1 //===- SampleProfile.cpp - Incorporate sample profiles into the IR --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the SampleProfileLoader transformation. This pass 11 // reads a profile file generated by a sampling profiler (e.g. Linux Perf - 12 // http://perf.wiki.kernel.org/) and generates IR metadata to reflect the 13 // profile information in the given profile. 14 // 15 // This pass generates branch weight annotations on the IR: 16 // 17 // - prof: Represents branch weights. This annotation is added to branches 18 // to indicate the weights of each edge coming out of the branch. 19 // The weight of each edge is the weight of the target block for 20 // that edge. The weight of a block B is computed as the maximum 21 // number of samples found in B. 22 // 23 //===----------------------------------------------------------------------===// 24 25 #include "llvm/Transforms/SampleProfile.h" 26 #include "llvm/ADT/DenseMap.h" 27 #include "llvm/ADT/SmallPtrSet.h" 28 #include "llvm/ADT/SmallSet.h" 29 #include "llvm/ADT/StringRef.h" 30 #include "llvm/Analysis/AssumptionCache.h" 31 #include "llvm/Analysis/LoopInfo.h" 32 #include "llvm/Analysis/PostDominators.h" 33 #include "llvm/IR/Constants.h" 34 #include "llvm/IR/DebugInfo.h" 35 #include "llvm/IR/DiagnosticInfo.h" 36 #include "llvm/IR/Dominators.h" 37 #include "llvm/IR/Function.h" 38 #include "llvm/IR/GlobalValue.h" 39 #include "llvm/IR/InstIterator.h" 40 #include "llvm/IR/Instructions.h" 41 #include "llvm/IR/IntrinsicInst.h" 42 #include "llvm/IR/LLVMContext.h" 43 #include "llvm/IR/MDBuilder.h" 44 #include "llvm/IR/Metadata.h" 45 #include "llvm/IR/Module.h" 46 #include "llvm/IR/ValueSymbolTable.h" 47 #include "llvm/Pass.h" 48 #include "llvm/ProfileData/InstrProf.h" 49 #include "llvm/ProfileData/SampleProfReader.h" 50 #include "llvm/Support/CommandLine.h" 51 #include "llvm/Support/Debug.h" 52 #include "llvm/Support/ErrorOr.h" 53 #include "llvm/Support/Format.h" 54 #include "llvm/Support/raw_ostream.h" 55 #include "llvm/Transforms/IPO.h" 56 #include "llvm/Transforms/Instrumentation.h" 57 #include "llvm/Transforms/Utils/Cloning.h" 58 #include <cctype> 59 60 using namespace llvm; 61 using namespace sampleprof; 62 63 #define DEBUG_TYPE "sample-profile" 64 65 // Command line option to specify the file to read samples from. This is 66 // mainly used for debugging. 67 static cl::opt<std::string> SampleProfileFile( 68 "sample-profile-file", cl::init(""), cl::value_desc("filename"), 69 cl::desc("Profile file loaded by -sample-profile"), cl::Hidden); 70 static cl::opt<unsigned> SampleProfileMaxPropagateIterations( 71 "sample-profile-max-propagate-iterations", cl::init(100), 72 cl::desc("Maximum number of iterations to go through when propagating " 73 "sample block/edge weights through the CFG.")); 74 static cl::opt<unsigned> SampleProfileRecordCoverage( 75 "sample-profile-check-record-coverage", cl::init(0), cl::value_desc("N"), 76 cl::desc("Emit a warning if less than N% of records in the input profile " 77 "are matched to the IR.")); 78 static cl::opt<unsigned> SampleProfileSampleCoverage( 79 "sample-profile-check-sample-coverage", cl::init(0), cl::value_desc("N"), 80 cl::desc("Emit a warning if less than N% of samples in the input profile " 81 "are matched to the IR.")); 82 static cl::opt<double> SampleProfileHotThreshold( 83 "sample-profile-inline-hot-threshold", cl::init(0.1), cl::value_desc("N"), 84 cl::desc("Inlined functions that account for more than N% of all samples " 85 "collected in the parent function, will be inlined again.")); 86 87 namespace { 88 typedef DenseMap<const BasicBlock *, uint64_t> BlockWeightMap; 89 typedef DenseMap<const BasicBlock *, const BasicBlock *> EquivalenceClassMap; 90 typedef std::pair<const BasicBlock *, const BasicBlock *> Edge; 91 typedef DenseMap<Edge, uint64_t> EdgeWeightMap; 92 typedef DenseMap<const BasicBlock *, SmallVector<const BasicBlock *, 8>> 93 BlockEdgeMap; 94 95 class SampleCoverageTracker { 96 public: 97 SampleCoverageTracker() : SampleCoverage(), TotalUsedSamples(0) {} 98 99 bool markSamplesUsed(const FunctionSamples *FS, uint32_t LineOffset, 100 uint32_t Discriminator, uint64_t Samples); 101 unsigned computeCoverage(unsigned Used, unsigned Total) const; 102 unsigned countUsedRecords(const FunctionSamples *FS) const; 103 unsigned countBodyRecords(const FunctionSamples *FS) const; 104 uint64_t getTotalUsedSamples() const { return TotalUsedSamples; } 105 uint64_t countBodySamples(const FunctionSamples *FS) const; 106 void clear() { 107 SampleCoverage.clear(); 108 TotalUsedSamples = 0; 109 } 110 111 private: 112 typedef std::map<LineLocation, unsigned> BodySampleCoverageMap; 113 typedef DenseMap<const FunctionSamples *, BodySampleCoverageMap> 114 FunctionSamplesCoverageMap; 115 116 /// Coverage map for sampling records. 117 /// 118 /// This map keeps a record of sampling records that have been matched to 119 /// an IR instruction. This is used to detect some form of staleness in 120 /// profiles (see flag -sample-profile-check-coverage). 121 /// 122 /// Each entry in the map corresponds to a FunctionSamples instance. This is 123 /// another map that counts how many times the sample record at the 124 /// given location has been used. 125 FunctionSamplesCoverageMap SampleCoverage; 126 127 /// Number of samples used from the profile. 128 /// 129 /// When a sampling record is used for the first time, the samples from 130 /// that record are added to this accumulator. Coverage is later computed 131 /// based on the total number of samples available in this function and 132 /// its callsites. 133 /// 134 /// Note that this accumulator tracks samples used from a single function 135 /// and all the inlined callsites. Strictly, we should have a map of counters 136 /// keyed by FunctionSamples pointers, but these stats are cleared after 137 /// every function, so we just need to keep a single counter. 138 uint64_t TotalUsedSamples; 139 }; 140 141 /// \brief Sample profile pass. 142 /// 143 /// This pass reads profile data from the file specified by 144 /// -sample-profile-file and annotates every affected function with the 145 /// profile information found in that file. 146 class SampleProfileLoader { 147 public: 148 SampleProfileLoader(StringRef Name = SampleProfileFile) 149 : DT(nullptr), PDT(nullptr), LI(nullptr), ACT(nullptr), Reader(), 150 Samples(nullptr), Filename(Name), ProfileIsValid(false), 151 TotalCollectedSamples(0) {} 152 153 bool doInitialization(Module &M); 154 bool runOnModule(Module &M); 155 void setACT(AssumptionCacheTracker *A) { ACT = A; } 156 157 void dump() { Reader->dump(); } 158 159 protected: 160 bool runOnFunction(Function &F); 161 unsigned getFunctionLoc(Function &F); 162 bool emitAnnotations(Function &F); 163 ErrorOr<uint64_t> getInstWeight(const Instruction &I); 164 ErrorOr<uint64_t> getBlockWeight(const BasicBlock *BB); 165 const FunctionSamples *findCalleeFunctionSamples(const Instruction &I) const; 166 std::vector<const FunctionSamples *> 167 findIndirectCallFunctionSamples(const Instruction &I) const; 168 const FunctionSamples *findFunctionSamples(const Instruction &I) const; 169 bool inlineHotFunctions(Function &F, 170 DenseSet<GlobalValue::GUID> &ImportGUIDs); 171 void printEdgeWeight(raw_ostream &OS, Edge E); 172 void printBlockWeight(raw_ostream &OS, const BasicBlock *BB) const; 173 void printBlockEquivalence(raw_ostream &OS, const BasicBlock *BB); 174 bool computeBlockWeights(Function &F); 175 void findEquivalenceClasses(Function &F); 176 void findEquivalencesFor(BasicBlock *BB1, ArrayRef<BasicBlock *> Descendants, 177 DominatorTreeBase<BasicBlock> *DomTree); 178 void propagateWeights(Function &F); 179 uint64_t visitEdge(Edge E, unsigned *NumUnknownEdges, Edge *UnknownEdge); 180 void buildEdges(Function &F); 181 bool propagateThroughEdges(Function &F, bool UpdateBlockCount); 182 void computeDominanceAndLoopInfo(Function &F); 183 unsigned getOffset(const DILocation *DIL) const; 184 void clearFunctionData(); 185 186 /// \brief Map basic blocks to their computed weights. 187 /// 188 /// The weight of a basic block is defined to be the maximum 189 /// of all the instruction weights in that block. 190 BlockWeightMap BlockWeights; 191 192 /// \brief Map edges to their computed weights. 193 /// 194 /// Edge weights are computed by propagating basic block weights in 195 /// SampleProfile::propagateWeights. 196 EdgeWeightMap EdgeWeights; 197 198 /// \brief Set of visited blocks during propagation. 199 SmallPtrSet<const BasicBlock *, 32> VisitedBlocks; 200 201 /// \brief Set of visited edges during propagation. 202 SmallSet<Edge, 32> VisitedEdges; 203 204 /// \brief Equivalence classes for block weights. 205 /// 206 /// Two blocks BB1 and BB2 are in the same equivalence class if they 207 /// dominate and post-dominate each other, and they are in the same loop 208 /// nest. When this happens, the two blocks are guaranteed to execute 209 /// the same number of times. 210 EquivalenceClassMap EquivalenceClass; 211 212 /// Map from function name to Function *. Used to find the function from 213 /// the function name. If the function name contains suffix, additional 214 /// entry is added to map from the stripped name to the function if there 215 /// is one-to-one mapping. 216 StringMap<Function *> SymbolMap; 217 218 /// \brief Dominance, post-dominance and loop information. 219 std::unique_ptr<DominatorTree> DT; 220 std::unique_ptr<DominatorTreeBase<BasicBlock>> PDT; 221 std::unique_ptr<LoopInfo> LI; 222 223 AssumptionCacheTracker *ACT; 224 225 /// \brief Predecessors for each basic block in the CFG. 226 BlockEdgeMap Predecessors; 227 228 /// \brief Successors for each basic block in the CFG. 229 BlockEdgeMap Successors; 230 231 SampleCoverageTracker CoverageTracker; 232 233 /// \brief Profile reader object. 234 std::unique_ptr<SampleProfileReader> Reader; 235 236 /// \brief Samples collected for the body of this function. 237 FunctionSamples *Samples; 238 239 /// \brief Name of the profile file to load. 240 std::string Filename; 241 242 /// \brief Flag indicating whether the profile input loaded successfully. 243 bool ProfileIsValid; 244 245 /// \brief Total number of samples collected in this profile. 246 /// 247 /// This is the sum of all the samples collected in all the functions executed 248 /// at runtime. 249 uint64_t TotalCollectedSamples; 250 }; 251 252 class SampleProfileLoaderLegacyPass : public ModulePass { 253 public: 254 // Class identification, replacement for typeinfo 255 static char ID; 256 257 SampleProfileLoaderLegacyPass(StringRef Name = SampleProfileFile) 258 : ModulePass(ID), SampleLoader(Name) { 259 initializeSampleProfileLoaderLegacyPassPass( 260 *PassRegistry::getPassRegistry()); 261 } 262 263 void dump() { SampleLoader.dump(); } 264 265 bool doInitialization(Module &M) override { 266 return SampleLoader.doInitialization(M); 267 } 268 StringRef getPassName() const override { return "Sample profile pass"; } 269 bool runOnModule(Module &M) override; 270 271 void getAnalysisUsage(AnalysisUsage &AU) const override { 272 AU.addRequired<AssumptionCacheTracker>(); 273 } 274 275 private: 276 SampleProfileLoader SampleLoader; 277 }; 278 279 /// Return true if the given callsite is hot wrt to its caller. 280 /// 281 /// Functions that were inlined in the original binary will be represented 282 /// in the inline stack in the sample profile. If the profile shows that 283 /// the original inline decision was "good" (i.e., the callsite is executed 284 /// frequently), then we will recreate the inline decision and apply the 285 /// profile from the inlined callsite. 286 /// 287 /// To decide whether an inlined callsite is hot, we compute the fraction 288 /// of samples used by the callsite with respect to the total number of samples 289 /// collected in the caller. 290 /// 291 /// If that fraction is larger than the default given by 292 /// SampleProfileHotThreshold, the callsite will be inlined again. 293 bool callsiteIsHot(const FunctionSamples *CallerFS, 294 const FunctionSamples *CallsiteFS) { 295 if (!CallsiteFS) 296 return false; // The callsite was not inlined in the original binary. 297 298 uint64_t ParentTotalSamples = CallerFS->getTotalSamples(); 299 if (ParentTotalSamples == 0) 300 return false; // Avoid division by zero. 301 302 uint64_t CallsiteTotalSamples = CallsiteFS->getTotalSamples(); 303 if (CallsiteTotalSamples == 0) 304 return false; // Callsite is trivially cold. 305 306 double PercentSamples = 307 (double)CallsiteTotalSamples / (double)ParentTotalSamples * 100.0; 308 return PercentSamples >= SampleProfileHotThreshold; 309 } 310 } 311 312 /// Mark as used the sample record for the given function samples at 313 /// (LineOffset, Discriminator). 314 /// 315 /// \returns true if this is the first time we mark the given record. 316 bool SampleCoverageTracker::markSamplesUsed(const FunctionSamples *FS, 317 uint32_t LineOffset, 318 uint32_t Discriminator, 319 uint64_t Samples) { 320 LineLocation Loc(LineOffset, Discriminator); 321 unsigned &Count = SampleCoverage[FS][Loc]; 322 bool FirstTime = (++Count == 1); 323 if (FirstTime) 324 TotalUsedSamples += Samples; 325 return FirstTime; 326 } 327 328 /// Return the number of sample records that were applied from this profile. 329 /// 330 /// This count does not include records from cold inlined callsites. 331 unsigned 332 SampleCoverageTracker::countUsedRecords(const FunctionSamples *FS) const { 333 auto I = SampleCoverage.find(FS); 334 335 // The size of the coverage map for FS represents the number of records 336 // that were marked used at least once. 337 unsigned Count = (I != SampleCoverage.end()) ? I->second.size() : 0; 338 339 // If there are inlined callsites in this function, count the samples found 340 // in the respective bodies. However, do not bother counting callees with 0 341 // total samples, these are callees that were never invoked at runtime. 342 for (const auto &I : FS->getCallsiteSamples()) 343 for (const auto &J : I.second) { 344 const FunctionSamples *CalleeSamples = &J.second; 345 if (callsiteIsHot(FS, CalleeSamples)) 346 Count += countUsedRecords(CalleeSamples); 347 } 348 349 return Count; 350 } 351 352 /// Return the number of sample records in the body of this profile. 353 /// 354 /// This count does not include records from cold inlined callsites. 355 unsigned 356 SampleCoverageTracker::countBodyRecords(const FunctionSamples *FS) const { 357 unsigned Count = FS->getBodySamples().size(); 358 359 // Only count records in hot callsites. 360 for (const auto &I : FS->getCallsiteSamples()) 361 for (const auto &J : I.second) { 362 const FunctionSamples *CalleeSamples = &J.second; 363 if (callsiteIsHot(FS, CalleeSamples)) 364 Count += countBodyRecords(CalleeSamples); 365 } 366 367 return Count; 368 } 369 370 /// Return the number of samples collected in the body of this profile. 371 /// 372 /// This count does not include samples from cold inlined callsites. 373 uint64_t 374 SampleCoverageTracker::countBodySamples(const FunctionSamples *FS) const { 375 uint64_t Total = 0; 376 for (const auto &I : FS->getBodySamples()) 377 Total += I.second.getSamples(); 378 379 // Only count samples in hot callsites. 380 for (const auto &I : FS->getCallsiteSamples()) 381 for (const auto &J : I.second) { 382 const FunctionSamples *CalleeSamples = &J.second; 383 if (callsiteIsHot(FS, CalleeSamples)) 384 Total += countBodySamples(CalleeSamples); 385 } 386 387 return Total; 388 } 389 390 /// Return the fraction of sample records used in this profile. 391 /// 392 /// The returned value is an unsigned integer in the range 0-100 indicating 393 /// the percentage of sample records that were used while applying this 394 /// profile to the associated function. 395 unsigned SampleCoverageTracker::computeCoverage(unsigned Used, 396 unsigned Total) const { 397 assert(Used <= Total && 398 "number of used records cannot exceed the total number of records"); 399 return Total > 0 ? Used * 100 / Total : 100; 400 } 401 402 /// Clear all the per-function data used to load samples and propagate weights. 403 void SampleProfileLoader::clearFunctionData() { 404 BlockWeights.clear(); 405 EdgeWeights.clear(); 406 VisitedBlocks.clear(); 407 VisitedEdges.clear(); 408 EquivalenceClass.clear(); 409 DT = nullptr; 410 PDT = nullptr; 411 LI = nullptr; 412 Predecessors.clear(); 413 Successors.clear(); 414 CoverageTracker.clear(); 415 } 416 417 /// Returns the line offset to the start line of the subprogram. 418 /// We assume that a single function will not exceed 65535 LOC. 419 unsigned SampleProfileLoader::getOffset(const DILocation *DIL) const { 420 return (DIL->getLine() - DIL->getScope()->getSubprogram()->getLine()) & 421 0xffff; 422 } 423 424 /// \brief Print the weight of edge \p E on stream \p OS. 425 /// 426 /// \param OS Stream to emit the output to. 427 /// \param E Edge to print. 428 void SampleProfileLoader::printEdgeWeight(raw_ostream &OS, Edge E) { 429 OS << "weight[" << E.first->getName() << "->" << E.second->getName() 430 << "]: " << EdgeWeights[E] << "\n"; 431 } 432 433 /// \brief Print the equivalence class of block \p BB on stream \p OS. 434 /// 435 /// \param OS Stream to emit the output to. 436 /// \param BB Block to print. 437 void SampleProfileLoader::printBlockEquivalence(raw_ostream &OS, 438 const BasicBlock *BB) { 439 const BasicBlock *Equiv = EquivalenceClass[BB]; 440 OS << "equivalence[" << BB->getName() 441 << "]: " << ((Equiv) ? EquivalenceClass[BB]->getName() : "NONE") << "\n"; 442 } 443 444 /// \brief Print the weight of block \p BB on stream \p OS. 445 /// 446 /// \param OS Stream to emit the output to. 447 /// \param BB Block to print. 448 void SampleProfileLoader::printBlockWeight(raw_ostream &OS, 449 const BasicBlock *BB) const { 450 const auto &I = BlockWeights.find(BB); 451 uint64_t W = (I == BlockWeights.end() ? 0 : I->second); 452 OS << "weight[" << BB->getName() << "]: " << W << "\n"; 453 } 454 455 /// \brief Get the weight for an instruction. 456 /// 457 /// The "weight" of an instruction \p Inst is the number of samples 458 /// collected on that instruction at runtime. To retrieve it, we 459 /// need to compute the line number of \p Inst relative to the start of its 460 /// function. We use HeaderLineno to compute the offset. We then 461 /// look up the samples collected for \p Inst using BodySamples. 462 /// 463 /// \param Inst Instruction to query. 464 /// 465 /// \returns the weight of \p Inst. 466 ErrorOr<uint64_t> SampleProfileLoader::getInstWeight(const Instruction &Inst) { 467 const DebugLoc &DLoc = Inst.getDebugLoc(); 468 if (!DLoc) 469 return std::error_code(); 470 471 const FunctionSamples *FS = findFunctionSamples(Inst); 472 if (!FS) 473 return std::error_code(); 474 475 // Ignore all intrinsics and branch instructions. 476 // Branch instruction usually contains debug info from sources outside of 477 // the residing basic block, thus we ignore them during annotation. 478 if (isa<BranchInst>(Inst) || isa<IntrinsicInst>(Inst)) 479 return std::error_code(); 480 481 // If a call/invoke instruction is inlined in profile, but not inlined here, 482 // it means that the inlined callsite has no sample, thus the call 483 // instruction should have 0 count. 484 if ((isa<CallInst>(Inst) || isa<InvokeInst>(Inst)) && 485 findCalleeFunctionSamples(Inst)) 486 return 0; 487 488 const DILocation *DIL = DLoc; 489 uint32_t LineOffset = getOffset(DIL); 490 uint32_t Discriminator = DIL->getBaseDiscriminator(); 491 ErrorOr<uint64_t> R = FS->findSamplesAt(LineOffset, Discriminator); 492 if (R) { 493 bool FirstMark = 494 CoverageTracker.markSamplesUsed(FS, LineOffset, Discriminator, R.get()); 495 if (FirstMark) { 496 const Function *F = Inst.getParent()->getParent(); 497 LLVMContext &Ctx = F->getContext(); 498 emitOptimizationRemark( 499 Ctx, DEBUG_TYPE, *F, DLoc, 500 Twine("Applied ") + Twine(*R) + 501 " samples from profile (offset: " + Twine(LineOffset) + 502 ((Discriminator) ? Twine(".") + Twine(Discriminator) : "") + ")"); 503 } 504 DEBUG(dbgs() << " " << DLoc.getLine() << "." 505 << DIL->getBaseDiscriminator() << ":" << Inst 506 << " (line offset: " << LineOffset << "." 507 << DIL->getBaseDiscriminator() << " - weight: " << R.get() 508 << ")\n"); 509 } 510 return R; 511 } 512 513 /// \brief Compute the weight of a basic block. 514 /// 515 /// The weight of basic block \p BB is the maximum weight of all the 516 /// instructions in BB. 517 /// 518 /// \param BB The basic block to query. 519 /// 520 /// \returns the weight for \p BB. 521 ErrorOr<uint64_t> SampleProfileLoader::getBlockWeight(const BasicBlock *BB) { 522 uint64_t Max = 0; 523 bool HasWeight = false; 524 for (auto &I : BB->getInstList()) { 525 const ErrorOr<uint64_t> &R = getInstWeight(I); 526 if (R) { 527 Max = std::max(Max, R.get()); 528 HasWeight = true; 529 } 530 } 531 return HasWeight ? ErrorOr<uint64_t>(Max) : std::error_code(); 532 } 533 534 /// \brief Compute and store the weights of every basic block. 535 /// 536 /// This populates the BlockWeights map by computing 537 /// the weights of every basic block in the CFG. 538 /// 539 /// \param F The function to query. 540 bool SampleProfileLoader::computeBlockWeights(Function &F) { 541 bool Changed = false; 542 DEBUG(dbgs() << "Block weights\n"); 543 for (const auto &BB : F) { 544 ErrorOr<uint64_t> Weight = getBlockWeight(&BB); 545 if (Weight) { 546 BlockWeights[&BB] = Weight.get(); 547 VisitedBlocks.insert(&BB); 548 Changed = true; 549 } 550 DEBUG(printBlockWeight(dbgs(), &BB)); 551 } 552 553 return Changed; 554 } 555 556 /// \brief Get the FunctionSamples for a call instruction. 557 /// 558 /// The FunctionSamples of a call/invoke instruction \p Inst is the inlined 559 /// instance in which that call instruction is calling to. It contains 560 /// all samples that resides in the inlined instance. We first find the 561 /// inlined instance in which the call instruction is from, then we 562 /// traverse its children to find the callsite with the matching 563 /// location. 564 /// 565 /// \param Inst Call/Invoke instruction to query. 566 /// 567 /// \returns The FunctionSamples pointer to the inlined instance. 568 const FunctionSamples * 569 SampleProfileLoader::findCalleeFunctionSamples(const Instruction &Inst) const { 570 const DILocation *DIL = Inst.getDebugLoc(); 571 if (!DIL) { 572 return nullptr; 573 } 574 575 StringRef CalleeName; 576 if (const CallInst *CI = dyn_cast<CallInst>(&Inst)) 577 if (Function *Callee = CI->getCalledFunction()) 578 CalleeName = Callee->getName(); 579 580 const FunctionSamples *FS = findFunctionSamples(Inst); 581 if (FS == nullptr) 582 return nullptr; 583 584 return FS->findFunctionSamplesAt( 585 LineLocation(getOffset(DIL), DIL->getBaseDiscriminator()), CalleeName); 586 } 587 588 /// Returns a vector of FunctionSamples that are the indirect call targets 589 /// of \p Inst. The vector is sorted by the total number of samples. 590 std::vector<const FunctionSamples *> 591 SampleProfileLoader::findIndirectCallFunctionSamples( 592 const Instruction &Inst) const { 593 const DILocation *DIL = Inst.getDebugLoc(); 594 std::vector<const FunctionSamples *> R; 595 596 if (!DIL) { 597 return R; 598 } 599 600 const FunctionSamples *FS = findFunctionSamples(Inst); 601 if (FS == nullptr) 602 return R; 603 604 if (const FunctionSamplesMap *M = FS->findFunctionSamplesMapAt( 605 LineLocation(getOffset(DIL), DIL->getBaseDiscriminator()))) { 606 if (M->size() == 0) 607 return R; 608 for (const auto &NameFS : *M) { 609 R.push_back(&NameFS.second); 610 } 611 std::sort(R.begin(), R.end(), 612 [](const FunctionSamples *L, const FunctionSamples *R) { 613 return L->getTotalSamples() > R->getTotalSamples(); 614 }); 615 } 616 return R; 617 } 618 619 /// \brief Get the FunctionSamples for an instruction. 620 /// 621 /// The FunctionSamples of an instruction \p Inst is the inlined instance 622 /// in which that instruction is coming from. We traverse the inline stack 623 /// of that instruction, and match it with the tree nodes in the profile. 624 /// 625 /// \param Inst Instruction to query. 626 /// 627 /// \returns the FunctionSamples pointer to the inlined instance. 628 const FunctionSamples * 629 SampleProfileLoader::findFunctionSamples(const Instruction &Inst) const { 630 SmallVector<std::pair<LineLocation, StringRef>, 10> S; 631 const DILocation *DIL = Inst.getDebugLoc(); 632 if (!DIL) 633 return Samples; 634 635 const DILocation *PrevDIL = DIL; 636 for (DIL = DIL->getInlinedAt(); DIL; DIL = DIL->getInlinedAt()) { 637 S.push_back(std::make_pair( 638 LineLocation(getOffset(DIL), DIL->getBaseDiscriminator()), 639 PrevDIL->getScope()->getSubprogram()->getLinkageName())); 640 PrevDIL = DIL; 641 } 642 if (S.size() == 0) 643 return Samples; 644 const FunctionSamples *FS = Samples; 645 for (int i = S.size() - 1; i >= 0 && FS != nullptr; i--) { 646 FS = FS->findFunctionSamplesAt(S[i].first, S[i].second); 647 } 648 return FS; 649 } 650 651 /// \brief Iteratively inline hot callsites of a function. 652 /// 653 /// Iteratively traverse all callsites of the function \p F, and find if 654 /// the corresponding inlined instance exists and is hot in profile. If 655 /// it is hot enough, inline the callsites and adds new callsites of the 656 /// callee into the caller. If the call is an indirect call, first promote 657 /// it to direct call. Each indirect call is limited with a single target. 658 /// 659 /// \param F function to perform iterative inlining. 660 /// \param ImportGUIDs a set to be updated to include all GUIDs that come 661 /// from a different module but inlined in the profiled binary. 662 /// 663 /// \returns True if there is any inline happened. 664 bool SampleProfileLoader::inlineHotFunctions( 665 Function &F, DenseSet<GlobalValue::GUID> &ImportGUIDs) { 666 DenseSet<Instruction *> PromotedInsns; 667 bool Changed = false; 668 LLVMContext &Ctx = F.getContext(); 669 std::function<AssumptionCache &(Function &)> GetAssumptionCache = [&]( 670 Function &F) -> AssumptionCache & { return ACT->getAssumptionCache(F); }; 671 while (true) { 672 bool LocalChanged = false; 673 SmallVector<Instruction *, 10> CIS; 674 for (auto &BB : F) { 675 bool Hot = false; 676 SmallVector<Instruction *, 10> Candidates; 677 for (auto &I : BB.getInstList()) { 678 const FunctionSamples *FS = nullptr; 679 if ((isa<CallInst>(I) || isa<InvokeInst>(I)) && 680 !isa<IntrinsicInst>(I) && (FS = findCalleeFunctionSamples(I))) { 681 Candidates.push_back(&I); 682 if (callsiteIsHot(Samples, FS)) 683 Hot = true; 684 } 685 } 686 if (Hot) { 687 CIS.insert(CIS.begin(), Candidates.begin(), Candidates.end()); 688 } 689 } 690 for (auto I : CIS) { 691 InlineFunctionInfo IFI(nullptr, ACT ? &GetAssumptionCache : nullptr); 692 Function *CalledFunction = CallSite(I).getCalledFunction(); 693 // Do not inline recursive calls. 694 if (CalledFunction == &F) 695 continue; 696 Instruction *DI = I; 697 if (!CalledFunction && !PromotedInsns.count(I) && 698 CallSite(I).isIndirectCall()) 699 for (const auto *FS : findIndirectCallFunctionSamples(*I)) { 700 auto CalleeFunctionName = FS->getName(); 701 // If it is a recursive call, we do not inline it as it could bloat 702 // the code exponentially. There is way to better handle this, e.g. 703 // clone the caller first, and inline the cloned caller if it is 704 // recursive. As llvm does not inline recursive calls, we will simply 705 // ignore it instead of handling it explicitly. 706 if (CalleeFunctionName == F.getName()) 707 continue; 708 const char *Reason = "Callee function not available"; 709 auto R = SymbolMap.find(CalleeFunctionName); 710 if (R == SymbolMap.end()) 711 continue; 712 CalledFunction = R->getValue(); 713 if (CalledFunction && isLegalToPromote(I, CalledFunction, &Reason)) { 714 // The indirect target was promoted and inlined in the profile, as a 715 // result, we do not have profile info for the branch probability. 716 // We set the probability to 80% taken to indicate that the static 717 // call is likely taken. 718 DI = dyn_cast<Instruction>( 719 promoteIndirectCall(I, CalledFunction, 80, 100, false) 720 ->stripPointerCasts()); 721 PromotedInsns.insert(I); 722 } else { 723 DEBUG(dbgs() << "\nFailed to promote indirect call to " 724 << CalleeFunctionName << " because " << Reason 725 << "\n"); 726 continue; 727 } 728 } 729 if (!CalledFunction || !CalledFunction->getSubprogram()) { 730 findCalleeFunctionSamples(*I)->findImportedFunctions( 731 ImportGUIDs, F.getParent(), 732 Samples->getTotalSamples() * SampleProfileHotThreshold / 100); 733 continue; 734 } 735 DebugLoc DLoc = I->getDebugLoc(); 736 if (InlineFunction(CallSite(DI), IFI)) { 737 LocalChanged = true; 738 emitOptimizationRemark(Ctx, DEBUG_TYPE, F, DLoc, 739 Twine("inlined hot callee '") + 740 CalledFunction->getName() + "' into '" + 741 F.getName() + "'"); 742 } 743 } 744 if (LocalChanged) { 745 Changed = true; 746 } else { 747 break; 748 } 749 } 750 return Changed; 751 } 752 753 /// \brief Find equivalence classes for the given block. 754 /// 755 /// This finds all the blocks that are guaranteed to execute the same 756 /// number of times as \p BB1. To do this, it traverses all the 757 /// descendants of \p BB1 in the dominator or post-dominator tree. 758 /// 759 /// A block BB2 will be in the same equivalence class as \p BB1 if 760 /// the following holds: 761 /// 762 /// 1- \p BB1 is a descendant of BB2 in the opposite tree. So, if BB2 763 /// is a descendant of \p BB1 in the dominator tree, then BB2 should 764 /// dominate BB1 in the post-dominator tree. 765 /// 766 /// 2- Both BB2 and \p BB1 must be in the same loop. 767 /// 768 /// For every block BB2 that meets those two requirements, we set BB2's 769 /// equivalence class to \p BB1. 770 /// 771 /// \param BB1 Block to check. 772 /// \param Descendants Descendants of \p BB1 in either the dom or pdom tree. 773 /// \param DomTree Opposite dominator tree. If \p Descendants is filled 774 /// with blocks from \p BB1's dominator tree, then 775 /// this is the post-dominator tree, and vice versa. 776 void SampleProfileLoader::findEquivalencesFor( 777 BasicBlock *BB1, ArrayRef<BasicBlock *> Descendants, 778 DominatorTreeBase<BasicBlock> *DomTree) { 779 const BasicBlock *EC = EquivalenceClass[BB1]; 780 uint64_t Weight = BlockWeights[EC]; 781 for (const auto *BB2 : Descendants) { 782 bool IsDomParent = DomTree->dominates(BB2, BB1); 783 bool IsInSameLoop = LI->getLoopFor(BB1) == LI->getLoopFor(BB2); 784 if (BB1 != BB2 && IsDomParent && IsInSameLoop) { 785 EquivalenceClass[BB2] = EC; 786 // If BB2 is visited, then the entire EC should be marked as visited. 787 if (VisitedBlocks.count(BB2)) { 788 VisitedBlocks.insert(EC); 789 } 790 791 // If BB2 is heavier than BB1, make BB2 have the same weight 792 // as BB1. 793 // 794 // Note that we don't worry about the opposite situation here 795 // (when BB2 is lighter than BB1). We will deal with this 796 // during the propagation phase. Right now, we just want to 797 // make sure that BB1 has the largest weight of all the 798 // members of its equivalence set. 799 Weight = std::max(Weight, BlockWeights[BB2]); 800 } 801 } 802 if (EC == &EC->getParent()->getEntryBlock()) { 803 BlockWeights[EC] = Samples->getHeadSamples() + 1; 804 } else { 805 BlockWeights[EC] = Weight; 806 } 807 } 808 809 /// \brief Find equivalence classes. 810 /// 811 /// Since samples may be missing from blocks, we can fill in the gaps by setting 812 /// the weights of all the blocks in the same equivalence class to the same 813 /// weight. To compute the concept of equivalence, we use dominance and loop 814 /// information. Two blocks B1 and B2 are in the same equivalence class if B1 815 /// dominates B2, B2 post-dominates B1 and both are in the same loop. 816 /// 817 /// \param F The function to query. 818 void SampleProfileLoader::findEquivalenceClasses(Function &F) { 819 SmallVector<BasicBlock *, 8> DominatedBBs; 820 DEBUG(dbgs() << "\nBlock equivalence classes\n"); 821 // Find equivalence sets based on dominance and post-dominance information. 822 for (auto &BB : F) { 823 BasicBlock *BB1 = &BB; 824 825 // Compute BB1's equivalence class once. 826 if (EquivalenceClass.count(BB1)) { 827 DEBUG(printBlockEquivalence(dbgs(), BB1)); 828 continue; 829 } 830 831 // By default, blocks are in their own equivalence class. 832 EquivalenceClass[BB1] = BB1; 833 834 // Traverse all the blocks dominated by BB1. We are looking for 835 // every basic block BB2 such that: 836 // 837 // 1- BB1 dominates BB2. 838 // 2- BB2 post-dominates BB1. 839 // 3- BB1 and BB2 are in the same loop nest. 840 // 841 // If all those conditions hold, it means that BB2 is executed 842 // as many times as BB1, so they are placed in the same equivalence 843 // class by making BB2's equivalence class be BB1. 844 DominatedBBs.clear(); 845 DT->getDescendants(BB1, DominatedBBs); 846 findEquivalencesFor(BB1, DominatedBBs, PDT.get()); 847 848 DEBUG(printBlockEquivalence(dbgs(), BB1)); 849 } 850 851 // Assign weights to equivalence classes. 852 // 853 // All the basic blocks in the same equivalence class will execute 854 // the same number of times. Since we know that the head block in 855 // each equivalence class has the largest weight, assign that weight 856 // to all the blocks in that equivalence class. 857 DEBUG(dbgs() << "\nAssign the same weight to all blocks in the same class\n"); 858 for (auto &BI : F) { 859 const BasicBlock *BB = &BI; 860 const BasicBlock *EquivBB = EquivalenceClass[BB]; 861 if (BB != EquivBB) 862 BlockWeights[BB] = BlockWeights[EquivBB]; 863 DEBUG(printBlockWeight(dbgs(), BB)); 864 } 865 } 866 867 /// \brief Visit the given edge to decide if it has a valid weight. 868 /// 869 /// If \p E has not been visited before, we copy to \p UnknownEdge 870 /// and increment the count of unknown edges. 871 /// 872 /// \param E Edge to visit. 873 /// \param NumUnknownEdges Current number of unknown edges. 874 /// \param UnknownEdge Set if E has not been visited before. 875 /// 876 /// \returns E's weight, if known. Otherwise, return 0. 877 uint64_t SampleProfileLoader::visitEdge(Edge E, unsigned *NumUnknownEdges, 878 Edge *UnknownEdge) { 879 if (!VisitedEdges.count(E)) { 880 (*NumUnknownEdges)++; 881 *UnknownEdge = E; 882 return 0; 883 } 884 885 return EdgeWeights[E]; 886 } 887 888 /// \brief Propagate weights through incoming/outgoing edges. 889 /// 890 /// If the weight of a basic block is known, and there is only one edge 891 /// with an unknown weight, we can calculate the weight of that edge. 892 /// 893 /// Similarly, if all the edges have a known count, we can calculate the 894 /// count of the basic block, if needed. 895 /// 896 /// \param F Function to process. 897 /// \param UpdateBlockCount Whether we should update basic block counts that 898 /// has already been annotated. 899 /// 900 /// \returns True if new weights were assigned to edges or blocks. 901 bool SampleProfileLoader::propagateThroughEdges(Function &F, 902 bool UpdateBlockCount) { 903 bool Changed = false; 904 DEBUG(dbgs() << "\nPropagation through edges\n"); 905 for (const auto &BI : F) { 906 const BasicBlock *BB = &BI; 907 const BasicBlock *EC = EquivalenceClass[BB]; 908 909 // Visit all the predecessor and successor edges to determine 910 // which ones have a weight assigned already. Note that it doesn't 911 // matter that we only keep track of a single unknown edge. The 912 // only case we are interested in handling is when only a single 913 // edge is unknown (see setEdgeOrBlockWeight). 914 for (unsigned i = 0; i < 2; i++) { 915 uint64_t TotalWeight = 0; 916 unsigned NumUnknownEdges = 0, NumTotalEdges = 0; 917 Edge UnknownEdge, SelfReferentialEdge, SingleEdge; 918 919 if (i == 0) { 920 // First, visit all predecessor edges. 921 NumTotalEdges = Predecessors[BB].size(); 922 for (auto *Pred : Predecessors[BB]) { 923 Edge E = std::make_pair(Pred, BB); 924 TotalWeight += visitEdge(E, &NumUnknownEdges, &UnknownEdge); 925 if (E.first == E.second) 926 SelfReferentialEdge = E; 927 } 928 if (NumTotalEdges == 1) { 929 SingleEdge = std::make_pair(Predecessors[BB][0], BB); 930 } 931 } else { 932 // On the second round, visit all successor edges. 933 NumTotalEdges = Successors[BB].size(); 934 for (auto *Succ : Successors[BB]) { 935 Edge E = std::make_pair(BB, Succ); 936 TotalWeight += visitEdge(E, &NumUnknownEdges, &UnknownEdge); 937 } 938 if (NumTotalEdges == 1) { 939 SingleEdge = std::make_pair(BB, Successors[BB][0]); 940 } 941 } 942 943 // After visiting all the edges, there are three cases that we 944 // can handle immediately: 945 // 946 // - All the edge weights are known (i.e., NumUnknownEdges == 0). 947 // In this case, we simply check that the sum of all the edges 948 // is the same as BB's weight. If not, we change BB's weight 949 // to match. Additionally, if BB had not been visited before, 950 // we mark it visited. 951 // 952 // - Only one edge is unknown and BB has already been visited. 953 // In this case, we can compute the weight of the edge by 954 // subtracting the total block weight from all the known 955 // edge weights. If the edges weight more than BB, then the 956 // edge of the last remaining edge is set to zero. 957 // 958 // - There exists a self-referential edge and the weight of BB is 959 // known. In this case, this edge can be based on BB's weight. 960 // We add up all the other known edges and set the weight on 961 // the self-referential edge as we did in the previous case. 962 // 963 // In any other case, we must continue iterating. Eventually, 964 // all edges will get a weight, or iteration will stop when 965 // it reaches SampleProfileMaxPropagateIterations. 966 if (NumUnknownEdges <= 1) { 967 uint64_t &BBWeight = BlockWeights[EC]; 968 if (NumUnknownEdges == 0) { 969 if (!VisitedBlocks.count(EC)) { 970 // If we already know the weight of all edges, the weight of the 971 // basic block can be computed. It should be no larger than the sum 972 // of all edge weights. 973 if (TotalWeight > BBWeight) { 974 BBWeight = TotalWeight; 975 Changed = true; 976 DEBUG(dbgs() << "All edge weights for " << BB->getName() 977 << " known. Set weight for block: "; 978 printBlockWeight(dbgs(), BB);); 979 } 980 } else if (NumTotalEdges == 1 && 981 EdgeWeights[SingleEdge] < BlockWeights[EC]) { 982 // If there is only one edge for the visited basic block, use the 983 // block weight to adjust edge weight if edge weight is smaller. 984 EdgeWeights[SingleEdge] = BlockWeights[EC]; 985 Changed = true; 986 } 987 } else if (NumUnknownEdges == 1 && VisitedBlocks.count(EC)) { 988 // If there is a single unknown edge and the block has been 989 // visited, then we can compute E's weight. 990 if (BBWeight >= TotalWeight) 991 EdgeWeights[UnknownEdge] = BBWeight - TotalWeight; 992 else 993 EdgeWeights[UnknownEdge] = 0; 994 const BasicBlock *OtherEC; 995 if (i == 0) 996 OtherEC = EquivalenceClass[UnknownEdge.first]; 997 else 998 OtherEC = EquivalenceClass[UnknownEdge.second]; 999 // Edge weights should never exceed the BB weights it connects. 1000 if (VisitedBlocks.count(OtherEC) && 1001 EdgeWeights[UnknownEdge] > BlockWeights[OtherEC]) 1002 EdgeWeights[UnknownEdge] = BlockWeights[OtherEC]; 1003 VisitedEdges.insert(UnknownEdge); 1004 Changed = true; 1005 DEBUG(dbgs() << "Set weight for edge: "; 1006 printEdgeWeight(dbgs(), UnknownEdge)); 1007 } 1008 } else if (VisitedBlocks.count(EC) && BlockWeights[EC] == 0) { 1009 // If a block Weights 0, all its in/out edges should weight 0. 1010 if (i == 0) { 1011 for (auto *Pred : Predecessors[BB]) { 1012 Edge E = std::make_pair(Pred, BB); 1013 EdgeWeights[E] = 0; 1014 VisitedEdges.insert(E); 1015 } 1016 } else { 1017 for (auto *Succ : Successors[BB]) { 1018 Edge E = std::make_pair(BB, Succ); 1019 EdgeWeights[E] = 0; 1020 VisitedEdges.insert(E); 1021 } 1022 } 1023 } else if (SelfReferentialEdge.first && VisitedBlocks.count(EC)) { 1024 uint64_t &BBWeight = BlockWeights[BB]; 1025 // We have a self-referential edge and the weight of BB is known. 1026 if (BBWeight >= TotalWeight) 1027 EdgeWeights[SelfReferentialEdge] = BBWeight - TotalWeight; 1028 else 1029 EdgeWeights[SelfReferentialEdge] = 0; 1030 VisitedEdges.insert(SelfReferentialEdge); 1031 Changed = true; 1032 DEBUG(dbgs() << "Set self-referential edge weight to: "; 1033 printEdgeWeight(dbgs(), SelfReferentialEdge)); 1034 } 1035 if (UpdateBlockCount && !VisitedBlocks.count(EC) && TotalWeight > 0) { 1036 BlockWeights[EC] = TotalWeight; 1037 VisitedBlocks.insert(EC); 1038 Changed = true; 1039 } 1040 } 1041 } 1042 1043 return Changed; 1044 } 1045 1046 /// \brief Build in/out edge lists for each basic block in the CFG. 1047 /// 1048 /// We are interested in unique edges. If a block B1 has multiple 1049 /// edges to another block B2, we only add a single B1->B2 edge. 1050 void SampleProfileLoader::buildEdges(Function &F) { 1051 for (auto &BI : F) { 1052 BasicBlock *B1 = &BI; 1053 1054 // Add predecessors for B1. 1055 SmallPtrSet<BasicBlock *, 16> Visited; 1056 if (!Predecessors[B1].empty()) 1057 llvm_unreachable("Found a stale predecessors list in a basic block."); 1058 for (pred_iterator PI = pred_begin(B1), PE = pred_end(B1); PI != PE; ++PI) { 1059 BasicBlock *B2 = *PI; 1060 if (Visited.insert(B2).second) 1061 Predecessors[B1].push_back(B2); 1062 } 1063 1064 // Add successors for B1. 1065 Visited.clear(); 1066 if (!Successors[B1].empty()) 1067 llvm_unreachable("Found a stale successors list in a basic block."); 1068 for (succ_iterator SI = succ_begin(B1), SE = succ_end(B1); SI != SE; ++SI) { 1069 BasicBlock *B2 = *SI; 1070 if (Visited.insert(B2).second) 1071 Successors[B1].push_back(B2); 1072 } 1073 } 1074 } 1075 1076 /// Sorts the CallTargetMap \p M by count in descending order and stores the 1077 /// sorted result in \p Sorted. Returns the total counts. 1078 static uint64_t SortCallTargets(SmallVector<InstrProfValueData, 2> &Sorted, 1079 const SampleRecord::CallTargetMap &M) { 1080 Sorted.clear(); 1081 uint64_t Sum = 0; 1082 for (auto I = M.begin(); I != M.end(); ++I) { 1083 Sum += I->getValue(); 1084 Sorted.push_back({Function::getGUID(I->getKey()), I->getValue()}); 1085 } 1086 std::sort(Sorted.begin(), Sorted.end(), 1087 [](const InstrProfValueData &L, const InstrProfValueData &R) { 1088 if (L.Count == R.Count) 1089 return L.Value > R.Value; 1090 else 1091 return L.Count > R.Count; 1092 }); 1093 return Sum; 1094 } 1095 1096 /// \brief Propagate weights into edges 1097 /// 1098 /// The following rules are applied to every block BB in the CFG: 1099 /// 1100 /// - If BB has a single predecessor/successor, then the weight 1101 /// of that edge is the weight of the block. 1102 /// 1103 /// - If all incoming or outgoing edges are known except one, and the 1104 /// weight of the block is already known, the weight of the unknown 1105 /// edge will be the weight of the block minus the sum of all the known 1106 /// edges. If the sum of all the known edges is larger than BB's weight, 1107 /// we set the unknown edge weight to zero. 1108 /// 1109 /// - If there is a self-referential edge, and the weight of the block is 1110 /// known, the weight for that edge is set to the weight of the block 1111 /// minus the weight of the other incoming edges to that block (if 1112 /// known). 1113 void SampleProfileLoader::propagateWeights(Function &F) { 1114 bool Changed = true; 1115 unsigned I = 0; 1116 1117 // If BB weight is larger than its corresponding loop's header BB weight, 1118 // use the BB weight to replace the loop header BB weight. 1119 for (auto &BI : F) { 1120 BasicBlock *BB = &BI; 1121 Loop *L = LI->getLoopFor(BB); 1122 if (!L) { 1123 continue; 1124 } 1125 BasicBlock *Header = L->getHeader(); 1126 if (Header && BlockWeights[BB] > BlockWeights[Header]) { 1127 BlockWeights[Header] = BlockWeights[BB]; 1128 } 1129 } 1130 1131 // Before propagation starts, build, for each block, a list of 1132 // unique predecessors and successors. This is necessary to handle 1133 // identical edges in multiway branches. Since we visit all blocks and all 1134 // edges of the CFG, it is cleaner to build these lists once at the start 1135 // of the pass. 1136 buildEdges(F); 1137 1138 // Propagate until we converge or we go past the iteration limit. 1139 while (Changed && I++ < SampleProfileMaxPropagateIterations) { 1140 Changed = propagateThroughEdges(F, false); 1141 } 1142 1143 // The first propagation propagates BB counts from annotated BBs to unknown 1144 // BBs. The 2nd propagation pass resets edges weights, and use all BB weights 1145 // to propagate edge weights. 1146 VisitedEdges.clear(); 1147 Changed = true; 1148 while (Changed && I++ < SampleProfileMaxPropagateIterations) { 1149 Changed = propagateThroughEdges(F, false); 1150 } 1151 1152 // The 3rd propagation pass allows adjust annotated BB weights that are 1153 // obviously wrong. 1154 Changed = true; 1155 while (Changed && I++ < SampleProfileMaxPropagateIterations) { 1156 Changed = propagateThroughEdges(F, true); 1157 } 1158 1159 // Generate MD_prof metadata for every branch instruction using the 1160 // edge weights computed during propagation. 1161 DEBUG(dbgs() << "\nPropagation complete. Setting branch weights\n"); 1162 LLVMContext &Ctx = F.getContext(); 1163 MDBuilder MDB(Ctx); 1164 for (auto &BI : F) { 1165 BasicBlock *BB = &BI; 1166 1167 if (BlockWeights[BB]) { 1168 for (auto &I : BB->getInstList()) { 1169 if (!isa<CallInst>(I) && !isa<InvokeInst>(I)) 1170 continue; 1171 CallSite CS(&I); 1172 if (!CS.getCalledFunction()) { 1173 const DebugLoc &DLoc = I.getDebugLoc(); 1174 if (!DLoc) 1175 continue; 1176 const DILocation *DIL = DLoc; 1177 uint32_t LineOffset = getOffset(DIL); 1178 uint32_t Discriminator = DIL->getBaseDiscriminator(); 1179 1180 const FunctionSamples *FS = findFunctionSamples(I); 1181 if (!FS) 1182 continue; 1183 auto T = FS->findCallTargetMapAt(LineOffset, Discriminator); 1184 if (!T || T.get().size() == 0) 1185 continue; 1186 SmallVector<InstrProfValueData, 2> SortedCallTargets; 1187 uint64_t Sum = SortCallTargets(SortedCallTargets, T.get()); 1188 annotateValueSite(*I.getParent()->getParent()->getParent(), I, 1189 SortedCallTargets, Sum, IPVK_IndirectCallTarget, 1190 SortedCallTargets.size()); 1191 } else if (!dyn_cast<IntrinsicInst>(&I)) { 1192 SmallVector<uint32_t, 1> Weights; 1193 Weights.push_back(BlockWeights[BB]); 1194 I.setMetadata(LLVMContext::MD_prof, MDB.createBranchWeights(Weights)); 1195 } 1196 } 1197 } 1198 TerminatorInst *TI = BB->getTerminator(); 1199 if (TI->getNumSuccessors() == 1) 1200 continue; 1201 if (!isa<BranchInst>(TI) && !isa<SwitchInst>(TI)) 1202 continue; 1203 1204 DebugLoc BranchLoc = TI->getDebugLoc(); 1205 DEBUG(dbgs() << "\nGetting weights for branch at line " 1206 << ((BranchLoc) ? Twine(BranchLoc.getLine()) 1207 : Twine("<UNKNOWN LOCATION>")) 1208 << ".\n"); 1209 SmallVector<uint32_t, 4> Weights; 1210 uint32_t MaxWeight = 0; 1211 DebugLoc MaxDestLoc; 1212 for (unsigned I = 0; I < TI->getNumSuccessors(); ++I) { 1213 BasicBlock *Succ = TI->getSuccessor(I); 1214 Edge E = std::make_pair(BB, Succ); 1215 uint64_t Weight = EdgeWeights[E]; 1216 DEBUG(dbgs() << "\t"; printEdgeWeight(dbgs(), E)); 1217 // Use uint32_t saturated arithmetic to adjust the incoming weights, 1218 // if needed. Sample counts in profiles are 64-bit unsigned values, 1219 // but internally branch weights are expressed as 32-bit values. 1220 if (Weight > std::numeric_limits<uint32_t>::max()) { 1221 DEBUG(dbgs() << " (saturated due to uint32_t overflow)"); 1222 Weight = std::numeric_limits<uint32_t>::max(); 1223 } 1224 // Weight is added by one to avoid propagation errors introduced by 1225 // 0 weights. 1226 Weights.push_back(static_cast<uint32_t>(Weight + 1)); 1227 if (Weight != 0) { 1228 if (Weight > MaxWeight) { 1229 MaxWeight = Weight; 1230 MaxDestLoc = Succ->getFirstNonPHIOrDbgOrLifetime()->getDebugLoc(); 1231 } 1232 } 1233 } 1234 1235 uint64_t TempWeight; 1236 // Only set weights if there is at least one non-zero weight. 1237 // In any other case, let the analyzer set weights. 1238 // Do not set weights if the weights are present. In ThinLTO, the profile 1239 // annotation is done twice. If the first annotation already set the 1240 // weights, the second pass does not need to set it. 1241 if (MaxWeight > 0 && !TI->extractProfTotalWeight(TempWeight)) { 1242 DEBUG(dbgs() << "SUCCESS. Found non-zero weights.\n"); 1243 TI->setMetadata(llvm::LLVMContext::MD_prof, 1244 MDB.createBranchWeights(Weights)); 1245 emitOptimizationRemark( 1246 Ctx, DEBUG_TYPE, F, MaxDestLoc, 1247 Twine("most popular destination for conditional branches at ") + 1248 ((BranchLoc) ? Twine(BranchLoc->getFilename() + ":" + 1249 Twine(BranchLoc.getLine()) + ":" + 1250 Twine(BranchLoc.getCol())) 1251 : Twine("<UNKNOWN LOCATION>"))); 1252 } else { 1253 DEBUG(dbgs() << "SKIPPED. All branch weights are zero.\n"); 1254 } 1255 } 1256 } 1257 1258 /// \brief Get the line number for the function header. 1259 /// 1260 /// This looks up function \p F in the current compilation unit and 1261 /// retrieves the line number where the function is defined. This is 1262 /// line 0 for all the samples read from the profile file. Every line 1263 /// number is relative to this line. 1264 /// 1265 /// \param F Function object to query. 1266 /// 1267 /// \returns the line number where \p F is defined. If it returns 0, 1268 /// it means that there is no debug information available for \p F. 1269 unsigned SampleProfileLoader::getFunctionLoc(Function &F) { 1270 if (DISubprogram *S = F.getSubprogram()) 1271 return S->getLine(); 1272 1273 // If the start of \p F is missing, emit a diagnostic to inform the user 1274 // about the missed opportunity. 1275 F.getContext().diagnose(DiagnosticInfoSampleProfile( 1276 "No debug information found in function " + F.getName() + 1277 ": Function profile not used", 1278 DS_Warning)); 1279 return 0; 1280 } 1281 1282 void SampleProfileLoader::computeDominanceAndLoopInfo(Function &F) { 1283 DT.reset(new DominatorTree); 1284 DT->recalculate(F); 1285 1286 PDT.reset(new DominatorTreeBase<BasicBlock>(true)); 1287 PDT->recalculate(F); 1288 1289 LI.reset(new LoopInfo); 1290 LI->analyze(*DT); 1291 } 1292 1293 /// \brief Generate branch weight metadata for all branches in \p F. 1294 /// 1295 /// Branch weights are computed out of instruction samples using a 1296 /// propagation heuristic. Propagation proceeds in 3 phases: 1297 /// 1298 /// 1- Assignment of block weights. All the basic blocks in the function 1299 /// are initial assigned the same weight as their most frequently 1300 /// executed instruction. 1301 /// 1302 /// 2- Creation of equivalence classes. Since samples may be missing from 1303 /// blocks, we can fill in the gaps by setting the weights of all the 1304 /// blocks in the same equivalence class to the same weight. To compute 1305 /// the concept of equivalence, we use dominance and loop information. 1306 /// Two blocks B1 and B2 are in the same equivalence class if B1 1307 /// dominates B2, B2 post-dominates B1 and both are in the same loop. 1308 /// 1309 /// 3- Propagation of block weights into edges. This uses a simple 1310 /// propagation heuristic. The following rules are applied to every 1311 /// block BB in the CFG: 1312 /// 1313 /// - If BB has a single predecessor/successor, then the weight 1314 /// of that edge is the weight of the block. 1315 /// 1316 /// - If all the edges are known except one, and the weight of the 1317 /// block is already known, the weight of the unknown edge will 1318 /// be the weight of the block minus the sum of all the known 1319 /// edges. If the sum of all the known edges is larger than BB's weight, 1320 /// we set the unknown edge weight to zero. 1321 /// 1322 /// - If there is a self-referential edge, and the weight of the block is 1323 /// known, the weight for that edge is set to the weight of the block 1324 /// minus the weight of the other incoming edges to that block (if 1325 /// known). 1326 /// 1327 /// Since this propagation is not guaranteed to finalize for every CFG, we 1328 /// only allow it to proceed for a limited number of iterations (controlled 1329 /// by -sample-profile-max-propagate-iterations). 1330 /// 1331 /// FIXME: Try to replace this propagation heuristic with a scheme 1332 /// that is guaranteed to finalize. A work-list approach similar to 1333 /// the standard value propagation algorithm used by SSA-CCP might 1334 /// work here. 1335 /// 1336 /// Once all the branch weights are computed, we emit the MD_prof 1337 /// metadata on BB using the computed values for each of its branches. 1338 /// 1339 /// \param F The function to query. 1340 /// 1341 /// \returns true if \p F was modified. Returns false, otherwise. 1342 bool SampleProfileLoader::emitAnnotations(Function &F) { 1343 bool Changed = false; 1344 1345 if (getFunctionLoc(F) == 0) 1346 return false; 1347 1348 DEBUG(dbgs() << "Line number for the first instruction in " << F.getName() 1349 << ": " << getFunctionLoc(F) << "\n"); 1350 1351 DenseSet<GlobalValue::GUID> ImportGUIDs; 1352 Changed |= inlineHotFunctions(F, ImportGUIDs); 1353 1354 // Compute basic block weights. 1355 Changed |= computeBlockWeights(F); 1356 1357 if (Changed) { 1358 // Add an entry count to the function using the samples gathered at the 1359 // function entry. Also sets the GUIDs that comes from a different 1360 // module but inlined in the profiled binary. This is aiming at making 1361 // the IR match the profiled binary before annotation. 1362 F.setEntryCount(Samples->getHeadSamples() + 1, &ImportGUIDs); 1363 1364 // Compute dominance and loop info needed for propagation. 1365 computeDominanceAndLoopInfo(F); 1366 1367 // Find equivalence classes. 1368 findEquivalenceClasses(F); 1369 1370 // Propagate weights to all edges. 1371 propagateWeights(F); 1372 } 1373 1374 // If coverage checking was requested, compute it now. 1375 if (SampleProfileRecordCoverage) { 1376 unsigned Used = CoverageTracker.countUsedRecords(Samples); 1377 unsigned Total = CoverageTracker.countBodyRecords(Samples); 1378 unsigned Coverage = CoverageTracker.computeCoverage(Used, Total); 1379 if (Coverage < SampleProfileRecordCoverage) { 1380 F.getContext().diagnose(DiagnosticInfoSampleProfile( 1381 F.getSubprogram()->getFilename(), getFunctionLoc(F), 1382 Twine(Used) + " of " + Twine(Total) + " available profile records (" + 1383 Twine(Coverage) + "%) were applied", 1384 DS_Warning)); 1385 } 1386 } 1387 1388 if (SampleProfileSampleCoverage) { 1389 uint64_t Used = CoverageTracker.getTotalUsedSamples(); 1390 uint64_t Total = CoverageTracker.countBodySamples(Samples); 1391 unsigned Coverage = CoverageTracker.computeCoverage(Used, Total); 1392 if (Coverage < SampleProfileSampleCoverage) { 1393 F.getContext().diagnose(DiagnosticInfoSampleProfile( 1394 F.getSubprogram()->getFilename(), getFunctionLoc(F), 1395 Twine(Used) + " of " + Twine(Total) + " available profile samples (" + 1396 Twine(Coverage) + "%) were applied", 1397 DS_Warning)); 1398 } 1399 } 1400 return Changed; 1401 } 1402 1403 char SampleProfileLoaderLegacyPass::ID = 0; 1404 INITIALIZE_PASS_BEGIN(SampleProfileLoaderLegacyPass, "sample-profile", 1405 "Sample Profile loader", false, false) 1406 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 1407 INITIALIZE_PASS_END(SampleProfileLoaderLegacyPass, "sample-profile", 1408 "Sample Profile loader", false, false) 1409 1410 bool SampleProfileLoader::doInitialization(Module &M) { 1411 auto &Ctx = M.getContext(); 1412 auto ReaderOrErr = SampleProfileReader::create(Filename, Ctx); 1413 if (std::error_code EC = ReaderOrErr.getError()) { 1414 std::string Msg = "Could not open profile: " + EC.message(); 1415 Ctx.diagnose(DiagnosticInfoSampleProfile(Filename, Msg)); 1416 return false; 1417 } 1418 Reader = std::move(ReaderOrErr.get()); 1419 ProfileIsValid = (Reader->read() == sampleprof_error::success); 1420 return true; 1421 } 1422 1423 ModulePass *llvm::createSampleProfileLoaderPass() { 1424 return new SampleProfileLoaderLegacyPass(SampleProfileFile); 1425 } 1426 1427 ModulePass *llvm::createSampleProfileLoaderPass(StringRef Name) { 1428 return new SampleProfileLoaderLegacyPass(Name); 1429 } 1430 1431 bool SampleProfileLoader::runOnModule(Module &M) { 1432 if (!ProfileIsValid) 1433 return false; 1434 1435 // Compute the total number of samples collected in this profile. 1436 for (const auto &I : Reader->getProfiles()) 1437 TotalCollectedSamples += I.second.getTotalSamples(); 1438 1439 // Populate the symbol map. 1440 for (const auto &N_F : M.getValueSymbolTable()) { 1441 std::string OrigName = N_F.getKey(); 1442 Function *F = dyn_cast<Function>(N_F.getValue()); 1443 if (F == nullptr) 1444 continue; 1445 SymbolMap[OrigName] = F; 1446 auto pos = OrigName.find('.'); 1447 if (pos != std::string::npos) { 1448 std::string NewName = OrigName.substr(0, pos); 1449 auto r = SymbolMap.insert(std::make_pair(NewName, F)); 1450 // Failiing to insert means there is already an entry in SymbolMap, 1451 // thus there are multiple functions that are mapped to the same 1452 // stripped name. In this case of name conflicting, set the value 1453 // to nullptr to avoid confusion. 1454 if (!r.second) 1455 r.first->second = nullptr; 1456 } 1457 } 1458 1459 bool retval = false; 1460 for (auto &F : M) 1461 if (!F.isDeclaration()) { 1462 clearFunctionData(); 1463 retval |= runOnFunction(F); 1464 } 1465 if (M.getProfileSummary() == nullptr) 1466 M.setProfileSummary(Reader->getSummary().getMD(M.getContext())); 1467 return retval; 1468 } 1469 1470 bool SampleProfileLoaderLegacyPass::runOnModule(Module &M) { 1471 // FIXME: pass in AssumptionCache correctly for the new pass manager. 1472 SampleLoader.setACT(&getAnalysis<AssumptionCacheTracker>()); 1473 return SampleLoader.runOnModule(M); 1474 } 1475 1476 bool SampleProfileLoader::runOnFunction(Function &F) { 1477 F.setEntryCount(0); 1478 Samples = Reader->getSamplesFor(F); 1479 if (Samples && !Samples->empty()) 1480 return emitAnnotations(F); 1481 return false; 1482 } 1483 1484 PreservedAnalyses SampleProfileLoaderPass::run(Module &M, 1485 ModuleAnalysisManager &AM) { 1486 1487 SampleProfileLoader SampleLoader(SampleProfileFile); 1488 1489 SampleLoader.doInitialization(M); 1490 1491 if (!SampleLoader.runOnModule(M)) 1492 return PreservedAnalyses::all(); 1493 1494 return PreservedAnalyses::none(); 1495 } 1496