1 //===- InstCombineMulDivRem.cpp -------------------------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the visit functions for mul, fmul, sdiv, udiv, fdiv,
11 // srem, urem, frem.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "InstCombineInternal.h"
16 #include "llvm/ADT/APFloat.h"
17 #include "llvm/ADT/APInt.h"
18 #include "llvm/ADT/SmallVector.h"
19 #include "llvm/Analysis/InstructionSimplify.h"
20 #include "llvm/IR/BasicBlock.h"
21 #include "llvm/IR/Constant.h"
22 #include "llvm/IR/Constants.h"
23 #include "llvm/IR/InstrTypes.h"
24 #include "llvm/IR/Instruction.h"
25 #include "llvm/IR/Instructions.h"
26 #include "llvm/IR/IntrinsicInst.h"
27 #include "llvm/IR/Intrinsics.h"
28 #include "llvm/IR/Operator.h"
29 #include "llvm/IR/PatternMatch.h"
30 #include "llvm/IR/Type.h"
31 #include "llvm/IR/Value.h"
32 #include "llvm/Support/Casting.h"
33 #include "llvm/Support/ErrorHandling.h"
34 #include "llvm/Support/KnownBits.h"
35 #include "llvm/Transforms/InstCombine/InstCombineWorklist.h"
36 #include "llvm/Transforms/Utils/BuildLibCalls.h"
37 #include <cassert>
38 #include <cstddef>
39 #include <cstdint>
40 #include <utility>
41 
42 using namespace llvm;
43 using namespace PatternMatch;
44 
45 #define DEBUG_TYPE "instcombine"
46 
47 /// The specific integer value is used in a context where it is known to be
48 /// non-zero.  If this allows us to simplify the computation, do so and return
49 /// the new operand, otherwise return null.
simplifyValueKnownNonZero(Value * V,InstCombiner & IC,Instruction & CxtI)50 static Value *simplifyValueKnownNonZero(Value *V, InstCombiner &IC,
51                                         Instruction &CxtI) {
52   // If V has multiple uses, then we would have to do more analysis to determine
53   // if this is safe.  For example, the use could be in dynamically unreached
54   // code.
55   if (!V->hasOneUse()) return nullptr;
56 
57   bool MadeChange = false;
58 
59   // ((1 << A) >>u B) --> (1 << (A-B))
60   // Because V cannot be zero, we know that B is less than A.
61   Value *A = nullptr, *B = nullptr, *One = nullptr;
62   if (match(V, m_LShr(m_OneUse(m_Shl(m_Value(One), m_Value(A))), m_Value(B))) &&
63       match(One, m_One())) {
64     A = IC.Builder.CreateSub(A, B);
65     return IC.Builder.CreateShl(One, A);
66   }
67 
68   // (PowerOfTwo >>u B) --> isExact since shifting out the result would make it
69   // inexact.  Similarly for <<.
70   BinaryOperator *I = dyn_cast<BinaryOperator>(V);
71   if (I && I->isLogicalShift() &&
72       IC.isKnownToBeAPowerOfTwo(I->getOperand(0), false, 0, &CxtI)) {
73     // We know that this is an exact/nuw shift and that the input is a
74     // non-zero context as well.
75     if (Value *V2 = simplifyValueKnownNonZero(I->getOperand(0), IC, CxtI)) {
76       I->setOperand(0, V2);
77       MadeChange = true;
78     }
79 
80     if (I->getOpcode() == Instruction::LShr && !I->isExact()) {
81       I->setIsExact();
82       MadeChange = true;
83     }
84 
85     if (I->getOpcode() == Instruction::Shl && !I->hasNoUnsignedWrap()) {
86       I->setHasNoUnsignedWrap();
87       MadeChange = true;
88     }
89   }
90 
91   // TODO: Lots more we could do here:
92   //    If V is a phi node, we can call this on each of its operands.
93   //    "select cond, X, 0" can simplify to "X".
94 
95   return MadeChange ? V : nullptr;
96 }
97 
98 /// A helper routine of InstCombiner::visitMul().
99 ///
100 /// If C is a scalar/vector of known powers of 2, then this function returns
101 /// a new scalar/vector obtained from logBase2 of C.
102 /// Return a null pointer otherwise.
getLogBase2(Type * Ty,Constant * C)103 static Constant *getLogBase2(Type *Ty, Constant *C) {
104   const APInt *IVal;
105   if (match(C, m_APInt(IVal)) && IVal->isPowerOf2())
106     return ConstantInt::get(Ty, IVal->logBase2());
107 
108   if (!Ty->isVectorTy())
109     return nullptr;
110 
111   SmallVector<Constant *, 4> Elts;
112   for (unsigned I = 0, E = Ty->getVectorNumElements(); I != E; ++I) {
113     Constant *Elt = C->getAggregateElement(I);
114     if (!Elt)
115       return nullptr;
116     if (isa<UndefValue>(Elt)) {
117       Elts.push_back(UndefValue::get(Ty->getScalarType()));
118       continue;
119     }
120     if (!match(Elt, m_APInt(IVal)) || !IVal->isPowerOf2())
121       return nullptr;
122     Elts.push_back(ConstantInt::get(Ty->getScalarType(), IVal->logBase2()));
123   }
124 
125   return ConstantVector::get(Elts);
126 }
127 
visitMul(BinaryOperator & I)128 Instruction *InstCombiner::visitMul(BinaryOperator &I) {
129   if (Value *V = SimplifyMulInst(I.getOperand(0), I.getOperand(1),
130                                  SQ.getWithInstruction(&I)))
131     return replaceInstUsesWith(I, V);
132 
133   if (SimplifyAssociativeOrCommutative(I))
134     return &I;
135 
136   if (Instruction *X = foldVectorBinop(I))
137     return X;
138 
139   if (Value *V = SimplifyUsingDistributiveLaws(I))
140     return replaceInstUsesWith(I, V);
141 
142   // X * -1 == 0 - X
143   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
144   if (match(Op1, m_AllOnes())) {
145     BinaryOperator *BO = BinaryOperator::CreateNeg(Op0, I.getName());
146     if (I.hasNoSignedWrap())
147       BO->setHasNoSignedWrap();
148     return BO;
149   }
150 
151   // Also allow combining multiply instructions on vectors.
152   {
153     Value *NewOp;
154     Constant *C1, *C2;
155     const APInt *IVal;
156     if (match(&I, m_Mul(m_Shl(m_Value(NewOp), m_Constant(C2)),
157                         m_Constant(C1))) &&
158         match(C1, m_APInt(IVal))) {
159       // ((X << C2)*C1) == (X * (C1 << C2))
160       Constant *Shl = ConstantExpr::getShl(C1, C2);
161       BinaryOperator *Mul = cast<BinaryOperator>(I.getOperand(0));
162       BinaryOperator *BO = BinaryOperator::CreateMul(NewOp, Shl);
163       if (I.hasNoUnsignedWrap() && Mul->hasNoUnsignedWrap())
164         BO->setHasNoUnsignedWrap();
165       if (I.hasNoSignedWrap() && Mul->hasNoSignedWrap() &&
166           Shl->isNotMinSignedValue())
167         BO->setHasNoSignedWrap();
168       return BO;
169     }
170 
171     if (match(&I, m_Mul(m_Value(NewOp), m_Constant(C1)))) {
172       // Replace X*(2^C) with X << C, where C is either a scalar or a vector.
173       if (Constant *NewCst = getLogBase2(NewOp->getType(), C1)) {
174         BinaryOperator *Shl = BinaryOperator::CreateShl(NewOp, NewCst);
175 
176         if (I.hasNoUnsignedWrap())
177           Shl->setHasNoUnsignedWrap();
178         if (I.hasNoSignedWrap()) {
179           const APInt *V;
180           if (match(NewCst, m_APInt(V)) && *V != V->getBitWidth() - 1)
181             Shl->setHasNoSignedWrap();
182         }
183 
184         return Shl;
185       }
186     }
187   }
188 
189   if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
190     // (Y - X) * (-(2**n)) -> (X - Y) * (2**n), for positive nonzero n
191     // (Y + const) * (-(2**n)) -> (-constY) * (2**n), for positive nonzero n
192     // The "* (2**n)" thus becomes a potential shifting opportunity.
193     {
194       const APInt &   Val = CI->getValue();
195       const APInt &PosVal = Val.abs();
196       if (Val.isNegative() && PosVal.isPowerOf2()) {
197         Value *X = nullptr, *Y = nullptr;
198         if (Op0->hasOneUse()) {
199           ConstantInt *C1;
200           Value *Sub = nullptr;
201           if (match(Op0, m_Sub(m_Value(Y), m_Value(X))))
202             Sub = Builder.CreateSub(X, Y, "suba");
203           else if (match(Op0, m_Add(m_Value(Y), m_ConstantInt(C1))))
204             Sub = Builder.CreateSub(Builder.CreateNeg(C1), Y, "subc");
205           if (Sub)
206             return
207               BinaryOperator::CreateMul(Sub,
208                                         ConstantInt::get(Y->getType(), PosVal));
209         }
210       }
211     }
212   }
213 
214   if (Instruction *FoldedMul = foldBinOpIntoSelectOrPhi(I))
215     return FoldedMul;
216 
217   // Simplify mul instructions with a constant RHS.
218   if (isa<Constant>(Op1)) {
219     // Canonicalize (X+C1)*CI -> X*CI+C1*CI.
220     Value *X;
221     Constant *C1;
222     if (match(Op0, m_OneUse(m_Add(m_Value(X), m_Constant(C1))))) {
223       Value *Mul = Builder.CreateMul(C1, Op1);
224       // Only go forward with the transform if C1*CI simplifies to a tidier
225       // constant.
226       if (!match(Mul, m_Mul(m_Value(), m_Value())))
227         return BinaryOperator::CreateAdd(Builder.CreateMul(X, Op1), Mul);
228     }
229   }
230 
231   // -X * C --> X * -C
232   Value *X, *Y;
233   Constant *Op1C;
234   if (match(Op0, m_Neg(m_Value(X))) && match(Op1, m_Constant(Op1C)))
235     return BinaryOperator::CreateMul(X, ConstantExpr::getNeg(Op1C));
236 
237   // -X * -Y --> X * Y
238   if (match(Op0, m_Neg(m_Value(X))) && match(Op1, m_Neg(m_Value(Y)))) {
239     auto *NewMul = BinaryOperator::CreateMul(X, Y);
240     if (I.hasNoSignedWrap() &&
241         cast<OverflowingBinaryOperator>(Op0)->hasNoSignedWrap() &&
242         cast<OverflowingBinaryOperator>(Op1)->hasNoSignedWrap())
243       NewMul->setHasNoSignedWrap();
244     return NewMul;
245   }
246 
247   // -X * Y --> -(X * Y)
248   // X * -Y --> -(X * Y)
249   if (match(&I, m_c_Mul(m_OneUse(m_Neg(m_Value(X))), m_Value(Y))))
250     return BinaryOperator::CreateNeg(Builder.CreateMul(X, Y));
251 
252   // (X / Y) *  Y = X - (X % Y)
253   // (X / Y) * -Y = (X % Y) - X
254   {
255     Value *Y = Op1;
256     BinaryOperator *Div = dyn_cast<BinaryOperator>(Op0);
257     if (!Div || (Div->getOpcode() != Instruction::UDiv &&
258                  Div->getOpcode() != Instruction::SDiv)) {
259       Y = Op0;
260       Div = dyn_cast<BinaryOperator>(Op1);
261     }
262     Value *Neg = dyn_castNegVal(Y);
263     if (Div && Div->hasOneUse() &&
264         (Div->getOperand(1) == Y || Div->getOperand(1) == Neg) &&
265         (Div->getOpcode() == Instruction::UDiv ||
266          Div->getOpcode() == Instruction::SDiv)) {
267       Value *X = Div->getOperand(0), *DivOp1 = Div->getOperand(1);
268 
269       // If the division is exact, X % Y is zero, so we end up with X or -X.
270       if (Div->isExact()) {
271         if (DivOp1 == Y)
272           return replaceInstUsesWith(I, X);
273         return BinaryOperator::CreateNeg(X);
274       }
275 
276       auto RemOpc = Div->getOpcode() == Instruction::UDiv ? Instruction::URem
277                                                           : Instruction::SRem;
278       Value *Rem = Builder.CreateBinOp(RemOpc, X, DivOp1);
279       if (DivOp1 == Y)
280         return BinaryOperator::CreateSub(X, Rem);
281       return BinaryOperator::CreateSub(Rem, X);
282     }
283   }
284 
285   /// i1 mul -> i1 and.
286   if (I.getType()->isIntOrIntVectorTy(1))
287     return BinaryOperator::CreateAnd(Op0, Op1);
288 
289   // X*(1 << Y) --> X << Y
290   // (1 << Y)*X --> X << Y
291   {
292     Value *Y;
293     BinaryOperator *BO = nullptr;
294     bool ShlNSW = false;
295     if (match(Op0, m_Shl(m_One(), m_Value(Y)))) {
296       BO = BinaryOperator::CreateShl(Op1, Y);
297       ShlNSW = cast<ShlOperator>(Op0)->hasNoSignedWrap();
298     } else if (match(Op1, m_Shl(m_One(), m_Value(Y)))) {
299       BO = BinaryOperator::CreateShl(Op0, Y);
300       ShlNSW = cast<ShlOperator>(Op1)->hasNoSignedWrap();
301     }
302     if (BO) {
303       if (I.hasNoUnsignedWrap())
304         BO->setHasNoUnsignedWrap();
305       if (I.hasNoSignedWrap() && ShlNSW)
306         BO->setHasNoSignedWrap();
307       return BO;
308     }
309   }
310 
311   // (bool X) * Y --> X ? Y : 0
312   // Y * (bool X) --> X ? Y : 0
313   if (match(Op0, m_ZExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1))
314     return SelectInst::Create(X, Op1, ConstantInt::get(I.getType(), 0));
315   if (match(Op1, m_ZExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1))
316     return SelectInst::Create(X, Op0, ConstantInt::get(I.getType(), 0));
317 
318   // (lshr X, 31) * Y --> (ashr X, 31) & Y
319   // Y * (lshr X, 31) --> (ashr X, 31) & Y
320   // TODO: We are not checking one-use because the elimination of the multiply
321   //       is better for analysis?
322   // TODO: Should we canonicalize to '(X < 0) ? Y : 0' instead? That would be
323   //       more similar to what we're doing above.
324   const APInt *C;
325   if (match(Op0, m_LShr(m_Value(X), m_APInt(C))) && *C == C->getBitWidth() - 1)
326     return BinaryOperator::CreateAnd(Builder.CreateAShr(X, *C), Op1);
327   if (match(Op1, m_LShr(m_Value(X), m_APInt(C))) && *C == C->getBitWidth() - 1)
328     return BinaryOperator::CreateAnd(Builder.CreateAShr(X, *C), Op0);
329 
330   if (Instruction *Ext = narrowMathIfNoOverflow(I))
331     return Ext;
332 
333   bool Changed = false;
334   if (!I.hasNoSignedWrap() && willNotOverflowSignedMul(Op0, Op1, I)) {
335     Changed = true;
336     I.setHasNoSignedWrap(true);
337   }
338 
339   if (!I.hasNoUnsignedWrap() && willNotOverflowUnsignedMul(Op0, Op1, I)) {
340     Changed = true;
341     I.setHasNoUnsignedWrap(true);
342   }
343 
344   return Changed ? &I : nullptr;
345 }
346 
visitFMul(BinaryOperator & I)347 Instruction *InstCombiner::visitFMul(BinaryOperator &I) {
348   if (Value *V = SimplifyFMulInst(I.getOperand(0), I.getOperand(1),
349                                   I.getFastMathFlags(),
350                                   SQ.getWithInstruction(&I)))
351     return replaceInstUsesWith(I, V);
352 
353   if (SimplifyAssociativeOrCommutative(I))
354     return &I;
355 
356   if (Instruction *X = foldVectorBinop(I))
357     return X;
358 
359   if (Instruction *FoldedMul = foldBinOpIntoSelectOrPhi(I))
360     return FoldedMul;
361 
362   // X * -1.0 --> -X
363   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
364   if (match(Op1, m_SpecificFP(-1.0)))
365     return BinaryOperator::CreateFNegFMF(Op0, &I);
366 
367   // -X * -Y --> X * Y
368   Value *X, *Y;
369   if (match(Op0, m_FNeg(m_Value(X))) && match(Op1, m_FNeg(m_Value(Y))))
370     return BinaryOperator::CreateFMulFMF(X, Y, &I);
371 
372   // -X * C --> X * -C
373   Constant *C;
374   if (match(Op0, m_FNeg(m_Value(X))) && match(Op1, m_Constant(C)))
375     return BinaryOperator::CreateFMulFMF(X, ConstantExpr::getFNeg(C), &I);
376 
377   // Sink negation: -X * Y --> -(X * Y)
378   if (match(Op0, m_OneUse(m_FNeg(m_Value(X)))))
379     return BinaryOperator::CreateFNegFMF(Builder.CreateFMulFMF(X, Op1, &I), &I);
380 
381   // Sink negation: Y * -X --> -(X * Y)
382   if (match(Op1, m_OneUse(m_FNeg(m_Value(X)))))
383     return BinaryOperator::CreateFNegFMF(Builder.CreateFMulFMF(X, Op0, &I), &I);
384 
385   // fabs(X) * fabs(X) -> X * X
386   if (Op0 == Op1 && match(Op0, m_Intrinsic<Intrinsic::fabs>(m_Value(X))))
387     return BinaryOperator::CreateFMulFMF(X, X, &I);
388 
389   // (select A, B, C) * (select A, D, E) --> select A, (B*D), (C*E)
390   if (Value *V = SimplifySelectsFeedingBinaryOp(I, Op0, Op1))
391     return replaceInstUsesWith(I, V);
392 
393   if (I.hasAllowReassoc()) {
394     // Reassociate constant RHS with another constant to form constant
395     // expression.
396     if (match(Op1, m_Constant(C)) && C->isFiniteNonZeroFP()) {
397       Constant *C1;
398       if (match(Op0, m_OneUse(m_FDiv(m_Constant(C1), m_Value(X))))) {
399         // (C1 / X) * C --> (C * C1) / X
400         Constant *CC1 = ConstantExpr::getFMul(C, C1);
401         if (CC1->isNormalFP())
402           return BinaryOperator::CreateFDivFMF(CC1, X, &I);
403       }
404       if (match(Op0, m_FDiv(m_Value(X), m_Constant(C1)))) {
405         // (X / C1) * C --> X * (C / C1)
406         Constant *CDivC1 = ConstantExpr::getFDiv(C, C1);
407         if (CDivC1->isNormalFP())
408           return BinaryOperator::CreateFMulFMF(X, CDivC1, &I);
409 
410         // If the constant was a denormal, try reassociating differently.
411         // (X / C1) * C --> X / (C1 / C)
412         Constant *C1DivC = ConstantExpr::getFDiv(C1, C);
413         if (Op0->hasOneUse() && C1DivC->isNormalFP())
414           return BinaryOperator::CreateFDivFMF(X, C1DivC, &I);
415       }
416 
417       // We do not need to match 'fadd C, X' and 'fsub X, C' because they are
418       // canonicalized to 'fadd X, C'. Distributing the multiply may allow
419       // further folds and (X * C) + C2 is 'fma'.
420       if (match(Op0, m_OneUse(m_FAdd(m_Value(X), m_Constant(C1))))) {
421         // (X + C1) * C --> (X * C) + (C * C1)
422         Constant *CC1 = ConstantExpr::getFMul(C, C1);
423         Value *XC = Builder.CreateFMulFMF(X, C, &I);
424         return BinaryOperator::CreateFAddFMF(XC, CC1, &I);
425       }
426       if (match(Op0, m_OneUse(m_FSub(m_Constant(C1), m_Value(X))))) {
427         // (C1 - X) * C --> (C * C1) - (X * C)
428         Constant *CC1 = ConstantExpr::getFMul(C, C1);
429         Value *XC = Builder.CreateFMulFMF(X, C, &I);
430         return BinaryOperator::CreateFSubFMF(CC1, XC, &I);
431       }
432     }
433 
434     // sqrt(X) * sqrt(Y) -> sqrt(X * Y)
435     // nnan disallows the possibility of returning a number if both operands are
436     // negative (in that case, we should return NaN).
437     if (I.hasNoNaNs() &&
438         match(Op0, m_OneUse(m_Intrinsic<Intrinsic::sqrt>(m_Value(X)))) &&
439         match(Op1, m_OneUse(m_Intrinsic<Intrinsic::sqrt>(m_Value(Y))))) {
440       Value *XY = Builder.CreateFMulFMF(X, Y, &I);
441       Value *Sqrt = Builder.CreateUnaryIntrinsic(Intrinsic::sqrt, XY, &I);
442       return replaceInstUsesWith(I, Sqrt);
443     }
444 
445     // (X*Y) * X => (X*X) * Y where Y != X
446     //  The purpose is two-fold:
447     //   1) to form a power expression (of X).
448     //   2) potentially shorten the critical path: After transformation, the
449     //  latency of the instruction Y is amortized by the expression of X*X,
450     //  and therefore Y is in a "less critical" position compared to what it
451     //  was before the transformation.
452     if (match(Op0, m_OneUse(m_c_FMul(m_Specific(Op1), m_Value(Y)))) &&
453         Op1 != Y) {
454       Value *XX = Builder.CreateFMulFMF(Op1, Op1, &I);
455       return BinaryOperator::CreateFMulFMF(XX, Y, &I);
456     }
457     if (match(Op1, m_OneUse(m_c_FMul(m_Specific(Op0), m_Value(Y)))) &&
458         Op0 != Y) {
459       Value *XX = Builder.CreateFMulFMF(Op0, Op0, &I);
460       return BinaryOperator::CreateFMulFMF(XX, Y, &I);
461     }
462   }
463 
464   // log2(X * 0.5) * Y = log2(X) * Y - Y
465   if (I.isFast()) {
466     IntrinsicInst *Log2 = nullptr;
467     if (match(Op0, m_OneUse(m_Intrinsic<Intrinsic::log2>(
468             m_OneUse(m_FMul(m_Value(X), m_SpecificFP(0.5))))))) {
469       Log2 = cast<IntrinsicInst>(Op0);
470       Y = Op1;
471     }
472     if (match(Op1, m_OneUse(m_Intrinsic<Intrinsic::log2>(
473             m_OneUse(m_FMul(m_Value(X), m_SpecificFP(0.5))))))) {
474       Log2 = cast<IntrinsicInst>(Op1);
475       Y = Op0;
476     }
477     if (Log2) {
478       Log2->setArgOperand(0, X);
479       Log2->copyFastMathFlags(&I);
480       Value *LogXTimesY = Builder.CreateFMulFMF(Log2, Y, &I);
481       return BinaryOperator::CreateFSubFMF(LogXTimesY, Y, &I);
482     }
483   }
484 
485   return nullptr;
486 }
487 
488 /// Fold a divide or remainder with a select instruction divisor when one of the
489 /// select operands is zero. In that case, we can use the other select operand
490 /// because div/rem by zero is undefined.
simplifyDivRemOfSelectWithZeroOp(BinaryOperator & I)491 bool InstCombiner::simplifyDivRemOfSelectWithZeroOp(BinaryOperator &I) {
492   SelectInst *SI = dyn_cast<SelectInst>(I.getOperand(1));
493   if (!SI)
494     return false;
495 
496   int NonNullOperand;
497   if (match(SI->getTrueValue(), m_Zero()))
498     // div/rem X, (Cond ? 0 : Y) -> div/rem X, Y
499     NonNullOperand = 2;
500   else if (match(SI->getFalseValue(), m_Zero()))
501     // div/rem X, (Cond ? Y : 0) -> div/rem X, Y
502     NonNullOperand = 1;
503   else
504     return false;
505 
506   // Change the div/rem to use 'Y' instead of the select.
507   I.setOperand(1, SI->getOperand(NonNullOperand));
508 
509   // Okay, we know we replace the operand of the div/rem with 'Y' with no
510   // problem.  However, the select, or the condition of the select may have
511   // multiple uses.  Based on our knowledge that the operand must be non-zero,
512   // propagate the known value for the select into other uses of it, and
513   // propagate a known value of the condition into its other users.
514 
515   // If the select and condition only have a single use, don't bother with this,
516   // early exit.
517   Value *SelectCond = SI->getCondition();
518   if (SI->use_empty() && SelectCond->hasOneUse())
519     return true;
520 
521   // Scan the current block backward, looking for other uses of SI.
522   BasicBlock::iterator BBI = I.getIterator(), BBFront = I.getParent()->begin();
523   Type *CondTy = SelectCond->getType();
524   while (BBI != BBFront) {
525     --BBI;
526     // If we found an instruction that we can't assume will return, so
527     // information from below it cannot be propagated above it.
528     if (!isGuaranteedToTransferExecutionToSuccessor(&*BBI))
529       break;
530 
531     // Replace uses of the select or its condition with the known values.
532     for (Instruction::op_iterator I = BBI->op_begin(), E = BBI->op_end();
533          I != E; ++I) {
534       if (*I == SI) {
535         *I = SI->getOperand(NonNullOperand);
536         Worklist.Add(&*BBI);
537       } else if (*I == SelectCond) {
538         *I = NonNullOperand == 1 ? ConstantInt::getTrue(CondTy)
539                                  : ConstantInt::getFalse(CondTy);
540         Worklist.Add(&*BBI);
541       }
542     }
543 
544     // If we past the instruction, quit looking for it.
545     if (&*BBI == SI)
546       SI = nullptr;
547     if (&*BBI == SelectCond)
548       SelectCond = nullptr;
549 
550     // If we ran out of things to eliminate, break out of the loop.
551     if (!SelectCond && !SI)
552       break;
553 
554   }
555   return true;
556 }
557 
558 /// True if the multiply can not be expressed in an int this size.
multiplyOverflows(const APInt & C1,const APInt & C2,APInt & Product,bool IsSigned)559 static bool multiplyOverflows(const APInt &C1, const APInt &C2, APInt &Product,
560                               bool IsSigned) {
561   bool Overflow;
562   Product = IsSigned ? C1.smul_ov(C2, Overflow) : C1.umul_ov(C2, Overflow);
563   return Overflow;
564 }
565 
566 /// True if C1 is a multiple of C2. Quotient contains C1/C2.
isMultiple(const APInt & C1,const APInt & C2,APInt & Quotient,bool IsSigned)567 static bool isMultiple(const APInt &C1, const APInt &C2, APInt &Quotient,
568                        bool IsSigned) {
569   assert(C1.getBitWidth() == C2.getBitWidth() && "Constant widths not equal");
570 
571   // Bail if we will divide by zero.
572   if (C2.isNullValue())
573     return false;
574 
575   // Bail if we would divide INT_MIN by -1.
576   if (IsSigned && C1.isMinSignedValue() && C2.isAllOnesValue())
577     return false;
578 
579   APInt Remainder(C1.getBitWidth(), /*Val=*/0ULL, IsSigned);
580   if (IsSigned)
581     APInt::sdivrem(C1, C2, Quotient, Remainder);
582   else
583     APInt::udivrem(C1, C2, Quotient, Remainder);
584 
585   return Remainder.isMinValue();
586 }
587 
588 /// This function implements the transforms common to both integer division
589 /// instructions (udiv and sdiv). It is called by the visitors to those integer
590 /// division instructions.
591 /// Common integer divide transforms
commonIDivTransforms(BinaryOperator & I)592 Instruction *InstCombiner::commonIDivTransforms(BinaryOperator &I) {
593   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
594   bool IsSigned = I.getOpcode() == Instruction::SDiv;
595   Type *Ty = I.getType();
596 
597   // The RHS is known non-zero.
598   if (Value *V = simplifyValueKnownNonZero(I.getOperand(1), *this, I)) {
599     I.setOperand(1, V);
600     return &I;
601   }
602 
603   // Handle cases involving: [su]div X, (select Cond, Y, Z)
604   // This does not apply for fdiv.
605   if (simplifyDivRemOfSelectWithZeroOp(I))
606     return &I;
607 
608   const APInt *C2;
609   if (match(Op1, m_APInt(C2))) {
610     Value *X;
611     const APInt *C1;
612 
613     // (X / C1) / C2  -> X / (C1*C2)
614     if ((IsSigned && match(Op0, m_SDiv(m_Value(X), m_APInt(C1)))) ||
615         (!IsSigned && match(Op0, m_UDiv(m_Value(X), m_APInt(C1))))) {
616       APInt Product(C1->getBitWidth(), /*Val=*/0ULL, IsSigned);
617       if (!multiplyOverflows(*C1, *C2, Product, IsSigned))
618         return BinaryOperator::Create(I.getOpcode(), X,
619                                       ConstantInt::get(Ty, Product));
620     }
621 
622     if ((IsSigned && match(Op0, m_NSWMul(m_Value(X), m_APInt(C1)))) ||
623         (!IsSigned && match(Op0, m_NUWMul(m_Value(X), m_APInt(C1))))) {
624       APInt Quotient(C1->getBitWidth(), /*Val=*/0ULL, IsSigned);
625 
626       // (X * C1) / C2 -> X / (C2 / C1) if C2 is a multiple of C1.
627       if (isMultiple(*C2, *C1, Quotient, IsSigned)) {
628         auto *NewDiv = BinaryOperator::Create(I.getOpcode(), X,
629                                               ConstantInt::get(Ty, Quotient));
630         NewDiv->setIsExact(I.isExact());
631         return NewDiv;
632       }
633 
634       // (X * C1) / C2 -> X * (C1 / C2) if C1 is a multiple of C2.
635       if (isMultiple(*C1, *C2, Quotient, IsSigned)) {
636         auto *Mul = BinaryOperator::Create(Instruction::Mul, X,
637                                            ConstantInt::get(Ty, Quotient));
638         auto *OBO = cast<OverflowingBinaryOperator>(Op0);
639         Mul->setHasNoUnsignedWrap(!IsSigned && OBO->hasNoUnsignedWrap());
640         Mul->setHasNoSignedWrap(OBO->hasNoSignedWrap());
641         return Mul;
642       }
643     }
644 
645     if ((IsSigned && match(Op0, m_NSWShl(m_Value(X), m_APInt(C1))) &&
646          *C1 != C1->getBitWidth() - 1) ||
647         (!IsSigned && match(Op0, m_NUWShl(m_Value(X), m_APInt(C1))))) {
648       APInt Quotient(C1->getBitWidth(), /*Val=*/0ULL, IsSigned);
649       APInt C1Shifted = APInt::getOneBitSet(
650           C1->getBitWidth(), static_cast<unsigned>(C1->getLimitedValue()));
651 
652       // (X << C1) / C2 -> X / (C2 >> C1) if C2 is a multiple of 1 << C1.
653       if (isMultiple(*C2, C1Shifted, Quotient, IsSigned)) {
654         auto *BO = BinaryOperator::Create(I.getOpcode(), X,
655                                           ConstantInt::get(Ty, Quotient));
656         BO->setIsExact(I.isExact());
657         return BO;
658       }
659 
660       // (X << C1) / C2 -> X * ((1 << C1) / C2) if 1 << C1 is a multiple of C2.
661       if (isMultiple(C1Shifted, *C2, Quotient, IsSigned)) {
662         auto *Mul = BinaryOperator::Create(Instruction::Mul, X,
663                                            ConstantInt::get(Ty, Quotient));
664         auto *OBO = cast<OverflowingBinaryOperator>(Op0);
665         Mul->setHasNoUnsignedWrap(!IsSigned && OBO->hasNoUnsignedWrap());
666         Mul->setHasNoSignedWrap(OBO->hasNoSignedWrap());
667         return Mul;
668       }
669     }
670 
671     if (!C2->isNullValue()) // avoid X udiv 0
672       if (Instruction *FoldedDiv = foldBinOpIntoSelectOrPhi(I))
673         return FoldedDiv;
674   }
675 
676   if (match(Op0, m_One())) {
677     assert(!Ty->isIntOrIntVectorTy(1) && "i1 divide not removed?");
678     if (IsSigned) {
679       // If Op1 is 0 then it's undefined behaviour, if Op1 is 1 then the
680       // result is one, if Op1 is -1 then the result is minus one, otherwise
681       // it's zero.
682       Value *Inc = Builder.CreateAdd(Op1, Op0);
683       Value *Cmp = Builder.CreateICmpULT(Inc, ConstantInt::get(Ty, 3));
684       return SelectInst::Create(Cmp, Op1, ConstantInt::get(Ty, 0));
685     } else {
686       // If Op1 is 0 then it's undefined behaviour. If Op1 is 1 then the
687       // result is one, otherwise it's zero.
688       return new ZExtInst(Builder.CreateICmpEQ(Op1, Op0), Ty);
689     }
690   }
691 
692   // See if we can fold away this div instruction.
693   if (SimplifyDemandedInstructionBits(I))
694     return &I;
695 
696   // (X - (X rem Y)) / Y -> X / Y; usually originates as ((X / Y) * Y) / Y
697   Value *X, *Z;
698   if (match(Op0, m_Sub(m_Value(X), m_Value(Z)))) // (X - Z) / Y; Y = Op1
699     if ((IsSigned && match(Z, m_SRem(m_Specific(X), m_Specific(Op1)))) ||
700         (!IsSigned && match(Z, m_URem(m_Specific(X), m_Specific(Op1)))))
701       return BinaryOperator::Create(I.getOpcode(), X, Op1);
702 
703   // (X << Y) / X -> 1 << Y
704   Value *Y;
705   if (IsSigned && match(Op0, m_NSWShl(m_Specific(Op1), m_Value(Y))))
706     return BinaryOperator::CreateNSWShl(ConstantInt::get(Ty, 1), Y);
707   if (!IsSigned && match(Op0, m_NUWShl(m_Specific(Op1), m_Value(Y))))
708     return BinaryOperator::CreateNUWShl(ConstantInt::get(Ty, 1), Y);
709 
710   // X / (X * Y) -> 1 / Y if the multiplication does not overflow.
711   if (match(Op1, m_c_Mul(m_Specific(Op0), m_Value(Y)))) {
712     bool HasNSW = cast<OverflowingBinaryOperator>(Op1)->hasNoSignedWrap();
713     bool HasNUW = cast<OverflowingBinaryOperator>(Op1)->hasNoUnsignedWrap();
714     if ((IsSigned && HasNSW) || (!IsSigned && HasNUW)) {
715       I.setOperand(0, ConstantInt::get(Ty, 1));
716       I.setOperand(1, Y);
717       return &I;
718     }
719   }
720 
721   return nullptr;
722 }
723 
724 static const unsigned MaxDepth = 6;
725 
726 namespace {
727 
728 using FoldUDivOperandCb = Instruction *(*)(Value *Op0, Value *Op1,
729                                            const BinaryOperator &I,
730                                            InstCombiner &IC);
731 
732 /// Used to maintain state for visitUDivOperand().
733 struct UDivFoldAction {
734   /// Informs visitUDiv() how to fold this operand.  This can be zero if this
735   /// action joins two actions together.
736   FoldUDivOperandCb FoldAction;
737 
738   /// Which operand to fold.
739   Value *OperandToFold;
740 
741   union {
742     /// The instruction returned when FoldAction is invoked.
743     Instruction *FoldResult;
744 
745     /// Stores the LHS action index if this action joins two actions together.
746     size_t SelectLHSIdx;
747   };
748 
UDivFoldAction__anon67de6aed0111::UDivFoldAction749   UDivFoldAction(FoldUDivOperandCb FA, Value *InputOperand)
750       : FoldAction(FA), OperandToFold(InputOperand), FoldResult(nullptr) {}
UDivFoldAction__anon67de6aed0111::UDivFoldAction751   UDivFoldAction(FoldUDivOperandCb FA, Value *InputOperand, size_t SLHS)
752       : FoldAction(FA), OperandToFold(InputOperand), SelectLHSIdx(SLHS) {}
753 };
754 
755 } // end anonymous namespace
756 
757 // X udiv 2^C -> X >> C
foldUDivPow2Cst(Value * Op0,Value * Op1,const BinaryOperator & I,InstCombiner & IC)758 static Instruction *foldUDivPow2Cst(Value *Op0, Value *Op1,
759                                     const BinaryOperator &I, InstCombiner &IC) {
760   Constant *C1 = getLogBase2(Op0->getType(), cast<Constant>(Op1));
761   if (!C1)
762     llvm_unreachable("Failed to constant fold udiv -> logbase2");
763   BinaryOperator *LShr = BinaryOperator::CreateLShr(Op0, C1);
764   if (I.isExact())
765     LShr->setIsExact();
766   return LShr;
767 }
768 
769 // X udiv (C1 << N), where C1 is "1<<C2"  -->  X >> (N+C2)
770 // X udiv (zext (C1 << N)), where C1 is "1<<C2"  -->  X >> (N+C2)
foldUDivShl(Value * Op0,Value * Op1,const BinaryOperator & I,InstCombiner & IC)771 static Instruction *foldUDivShl(Value *Op0, Value *Op1, const BinaryOperator &I,
772                                 InstCombiner &IC) {
773   Value *ShiftLeft;
774   if (!match(Op1, m_ZExt(m_Value(ShiftLeft))))
775     ShiftLeft = Op1;
776 
777   Constant *CI;
778   Value *N;
779   if (!match(ShiftLeft, m_Shl(m_Constant(CI), m_Value(N))))
780     llvm_unreachable("match should never fail here!");
781   Constant *Log2Base = getLogBase2(N->getType(), CI);
782   if (!Log2Base)
783     llvm_unreachable("getLogBase2 should never fail here!");
784   N = IC.Builder.CreateAdd(N, Log2Base);
785   if (Op1 != ShiftLeft)
786     N = IC.Builder.CreateZExt(N, Op1->getType());
787   BinaryOperator *LShr = BinaryOperator::CreateLShr(Op0, N);
788   if (I.isExact())
789     LShr->setIsExact();
790   return LShr;
791 }
792 
793 // Recursively visits the possible right hand operands of a udiv
794 // instruction, seeing through select instructions, to determine if we can
795 // replace the udiv with something simpler.  If we find that an operand is not
796 // able to simplify the udiv, we abort the entire transformation.
visitUDivOperand(Value * Op0,Value * Op1,const BinaryOperator & I,SmallVectorImpl<UDivFoldAction> & Actions,unsigned Depth=0)797 static size_t visitUDivOperand(Value *Op0, Value *Op1, const BinaryOperator &I,
798                                SmallVectorImpl<UDivFoldAction> &Actions,
799                                unsigned Depth = 0) {
800   // Check to see if this is an unsigned division with an exact power of 2,
801   // if so, convert to a right shift.
802   if (match(Op1, m_Power2())) {
803     Actions.push_back(UDivFoldAction(foldUDivPow2Cst, Op1));
804     return Actions.size();
805   }
806 
807   // X udiv (C1 << N), where C1 is "1<<C2"  -->  X >> (N+C2)
808   if (match(Op1, m_Shl(m_Power2(), m_Value())) ||
809       match(Op1, m_ZExt(m_Shl(m_Power2(), m_Value())))) {
810     Actions.push_back(UDivFoldAction(foldUDivShl, Op1));
811     return Actions.size();
812   }
813 
814   // The remaining tests are all recursive, so bail out if we hit the limit.
815   if (Depth++ == MaxDepth)
816     return 0;
817 
818   if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
819     if (size_t LHSIdx =
820             visitUDivOperand(Op0, SI->getOperand(1), I, Actions, Depth))
821       if (visitUDivOperand(Op0, SI->getOperand(2), I, Actions, Depth)) {
822         Actions.push_back(UDivFoldAction(nullptr, Op1, LHSIdx - 1));
823         return Actions.size();
824       }
825 
826   return 0;
827 }
828 
829 /// If we have zero-extended operands of an unsigned div or rem, we may be able
830 /// to narrow the operation (sink the zext below the math).
narrowUDivURem(BinaryOperator & I,InstCombiner::BuilderTy & Builder)831 static Instruction *narrowUDivURem(BinaryOperator &I,
832                                    InstCombiner::BuilderTy &Builder) {
833   Instruction::BinaryOps Opcode = I.getOpcode();
834   Value *N = I.getOperand(0);
835   Value *D = I.getOperand(1);
836   Type *Ty = I.getType();
837   Value *X, *Y;
838   if (match(N, m_ZExt(m_Value(X))) && match(D, m_ZExt(m_Value(Y))) &&
839       X->getType() == Y->getType() && (N->hasOneUse() || D->hasOneUse())) {
840     // udiv (zext X), (zext Y) --> zext (udiv X, Y)
841     // urem (zext X), (zext Y) --> zext (urem X, Y)
842     Value *NarrowOp = Builder.CreateBinOp(Opcode, X, Y);
843     return new ZExtInst(NarrowOp, Ty);
844   }
845 
846   Constant *C;
847   if ((match(N, m_OneUse(m_ZExt(m_Value(X)))) && match(D, m_Constant(C))) ||
848       (match(D, m_OneUse(m_ZExt(m_Value(X)))) && match(N, m_Constant(C)))) {
849     // If the constant is the same in the smaller type, use the narrow version.
850     Constant *TruncC = ConstantExpr::getTrunc(C, X->getType());
851     if (ConstantExpr::getZExt(TruncC, Ty) != C)
852       return nullptr;
853 
854     // udiv (zext X), C --> zext (udiv X, C')
855     // urem (zext X), C --> zext (urem X, C')
856     // udiv C, (zext X) --> zext (udiv C', X)
857     // urem C, (zext X) --> zext (urem C', X)
858     Value *NarrowOp = isa<Constant>(D) ? Builder.CreateBinOp(Opcode, X, TruncC)
859                                        : Builder.CreateBinOp(Opcode, TruncC, X);
860     return new ZExtInst(NarrowOp, Ty);
861   }
862 
863   return nullptr;
864 }
865 
visitUDiv(BinaryOperator & I)866 Instruction *InstCombiner::visitUDiv(BinaryOperator &I) {
867   if (Value *V = SimplifyUDivInst(I.getOperand(0), I.getOperand(1),
868                                   SQ.getWithInstruction(&I)))
869     return replaceInstUsesWith(I, V);
870 
871   if (Instruction *X = foldVectorBinop(I))
872     return X;
873 
874   // Handle the integer div common cases
875   if (Instruction *Common = commonIDivTransforms(I))
876     return Common;
877 
878   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
879   Value *X;
880   const APInt *C1, *C2;
881   if (match(Op0, m_LShr(m_Value(X), m_APInt(C1))) && match(Op1, m_APInt(C2))) {
882     // (X lshr C1) udiv C2 --> X udiv (C2 << C1)
883     bool Overflow;
884     APInt C2ShlC1 = C2->ushl_ov(*C1, Overflow);
885     if (!Overflow) {
886       bool IsExact = I.isExact() && match(Op0, m_Exact(m_Value()));
887       BinaryOperator *BO = BinaryOperator::CreateUDiv(
888           X, ConstantInt::get(X->getType(), C2ShlC1));
889       if (IsExact)
890         BO->setIsExact();
891       return BO;
892     }
893   }
894 
895   // Op0 / C where C is large (negative) --> zext (Op0 >= C)
896   // TODO: Could use isKnownNegative() to handle non-constant values.
897   Type *Ty = I.getType();
898   if (match(Op1, m_Negative())) {
899     Value *Cmp = Builder.CreateICmpUGE(Op0, Op1);
900     return CastInst::CreateZExtOrBitCast(Cmp, Ty);
901   }
902   // Op0 / (sext i1 X) --> zext (Op0 == -1) (if X is 0, the div is undefined)
903   if (match(Op1, m_SExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1)) {
904     Value *Cmp = Builder.CreateICmpEQ(Op0, ConstantInt::getAllOnesValue(Ty));
905     return CastInst::CreateZExtOrBitCast(Cmp, Ty);
906   }
907 
908   if (Instruction *NarrowDiv = narrowUDivURem(I, Builder))
909     return NarrowDiv;
910 
911   // If the udiv operands are non-overflowing multiplies with a common operand,
912   // then eliminate the common factor:
913   // (A * B) / (A * X) --> B / X (and commuted variants)
914   // TODO: The code would be reduced if we had m_c_NUWMul pattern matching.
915   // TODO: If -reassociation handled this generally, we could remove this.
916   Value *A, *B;
917   if (match(Op0, m_NUWMul(m_Value(A), m_Value(B)))) {
918     if (match(Op1, m_NUWMul(m_Specific(A), m_Value(X))) ||
919         match(Op1, m_NUWMul(m_Value(X), m_Specific(A))))
920       return BinaryOperator::CreateUDiv(B, X);
921     if (match(Op1, m_NUWMul(m_Specific(B), m_Value(X))) ||
922         match(Op1, m_NUWMul(m_Value(X), m_Specific(B))))
923       return BinaryOperator::CreateUDiv(A, X);
924   }
925 
926   // (LHS udiv (select (select (...)))) -> (LHS >> (select (select (...))))
927   SmallVector<UDivFoldAction, 6> UDivActions;
928   if (visitUDivOperand(Op0, Op1, I, UDivActions))
929     for (unsigned i = 0, e = UDivActions.size(); i != e; ++i) {
930       FoldUDivOperandCb Action = UDivActions[i].FoldAction;
931       Value *ActionOp1 = UDivActions[i].OperandToFold;
932       Instruction *Inst;
933       if (Action)
934         Inst = Action(Op0, ActionOp1, I, *this);
935       else {
936         // This action joins two actions together.  The RHS of this action is
937         // simply the last action we processed, we saved the LHS action index in
938         // the joining action.
939         size_t SelectRHSIdx = i - 1;
940         Value *SelectRHS = UDivActions[SelectRHSIdx].FoldResult;
941         size_t SelectLHSIdx = UDivActions[i].SelectLHSIdx;
942         Value *SelectLHS = UDivActions[SelectLHSIdx].FoldResult;
943         Inst = SelectInst::Create(cast<SelectInst>(ActionOp1)->getCondition(),
944                                   SelectLHS, SelectRHS);
945       }
946 
947       // If this is the last action to process, return it to the InstCombiner.
948       // Otherwise, we insert it before the UDiv and record it so that we may
949       // use it as part of a joining action (i.e., a SelectInst).
950       if (e - i != 1) {
951         Inst->insertBefore(&I);
952         UDivActions[i].FoldResult = Inst;
953       } else
954         return Inst;
955     }
956 
957   return nullptr;
958 }
959 
visitSDiv(BinaryOperator & I)960 Instruction *InstCombiner::visitSDiv(BinaryOperator &I) {
961   if (Value *V = SimplifySDivInst(I.getOperand(0), I.getOperand(1),
962                                   SQ.getWithInstruction(&I)))
963     return replaceInstUsesWith(I, V);
964 
965   if (Instruction *X = foldVectorBinop(I))
966     return X;
967 
968   // Handle the integer div common cases
969   if (Instruction *Common = commonIDivTransforms(I))
970     return Common;
971 
972   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
973   Value *X;
974   // sdiv Op0, -1 --> -Op0
975   // sdiv Op0, (sext i1 X) --> -Op0 (because if X is 0, the op is undefined)
976   if (match(Op1, m_AllOnes()) ||
977       (match(Op1, m_SExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1)))
978     return BinaryOperator::CreateNeg(Op0);
979 
980   const APInt *Op1C;
981   if (match(Op1, m_APInt(Op1C))) {
982     // sdiv exact X, C  -->  ashr exact X, log2(C)
983     if (I.isExact() && Op1C->isNonNegative() && Op1C->isPowerOf2()) {
984       Value *ShAmt = ConstantInt::get(Op1->getType(), Op1C->exactLogBase2());
985       return BinaryOperator::CreateExactAShr(Op0, ShAmt, I.getName());
986     }
987 
988     // If the dividend is sign-extended and the constant divisor is small enough
989     // to fit in the source type, shrink the division to the narrower type:
990     // (sext X) sdiv C --> sext (X sdiv C)
991     Value *Op0Src;
992     if (match(Op0, m_OneUse(m_SExt(m_Value(Op0Src)))) &&
993         Op0Src->getType()->getScalarSizeInBits() >= Op1C->getMinSignedBits()) {
994 
995       // In the general case, we need to make sure that the dividend is not the
996       // minimum signed value because dividing that by -1 is UB. But here, we
997       // know that the -1 divisor case is already handled above.
998 
999       Constant *NarrowDivisor =
1000           ConstantExpr::getTrunc(cast<Constant>(Op1), Op0Src->getType());
1001       Value *NarrowOp = Builder.CreateSDiv(Op0Src, NarrowDivisor);
1002       return new SExtInst(NarrowOp, Op0->getType());
1003     }
1004   }
1005 
1006   if (Constant *RHS = dyn_cast<Constant>(Op1)) {
1007     // X/INT_MIN -> X == INT_MIN
1008     if (RHS->isMinSignedValue())
1009       return new ZExtInst(Builder.CreateICmpEQ(Op0, Op1), I.getType());
1010 
1011     // -X/C  -->  X/-C  provided the negation doesn't overflow.
1012     Value *X;
1013     if (match(Op0, m_NSWSub(m_Zero(), m_Value(X)))) {
1014       auto *BO = BinaryOperator::CreateSDiv(X, ConstantExpr::getNeg(RHS));
1015       BO->setIsExact(I.isExact());
1016       return BO;
1017     }
1018   }
1019 
1020   // If the sign bits of both operands are zero (i.e. we can prove they are
1021   // unsigned inputs), turn this into a udiv.
1022   APInt Mask(APInt::getSignMask(I.getType()->getScalarSizeInBits()));
1023   if (MaskedValueIsZero(Op0, Mask, 0, &I)) {
1024     if (MaskedValueIsZero(Op1, Mask, 0, &I)) {
1025       // X sdiv Y -> X udiv Y, iff X and Y don't have sign bit set
1026       auto *BO = BinaryOperator::CreateUDiv(Op0, Op1, I.getName());
1027       BO->setIsExact(I.isExact());
1028       return BO;
1029     }
1030 
1031     if (isKnownToBeAPowerOfTwo(Op1, /*OrZero*/ true, 0, &I)) {
1032       // X sdiv (1 << Y) -> X udiv (1 << Y) ( -> X u>> Y)
1033       // Safe because the only negative value (1 << Y) can take on is
1034       // INT_MIN, and X sdiv INT_MIN == X udiv INT_MIN == 0 if X doesn't have
1035       // the sign bit set.
1036       auto *BO = BinaryOperator::CreateUDiv(Op0, Op1, I.getName());
1037       BO->setIsExact(I.isExact());
1038       return BO;
1039     }
1040   }
1041 
1042   return nullptr;
1043 }
1044 
1045 /// Remove negation and try to convert division into multiplication.
foldFDivConstantDivisor(BinaryOperator & I)1046 static Instruction *foldFDivConstantDivisor(BinaryOperator &I) {
1047   Constant *C;
1048   if (!match(I.getOperand(1), m_Constant(C)))
1049     return nullptr;
1050 
1051   // -X / C --> X / -C
1052   Value *X;
1053   if (match(I.getOperand(0), m_FNeg(m_Value(X))))
1054     return BinaryOperator::CreateFDivFMF(X, ConstantExpr::getFNeg(C), &I);
1055 
1056   // If the constant divisor has an exact inverse, this is always safe. If not,
1057   // then we can still create a reciprocal if fast-math-flags allow it and the
1058   // constant is a regular number (not zero, infinite, or denormal).
1059   if (!(C->hasExactInverseFP() || (I.hasAllowReciprocal() && C->isNormalFP())))
1060     return nullptr;
1061 
1062   // Disallow denormal constants because we don't know what would happen
1063   // on all targets.
1064   // TODO: Use Intrinsic::canonicalize or let function attributes tell us that
1065   // denorms are flushed?
1066   auto *RecipC = ConstantExpr::getFDiv(ConstantFP::get(I.getType(), 1.0), C);
1067   if (!RecipC->isNormalFP())
1068     return nullptr;
1069 
1070   // X / C --> X * (1 / C)
1071   return BinaryOperator::CreateFMulFMF(I.getOperand(0), RecipC, &I);
1072 }
1073 
1074 /// Remove negation and try to reassociate constant math.
foldFDivConstantDividend(BinaryOperator & I)1075 static Instruction *foldFDivConstantDividend(BinaryOperator &I) {
1076   Constant *C;
1077   if (!match(I.getOperand(0), m_Constant(C)))
1078     return nullptr;
1079 
1080   // C / -X --> -C / X
1081   Value *X;
1082   if (match(I.getOperand(1), m_FNeg(m_Value(X))))
1083     return BinaryOperator::CreateFDivFMF(ConstantExpr::getFNeg(C), X, &I);
1084 
1085   if (!I.hasAllowReassoc() || !I.hasAllowReciprocal())
1086     return nullptr;
1087 
1088   // Try to reassociate C / X expressions where X includes another constant.
1089   Constant *C2, *NewC = nullptr;
1090   if (match(I.getOperand(1), m_FMul(m_Value(X), m_Constant(C2)))) {
1091     // C / (X * C2) --> (C / C2) / X
1092     NewC = ConstantExpr::getFDiv(C, C2);
1093   } else if (match(I.getOperand(1), m_FDiv(m_Value(X), m_Constant(C2)))) {
1094     // C / (X / C2) --> (C * C2) / X
1095     NewC = ConstantExpr::getFMul(C, C2);
1096   }
1097   // Disallow denormal constants because we don't know what would happen
1098   // on all targets.
1099   // TODO: Use Intrinsic::canonicalize or let function attributes tell us that
1100   // denorms are flushed?
1101   if (!NewC || !NewC->isNormalFP())
1102     return nullptr;
1103 
1104   return BinaryOperator::CreateFDivFMF(NewC, X, &I);
1105 }
1106 
visitFDiv(BinaryOperator & I)1107 Instruction *InstCombiner::visitFDiv(BinaryOperator &I) {
1108   if (Value *V = SimplifyFDivInst(I.getOperand(0), I.getOperand(1),
1109                                   I.getFastMathFlags(),
1110                                   SQ.getWithInstruction(&I)))
1111     return replaceInstUsesWith(I, V);
1112 
1113   if (Instruction *X = foldVectorBinop(I))
1114     return X;
1115 
1116   if (Instruction *R = foldFDivConstantDivisor(I))
1117     return R;
1118 
1119   if (Instruction *R = foldFDivConstantDividend(I))
1120     return R;
1121 
1122   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1123   if (isa<Constant>(Op0))
1124     if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
1125       if (Instruction *R = FoldOpIntoSelect(I, SI))
1126         return R;
1127 
1128   if (isa<Constant>(Op1))
1129     if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
1130       if (Instruction *R = FoldOpIntoSelect(I, SI))
1131         return R;
1132 
1133   if (I.hasAllowReassoc() && I.hasAllowReciprocal()) {
1134     Value *X, *Y;
1135     if (match(Op0, m_OneUse(m_FDiv(m_Value(X), m_Value(Y)))) &&
1136         (!isa<Constant>(Y) || !isa<Constant>(Op1))) {
1137       // (X / Y) / Z => X / (Y * Z)
1138       Value *YZ = Builder.CreateFMulFMF(Y, Op1, &I);
1139       return BinaryOperator::CreateFDivFMF(X, YZ, &I);
1140     }
1141     if (match(Op1, m_OneUse(m_FDiv(m_Value(X), m_Value(Y)))) &&
1142         (!isa<Constant>(Y) || !isa<Constant>(Op0))) {
1143       // Z / (X / Y) => (Y * Z) / X
1144       Value *YZ = Builder.CreateFMulFMF(Y, Op0, &I);
1145       return BinaryOperator::CreateFDivFMF(YZ, X, &I);
1146     }
1147   }
1148 
1149   if (I.hasAllowReassoc() && Op0->hasOneUse() && Op1->hasOneUse()) {
1150     // sin(X) / cos(X) -> tan(X)
1151     // cos(X) / sin(X) -> 1/tan(X) (cotangent)
1152     Value *X;
1153     bool IsTan = match(Op0, m_Intrinsic<Intrinsic::sin>(m_Value(X))) &&
1154                  match(Op1, m_Intrinsic<Intrinsic::cos>(m_Specific(X)));
1155     bool IsCot =
1156         !IsTan && match(Op0, m_Intrinsic<Intrinsic::cos>(m_Value(X))) &&
1157                   match(Op1, m_Intrinsic<Intrinsic::sin>(m_Specific(X)));
1158 
1159     if ((IsTan || IsCot) && hasUnaryFloatFn(&TLI, I.getType(), LibFunc_tan,
1160                                             LibFunc_tanf, LibFunc_tanl)) {
1161       IRBuilder<> B(&I);
1162       IRBuilder<>::FastMathFlagGuard FMFGuard(B);
1163       B.setFastMathFlags(I.getFastMathFlags());
1164       AttributeList Attrs = CallSite(Op0).getCalledFunction()->getAttributes();
1165       Value *Res = emitUnaryFloatFnCall(X, &TLI, LibFunc_tan, LibFunc_tanf,
1166                                         LibFunc_tanl, B, Attrs);
1167       if (IsCot)
1168         Res = B.CreateFDiv(ConstantFP::get(I.getType(), 1.0), Res);
1169       return replaceInstUsesWith(I, Res);
1170     }
1171   }
1172 
1173   // -X / -Y -> X / Y
1174   Value *X, *Y;
1175   if (match(Op0, m_FNeg(m_Value(X))) && match(Op1, m_FNeg(m_Value(Y)))) {
1176     I.setOperand(0, X);
1177     I.setOperand(1, Y);
1178     return &I;
1179   }
1180 
1181   // X / (X * Y) --> 1.0 / Y
1182   // Reassociate to (X / X -> 1.0) is legal when NaNs are not allowed.
1183   // We can ignore the possibility that X is infinity because INF/INF is NaN.
1184   if (I.hasNoNaNs() && I.hasAllowReassoc() &&
1185       match(Op1, m_c_FMul(m_Specific(Op0), m_Value(Y)))) {
1186     I.setOperand(0, ConstantFP::get(I.getType(), 1.0));
1187     I.setOperand(1, Y);
1188     return &I;
1189   }
1190 
1191   return nullptr;
1192 }
1193 
1194 /// This function implements the transforms common to both integer remainder
1195 /// instructions (urem and srem). It is called by the visitors to those integer
1196 /// remainder instructions.
1197 /// Common integer remainder transforms
commonIRemTransforms(BinaryOperator & I)1198 Instruction *InstCombiner::commonIRemTransforms(BinaryOperator &I) {
1199   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1200 
1201   // The RHS is known non-zero.
1202   if (Value *V = simplifyValueKnownNonZero(I.getOperand(1), *this, I)) {
1203     I.setOperand(1, V);
1204     return &I;
1205   }
1206 
1207   // Handle cases involving: rem X, (select Cond, Y, Z)
1208   if (simplifyDivRemOfSelectWithZeroOp(I))
1209     return &I;
1210 
1211   if (isa<Constant>(Op1)) {
1212     if (Instruction *Op0I = dyn_cast<Instruction>(Op0)) {
1213       if (SelectInst *SI = dyn_cast<SelectInst>(Op0I)) {
1214         if (Instruction *R = FoldOpIntoSelect(I, SI))
1215           return R;
1216       } else if (auto *PN = dyn_cast<PHINode>(Op0I)) {
1217         const APInt *Op1Int;
1218         if (match(Op1, m_APInt(Op1Int)) && !Op1Int->isMinValue() &&
1219             (I.getOpcode() == Instruction::URem ||
1220              !Op1Int->isMinSignedValue())) {
1221           // foldOpIntoPhi will speculate instructions to the end of the PHI's
1222           // predecessor blocks, so do this only if we know the srem or urem
1223           // will not fault.
1224           if (Instruction *NV = foldOpIntoPhi(I, PN))
1225             return NV;
1226         }
1227       }
1228 
1229       // See if we can fold away this rem instruction.
1230       if (SimplifyDemandedInstructionBits(I))
1231         return &I;
1232     }
1233   }
1234 
1235   return nullptr;
1236 }
1237 
visitURem(BinaryOperator & I)1238 Instruction *InstCombiner::visitURem(BinaryOperator &I) {
1239   if (Value *V = SimplifyURemInst(I.getOperand(0), I.getOperand(1),
1240                                   SQ.getWithInstruction(&I)))
1241     return replaceInstUsesWith(I, V);
1242 
1243   if (Instruction *X = foldVectorBinop(I))
1244     return X;
1245 
1246   if (Instruction *common = commonIRemTransforms(I))
1247     return common;
1248 
1249   if (Instruction *NarrowRem = narrowUDivURem(I, Builder))
1250     return NarrowRem;
1251 
1252   // X urem Y -> X and Y-1, where Y is a power of 2,
1253   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1254   Type *Ty = I.getType();
1255   if (isKnownToBeAPowerOfTwo(Op1, /*OrZero*/ true, 0, &I)) {
1256     Constant *N1 = Constant::getAllOnesValue(Ty);
1257     Value *Add = Builder.CreateAdd(Op1, N1);
1258     return BinaryOperator::CreateAnd(Op0, Add);
1259   }
1260 
1261   // 1 urem X -> zext(X != 1)
1262   if (match(Op0, m_One()))
1263     return CastInst::CreateZExtOrBitCast(Builder.CreateICmpNE(Op1, Op0), Ty);
1264 
1265   // X urem C -> X < C ? X : X - C, where C >= signbit.
1266   if (match(Op1, m_Negative())) {
1267     Value *Cmp = Builder.CreateICmpULT(Op0, Op1);
1268     Value *Sub = Builder.CreateSub(Op0, Op1);
1269     return SelectInst::Create(Cmp, Op0, Sub);
1270   }
1271 
1272   // If the divisor is a sext of a boolean, then the divisor must be max
1273   // unsigned value (-1). Therefore, the remainder is Op0 unless Op0 is also
1274   // max unsigned value. In that case, the remainder is 0:
1275   // urem Op0, (sext i1 X) --> (Op0 == -1) ? 0 : Op0
1276   Value *X;
1277   if (match(Op1, m_SExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1)) {
1278     Value *Cmp = Builder.CreateICmpEQ(Op0, ConstantInt::getAllOnesValue(Ty));
1279     return SelectInst::Create(Cmp, ConstantInt::getNullValue(Ty), Op0);
1280   }
1281 
1282   return nullptr;
1283 }
1284 
visitSRem(BinaryOperator & I)1285 Instruction *InstCombiner::visitSRem(BinaryOperator &I) {
1286   if (Value *V = SimplifySRemInst(I.getOperand(0), I.getOperand(1),
1287                                   SQ.getWithInstruction(&I)))
1288     return replaceInstUsesWith(I, V);
1289 
1290   if (Instruction *X = foldVectorBinop(I))
1291     return X;
1292 
1293   // Handle the integer rem common cases
1294   if (Instruction *Common = commonIRemTransforms(I))
1295     return Common;
1296 
1297   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1298   {
1299     const APInt *Y;
1300     // X % -Y -> X % Y
1301     if (match(Op1, m_Negative(Y)) && !Y->isMinSignedValue()) {
1302       Worklist.AddValue(I.getOperand(1));
1303       I.setOperand(1, ConstantInt::get(I.getType(), -*Y));
1304       return &I;
1305     }
1306   }
1307 
1308   // If the sign bits of both operands are zero (i.e. we can prove they are
1309   // unsigned inputs), turn this into a urem.
1310   APInt Mask(APInt::getSignMask(I.getType()->getScalarSizeInBits()));
1311   if (MaskedValueIsZero(Op1, Mask, 0, &I) &&
1312       MaskedValueIsZero(Op0, Mask, 0, &I)) {
1313     // X srem Y -> X urem Y, iff X and Y don't have sign bit set
1314     return BinaryOperator::CreateURem(Op0, Op1, I.getName());
1315   }
1316 
1317   // If it's a constant vector, flip any negative values positive.
1318   if (isa<ConstantVector>(Op1) || isa<ConstantDataVector>(Op1)) {
1319     Constant *C = cast<Constant>(Op1);
1320     unsigned VWidth = C->getType()->getVectorNumElements();
1321 
1322     bool hasNegative = false;
1323     bool hasMissing = false;
1324     for (unsigned i = 0; i != VWidth; ++i) {
1325       Constant *Elt = C->getAggregateElement(i);
1326       if (!Elt) {
1327         hasMissing = true;
1328         break;
1329       }
1330 
1331       if (ConstantInt *RHS = dyn_cast<ConstantInt>(Elt))
1332         if (RHS->isNegative())
1333           hasNegative = true;
1334     }
1335 
1336     if (hasNegative && !hasMissing) {
1337       SmallVector<Constant *, 16> Elts(VWidth);
1338       for (unsigned i = 0; i != VWidth; ++i) {
1339         Elts[i] = C->getAggregateElement(i);  // Handle undef, etc.
1340         if (ConstantInt *RHS = dyn_cast<ConstantInt>(Elts[i])) {
1341           if (RHS->isNegative())
1342             Elts[i] = cast<ConstantInt>(ConstantExpr::getNeg(RHS));
1343         }
1344       }
1345 
1346       Constant *NewRHSV = ConstantVector::get(Elts);
1347       if (NewRHSV != C) {  // Don't loop on -MININT
1348         Worklist.AddValue(I.getOperand(1));
1349         I.setOperand(1, NewRHSV);
1350         return &I;
1351       }
1352     }
1353   }
1354 
1355   return nullptr;
1356 }
1357 
visitFRem(BinaryOperator & I)1358 Instruction *InstCombiner::visitFRem(BinaryOperator &I) {
1359   if (Value *V = SimplifyFRemInst(I.getOperand(0), I.getOperand(1),
1360                                   I.getFastMathFlags(),
1361                                   SQ.getWithInstruction(&I)))
1362     return replaceInstUsesWith(I, V);
1363 
1364   if (Instruction *X = foldVectorBinop(I))
1365     return X;
1366 
1367   return nullptr;
1368 }
1369