1 //===- PassManagerBuilder.cpp - Build Standard Pass -----------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the PassManagerBuilder class, which is used to set up a
11 // "standard" optimization sequence suitable for languages like C and C++.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #include "llvm/Transforms/IPO/PassManagerBuilder.h"
16 #include "llvm-c/Transforms/PassManagerBuilder.h"
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/Analysis/BasicAliasAnalysis.h"
19 #include "llvm/Analysis/CFLAndersAliasAnalysis.h"
20 #include "llvm/Analysis/CFLSteensAliasAnalysis.h"
21 #include "llvm/Analysis/GlobalsModRef.h"
22 #include "llvm/Analysis/InlineCost.h"
23 #include "llvm/Analysis/Passes.h"
24 #include "llvm/Analysis/ScopedNoAliasAA.h"
25 #include "llvm/Analysis/TargetLibraryInfo.h"
26 #include "llvm/Analysis/TypeBasedAliasAnalysis.h"
27 #include "llvm/IR/DataLayout.h"
28 #include "llvm/IR/LegacyPassManager.h"
29 #include "llvm/IR/Verifier.h"
30 #include "llvm/Support/CommandLine.h"
31 #include "llvm/Support/ManagedStatic.h"
32 #include "llvm/Transforms/AggressiveInstCombine/AggressiveInstCombine.h"
33 #include "llvm/Transforms/IPO.h"
34 #include "llvm/Transforms/IPO/ForceFunctionAttrs.h"
35 #include "llvm/Transforms/IPO/FunctionAttrs.h"
36 #include "llvm/Transforms/IPO/InferFunctionAttrs.h"
37 #include "llvm/Transforms/InstCombine/InstCombine.h"
38 #include "llvm/Transforms/Instrumentation.h"
39 #include "llvm/Transforms/Scalar.h"
40 #include "llvm/Transforms/Scalar/GVN.h"
41 #include "llvm/Transforms/Scalar/InstSimplifyPass.h"
42 #include "llvm/Transforms/Scalar/SimpleLoopUnswitch.h"
43 #include "llvm/Transforms/Utils.h"
44 #include "llvm/Transforms/Vectorize.h"
45
46 using namespace llvm;
47
48 static cl::opt<bool>
49 RunPartialInlining("enable-partial-inlining", cl::init(false), cl::Hidden,
50 cl::ZeroOrMore, cl::desc("Run Partial inlinining pass"));
51
52 static cl::opt<bool>
53 RunLoopVectorization("vectorize-loops", cl::Hidden,
54 cl::desc("Run the Loop vectorization passes"));
55
56 static cl::opt<bool>
57 RunSLPVectorization("vectorize-slp", cl::Hidden,
58 cl::desc("Run the SLP vectorization passes"));
59
60 static cl::opt<bool>
61 UseGVNAfterVectorization("use-gvn-after-vectorization",
62 cl::init(false), cl::Hidden,
63 cl::desc("Run GVN instead of Early CSE after vectorization passes"));
64
65 static cl::opt<bool> ExtraVectorizerPasses(
66 "extra-vectorizer-passes", cl::init(false), cl::Hidden,
67 cl::desc("Run cleanup optimization passes after vectorization."));
68
69 static cl::opt<bool>
70 RunLoopRerolling("reroll-loops", cl::Hidden,
71 cl::desc("Run the loop rerolling pass"));
72
73 static cl::opt<bool> RunNewGVN("enable-newgvn", cl::init(false), cl::Hidden,
74 cl::desc("Run the NewGVN pass"));
75
76 static cl::opt<bool>
77 RunSLPAfterLoopVectorization("run-slp-after-loop-vectorization",
78 cl::init(true), cl::Hidden,
79 cl::desc("Run the SLP vectorizer (and BB vectorizer) after the Loop "
80 "vectorizer instead of before"));
81
82 // Experimental option to use CFL-AA
83 enum class CFLAAType { None, Steensgaard, Andersen, Both };
84 static cl::opt<CFLAAType>
85 UseCFLAA("use-cfl-aa", cl::init(CFLAAType::None), cl::Hidden,
86 cl::desc("Enable the new, experimental CFL alias analysis"),
87 cl::values(clEnumValN(CFLAAType::None, "none", "Disable CFL-AA"),
88 clEnumValN(CFLAAType::Steensgaard, "steens",
89 "Enable unification-based CFL-AA"),
90 clEnumValN(CFLAAType::Andersen, "anders",
91 "Enable inclusion-based CFL-AA"),
92 clEnumValN(CFLAAType::Both, "both",
93 "Enable both variants of CFL-AA")));
94
95 static cl::opt<bool> EnableLoopInterchange(
96 "enable-loopinterchange", cl::init(false), cl::Hidden,
97 cl::desc("Enable the new, experimental LoopInterchange Pass"));
98
99 static cl::opt<bool> EnableUnrollAndJam("enable-unroll-and-jam",
100 cl::init(false), cl::Hidden,
101 cl::desc("Enable Unroll And Jam Pass"));
102
103 static cl::opt<bool>
104 EnablePrepareForThinLTO("prepare-for-thinlto", cl::init(false), cl::Hidden,
105 cl::desc("Enable preparation for ThinLTO."));
106
107 cl::opt<bool> EnableHotColdSplit("hot-cold-split", cl::init(false), cl::Hidden,
108 cl::desc("Enable hot-cold splitting pass"));
109
110
111 static cl::opt<bool> RunPGOInstrGen(
112 "profile-generate", cl::init(false), cl::Hidden,
113 cl::desc("Enable PGO instrumentation."));
114
115 static cl::opt<std::string>
116 PGOOutputFile("profile-generate-file", cl::init(""), cl::Hidden,
117 cl::desc("Specify the path of profile data file."));
118
119 static cl::opt<std::string> RunPGOInstrUse(
120 "profile-use", cl::init(""), cl::Hidden, cl::value_desc("filename"),
121 cl::desc("Enable use phase of PGO instrumentation and specify the path "
122 "of profile data file"));
123
124 static cl::opt<bool> UseLoopVersioningLICM(
125 "enable-loop-versioning-licm", cl::init(false), cl::Hidden,
126 cl::desc("Enable the experimental Loop Versioning LICM pass"));
127
128 static cl::opt<bool>
129 DisablePreInliner("disable-preinline", cl::init(false), cl::Hidden,
130 cl::desc("Disable pre-instrumentation inliner"));
131
132 static cl::opt<int> PreInlineThreshold(
133 "preinline-threshold", cl::Hidden, cl::init(75), cl::ZeroOrMore,
134 cl::desc("Control the amount of inlining in pre-instrumentation inliner "
135 "(default = 75)"));
136
137 static cl::opt<bool> EnableEarlyCSEMemSSA(
138 "enable-earlycse-memssa", cl::init(true), cl::Hidden,
139 cl::desc("Enable the EarlyCSE w/ MemorySSA pass (default = on)"));
140
141 static cl::opt<bool> EnableGVNHoist(
142 "enable-gvn-hoist", cl::init(false), cl::Hidden,
143 cl::desc("Enable the GVN hoisting pass (default = off)"));
144
145 static cl::opt<bool>
146 DisableLibCallsShrinkWrap("disable-libcalls-shrinkwrap", cl::init(false),
147 cl::Hidden,
148 cl::desc("Disable shrink-wrap library calls"));
149
150 static cl::opt<bool> EnableSimpleLoopUnswitch(
151 "enable-simple-loop-unswitch", cl::init(false), cl::Hidden,
152 cl::desc("Enable the simple loop unswitch pass. Also enables independent "
153 "cleanup passes integrated into the loop pass manager pipeline."));
154
155 static cl::opt<bool> EnableGVNSink(
156 "enable-gvn-sink", cl::init(false), cl::Hidden,
157 cl::desc("Enable the GVN sinking pass (default = off)"));
158
159 static cl::opt<bool>
160 EnableCHR("enable-chr", cl::init(true), cl::Hidden,
161 cl::desc("Enable control height reduction optimization (CHR)"));
162
PassManagerBuilder()163 PassManagerBuilder::PassManagerBuilder() {
164 OptLevel = 2;
165 SizeLevel = 0;
166 LibraryInfo = nullptr;
167 Inliner = nullptr;
168 DisableUnrollLoops = false;
169 SLPVectorize = RunSLPVectorization;
170 LoopVectorize = RunLoopVectorization;
171 RerollLoops = RunLoopRerolling;
172 NewGVN = RunNewGVN;
173 DisableGVNLoadPRE = false;
174 VerifyInput = false;
175 VerifyOutput = false;
176 MergeFunctions = false;
177 PrepareForLTO = false;
178 EnablePGOInstrGen = RunPGOInstrGen;
179 PGOInstrGen = PGOOutputFile;
180 PGOInstrUse = RunPGOInstrUse;
181 PrepareForThinLTO = EnablePrepareForThinLTO;
182 PerformThinLTO = false;
183 DivergentTarget = false;
184 }
185
~PassManagerBuilder()186 PassManagerBuilder::~PassManagerBuilder() {
187 delete LibraryInfo;
188 delete Inliner;
189 }
190
191 /// Set of global extensions, automatically added as part of the standard set.
192 static ManagedStatic<SmallVector<std::pair<PassManagerBuilder::ExtensionPointTy,
193 PassManagerBuilder::ExtensionFn>, 8> > GlobalExtensions;
194
195 /// Check if GlobalExtensions is constructed and not empty.
196 /// Since GlobalExtensions is a managed static, calling 'empty()' will trigger
197 /// the construction of the object.
GlobalExtensionsNotEmpty()198 static bool GlobalExtensionsNotEmpty() {
199 return GlobalExtensions.isConstructed() && !GlobalExtensions->empty();
200 }
201
addGlobalExtension(PassManagerBuilder::ExtensionPointTy Ty,PassManagerBuilder::ExtensionFn Fn)202 void PassManagerBuilder::addGlobalExtension(
203 PassManagerBuilder::ExtensionPointTy Ty,
204 PassManagerBuilder::ExtensionFn Fn) {
205 GlobalExtensions->push_back(std::make_pair(Ty, std::move(Fn)));
206 }
207
addExtension(ExtensionPointTy Ty,ExtensionFn Fn)208 void PassManagerBuilder::addExtension(ExtensionPointTy Ty, ExtensionFn Fn) {
209 Extensions.push_back(std::make_pair(Ty, std::move(Fn)));
210 }
211
addExtensionsToPM(ExtensionPointTy ETy,legacy::PassManagerBase & PM) const212 void PassManagerBuilder::addExtensionsToPM(ExtensionPointTy ETy,
213 legacy::PassManagerBase &PM) const {
214 if (GlobalExtensionsNotEmpty()) {
215 for (auto &Ext : *GlobalExtensions) {
216 if (Ext.first == ETy)
217 Ext.second(*this, PM);
218 }
219 }
220 for (unsigned i = 0, e = Extensions.size(); i != e; ++i)
221 if (Extensions[i].first == ETy)
222 Extensions[i].second(*this, PM);
223 }
224
addInitialAliasAnalysisPasses(legacy::PassManagerBase & PM) const225 void PassManagerBuilder::addInitialAliasAnalysisPasses(
226 legacy::PassManagerBase &PM) const {
227 switch (UseCFLAA) {
228 case CFLAAType::Steensgaard:
229 PM.add(createCFLSteensAAWrapperPass());
230 break;
231 case CFLAAType::Andersen:
232 PM.add(createCFLAndersAAWrapperPass());
233 break;
234 case CFLAAType::Both:
235 PM.add(createCFLSteensAAWrapperPass());
236 PM.add(createCFLAndersAAWrapperPass());
237 break;
238 default:
239 break;
240 }
241
242 // Add TypeBasedAliasAnalysis before BasicAliasAnalysis so that
243 // BasicAliasAnalysis wins if they disagree. This is intended to help
244 // support "obvious" type-punning idioms.
245 PM.add(createTypeBasedAAWrapperPass());
246 PM.add(createScopedNoAliasAAWrapperPass());
247 }
248
addInstructionCombiningPass(legacy::PassManagerBase & PM) const249 void PassManagerBuilder::addInstructionCombiningPass(
250 legacy::PassManagerBase &PM) const {
251 bool ExpensiveCombines = OptLevel > 2;
252 PM.add(createInstructionCombiningPass(ExpensiveCombines));
253 }
254
populateFunctionPassManager(legacy::FunctionPassManager & FPM)255 void PassManagerBuilder::populateFunctionPassManager(
256 legacy::FunctionPassManager &FPM) {
257 addExtensionsToPM(EP_EarlyAsPossible, FPM);
258 FPM.add(createEntryExitInstrumenterPass());
259
260 // Add LibraryInfo if we have some.
261 if (LibraryInfo)
262 FPM.add(new TargetLibraryInfoWrapperPass(*LibraryInfo));
263
264 if (OptLevel == 0) return;
265
266 addInitialAliasAnalysisPasses(FPM);
267
268 FPM.add(createCFGSimplificationPass());
269 FPM.add(createSROAPass());
270 FPM.add(createEarlyCSEPass());
271 FPM.add(createLowerExpectIntrinsicPass());
272 }
273
274 // Do PGO instrumentation generation or use pass as the option specified.
addPGOInstrPasses(legacy::PassManagerBase & MPM)275 void PassManagerBuilder::addPGOInstrPasses(legacy::PassManagerBase &MPM) {
276 if (!EnablePGOInstrGen && PGOInstrUse.empty() && PGOSampleUse.empty())
277 return;
278 // Perform the preinline and cleanup passes for O1 and above.
279 // And avoid doing them if optimizing for size.
280 if (OptLevel > 0 && SizeLevel == 0 && !DisablePreInliner &&
281 PGOSampleUse.empty()) {
282 // Create preinline pass. We construct an InlineParams object and specify
283 // the threshold here to avoid the command line options of the regular
284 // inliner to influence pre-inlining. The only fields of InlineParams we
285 // care about are DefaultThreshold and HintThreshold.
286 InlineParams IP;
287 IP.DefaultThreshold = PreInlineThreshold;
288 // FIXME: The hint threshold has the same value used by the regular inliner.
289 // This should probably be lowered after performance testing.
290 IP.HintThreshold = 325;
291
292 MPM.add(createFunctionInliningPass(IP));
293 MPM.add(createSROAPass());
294 MPM.add(createEarlyCSEPass()); // Catch trivial redundancies
295 MPM.add(createCFGSimplificationPass()); // Merge & remove BBs
296 MPM.add(createInstructionCombiningPass()); // Combine silly seq's
297 addExtensionsToPM(EP_Peephole, MPM);
298 }
299 if (EnablePGOInstrGen) {
300 MPM.add(createPGOInstrumentationGenLegacyPass());
301 // Add the profile lowering pass.
302 InstrProfOptions Options;
303 if (!PGOInstrGen.empty())
304 Options.InstrProfileOutput = PGOInstrGen;
305 Options.DoCounterPromotion = true;
306 MPM.add(createLoopRotatePass());
307 MPM.add(createInstrProfilingLegacyPass(Options));
308 }
309 if (!PGOInstrUse.empty())
310 MPM.add(createPGOInstrumentationUseLegacyPass(PGOInstrUse));
311 // Indirect call promotion that promotes intra-module targets only.
312 // For ThinLTO this is done earlier due to interactions with globalopt
313 // for imported functions. We don't run this at -O0.
314 if (OptLevel > 0)
315 MPM.add(
316 createPGOIndirectCallPromotionLegacyPass(false, !PGOSampleUse.empty()));
317 }
addFunctionSimplificationPasses(legacy::PassManagerBase & MPM)318 void PassManagerBuilder::addFunctionSimplificationPasses(
319 legacy::PassManagerBase &MPM) {
320 // Start of function pass.
321 // Break up aggregate allocas, using SSAUpdater.
322 MPM.add(createSROAPass());
323 MPM.add(createEarlyCSEPass(EnableEarlyCSEMemSSA)); // Catch trivial redundancies
324 if (EnableGVNHoist)
325 MPM.add(createGVNHoistPass());
326 if (EnableGVNSink) {
327 MPM.add(createGVNSinkPass());
328 MPM.add(createCFGSimplificationPass());
329 }
330
331 // Speculative execution if the target has divergent branches; otherwise nop.
332 MPM.add(createSpeculativeExecutionIfHasBranchDivergencePass());
333 MPM.add(createJumpThreadingPass()); // Thread jumps.
334 MPM.add(createCorrelatedValuePropagationPass()); // Propagate conditionals
335 MPM.add(createCFGSimplificationPass()); // Merge & remove BBs
336 // Combine silly seq's
337 if (OptLevel > 2)
338 MPM.add(createAggressiveInstCombinerPass());
339 addInstructionCombiningPass(MPM);
340 if (SizeLevel == 0 && !DisableLibCallsShrinkWrap)
341 MPM.add(createLibCallsShrinkWrapPass());
342 addExtensionsToPM(EP_Peephole, MPM);
343
344 // Optimize memory intrinsic calls based on the profiled size information.
345 if (SizeLevel == 0)
346 MPM.add(createPGOMemOPSizeOptLegacyPass());
347
348 MPM.add(createTailCallEliminationPass()); // Eliminate tail calls
349 MPM.add(createCFGSimplificationPass()); // Merge & remove BBs
350 MPM.add(createReassociatePass()); // Reassociate expressions
351
352 // Begin the loop pass pipeline.
353 if (EnableSimpleLoopUnswitch) {
354 // The simple loop unswitch pass relies on separate cleanup passes. Schedule
355 // them first so when we re-process a loop they run before other loop
356 // passes.
357 MPM.add(createLoopInstSimplifyPass());
358 MPM.add(createLoopSimplifyCFGPass());
359 }
360 // Rotate Loop - disable header duplication at -Oz
361 MPM.add(createLoopRotatePass(SizeLevel == 2 ? 0 : -1));
362 MPM.add(createLICMPass()); // Hoist loop invariants
363 if (EnableSimpleLoopUnswitch)
364 MPM.add(createSimpleLoopUnswitchLegacyPass());
365 else
366 MPM.add(createLoopUnswitchPass(SizeLevel || OptLevel < 3, DivergentTarget));
367 // FIXME: We break the loop pass pipeline here in order to do full
368 // simplify-cfg. Eventually loop-simplifycfg should be enhanced to replace the
369 // need for this.
370 MPM.add(createCFGSimplificationPass());
371 addInstructionCombiningPass(MPM);
372 // We resume loop passes creating a second loop pipeline here.
373 MPM.add(createIndVarSimplifyPass()); // Canonicalize indvars
374 MPM.add(createLoopIdiomPass()); // Recognize idioms like memset.
375 addExtensionsToPM(EP_LateLoopOptimizations, MPM);
376 MPM.add(createLoopDeletionPass()); // Delete dead loops
377
378 if (EnableLoopInterchange)
379 MPM.add(createLoopInterchangePass()); // Interchange loops
380
381 MPM.add(createSimpleLoopUnrollPass(OptLevel,
382 DisableUnrollLoops)); // Unroll small loops
383 addExtensionsToPM(EP_LoopOptimizerEnd, MPM);
384 // This ends the loop pass pipelines.
385
386 if (OptLevel > 1) {
387 MPM.add(createMergedLoadStoreMotionPass()); // Merge ld/st in diamonds
388 MPM.add(NewGVN ? createNewGVNPass()
389 : createGVNPass(DisableGVNLoadPRE)); // Remove redundancies
390 }
391 MPM.add(createMemCpyOptPass()); // Remove memcpy / form memset
392 MPM.add(createSCCPPass()); // Constant prop with SCCP
393
394 // Delete dead bit computations (instcombine runs after to fold away the dead
395 // computations, and then ADCE will run later to exploit any new DCE
396 // opportunities that creates).
397 MPM.add(createBitTrackingDCEPass()); // Delete dead bit computations
398
399 // Run instcombine after redundancy elimination to exploit opportunities
400 // opened up by them.
401 addInstructionCombiningPass(MPM);
402 addExtensionsToPM(EP_Peephole, MPM);
403 MPM.add(createJumpThreadingPass()); // Thread jumps
404 MPM.add(createCorrelatedValuePropagationPass());
405 MPM.add(createDeadStoreEliminationPass()); // Delete dead stores
406 MPM.add(createLICMPass());
407
408 addExtensionsToPM(EP_ScalarOptimizerLate, MPM);
409
410 if (RerollLoops)
411 MPM.add(createLoopRerollPass());
412 if (!RunSLPAfterLoopVectorization && SLPVectorize)
413 MPM.add(createSLPVectorizerPass()); // Vectorize parallel scalar chains.
414
415 MPM.add(createAggressiveDCEPass()); // Delete dead instructions
416 MPM.add(createCFGSimplificationPass()); // Merge & remove BBs
417 // Clean up after everything.
418 addInstructionCombiningPass(MPM);
419 addExtensionsToPM(EP_Peephole, MPM);
420
421 if (EnableCHR && OptLevel >= 3 &&
422 (!PGOInstrUse.empty() || !PGOSampleUse.empty()))
423 MPM.add(createControlHeightReductionLegacyPass());
424 }
425
populateModulePassManager(legacy::PassManagerBase & MPM)426 void PassManagerBuilder::populateModulePassManager(
427 legacy::PassManagerBase &MPM) {
428 if (!PGOSampleUse.empty()) {
429 MPM.add(createPruneEHPass());
430 MPM.add(createSampleProfileLoaderPass(PGOSampleUse));
431 }
432
433 // Allow forcing function attributes as a debugging and tuning aid.
434 MPM.add(createForceFunctionAttrsLegacyPass());
435
436 // If all optimizations are disabled, just run the always-inline pass and,
437 // if enabled, the function merging pass.
438 if (OptLevel == 0) {
439 addPGOInstrPasses(MPM);
440 if (Inliner) {
441 MPM.add(Inliner);
442 Inliner = nullptr;
443 }
444
445 // FIXME: The BarrierNoopPass is a HACK! The inliner pass above implicitly
446 // creates a CGSCC pass manager, but we don't want to add extensions into
447 // that pass manager. To prevent this we insert a no-op module pass to reset
448 // the pass manager to get the same behavior as EP_OptimizerLast in non-O0
449 // builds. The function merging pass is
450 if (MergeFunctions)
451 MPM.add(createMergeFunctionsPass());
452 else if (GlobalExtensionsNotEmpty() || !Extensions.empty())
453 MPM.add(createBarrierNoopPass());
454
455 if (PerformThinLTO) {
456 // Drop available_externally and unreferenced globals. This is necessary
457 // with ThinLTO in order to avoid leaving undefined references to dead
458 // globals in the object file.
459 MPM.add(createEliminateAvailableExternallyPass());
460 MPM.add(createGlobalDCEPass());
461 }
462
463 addExtensionsToPM(EP_EnabledOnOptLevel0, MPM);
464
465 if (PrepareForLTO || PrepareForThinLTO) {
466 MPM.add(createCanonicalizeAliasesPass());
467 // Rename anon globals to be able to export them in the summary.
468 // This has to be done after we add the extensions to the pass manager
469 // as there could be passes (e.g. Adddress sanitizer) which introduce
470 // new unnamed globals.
471 MPM.add(createNameAnonGlobalPass());
472 }
473 return;
474 }
475
476 // Add LibraryInfo if we have some.
477 if (LibraryInfo)
478 MPM.add(new TargetLibraryInfoWrapperPass(*LibraryInfo));
479
480 addInitialAliasAnalysisPasses(MPM);
481
482 // For ThinLTO there are two passes of indirect call promotion. The
483 // first is during the compile phase when PerformThinLTO=false and
484 // intra-module indirect call targets are promoted. The second is during
485 // the ThinLTO backend when PerformThinLTO=true, when we promote imported
486 // inter-module indirect calls. For that we perform indirect call promotion
487 // earlier in the pass pipeline, here before globalopt. Otherwise imported
488 // available_externally functions look unreferenced and are removed.
489 if (PerformThinLTO)
490 MPM.add(createPGOIndirectCallPromotionLegacyPass(/*InLTO = */ true,
491 !PGOSampleUse.empty()));
492
493 // For SamplePGO in ThinLTO compile phase, we do not want to unroll loops
494 // as it will change the CFG too much to make the 2nd profile annotation
495 // in backend more difficult.
496 bool PrepareForThinLTOUsingPGOSampleProfile =
497 PrepareForThinLTO && !PGOSampleUse.empty();
498 if (PrepareForThinLTOUsingPGOSampleProfile)
499 DisableUnrollLoops = true;
500
501 // Infer attributes about declarations if possible.
502 MPM.add(createInferFunctionAttrsLegacyPass());
503
504 addExtensionsToPM(EP_ModuleOptimizerEarly, MPM);
505
506 if (OptLevel > 2)
507 MPM.add(createCallSiteSplittingPass());
508
509 MPM.add(createIPSCCPPass()); // IP SCCP
510 MPM.add(createCalledValuePropagationPass());
511 MPM.add(createGlobalOptimizerPass()); // Optimize out global vars
512 // Promote any localized global vars.
513 MPM.add(createPromoteMemoryToRegisterPass());
514
515 MPM.add(createDeadArgEliminationPass()); // Dead argument elimination
516
517 addInstructionCombiningPass(MPM); // Clean up after IPCP & DAE
518 addExtensionsToPM(EP_Peephole, MPM);
519 MPM.add(createCFGSimplificationPass()); // Clean up after IPCP & DAE
520
521 // For SamplePGO in ThinLTO compile phase, we do not want to do indirect
522 // call promotion as it will change the CFG too much to make the 2nd
523 // profile annotation in backend more difficult.
524 // PGO instrumentation is added during the compile phase for ThinLTO, do
525 // not run it a second time
526 if (!PerformThinLTO && !PrepareForThinLTOUsingPGOSampleProfile)
527 addPGOInstrPasses(MPM);
528
529 // We add a module alias analysis pass here. In part due to bugs in the
530 // analysis infrastructure this "works" in that the analysis stays alive
531 // for the entire SCC pass run below.
532 MPM.add(createGlobalsAAWrapperPass());
533
534 // Start of CallGraph SCC passes.
535 MPM.add(createPruneEHPass()); // Remove dead EH info
536 bool RunInliner = false;
537 if (Inliner) {
538 MPM.add(Inliner);
539 Inliner = nullptr;
540 RunInliner = true;
541 }
542
543 MPM.add(createPostOrderFunctionAttrsLegacyPass());
544 if (OptLevel > 2)
545 MPM.add(createArgumentPromotionPass()); // Scalarize uninlined fn args
546
547 addExtensionsToPM(EP_CGSCCOptimizerLate, MPM);
548 addFunctionSimplificationPasses(MPM);
549
550 // FIXME: This is a HACK! The inliner pass above implicitly creates a CGSCC
551 // pass manager that we are specifically trying to avoid. To prevent this
552 // we must insert a no-op module pass to reset the pass manager.
553 MPM.add(createBarrierNoopPass());
554
555 if (RunPartialInlining)
556 MPM.add(createPartialInliningPass());
557
558 if (OptLevel > 1 && !PrepareForLTO && !PrepareForThinLTO)
559 // Remove avail extern fns and globals definitions if we aren't
560 // compiling an object file for later LTO. For LTO we want to preserve
561 // these so they are eligible for inlining at link-time. Note if they
562 // are unreferenced they will be removed by GlobalDCE later, so
563 // this only impacts referenced available externally globals.
564 // Eventually they will be suppressed during codegen, but eliminating
565 // here enables more opportunity for GlobalDCE as it may make
566 // globals referenced by available external functions dead
567 // and saves running remaining passes on the eliminated functions.
568 MPM.add(createEliminateAvailableExternallyPass());
569
570 MPM.add(createReversePostOrderFunctionAttrsPass());
571
572 // The inliner performs some kind of dead code elimination as it goes,
573 // but there are cases that are not really caught by it. We might
574 // at some point consider teaching the inliner about them, but it
575 // is OK for now to run GlobalOpt + GlobalDCE in tandem as their
576 // benefits generally outweight the cost, making the whole pipeline
577 // faster.
578 if (RunInliner) {
579 MPM.add(createGlobalOptimizerPass());
580 MPM.add(createGlobalDCEPass());
581 }
582
583 // If we are planning to perform ThinLTO later, let's not bloat the code with
584 // unrolling/vectorization/... now. We'll first run the inliner + CGSCC passes
585 // during ThinLTO and perform the rest of the optimizations afterward.
586 if (PrepareForThinLTO) {
587 // Ensure we perform any last passes, but do so before renaming anonymous
588 // globals in case the passes add any.
589 addExtensionsToPM(EP_OptimizerLast, MPM);
590 MPM.add(createCanonicalizeAliasesPass());
591 // Rename anon globals to be able to export them in the summary.
592 MPM.add(createNameAnonGlobalPass());
593 return;
594 }
595
596 if (PerformThinLTO)
597 // Optimize globals now when performing ThinLTO, this enables more
598 // optimizations later.
599 MPM.add(createGlobalOptimizerPass());
600
601 // Scheduling LoopVersioningLICM when inlining is over, because after that
602 // we may see more accurate aliasing. Reason to run this late is that too
603 // early versioning may prevent further inlining due to increase of code
604 // size. By placing it just after inlining other optimizations which runs
605 // later might get benefit of no-alias assumption in clone loop.
606 if (UseLoopVersioningLICM) {
607 MPM.add(createLoopVersioningLICMPass()); // Do LoopVersioningLICM
608 MPM.add(createLICMPass()); // Hoist loop invariants
609 }
610
611 // We add a fresh GlobalsModRef run at this point. This is particularly
612 // useful as the above will have inlined, DCE'ed, and function-attr
613 // propagated everything. We should at this point have a reasonably minimal
614 // and richly annotated call graph. By computing aliasing and mod/ref
615 // information for all local globals here, the late loop passes and notably
616 // the vectorizer will be able to use them to help recognize vectorizable
617 // memory operations.
618 //
619 // Note that this relies on a bug in the pass manager which preserves
620 // a module analysis into a function pass pipeline (and throughout it) so
621 // long as the first function pass doesn't invalidate the module analysis.
622 // Thus both Float2Int and LoopRotate have to preserve AliasAnalysis for
623 // this to work. Fortunately, it is trivial to preserve AliasAnalysis
624 // (doing nothing preserves it as it is required to be conservatively
625 // correct in the face of IR changes).
626 MPM.add(createGlobalsAAWrapperPass());
627
628 MPM.add(createFloat2IntPass());
629
630 addExtensionsToPM(EP_VectorizerStart, MPM);
631
632 // Re-rotate loops in all our loop nests. These may have fallout out of
633 // rotated form due to GVN or other transformations, and the vectorizer relies
634 // on the rotated form. Disable header duplication at -Oz.
635 MPM.add(createLoopRotatePass(SizeLevel == 2 ? 0 : -1));
636
637 // Distribute loops to allow partial vectorization. I.e. isolate dependences
638 // into separate loop that would otherwise inhibit vectorization. This is
639 // currently only performed for loops marked with the metadata
640 // llvm.loop.distribute=true or when -enable-loop-distribute is specified.
641 MPM.add(createLoopDistributePass());
642
643 MPM.add(createLoopVectorizePass(DisableUnrollLoops, !LoopVectorize));
644
645 // Eliminate loads by forwarding stores from the previous iteration to loads
646 // of the current iteration.
647 MPM.add(createLoopLoadEliminationPass());
648
649 // FIXME: Because of #pragma vectorize enable, the passes below are always
650 // inserted in the pipeline, even when the vectorizer doesn't run (ex. when
651 // on -O1 and no #pragma is found). Would be good to have these two passes
652 // as function calls, so that we can only pass them when the vectorizer
653 // changed the code.
654 addInstructionCombiningPass(MPM);
655 if (OptLevel > 1 && ExtraVectorizerPasses) {
656 // At higher optimization levels, try to clean up any runtime overlap and
657 // alignment checks inserted by the vectorizer. We want to track correllated
658 // runtime checks for two inner loops in the same outer loop, fold any
659 // common computations, hoist loop-invariant aspects out of any outer loop,
660 // and unswitch the runtime checks if possible. Once hoisted, we may have
661 // dead (or speculatable) control flows or more combining opportunities.
662 MPM.add(createEarlyCSEPass());
663 MPM.add(createCorrelatedValuePropagationPass());
664 addInstructionCombiningPass(MPM);
665 MPM.add(createLICMPass());
666 MPM.add(createLoopUnswitchPass(SizeLevel || OptLevel < 3, DivergentTarget));
667 MPM.add(createCFGSimplificationPass());
668 addInstructionCombiningPass(MPM);
669 }
670
671 // Cleanup after loop vectorization, etc. Simplification passes like CVP and
672 // GVN, loop transforms, and others have already run, so it's now better to
673 // convert to more optimized IR using more aggressive simplify CFG options.
674 // The extra sinking transform can create larger basic blocks, so do this
675 // before SLP vectorization.
676 MPM.add(createCFGSimplificationPass(1, true, true, false, true));
677
678 if (RunSLPAfterLoopVectorization && SLPVectorize) {
679 MPM.add(createSLPVectorizerPass()); // Vectorize parallel scalar chains.
680 if (OptLevel > 1 && ExtraVectorizerPasses) {
681 MPM.add(createEarlyCSEPass());
682 }
683 }
684
685 addExtensionsToPM(EP_Peephole, MPM);
686 addInstructionCombiningPass(MPM);
687
688 if (EnableUnrollAndJam && !DisableUnrollLoops) {
689 // Unroll and Jam. We do this before unroll but need to be in a separate
690 // loop pass manager in order for the outer loop to be processed by
691 // unroll and jam before the inner loop is unrolled.
692 MPM.add(createLoopUnrollAndJamPass(OptLevel));
693 }
694
695 MPM.add(createLoopUnrollPass(OptLevel,
696 DisableUnrollLoops)); // Unroll small loops
697
698 if (!DisableUnrollLoops) {
699 // LoopUnroll may generate some redundency to cleanup.
700 addInstructionCombiningPass(MPM);
701
702 // Runtime unrolling will introduce runtime check in loop prologue. If the
703 // unrolled loop is a inner loop, then the prologue will be inside the
704 // outer loop. LICM pass can help to promote the runtime check out if the
705 // checked value is loop invariant.
706 MPM.add(createLICMPass());
707 }
708
709 MPM.add(createWarnMissedTransformationsPass());
710
711 // After vectorization and unrolling, assume intrinsics may tell us more
712 // about pointer alignments.
713 MPM.add(createAlignmentFromAssumptionsPass());
714
715 // FIXME: We shouldn't bother with this anymore.
716 MPM.add(createStripDeadPrototypesPass()); // Get rid of dead prototypes
717
718 // GlobalOpt already deletes dead functions and globals, at -O2 try a
719 // late pass of GlobalDCE. It is capable of deleting dead cycles.
720 if (OptLevel > 1) {
721 MPM.add(createGlobalDCEPass()); // Remove dead fns and globals.
722 MPM.add(createConstantMergePass()); // Merge dup global constants
723 }
724
725 if (MergeFunctions)
726 MPM.add(createMergeFunctionsPass());
727
728 // LoopSink pass sinks instructions hoisted by LICM, which serves as a
729 // canonicalization pass that enables other optimizations. As a result,
730 // LoopSink pass needs to be a very late IR pass to avoid undoing LICM
731 // result too early.
732 MPM.add(createLoopSinkPass());
733 // Get rid of LCSSA nodes.
734 MPM.add(createInstSimplifyLegacyPass());
735
736 // This hoists/decomposes div/rem ops. It should run after other sink/hoist
737 // passes to avoid re-sinking, but before SimplifyCFG because it can allow
738 // flattening of blocks.
739 MPM.add(createDivRemPairsPass());
740
741 if (EnableHotColdSplit)
742 MPM.add(createHotColdSplittingPass());
743
744 // LoopSink (and other loop passes since the last simplifyCFG) might have
745 // resulted in single-entry-single-exit or empty blocks. Clean up the CFG.
746 MPM.add(createCFGSimplificationPass());
747
748 addExtensionsToPM(EP_OptimizerLast, MPM);
749
750 if (PrepareForLTO) {
751 MPM.add(createCanonicalizeAliasesPass());
752 // Rename anon globals to be able to handle them in the summary
753 MPM.add(createNameAnonGlobalPass());
754 }
755 }
756
addLTOOptimizationPasses(legacy::PassManagerBase & PM)757 void PassManagerBuilder::addLTOOptimizationPasses(legacy::PassManagerBase &PM) {
758 // Load sample profile before running the LTO optimization pipeline.
759 if (!PGOSampleUse.empty()) {
760 PM.add(createPruneEHPass());
761 PM.add(createSampleProfileLoaderPass(PGOSampleUse));
762 }
763
764 // Remove unused virtual tables to improve the quality of code generated by
765 // whole-program devirtualization and bitset lowering.
766 PM.add(createGlobalDCEPass());
767
768 // Provide AliasAnalysis services for optimizations.
769 addInitialAliasAnalysisPasses(PM);
770
771 // Allow forcing function attributes as a debugging and tuning aid.
772 PM.add(createForceFunctionAttrsLegacyPass());
773
774 // Infer attributes about declarations if possible.
775 PM.add(createInferFunctionAttrsLegacyPass());
776
777 if (OptLevel > 1) {
778 // Split call-site with more constrained arguments.
779 PM.add(createCallSiteSplittingPass());
780
781 // Indirect call promotion. This should promote all the targets that are
782 // left by the earlier promotion pass that promotes intra-module targets.
783 // This two-step promotion is to save the compile time. For LTO, it should
784 // produce the same result as if we only do promotion here.
785 PM.add(
786 createPGOIndirectCallPromotionLegacyPass(true, !PGOSampleUse.empty()));
787
788 // Propagate constants at call sites into the functions they call. This
789 // opens opportunities for globalopt (and inlining) by substituting function
790 // pointers passed as arguments to direct uses of functions.
791 PM.add(createIPSCCPPass());
792
793 // Attach metadata to indirect call sites indicating the set of functions
794 // they may target at run-time. This should follow IPSCCP.
795 PM.add(createCalledValuePropagationPass());
796 }
797
798 // Infer attributes about definitions. The readnone attribute in particular is
799 // required for virtual constant propagation.
800 PM.add(createPostOrderFunctionAttrsLegacyPass());
801 PM.add(createReversePostOrderFunctionAttrsPass());
802
803 // Split globals using inrange annotations on GEP indices. This can help
804 // improve the quality of generated code when virtual constant propagation or
805 // control flow integrity are enabled.
806 PM.add(createGlobalSplitPass());
807
808 // Apply whole-program devirtualization and virtual constant propagation.
809 PM.add(createWholeProgramDevirtPass(ExportSummary, nullptr));
810
811 // That's all we need at opt level 1.
812 if (OptLevel == 1)
813 return;
814
815 // Now that we internalized some globals, see if we can hack on them!
816 PM.add(createGlobalOptimizerPass());
817 // Promote any localized global vars.
818 PM.add(createPromoteMemoryToRegisterPass());
819
820 // Linking modules together can lead to duplicated global constants, only
821 // keep one copy of each constant.
822 PM.add(createConstantMergePass());
823
824 // Remove unused arguments from functions.
825 PM.add(createDeadArgEliminationPass());
826
827 // Reduce the code after globalopt and ipsccp. Both can open up significant
828 // simplification opportunities, and both can propagate functions through
829 // function pointers. When this happens, we often have to resolve varargs
830 // calls, etc, so let instcombine do this.
831 if (OptLevel > 2)
832 PM.add(createAggressiveInstCombinerPass());
833 addInstructionCombiningPass(PM);
834 addExtensionsToPM(EP_Peephole, PM);
835
836 // Inline small functions
837 bool RunInliner = Inliner;
838 if (RunInliner) {
839 PM.add(Inliner);
840 Inliner = nullptr;
841 }
842
843 PM.add(createPruneEHPass()); // Remove dead EH info.
844
845 // Optimize globals again if we ran the inliner.
846 if (RunInliner)
847 PM.add(createGlobalOptimizerPass());
848 PM.add(createGlobalDCEPass()); // Remove dead functions.
849
850 // If we didn't decide to inline a function, check to see if we can
851 // transform it to pass arguments by value instead of by reference.
852 PM.add(createArgumentPromotionPass());
853
854 // The IPO passes may leave cruft around. Clean up after them.
855 addInstructionCombiningPass(PM);
856 addExtensionsToPM(EP_Peephole, PM);
857 PM.add(createJumpThreadingPass());
858
859 // Break up allocas
860 PM.add(createSROAPass());
861
862 // Run a few AA driven optimizations here and now, to cleanup the code.
863 PM.add(createPostOrderFunctionAttrsLegacyPass()); // Add nocapture.
864 PM.add(createGlobalsAAWrapperPass()); // IP alias analysis.
865
866 PM.add(createLICMPass()); // Hoist loop invariants.
867 PM.add(createMergedLoadStoreMotionPass()); // Merge ld/st in diamonds.
868 PM.add(NewGVN ? createNewGVNPass()
869 : createGVNPass(DisableGVNLoadPRE)); // Remove redundancies.
870 PM.add(createMemCpyOptPass()); // Remove dead memcpys.
871
872 // Nuke dead stores.
873 PM.add(createDeadStoreEliminationPass());
874
875 // More loops are countable; try to optimize them.
876 PM.add(createIndVarSimplifyPass());
877 PM.add(createLoopDeletionPass());
878 if (EnableLoopInterchange)
879 PM.add(createLoopInterchangePass());
880
881 PM.add(createSimpleLoopUnrollPass(OptLevel,
882 DisableUnrollLoops)); // Unroll small loops
883 PM.add(createLoopVectorizePass(true, !LoopVectorize));
884 // The vectorizer may have significantly shortened a loop body; unroll again.
885 PM.add(createLoopUnrollPass(OptLevel, DisableUnrollLoops));
886
887 PM.add(createWarnMissedTransformationsPass());
888
889 // Now that we've optimized loops (in particular loop induction variables),
890 // we may have exposed more scalar opportunities. Run parts of the scalar
891 // optimizer again at this point.
892 addInstructionCombiningPass(PM); // Initial cleanup
893 PM.add(createCFGSimplificationPass()); // if-convert
894 PM.add(createSCCPPass()); // Propagate exposed constants
895 addInstructionCombiningPass(PM); // Clean up again
896 PM.add(createBitTrackingDCEPass());
897
898 // More scalar chains could be vectorized due to more alias information
899 if (RunSLPAfterLoopVectorization)
900 if (SLPVectorize)
901 PM.add(createSLPVectorizerPass()); // Vectorize parallel scalar chains.
902
903 // After vectorization, assume intrinsics may tell us more about pointer
904 // alignments.
905 PM.add(createAlignmentFromAssumptionsPass());
906
907 // Cleanup and simplify the code after the scalar optimizations.
908 addInstructionCombiningPass(PM);
909 addExtensionsToPM(EP_Peephole, PM);
910
911 PM.add(createJumpThreadingPass());
912 }
913
addLateLTOOptimizationPasses(legacy::PassManagerBase & PM)914 void PassManagerBuilder::addLateLTOOptimizationPasses(
915 legacy::PassManagerBase &PM) {
916 // Delete basic blocks, which optimization passes may have killed.
917 PM.add(createCFGSimplificationPass());
918
919 // Drop bodies of available externally objects to improve GlobalDCE.
920 PM.add(createEliminateAvailableExternallyPass());
921
922 // Now that we have optimized the program, discard unreachable functions.
923 PM.add(createGlobalDCEPass());
924
925 // FIXME: this is profitable (for compiler time) to do at -O0 too, but
926 // currently it damages debug info.
927 if (MergeFunctions)
928 PM.add(createMergeFunctionsPass());
929 }
930
populateThinLTOPassManager(legacy::PassManagerBase & PM)931 void PassManagerBuilder::populateThinLTOPassManager(
932 legacy::PassManagerBase &PM) {
933 PerformThinLTO = true;
934 if (LibraryInfo)
935 PM.add(new TargetLibraryInfoWrapperPass(*LibraryInfo));
936
937 if (VerifyInput)
938 PM.add(createVerifierPass());
939
940 if (ImportSummary) {
941 // These passes import type identifier resolutions for whole-program
942 // devirtualization and CFI. They must run early because other passes may
943 // disturb the specific instruction patterns that these passes look for,
944 // creating dependencies on resolutions that may not appear in the summary.
945 //
946 // For example, GVN may transform the pattern assume(type.test) appearing in
947 // two basic blocks into assume(phi(type.test, type.test)), which would
948 // transform a dependency on a WPD resolution into a dependency on a type
949 // identifier resolution for CFI.
950 //
951 // Also, WPD has access to more precise information than ICP and can
952 // devirtualize more effectively, so it should operate on the IR first.
953 PM.add(createWholeProgramDevirtPass(nullptr, ImportSummary));
954 PM.add(createLowerTypeTestsPass(nullptr, ImportSummary));
955 }
956
957 populateModulePassManager(PM);
958
959 if (VerifyOutput)
960 PM.add(createVerifierPass());
961 PerformThinLTO = false;
962 }
963
populateLTOPassManager(legacy::PassManagerBase & PM)964 void PassManagerBuilder::populateLTOPassManager(legacy::PassManagerBase &PM) {
965 if (LibraryInfo)
966 PM.add(new TargetLibraryInfoWrapperPass(*LibraryInfo));
967
968 if (VerifyInput)
969 PM.add(createVerifierPass());
970
971 if (OptLevel != 0)
972 addLTOOptimizationPasses(PM);
973 else {
974 // The whole-program-devirt pass needs to run at -O0 because only it knows
975 // about the llvm.type.checked.load intrinsic: it needs to both lower the
976 // intrinsic itself and handle it in the summary.
977 PM.add(createWholeProgramDevirtPass(ExportSummary, nullptr));
978 }
979
980 // Create a function that performs CFI checks for cross-DSO calls with targets
981 // in the current module.
982 PM.add(createCrossDSOCFIPass());
983
984 // Lower type metadata and the type.test intrinsic. This pass supports Clang's
985 // control flow integrity mechanisms (-fsanitize=cfi*) and needs to run at
986 // link time if CFI is enabled. The pass does nothing if CFI is disabled.
987 PM.add(createLowerTypeTestsPass(ExportSummary, nullptr));
988
989 if (OptLevel != 0)
990 addLateLTOOptimizationPasses(PM);
991
992 if (VerifyOutput)
993 PM.add(createVerifierPass());
994 }
995
unwrap(LLVMPassManagerBuilderRef P)996 inline PassManagerBuilder *unwrap(LLVMPassManagerBuilderRef P) {
997 return reinterpret_cast<PassManagerBuilder*>(P);
998 }
999
wrap(PassManagerBuilder * P)1000 inline LLVMPassManagerBuilderRef wrap(PassManagerBuilder *P) {
1001 return reinterpret_cast<LLVMPassManagerBuilderRef>(P);
1002 }
1003
LLVMPassManagerBuilderCreate()1004 LLVMPassManagerBuilderRef LLVMPassManagerBuilderCreate() {
1005 PassManagerBuilder *PMB = new PassManagerBuilder();
1006 return wrap(PMB);
1007 }
1008
LLVMPassManagerBuilderDispose(LLVMPassManagerBuilderRef PMB)1009 void LLVMPassManagerBuilderDispose(LLVMPassManagerBuilderRef PMB) {
1010 PassManagerBuilder *Builder = unwrap(PMB);
1011 delete Builder;
1012 }
1013
1014 void
LLVMPassManagerBuilderSetOptLevel(LLVMPassManagerBuilderRef PMB,unsigned OptLevel)1015 LLVMPassManagerBuilderSetOptLevel(LLVMPassManagerBuilderRef PMB,
1016 unsigned OptLevel) {
1017 PassManagerBuilder *Builder = unwrap(PMB);
1018 Builder->OptLevel = OptLevel;
1019 }
1020
1021 void
LLVMPassManagerBuilderSetSizeLevel(LLVMPassManagerBuilderRef PMB,unsigned SizeLevel)1022 LLVMPassManagerBuilderSetSizeLevel(LLVMPassManagerBuilderRef PMB,
1023 unsigned SizeLevel) {
1024 PassManagerBuilder *Builder = unwrap(PMB);
1025 Builder->SizeLevel = SizeLevel;
1026 }
1027
1028 void
LLVMPassManagerBuilderSetDisableUnitAtATime(LLVMPassManagerBuilderRef PMB,LLVMBool Value)1029 LLVMPassManagerBuilderSetDisableUnitAtATime(LLVMPassManagerBuilderRef PMB,
1030 LLVMBool Value) {
1031 // NOTE: The DisableUnitAtATime switch has been removed.
1032 }
1033
1034 void
LLVMPassManagerBuilderSetDisableUnrollLoops(LLVMPassManagerBuilderRef PMB,LLVMBool Value)1035 LLVMPassManagerBuilderSetDisableUnrollLoops(LLVMPassManagerBuilderRef PMB,
1036 LLVMBool Value) {
1037 PassManagerBuilder *Builder = unwrap(PMB);
1038 Builder->DisableUnrollLoops = Value;
1039 }
1040
1041 void
LLVMPassManagerBuilderSetDisableSimplifyLibCalls(LLVMPassManagerBuilderRef PMB,LLVMBool Value)1042 LLVMPassManagerBuilderSetDisableSimplifyLibCalls(LLVMPassManagerBuilderRef PMB,
1043 LLVMBool Value) {
1044 // NOTE: The simplify-libcalls pass has been removed.
1045 }
1046
1047 void
LLVMPassManagerBuilderUseInlinerWithThreshold(LLVMPassManagerBuilderRef PMB,unsigned Threshold)1048 LLVMPassManagerBuilderUseInlinerWithThreshold(LLVMPassManagerBuilderRef PMB,
1049 unsigned Threshold) {
1050 PassManagerBuilder *Builder = unwrap(PMB);
1051 Builder->Inliner = createFunctionInliningPass(Threshold);
1052 }
1053
1054 void
LLVMPassManagerBuilderPopulateFunctionPassManager(LLVMPassManagerBuilderRef PMB,LLVMPassManagerRef PM)1055 LLVMPassManagerBuilderPopulateFunctionPassManager(LLVMPassManagerBuilderRef PMB,
1056 LLVMPassManagerRef PM) {
1057 PassManagerBuilder *Builder = unwrap(PMB);
1058 legacy::FunctionPassManager *FPM = unwrap<legacy::FunctionPassManager>(PM);
1059 Builder->populateFunctionPassManager(*FPM);
1060 }
1061
1062 void
LLVMPassManagerBuilderPopulateModulePassManager(LLVMPassManagerBuilderRef PMB,LLVMPassManagerRef PM)1063 LLVMPassManagerBuilderPopulateModulePassManager(LLVMPassManagerBuilderRef PMB,
1064 LLVMPassManagerRef PM) {
1065 PassManagerBuilder *Builder = unwrap(PMB);
1066 legacy::PassManagerBase *MPM = unwrap(PM);
1067 Builder->populateModulePassManager(*MPM);
1068 }
1069
LLVMPassManagerBuilderPopulateLTOPassManager(LLVMPassManagerBuilderRef PMB,LLVMPassManagerRef PM,LLVMBool Internalize,LLVMBool RunInliner)1070 void LLVMPassManagerBuilderPopulateLTOPassManager(LLVMPassManagerBuilderRef PMB,
1071 LLVMPassManagerRef PM,
1072 LLVMBool Internalize,
1073 LLVMBool RunInliner) {
1074 PassManagerBuilder *Builder = unwrap(PMB);
1075 legacy::PassManagerBase *LPM = unwrap(PM);
1076
1077 // A small backwards compatibility hack. populateLTOPassManager used to take
1078 // an RunInliner option.
1079 if (RunInliner && !Builder->Inliner)
1080 Builder->Inliner = createFunctionInliningPass();
1081
1082 Builder->populateLTOPassManager(*LPM);
1083 }
1084