1 //===- SampleProfile.cpp - Incorporate sample profiles into the IR --------===//
2 //
3 //                      The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the SampleProfileLoader transformation. This pass
11 // reads a profile file generated by a sampling profiler (e.g. Linux Perf -
12 // http://perf.wiki.kernel.org/) and generates IR metadata to reflect the
13 // profile information in the given profile.
14 //
15 // This pass generates branch weight annotations on the IR:
16 //
17 // - prof: Represents branch weights. This annotation is added to branches
18 //      to indicate the weights of each edge coming out of the branch.
19 //      The weight of each edge is the weight of the target block for
20 //      that edge. The weight of a block B is computed as the maximum
21 //      number of samples found in B.
22 //
23 //===----------------------------------------------------------------------===//
24 
25 #include "llvm/Transforms/SampleProfile.h"
26 #include "llvm/ADT/DenseMap.h"
27 #include "llvm/ADT/SmallPtrSet.h"
28 #include "llvm/ADT/SmallSet.h"
29 #include "llvm/ADT/StringRef.h"
30 #include "llvm/Analysis/AssumptionCache.h"
31 #include "llvm/Analysis/LoopInfo.h"
32 #include "llvm/Analysis/PostDominators.h"
33 #include "llvm/IR/Constants.h"
34 #include "llvm/IR/DebugInfo.h"
35 #include "llvm/IR/DiagnosticInfo.h"
36 #include "llvm/IR/Dominators.h"
37 #include "llvm/IR/Function.h"
38 #include "llvm/IR/GlobalValue.h"
39 #include "llvm/IR/InstIterator.h"
40 #include "llvm/IR/Instructions.h"
41 #include "llvm/IR/IntrinsicInst.h"
42 #include "llvm/IR/LLVMContext.h"
43 #include "llvm/IR/MDBuilder.h"
44 #include "llvm/IR/Metadata.h"
45 #include "llvm/IR/Module.h"
46 #include "llvm/IR/ValueSymbolTable.h"
47 #include "llvm/Pass.h"
48 #include "llvm/ProfileData/InstrProf.h"
49 #include "llvm/ProfileData/SampleProfReader.h"
50 #include "llvm/Support/CommandLine.h"
51 #include "llvm/Support/Debug.h"
52 #include "llvm/Support/ErrorOr.h"
53 #include "llvm/Support/Format.h"
54 #include "llvm/Support/raw_ostream.h"
55 #include "llvm/Transforms/IPO.h"
56 #include "llvm/Transforms/Instrumentation.h"
57 #include "llvm/Transforms/Utils/Cloning.h"
58 #include <cctype>
59 
60 using namespace llvm;
61 using namespace sampleprof;
62 
63 #define DEBUG_TYPE "sample-profile"
64 
65 // Command line option to specify the file to read samples from. This is
66 // mainly used for debugging.
67 static cl::opt<std::string> SampleProfileFile(
68     "sample-profile-file", cl::init(""), cl::value_desc("filename"),
69     cl::desc("Profile file loaded by -sample-profile"), cl::Hidden);
70 static cl::opt<unsigned> SampleProfileMaxPropagateIterations(
71     "sample-profile-max-propagate-iterations", cl::init(100),
72     cl::desc("Maximum number of iterations to go through when propagating "
73              "sample block/edge weights through the CFG."));
74 static cl::opt<unsigned> SampleProfileRecordCoverage(
75     "sample-profile-check-record-coverage", cl::init(0), cl::value_desc("N"),
76     cl::desc("Emit a warning if less than N% of records in the input profile "
77              "are matched to the IR."));
78 static cl::opt<unsigned> SampleProfileSampleCoverage(
79     "sample-profile-check-sample-coverage", cl::init(0), cl::value_desc("N"),
80     cl::desc("Emit a warning if less than N% of samples in the input profile "
81              "are matched to the IR."));
82 static cl::opt<double> SampleProfileHotThreshold(
83     "sample-profile-inline-hot-threshold", cl::init(0.1), cl::value_desc("N"),
84     cl::desc("Inlined functions that account for more than N% of all samples "
85              "collected in the parent function, will be inlined again."));
86 
87 namespace {
88 typedef DenseMap<const BasicBlock *, uint64_t> BlockWeightMap;
89 typedef DenseMap<const BasicBlock *, const BasicBlock *> EquivalenceClassMap;
90 typedef std::pair<const BasicBlock *, const BasicBlock *> Edge;
91 typedef DenseMap<Edge, uint64_t> EdgeWeightMap;
92 typedef DenseMap<const BasicBlock *, SmallVector<const BasicBlock *, 8>>
93     BlockEdgeMap;
94 
95 class SampleCoverageTracker {
96 public:
97   SampleCoverageTracker() : SampleCoverage(), TotalUsedSamples(0) {}
98 
99   bool markSamplesUsed(const FunctionSamples *FS, uint32_t LineOffset,
100                        uint32_t Discriminator, uint64_t Samples);
101   unsigned computeCoverage(unsigned Used, unsigned Total) const;
102   unsigned countUsedRecords(const FunctionSamples *FS) const;
103   unsigned countBodyRecords(const FunctionSamples *FS) const;
104   uint64_t getTotalUsedSamples() const { return TotalUsedSamples; }
105   uint64_t countBodySamples(const FunctionSamples *FS) const;
106   void clear() {
107     SampleCoverage.clear();
108     TotalUsedSamples = 0;
109   }
110 
111 private:
112   typedef std::map<LineLocation, unsigned> BodySampleCoverageMap;
113   typedef DenseMap<const FunctionSamples *, BodySampleCoverageMap>
114       FunctionSamplesCoverageMap;
115 
116   /// Coverage map for sampling records.
117   ///
118   /// This map keeps a record of sampling records that have been matched to
119   /// an IR instruction. This is used to detect some form of staleness in
120   /// profiles (see flag -sample-profile-check-coverage).
121   ///
122   /// Each entry in the map corresponds to a FunctionSamples instance.  This is
123   /// another map that counts how many times the sample record at the
124   /// given location has been used.
125   FunctionSamplesCoverageMap SampleCoverage;
126 
127   /// Number of samples used from the profile.
128   ///
129   /// When a sampling record is used for the first time, the samples from
130   /// that record are added to this accumulator.  Coverage is later computed
131   /// based on the total number of samples available in this function and
132   /// its callsites.
133   ///
134   /// Note that this accumulator tracks samples used from a single function
135   /// and all the inlined callsites. Strictly, we should have a map of counters
136   /// keyed by FunctionSamples pointers, but these stats are cleared after
137   /// every function, so we just need to keep a single counter.
138   uint64_t TotalUsedSamples;
139 };
140 
141 /// \brief Sample profile pass.
142 ///
143 /// This pass reads profile data from the file specified by
144 /// -sample-profile-file and annotates every affected function with the
145 /// profile information found in that file.
146 class SampleProfileLoader {
147 public:
148   SampleProfileLoader(StringRef Name = SampleProfileFile)
149       : DT(nullptr), PDT(nullptr), LI(nullptr), ACT(nullptr), Reader(),
150         Samples(nullptr), Filename(Name), ProfileIsValid(false),
151         TotalCollectedSamples(0) {}
152 
153   bool doInitialization(Module &M);
154   bool runOnModule(Module &M);
155   void setACT(AssumptionCacheTracker *A) { ACT = A; }
156 
157   void dump() { Reader->dump(); }
158 
159 protected:
160   bool runOnFunction(Function &F);
161   unsigned getFunctionLoc(Function &F);
162   bool emitAnnotations(Function &F);
163   ErrorOr<uint64_t> getInstWeight(const Instruction &I);
164   ErrorOr<uint64_t> getBlockWeight(const BasicBlock *BB);
165   const FunctionSamples *findCalleeFunctionSamples(const Instruction &I) const;
166   std::vector<const FunctionSamples *>
167   findIndirectCallFunctionSamples(const Instruction &I) const;
168   const FunctionSamples *findFunctionSamples(const Instruction &I) const;
169   bool inlineHotFunctions(Function &F,
170                           DenseSet<GlobalValue::GUID> &ImportGUIDs);
171   void printEdgeWeight(raw_ostream &OS, Edge E);
172   void printBlockWeight(raw_ostream &OS, const BasicBlock *BB) const;
173   void printBlockEquivalence(raw_ostream &OS, const BasicBlock *BB);
174   bool computeBlockWeights(Function &F);
175   void findEquivalenceClasses(Function &F);
176   void findEquivalencesFor(BasicBlock *BB1, ArrayRef<BasicBlock *> Descendants,
177                            DominatorTreeBase<BasicBlock> *DomTree);
178   void propagateWeights(Function &F);
179   uint64_t visitEdge(Edge E, unsigned *NumUnknownEdges, Edge *UnknownEdge);
180   void buildEdges(Function &F);
181   bool propagateThroughEdges(Function &F, bool UpdateBlockCount);
182   void computeDominanceAndLoopInfo(Function &F);
183   unsigned getOffset(const DILocation *DIL) const;
184   void clearFunctionData();
185 
186   /// \brief Map basic blocks to their computed weights.
187   ///
188   /// The weight of a basic block is defined to be the maximum
189   /// of all the instruction weights in that block.
190   BlockWeightMap BlockWeights;
191 
192   /// \brief Map edges to their computed weights.
193   ///
194   /// Edge weights are computed by propagating basic block weights in
195   /// SampleProfile::propagateWeights.
196   EdgeWeightMap EdgeWeights;
197 
198   /// \brief Set of visited blocks during propagation.
199   SmallPtrSet<const BasicBlock *, 32> VisitedBlocks;
200 
201   /// \brief Set of visited edges during propagation.
202   SmallSet<Edge, 32> VisitedEdges;
203 
204   /// \brief Equivalence classes for block weights.
205   ///
206   /// Two blocks BB1 and BB2 are in the same equivalence class if they
207   /// dominate and post-dominate each other, and they are in the same loop
208   /// nest. When this happens, the two blocks are guaranteed to execute
209   /// the same number of times.
210   EquivalenceClassMap EquivalenceClass;
211 
212   /// Map from function name to Function *. Used to find the function from
213   /// the function name. If the function name contains suffix, additional
214   /// entry is added to map from the stripped name to the function if there
215   /// is one-to-one mapping.
216   StringMap<Function *> SymbolMap;
217 
218   /// \brief Dominance, post-dominance and loop information.
219   std::unique_ptr<DominatorTree> DT;
220   std::unique_ptr<DominatorTreeBase<BasicBlock>> PDT;
221   std::unique_ptr<LoopInfo> LI;
222 
223   AssumptionCacheTracker *ACT;
224 
225   /// \brief Predecessors for each basic block in the CFG.
226   BlockEdgeMap Predecessors;
227 
228   /// \brief Successors for each basic block in the CFG.
229   BlockEdgeMap Successors;
230 
231   SampleCoverageTracker CoverageTracker;
232 
233   /// \brief Profile reader object.
234   std::unique_ptr<SampleProfileReader> Reader;
235 
236   /// \brief Samples collected for the body of this function.
237   FunctionSamples *Samples;
238 
239   /// \brief Name of the profile file to load.
240   std::string Filename;
241 
242   /// \brief Flag indicating whether the profile input loaded successfully.
243   bool ProfileIsValid;
244 
245   /// \brief Total number of samples collected in this profile.
246   ///
247   /// This is the sum of all the samples collected in all the functions executed
248   /// at runtime.
249   uint64_t TotalCollectedSamples;
250 };
251 
252 class SampleProfileLoaderLegacyPass : public ModulePass {
253 public:
254   // Class identification, replacement for typeinfo
255   static char ID;
256 
257   SampleProfileLoaderLegacyPass(StringRef Name = SampleProfileFile)
258       : ModulePass(ID), SampleLoader(Name) {
259     initializeSampleProfileLoaderLegacyPassPass(
260         *PassRegistry::getPassRegistry());
261   }
262 
263   void dump() { SampleLoader.dump(); }
264 
265   bool doInitialization(Module &M) override {
266     return SampleLoader.doInitialization(M);
267   }
268   StringRef getPassName() const override { return "Sample profile pass"; }
269   bool runOnModule(Module &M) override;
270 
271   void getAnalysisUsage(AnalysisUsage &AU) const override {
272     AU.addRequired<AssumptionCacheTracker>();
273   }
274 
275 private:
276   SampleProfileLoader SampleLoader;
277 };
278 
279 /// Return true if the given callsite is hot wrt to its caller.
280 ///
281 /// Functions that were inlined in the original binary will be represented
282 /// in the inline stack in the sample profile. If the profile shows that
283 /// the original inline decision was "good" (i.e., the callsite is executed
284 /// frequently), then we will recreate the inline decision and apply the
285 /// profile from the inlined callsite.
286 ///
287 /// To decide whether an inlined callsite is hot, we compute the fraction
288 /// of samples used by the callsite with respect to the total number of samples
289 /// collected in the caller.
290 ///
291 /// If that fraction is larger than the default given by
292 /// SampleProfileHotThreshold, the callsite will be inlined again.
293 bool callsiteIsHot(const FunctionSamples *CallerFS,
294                    const FunctionSamples *CallsiteFS) {
295   if (!CallsiteFS)
296     return false; // The callsite was not inlined in the original binary.
297 
298   uint64_t ParentTotalSamples = CallerFS->getTotalSamples();
299   if (ParentTotalSamples == 0)
300     return false; // Avoid division by zero.
301 
302   uint64_t CallsiteTotalSamples = CallsiteFS->getTotalSamples();
303   if (CallsiteTotalSamples == 0)
304     return false; // Callsite is trivially cold.
305 
306   double PercentSamples =
307       (double)CallsiteTotalSamples / (double)ParentTotalSamples * 100.0;
308   return PercentSamples >= SampleProfileHotThreshold;
309 }
310 }
311 
312 /// Mark as used the sample record for the given function samples at
313 /// (LineOffset, Discriminator).
314 ///
315 /// \returns true if this is the first time we mark the given record.
316 bool SampleCoverageTracker::markSamplesUsed(const FunctionSamples *FS,
317                                             uint32_t LineOffset,
318                                             uint32_t Discriminator,
319                                             uint64_t Samples) {
320   LineLocation Loc(LineOffset, Discriminator);
321   unsigned &Count = SampleCoverage[FS][Loc];
322   bool FirstTime = (++Count == 1);
323   if (FirstTime)
324     TotalUsedSamples += Samples;
325   return FirstTime;
326 }
327 
328 /// Return the number of sample records that were applied from this profile.
329 ///
330 /// This count does not include records from cold inlined callsites.
331 unsigned
332 SampleCoverageTracker::countUsedRecords(const FunctionSamples *FS) const {
333   auto I = SampleCoverage.find(FS);
334 
335   // The size of the coverage map for FS represents the number of records
336   // that were marked used at least once.
337   unsigned Count = (I != SampleCoverage.end()) ? I->second.size() : 0;
338 
339   // If there are inlined callsites in this function, count the samples found
340   // in the respective bodies. However, do not bother counting callees with 0
341   // total samples, these are callees that were never invoked at runtime.
342   for (const auto &I : FS->getCallsiteSamples())
343     for (const auto &J : I.second) {
344       const FunctionSamples *CalleeSamples = &J.second;
345       if (callsiteIsHot(FS, CalleeSamples))
346         Count += countUsedRecords(CalleeSamples);
347     }
348 
349   return Count;
350 }
351 
352 /// Return the number of sample records in the body of this profile.
353 ///
354 /// This count does not include records from cold inlined callsites.
355 unsigned
356 SampleCoverageTracker::countBodyRecords(const FunctionSamples *FS) const {
357   unsigned Count = FS->getBodySamples().size();
358 
359   // Only count records in hot callsites.
360   for (const auto &I : FS->getCallsiteSamples())
361     for (const auto &J : I.second) {
362       const FunctionSamples *CalleeSamples = &J.second;
363       if (callsiteIsHot(FS, CalleeSamples))
364         Count += countBodyRecords(CalleeSamples);
365     }
366 
367   return Count;
368 }
369 
370 /// Return the number of samples collected in the body of this profile.
371 ///
372 /// This count does not include samples from cold inlined callsites.
373 uint64_t
374 SampleCoverageTracker::countBodySamples(const FunctionSamples *FS) const {
375   uint64_t Total = 0;
376   for (const auto &I : FS->getBodySamples())
377     Total += I.second.getSamples();
378 
379   // Only count samples in hot callsites.
380   for (const auto &I : FS->getCallsiteSamples())
381     for (const auto &J : I.second) {
382       const FunctionSamples *CalleeSamples = &J.second;
383       if (callsiteIsHot(FS, CalleeSamples))
384         Total += countBodySamples(CalleeSamples);
385     }
386 
387   return Total;
388 }
389 
390 /// Return the fraction of sample records used in this profile.
391 ///
392 /// The returned value is an unsigned integer in the range 0-100 indicating
393 /// the percentage of sample records that were used while applying this
394 /// profile to the associated function.
395 unsigned SampleCoverageTracker::computeCoverage(unsigned Used,
396                                                 unsigned Total) const {
397   assert(Used <= Total &&
398          "number of used records cannot exceed the total number of records");
399   return Total > 0 ? Used * 100 / Total : 100;
400 }
401 
402 /// Clear all the per-function data used to load samples and propagate weights.
403 void SampleProfileLoader::clearFunctionData() {
404   BlockWeights.clear();
405   EdgeWeights.clear();
406   VisitedBlocks.clear();
407   VisitedEdges.clear();
408   EquivalenceClass.clear();
409   DT = nullptr;
410   PDT = nullptr;
411   LI = nullptr;
412   Predecessors.clear();
413   Successors.clear();
414   CoverageTracker.clear();
415 }
416 
417 /// Returns the line offset to the start line of the subprogram.
418 /// We assume that a single function will not exceed 65535 LOC.
419 unsigned SampleProfileLoader::getOffset(const DILocation *DIL) const {
420   return (DIL->getLine() - DIL->getScope()->getSubprogram()->getLine()) &
421          0xffff;
422 }
423 
424 /// \brief Print the weight of edge \p E on stream \p OS.
425 ///
426 /// \param OS  Stream to emit the output to.
427 /// \param E  Edge to print.
428 void SampleProfileLoader::printEdgeWeight(raw_ostream &OS, Edge E) {
429   OS << "weight[" << E.first->getName() << "->" << E.second->getName()
430      << "]: " << EdgeWeights[E] << "\n";
431 }
432 
433 /// \brief Print the equivalence class of block \p BB on stream \p OS.
434 ///
435 /// \param OS  Stream to emit the output to.
436 /// \param BB  Block to print.
437 void SampleProfileLoader::printBlockEquivalence(raw_ostream &OS,
438                                                 const BasicBlock *BB) {
439   const BasicBlock *Equiv = EquivalenceClass[BB];
440   OS << "equivalence[" << BB->getName()
441      << "]: " << ((Equiv) ? EquivalenceClass[BB]->getName() : "NONE") << "\n";
442 }
443 
444 /// \brief Print the weight of block \p BB on stream \p OS.
445 ///
446 /// \param OS  Stream to emit the output to.
447 /// \param BB  Block to print.
448 void SampleProfileLoader::printBlockWeight(raw_ostream &OS,
449                                            const BasicBlock *BB) const {
450   const auto &I = BlockWeights.find(BB);
451   uint64_t W = (I == BlockWeights.end() ? 0 : I->second);
452   OS << "weight[" << BB->getName() << "]: " << W << "\n";
453 }
454 
455 /// \brief Get the weight for an instruction.
456 ///
457 /// The "weight" of an instruction \p Inst is the number of samples
458 /// collected on that instruction at runtime. To retrieve it, we
459 /// need to compute the line number of \p Inst relative to the start of its
460 /// function. We use HeaderLineno to compute the offset. We then
461 /// look up the samples collected for \p Inst using BodySamples.
462 ///
463 /// \param Inst Instruction to query.
464 ///
465 /// \returns the weight of \p Inst.
466 ErrorOr<uint64_t> SampleProfileLoader::getInstWeight(const Instruction &Inst) {
467   const DebugLoc &DLoc = Inst.getDebugLoc();
468   if (!DLoc)
469     return std::error_code();
470 
471   const FunctionSamples *FS = findFunctionSamples(Inst);
472   if (!FS)
473     return std::error_code();
474 
475   // Ignore all intrinsics and branch instructions.
476   // Branch instruction usually contains debug info from sources outside of
477   // the residing basic block, thus we ignore them during annotation.
478   if (isa<BranchInst>(Inst) || isa<IntrinsicInst>(Inst))
479     return std::error_code();
480 
481   // If a call/invoke instruction is inlined in profile, but not inlined here,
482   // it means that the inlined callsite has no sample, thus the call
483   // instruction should have 0 count.
484   if ((isa<CallInst>(Inst) || isa<InvokeInst>(Inst)) &&
485       findCalleeFunctionSamples(Inst))
486     return 0;
487 
488   const DILocation *DIL = DLoc;
489   uint32_t LineOffset = getOffset(DIL);
490   uint32_t Discriminator = DIL->getBaseDiscriminator();
491   ErrorOr<uint64_t> R = FS->findSamplesAt(LineOffset, Discriminator);
492   if (R) {
493     bool FirstMark =
494         CoverageTracker.markSamplesUsed(FS, LineOffset, Discriminator, R.get());
495     if (FirstMark) {
496       const Function *F = Inst.getParent()->getParent();
497       LLVMContext &Ctx = F->getContext();
498       emitOptimizationRemark(
499           Ctx, DEBUG_TYPE, *F, DLoc,
500           Twine("Applied ") + Twine(*R) +
501               " samples from profile (offset: " + Twine(LineOffset) +
502               ((Discriminator) ? Twine(".") + Twine(Discriminator) : "") + ")");
503     }
504     DEBUG(dbgs() << "    " << DLoc.getLine() << "."
505                  << DIL->getBaseDiscriminator() << ":" << Inst
506                  << " (line offset: " << LineOffset << "."
507                  << DIL->getBaseDiscriminator() << " - weight: " << R.get()
508                  << ")\n");
509   }
510   return R;
511 }
512 
513 /// \brief Compute the weight of a basic block.
514 ///
515 /// The weight of basic block \p BB is the maximum weight of all the
516 /// instructions in BB.
517 ///
518 /// \param BB The basic block to query.
519 ///
520 /// \returns the weight for \p BB.
521 ErrorOr<uint64_t> SampleProfileLoader::getBlockWeight(const BasicBlock *BB) {
522   uint64_t Max = 0;
523   bool HasWeight = false;
524   for (auto &I : BB->getInstList()) {
525     const ErrorOr<uint64_t> &R = getInstWeight(I);
526     if (R) {
527       Max = std::max(Max, R.get());
528       HasWeight = true;
529     }
530   }
531   return HasWeight ? ErrorOr<uint64_t>(Max) : std::error_code();
532 }
533 
534 /// \brief Compute and store the weights of every basic block.
535 ///
536 /// This populates the BlockWeights map by computing
537 /// the weights of every basic block in the CFG.
538 ///
539 /// \param F The function to query.
540 bool SampleProfileLoader::computeBlockWeights(Function &F) {
541   bool Changed = false;
542   DEBUG(dbgs() << "Block weights\n");
543   for (const auto &BB : F) {
544     ErrorOr<uint64_t> Weight = getBlockWeight(&BB);
545     if (Weight) {
546       BlockWeights[&BB] = Weight.get();
547       VisitedBlocks.insert(&BB);
548       Changed = true;
549     }
550     DEBUG(printBlockWeight(dbgs(), &BB));
551   }
552 
553   return Changed;
554 }
555 
556 /// \brief Get the FunctionSamples for a call instruction.
557 ///
558 /// The FunctionSamples of a call/invoke instruction \p Inst is the inlined
559 /// instance in which that call instruction is calling to. It contains
560 /// all samples that resides in the inlined instance. We first find the
561 /// inlined instance in which the call instruction is from, then we
562 /// traverse its children to find the callsite with the matching
563 /// location.
564 ///
565 /// \param Inst Call/Invoke instruction to query.
566 ///
567 /// \returns The FunctionSamples pointer to the inlined instance.
568 const FunctionSamples *
569 SampleProfileLoader::findCalleeFunctionSamples(const Instruction &Inst) const {
570   const DILocation *DIL = Inst.getDebugLoc();
571   if (!DIL) {
572     return nullptr;
573   }
574 
575   StringRef CalleeName;
576   if (const CallInst *CI = dyn_cast<CallInst>(&Inst))
577     if (Function *Callee = CI->getCalledFunction())
578       CalleeName = Callee->getName();
579 
580   const FunctionSamples *FS = findFunctionSamples(Inst);
581   if (FS == nullptr)
582     return nullptr;
583 
584   return FS->findFunctionSamplesAt(
585       LineLocation(getOffset(DIL), DIL->getBaseDiscriminator()), CalleeName);
586 }
587 
588 /// Returns a vector of FunctionSamples that are the indirect call targets
589 /// of \p Inst. The vector is sorted by the total number of samples.
590 std::vector<const FunctionSamples *>
591 SampleProfileLoader::findIndirectCallFunctionSamples(
592     const Instruction &Inst) const {
593   const DILocation *DIL = Inst.getDebugLoc();
594   std::vector<const FunctionSamples *> R;
595 
596   if (!DIL) {
597     return R;
598   }
599 
600   const FunctionSamples *FS = findFunctionSamples(Inst);
601   if (FS == nullptr)
602     return R;
603 
604   if (const FunctionSamplesMap *M = FS->findFunctionSamplesMapAt(
605           LineLocation(getOffset(DIL), DIL->getBaseDiscriminator()))) {
606     if (M->size() == 0)
607       return R;
608     for (const auto &NameFS : *M) {
609       R.push_back(&NameFS.second);
610     }
611     std::sort(R.begin(), R.end(),
612               [](const FunctionSamples *L, const FunctionSamples *R) {
613                 return L->getTotalSamples() > R->getTotalSamples();
614               });
615   }
616   return R;
617 }
618 
619 /// \brief Get the FunctionSamples for an instruction.
620 ///
621 /// The FunctionSamples of an instruction \p Inst is the inlined instance
622 /// in which that instruction is coming from. We traverse the inline stack
623 /// of that instruction, and match it with the tree nodes in the profile.
624 ///
625 /// \param Inst Instruction to query.
626 ///
627 /// \returns the FunctionSamples pointer to the inlined instance.
628 const FunctionSamples *
629 SampleProfileLoader::findFunctionSamples(const Instruction &Inst) const {
630   SmallVector<std::pair<LineLocation, StringRef>, 10> S;
631   const DILocation *DIL = Inst.getDebugLoc();
632   if (!DIL)
633     return Samples;
634 
635   const DILocation *PrevDIL = DIL;
636   for (DIL = DIL->getInlinedAt(); DIL; DIL = DIL->getInlinedAt()) {
637     S.push_back(std::make_pair(
638         LineLocation(getOffset(DIL), DIL->getBaseDiscriminator()),
639         PrevDIL->getScope()->getSubprogram()->getLinkageName()));
640     PrevDIL = DIL;
641   }
642   if (S.size() == 0)
643     return Samples;
644   const FunctionSamples *FS = Samples;
645   for (int i = S.size() - 1; i >= 0 && FS != nullptr; i--) {
646     FS = FS->findFunctionSamplesAt(S[i].first, S[i].second);
647   }
648   return FS;
649 }
650 
651 /// \brief Iteratively inline hot callsites of a function.
652 ///
653 /// Iteratively traverse all callsites of the function \p F, and find if
654 /// the corresponding inlined instance exists and is hot in profile. If
655 /// it is hot enough, inline the callsites and adds new callsites of the
656 /// callee into the caller. If the call is an indirect call, first promote
657 /// it to direct call. Each indirect call is limited with a single target.
658 ///
659 /// \param F function to perform iterative inlining.
660 /// \param ImportGUIDs a set to be updated to include all GUIDs that come
661 ///     from a different module but inlined in the profiled binary.
662 ///
663 /// \returns True if there is any inline happened.
664 bool SampleProfileLoader::inlineHotFunctions(
665     Function &F, DenseSet<GlobalValue::GUID> &ImportGUIDs) {
666   DenseSet<Instruction *> PromotedInsns;
667   bool Changed = false;
668   LLVMContext &Ctx = F.getContext();
669   std::function<AssumptionCache &(Function &)> GetAssumptionCache = [&](
670       Function &F) -> AssumptionCache & { return ACT->getAssumptionCache(F); };
671   while (true) {
672     bool LocalChanged = false;
673     SmallVector<Instruction *, 10> CIS;
674     for (auto &BB : F) {
675       bool Hot = false;
676       SmallVector<Instruction *, 10> Candidates;
677       for (auto &I : BB.getInstList()) {
678         const FunctionSamples *FS = nullptr;
679         if ((isa<CallInst>(I) || isa<InvokeInst>(I)) &&
680             !isa<IntrinsicInst>(I) && (FS = findCalleeFunctionSamples(I))) {
681           Candidates.push_back(&I);
682           if (callsiteIsHot(Samples, FS))
683             Hot = true;
684         }
685       }
686       if (Hot) {
687         CIS.insert(CIS.begin(), Candidates.begin(), Candidates.end());
688       }
689     }
690     for (auto I : CIS) {
691       InlineFunctionInfo IFI(nullptr, ACT ? &GetAssumptionCache : nullptr);
692       Function *CalledFunction = CallSite(I).getCalledFunction();
693       // Do not inline recursive calls.
694       if (CalledFunction == &F)
695         continue;
696       Instruction *DI = I;
697       if (!CalledFunction && !PromotedInsns.count(I) &&
698           CallSite(I).isIndirectCall())
699         for (const auto *FS : findIndirectCallFunctionSamples(*I)) {
700           auto CalleeFunctionName = FS->getName();
701           // If it is a recursive call, we do not inline it as it could bloat
702           // the code exponentially. There is way to better handle this, e.g.
703           // clone the caller first, and inline the cloned caller if it is
704           // recursive. As llvm does not inline recursive calls, we will simply
705           // ignore it instead of handling it explicitly.
706           if (CalleeFunctionName == F.getName())
707             continue;
708           const char *Reason = "Callee function not available";
709           auto R = SymbolMap.find(CalleeFunctionName);
710           if (R == SymbolMap.end())
711             continue;
712           CalledFunction = R->getValue();
713           if (CalledFunction && isLegalToPromote(I, CalledFunction, &Reason)) {
714             // The indirect target was promoted and inlined in the profile, as a
715             // result, we do not have profile info for the branch probability.
716             // We set the probability to 80% taken to indicate that the static
717             // call is likely taken.
718             DI = dyn_cast<Instruction>(
719                 promoteIndirectCall(I, CalledFunction, 80, 100, false)
720                     ->stripPointerCasts());
721             PromotedInsns.insert(I);
722           } else {
723             DEBUG(dbgs() << "\nFailed to promote indirect call to "
724                          << CalleeFunctionName << " because " << Reason
725                          << "\n");
726             continue;
727           }
728         }
729       if (!CalledFunction || !CalledFunction->getSubprogram()) {
730         findCalleeFunctionSamples(*I)->findImportedFunctions(
731             ImportGUIDs, F.getParent(),
732             Samples->getTotalSamples() * SampleProfileHotThreshold / 100);
733         continue;
734       }
735       DebugLoc DLoc = I->getDebugLoc();
736       if (InlineFunction(CallSite(DI), IFI)) {
737         LocalChanged = true;
738         emitOptimizationRemark(Ctx, DEBUG_TYPE, F, DLoc,
739                                Twine("inlined hot callee '") +
740                                    CalledFunction->getName() + "' into '" +
741                                    F.getName() + "'");
742       }
743     }
744     if (LocalChanged) {
745       Changed = true;
746     } else {
747       break;
748     }
749   }
750   return Changed;
751 }
752 
753 /// \brief Find equivalence classes for the given block.
754 ///
755 /// This finds all the blocks that are guaranteed to execute the same
756 /// number of times as \p BB1. To do this, it traverses all the
757 /// descendants of \p BB1 in the dominator or post-dominator tree.
758 ///
759 /// A block BB2 will be in the same equivalence class as \p BB1 if
760 /// the following holds:
761 ///
762 /// 1- \p BB1 is a descendant of BB2 in the opposite tree. So, if BB2
763 ///    is a descendant of \p BB1 in the dominator tree, then BB2 should
764 ///    dominate BB1 in the post-dominator tree.
765 ///
766 /// 2- Both BB2 and \p BB1 must be in the same loop.
767 ///
768 /// For every block BB2 that meets those two requirements, we set BB2's
769 /// equivalence class to \p BB1.
770 ///
771 /// \param BB1  Block to check.
772 /// \param Descendants  Descendants of \p BB1 in either the dom or pdom tree.
773 /// \param DomTree  Opposite dominator tree. If \p Descendants is filled
774 ///                 with blocks from \p BB1's dominator tree, then
775 ///                 this is the post-dominator tree, and vice versa.
776 void SampleProfileLoader::findEquivalencesFor(
777     BasicBlock *BB1, ArrayRef<BasicBlock *> Descendants,
778     DominatorTreeBase<BasicBlock> *DomTree) {
779   const BasicBlock *EC = EquivalenceClass[BB1];
780   uint64_t Weight = BlockWeights[EC];
781   for (const auto *BB2 : Descendants) {
782     bool IsDomParent = DomTree->dominates(BB2, BB1);
783     bool IsInSameLoop = LI->getLoopFor(BB1) == LI->getLoopFor(BB2);
784     if (BB1 != BB2 && IsDomParent && IsInSameLoop) {
785       EquivalenceClass[BB2] = EC;
786       // If BB2 is visited, then the entire EC should be marked as visited.
787       if (VisitedBlocks.count(BB2)) {
788         VisitedBlocks.insert(EC);
789       }
790 
791       // If BB2 is heavier than BB1, make BB2 have the same weight
792       // as BB1.
793       //
794       // Note that we don't worry about the opposite situation here
795       // (when BB2 is lighter than BB1). We will deal with this
796       // during the propagation phase. Right now, we just want to
797       // make sure that BB1 has the largest weight of all the
798       // members of its equivalence set.
799       Weight = std::max(Weight, BlockWeights[BB2]);
800     }
801   }
802   if (EC == &EC->getParent()->getEntryBlock()) {
803     BlockWeights[EC] = Samples->getHeadSamples() + 1;
804   } else {
805     BlockWeights[EC] = Weight;
806   }
807 }
808 
809 /// \brief Find equivalence classes.
810 ///
811 /// Since samples may be missing from blocks, we can fill in the gaps by setting
812 /// the weights of all the blocks in the same equivalence class to the same
813 /// weight. To compute the concept of equivalence, we use dominance and loop
814 /// information. Two blocks B1 and B2 are in the same equivalence class if B1
815 /// dominates B2, B2 post-dominates B1 and both are in the same loop.
816 ///
817 /// \param F The function to query.
818 void SampleProfileLoader::findEquivalenceClasses(Function &F) {
819   SmallVector<BasicBlock *, 8> DominatedBBs;
820   DEBUG(dbgs() << "\nBlock equivalence classes\n");
821   // Find equivalence sets based on dominance and post-dominance information.
822   for (auto &BB : F) {
823     BasicBlock *BB1 = &BB;
824 
825     // Compute BB1's equivalence class once.
826     if (EquivalenceClass.count(BB1)) {
827       DEBUG(printBlockEquivalence(dbgs(), BB1));
828       continue;
829     }
830 
831     // By default, blocks are in their own equivalence class.
832     EquivalenceClass[BB1] = BB1;
833 
834     // Traverse all the blocks dominated by BB1. We are looking for
835     // every basic block BB2 such that:
836     //
837     // 1- BB1 dominates BB2.
838     // 2- BB2 post-dominates BB1.
839     // 3- BB1 and BB2 are in the same loop nest.
840     //
841     // If all those conditions hold, it means that BB2 is executed
842     // as many times as BB1, so they are placed in the same equivalence
843     // class by making BB2's equivalence class be BB1.
844     DominatedBBs.clear();
845     DT->getDescendants(BB1, DominatedBBs);
846     findEquivalencesFor(BB1, DominatedBBs, PDT.get());
847 
848     DEBUG(printBlockEquivalence(dbgs(), BB1));
849   }
850 
851   // Assign weights to equivalence classes.
852   //
853   // All the basic blocks in the same equivalence class will execute
854   // the same number of times. Since we know that the head block in
855   // each equivalence class has the largest weight, assign that weight
856   // to all the blocks in that equivalence class.
857   DEBUG(dbgs() << "\nAssign the same weight to all blocks in the same class\n");
858   for (auto &BI : F) {
859     const BasicBlock *BB = &BI;
860     const BasicBlock *EquivBB = EquivalenceClass[BB];
861     if (BB != EquivBB)
862       BlockWeights[BB] = BlockWeights[EquivBB];
863     DEBUG(printBlockWeight(dbgs(), BB));
864   }
865 }
866 
867 /// \brief Visit the given edge to decide if it has a valid weight.
868 ///
869 /// If \p E has not been visited before, we copy to \p UnknownEdge
870 /// and increment the count of unknown edges.
871 ///
872 /// \param E  Edge to visit.
873 /// \param NumUnknownEdges  Current number of unknown edges.
874 /// \param UnknownEdge  Set if E has not been visited before.
875 ///
876 /// \returns E's weight, if known. Otherwise, return 0.
877 uint64_t SampleProfileLoader::visitEdge(Edge E, unsigned *NumUnknownEdges,
878                                         Edge *UnknownEdge) {
879   if (!VisitedEdges.count(E)) {
880     (*NumUnknownEdges)++;
881     *UnknownEdge = E;
882     return 0;
883   }
884 
885   return EdgeWeights[E];
886 }
887 
888 /// \brief Propagate weights through incoming/outgoing edges.
889 ///
890 /// If the weight of a basic block is known, and there is only one edge
891 /// with an unknown weight, we can calculate the weight of that edge.
892 ///
893 /// Similarly, if all the edges have a known count, we can calculate the
894 /// count of the basic block, if needed.
895 ///
896 /// \param F  Function to process.
897 /// \param UpdateBlockCount  Whether we should update basic block counts that
898 ///                          has already been annotated.
899 ///
900 /// \returns  True if new weights were assigned to edges or blocks.
901 bool SampleProfileLoader::propagateThroughEdges(Function &F,
902                                                 bool UpdateBlockCount) {
903   bool Changed = false;
904   DEBUG(dbgs() << "\nPropagation through edges\n");
905   for (const auto &BI : F) {
906     const BasicBlock *BB = &BI;
907     const BasicBlock *EC = EquivalenceClass[BB];
908 
909     // Visit all the predecessor and successor edges to determine
910     // which ones have a weight assigned already. Note that it doesn't
911     // matter that we only keep track of a single unknown edge. The
912     // only case we are interested in handling is when only a single
913     // edge is unknown (see setEdgeOrBlockWeight).
914     for (unsigned i = 0; i < 2; i++) {
915       uint64_t TotalWeight = 0;
916       unsigned NumUnknownEdges = 0, NumTotalEdges = 0;
917       Edge UnknownEdge, SelfReferentialEdge, SingleEdge;
918 
919       if (i == 0) {
920         // First, visit all predecessor edges.
921         NumTotalEdges = Predecessors[BB].size();
922         for (auto *Pred : Predecessors[BB]) {
923           Edge E = std::make_pair(Pred, BB);
924           TotalWeight += visitEdge(E, &NumUnknownEdges, &UnknownEdge);
925           if (E.first == E.second)
926             SelfReferentialEdge = E;
927         }
928         if (NumTotalEdges == 1) {
929           SingleEdge = std::make_pair(Predecessors[BB][0], BB);
930         }
931       } else {
932         // On the second round, visit all successor edges.
933         NumTotalEdges = Successors[BB].size();
934         for (auto *Succ : Successors[BB]) {
935           Edge E = std::make_pair(BB, Succ);
936           TotalWeight += visitEdge(E, &NumUnknownEdges, &UnknownEdge);
937         }
938         if (NumTotalEdges == 1) {
939           SingleEdge = std::make_pair(BB, Successors[BB][0]);
940         }
941       }
942 
943       // After visiting all the edges, there are three cases that we
944       // can handle immediately:
945       //
946       // - All the edge weights are known (i.e., NumUnknownEdges == 0).
947       //   In this case, we simply check that the sum of all the edges
948       //   is the same as BB's weight. If not, we change BB's weight
949       //   to match. Additionally, if BB had not been visited before,
950       //   we mark it visited.
951       //
952       // - Only one edge is unknown and BB has already been visited.
953       //   In this case, we can compute the weight of the edge by
954       //   subtracting the total block weight from all the known
955       //   edge weights. If the edges weight more than BB, then the
956       //   edge of the last remaining edge is set to zero.
957       //
958       // - There exists a self-referential edge and the weight of BB is
959       //   known. In this case, this edge can be based on BB's weight.
960       //   We add up all the other known edges and set the weight on
961       //   the self-referential edge as we did in the previous case.
962       //
963       // In any other case, we must continue iterating. Eventually,
964       // all edges will get a weight, or iteration will stop when
965       // it reaches SampleProfileMaxPropagateIterations.
966       if (NumUnknownEdges <= 1) {
967         uint64_t &BBWeight = BlockWeights[EC];
968         if (NumUnknownEdges == 0) {
969           if (!VisitedBlocks.count(EC)) {
970             // If we already know the weight of all edges, the weight of the
971             // basic block can be computed. It should be no larger than the sum
972             // of all edge weights.
973             if (TotalWeight > BBWeight) {
974               BBWeight = TotalWeight;
975               Changed = true;
976               DEBUG(dbgs() << "All edge weights for " << BB->getName()
977                            << " known. Set weight for block: ";
978                     printBlockWeight(dbgs(), BB););
979             }
980           } else if (NumTotalEdges == 1 &&
981                      EdgeWeights[SingleEdge] < BlockWeights[EC]) {
982             // If there is only one edge for the visited basic block, use the
983             // block weight to adjust edge weight if edge weight is smaller.
984             EdgeWeights[SingleEdge] = BlockWeights[EC];
985             Changed = true;
986           }
987         } else if (NumUnknownEdges == 1 && VisitedBlocks.count(EC)) {
988           // If there is a single unknown edge and the block has been
989           // visited, then we can compute E's weight.
990           if (BBWeight >= TotalWeight)
991             EdgeWeights[UnknownEdge] = BBWeight - TotalWeight;
992           else
993             EdgeWeights[UnknownEdge] = 0;
994           const BasicBlock *OtherEC;
995           if (i == 0)
996             OtherEC = EquivalenceClass[UnknownEdge.first];
997           else
998             OtherEC = EquivalenceClass[UnknownEdge.second];
999           // Edge weights should never exceed the BB weights it connects.
1000           if (VisitedBlocks.count(OtherEC) &&
1001               EdgeWeights[UnknownEdge] > BlockWeights[OtherEC])
1002             EdgeWeights[UnknownEdge] = BlockWeights[OtherEC];
1003           VisitedEdges.insert(UnknownEdge);
1004           Changed = true;
1005           DEBUG(dbgs() << "Set weight for edge: ";
1006                 printEdgeWeight(dbgs(), UnknownEdge));
1007         }
1008       } else if (VisitedBlocks.count(EC) && BlockWeights[EC] == 0) {
1009         // If a block Weights 0, all its in/out edges should weight 0.
1010         if (i == 0) {
1011           for (auto *Pred : Predecessors[BB]) {
1012             Edge E = std::make_pair(Pred, BB);
1013             EdgeWeights[E] = 0;
1014             VisitedEdges.insert(E);
1015           }
1016         } else {
1017           for (auto *Succ : Successors[BB]) {
1018             Edge E = std::make_pair(BB, Succ);
1019             EdgeWeights[E] = 0;
1020             VisitedEdges.insert(E);
1021           }
1022         }
1023       } else if (SelfReferentialEdge.first && VisitedBlocks.count(EC)) {
1024         uint64_t &BBWeight = BlockWeights[BB];
1025         // We have a self-referential edge and the weight of BB is known.
1026         if (BBWeight >= TotalWeight)
1027           EdgeWeights[SelfReferentialEdge] = BBWeight - TotalWeight;
1028         else
1029           EdgeWeights[SelfReferentialEdge] = 0;
1030         VisitedEdges.insert(SelfReferentialEdge);
1031         Changed = true;
1032         DEBUG(dbgs() << "Set self-referential edge weight to: ";
1033               printEdgeWeight(dbgs(), SelfReferentialEdge));
1034       }
1035       if (UpdateBlockCount && !VisitedBlocks.count(EC) && TotalWeight > 0) {
1036         BlockWeights[EC] = TotalWeight;
1037         VisitedBlocks.insert(EC);
1038         Changed = true;
1039       }
1040     }
1041   }
1042 
1043   return Changed;
1044 }
1045 
1046 /// \brief Build in/out edge lists for each basic block in the CFG.
1047 ///
1048 /// We are interested in unique edges. If a block B1 has multiple
1049 /// edges to another block B2, we only add a single B1->B2 edge.
1050 void SampleProfileLoader::buildEdges(Function &F) {
1051   for (auto &BI : F) {
1052     BasicBlock *B1 = &BI;
1053 
1054     // Add predecessors for B1.
1055     SmallPtrSet<BasicBlock *, 16> Visited;
1056     if (!Predecessors[B1].empty())
1057       llvm_unreachable("Found a stale predecessors list in a basic block.");
1058     for (pred_iterator PI = pred_begin(B1), PE = pred_end(B1); PI != PE; ++PI) {
1059       BasicBlock *B2 = *PI;
1060       if (Visited.insert(B2).second)
1061         Predecessors[B1].push_back(B2);
1062     }
1063 
1064     // Add successors for B1.
1065     Visited.clear();
1066     if (!Successors[B1].empty())
1067       llvm_unreachable("Found a stale successors list in a basic block.");
1068     for (succ_iterator SI = succ_begin(B1), SE = succ_end(B1); SI != SE; ++SI) {
1069       BasicBlock *B2 = *SI;
1070       if (Visited.insert(B2).second)
1071         Successors[B1].push_back(B2);
1072     }
1073   }
1074 }
1075 
1076 /// Sorts the CallTargetMap \p M by count in descending order and stores the
1077 /// sorted result in \p Sorted. Returns the total counts.
1078 static uint64_t SortCallTargets(SmallVector<InstrProfValueData, 2> &Sorted,
1079                                 const SampleRecord::CallTargetMap &M) {
1080   Sorted.clear();
1081   uint64_t Sum = 0;
1082   for (auto I = M.begin(); I != M.end(); ++I) {
1083     Sum += I->getValue();
1084     Sorted.push_back({Function::getGUID(I->getKey()), I->getValue()});
1085   }
1086   std::sort(Sorted.begin(), Sorted.end(),
1087             [](const InstrProfValueData &L, const InstrProfValueData &R) {
1088               if (L.Count == R.Count)
1089                 return L.Value > R.Value;
1090               else
1091                 return L.Count > R.Count;
1092             });
1093   return Sum;
1094 }
1095 
1096 /// \brief Propagate weights into edges
1097 ///
1098 /// The following rules are applied to every block BB in the CFG:
1099 ///
1100 /// - If BB has a single predecessor/successor, then the weight
1101 ///   of that edge is the weight of the block.
1102 ///
1103 /// - If all incoming or outgoing edges are known except one, and the
1104 ///   weight of the block is already known, the weight of the unknown
1105 ///   edge will be the weight of the block minus the sum of all the known
1106 ///   edges. If the sum of all the known edges is larger than BB's weight,
1107 ///   we set the unknown edge weight to zero.
1108 ///
1109 /// - If there is a self-referential edge, and the weight of the block is
1110 ///   known, the weight for that edge is set to the weight of the block
1111 ///   minus the weight of the other incoming edges to that block (if
1112 ///   known).
1113 void SampleProfileLoader::propagateWeights(Function &F) {
1114   bool Changed = true;
1115   unsigned I = 0;
1116 
1117   // If BB weight is larger than its corresponding loop's header BB weight,
1118   // use the BB weight to replace the loop header BB weight.
1119   for (auto &BI : F) {
1120     BasicBlock *BB = &BI;
1121     Loop *L = LI->getLoopFor(BB);
1122     if (!L) {
1123       continue;
1124     }
1125     BasicBlock *Header = L->getHeader();
1126     if (Header && BlockWeights[BB] > BlockWeights[Header]) {
1127       BlockWeights[Header] = BlockWeights[BB];
1128     }
1129   }
1130 
1131   // Before propagation starts, build, for each block, a list of
1132   // unique predecessors and successors. This is necessary to handle
1133   // identical edges in multiway branches. Since we visit all blocks and all
1134   // edges of the CFG, it is cleaner to build these lists once at the start
1135   // of the pass.
1136   buildEdges(F);
1137 
1138   // Propagate until we converge or we go past the iteration limit.
1139   while (Changed && I++ < SampleProfileMaxPropagateIterations) {
1140     Changed = propagateThroughEdges(F, false);
1141   }
1142 
1143   // The first propagation propagates BB counts from annotated BBs to unknown
1144   // BBs. The 2nd propagation pass resets edges weights, and use all BB weights
1145   // to propagate edge weights.
1146   VisitedEdges.clear();
1147   Changed = true;
1148   while (Changed && I++ < SampleProfileMaxPropagateIterations) {
1149     Changed = propagateThroughEdges(F, false);
1150   }
1151 
1152   // The 3rd propagation pass allows adjust annotated BB weights that are
1153   // obviously wrong.
1154   Changed = true;
1155   while (Changed && I++ < SampleProfileMaxPropagateIterations) {
1156     Changed = propagateThroughEdges(F, true);
1157   }
1158 
1159   // Generate MD_prof metadata for every branch instruction using the
1160   // edge weights computed during propagation.
1161   DEBUG(dbgs() << "\nPropagation complete. Setting branch weights\n");
1162   LLVMContext &Ctx = F.getContext();
1163   MDBuilder MDB(Ctx);
1164   for (auto &BI : F) {
1165     BasicBlock *BB = &BI;
1166 
1167     if (BlockWeights[BB]) {
1168       for (auto &I : BB->getInstList()) {
1169         if (!isa<CallInst>(I) && !isa<InvokeInst>(I))
1170           continue;
1171         CallSite CS(&I);
1172         if (!CS.getCalledFunction()) {
1173           const DebugLoc &DLoc = I.getDebugLoc();
1174           if (!DLoc)
1175             continue;
1176           const DILocation *DIL = DLoc;
1177           uint32_t LineOffset = getOffset(DIL);
1178           uint32_t Discriminator = DIL->getBaseDiscriminator();
1179 
1180           const FunctionSamples *FS = findFunctionSamples(I);
1181           if (!FS)
1182             continue;
1183           auto T = FS->findCallTargetMapAt(LineOffset, Discriminator);
1184           if (!T || T.get().size() == 0)
1185             continue;
1186           SmallVector<InstrProfValueData, 2> SortedCallTargets;
1187           uint64_t Sum = SortCallTargets(SortedCallTargets, T.get());
1188           annotateValueSite(*I.getParent()->getParent()->getParent(), I,
1189                             SortedCallTargets, Sum, IPVK_IndirectCallTarget,
1190                             SortedCallTargets.size());
1191         } else if (!dyn_cast<IntrinsicInst>(&I)) {
1192           SmallVector<uint32_t, 1> Weights;
1193           Weights.push_back(BlockWeights[BB]);
1194           I.setMetadata(LLVMContext::MD_prof, MDB.createBranchWeights(Weights));
1195         }
1196       }
1197     }
1198     TerminatorInst *TI = BB->getTerminator();
1199     if (TI->getNumSuccessors() == 1)
1200       continue;
1201     if (!isa<BranchInst>(TI) && !isa<SwitchInst>(TI))
1202       continue;
1203 
1204     DebugLoc BranchLoc = TI->getDebugLoc();
1205     DEBUG(dbgs() << "\nGetting weights for branch at line "
1206                  << ((BranchLoc) ? Twine(BranchLoc.getLine())
1207                                  : Twine("<UNKNOWN LOCATION>"))
1208                  << ".\n");
1209     SmallVector<uint32_t, 4> Weights;
1210     uint32_t MaxWeight = 0;
1211     DebugLoc MaxDestLoc;
1212     for (unsigned I = 0; I < TI->getNumSuccessors(); ++I) {
1213       BasicBlock *Succ = TI->getSuccessor(I);
1214       Edge E = std::make_pair(BB, Succ);
1215       uint64_t Weight = EdgeWeights[E];
1216       DEBUG(dbgs() << "\t"; printEdgeWeight(dbgs(), E));
1217       // Use uint32_t saturated arithmetic to adjust the incoming weights,
1218       // if needed. Sample counts in profiles are 64-bit unsigned values,
1219       // but internally branch weights are expressed as 32-bit values.
1220       if (Weight > std::numeric_limits<uint32_t>::max()) {
1221         DEBUG(dbgs() << " (saturated due to uint32_t overflow)");
1222         Weight = std::numeric_limits<uint32_t>::max();
1223       }
1224       // Weight is added by one to avoid propagation errors introduced by
1225       // 0 weights.
1226       Weights.push_back(static_cast<uint32_t>(Weight + 1));
1227       if (Weight != 0) {
1228         if (Weight > MaxWeight) {
1229           MaxWeight = Weight;
1230           MaxDestLoc = Succ->getFirstNonPHIOrDbgOrLifetime()->getDebugLoc();
1231         }
1232       }
1233     }
1234 
1235     uint64_t TempWeight;
1236     // Only set weights if there is at least one non-zero weight.
1237     // In any other case, let the analyzer set weights.
1238     // Do not set weights if the weights are present. In ThinLTO, the profile
1239     // annotation is done twice. If the first annotation already set the
1240     // weights, the second pass does not need to set it.
1241     if (MaxWeight > 0 && !TI->extractProfTotalWeight(TempWeight)) {
1242       DEBUG(dbgs() << "SUCCESS. Found non-zero weights.\n");
1243       TI->setMetadata(llvm::LLVMContext::MD_prof,
1244                       MDB.createBranchWeights(Weights));
1245       emitOptimizationRemark(
1246           Ctx, DEBUG_TYPE, F, MaxDestLoc,
1247           Twine("most popular destination for conditional branches at ") +
1248               ((BranchLoc) ? Twine(BranchLoc->getFilename() + ":" +
1249                                    Twine(BranchLoc.getLine()) + ":" +
1250                                    Twine(BranchLoc.getCol()))
1251                            : Twine("<UNKNOWN LOCATION>")));
1252     } else {
1253       DEBUG(dbgs() << "SKIPPED. All branch weights are zero.\n");
1254     }
1255   }
1256 }
1257 
1258 /// \brief Get the line number for the function header.
1259 ///
1260 /// This looks up function \p F in the current compilation unit and
1261 /// retrieves the line number where the function is defined. This is
1262 /// line 0 for all the samples read from the profile file. Every line
1263 /// number is relative to this line.
1264 ///
1265 /// \param F  Function object to query.
1266 ///
1267 /// \returns the line number where \p F is defined. If it returns 0,
1268 ///          it means that there is no debug information available for \p F.
1269 unsigned SampleProfileLoader::getFunctionLoc(Function &F) {
1270   if (DISubprogram *S = F.getSubprogram())
1271     return S->getLine();
1272 
1273   // If the start of \p F is missing, emit a diagnostic to inform the user
1274   // about the missed opportunity.
1275   F.getContext().diagnose(DiagnosticInfoSampleProfile(
1276       "No debug information found in function " + F.getName() +
1277           ": Function profile not used",
1278       DS_Warning));
1279   return 0;
1280 }
1281 
1282 void SampleProfileLoader::computeDominanceAndLoopInfo(Function &F) {
1283   DT.reset(new DominatorTree);
1284   DT->recalculate(F);
1285 
1286   PDT.reset(new DominatorTreeBase<BasicBlock>(true));
1287   PDT->recalculate(F);
1288 
1289   LI.reset(new LoopInfo);
1290   LI->analyze(*DT);
1291 }
1292 
1293 /// \brief Generate branch weight metadata for all branches in \p F.
1294 ///
1295 /// Branch weights are computed out of instruction samples using a
1296 /// propagation heuristic. Propagation proceeds in 3 phases:
1297 ///
1298 /// 1- Assignment of block weights. All the basic blocks in the function
1299 ///    are initial assigned the same weight as their most frequently
1300 ///    executed instruction.
1301 ///
1302 /// 2- Creation of equivalence classes. Since samples may be missing from
1303 ///    blocks, we can fill in the gaps by setting the weights of all the
1304 ///    blocks in the same equivalence class to the same weight. To compute
1305 ///    the concept of equivalence, we use dominance and loop information.
1306 ///    Two blocks B1 and B2 are in the same equivalence class if B1
1307 ///    dominates B2, B2 post-dominates B1 and both are in the same loop.
1308 ///
1309 /// 3- Propagation of block weights into edges. This uses a simple
1310 ///    propagation heuristic. The following rules are applied to every
1311 ///    block BB in the CFG:
1312 ///
1313 ///    - If BB has a single predecessor/successor, then the weight
1314 ///      of that edge is the weight of the block.
1315 ///
1316 ///    - If all the edges are known except one, and the weight of the
1317 ///      block is already known, the weight of the unknown edge will
1318 ///      be the weight of the block minus the sum of all the known
1319 ///      edges. If the sum of all the known edges is larger than BB's weight,
1320 ///      we set the unknown edge weight to zero.
1321 ///
1322 ///    - If there is a self-referential edge, and the weight of the block is
1323 ///      known, the weight for that edge is set to the weight of the block
1324 ///      minus the weight of the other incoming edges to that block (if
1325 ///      known).
1326 ///
1327 /// Since this propagation is not guaranteed to finalize for every CFG, we
1328 /// only allow it to proceed for a limited number of iterations (controlled
1329 /// by -sample-profile-max-propagate-iterations).
1330 ///
1331 /// FIXME: Try to replace this propagation heuristic with a scheme
1332 /// that is guaranteed to finalize. A work-list approach similar to
1333 /// the standard value propagation algorithm used by SSA-CCP might
1334 /// work here.
1335 ///
1336 /// Once all the branch weights are computed, we emit the MD_prof
1337 /// metadata on BB using the computed values for each of its branches.
1338 ///
1339 /// \param F The function to query.
1340 ///
1341 /// \returns true if \p F was modified. Returns false, otherwise.
1342 bool SampleProfileLoader::emitAnnotations(Function &F) {
1343   bool Changed = false;
1344 
1345   if (getFunctionLoc(F) == 0)
1346     return false;
1347 
1348   DEBUG(dbgs() << "Line number for the first instruction in " << F.getName()
1349                << ": " << getFunctionLoc(F) << "\n");
1350 
1351   DenseSet<GlobalValue::GUID> ImportGUIDs;
1352   Changed |= inlineHotFunctions(F, ImportGUIDs);
1353 
1354   // Compute basic block weights.
1355   Changed |= computeBlockWeights(F);
1356 
1357   if (Changed) {
1358     // Add an entry count to the function using the samples gathered at the
1359     // function entry. Also sets the GUIDs that comes from a different
1360     // module but inlined in the profiled binary. This is aiming at making
1361     // the IR match the profiled binary before annotation.
1362     F.setEntryCount(Samples->getHeadSamples() + 1, &ImportGUIDs);
1363 
1364     // Compute dominance and loop info needed for propagation.
1365     computeDominanceAndLoopInfo(F);
1366 
1367     // Find equivalence classes.
1368     findEquivalenceClasses(F);
1369 
1370     // Propagate weights to all edges.
1371     propagateWeights(F);
1372   }
1373 
1374   // If coverage checking was requested, compute it now.
1375   if (SampleProfileRecordCoverage) {
1376     unsigned Used = CoverageTracker.countUsedRecords(Samples);
1377     unsigned Total = CoverageTracker.countBodyRecords(Samples);
1378     unsigned Coverage = CoverageTracker.computeCoverage(Used, Total);
1379     if (Coverage < SampleProfileRecordCoverage) {
1380       F.getContext().diagnose(DiagnosticInfoSampleProfile(
1381           F.getSubprogram()->getFilename(), getFunctionLoc(F),
1382           Twine(Used) + " of " + Twine(Total) + " available profile records (" +
1383               Twine(Coverage) + "%) were applied",
1384           DS_Warning));
1385     }
1386   }
1387 
1388   if (SampleProfileSampleCoverage) {
1389     uint64_t Used = CoverageTracker.getTotalUsedSamples();
1390     uint64_t Total = CoverageTracker.countBodySamples(Samples);
1391     unsigned Coverage = CoverageTracker.computeCoverage(Used, Total);
1392     if (Coverage < SampleProfileSampleCoverage) {
1393       F.getContext().diagnose(DiagnosticInfoSampleProfile(
1394           F.getSubprogram()->getFilename(), getFunctionLoc(F),
1395           Twine(Used) + " of " + Twine(Total) + " available profile samples (" +
1396               Twine(Coverage) + "%) were applied",
1397           DS_Warning));
1398     }
1399   }
1400   return Changed;
1401 }
1402 
1403 char SampleProfileLoaderLegacyPass::ID = 0;
1404 INITIALIZE_PASS_BEGIN(SampleProfileLoaderLegacyPass, "sample-profile",
1405                       "Sample Profile loader", false, false)
1406 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
1407 INITIALIZE_PASS_END(SampleProfileLoaderLegacyPass, "sample-profile",
1408                     "Sample Profile loader", false, false)
1409 
1410 bool SampleProfileLoader::doInitialization(Module &M) {
1411   auto &Ctx = M.getContext();
1412   auto ReaderOrErr = SampleProfileReader::create(Filename, Ctx);
1413   if (std::error_code EC = ReaderOrErr.getError()) {
1414     std::string Msg = "Could not open profile: " + EC.message();
1415     Ctx.diagnose(DiagnosticInfoSampleProfile(Filename, Msg));
1416     return false;
1417   }
1418   Reader = std::move(ReaderOrErr.get());
1419   ProfileIsValid = (Reader->read() == sampleprof_error::success);
1420   return true;
1421 }
1422 
1423 ModulePass *llvm::createSampleProfileLoaderPass() {
1424   return new SampleProfileLoaderLegacyPass(SampleProfileFile);
1425 }
1426 
1427 ModulePass *llvm::createSampleProfileLoaderPass(StringRef Name) {
1428   return new SampleProfileLoaderLegacyPass(Name);
1429 }
1430 
1431 bool SampleProfileLoader::runOnModule(Module &M) {
1432   if (!ProfileIsValid)
1433     return false;
1434 
1435   // Compute the total number of samples collected in this profile.
1436   for (const auto &I : Reader->getProfiles())
1437     TotalCollectedSamples += I.second.getTotalSamples();
1438 
1439   // Populate the symbol map.
1440   for (const auto &N_F : M.getValueSymbolTable()) {
1441     std::string OrigName = N_F.getKey();
1442     Function *F = dyn_cast<Function>(N_F.getValue());
1443     if (F == nullptr)
1444       continue;
1445     SymbolMap[OrigName] = F;
1446     auto pos = OrigName.find('.');
1447     if (pos != std::string::npos) {
1448       std::string NewName = OrigName.substr(0, pos);
1449       auto r = SymbolMap.insert(std::make_pair(NewName, F));
1450       // Failiing to insert means there is already an entry in SymbolMap,
1451       // thus there are multiple functions that are mapped to the same
1452       // stripped name. In this case of name conflicting, set the value
1453       // to nullptr to avoid confusion.
1454       if (!r.second)
1455         r.first->second = nullptr;
1456     }
1457   }
1458 
1459   bool retval = false;
1460   for (auto &F : M)
1461     if (!F.isDeclaration()) {
1462       clearFunctionData();
1463       retval |= runOnFunction(F);
1464     }
1465   if (M.getProfileSummary() == nullptr)
1466     M.setProfileSummary(Reader->getSummary().getMD(M.getContext()));
1467   return retval;
1468 }
1469 
1470 bool SampleProfileLoaderLegacyPass::runOnModule(Module &M) {
1471   // FIXME: pass in AssumptionCache correctly for the new pass manager.
1472   SampleLoader.setACT(&getAnalysis<AssumptionCacheTracker>());
1473   return SampleLoader.runOnModule(M);
1474 }
1475 
1476 bool SampleProfileLoader::runOnFunction(Function &F) {
1477   F.setEntryCount(0);
1478   Samples = Reader->getSamplesFor(F);
1479   if (Samples && !Samples->empty())
1480     return emitAnnotations(F);
1481   return false;
1482 }
1483 
1484 PreservedAnalyses SampleProfileLoaderPass::run(Module &M,
1485                                                ModuleAnalysisManager &AM) {
1486 
1487   SampleProfileLoader SampleLoader(SampleProfileFile);
1488 
1489   SampleLoader.doInitialization(M);
1490 
1491   if (!SampleLoader.runOnModule(M))
1492     return PreservedAnalyses::all();
1493 
1494   return PreservedAnalyses::none();
1495 }
1496