, BB.getParent())));
854       });
855 
856       // If all of the allocas were clobbered by the call then we're not going
857       // to find anything else to process.
858       if (DeadStackObjects.empty())
859         break;
860 
861       continue;
862     }
863 
864     // We can remove the dead stores, irrespective of the fence and its ordering
865     // (release/acquire/seq_cst). Fences only constraints the ordering of
866     // already visible stores, it does not make a store visible to other
867     // threads. So, skipping over a fence does not change a store from being
868     // dead.
869     if (isa<FenceInst>(*BBI))
870       continue;
871 
872     MemoryLocation LoadedLoc;
873 
874     // If we encounter a use of the pointer, it is no longer considered dead
875     if (LoadInst *L = dyn_cast<LoadInst>(BBI)) {
876       if (!L->isUnordered()) // Be conservative with atomic/volatile load
877         break;
878       LoadedLoc = MemoryLocation::get(L);
879     } else if (VAArgInst *V = dyn_cast<VAArgInst>(BBI)) {
880       LoadedLoc = MemoryLocation::get(V);
881     } else if (!BBI->mayReadFromMemory()) {
882       // Instruction doesn't read memory.  Note that stores that weren't removed
883       // above will hit this case.
884       continue;
885     } else {
886       // Unknown inst; assume it clobbers everything.
887       break;
888     }
889 
890     // Remove any allocas from the DeadPointer set that are loaded, as this
891     // makes any stores above the access live.
892     removeAccessedObjects(LoadedLoc, DeadStackObjects, DL, AA, TLI, BB.getParent());
893 
894     // If all of the allocas were clobbered by the access then we're not going
895     // to find anything else to process.
896     if (DeadStackObjects.empty())
897       break;
898   }
899 
900   return MadeChange;
901 }
902 
tryToShorten(Instruction * EarlierWrite,int64_t & EarlierOffset,int64_t & EarlierSize,int64_t LaterOffset,int64_t LaterSize,bool IsOverwriteEnd)903 static bool tryToShorten(Instruction *EarlierWrite, int64_t &EarlierOffset,
904                          int64_t &EarlierSize, int64_t LaterOffset,
905                          int64_t LaterSize, bool IsOverwriteEnd) {
906   // TODO: base this on the target vector size so that if the earlier
907   // store was too small to get vector writes anyway then its likely
908   // a good idea to shorten it
909   // Power of 2 vector writes are probably always a bad idea to optimize
910   // as any store/memset/memcpy is likely using vector instructions so
911   // shortening it to not vector size is likely to be slower
912   auto *EarlierIntrinsic = cast<AnyMemIntrinsic>(EarlierWrite);
913   unsigned EarlierWriteAlign = EarlierIntrinsic->getDestAlignment();
914   if (!IsOverwriteEnd)
915     LaterOffset = int64_t(LaterOffset + LaterSize);
916 
917   if (!(isPowerOf2_64(LaterOffset) && EarlierWriteAlign <= LaterOffset) &&
918       !((EarlierWriteAlign != 0) && LaterOffset % EarlierWriteAlign == 0))
919     return false;
920 
921   int64_t NewLength = IsOverwriteEnd
922                           ? LaterOffset - EarlierOffset
923                           : EarlierSize - (LaterOffset - EarlierOffset);
924 
925   if (auto *AMI = dyn_cast<AtomicMemIntrinsic>(EarlierWrite)) {
926     // When shortening an atomic memory intrinsic, the newly shortened
927     // length must remain an integer multiple of the element size.
928     const uint32_t ElementSize = AMI->getElementSizeInBytes();
929     if (0 != NewLength % ElementSize)
930       return false;
931   }
932 
933   LLVM_DEBUG(dbgs() << "DSE: Remove Dead Store:\n  OW "
934                     << (IsOverwriteEnd ? "END" : "BEGIN") << ": "
935                     << *EarlierWrite << "\n  KILLER (offset " << LaterOffset
936                     << ", " << EarlierSize << ")\n");
937 
938   Value *EarlierWriteLength = EarlierIntrinsic->getLength();
939   Value *TrimmedLength =
940       ConstantInt::get(EarlierWriteLength->getType(), NewLength);
941   EarlierIntrinsic->setLength(TrimmedLength);
942 
943   EarlierSize = NewLength;
944   if (!IsOverwriteEnd) {
945     int64_t OffsetMoved = (LaterOffset - EarlierOffset);
946     Value *Indices[1] = {
947         ConstantInt::get(EarlierWriteLength->getType(), OffsetMoved)};
948     GetElementPtrInst *NewDestGEP = GetElementPtrInst::CreateInBounds(
949         EarlierIntrinsic->getRawDest(), Indices, "", EarlierWrite);
950     EarlierIntrinsic->setDest(NewDestGEP);
951     EarlierOffset = EarlierOffset + OffsetMoved;
952   }
953   return true;
954 }
955 
tryToShortenEnd(Instruction * EarlierWrite,OverlapIntervalsTy & IntervalMap,int64_t & EarlierStart,int64_t & EarlierSize)956 static bool tryToShortenEnd(Instruction *EarlierWrite,
957                             OverlapIntervalsTy &IntervalMap,
958                             int64_t &EarlierStart, int64_t &EarlierSize) {
959   if (IntervalMap.empty() || !isShortenableAtTheEnd(EarlierWrite))
960     return false;
961 
962   OverlapIntervalsTy::iterator OII = --IntervalMap.end();
963   int64_t LaterStart = OII->second;
964   int64_t LaterSize = OII->first - LaterStart;
965 
966   if (LaterStart > EarlierStart && LaterStart < EarlierStart + EarlierSize &&
967       LaterStart + LaterSize >= EarlierStart + EarlierSize) {
968     if (tryToShorten(EarlierWrite, EarlierStart, EarlierSize, LaterStart,
969                      LaterSize, true)) {
970       IntervalMap.erase(OII);
971       return true;
972     }
973   }
974   return false;
975 }
976 
tryToShortenBegin(Instruction * EarlierWrite,OverlapIntervalsTy & IntervalMap,int64_t & EarlierStart,int64_t & EarlierSize)977 static bool tryToShortenBegin(Instruction *EarlierWrite,
978                               OverlapIntervalsTy &IntervalMap,
979                               int64_t &EarlierStart, int64_t &EarlierSize) {
980   if (IntervalMap.empty() || !isShortenableAtTheBeginning(EarlierWrite))
981     return false;
982 
983   OverlapIntervalsTy::iterator OII = IntervalMap.begin();
984   int64_t LaterStart = OII->second;
985   int64_t LaterSize = OII->first - LaterStart;
986 
987   if (LaterStart <= EarlierStart && LaterStart + LaterSize > EarlierStart) {
988     assert(LaterStart + LaterSize < EarlierStart + EarlierSize &&
989            "Should have been handled as OW_Complete");
990     if (tryToShorten(EarlierWrite, EarlierStart, EarlierSize, LaterStart,
991                      LaterSize, false)) {
992       IntervalMap.erase(OII);
993       return true;
994     }
995   }
996   return false;
997 }
998 
removePartiallyOverlappedStores(AliasAnalysis * AA,const DataLayout & DL,InstOverlapIntervalsTy & IOL)999 static bool removePartiallyOverlappedStores(AliasAnalysis *AA,
1000                                             const DataLayout &DL,
1001                                             InstOverlapIntervalsTy &IOL) {
1002   bool Changed = false;
1003   for (auto OI : IOL) {
1004     Instruction *EarlierWrite = OI.first;
1005     MemoryLocation Loc = getLocForWrite(EarlierWrite);
1006     assert(isRemovable(EarlierWrite) && "Expect only removable instruction");
1007 
1008     const Value *Ptr = Loc.Ptr->stripPointerCasts();
1009     int64_t EarlierStart = 0;
1010     int64_t EarlierSize = int64_t(Loc.Size.getValue());
1011     GetPointerBaseWithConstantOffset(Ptr, EarlierStart, DL);
1012     OverlapIntervalsTy &IntervalMap = OI.second;
1013     Changed |=
1014         tryToShortenEnd(EarlierWrite, IntervalMap, EarlierStart, EarlierSize);
1015     if (IntervalMap.empty())
1016       continue;
1017     Changed |=
1018         tryToShortenBegin(EarlierWrite, IntervalMap, EarlierStart, EarlierSize);
1019   }
1020   return Changed;
1021 }
1022 
eliminateNoopStore(Instruction * Inst,BasicBlock::iterator & BBI,AliasAnalysis * AA,MemoryDependenceResults * MD,const DataLayout & DL,const TargetLibraryInfo * TLI,InstOverlapIntervalsTy & IOL,DenseMap<Instruction *,size_t> * InstrOrdering)1023 static bool eliminateNoopStore(Instruction *Inst, BasicBlock::iterator &BBI,
1024                                AliasAnalysis *AA, MemoryDependenceResults *MD,
1025                                const DataLayout &DL,
1026                                const TargetLibraryInfo *TLI,
1027                                InstOverlapIntervalsTy &IOL,
1028                                DenseMap<Instruction*, size_t> *InstrOrdering) {
1029   // Must be a store instruction.
1030   StoreInst *SI = dyn_cast<StoreInst>(Inst);
1031   if (!SI)
1032     return false;
1033 
1034   // If we're storing the same value back to a pointer that we just loaded from,
1035   // then the store can be removed.
1036   if (LoadInst *DepLoad = dyn_cast<LoadInst>(SI->getValueOperand())) {
1037     if (SI->getPointerOperand() == DepLoad->getPointerOperand() &&
1038         isRemovable(SI) && memoryIsNotModifiedBetween(DepLoad, SI, AA)) {
1039 
1040       LLVM_DEBUG(
1041           dbgs() << "DSE: Remove Store Of Load from same pointer:\n  LOAD: "
1042                  << *DepLoad << "\n  STORE: " << *SI << '\n');
1043 
1044       deleteDeadInstruction(SI, &BBI, *MD, *TLI, IOL, InstrOrdering);
1045       ++NumRedundantStores;
1046       return true;
1047     }
1048   }
1049 
1050   // Remove null stores into the calloc'ed objects
1051   Constant *StoredConstant = dyn_cast<Constant>(SI->getValueOperand());
1052   if (StoredConstant && StoredConstant->isNullValue() && isRemovable(SI)) {
1053     Instruction *UnderlyingPointer =
1054         dyn_cast<Instruction>(GetUnderlyingObject(SI->getPointerOperand(), DL));
1055 
1056     if (UnderlyingPointer && isCallocLikeFn(UnderlyingPointer, TLI) &&
1057         memoryIsNotModifiedBetween(UnderlyingPointer, SI, AA)) {
1058       LLVM_DEBUG(
1059           dbgs() << "DSE: Remove null store to the calloc'ed object:\n  DEAD: "
1060                  << *Inst << "\n  OBJECT: " << *UnderlyingPointer << '\n');
1061 
1062       deleteDeadInstruction(SI, &BBI, *MD, *TLI, IOL, InstrOrdering);
1063       ++NumRedundantStores;
1064       return true;
1065     }
1066   }
1067   return false;
1068 }
1069 
eliminateDeadStores(BasicBlock & BB,AliasAnalysis * AA,MemoryDependenceResults * MD,DominatorTree * DT,const TargetLibraryInfo * TLI)1070 static bool eliminateDeadStores(BasicBlock &BB, AliasAnalysis *AA,
1071                                 MemoryDependenceResults *MD, DominatorTree *DT,
1072                                 const TargetLibraryInfo *TLI) {
1073   const DataLayout &DL = BB.getModule()->getDataLayout();
1074   bool MadeChange = false;
1075 
1076   // FIXME: Maybe change this to use some abstraction like OrderedBasicBlock?
1077   // The current OrderedBasicBlock can't deal with mutation at the moment.
1078   size_t LastThrowingInstIndex = 0;
1079   DenseMap<Instruction*, size_t> InstrOrdering;
1080   size_t InstrIndex = 1;
1081 
1082   // A map of interval maps representing partially-overwritten value parts.
1083   InstOverlapIntervalsTy IOL;
1084 
1085   // Do a top-down walk on the BB.
1086   for (BasicBlock::iterator BBI = BB.begin(), BBE = BB.end(); BBI != BBE; ) {
1087     // Handle 'free' calls specially.
1088     if (CallInst *F = isFreeCall(&*BBI, TLI)) {
1089       MadeChange |= handleFree(F, AA, MD, DT, TLI, IOL, &InstrOrdering);
1090       // Increment BBI after handleFree has potentially deleted instructions.
1091       // This ensures we maintain a valid iterator.
1092       ++BBI;
1093       continue;
1094     }
1095 
1096     Instruction *Inst = &*BBI++;
1097 
1098     size_t CurInstNumber = InstrIndex++;
1099     InstrOrdering.insert(std::make_pair(Inst, CurInstNumber));
1100     if (Inst->mayThrow()) {
1101       LastThrowingInstIndex = CurInstNumber;
1102       continue;
1103     }
1104 
1105     // Check to see if Inst writes to memory.  If not, continue.
1106     if (!hasAnalyzableMemoryWrite(Inst, *TLI))
1107       continue;
1108 
1109     // eliminateNoopStore will update in iterator, if necessary.
1110     if (eliminateNoopStore(Inst, BBI, AA, MD, DL, TLI, IOL, &InstrOrdering)) {
1111       MadeChange = true;
1112       continue;
1113     }
1114 
1115     // If we find something that writes memory, get its memory dependence.
1116     MemDepResult InstDep = MD->getDependency(Inst);
1117 
1118     // Ignore any store where we can't find a local dependence.
1119     // FIXME: cross-block DSE would be fun. :)
1120     if (!InstDep.isDef() && !InstDep.isClobber())
1121       continue;
1122 
1123     // Figure out what location is being stored to.
1124     MemoryLocation Loc = getLocForWrite(Inst);
1125 
1126     // If we didn't get a useful location, fail.
1127     if (!Loc.Ptr)
1128       continue;
1129 
1130     // Loop until we find a store we can eliminate or a load that
1131     // invalidates the analysis. Without an upper bound on the number of
1132     // instructions examined, this analysis can become very time-consuming.
1133     // However, the potential gain diminishes as we process more instructions
1134     // without eliminating any of them. Therefore, we limit the number of
1135     // instructions we look at.
1136     auto Limit = MD->getDefaultBlockScanLimit();
1137     while (InstDep.isDef() || InstDep.isClobber()) {
1138       // Get the memory clobbered by the instruction we depend on.  MemDep will
1139       // skip any instructions that 'Loc' clearly doesn't interact with.  If we
1140       // end up depending on a may- or must-aliased load, then we can't optimize
1141       // away the store and we bail out.  However, if we depend on something
1142       // that overwrites the memory location we *can* potentially optimize it.
1143       //
1144       // Find out what memory location the dependent instruction stores.
1145       Instruction *DepWrite = InstDep.getInst();
1146       if (!hasAnalyzableMemoryWrite(DepWrite, *TLI))
1147         break;
1148       MemoryLocation DepLoc = getLocForWrite(DepWrite);
1149       // If we didn't get a useful location, or if it isn't a size, bail out.
1150       if (!DepLoc.Ptr)
1151         break;
1152 
1153       // Make sure we don't look past a call which might throw. This is an
1154       // issue because MemoryDependenceAnalysis works in the wrong direction:
1155       // it finds instructions which dominate the current instruction, rather than
1156       // instructions which are post-dominated by the current instruction.
1157       //
1158       // If the underlying object is a non-escaping memory allocation, any store
1159       // to it is dead along the unwind edge. Otherwise, we need to preserve
1160       // the store.
1161       size_t DepIndex = InstrOrdering.lookup(DepWrite);
1162       assert(DepIndex && "Unexpected instruction");
1163       if (DepIndex <= LastThrowingInstIndex) {
1164         const Value* Underlying = GetUnderlyingObject(DepLoc.Ptr, DL);
1165         bool IsStoreDeadOnUnwind = isa<AllocaInst>(Underlying);
1166         if (!IsStoreDeadOnUnwind) {
1167             // We're looking for a call to an allocation function
1168             // where the allocation doesn't escape before the last
1169             // throwing instruction; PointerMayBeCaptured
1170             // reasonably fast approximation.
1171             IsStoreDeadOnUnwind = isAllocLikeFn(Underlying, TLI) &&
1172                 !PointerMayBeCaptured(Underlying, false, true);
1173         }
1174         if (!IsStoreDeadOnUnwind)
1175           break;
1176       }
1177 
1178       // If we find a write that is a) removable (i.e., non-volatile), b) is
1179       // completely obliterated by the store to 'Loc', and c) which we know that
1180       // 'Inst' doesn't load from, then we can remove it.
1181       // Also try to merge two stores if a later one only touches memory written
1182       // to by the earlier one.
1183       if (isRemovable(DepWrite) &&
1184           !isPossibleSelfRead(Inst, Loc, DepWrite, *TLI, *AA)) {
1185         int64_t InstWriteOffset, DepWriteOffset;
1186         OverwriteResult OR = isOverwrite(Loc, DepLoc, DL, *TLI, DepWriteOffset,
1187                                          InstWriteOffset, DepWrite, IOL, *AA,
1188                                          BB.getParent());
1189         if (OR == OW_Complete) {
1190           LLVM_DEBUG(dbgs() << "DSE: Remove Dead Store:\n  DEAD: " << *DepWrite
1191                             << "\n  KILLER: " << *Inst << '\n');
1192 
1193           // Delete the store and now-dead instructions that feed it.
1194           deleteDeadInstruction(DepWrite, &BBI, *MD, *TLI, IOL, &InstrOrdering);
1195           ++NumFastStores;
1196           MadeChange = true;
1197 
1198           // We erased DepWrite; start over.
1199           InstDep = MD->getDependency(Inst);
1200           continue;
1201         } else if ((OR == OW_End && isShortenableAtTheEnd(DepWrite)) ||
1202                    ((OR == OW_Begin &&
1203                      isShortenableAtTheBeginning(DepWrite)))) {
1204           assert(!EnablePartialOverwriteTracking && "Do not expect to perform "
1205                                                     "when partial-overwrite "
1206                                                     "tracking is enabled");
1207           // The overwrite result is known, so these must be known, too.
1208           int64_t EarlierSize = DepLoc.Size.getValue();
1209           int64_t LaterSize = Loc.Size.getValue();
1210           bool IsOverwriteEnd = (OR == OW_End);
1211           MadeChange |= tryToShorten(DepWrite, DepWriteOffset, EarlierSize,
1212                                     InstWriteOffset, LaterSize, IsOverwriteEnd);
1213         } else if (EnablePartialStoreMerging &&
1214                    OR == OW_PartialEarlierWithFullLater) {
1215           auto *Earlier = dyn_cast<StoreInst>(DepWrite);
1216           auto *Later = dyn_cast<StoreInst>(Inst);
1217           if (Earlier && isa<ConstantInt>(Earlier->getValueOperand()) &&
1218               Later && isa<ConstantInt>(Later->getValueOperand()) &&
1219               memoryIsNotModifiedBetween(Earlier, Later, AA)) {
1220             // If the store we find is:
1221             //   a) partially overwritten by the store to 'Loc'
1222             //   b) the later store is fully contained in the earlier one and
1223             //   c) they both have a constant value
1224             // Merge the two stores, replacing the earlier store's value with a
1225             // merge of both values.
1226             // TODO: Deal with other constant types (vectors, etc), and probably
1227             // some mem intrinsics (if needed)
1228 
1229             APInt EarlierValue =
1230                 cast<ConstantInt>(Earlier->getValueOperand())->getValue();
1231             APInt LaterValue =
1232                 cast<ConstantInt>(Later->getValueOperand())->getValue();
1233             unsigned LaterBits = LaterValue.getBitWidth();
1234             assert(EarlierValue.getBitWidth() > LaterValue.getBitWidth());
1235             LaterValue = LaterValue.zext(EarlierValue.getBitWidth());
1236 
1237             // Offset of the smaller store inside the larger store
1238             unsigned BitOffsetDiff = (InstWriteOffset - DepWriteOffset) * 8;
1239             unsigned LShiftAmount =
1240                 DL.isBigEndian()
1241                     ? EarlierValue.getBitWidth() - BitOffsetDiff - LaterBits
1242                     : BitOffsetDiff;
1243             APInt Mask =
1244                 APInt::getBitsSet(EarlierValue.getBitWidth(), LShiftAmount,
1245                                   LShiftAmount + LaterBits);
1246             // Clear the bits we'll be replacing, then OR with the smaller
1247             // store, shifted appropriately.
1248             APInt Merged =
1249                 (EarlierValue & ~Mask) | (LaterValue << LShiftAmount);
1250             LLVM_DEBUG(dbgs() << "DSE: Merge Stores:\n  Earlier: " << *DepWrite
1251                               << "\n  Later: " << *Inst
1252                               << "\n  Merged Value: " << Merged << '\n');
1253 
1254             auto *SI = new StoreInst(
1255                 ConstantInt::get(Earlier->getValueOperand()->getType(), Merged),
1256                 Earlier->getPointerOperand(), false, Earlier->getAlignment(),
1257                 Earlier->getOrdering(), Earlier->getSyncScopeID(), DepWrite);
1258 
1259             unsigned MDToKeep[] = {LLVMContext::MD_dbg, LLVMContext::MD_tbaa,
1260                                    LLVMContext::MD_alias_scope,
1261                                    LLVMContext::MD_noalias,
1262                                    LLVMContext::MD_nontemporal};
1263             SI->copyMetadata(*DepWrite, MDToKeep);
1264             ++NumModifiedStores;
1265 
1266             // Remove earlier, wider, store
1267             size_t Idx = InstrOrdering.lookup(DepWrite);
1268             InstrOrdering.erase(DepWrite);
1269             InstrOrdering.insert(std::make_pair(SI, Idx));
1270 
1271             // Delete the old stores and now-dead instructions that feed them.
1272             deleteDeadInstruction(Inst, &BBI, *MD, *TLI, IOL, &InstrOrdering);
1273             deleteDeadInstruction(DepWrite, &BBI, *MD, *TLI, IOL,
1274                                   &InstrOrdering);
1275             MadeChange = true;
1276 
1277             // We erased DepWrite and Inst (Loc); start over.
1278             break;
1279           }
1280         }
1281       }
1282 
1283       // If this is a may-aliased store that is clobbering the store value, we
1284       // can keep searching past it for another must-aliased pointer that stores
1285       // to the same location.  For example, in:
1286       //   store -> P
1287       //   store -> Q
1288       //   store -> P
1289       // we can remove the first store to P even though we don't know if P and Q
1290       // alias.
1291       if (DepWrite == &BB.front()) break;
1292 
1293       // Can't look past this instruction if it might read 'Loc'.
1294       if (isRefSet(AA->getModRefInfo(DepWrite, Loc)))
1295         break;
1296 
1297       InstDep = MD->getPointerDependencyFrom(Loc, /*isLoad=*/ false,
1298                                              DepWrite->getIterator(), &BB,
1299                                              /*QueryInst=*/ nullptr, &Limit);
1300     }
1301   }
1302 
1303   if (EnablePartialOverwriteTracking)
1304     MadeChange |= removePartiallyOverlappedStores(AA, DL, IOL);
1305 
1306   // If this block ends in a return, unwind, or unreachable, all allocas are
1307   // dead at its end, which means stores to them are also dead.
1308   if (BB.getTerminator()->getNumSuccessors() == 0)
1309     MadeChange |= handleEndBlock(BB, AA, MD, TLI, IOL, &InstrOrdering);
1310 
1311   return MadeChange;
1312 }
1313 
eliminateDeadStores(Function & F,AliasAnalysis * AA,MemoryDependenceResults * MD,DominatorTree * DT,const TargetLibraryInfo * TLI)1314 static bool eliminateDeadStores(Function &F, AliasAnalysis *AA,
1315                                 MemoryDependenceResults *MD, DominatorTree *DT,
1316                                 const TargetLibraryInfo *TLI) {
1317   bool MadeChange = false;
1318   for (BasicBlock &BB : F)
1319     // Only check non-dead blocks.  Dead blocks may have strange pointer
1320     // cycles that will confuse alias analysis.
1321     if (DT->isReachableFromEntry(&BB))
1322       MadeChange |= eliminateDeadStores(BB, AA, MD, DT, TLI);
1323 
1324   return MadeChange;
1325 }
1326 
1327 //===----------------------------------------------------------------------===//
1328 // DSE Pass
1329 //===----------------------------------------------------------------------===//
run(Function & F,FunctionAnalysisManager & AM)1330 PreservedAnalyses DSEPass::run(Function &F, FunctionAnalysisManager &AM) {
1331   AliasAnalysis *AA = &AM.getResult<AAManager>(F);
1332   DominatorTree *DT = &AM.getResult<DominatorTreeAnalysis>(F);
1333   MemoryDependenceResults *MD = &AM.getResult<MemoryDependenceAnalysis>(F);
1334   const TargetLibraryInfo *TLI = &AM.getResult<TargetLibraryAnalysis>(F);
1335 
1336   if (!eliminateDeadStores(F, AA, MD, DT, TLI))
1337     return PreservedAnalyses::all();
1338 
1339   PreservedAnalyses PA;
1340   PA.preserveSet<CFGAnalyses>();
1341   PA.preserve<GlobalsAA>();
1342   PA.preserve<MemoryDependenceAnalysis>();
1343   return PA;
1344 }
1345 
1346 namespace {
1347 
1348 /// A legacy pass for the legacy pass manager that wraps \c DSEPass.
1349 class DSELegacyPass : public FunctionPass {
1350 public:
1351   static char ID; // Pass identification, replacement for typeid
1352 
DSELegacyPass()1353   DSELegacyPass() : FunctionPass(ID) {
1354     initializeDSELegacyPassPass(*PassRegistry::getPassRegistry());
1355   }
1356 
runOnFunction(Function & F)1357   bool runOnFunction(Function &F) override {
1358     if (skipFunction(F))
1359       return false;
1360 
1361     DominatorTree *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
1362     AliasAnalysis *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
1363     MemoryDependenceResults *MD =
1364         &getAnalysis<MemoryDependenceWrapperPass>().getMemDep();
1365     const TargetLibraryInfo *TLI =
1366         &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
1367 
1368     return eliminateDeadStores(F, AA, MD, DT, TLI);
1369   }
1370 
getAnalysisUsage(AnalysisUsage & AU) const1371   void getAnalysisUsage(AnalysisUsage &AU) const override {
1372     AU.setPreservesCFG();
1373     AU.addRequired<DominatorTreeWrapperPass>();
1374     AU.addRequired<AAResultsWrapperPass>();
1375     AU.addRequired<MemoryDependenceWrapperPass>();
1376     AU.addRequired<TargetLibraryInfoWrapperPass>();
1377     AU.addPreserved<DominatorTreeWrapperPass>();
1378     AU.addPreserved<GlobalsAAWrapperPass>();
1379     AU.addPreserved<MemoryDependenceWrapperPass>();
1380   }
1381 };
1382 
1383 } // end anonymous namespace
1384 
1385 char DSELegacyPass::ID = 0;
1386 
1387 INITIALIZE_PASS_BEGIN(DSELegacyPass, "dse", "Dead Store Elimination", false,
1388                       false)
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)1389 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
1390 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
1391 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
1392 INITIALIZE_PASS_DEPENDENCY(MemoryDependenceWrapperPass)
1393 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
1394 INITIALIZE_PASS_END(DSELegacyPass, "dse", "Dead Store Elimination", false,
1395                     false)
1396 
1397 FunctionPass *llvm::createDeadStoreEliminationPass() {
1398   return new DSELegacyPass();
1399 }
1400