1 //===- SampleProfile.cpp - Incorporate sample profiles into the IR --------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the SampleProfileLoader transformation. This pass
11 // reads a profile file generated by a sampling profiler (e.g. Linux Perf -
12 // http://perf.wiki.kernel.org/) and generates IR metadata to reflect the
13 // profile information in the given profile.
14 //
15 // This pass generates branch weight annotations on the IR:
16 //
17 // - prof: Represents branch weights. This annotation is added to branches
18 // to indicate the weights of each edge coming out of the branch.
19 // The weight of each edge is the weight of the target block for
20 // that edge. The weight of a block B is computed as the maximum
21 // number of samples found in B.
22 //
23 //===----------------------------------------------------------------------===//
24
25 #include "llvm/Transforms/IPO/SampleProfile.h"
26 #include "llvm/ADT/ArrayRef.h"
27 #include "llvm/ADT/DenseMap.h"
28 #include "llvm/ADT/DenseSet.h"
29 #include "llvm/ADT/None.h"
30 #include "llvm/ADT/SmallPtrSet.h"
31 #include "llvm/ADT/SmallSet.h"
32 #include "llvm/ADT/SmallVector.h"
33 #include "llvm/ADT/StringMap.h"
34 #include "llvm/ADT/StringRef.h"
35 #include "llvm/ADT/Twine.h"
36 #include "llvm/Analysis/AssumptionCache.h"
37 #include "llvm/Analysis/InlineCost.h"
38 #include "llvm/Analysis/LoopInfo.h"
39 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
40 #include "llvm/Analysis/PostDominators.h"
41 #include "llvm/Analysis/ProfileSummaryInfo.h"
42 #include "llvm/Analysis/TargetTransformInfo.h"
43 #include "llvm/IR/BasicBlock.h"
44 #include "llvm/IR/CFG.h"
45 #include "llvm/IR/CallSite.h"
46 #include "llvm/IR/DebugInfoMetadata.h"
47 #include "llvm/IR/DebugLoc.h"
48 #include "llvm/IR/DiagnosticInfo.h"
49 #include "llvm/IR/Dominators.h"
50 #include "llvm/IR/Function.h"
51 #include "llvm/IR/GlobalValue.h"
52 #include "llvm/IR/InstrTypes.h"
53 #include "llvm/IR/Instruction.h"
54 #include "llvm/IR/Instructions.h"
55 #include "llvm/IR/IntrinsicInst.h"
56 #include "llvm/IR/LLVMContext.h"
57 #include "llvm/IR/MDBuilder.h"
58 #include "llvm/IR/Module.h"
59 #include "llvm/IR/PassManager.h"
60 #include "llvm/IR/ValueSymbolTable.h"
61 #include "llvm/Pass.h"
62 #include "llvm/ProfileData/InstrProf.h"
63 #include "llvm/ProfileData/SampleProf.h"
64 #include "llvm/ProfileData/SampleProfReader.h"
65 #include "llvm/Support/Casting.h"
66 #include "llvm/Support/CommandLine.h"
67 #include "llvm/Support/Debug.h"
68 #include "llvm/Support/ErrorHandling.h"
69 #include "llvm/Support/ErrorOr.h"
70 #include "llvm/Support/GenericDomTree.h"
71 #include "llvm/Support/raw_ostream.h"
72 #include "llvm/Transforms/IPO.h"
73 #include "llvm/Transforms/Instrumentation.h"
74 #include "llvm/Transforms/Utils/CallPromotionUtils.h"
75 #include "llvm/Transforms/Utils/Cloning.h"
76 #include <algorithm>
77 #include <cassert>
78 #include <cstdint>
79 #include <functional>
80 #include <limits>
81 #include <map>
82 #include <memory>
83 #include <string>
84 #include <system_error>
85 #include <utility>
86 #include <vector>
87
88 using namespace llvm;
89 using namespace sampleprof;
90 using ProfileCount = Function::ProfileCount;
91 #define DEBUG_TYPE "sample-profile"
92
93 // Command line option to specify the file to read samples from. This is
94 // mainly used for debugging.
95 static cl::opt<std::string> SampleProfileFile(
96 "sample-profile-file", cl::init(""), cl::value_desc("filename"),
97 cl::desc("Profile file loaded by -sample-profile"), cl::Hidden);
98
99 // The named file contains a set of transformations that may have been applied
100 // to the symbol names between the program from which the sample data was
101 // collected and the current program's symbols.
102 static cl::opt<std::string> SampleProfileRemappingFile(
103 "sample-profile-remapping-file", cl::init(""), cl::value_desc("filename"),
104 cl::desc("Profile remapping file loaded by -sample-profile"), cl::Hidden);
105
106 static cl::opt<unsigned> SampleProfileMaxPropagateIterations(
107 "sample-profile-max-propagate-iterations", cl::init(100),
108 cl::desc("Maximum number of iterations to go through when propagating "
109 "sample block/edge weights through the CFG."));
110
111 static cl::opt<unsigned> SampleProfileRecordCoverage(
112 "sample-profile-check-record-coverage", cl::init(0), cl::value_desc("N"),
113 cl::desc("Emit a warning if less than N% of records in the input profile "
114 "are matched to the IR."));
115
116 static cl::opt<unsigned> SampleProfileSampleCoverage(
117 "sample-profile-check-sample-coverage", cl::init(0), cl::value_desc("N"),
118 cl::desc("Emit a warning if less than N% of samples in the input profile "
119 "are matched to the IR."));
120
121 static cl::opt<bool> NoWarnSampleUnused(
122 "no-warn-sample-unused", cl::init(false), cl::Hidden,
123 cl::desc("Use this option to turn off/on warnings about function with "
124 "samples but without debug information to use those samples. "));
125
126 static cl::opt<bool> ProfileSampleAccurate(
127 "profile-sample-accurate", cl::Hidden, cl::init(false),
128 cl::desc("If the sample profile is accurate, we will mark all un-sampled "
129 "callsite and function as having 0 samples. Otherwise, treat "
130 "un-sampled callsites and functions conservatively as unknown. "));
131
132 namespace {
133
134 using BlockWeightMap = DenseMap<const BasicBlock *, uint64_t>;
135 using EquivalenceClassMap = DenseMap<const BasicBlock *, const BasicBlock *>;
136 using Edge = std::pair<const BasicBlock *, const BasicBlock *>;
137 using EdgeWeightMap = DenseMap<Edge, uint64_t>;
138 using BlockEdgeMap =
139 DenseMap<const BasicBlock *, SmallVector<const BasicBlock *, 8>>;
140
141 class SampleCoverageTracker {
142 public:
143 SampleCoverageTracker() = default;
144
145 bool markSamplesUsed(const FunctionSamples *FS, uint32_t LineOffset,
146 uint32_t Discriminator, uint64_t Samples);
147 unsigned computeCoverage(unsigned Used, unsigned Total) const;
148 unsigned countUsedRecords(const FunctionSamples *FS,
149 ProfileSummaryInfo *PSI) const;
150 unsigned countBodyRecords(const FunctionSamples *FS,
151 ProfileSummaryInfo *PSI) const;
getTotalUsedSamples() const152 uint64_t getTotalUsedSamples() const { return TotalUsedSamples; }
153 uint64_t countBodySamples(const FunctionSamples *FS,
154 ProfileSummaryInfo *PSI) const;
155
clear()156 void clear() {
157 SampleCoverage.clear();
158 TotalUsedSamples = 0;
159 }
160
161 private:
162 using BodySampleCoverageMap = std::map<LineLocation, unsigned>;
163 using FunctionSamplesCoverageMap =
164 DenseMap<const FunctionSamples *, BodySampleCoverageMap>;
165
166 /// Coverage map for sampling records.
167 ///
168 /// This map keeps a record of sampling records that have been matched to
169 /// an IR instruction. This is used to detect some form of staleness in
170 /// profiles (see flag -sample-profile-check-coverage).
171 ///
172 /// Each entry in the map corresponds to a FunctionSamples instance. This is
173 /// another map that counts how many times the sample record at the
174 /// given location has been used.
175 FunctionSamplesCoverageMap SampleCoverage;
176
177 /// Number of samples used from the profile.
178 ///
179 /// When a sampling record is used for the first time, the samples from
180 /// that record are added to this accumulator. Coverage is later computed
181 /// based on the total number of samples available in this function and
182 /// its callsites.
183 ///
184 /// Note that this accumulator tracks samples used from a single function
185 /// and all the inlined callsites. Strictly, we should have a map of counters
186 /// keyed by FunctionSamples pointers, but these stats are cleared after
187 /// every function, so we just need to keep a single counter.
188 uint64_t TotalUsedSamples = 0;
189 };
190
191 /// Sample profile pass.
192 ///
193 /// This pass reads profile data from the file specified by
194 /// -sample-profile-file and annotates every affected function with the
195 /// profile information found in that file.
196 class SampleProfileLoader {
197 public:
SampleProfileLoader(StringRef Name,StringRef RemapName,bool IsThinLTOPreLink,std::function<AssumptionCache & (Function &)> GetAssumptionCache,std::function<TargetTransformInfo & (Function &)> GetTargetTransformInfo)198 SampleProfileLoader(
199 StringRef Name, StringRef RemapName, bool IsThinLTOPreLink,
200 std::function<AssumptionCache &(Function &)> GetAssumptionCache,
201 std::function<TargetTransformInfo &(Function &)> GetTargetTransformInfo)
202 : GetAC(std::move(GetAssumptionCache)),
203 GetTTI(std::move(GetTargetTransformInfo)), Filename(Name),
204 RemappingFilename(RemapName), IsThinLTOPreLink(IsThinLTOPreLink) {}
205
206 bool doInitialization(Module &M);
207 bool runOnModule(Module &M, ModuleAnalysisManager *AM,
208 ProfileSummaryInfo *_PSI);
209
dump()210 void dump() { Reader->dump(); }
211
212 protected:
213 bool runOnFunction(Function &F, ModuleAnalysisManager *AM);
214 unsigned getFunctionLoc(Function &F);
215 bool emitAnnotations(Function &F);
216 ErrorOr<uint64_t> getInstWeight(const Instruction &I);
217 ErrorOr<uint64_t> getBlockWeight(const BasicBlock *BB);
218 const FunctionSamples *findCalleeFunctionSamples(const Instruction &I) const;
219 std::vector<const FunctionSamples *>
220 findIndirectCallFunctionSamples(const Instruction &I, uint64_t &Sum) const;
221 mutable DenseMap<const DILocation *, const FunctionSamples *> DILocation2SampleMap;
222 const FunctionSamples *findFunctionSamples(const Instruction &I) const;
223 bool inlineCallInstruction(Instruction *I);
224 bool inlineHotFunctions(Function &F,
225 DenseSet<GlobalValue::GUID> &InlinedGUIDs);
226 void printEdgeWeight(raw_ostream &OS, Edge E);
227 void printBlockWeight(raw_ostream &OS, const BasicBlock *BB) const;
228 void printBlockEquivalence(raw_ostream &OS, const BasicBlock *BB);
229 bool computeBlockWeights(Function &F);
230 void findEquivalenceClasses(Function &F);
231 template <bool IsPostDom>
232 void findEquivalencesFor(BasicBlock *BB1, ArrayRef<BasicBlock *> Descendants,
233 DominatorTreeBase<BasicBlock, IsPostDom> *DomTree);
234
235 void propagateWeights(Function &F);
236 uint64_t visitEdge(Edge E, unsigned *NumUnknownEdges, Edge *UnknownEdge);
237 void buildEdges(Function &F);
238 bool propagateThroughEdges(Function &F, bool UpdateBlockCount);
239 void computeDominanceAndLoopInfo(Function &F);
240 void clearFunctionData();
241
242 /// Map basic blocks to their computed weights.
243 ///
244 /// The weight of a basic block is defined to be the maximum
245 /// of all the instruction weights in that block.
246 BlockWeightMap BlockWeights;
247
248 /// Map edges to their computed weights.
249 ///
250 /// Edge weights are computed by propagating basic block weights in
251 /// SampleProfile::propagateWeights.
252 EdgeWeightMap EdgeWeights;
253
254 /// Set of visited blocks during propagation.
255 SmallPtrSet<const BasicBlock *, 32> VisitedBlocks;
256
257 /// Set of visited edges during propagation.
258 SmallSet<Edge, 32> VisitedEdges;
259
260 /// Equivalence classes for block weights.
261 ///
262 /// Two blocks BB1 and BB2 are in the same equivalence class if they
263 /// dominate and post-dominate each other, and they are in the same loop
264 /// nest. When this happens, the two blocks are guaranteed to execute
265 /// the same number of times.
266 EquivalenceClassMap EquivalenceClass;
267
268 /// Map from function name to Function *. Used to find the function from
269 /// the function name. If the function name contains suffix, additional
270 /// entry is added to map from the stripped name to the function if there
271 /// is one-to-one mapping.
272 StringMap<Function *> SymbolMap;
273
274 /// Dominance, post-dominance and loop information.
275 std::unique_ptr<DominatorTree> DT;
276 std::unique_ptr<PostDominatorTree> PDT;
277 std::unique_ptr<LoopInfo> LI;
278
279 std::function<AssumptionCache &(Function &)> GetAC;
280 std::function<TargetTransformInfo &(Function &)> GetTTI;
281
282 /// Predecessors for each basic block in the CFG.
283 BlockEdgeMap Predecessors;
284
285 /// Successors for each basic block in the CFG.
286 BlockEdgeMap Successors;
287
288 SampleCoverageTracker CoverageTracker;
289
290 /// Profile reader object.
291 std::unique_ptr<SampleProfileReader> Reader;
292
293 /// Samples collected for the body of this function.
294 FunctionSamples *Samples = nullptr;
295
296 /// Name of the profile file to load.
297 std::string Filename;
298
299 /// Name of the profile remapping file to load.
300 std::string RemappingFilename;
301
302 /// Flag indicating whether the profile input loaded successfully.
303 bool ProfileIsValid = false;
304
305 /// Flag indicating if the pass is invoked in ThinLTO compile phase.
306 ///
307 /// In this phase, in annotation, we should not promote indirect calls.
308 /// Instead, we will mark GUIDs that needs to be annotated to the function.
309 bool IsThinLTOPreLink;
310
311 /// Profile Summary Info computed from sample profile.
312 ProfileSummaryInfo *PSI = nullptr;
313
314 /// Total number of samples collected in this profile.
315 ///
316 /// This is the sum of all the samples collected in all the functions executed
317 /// at runtime.
318 uint64_t TotalCollectedSamples = 0;
319
320 /// Optimization Remark Emitter used to emit diagnostic remarks.
321 OptimizationRemarkEmitter *ORE = nullptr;
322 };
323
324 class SampleProfileLoaderLegacyPass : public ModulePass {
325 public:
326 // Class identification, replacement for typeinfo
327 static char ID;
328
SampleProfileLoaderLegacyPass(StringRef Name=SampleProfileFile,bool IsThinLTOPreLink=false)329 SampleProfileLoaderLegacyPass(StringRef Name = SampleProfileFile,
330 bool IsThinLTOPreLink = false)
331 : ModulePass(ID),
332 SampleLoader(Name, SampleProfileRemappingFile, IsThinLTOPreLink,
333 [&](Function &F) -> AssumptionCache & {
334 return ACT->getAssumptionCache(F);
335 },
__anon696b38bd0302(Function &F) 336 [&](Function &F) -> TargetTransformInfo & {
337 return TTIWP->getTTI(F);
338 }) {
339 initializeSampleProfileLoaderLegacyPassPass(
340 *PassRegistry::getPassRegistry());
341 }
342
dump()343 void dump() { SampleLoader.dump(); }
344
doInitialization(Module & M)345 bool doInitialization(Module &M) override {
346 return SampleLoader.doInitialization(M);
347 }
348
getPassName() const349 StringRef getPassName() const override { return "Sample profile pass"; }
350 bool runOnModule(Module &M) override;
351
getAnalysisUsage(AnalysisUsage & AU) const352 void getAnalysisUsage(AnalysisUsage &AU) const override {
353 AU.addRequired<AssumptionCacheTracker>();
354 AU.addRequired<TargetTransformInfoWrapperPass>();
355 AU.addRequired<ProfileSummaryInfoWrapperPass>();
356 }
357
358 private:
359 SampleProfileLoader SampleLoader;
360 AssumptionCacheTracker *ACT = nullptr;
361 TargetTransformInfoWrapperPass *TTIWP = nullptr;
362 };
363
364 } // end anonymous namespace
365
366 /// Return true if the given callsite is hot wrt to hot cutoff threshold.
367 ///
368 /// Functions that were inlined in the original binary will be represented
369 /// in the inline stack in the sample profile. If the profile shows that
370 /// the original inline decision was "good" (i.e., the callsite is executed
371 /// frequently), then we will recreate the inline decision and apply the
372 /// profile from the inlined callsite.
373 ///
374 /// To decide whether an inlined callsite is hot, we compare the callsite
375 /// sample count with the hot cutoff computed by ProfileSummaryInfo, it is
376 /// regarded as hot if the count is above the cutoff value.
callsiteIsHot(const FunctionSamples * CallsiteFS,ProfileSummaryInfo * PSI)377 static bool callsiteIsHot(const FunctionSamples *CallsiteFS,
378 ProfileSummaryInfo *PSI) {
379 if (!CallsiteFS)
380 return false; // The callsite was not inlined in the original binary.
381
382 assert(PSI && "PSI is expected to be non null");
383 uint64_t CallsiteTotalSamples = CallsiteFS->getTotalSamples();
384 return PSI->isHotCount(CallsiteTotalSamples);
385 }
386
387 /// Mark as used the sample record for the given function samples at
388 /// (LineOffset, Discriminator).
389 ///
390 /// \returns true if this is the first time we mark the given record.
markSamplesUsed(const FunctionSamples * FS,uint32_t LineOffset,uint32_t Discriminator,uint64_t Samples)391 bool SampleCoverageTracker::markSamplesUsed(const FunctionSamples *FS,
392 uint32_t LineOffset,
393 uint32_t Discriminator,
394 uint64_t Samples) {
395 LineLocation Loc(LineOffset, Discriminator);
396 unsigned &Count = SampleCoverage[FS][Loc];
397 bool FirstTime = (++Count == 1);
398 if (FirstTime)
399 TotalUsedSamples += Samples;
400 return FirstTime;
401 }
402
403 /// Return the number of sample records that were applied from this profile.
404 ///
405 /// This count does not include records from cold inlined callsites.
406 unsigned
countUsedRecords(const FunctionSamples * FS,ProfileSummaryInfo * PSI) const407 SampleCoverageTracker::countUsedRecords(const FunctionSamples *FS,
408 ProfileSummaryInfo *PSI) const {
409 auto I = SampleCoverage.find(FS);
410
411 // The size of the coverage map for FS represents the number of records
412 // that were marked used at least once.
413 unsigned Count = (I != SampleCoverage.end()) ? I->second.size() : 0;
414
415 // If there are inlined callsites in this function, count the samples found
416 // in the respective bodies. However, do not bother counting callees with 0
417 // total samples, these are callees that were never invoked at runtime.
418 for (const auto &I : FS->getCallsiteSamples())
419 for (const auto &J : I.second) {
420 const FunctionSamples *CalleeSamples = &J.second;
421 if (callsiteIsHot(CalleeSamples, PSI))
422 Count += countUsedRecords(CalleeSamples, PSI);
423 }
424
425 return Count;
426 }
427
428 /// Return the number of sample records in the body of this profile.
429 ///
430 /// This count does not include records from cold inlined callsites.
431 unsigned
countBodyRecords(const FunctionSamples * FS,ProfileSummaryInfo * PSI) const432 SampleCoverageTracker::countBodyRecords(const FunctionSamples *FS,
433 ProfileSummaryInfo *PSI) const {
434 unsigned Count = FS->getBodySamples().size();
435
436 // Only count records in hot callsites.
437 for (const auto &I : FS->getCallsiteSamples())
438 for (const auto &J : I.second) {
439 const FunctionSamples *CalleeSamples = &J.second;
440 if (callsiteIsHot(CalleeSamples, PSI))
441 Count += countBodyRecords(CalleeSamples, PSI);
442 }
443
444 return Count;
445 }
446
447 /// Return the number of samples collected in the body of this profile.
448 ///
449 /// This count does not include samples from cold inlined callsites.
450 uint64_t
countBodySamples(const FunctionSamples * FS,ProfileSummaryInfo * PSI) const451 SampleCoverageTracker::countBodySamples(const FunctionSamples *FS,
452 ProfileSummaryInfo *PSI) const {
453 uint64_t Total = 0;
454 for (const auto &I : FS->getBodySamples())
455 Total += I.second.getSamples();
456
457 // Only count samples in hot callsites.
458 for (const auto &I : FS->getCallsiteSamples())
459 for (const auto &J : I.second) {
460 const FunctionSamples *CalleeSamples = &J.second;
461 if (callsiteIsHot(CalleeSamples, PSI))
462 Total += countBodySamples(CalleeSamples, PSI);
463 }
464
465 return Total;
466 }
467
468 /// Return the fraction of sample records used in this profile.
469 ///
470 /// The returned value is an unsigned integer in the range 0-100 indicating
471 /// the percentage of sample records that were used while applying this
472 /// profile to the associated function.
computeCoverage(unsigned Used,unsigned Total) const473 unsigned SampleCoverageTracker::computeCoverage(unsigned Used,
474 unsigned Total) const {
475 assert(Used <= Total &&
476 "number of used records cannot exceed the total number of records");
477 return Total > 0 ? Used * 100 / Total : 100;
478 }
479
480 /// Clear all the per-function data used to load samples and propagate weights.
clearFunctionData()481 void SampleProfileLoader::clearFunctionData() {
482 BlockWeights.clear();
483 EdgeWeights.clear();
484 VisitedBlocks.clear();
485 VisitedEdges.clear();
486 EquivalenceClass.clear();
487 DT = nullptr;
488 PDT = nullptr;
489 LI = nullptr;
490 Predecessors.clear();
491 Successors.clear();
492 CoverageTracker.clear();
493 }
494
495 #ifndef NDEBUG
496 /// Print the weight of edge \p E on stream \p OS.
497 ///
498 /// \param OS Stream to emit the output to.
499 /// \param E Edge to print.
printEdgeWeight(raw_ostream & OS,Edge E)500 void SampleProfileLoader::printEdgeWeight(raw_ostream &OS, Edge E) {
501 OS << "weight[" << E.first->getName() << "->" << E.second->getName()
502 << "]: " << EdgeWeights[E] << "\n";
503 }
504
505 /// Print the equivalence class of block \p BB on stream \p OS.
506 ///
507 /// \param OS Stream to emit the output to.
508 /// \param BB Block to print.
printBlockEquivalence(raw_ostream & OS,const BasicBlock * BB)509 void SampleProfileLoader::printBlockEquivalence(raw_ostream &OS,
510 const BasicBlock *BB) {
511 const BasicBlock *Equiv = EquivalenceClass[BB];
512 OS << "equivalence[" << BB->getName()
513 << "]: " << ((Equiv) ? EquivalenceClass[BB]->getName() : "NONE") << "\n";
514 }
515
516 /// Print the weight of block \p BB on stream \p OS.
517 ///
518 /// \param OS Stream to emit the output to.
519 /// \param BB Block to print.
printBlockWeight(raw_ostream & OS,const BasicBlock * BB) const520 void SampleProfileLoader::printBlockWeight(raw_ostream &OS,
521 const BasicBlock *BB) const {
522 const auto &I = BlockWeights.find(BB);
523 uint64_t W = (I == BlockWeights.end() ? 0 : I->second);
524 OS << "weight[" << BB->getName() << "]: " << W << "\n";
525 }
526 #endif
527
528 /// Get the weight for an instruction.
529 ///
530 /// The "weight" of an instruction \p Inst is the number of samples
531 /// collected on that instruction at runtime. To retrieve it, we
532 /// need to compute the line number of \p Inst relative to the start of its
533 /// function. We use HeaderLineno to compute the offset. We then
534 /// look up the samples collected for \p Inst using BodySamples.
535 ///
536 /// \param Inst Instruction to query.
537 ///
538 /// \returns the weight of \p Inst.
getInstWeight(const Instruction & Inst)539 ErrorOr<uint64_t> SampleProfileLoader::getInstWeight(const Instruction &Inst) {
540 const DebugLoc &DLoc = Inst.getDebugLoc();
541 if (!DLoc)
542 return std::error_code();
543
544 const FunctionSamples *FS = findFunctionSamples(Inst);
545 if (!FS)
546 return std::error_code();
547
548 // Ignore all intrinsics, phinodes and branch instructions.
549 // Branch and phinodes instruction usually contains debug info from sources outside of
550 // the residing basic block, thus we ignore them during annotation.
551 if (isa<BranchInst>(Inst) || isa<IntrinsicInst>(Inst) || isa<PHINode>(Inst))
552 return std::error_code();
553
554 // If a direct call/invoke instruction is inlined in profile
555 // (findCalleeFunctionSamples returns non-empty result), but not inlined here,
556 // it means that the inlined callsite has no sample, thus the call
557 // instruction should have 0 count.
558 if ((isa<CallInst>(Inst) || isa<InvokeInst>(Inst)) &&
559 !ImmutableCallSite(&Inst).isIndirectCall() &&
560 findCalleeFunctionSamples(Inst))
561 return 0;
562
563 const DILocation *DIL = DLoc;
564 uint32_t LineOffset = FunctionSamples::getOffset(DIL);
565 uint32_t Discriminator = DIL->getBaseDiscriminator();
566 ErrorOr<uint64_t> R = FS->findSamplesAt(LineOffset, Discriminator);
567 if (R) {
568 bool FirstMark =
569 CoverageTracker.markSamplesUsed(FS, LineOffset, Discriminator, R.get());
570 if (FirstMark) {
571 ORE->emit([&]() {
572 OptimizationRemarkAnalysis Remark(DEBUG_TYPE, "AppliedSamples", &Inst);
573 Remark << "Applied " << ore::NV("NumSamples", *R);
574 Remark << " samples from profile (offset: ";
575 Remark << ore::NV("LineOffset", LineOffset);
576 if (Discriminator) {
577 Remark << ".";
578 Remark << ore::NV("Discriminator", Discriminator);
579 }
580 Remark << ")";
581 return Remark;
582 });
583 }
584 LLVM_DEBUG(dbgs() << " " << DLoc.getLine() << "."
585 << DIL->getBaseDiscriminator() << ":" << Inst
586 << " (line offset: " << LineOffset << "."
587 << DIL->getBaseDiscriminator() << " - weight: " << R.get()
588 << ")\n");
589 }
590 return R;
591 }
592
593 /// Compute the weight of a basic block.
594 ///
595 /// The weight of basic block \p BB is the maximum weight of all the
596 /// instructions in BB.
597 ///
598 /// \param BB The basic block to query.
599 ///
600 /// \returns the weight for \p BB.
getBlockWeight(const BasicBlock * BB)601 ErrorOr<uint64_t> SampleProfileLoader::getBlockWeight(const BasicBlock *BB) {
602 uint64_t Max = 0;
603 bool HasWeight = false;
604 for (auto &I : BB->getInstList()) {
605 const ErrorOr<uint64_t> &R = getInstWeight(I);
606 if (R) {
607 Max = std::max(Max, R.get());
608 HasWeight = true;
609 }
610 }
611 return HasWeight ? ErrorOr<uint64_t>(Max) : std::error_code();
612 }
613
614 /// Compute and store the weights of every basic block.
615 ///
616 /// This populates the BlockWeights map by computing
617 /// the weights of every basic block in the CFG.
618 ///
619 /// \param F The function to query.
computeBlockWeights(Function & F)620 bool SampleProfileLoader::computeBlockWeights(Function &F) {
621 bool Changed = false;
622 LLVM_DEBUG(dbgs() << "Block weights\n");
623 for (const auto &BB : F) {
624 ErrorOr<uint64_t> Weight = getBlockWeight(&BB);
625 if (Weight) {
626 BlockWeights[&BB] = Weight.get();
627 VisitedBlocks.insert(&BB);
628 Changed = true;
629 }
630 LLVM_DEBUG(printBlockWeight(dbgs(), &BB));
631 }
632
633 return Changed;
634 }
635
636 /// Get the FunctionSamples for a call instruction.
637 ///
638 /// The FunctionSamples of a call/invoke instruction \p Inst is the inlined
639 /// instance in which that call instruction is calling to. It contains
640 /// all samples that resides in the inlined instance. We first find the
641 /// inlined instance in which the call instruction is from, then we
642 /// traverse its children to find the callsite with the matching
643 /// location.
644 ///
645 /// \param Inst Call/Invoke instruction to query.
646 ///
647 /// \returns The FunctionSamples pointer to the inlined instance.
648 const FunctionSamples *
findCalleeFunctionSamples(const Instruction & Inst) const649 SampleProfileLoader::findCalleeFunctionSamples(const Instruction &Inst) const {
650 const DILocation *DIL = Inst.getDebugLoc();
651 if (!DIL) {
652 return nullptr;
653 }
654
655 StringRef CalleeName;
656 if (const CallInst *CI = dyn_cast<CallInst>(&Inst))
657 if (Function *Callee = CI->getCalledFunction())
658 CalleeName = Callee->getName();
659
660 const FunctionSamples *FS = findFunctionSamples(Inst);
661 if (FS == nullptr)
662 return nullptr;
663
664 return FS->findFunctionSamplesAt(LineLocation(FunctionSamples::getOffset(DIL),
665 DIL->getBaseDiscriminator()),
666 CalleeName);
667 }
668
669 /// Returns a vector of FunctionSamples that are the indirect call targets
670 /// of \p Inst. The vector is sorted by the total number of samples. Stores
671 /// the total call count of the indirect call in \p Sum.
672 std::vector<const FunctionSamples *>
findIndirectCallFunctionSamples(const Instruction & Inst,uint64_t & Sum) const673 SampleProfileLoader::findIndirectCallFunctionSamples(
674 const Instruction &Inst, uint64_t &Sum) const {
675 const DILocation *DIL = Inst.getDebugLoc();
676 std::vector<const FunctionSamples *> R;
677
678 if (!DIL) {
679 return R;
680 }
681
682 const FunctionSamples *FS = findFunctionSamples(Inst);
683 if (FS == nullptr)
684 return R;
685
686 uint32_t LineOffset = FunctionSamples::getOffset(DIL);
687 uint32_t Discriminator = DIL->getBaseDiscriminator();
688
689 auto T = FS->findCallTargetMapAt(LineOffset, Discriminator);
690 Sum = 0;
691 if (T)
692 for (const auto &T_C : T.get())
693 Sum += T_C.second;
694 if (const FunctionSamplesMap *M = FS->findFunctionSamplesMapAt(LineLocation(
695 FunctionSamples::getOffset(DIL), DIL->getBaseDiscriminator()))) {
696 if (M->empty())
697 return R;
698 for (const auto &NameFS : *M) {
699 Sum += NameFS.second.getEntrySamples();
700 R.push_back(&NameFS.second);
701 }
702 llvm::sort(R, [](const FunctionSamples *L, const FunctionSamples *R) {
703 if (L->getEntrySamples() != R->getEntrySamples())
704 return L->getEntrySamples() > R->getEntrySamples();
705 return FunctionSamples::getGUID(L->getName()) <
706 FunctionSamples::getGUID(R->getName());
707 });
708 }
709 return R;
710 }
711
712 /// Get the FunctionSamples for an instruction.
713 ///
714 /// The FunctionSamples of an instruction \p Inst is the inlined instance
715 /// in which that instruction is coming from. We traverse the inline stack
716 /// of that instruction, and match it with the tree nodes in the profile.
717 ///
718 /// \param Inst Instruction to query.
719 ///
720 /// \returns the FunctionSamples pointer to the inlined instance.
721 const FunctionSamples *
findFunctionSamples(const Instruction & Inst) const722 SampleProfileLoader::findFunctionSamples(const Instruction &Inst) const {
723 const DILocation *DIL = Inst.getDebugLoc();
724 if (!DIL)
725 return Samples;
726
727 auto it = DILocation2SampleMap.try_emplace(DIL,nullptr);
728 if (it.second)
729 it.first->second = Samples->findFunctionSamples(DIL);
730 return it.first->second;
731 }
732
inlineCallInstruction(Instruction * I)733 bool SampleProfileLoader::inlineCallInstruction(Instruction *I) {
734 assert(isa<CallInst>(I) || isa<InvokeInst>(I));
735 CallSite CS(I);
736 Function *CalledFunction = CS.getCalledFunction();
737 assert(CalledFunction);
738 DebugLoc DLoc = I->getDebugLoc();
739 BasicBlock *BB = I->getParent();
740 InlineParams Params = getInlineParams();
741 Params.ComputeFullInlineCost = true;
742 // Checks if there is anything in the reachable portion of the callee at
743 // this callsite that makes this inlining potentially illegal. Need to
744 // set ComputeFullInlineCost, otherwise getInlineCost may return early
745 // when cost exceeds threshold without checking all IRs in the callee.
746 // The acutal cost does not matter because we only checks isNever() to
747 // see if it is legal to inline the callsite.
748 InlineCost Cost = getInlineCost(CS, Params, GetTTI(*CalledFunction), GetAC,
749 None, nullptr, nullptr);
750 if (Cost.isNever()) {
751 ORE->emit(OptimizationRemark(DEBUG_TYPE, "Not inline", DLoc, BB)
752 << "incompatible inlining");
753 return false;
754 }
755 InlineFunctionInfo IFI(nullptr, &GetAC);
756 if (InlineFunction(CS, IFI)) {
757 // The call to InlineFunction erases I, so we can't pass it here.
758 ORE->emit(OptimizationRemark(DEBUG_TYPE, "HotInline", DLoc, BB)
759 << "inlined hot callee '" << ore::NV("Callee", CalledFunction)
760 << "' into '" << ore::NV("Caller", BB->getParent()) << "'");
761 return true;
762 }
763 return false;
764 }
765
766 /// Iteratively inline hot callsites of a function.
767 ///
768 /// Iteratively traverse all callsites of the function \p F, and find if
769 /// the corresponding inlined instance exists and is hot in profile. If
770 /// it is hot enough, inline the callsites and adds new callsites of the
771 /// callee into the caller. If the call is an indirect call, first promote
772 /// it to direct call. Each indirect call is limited with a single target.
773 ///
774 /// \param F function to perform iterative inlining.
775 /// \param InlinedGUIDs a set to be updated to include all GUIDs that are
776 /// inlined in the profiled binary.
777 ///
778 /// \returns True if there is any inline happened.
inlineHotFunctions(Function & F,DenseSet<GlobalValue::GUID> & InlinedGUIDs)779 bool SampleProfileLoader::inlineHotFunctions(
780 Function &F, DenseSet<GlobalValue::GUID> &InlinedGUIDs) {
781 DenseSet<Instruction *> PromotedInsns;
782 bool Changed = false;
783 while (true) {
784 bool LocalChanged = false;
785 SmallVector<Instruction *, 10> CIS;
786 for (auto &BB : F) {
787 bool Hot = false;
788 SmallVector<Instruction *, 10> Candidates;
789 for (auto &I : BB.getInstList()) {
790 const FunctionSamples *FS = nullptr;
791 if ((isa<CallInst>(I) || isa<InvokeInst>(I)) &&
792 !isa<IntrinsicInst>(I) && (FS = findCalleeFunctionSamples(I))) {
793 Candidates.push_back(&I);
794 if (callsiteIsHot(FS, PSI))
795 Hot = true;
796 }
797 }
798 if (Hot) {
799 CIS.insert(CIS.begin(), Candidates.begin(), Candidates.end());
800 }
801 }
802 for (auto I : CIS) {
803 Function *CalledFunction = CallSite(I).getCalledFunction();
804 // Do not inline recursive calls.
805 if (CalledFunction == &F)
806 continue;
807 if (CallSite(I).isIndirectCall()) {
808 if (PromotedInsns.count(I))
809 continue;
810 uint64_t Sum;
811 for (const auto *FS : findIndirectCallFunctionSamples(*I, Sum)) {
812 if (IsThinLTOPreLink) {
813 FS->findInlinedFunctions(InlinedGUIDs, F.getParent(),
814 PSI->getOrCompHotCountThreshold());
815 continue;
816 }
817 auto CalleeFunctionName = FS->getFuncNameInModule(F.getParent());
818 // If it is a recursive call, we do not inline it as it could bloat
819 // the code exponentially. There is way to better handle this, e.g.
820 // clone the caller first, and inline the cloned caller if it is
821 // recursive. As llvm does not inline recursive calls, we will
822 // simply ignore it instead of handling it explicitly.
823 if (CalleeFunctionName == F.getName())
824 continue;
825
826 const char *Reason = "Callee function not available";
827 auto R = SymbolMap.find(CalleeFunctionName);
828 if (R != SymbolMap.end() && R->getValue() &&
829 !R->getValue()->isDeclaration() &&
830 R->getValue()->getSubprogram() &&
831 isLegalToPromote(CallSite(I), R->getValue(), &Reason)) {
832 uint64_t C = FS->getEntrySamples();
833 Instruction *DI =
834 pgo::promoteIndirectCall(I, R->getValue(), C, Sum, false, ORE);
835 Sum -= C;
836 PromotedInsns.insert(I);
837 // If profile mismatches, we should not attempt to inline DI.
838 if ((isa<CallInst>(DI) || isa<InvokeInst>(DI)) &&
839 inlineCallInstruction(DI))
840 LocalChanged = true;
841 } else {
842 LLVM_DEBUG(dbgs()
843 << "\nFailed to promote indirect call to "
844 << CalleeFunctionName << " because " << Reason << "\n");
845 }
846 }
847 } else if (CalledFunction && CalledFunction->getSubprogram() &&
848 !CalledFunction->isDeclaration()) {
849 if (inlineCallInstruction(I))
850 LocalChanged = true;
851 } else if (IsThinLTOPreLink) {
852 findCalleeFunctionSamples(*I)->findInlinedFunctions(
853 InlinedGUIDs, F.getParent(), PSI->getOrCompHotCountThreshold());
854 }
855 }
856 if (LocalChanged) {
857 Changed = true;
858 } else {
859 break;
860 }
861 }
862 return Changed;
863 }
864
865 /// Find equivalence classes for the given block.
866 ///
867 /// This finds all the blocks that are guaranteed to execute the same
868 /// number of times as \p BB1. To do this, it traverses all the
869 /// descendants of \p BB1 in the dominator or post-dominator tree.
870 ///
871 /// A block BB2 will be in the same equivalence class as \p BB1 if
872 /// the following holds:
873 ///
874 /// 1- \p BB1 is a descendant of BB2 in the opposite tree. So, if BB2
875 /// is a descendant of \p BB1 in the dominator tree, then BB2 should
876 /// dominate BB1 in the post-dominator tree.
877 ///
878 /// 2- Both BB2 and \p BB1 must be in the same loop.
879 ///
880 /// For every block BB2 that meets those two requirements, we set BB2's
881 /// equivalence class to \p BB1.
882 ///
883 /// \param BB1 Block to check.
884 /// \param Descendants Descendants of \p BB1 in either the dom or pdom tree.
885 /// \param DomTree Opposite dominator tree. If \p Descendants is filled
886 /// with blocks from \p BB1's dominator tree, then
887 /// this is the post-dominator tree, and vice versa.
888 template <bool IsPostDom>
findEquivalencesFor(BasicBlock * BB1,ArrayRef<BasicBlock * > Descendants,DominatorTreeBase<BasicBlock,IsPostDom> * DomTree)889 void SampleProfileLoader::findEquivalencesFor(
890 BasicBlock *BB1, ArrayRef<BasicBlock *> Descendants,
891 DominatorTreeBase<BasicBlock, IsPostDom> *DomTree) {
892 const BasicBlock *EC = EquivalenceClass[BB1];
893 uint64_t Weight = BlockWeights[EC];
894 for (const auto *BB2 : Descendants) {
895 bool IsDomParent = DomTree->dominates(BB2, BB1);
896 bool IsInSameLoop = LI->getLoopFor(BB1) == LI->getLoopFor(BB2);
897 if (BB1 != BB2 && IsDomParent && IsInSameLoop) {
898 EquivalenceClass[BB2] = EC;
899 // If BB2 is visited, then the entire EC should be marked as visited.
900 if (VisitedBlocks.count(BB2)) {
901 VisitedBlocks.insert(EC);
902 }
903
904 // If BB2 is heavier than BB1, make BB2 have the same weight
905 // as BB1.
906 //
907 // Note that we don't worry about the opposite situation here
908 // (when BB2 is lighter than BB1). We will deal with this
909 // during the propagation phase. Right now, we just want to
910 // make sure that BB1 has the largest weight of all the
911 // members of its equivalence set.
912 Weight = std::max(Weight, BlockWeights[BB2]);
913 }
914 }
915 if (EC == &EC->getParent()->getEntryBlock()) {
916 BlockWeights[EC] = Samples->getHeadSamples() + 1;
917 } else {
918 BlockWeights[EC] = Weight;
919 }
920 }
921
922 /// Find equivalence classes.
923 ///
924 /// Since samples may be missing from blocks, we can fill in the gaps by setting
925 /// the weights of all the blocks in the same equivalence class to the same
926 /// weight. To compute the concept of equivalence, we use dominance and loop
927 /// information. Two blocks B1 and B2 are in the same equivalence class if B1
928 /// dominates B2, B2 post-dominates B1 and both are in the same loop.
929 ///
930 /// \param F The function to query.
findEquivalenceClasses(Function & F)931 void SampleProfileLoader::findEquivalenceClasses(Function &F) {
932 SmallVector<BasicBlock *, 8> DominatedBBs;
933 LLVM_DEBUG(dbgs() << "\nBlock equivalence classes\n");
934 // Find equivalence sets based on dominance and post-dominance information.
935 for (auto &BB : F) {
936 BasicBlock *BB1 = &BB;
937
938 // Compute BB1's equivalence class once.
939 if (EquivalenceClass.count(BB1)) {
940 LLVM_DEBUG(printBlockEquivalence(dbgs(), BB1));
941 continue;
942 }
943
944 // By default, blocks are in their own equivalence class.
945 EquivalenceClass[BB1] = BB1;
946
947 // Traverse all the blocks dominated by BB1. We are looking for
948 // every basic block BB2 such that:
949 //
950 // 1- BB1 dominates BB2.
951 // 2- BB2 post-dominates BB1.
952 // 3- BB1 and BB2 are in the same loop nest.
953 //
954 // If all those conditions hold, it means that BB2 is executed
955 // as many times as BB1, so they are placed in the same equivalence
956 // class by making BB2's equivalence class be BB1.
957 DominatedBBs.clear();
958 DT->getDescendants(BB1, DominatedBBs);
959 findEquivalencesFor(BB1, DominatedBBs, PDT.get());
960
961 LLVM_DEBUG(printBlockEquivalence(dbgs(), BB1));
962 }
963
964 // Assign weights to equivalence classes.
965 //
966 // All the basic blocks in the same equivalence class will execute
967 // the same number of times. Since we know that the head block in
968 // each equivalence class has the largest weight, assign that weight
969 // to all the blocks in that equivalence class.
970 LLVM_DEBUG(
971 dbgs() << "\nAssign the same weight to all blocks in the same class\n");
972 for (auto &BI : F) {
973 const BasicBlock *BB = &BI;
974 const BasicBlock *EquivBB = EquivalenceClass[BB];
975 if (BB != EquivBB)
976 BlockWeights[BB] = BlockWeights[EquivBB];
977 LLVM_DEBUG(printBlockWeight(dbgs(), BB));
978 }
979 }
980
981 /// Visit the given edge to decide if it has a valid weight.
982 ///
983 /// If \p E has not been visited before, we copy to \p UnknownEdge
984 /// and increment the count of unknown edges.
985 ///
986 /// \param E Edge to visit.
987 /// \param NumUnknownEdges Current number of unknown edges.
988 /// \param UnknownEdge Set if E has not been visited before.
989 ///
990 /// \returns E's weight, if known. Otherwise, return 0.
visitEdge(Edge E,unsigned * NumUnknownEdges,Edge * UnknownEdge)991 uint64_t SampleProfileLoader::visitEdge(Edge E, unsigned *NumUnknownEdges,
992 Edge *UnknownEdge) {
993 if (!VisitedEdges.count(E)) {
994 (*NumUnknownEdges)++;
995 *UnknownEdge = E;
996 return 0;
997 }
998
999 return EdgeWeights[E];
1000 }
1001
1002 /// Propagate weights through incoming/outgoing edges.
1003 ///
1004 /// If the weight of a basic block is known, and there is only one edge
1005 /// with an unknown weight, we can calculate the weight of that edge.
1006 ///
1007 /// Similarly, if all the edges have a known count, we can calculate the
1008 /// count of the basic block, if needed.
1009 ///
1010 /// \param F Function to process.
1011 /// \param UpdateBlockCount Whether we should update basic block counts that
1012 /// has already been annotated.
1013 ///
1014 /// \returns True if new weights were assigned to edges or blocks.
propagateThroughEdges(Function & F,bool UpdateBlockCount)1015 bool SampleProfileLoader::propagateThroughEdges(Function &F,
1016 bool UpdateBlockCount) {
1017 bool Changed = false;
1018 LLVM_DEBUG(dbgs() << "\nPropagation through edges\n");
1019 for (const auto &BI : F) {
1020 const BasicBlock *BB = &BI;
1021 const BasicBlock *EC = EquivalenceClass[BB];
1022
1023 // Visit all the predecessor and successor edges to determine
1024 // which ones have a weight assigned already. Note that it doesn't
1025 // matter that we only keep track of a single unknown edge. The
1026 // only case we are interested in handling is when only a single
1027 // edge is unknown (see setEdgeOrBlockWeight).
1028 for (unsigned i = 0; i < 2; i++) {
1029 uint64_t TotalWeight = 0;
1030 unsigned NumUnknownEdges = 0, NumTotalEdges = 0;
1031 Edge UnknownEdge, SelfReferentialEdge, SingleEdge;
1032
1033 if (i == 0) {
1034 // First, visit all predecessor edges.
1035 NumTotalEdges = Predecessors[BB].size();
1036 for (auto *Pred : Predecessors[BB]) {
1037 Edge E = std::make_pair(Pred, BB);
1038 TotalWeight += visitEdge(E, &NumUnknownEdges, &UnknownEdge);
1039 if (E.first == E.second)
1040 SelfReferentialEdge = E;
1041 }
1042 if (NumTotalEdges == 1) {
1043 SingleEdge = std::make_pair(Predecessors[BB][0], BB);
1044 }
1045 } else {
1046 // On the second round, visit all successor edges.
1047 NumTotalEdges = Successors[BB].size();
1048 for (auto *Succ : Successors[BB]) {
1049 Edge E = std::make_pair(BB, Succ);
1050 TotalWeight += visitEdge(E, &NumUnknownEdges, &UnknownEdge);
1051 }
1052 if (NumTotalEdges == 1) {
1053 SingleEdge = std::make_pair(BB, Successors[BB][0]);
1054 }
1055 }
1056
1057 // After visiting all the edges, there are three cases that we
1058 // can handle immediately:
1059 //
1060 // - All the edge weights are known (i.e., NumUnknownEdges == 0).
1061 // In this case, we simply check that the sum of all the edges
1062 // is the same as BB's weight. If not, we change BB's weight
1063 // to match. Additionally, if BB had not been visited before,
1064 // we mark it visited.
1065 //
1066 // - Only one edge is unknown and BB has already been visited.
1067 // In this case, we can compute the weight of the edge by
1068 // subtracting the total block weight from all the known
1069 // edge weights. If the edges weight more than BB, then the
1070 // edge of the last remaining edge is set to zero.
1071 //
1072 // - There exists a self-referential edge and the weight of BB is
1073 // known. In this case, this edge can be based on BB's weight.
1074 // We add up all the other known edges and set the weight on
1075 // the self-referential edge as we did in the previous case.
1076 //
1077 // In any other case, we must continue iterating. Eventually,
1078 // all edges will get a weight, or iteration will stop when
1079 // it reaches SampleProfileMaxPropagateIterations.
1080 if (NumUnknownEdges <= 1) {
1081 uint64_t &BBWeight = BlockWeights[EC];
1082 if (NumUnknownEdges == 0) {
1083 if (!VisitedBlocks.count(EC)) {
1084 // If we already know the weight of all edges, the weight of the
1085 // basic block can be computed. It should be no larger than the sum
1086 // of all edge weights.
1087 if (TotalWeight > BBWeight) {
1088 BBWeight = TotalWeight;
1089 Changed = true;
1090 LLVM_DEBUG(dbgs() << "All edge weights for " << BB->getName()
1091 << " known. Set weight for block: ";
1092 printBlockWeight(dbgs(), BB););
1093 }
1094 } else if (NumTotalEdges == 1 &&
1095 EdgeWeights[SingleEdge] < BlockWeights[EC]) {
1096 // If there is only one edge for the visited basic block, use the
1097 // block weight to adjust edge weight if edge weight is smaller.
1098 EdgeWeights[SingleEdge] = BlockWeights[EC];
1099 Changed = true;
1100 }
1101 } else if (NumUnknownEdges == 1 && VisitedBlocks.count(EC)) {
1102 // If there is a single unknown edge and the block has been
1103 // visited, then we can compute E's weight.
1104 if (BBWeight >= TotalWeight)
1105 EdgeWeights[UnknownEdge] = BBWeight - TotalWeight;
1106 else
1107 EdgeWeights[UnknownEdge] = 0;
1108 const BasicBlock *OtherEC;
1109 if (i == 0)
1110 OtherEC = EquivalenceClass[UnknownEdge.first];
1111 else
1112 OtherEC = EquivalenceClass[UnknownEdge.second];
1113 // Edge weights should never exceed the BB weights it connects.
1114 if (VisitedBlocks.count(OtherEC) &&
1115 EdgeWeights[UnknownEdge] > BlockWeights[OtherEC])
1116 EdgeWeights[UnknownEdge] = BlockWeights[OtherEC];
1117 VisitedEdges.insert(UnknownEdge);
1118 Changed = true;
1119 LLVM_DEBUG(dbgs() << "Set weight for edge: ";
1120 printEdgeWeight(dbgs(), UnknownEdge));
1121 }
1122 } else if (VisitedBlocks.count(EC) && BlockWeights[EC] == 0) {
1123 // If a block Weights 0, all its in/out edges should weight 0.
1124 if (i == 0) {
1125 for (auto *Pred : Predecessors[BB]) {
1126 Edge E = std::make_pair(Pred, BB);
1127 EdgeWeights[E] = 0;
1128 VisitedEdges.insert(E);
1129 }
1130 } else {
1131 for (auto *Succ : Successors[BB]) {
1132 Edge E = std::make_pair(BB, Succ);
1133 EdgeWeights[E] = 0;
1134 VisitedEdges.insert(E);
1135 }
1136 }
1137 } else if (SelfReferentialEdge.first && VisitedBlocks.count(EC)) {
1138 uint64_t &BBWeight = BlockWeights[BB];
1139 // We have a self-referential edge and the weight of BB is known.
1140 if (BBWeight >= TotalWeight)
1141 EdgeWeights[SelfReferentialEdge] = BBWeight - TotalWeight;
1142 else
1143 EdgeWeights[SelfReferentialEdge] = 0;
1144 VisitedEdges.insert(SelfReferentialEdge);
1145 Changed = true;
1146 LLVM_DEBUG(dbgs() << "Set self-referential edge weight to: ";
1147 printEdgeWeight(dbgs(), SelfReferentialEdge));
1148 }
1149 if (UpdateBlockCount && !VisitedBlocks.count(EC) && TotalWeight > 0) {
1150 BlockWeights[EC] = TotalWeight;
1151 VisitedBlocks.insert(EC);
1152 Changed = true;
1153 }
1154 }
1155 }
1156
1157 return Changed;
1158 }
1159
1160 /// Build in/out edge lists for each basic block in the CFG.
1161 ///
1162 /// We are interested in unique edges. If a block B1 has multiple
1163 /// edges to another block B2, we only add a single B1->B2 edge.
buildEdges(Function & F)1164 void SampleProfileLoader::buildEdges(Function &F) {
1165 for (auto &BI : F) {
1166 BasicBlock *B1 = &BI;
1167
1168 // Add predecessors for B1.
1169 SmallPtrSet<BasicBlock *, 16> Visited;
1170 if (!Predecessors[B1].empty())
1171 llvm_unreachable("Found a stale predecessors list in a basic block.");
1172 for (pred_iterator PI = pred_begin(B1), PE = pred_end(B1); PI != PE; ++PI) {
1173 BasicBlock *B2 = *PI;
1174 if (Visited.insert(B2).second)
1175 Predecessors[B1].push_back(B2);
1176 }
1177
1178 // Add successors for B1.
1179 Visited.clear();
1180 if (!Successors[B1].empty())
1181 llvm_unreachable("Found a stale successors list in a basic block.");
1182 for (succ_iterator SI = succ_begin(B1), SE = succ_end(B1); SI != SE; ++SI) {
1183 BasicBlock *B2 = *SI;
1184 if (Visited.insert(B2).second)
1185 Successors[B1].push_back(B2);
1186 }
1187 }
1188 }
1189
1190 /// Returns the sorted CallTargetMap \p M by count in descending order.
SortCallTargets(const SampleRecord::CallTargetMap & M)1191 static SmallVector<InstrProfValueData, 2> SortCallTargets(
1192 const SampleRecord::CallTargetMap &M) {
1193 SmallVector<InstrProfValueData, 2> R;
1194 for (auto I = M.begin(); I != M.end(); ++I)
1195 R.push_back({FunctionSamples::getGUID(I->getKey()), I->getValue()});
1196 llvm::sort(R, [](const InstrProfValueData &L, const InstrProfValueData &R) {
1197 if (L.Count == R.Count)
1198 return L.Value > R.Value;
1199 else
1200 return L.Count > R.Count;
1201 });
1202 return R;
1203 }
1204
1205 /// Propagate weights into edges
1206 ///
1207 /// The following rules are applied to every block BB in the CFG:
1208 ///
1209 /// - If BB has a single predecessor/successor, then the weight
1210 /// of that edge is the weight of the block.
1211 ///
1212 /// - If all incoming or outgoing edges are known except one, and the
1213 /// weight of the block is already known, the weight of the unknown
1214 /// edge will be the weight of the block minus the sum of all the known
1215 /// edges. If the sum of all the known edges is larger than BB's weight,
1216 /// we set the unknown edge weight to zero.
1217 ///
1218 /// - If there is a self-referential edge, and the weight of the block is
1219 /// known, the weight for that edge is set to the weight of the block
1220 /// minus the weight of the other incoming edges to that block (if
1221 /// known).
propagateWeights(Function & F)1222 void SampleProfileLoader::propagateWeights(Function &F) {
1223 bool Changed = true;
1224 unsigned I = 0;
1225
1226 // If BB weight is larger than its corresponding loop's header BB weight,
1227 // use the BB weight to replace the loop header BB weight.
1228 for (auto &BI : F) {
1229 BasicBlock *BB = &BI;
1230 Loop *L = LI->getLoopFor(BB);
1231 if (!L) {
1232 continue;
1233 }
1234 BasicBlock *Header = L->getHeader();
1235 if (Header && BlockWeights[BB] > BlockWeights[Header]) {
1236 BlockWeights[Header] = BlockWeights[BB];
1237 }
1238 }
1239
1240 // Before propagation starts, build, for each block, a list of
1241 // unique predecessors and successors. This is necessary to handle
1242 // identical edges in multiway branches. Since we visit all blocks and all
1243 // edges of the CFG, it is cleaner to build these lists once at the start
1244 // of the pass.
1245 buildEdges(F);
1246
1247 // Propagate until we converge or we go past the iteration limit.
1248 while (Changed && I++ < SampleProfileMaxPropagateIterations) {
1249 Changed = propagateThroughEdges(F, false);
1250 }
1251
1252 // The first propagation propagates BB counts from annotated BBs to unknown
1253 // BBs. The 2nd propagation pass resets edges weights, and use all BB weights
1254 // to propagate edge weights.
1255 VisitedEdges.clear();
1256 Changed = true;
1257 while (Changed && I++ < SampleProfileMaxPropagateIterations) {
1258 Changed = propagateThroughEdges(F, false);
1259 }
1260
1261 // The 3rd propagation pass allows adjust annotated BB weights that are
1262 // obviously wrong.
1263 Changed = true;
1264 while (Changed && I++ < SampleProfileMaxPropagateIterations) {
1265 Changed = propagateThroughEdges(F, true);
1266 }
1267
1268 // Generate MD_prof metadata for every branch instruction using the
1269 // edge weights computed during propagation.
1270 LLVM_DEBUG(dbgs() << "\nPropagation complete. Setting branch weights\n");
1271 LLVMContext &Ctx = F.getContext();
1272 MDBuilder MDB(Ctx);
1273 for (auto &BI : F) {
1274 BasicBlock *BB = &BI;
1275
1276 if (BlockWeights[BB]) {
1277 for (auto &I : BB->getInstList()) {
1278 if (!isa<CallInst>(I) && !isa<InvokeInst>(I))
1279 continue;
1280 CallSite CS(&I);
1281 if (!CS.getCalledFunction()) {
1282 const DebugLoc &DLoc = I.getDebugLoc();
1283 if (!DLoc)
1284 continue;
1285 const DILocation *DIL = DLoc;
1286 uint32_t LineOffset = FunctionSamples::getOffset(DIL);
1287 uint32_t Discriminator = DIL->getBaseDiscriminator();
1288
1289 const FunctionSamples *FS = findFunctionSamples(I);
1290 if (!FS)
1291 continue;
1292 auto T = FS->findCallTargetMapAt(LineOffset, Discriminator);
1293 if (!T || T.get().empty())
1294 continue;
1295 SmallVector<InstrProfValueData, 2> SortedCallTargets =
1296 SortCallTargets(T.get());
1297 uint64_t Sum;
1298 findIndirectCallFunctionSamples(I, Sum);
1299 annotateValueSite(*I.getParent()->getParent()->getParent(), I,
1300 SortedCallTargets, Sum, IPVK_IndirectCallTarget,
1301 SortedCallTargets.size());
1302 } else if (!dyn_cast<IntrinsicInst>(&I)) {
1303 SmallVector<uint32_t, 1> Weights;
1304 Weights.push_back(BlockWeights[BB]);
1305 I.setMetadata(LLVMContext::MD_prof, MDB.createBranchWeights(Weights));
1306 }
1307 }
1308 }
1309 Instruction *TI = BB->getTerminator();
1310 if (TI->getNumSuccessors() == 1)
1311 continue;
1312 if (!isa<BranchInst>(TI) && !isa<SwitchInst>(TI))
1313 continue;
1314
1315 DebugLoc BranchLoc = TI->getDebugLoc();
1316 LLVM_DEBUG(dbgs() << "\nGetting weights for branch at line "
1317 << ((BranchLoc) ? Twine(BranchLoc.getLine())
1318 : Twine("<UNKNOWN LOCATION>"))
1319 << ".\n");
1320 SmallVector<uint32_t, 4> Weights;
1321 uint32_t MaxWeight = 0;
1322 Instruction *MaxDestInst;
1323 for (unsigned I = 0; I < TI->getNumSuccessors(); ++I) {
1324 BasicBlock *Succ = TI->getSuccessor(I);
1325 Edge E = std::make_pair(BB, Succ);
1326 uint64_t Weight = EdgeWeights[E];
1327 LLVM_DEBUG(dbgs() << "\t"; printEdgeWeight(dbgs(), E));
1328 // Use uint32_t saturated arithmetic to adjust the incoming weights,
1329 // if needed. Sample counts in profiles are 64-bit unsigned values,
1330 // but internally branch weights are expressed as 32-bit values.
1331 if (Weight > std::numeric_limits<uint32_t>::max()) {
1332 LLVM_DEBUG(dbgs() << " (saturated due to uint32_t overflow)");
1333 Weight = std::numeric_limits<uint32_t>::max();
1334 }
1335 // Weight is added by one to avoid propagation errors introduced by
1336 // 0 weights.
1337 Weights.push_back(static_cast<uint32_t>(Weight + 1));
1338 if (Weight != 0) {
1339 if (Weight > MaxWeight) {
1340 MaxWeight = Weight;
1341 MaxDestInst = Succ->getFirstNonPHIOrDbgOrLifetime();
1342 }
1343 }
1344 }
1345
1346 uint64_t TempWeight;
1347 // Only set weights if there is at least one non-zero weight.
1348 // In any other case, let the analyzer set weights.
1349 // Do not set weights if the weights are present. In ThinLTO, the profile
1350 // annotation is done twice. If the first annotation already set the
1351 // weights, the second pass does not need to set it.
1352 if (MaxWeight > 0 && !TI->extractProfTotalWeight(TempWeight)) {
1353 LLVM_DEBUG(dbgs() << "SUCCESS. Found non-zero weights.\n");
1354 TI->setMetadata(LLVMContext::MD_prof,
1355 MDB.createBranchWeights(Weights));
1356 ORE->emit([&]() {
1357 return OptimizationRemark(DEBUG_TYPE, "PopularDest", MaxDestInst)
1358 << "most popular destination for conditional branches at "
1359 << ore::NV("CondBranchesLoc", BranchLoc);
1360 });
1361 } else {
1362 LLVM_DEBUG(dbgs() << "SKIPPED. All branch weights are zero.\n");
1363 }
1364 }
1365 }
1366
1367 /// Get the line number for the function header.
1368 ///
1369 /// This looks up function \p F in the current compilation unit and
1370 /// retrieves the line number where the function is defined. This is
1371 /// line 0 for all the samples read from the profile file. Every line
1372 /// number is relative to this line.
1373 ///
1374 /// \param F Function object to query.
1375 ///
1376 /// \returns the line number where \p F is defined. If it returns 0,
1377 /// it means that there is no debug information available for \p F.
getFunctionLoc(Function & F)1378 unsigned SampleProfileLoader::getFunctionLoc(Function &F) {
1379 if (DISubprogram *S = F.getSubprogram())
1380 return S->getLine();
1381
1382 if (NoWarnSampleUnused)
1383 return 0;
1384
1385 // If the start of \p F is missing, emit a diagnostic to inform the user
1386 // about the missed opportunity.
1387 F.getContext().diagnose(DiagnosticInfoSampleProfile(
1388 "No debug information found in function " + F.getName() +
1389 ": Function profile not used",
1390 DS_Warning));
1391 return 0;
1392 }
1393
computeDominanceAndLoopInfo(Function & F)1394 void SampleProfileLoader::computeDominanceAndLoopInfo(Function &F) {
1395 DT.reset(new DominatorTree);
1396 DT->recalculate(F);
1397
1398 PDT.reset(new PostDominatorTree(F));
1399
1400 LI.reset(new LoopInfo);
1401 LI->analyze(*DT);
1402 }
1403
1404 /// Generate branch weight metadata for all branches in \p F.
1405 ///
1406 /// Branch weights are computed out of instruction samples using a
1407 /// propagation heuristic. Propagation proceeds in 3 phases:
1408 ///
1409 /// 1- Assignment of block weights. All the basic blocks in the function
1410 /// are initial assigned the same weight as their most frequently
1411 /// executed instruction.
1412 ///
1413 /// 2- Creation of equivalence classes. Since samples may be missing from
1414 /// blocks, we can fill in the gaps by setting the weights of all the
1415 /// blocks in the same equivalence class to the same weight. To compute
1416 /// the concept of equivalence, we use dominance and loop information.
1417 /// Two blocks B1 and B2 are in the same equivalence class if B1
1418 /// dominates B2, B2 post-dominates B1 and both are in the same loop.
1419 ///
1420 /// 3- Propagation of block weights into edges. This uses a simple
1421 /// propagation heuristic. The following rules are applied to every
1422 /// block BB in the CFG:
1423 ///
1424 /// - If BB has a single predecessor/successor, then the weight
1425 /// of that edge is the weight of the block.
1426 ///
1427 /// - If all the edges are known except one, and the weight of the
1428 /// block is already known, the weight of the unknown edge will
1429 /// be the weight of the block minus the sum of all the known
1430 /// edges. If the sum of all the known edges is larger than BB's weight,
1431 /// we set the unknown edge weight to zero.
1432 ///
1433 /// - If there is a self-referential edge, and the weight of the block is
1434 /// known, the weight for that edge is set to the weight of the block
1435 /// minus the weight of the other incoming edges to that block (if
1436 /// known).
1437 ///
1438 /// Since this propagation is not guaranteed to finalize for every CFG, we
1439 /// only allow it to proceed for a limited number of iterations (controlled
1440 /// by -sample-profile-max-propagate-iterations).
1441 ///
1442 /// FIXME: Try to replace this propagation heuristic with a scheme
1443 /// that is guaranteed to finalize. A work-list approach similar to
1444 /// the standard value propagation algorithm used by SSA-CCP might
1445 /// work here.
1446 ///
1447 /// Once all the branch weights are computed, we emit the MD_prof
1448 /// metadata on BB using the computed values for each of its branches.
1449 ///
1450 /// \param F The function to query.
1451 ///
1452 /// \returns true if \p F was modified. Returns false, otherwise.
emitAnnotations(Function & F)1453 bool SampleProfileLoader::emitAnnotations(Function &F) {
1454 bool Changed = false;
1455
1456 if (getFunctionLoc(F) == 0)
1457 return false;
1458
1459 LLVM_DEBUG(dbgs() << "Line number for the first instruction in "
1460 << F.getName() << ": " << getFunctionLoc(F) << "\n");
1461
1462 DenseSet<GlobalValue::GUID> InlinedGUIDs;
1463 Changed |= inlineHotFunctions(F, InlinedGUIDs);
1464
1465 // Compute basic block weights.
1466 Changed |= computeBlockWeights(F);
1467
1468 if (Changed) {
1469 // Add an entry count to the function using the samples gathered at the
1470 // function entry.
1471 // Sets the GUIDs that are inlined in the profiled binary. This is used
1472 // for ThinLink to make correct liveness analysis, and also make the IR
1473 // match the profiled binary before annotation.
1474 F.setEntryCount(
1475 ProfileCount(Samples->getHeadSamples() + 1, Function::PCT_Real),
1476 &InlinedGUIDs);
1477
1478 // Compute dominance and loop info needed for propagation.
1479 computeDominanceAndLoopInfo(F);
1480
1481 // Find equivalence classes.
1482 findEquivalenceClasses(F);
1483
1484 // Propagate weights to all edges.
1485 propagateWeights(F);
1486 }
1487
1488 // If coverage checking was requested, compute it now.
1489 if (SampleProfileRecordCoverage) {
1490 unsigned Used = CoverageTracker.countUsedRecords(Samples, PSI);
1491 unsigned Total = CoverageTracker.countBodyRecords(Samples, PSI);
1492 unsigned Coverage = CoverageTracker.computeCoverage(Used, Total);
1493 if (Coverage < SampleProfileRecordCoverage) {
1494 F.getContext().diagnose(DiagnosticInfoSampleProfile(
1495 F.getSubprogram()->getFilename(), getFunctionLoc(F),
1496 Twine(Used) + " of " + Twine(Total) + " available profile records (" +
1497 Twine(Coverage) + "%) were applied",
1498 DS_Warning));
1499 }
1500 }
1501
1502 if (SampleProfileSampleCoverage) {
1503 uint64_t Used = CoverageTracker.getTotalUsedSamples();
1504 uint64_t Total = CoverageTracker.countBodySamples(Samples, PSI);
1505 unsigned Coverage = CoverageTracker.computeCoverage(Used, Total);
1506 if (Coverage < SampleProfileSampleCoverage) {
1507 F.getContext().diagnose(DiagnosticInfoSampleProfile(
1508 F.getSubprogram()->getFilename(), getFunctionLoc(F),
1509 Twine(Used) + " of " + Twine(Total) + " available profile samples (" +
1510 Twine(Coverage) + "%) were applied",
1511 DS_Warning));
1512 }
1513 }
1514 return Changed;
1515 }
1516
1517 char SampleProfileLoaderLegacyPass::ID = 0;
1518
1519 INITIALIZE_PASS_BEGIN(SampleProfileLoaderLegacyPass, "sample-profile",
1520 "Sample Profile loader", false, false)
INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)1521 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
1522 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
1523 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass)
1524 INITIALIZE_PASS_END(SampleProfileLoaderLegacyPass, "sample-profile",
1525 "Sample Profile loader", false, false)
1526
1527 bool SampleProfileLoader::doInitialization(Module &M) {
1528 auto &Ctx = M.getContext();
1529 auto ReaderOrErr = SampleProfileReader::create(Filename, Ctx);
1530 if (std::error_code EC = ReaderOrErr.getError()) {
1531 std::string Msg = "Could not open profile: " + EC.message();
1532 Ctx.diagnose(DiagnosticInfoSampleProfile(Filename, Msg));
1533 return false;
1534 }
1535 Reader = std::move(ReaderOrErr.get());
1536 Reader->collectFuncsToUse(M);
1537 ProfileIsValid = (Reader->read() == sampleprof_error::success);
1538
1539 if (!RemappingFilename.empty()) {
1540 // Apply profile remappings to the loaded profile data if requested.
1541 // For now, we only support remapping symbols encoded using the Itanium
1542 // C++ ABI's name mangling scheme.
1543 ReaderOrErr = SampleProfileReaderItaniumRemapper::create(
1544 RemappingFilename, Ctx, std::move(Reader));
1545 if (std::error_code EC = ReaderOrErr.getError()) {
1546 std::string Msg = "Could not open profile remapping file: " + EC.message();
1547 Ctx.diagnose(DiagnosticInfoSampleProfile(Filename, Msg));
1548 return false;
1549 }
1550 Reader = std::move(ReaderOrErr.get());
1551 ProfileIsValid = (Reader->read() == sampleprof_error::success);
1552 }
1553 return true;
1554 }
1555
createSampleProfileLoaderPass()1556 ModulePass *llvm::createSampleProfileLoaderPass() {
1557 return new SampleProfileLoaderLegacyPass();
1558 }
1559
createSampleProfileLoaderPass(StringRef Name)1560 ModulePass *llvm::createSampleProfileLoaderPass(StringRef Name) {
1561 return new SampleProfileLoaderLegacyPass(Name);
1562 }
1563
runOnModule(Module & M,ModuleAnalysisManager * AM,ProfileSummaryInfo * _PSI)1564 bool SampleProfileLoader::runOnModule(Module &M, ModuleAnalysisManager *AM,
1565 ProfileSummaryInfo *_PSI) {
1566 FunctionSamples::GUIDToFuncNameMapper Mapper(M);
1567 if (!ProfileIsValid)
1568 return false;
1569
1570 PSI = _PSI;
1571 if (M.getProfileSummary() == nullptr)
1572 M.setProfileSummary(Reader->getSummary().getMD(M.getContext()));
1573
1574 // Compute the total number of samples collected in this profile.
1575 for (const auto &I : Reader->getProfiles())
1576 TotalCollectedSamples += I.second.getTotalSamples();
1577
1578 // Populate the symbol map.
1579 for (const auto &N_F : M.getValueSymbolTable()) {
1580 StringRef OrigName = N_F.getKey();
1581 Function *F = dyn_cast<Function>(N_F.getValue());
1582 if (F == nullptr)
1583 continue;
1584 SymbolMap[OrigName] = F;
1585 auto pos = OrigName.find('.');
1586 if (pos != StringRef::npos) {
1587 StringRef NewName = OrigName.substr(0, pos);
1588 auto r = SymbolMap.insert(std::make_pair(NewName, F));
1589 // Failiing to insert means there is already an entry in SymbolMap,
1590 // thus there are multiple functions that are mapped to the same
1591 // stripped name. In this case of name conflicting, set the value
1592 // to nullptr to avoid confusion.
1593 if (!r.second)
1594 r.first->second = nullptr;
1595 }
1596 }
1597
1598 bool retval = false;
1599 for (auto &F : M)
1600 if (!F.isDeclaration()) {
1601 clearFunctionData();
1602 retval |= runOnFunction(F, AM);
1603 }
1604 return retval;
1605 }
1606
runOnModule(Module & M)1607 bool SampleProfileLoaderLegacyPass::runOnModule(Module &M) {
1608 ACT = &getAnalysis<AssumptionCacheTracker>();
1609 TTIWP = &getAnalysis<TargetTransformInfoWrapperPass>();
1610 ProfileSummaryInfo *PSI =
1611 &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
1612 return SampleLoader.runOnModule(M, nullptr, PSI);
1613 }
1614
runOnFunction(Function & F,ModuleAnalysisManager * AM)1615 bool SampleProfileLoader::runOnFunction(Function &F, ModuleAnalysisManager *AM) {
1616
1617 DILocation2SampleMap.clear();
1618 // By default the entry count is initialized to -1, which will be treated
1619 // conservatively by getEntryCount as the same as unknown (None). This is
1620 // to avoid newly added code to be treated as cold. If we have samples
1621 // this will be overwritten in emitAnnotations.
1622 // If ProfileSampleAccurate is true or F has profile-sample-accurate
1623 // attribute, initialize the entry count to 0 so callsites or functions
1624 // unsampled will be treated as cold.
1625 uint64_t initialEntryCount =
1626 (ProfileSampleAccurate || F.hasFnAttribute("profile-sample-accurate"))
1627 ? 0
1628 : -1;
1629 F.setEntryCount(ProfileCount(initialEntryCount, Function::PCT_Real));
1630 std::unique_ptr<OptimizationRemarkEmitter> OwnedORE;
1631 if (AM) {
1632 auto &FAM =
1633 AM->getResult<FunctionAnalysisManagerModuleProxy>(*F.getParent())
1634 .getManager();
1635 ORE = &FAM.getResult<OptimizationRemarkEmitterAnalysis>(F);
1636 } else {
1637 OwnedORE = make_unique<OptimizationRemarkEmitter>(&F);
1638 ORE = OwnedORE.get();
1639 }
1640 Samples = Reader->getSamplesFor(F);
1641 if (Samples && !Samples->empty())
1642 return emitAnnotations(F);
1643 return false;
1644 }
1645
run(Module & M,ModuleAnalysisManager & AM)1646 PreservedAnalyses SampleProfileLoaderPass::run(Module &M,
1647 ModuleAnalysisManager &AM) {
1648 FunctionAnalysisManager &FAM =
1649 AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
1650
1651 auto GetAssumptionCache = [&](Function &F) -> AssumptionCache & {
1652 return FAM.getResult<AssumptionAnalysis>(F);
1653 };
1654 auto GetTTI = [&](Function &F) -> TargetTransformInfo & {
1655 return FAM.getResult<TargetIRAnalysis>(F);
1656 };
1657
1658 SampleProfileLoader SampleLoader(
1659 ProfileFileName.empty() ? SampleProfileFile : ProfileFileName,
1660 ProfileRemappingFileName.empty() ? SampleProfileRemappingFile
1661 : ProfileRemappingFileName,
1662 IsThinLTOPreLink, GetAssumptionCache, GetTTI);
1663
1664 SampleLoader.doInitialization(M);
1665
1666 ProfileSummaryInfo *PSI = &AM.getResult<ProfileSummaryAnalysis>(M);
1667 if (!SampleLoader.runOnModule(M, &AM, PSI))
1668 return PreservedAnalyses::all();
1669
1670 return PreservedAnalyses::none();
1671 }
1672