1 //===- GlobalOpt.cpp - Optimize Global Variables --------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass transforms simple global variables that never have their address 11 // taken. If obviously true, it marks read/write globals as constant, deletes 12 // variables only stored to, etc. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "llvm/Transforms/IPO/GlobalOpt.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/SmallPtrSet.h" 20 #include "llvm/ADT/SmallVector.h" 21 #include "llvm/ADT/Statistic.h" 22 #include "llvm/ADT/Twine.h" 23 #include "llvm/ADT/iterator_range.h" 24 #include "llvm/Analysis/BlockFrequencyInfo.h" 25 #include "llvm/Analysis/ConstantFolding.h" 26 #include "llvm/Analysis/MemoryBuiltins.h" 27 #include "llvm/Analysis/TargetLibraryInfo.h" 28 #include "llvm/Analysis/TargetTransformInfo.h" 29 #include "llvm/Transforms/Utils/Local.h" 30 #include "llvm/BinaryFormat/Dwarf.h" 31 #include "llvm/IR/Attributes.h" 32 #include "llvm/IR/BasicBlock.h" 33 #include "llvm/IR/CallSite.h" 34 #include "llvm/IR/CallingConv.h" 35 #include "llvm/IR/Constant.h" 36 #include "llvm/IR/Constants.h" 37 #include "llvm/IR/DataLayout.h" 38 #include "llvm/IR/DebugInfoMetadata.h" 39 #include "llvm/IR/DerivedTypes.h" 40 #include "llvm/IR/Dominators.h" 41 #include "llvm/IR/Function.h" 42 #include "llvm/IR/GetElementPtrTypeIterator.h" 43 #include "llvm/IR/GlobalAlias.h" 44 #include "llvm/IR/GlobalValue.h" 45 #include "llvm/IR/GlobalVariable.h" 46 #include "llvm/IR/InstrTypes.h" 47 #include "llvm/IR/Instruction.h" 48 #include "llvm/IR/Instructions.h" 49 #include "llvm/IR/IntrinsicInst.h" 50 #include "llvm/IR/Module.h" 51 #include "llvm/IR/Operator.h" 52 #include "llvm/IR/Type.h" 53 #include "llvm/IR/Use.h" 54 #include "llvm/IR/User.h" 55 #include "llvm/IR/Value.h" 56 #include "llvm/IR/ValueHandle.h" 57 #include "llvm/Pass.h" 58 #include "llvm/Support/AtomicOrdering.h" 59 #include "llvm/Support/Casting.h" 60 #include "llvm/Support/CommandLine.h" 61 #include "llvm/Support/Debug.h" 62 #include "llvm/Support/ErrorHandling.h" 63 #include "llvm/Support/MathExtras.h" 64 #include "llvm/Support/raw_ostream.h" 65 #include "llvm/Transforms/IPO.h" 66 #include "llvm/Transforms/Utils/CtorUtils.h" 67 #include "llvm/Transforms/Utils/Evaluator.h" 68 #include "llvm/Transforms/Utils/GlobalStatus.h" 69 #include <cassert> 70 #include <cstdint> 71 #include <utility> 72 #include <vector> 73 74 using namespace llvm; 75 76 #define DEBUG_TYPE "globalopt" 77 78 STATISTIC(NumMarked , "Number of globals marked constant"); 79 STATISTIC(NumUnnamed , "Number of globals marked unnamed_addr"); 80 STATISTIC(NumSRA , "Number of aggregate globals broken into scalars"); 81 STATISTIC(NumHeapSRA , "Number of heap objects SRA'd"); 82 STATISTIC(NumSubstitute,"Number of globals with initializers stored into them"); 83 STATISTIC(NumDeleted , "Number of globals deleted"); 84 STATISTIC(NumGlobUses , "Number of global uses devirtualized"); 85 STATISTIC(NumLocalized , "Number of globals localized"); 86 STATISTIC(NumShrunkToBool , "Number of global vars shrunk to booleans"); 87 STATISTIC(NumFastCallFns , "Number of functions converted to fastcc"); 88 STATISTIC(NumCtorsEvaluated, "Number of static ctors evaluated"); 89 STATISTIC(NumNestRemoved , "Number of nest attributes removed"); 90 STATISTIC(NumAliasesResolved, "Number of global aliases resolved"); 91 STATISTIC(NumAliasesRemoved, "Number of global aliases eliminated"); 92 STATISTIC(NumCXXDtorsRemoved, "Number of global C++ destructors removed"); 93 STATISTIC(NumInternalFunc, "Number of internal functions"); 94 STATISTIC(NumColdCC, "Number of functions marked coldcc"); 95 96 static cl::opt<bool> 97 EnableColdCCStressTest("enable-coldcc-stress-test", 98 cl::desc("Enable stress test of coldcc by adding " 99 "calling conv to all internal functions."), 100 cl::init(false), cl::Hidden); 101 102 static cl::opt<int> ColdCCRelFreq( 103 "coldcc-rel-freq", cl::Hidden, cl::init(2), cl::ZeroOrMore, 104 cl::desc( 105 "Maximum block frequency, expressed as a percentage of caller's " 106 "entry frequency, for a call site to be considered cold for enabling" 107 "coldcc")); 108 109 /// Is this global variable possibly used by a leak checker as a root? If so, 110 /// we might not really want to eliminate the stores to it. 111 static bool isLeakCheckerRoot(GlobalVariable *GV) { 112 // A global variable is a root if it is a pointer, or could plausibly contain 113 // a pointer. There are two challenges; one is that we could have a struct 114 // the has an inner member which is a pointer. We recurse through the type to 115 // detect these (up to a point). The other is that we may actually be a union 116 // of a pointer and another type, and so our LLVM type is an integer which 117 // gets converted into a pointer, or our type is an [i8 x #] with a pointer 118 // potentially contained here. 119 120 if (GV->hasPrivateLinkage()) 121 return false; 122 123 SmallVector<Type *, 4> Types; 124 Types.push_back(GV->getValueType()); 125 126 unsigned Limit = 20; 127 do { 128 Type *Ty = Types.pop_back_val(); 129 switch (Ty->getTypeID()) { 130 default: break; 131 case Type::PointerTyID: return true; 132 case Type::ArrayTyID: 133 case Type::VectorTyID: { 134 SequentialType *STy = cast<SequentialType>(Ty); 135 Types.push_back(STy->getElementType()); 136 break; 137 } 138 case Type::StructTyID: { 139 StructType *STy = cast<StructType>(Ty); 140 if (STy->isOpaque()) return true; 141 for (StructType::element_iterator I = STy->element_begin(), 142 E = STy->element_end(); I != E; ++I) { 143 Type *InnerTy = *I; 144 if (isa<PointerType>(InnerTy)) return true; 145 if (isa<CompositeType>(InnerTy)) 146 Types.push_back(InnerTy); 147 } 148 break; 149 } 150 } 151 if (--Limit == 0) return true; 152 } while (!Types.empty()); 153 return false; 154 } 155 156 /// Given a value that is stored to a global but never read, determine whether 157 /// it's safe to remove the store and the chain of computation that feeds the 158 /// store. 159 static bool IsSafeComputationToRemove(Value *V, const TargetLibraryInfo *TLI) { 160 do { 161 if (isa<Constant>(V)) 162 return true; 163 if (!V->hasOneUse()) 164 return false; 165 if (isa<LoadInst>(V) || isa<InvokeInst>(V) || isa<Argument>(V) || 166 isa<GlobalValue>(V)) 167 return false; 168 if (isAllocationFn(V, TLI)) 169 return true; 170 171 Instruction *I = cast<Instruction>(V); 172 if (I->mayHaveSideEffects()) 173 return false; 174 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I)) { 175 if (!GEP->hasAllConstantIndices()) 176 return false; 177 } else if (I->getNumOperands() != 1) { 178 return false; 179 } 180 181 V = I->getOperand(0); 182 } while (true); 183 } 184 185 /// This GV is a pointer root. Loop over all users of the global and clean up 186 /// any that obviously don't assign the global a value that isn't dynamically 187 /// allocated. 188 static bool CleanupPointerRootUsers(GlobalVariable *GV, 189 const TargetLibraryInfo *TLI) { 190 // A brief explanation of leak checkers. The goal is to find bugs where 191 // pointers are forgotten, causing an accumulating growth in memory 192 // usage over time. The common strategy for leak checkers is to whitelist the 193 // memory pointed to by globals at exit. This is popular because it also 194 // solves another problem where the main thread of a C++ program may shut down 195 // before other threads that are still expecting to use those globals. To 196 // handle that case, we expect the program may create a singleton and never 197 // destroy it. 198 199 bool Changed = false; 200 201 // If Dead[n].first is the only use of a malloc result, we can delete its 202 // chain of computation and the store to the global in Dead[n].second. 203 SmallVector<std::pair<Instruction *, Instruction *>, 32> Dead; 204 205 // Constants can't be pointers to dynamically allocated memory. 206 for (Value::user_iterator UI = GV->user_begin(), E = GV->user_end(); 207 UI != E;) { 208 User *U = *UI++; 209 if (StoreInst *SI = dyn_cast<StoreInst>(U)) { 210 Value *V = SI->getValueOperand(); 211 if (isa<Constant>(V)) { 212 Changed = true; 213 SI->eraseFromParent(); 214 } else if (Instruction *I = dyn_cast<Instruction>(V)) { 215 if (I->hasOneUse()) 216 Dead.push_back(std::make_pair(I, SI)); 217 } 218 } else if (MemSetInst *MSI = dyn_cast<MemSetInst>(U)) { 219 if (isa<Constant>(MSI->getValue())) { 220 Changed = true; 221 MSI->eraseFromParent(); 222 } else if (Instruction *I = dyn_cast<Instruction>(MSI->getValue())) { 223 if (I->hasOneUse()) 224 Dead.push_back(std::make_pair(I, MSI)); 225 } 226 } else if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(U)) { 227 GlobalVariable *MemSrc = dyn_cast<GlobalVariable>(MTI->getSource()); 228 if (MemSrc && MemSrc->isConstant()) { 229 Changed = true; 230 MTI->eraseFromParent(); 231 } else if (Instruction *I = dyn_cast<Instruction>(MemSrc)) { 232 if (I->hasOneUse()) 233 Dead.push_back(std::make_pair(I, MTI)); 234 } 235 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(U)) { 236 if (CE->use_empty()) { 237 CE->destroyConstant(); 238 Changed = true; 239 } 240 } else if (Constant *C = dyn_cast<Constant>(U)) { 241 if (isSafeToDestroyConstant(C)) { 242 C->destroyConstant(); 243 // This could have invalidated UI, start over from scratch. 244 Dead.clear(); 245 CleanupPointerRootUsers(GV, TLI); 246 return true; 247 } 248 } 249 } 250 251 for (int i = 0, e = Dead.size(); i != e; ++i) { 252 if (IsSafeComputationToRemove(Dead[i].first, TLI)) { 253 Dead[i].second->eraseFromParent(); 254 Instruction *I = Dead[i].first; 255 do { 256 if (isAllocationFn(I, TLI)) 257 break; 258 Instruction *J = dyn_cast<Instruction>(I->getOperand(0)); 259 if (!J) 260 break; 261 I->eraseFromParent(); 262 I = J; 263 } while (true); 264 I->eraseFromParent(); 265 } 266 } 267 268 return Changed; 269 } 270 271 /// We just marked GV constant. Loop over all users of the global, cleaning up 272 /// the obvious ones. This is largely just a quick scan over the use list to 273 /// clean up the easy and obvious cruft. This returns true if it made a change. 274 static bool CleanupConstantGlobalUsers(Value *V, Constant *Init, 275 const DataLayout &DL, 276 TargetLibraryInfo *TLI) { 277 bool Changed = false; 278 // Note that we need to use a weak value handle for the worklist items. When 279 // we delete a constant array, we may also be holding pointer to one of its 280 // elements (or an element of one of its elements if we're dealing with an 281 // array of arrays) in the worklist. 282 SmallVector<WeakTrackingVH, 8> WorkList(V->user_begin(), V->user_end()); 283 while (!WorkList.empty()) { 284 Value *UV = WorkList.pop_back_val(); 285 if (!UV) 286 continue; 287 288 User *U = cast<User>(UV); 289 290 if (LoadInst *LI = dyn_cast<LoadInst>(U)) { 291 if (Init) { 292 // Replace the load with the initializer. 293 LI->replaceAllUsesWith(Init); 294 LI->eraseFromParent(); 295 Changed = true; 296 } 297 } else if (StoreInst *SI = dyn_cast<StoreInst>(U)) { 298 // Store must be unreachable or storing Init into the global. 299 SI->eraseFromParent(); 300 Changed = true; 301 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(U)) { 302 if (CE->getOpcode() == Instruction::GetElementPtr) { 303 Constant *SubInit = nullptr; 304 if (Init) 305 SubInit = ConstantFoldLoadThroughGEPConstantExpr(Init, CE); 306 Changed |= CleanupConstantGlobalUsers(CE, SubInit, DL, TLI); 307 } else if ((CE->getOpcode() == Instruction::BitCast && 308 CE->getType()->isPointerTy()) || 309 CE->getOpcode() == Instruction::AddrSpaceCast) { 310 // Pointer cast, delete any stores and memsets to the global. 311 Changed |= CleanupConstantGlobalUsers(CE, nullptr, DL, TLI); 312 } 313 314 if (CE->use_empty()) { 315 CE->destroyConstant(); 316 Changed = true; 317 } 318 } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(U)) { 319 // Do not transform "gepinst (gep constexpr (GV))" here, because forming 320 // "gepconstexpr (gep constexpr (GV))" will cause the two gep's to fold 321 // and will invalidate our notion of what Init is. 322 Constant *SubInit = nullptr; 323 if (!isa<ConstantExpr>(GEP->getOperand(0))) { 324 ConstantExpr *CE = dyn_cast_or_null<ConstantExpr>( 325 ConstantFoldInstruction(GEP, DL, TLI)); 326 if (Init && CE && CE->getOpcode() == Instruction::GetElementPtr) 327 SubInit = ConstantFoldLoadThroughGEPConstantExpr(Init, CE); 328 329 // If the initializer is an all-null value and we have an inbounds GEP, 330 // we already know what the result of any load from that GEP is. 331 // TODO: Handle splats. 332 if (Init && isa<ConstantAggregateZero>(Init) && GEP->isInBounds()) 333 SubInit = Constant::getNullValue(GEP->getResultElementType()); 334 } 335 Changed |= CleanupConstantGlobalUsers(GEP, SubInit, DL, TLI); 336 337 if (GEP->use_empty()) { 338 GEP->eraseFromParent(); 339 Changed = true; 340 } 341 } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(U)) { // memset/cpy/mv 342 if (MI->getRawDest() == V) { 343 MI->eraseFromParent(); 344 Changed = true; 345 } 346 347 } else if (Constant *C = dyn_cast<Constant>(U)) { 348 // If we have a chain of dead constantexprs or other things dangling from 349 // us, and if they are all dead, nuke them without remorse. 350 if (isSafeToDestroyConstant(C)) { 351 C->destroyConstant(); 352 CleanupConstantGlobalUsers(V, Init, DL, TLI); 353 return true; 354 } 355 } 356 } 357 return Changed; 358 } 359 360 static bool isSafeSROAElementUse(Value *V); 361 362 /// Return true if the specified GEP is a safe user of a derived 363 /// expression from a global that we want to SROA. 364 static bool isSafeSROAGEP(User *U) { 365 // Check to see if this ConstantExpr GEP is SRA'able. In particular, we 366 // don't like < 3 operand CE's, and we don't like non-constant integer 367 // indices. This enforces that all uses are 'gep GV, 0, C, ...' for some 368 // value of C. 369 if (U->getNumOperands() < 3 || !isa<Constant>(U->getOperand(1)) || 370 !cast<Constant>(U->getOperand(1))->isNullValue()) 371 return false; 372 373 gep_type_iterator GEPI = gep_type_begin(U), E = gep_type_end(U); 374 ++GEPI; // Skip over the pointer index. 375 376 // For all other level we require that the indices are constant and inrange. 377 // In particular, consider: A[0][i]. We cannot know that the user isn't doing 378 // invalid things like allowing i to index an out-of-range subscript that 379 // accesses A[1]. This can also happen between different members of a struct 380 // in llvm IR. 381 for (; GEPI != E; ++GEPI) { 382 if (GEPI.isStruct()) 383 continue; 384 385 ConstantInt *IdxVal = dyn_cast<ConstantInt>(GEPI.getOperand()); 386 if (!IdxVal || (GEPI.isBoundedSequential() && 387 IdxVal->getZExtValue() >= GEPI.getSequentialNumElements())) 388 return false; 389 } 390 391 return llvm::all_of(U->users(), 392 [](User *UU) { return isSafeSROAElementUse(UU); }); 393 } 394 395 /// Return true if the specified instruction is a safe user of a derived 396 /// expression from a global that we want to SROA. 397 static bool isSafeSROAElementUse(Value *V) { 398 // We might have a dead and dangling constant hanging off of here. 399 if (Constant *C = dyn_cast<Constant>(V)) 400 return isSafeToDestroyConstant(C); 401 402 Instruction *I = dyn_cast<Instruction>(V); 403 if (!I) return false; 404 405 // Loads are ok. 406 if (isa<LoadInst>(I)) return true; 407 408 // Stores *to* the pointer are ok. 409 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 410 return SI->getOperand(0) != V; 411 412 // Otherwise, it must be a GEP. Check it and its users are safe to SRA. 413 return isa<GetElementPtrInst>(I) && isSafeSROAGEP(I); 414 } 415 416 /// Look at all uses of the global and decide whether it is safe for us to 417 /// perform this transformation. 418 static bool GlobalUsersSafeToSRA(GlobalValue *GV) { 419 for (User *U : GV->users()) { 420 // The user of the global must be a GEP Inst or a ConstantExpr GEP. 421 if (!isa<GetElementPtrInst>(U) && 422 (!isa<ConstantExpr>(U) || 423 cast<ConstantExpr>(U)->getOpcode() != Instruction::GetElementPtr)) 424 return false; 425 426 // Check the gep and it's users are safe to SRA 427 if (!isSafeSROAGEP(U)) 428 return false; 429 } 430 431 return true; 432 } 433 434 /// Copy over the debug info for a variable to its SRA replacements. 435 static void transferSRADebugInfo(GlobalVariable *GV, GlobalVariable *NGV, 436 uint64_t FragmentOffsetInBits, 437 uint64_t FragmentSizeInBits, 438 unsigned NumElements) { 439 SmallVector<DIGlobalVariableExpression *, 1> GVs; 440 GV->getDebugInfo(GVs); 441 for (auto *GVE : GVs) { 442 DIVariable *Var = GVE->getVariable(); 443 DIExpression *Expr = GVE->getExpression(); 444 if (NumElements > 1) { 445 if (auto E = DIExpression::createFragmentExpression( 446 Expr, FragmentOffsetInBits, FragmentSizeInBits)) 447 Expr = *E; 448 else 449 return; 450 } 451 auto *NGVE = DIGlobalVariableExpression::get(GVE->getContext(), Var, Expr); 452 NGV->addDebugInfo(NGVE); 453 } 454 } 455 456 /// Perform scalar replacement of aggregates on the specified global variable. 457 /// This opens the door for other optimizations by exposing the behavior of the 458 /// program in a more fine-grained way. We have determined that this 459 /// transformation is safe already. We return the first global variable we 460 /// insert so that the caller can reprocess it. 461 static GlobalVariable *SRAGlobal(GlobalVariable *GV, const DataLayout &DL) { 462 // Make sure this global only has simple uses that we can SRA. 463 if (!GlobalUsersSafeToSRA(GV)) 464 return nullptr; 465 466 assert(GV->hasLocalLinkage()); 467 Constant *Init = GV->getInitializer(); 468 Type *Ty = Init->getType(); 469 470 std::vector<GlobalVariable *> NewGlobals; 471 Module::GlobalListType &Globals = GV->getParent()->getGlobalList(); 472 473 // Get the alignment of the global, either explicit or target-specific. 474 unsigned StartAlignment = GV->getAlignment(); 475 if (StartAlignment == 0) 476 StartAlignment = DL.getABITypeAlignment(GV->getType()); 477 478 if (StructType *STy = dyn_cast<StructType>(Ty)) { 479 unsigned NumElements = STy->getNumElements(); 480 NewGlobals.reserve(NumElements); 481 const StructLayout &Layout = *DL.getStructLayout(STy); 482 for (unsigned i = 0, e = NumElements; i != e; ++i) { 483 Constant *In = Init->getAggregateElement(i); 484 assert(In && "Couldn't get element of initializer?"); 485 GlobalVariable *NGV = new GlobalVariable(STy->getElementType(i), false, 486 GlobalVariable::InternalLinkage, 487 In, GV->getName()+"."+Twine(i), 488 GV->getThreadLocalMode(), 489 GV->getType()->getAddressSpace()); 490 NGV->setExternallyInitialized(GV->isExternallyInitialized()); 491 NGV->copyAttributesFrom(GV); 492 Globals.push_back(NGV); 493 NewGlobals.push_back(NGV); 494 495 // Calculate the known alignment of the field. If the original aggregate 496 // had 256 byte alignment for example, something might depend on that: 497 // propagate info to each field. 498 uint64_t FieldOffset = Layout.getElementOffset(i); 499 unsigned NewAlign = (unsigned)MinAlign(StartAlignment, FieldOffset); 500 if (NewAlign > DL.getABITypeAlignment(STy->getElementType(i))) 501 NGV->setAlignment(NewAlign); 502 503 // Copy over the debug info for the variable. 504 uint64_t Size = DL.getTypeAllocSizeInBits(NGV->getValueType()); 505 uint64_t FragmentOffsetInBits = Layout.getElementOffsetInBits(i); 506 transferSRADebugInfo(GV, NGV, FragmentOffsetInBits, Size, NumElements); 507 } 508 } else if (SequentialType *STy = dyn_cast<SequentialType>(Ty)) { 509 unsigned NumElements = STy->getNumElements(); 510 if (NumElements > 16 && GV->hasNUsesOrMore(16)) 511 return nullptr; // It's not worth it. 512 NewGlobals.reserve(NumElements); 513 auto ElTy = STy->getElementType(); 514 uint64_t EltSize = DL.getTypeAllocSize(ElTy); 515 unsigned EltAlign = DL.getABITypeAlignment(ElTy); 516 uint64_t FragmentSizeInBits = DL.getTypeAllocSizeInBits(ElTy); 517 for (unsigned i = 0, e = NumElements; i != e; ++i) { 518 Constant *In = Init->getAggregateElement(i); 519 assert(In && "Couldn't get element of initializer?"); 520 521 GlobalVariable *NGV = new GlobalVariable(STy->getElementType(), false, 522 GlobalVariable::InternalLinkage, 523 In, GV->getName()+"."+Twine(i), 524 GV->getThreadLocalMode(), 525 GV->getType()->getAddressSpace()); 526 NGV->setExternallyInitialized(GV->isExternallyInitialized()); 527 NGV->copyAttributesFrom(GV); 528 Globals.push_back(NGV); 529 NewGlobals.push_back(NGV); 530 531 // Calculate the known alignment of the field. If the original aggregate 532 // had 256 byte alignment for example, something might depend on that: 533 // propagate info to each field. 534 unsigned NewAlign = (unsigned)MinAlign(StartAlignment, EltSize*i); 535 if (NewAlign > EltAlign) 536 NGV->setAlignment(NewAlign); 537 transferSRADebugInfo(GV, NGV, FragmentSizeInBits * i, FragmentSizeInBits, 538 NumElements); 539 } 540 } 541 542 if (NewGlobals.empty()) 543 return nullptr; 544 545 LLVM_DEBUG(dbgs() << "PERFORMING GLOBAL SRA ON: " << *GV << "\n"); 546 547 Constant *NullInt =Constant::getNullValue(Type::getInt32Ty(GV->getContext())); 548 549 // Loop over all of the uses of the global, replacing the constantexpr geps, 550 // with smaller constantexpr geps or direct references. 551 while (!GV->use_empty()) { 552 User *GEP = GV->user_back(); 553 assert(((isa<ConstantExpr>(GEP) && 554 cast<ConstantExpr>(GEP)->getOpcode()==Instruction::GetElementPtr)|| 555 isa<GetElementPtrInst>(GEP)) && "NonGEP CE's are not SRAable!"); 556 557 // Ignore the 1th operand, which has to be zero or else the program is quite 558 // broken (undefined). Get the 2nd operand, which is the structure or array 559 // index. 560 unsigned Val = cast<ConstantInt>(GEP->getOperand(2))->getZExtValue(); 561 if (Val >= NewGlobals.size()) Val = 0; // Out of bound array access. 562 563 Value *NewPtr = NewGlobals[Val]; 564 Type *NewTy = NewGlobals[Val]->getValueType(); 565 566 // Form a shorter GEP if needed. 567 if (GEP->getNumOperands() > 3) { 568 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(GEP)) { 569 SmallVector<Constant*, 8> Idxs; 570 Idxs.push_back(NullInt); 571 for (unsigned i = 3, e = CE->getNumOperands(); i != e; ++i) 572 Idxs.push_back(CE->getOperand(i)); 573 NewPtr = 574 ConstantExpr::getGetElementPtr(NewTy, cast<Constant>(NewPtr), Idxs); 575 } else { 576 GetElementPtrInst *GEPI = cast<GetElementPtrInst>(GEP); 577 SmallVector<Value*, 8> Idxs; 578 Idxs.push_back(NullInt); 579 for (unsigned i = 3, e = GEPI->getNumOperands(); i != e; ++i) 580 Idxs.push_back(GEPI->getOperand(i)); 581 NewPtr = GetElementPtrInst::Create( 582 NewTy, NewPtr, Idxs, GEPI->getName() + "." + Twine(Val), GEPI); 583 } 584 } 585 GEP->replaceAllUsesWith(NewPtr); 586 587 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(GEP)) 588 GEPI->eraseFromParent(); 589 else 590 cast<ConstantExpr>(GEP)->destroyConstant(); 591 } 592 593 // Delete the old global, now that it is dead. 594 Globals.erase(GV); 595 ++NumSRA; 596 597 // Loop over the new globals array deleting any globals that are obviously 598 // dead. This can arise due to scalarization of a structure or an array that 599 // has elements that are dead. 600 unsigned FirstGlobal = 0; 601 for (unsigned i = 0, e = NewGlobals.size(); i != e; ++i) 602 if (NewGlobals[i]->use_empty()) { 603 Globals.erase(NewGlobals[i]); 604 if (FirstGlobal == i) ++FirstGlobal; 605 } 606 607 return FirstGlobal != NewGlobals.size() ? NewGlobals[FirstGlobal] : nullptr; 608 } 609 610 /// Return true if all users of the specified value will trap if the value is 611 /// dynamically null. PHIs keeps track of any phi nodes we've seen to avoid 612 /// reprocessing them. 613 static bool AllUsesOfValueWillTrapIfNull(const Value *V, 614 SmallPtrSetImpl<const PHINode*> &PHIs) { 615 for (const User *U : V->users()) { 616 if (const Instruction *I = dyn_cast<Instruction>(U)) { 617 // If null pointer is considered valid, then all uses are non-trapping. 618 // Non address-space 0 globals have already been pruned by the caller. 619 if (NullPointerIsDefined(I->getFunction())) 620 return false; 621 } 622 if (isa<LoadInst>(U)) { 623 // Will trap. 624 } else if (const StoreInst *SI = dyn_cast<StoreInst>(U)) { 625 if (SI->getOperand(0) == V) { 626 //cerr << "NONTRAPPING USE: " << *U; 627 return false; // Storing the value. 628 } 629 } else if (const CallInst *CI = dyn_cast<CallInst>(U)) { 630 if (CI->getCalledValue() != V) { 631 //cerr << "NONTRAPPING USE: " << *U; 632 return false; // Not calling the ptr 633 } 634 } else if (const InvokeInst *II = dyn_cast<InvokeInst>(U)) { 635 if (II->getCalledValue() != V) { 636 //cerr << "NONTRAPPING USE: " << *U; 637 return false; // Not calling the ptr 638 } 639 } else if (const BitCastInst *CI = dyn_cast<BitCastInst>(U)) { 640 if (!AllUsesOfValueWillTrapIfNull(CI, PHIs)) return false; 641 } else if (const GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(U)) { 642 if (!AllUsesOfValueWillTrapIfNull(GEPI, PHIs)) return false; 643 } else if (const PHINode *PN = dyn_cast<PHINode>(U)) { 644 // If we've already seen this phi node, ignore it, it has already been 645 // checked. 646 if (PHIs.insert(PN).second && !AllUsesOfValueWillTrapIfNull(PN, PHIs)) 647 return false; 648 } else if (isa<ICmpInst>(U) && 649 isa<ConstantPointerNull>(U->getOperand(1))) { 650 // Ignore icmp X, null 651 } else { 652 //cerr << "NONTRAPPING USE: " << *U; 653 return false; 654 } 655 } 656 return true; 657 } 658 659 /// Return true if all uses of any loads from GV will trap if the loaded value 660 /// is null. Note that this also permits comparisons of the loaded value 661 /// against null, as a special case. 662 static bool AllUsesOfLoadedValueWillTrapIfNull(const GlobalVariable *GV) { 663 for (const User *U : GV->users()) 664 if (const LoadInst *LI = dyn_cast<LoadInst>(U)) { 665 SmallPtrSet<const PHINode*, 8> PHIs; 666 if (!AllUsesOfValueWillTrapIfNull(LI, PHIs)) 667 return false; 668 } else if (isa<StoreInst>(U)) { 669 // Ignore stores to the global. 670 } else { 671 // We don't know or understand this user, bail out. 672 //cerr << "UNKNOWN USER OF GLOBAL!: " << *U; 673 return false; 674 } 675 return true; 676 } 677 678 static bool OptimizeAwayTrappingUsesOfValue(Value *V, Constant *NewV) { 679 bool Changed = false; 680 for (auto UI = V->user_begin(), E = V->user_end(); UI != E; ) { 681 Instruction *I = cast<Instruction>(*UI++); 682 // Uses are non-trapping if null pointer is considered valid. 683 // Non address-space 0 globals are already pruned by the caller. 684 if (NullPointerIsDefined(I->getFunction())) 685 return false; 686 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 687 LI->setOperand(0, NewV); 688 Changed = true; 689 } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) { 690 if (SI->getOperand(1) == V) { 691 SI->setOperand(1, NewV); 692 Changed = true; 693 } 694 } else if (isa<CallInst>(I) || isa<InvokeInst>(I)) { 695 CallSite CS(I); 696 if (CS.getCalledValue() == V) { 697 // Calling through the pointer! Turn into a direct call, but be careful 698 // that the pointer is not also being passed as an argument. 699 CS.setCalledFunction(NewV); 700 Changed = true; 701 bool PassedAsArg = false; 702 for (unsigned i = 0, e = CS.arg_size(); i != e; ++i) 703 if (CS.getArgument(i) == V) { 704 PassedAsArg = true; 705 CS.setArgument(i, NewV); 706 } 707 708 if (PassedAsArg) { 709 // Being passed as an argument also. Be careful to not invalidate UI! 710 UI = V->user_begin(); 711 } 712 } 713 } else if (CastInst *CI = dyn_cast<CastInst>(I)) { 714 Changed |= OptimizeAwayTrappingUsesOfValue(CI, 715 ConstantExpr::getCast(CI->getOpcode(), 716 NewV, CI->getType())); 717 if (CI->use_empty()) { 718 Changed = true; 719 CI->eraseFromParent(); 720 } 721 } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) { 722 // Should handle GEP here. 723 SmallVector<Constant*, 8> Idxs; 724 Idxs.reserve(GEPI->getNumOperands()-1); 725 for (User::op_iterator i = GEPI->op_begin() + 1, e = GEPI->op_end(); 726 i != e; ++i) 727 if (Constant *C = dyn_cast<Constant>(*i)) 728 Idxs.push_back(C); 729 else 730 break; 731 if (Idxs.size() == GEPI->getNumOperands()-1) 732 Changed |= OptimizeAwayTrappingUsesOfValue( 733 GEPI, ConstantExpr::getGetElementPtr(nullptr, NewV, Idxs)); 734 if (GEPI->use_empty()) { 735 Changed = true; 736 GEPI->eraseFromParent(); 737 } 738 } 739 } 740 741 return Changed; 742 } 743 744 /// The specified global has only one non-null value stored into it. If there 745 /// are uses of the loaded value that would trap if the loaded value is 746 /// dynamically null, then we know that they cannot be reachable with a null 747 /// optimize away the load. 748 static bool OptimizeAwayTrappingUsesOfLoads(GlobalVariable *GV, Constant *LV, 749 const DataLayout &DL, 750 TargetLibraryInfo *TLI) { 751 bool Changed = false; 752 753 // Keep track of whether we are able to remove all the uses of the global 754 // other than the store that defines it. 755 bool AllNonStoreUsesGone = true; 756 757 // Replace all uses of loads with uses of uses of the stored value. 758 for (Value::user_iterator GUI = GV->user_begin(), E = GV->user_end(); GUI != E;){ 759 User *GlobalUser = *GUI++; 760 if (LoadInst *LI = dyn_cast<LoadInst>(GlobalUser)) { 761 Changed |= OptimizeAwayTrappingUsesOfValue(LI, LV); 762 // If we were able to delete all uses of the loads 763 if (LI->use_empty()) { 764 LI->eraseFromParent(); 765 Changed = true; 766 } else { 767 AllNonStoreUsesGone = false; 768 } 769 } else if (isa<StoreInst>(GlobalUser)) { 770 // Ignore the store that stores "LV" to the global. 771 assert(GlobalUser->getOperand(1) == GV && 772 "Must be storing *to* the global"); 773 } else { 774 AllNonStoreUsesGone = false; 775 776 // If we get here we could have other crazy uses that are transitively 777 // loaded. 778 assert((isa<PHINode>(GlobalUser) || isa<SelectInst>(GlobalUser) || 779 isa<ConstantExpr>(GlobalUser) || isa<CmpInst>(GlobalUser) || 780 isa<BitCastInst>(GlobalUser) || 781 isa<GetElementPtrInst>(GlobalUser)) && 782 "Only expect load and stores!"); 783 } 784 } 785 786 if (Changed) { 787 LLVM_DEBUG(dbgs() << "OPTIMIZED LOADS FROM STORED ONCE POINTER: " << *GV 788 << "\n"); 789 ++NumGlobUses; 790 } 791 792 // If we nuked all of the loads, then none of the stores are needed either, 793 // nor is the global. 794 if (AllNonStoreUsesGone) { 795 if (isLeakCheckerRoot(GV)) { 796 Changed |= CleanupPointerRootUsers(GV, TLI); 797 } else { 798 Changed = true; 799 CleanupConstantGlobalUsers(GV, nullptr, DL, TLI); 800 } 801 if (GV->use_empty()) { 802 LLVM_DEBUG(dbgs() << " *** GLOBAL NOW DEAD!\n"); 803 Changed = true; 804 GV->eraseFromParent(); 805 ++NumDeleted; 806 } 807 } 808 return Changed; 809 } 810 811 /// Walk the use list of V, constant folding all of the instructions that are 812 /// foldable. 813 static void ConstantPropUsersOf(Value *V, const DataLayout &DL, 814 TargetLibraryInfo *TLI) { 815 for (Value::user_iterator UI = V->user_begin(), E = V->user_end(); UI != E; ) 816 if (Instruction *I = dyn_cast<Instruction>(*UI++)) 817 if (Constant *NewC = ConstantFoldInstruction(I, DL, TLI)) { 818 I->replaceAllUsesWith(NewC); 819 820 // Advance UI to the next non-I use to avoid invalidating it! 821 // Instructions could multiply use V. 822 while (UI != E && *UI == I) 823 ++UI; 824 if (isInstructionTriviallyDead(I, TLI)) 825 I->eraseFromParent(); 826 } 827 } 828 829 /// This function takes the specified global variable, and transforms the 830 /// program as if it always contained the result of the specified malloc. 831 /// Because it is always the result of the specified malloc, there is no reason 832 /// to actually DO the malloc. Instead, turn the malloc into a global, and any 833 /// loads of GV as uses of the new global. 834 static GlobalVariable * 835 OptimizeGlobalAddressOfMalloc(GlobalVariable *GV, CallInst *CI, Type *AllocTy, 836 ConstantInt *NElements, const DataLayout &DL, 837 TargetLibraryInfo *TLI) { 838 LLVM_DEBUG(errs() << "PROMOTING GLOBAL: " << *GV << " CALL = " << *CI 839 << '\n'); 840 841 Type *GlobalType; 842 if (NElements->getZExtValue() == 1) 843 GlobalType = AllocTy; 844 else 845 // If we have an array allocation, the global variable is of an array. 846 GlobalType = ArrayType::get(AllocTy, NElements->getZExtValue()); 847 848 // Create the new global variable. The contents of the malloc'd memory is 849 // undefined, so initialize with an undef value. 850 GlobalVariable *NewGV = new GlobalVariable( 851 *GV->getParent(), GlobalType, false, GlobalValue::InternalLinkage, 852 UndefValue::get(GlobalType), GV->getName() + ".body", nullptr, 853 GV->getThreadLocalMode()); 854 855 // If there are bitcast users of the malloc (which is typical, usually we have 856 // a malloc + bitcast) then replace them with uses of the new global. Update 857 // other users to use the global as well. 858 BitCastInst *TheBC = nullptr; 859 while (!CI->use_empty()) { 860 Instruction *User = cast<Instruction>(CI->user_back()); 861 if (BitCastInst *BCI = dyn_cast<BitCastInst>(User)) { 862 if (BCI->getType() == NewGV->getType()) { 863 BCI->replaceAllUsesWith(NewGV); 864 BCI->eraseFromParent(); 865 } else { 866 BCI->setOperand(0, NewGV); 867 } 868 } else { 869 if (!TheBC) 870 TheBC = new BitCastInst(NewGV, CI->getType(), "newgv", CI); 871 User->replaceUsesOfWith(CI, TheBC); 872 } 873 } 874 875 Constant *RepValue = NewGV; 876 if (NewGV->getType() != GV->getValueType()) 877 RepValue = ConstantExpr::getBitCast(RepValue, GV->getValueType()); 878 879 // If there is a comparison against null, we will insert a global bool to 880 // keep track of whether the global was initialized yet or not. 881 GlobalVariable *InitBool = 882 new GlobalVariable(Type::getInt1Ty(GV->getContext()), false, 883 GlobalValue::InternalLinkage, 884 ConstantInt::getFalse(GV->getContext()), 885 GV->getName()+".init", GV->getThreadLocalMode()); 886 bool InitBoolUsed = false; 887 888 // Loop over all uses of GV, processing them in turn. 889 while (!GV->use_empty()) { 890 if (StoreInst *SI = dyn_cast<StoreInst>(GV->user_back())) { 891 // The global is initialized when the store to it occurs. 892 new StoreInst(ConstantInt::getTrue(GV->getContext()), InitBool, false, 0, 893 SI->getOrdering(), SI->getSyncScopeID(), SI); 894 SI->eraseFromParent(); 895 continue; 896 } 897 898 LoadInst *LI = cast<LoadInst>(GV->user_back()); 899 while (!LI->use_empty()) { 900 Use &LoadUse = *LI->use_begin(); 901 ICmpInst *ICI = dyn_cast<ICmpInst>(LoadUse.getUser()); 902 if (!ICI) { 903 LoadUse = RepValue; 904 continue; 905 } 906 907 // Replace the cmp X, 0 with a use of the bool value. 908 // Sink the load to where the compare was, if atomic rules allow us to. 909 Value *LV = new LoadInst(InitBool, InitBool->getName()+".val", false, 0, 910 LI->getOrdering(), LI->getSyncScopeID(), 911 LI->isUnordered() ? (Instruction*)ICI : LI); 912 InitBoolUsed = true; 913 switch (ICI->getPredicate()) { 914 default: llvm_unreachable("Unknown ICmp Predicate!"); 915 case ICmpInst::ICMP_ULT: 916 case ICmpInst::ICMP_SLT: // X < null -> always false 917 LV = ConstantInt::getFalse(GV->getContext()); 918 break; 919 case ICmpInst::ICMP_ULE: 920 case ICmpInst::ICMP_SLE: 921 case ICmpInst::ICMP_EQ: 922 LV = BinaryOperator::CreateNot(LV, "notinit", ICI); 923 break; 924 case ICmpInst::ICMP_NE: 925 case ICmpInst::ICMP_UGE: 926 case ICmpInst::ICMP_SGE: 927 case ICmpInst::ICMP_UGT: 928 case ICmpInst::ICMP_SGT: 929 break; // no change. 930 } 931 ICI->replaceAllUsesWith(LV); 932 ICI->eraseFromParent(); 933 } 934 LI->eraseFromParent(); 935 } 936 937 // If the initialization boolean was used, insert it, otherwise delete it. 938 if (!InitBoolUsed) { 939 while (!InitBool->use_empty()) // Delete initializations 940 cast<StoreInst>(InitBool->user_back())->eraseFromParent(); 941 delete InitBool; 942 } else 943 GV->getParent()->getGlobalList().insert(GV->getIterator(), InitBool); 944 945 // Now the GV is dead, nuke it and the malloc.. 946 GV->eraseFromParent(); 947 CI->eraseFromParent(); 948 949 // To further other optimizations, loop over all users of NewGV and try to 950 // constant prop them. This will promote GEP instructions with constant 951 // indices into GEP constant-exprs, which will allow global-opt to hack on it. 952 ConstantPropUsersOf(NewGV, DL, TLI); 953 if (RepValue != NewGV) 954 ConstantPropUsersOf(RepValue, DL, TLI); 955 956 return NewGV; 957 } 958 959 /// Scan the use-list of V checking to make sure that there are no complex uses 960 /// of V. We permit simple things like dereferencing the pointer, but not 961 /// storing through the address, unless it is to the specified global. 962 static bool ValueIsOnlyUsedLocallyOrStoredToOneGlobal(const Instruction *V, 963 const GlobalVariable *GV, 964 SmallPtrSetImpl<const PHINode*> &PHIs) { 965 for (const User *U : V->users()) { 966 const Instruction *Inst = cast<Instruction>(U); 967 968 if (isa<LoadInst>(Inst) || isa<CmpInst>(Inst)) { 969 continue; // Fine, ignore. 970 } 971 972 if (const StoreInst *SI = dyn_cast<StoreInst>(Inst)) { 973 if (SI->getOperand(0) == V && SI->getOperand(1) != GV) 974 return false; // Storing the pointer itself... bad. 975 continue; // Otherwise, storing through it, or storing into GV... fine. 976 } 977 978 // Must index into the array and into the struct. 979 if (isa<GetElementPtrInst>(Inst) && Inst->getNumOperands() >= 3) { 980 if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(Inst, GV, PHIs)) 981 return false; 982 continue; 983 } 984 985 if (const PHINode *PN = dyn_cast<PHINode>(Inst)) { 986 // PHIs are ok if all uses are ok. Don't infinitely recurse through PHI 987 // cycles. 988 if (PHIs.insert(PN).second) 989 if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(PN, GV, PHIs)) 990 return false; 991 continue; 992 } 993 994 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Inst)) { 995 if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(BCI, GV, PHIs)) 996 return false; 997 continue; 998 } 999 1000 return false; 1001 } 1002 return true; 1003 } 1004 1005 /// The Alloc pointer is stored into GV somewhere. Transform all uses of the 1006 /// allocation into loads from the global and uses of the resultant pointer. 1007 /// Further, delete the store into GV. This assumes that these value pass the 1008 /// 'ValueIsOnlyUsedLocallyOrStoredToOneGlobal' predicate. 1009 static void ReplaceUsesOfMallocWithGlobal(Instruction *Alloc, 1010 GlobalVariable *GV) { 1011 while (!Alloc->use_empty()) { 1012 Instruction *U = cast<Instruction>(*Alloc->user_begin()); 1013 Instruction *InsertPt = U; 1014 if (StoreInst *SI = dyn_cast<StoreInst>(U)) { 1015 // If this is the store of the allocation into the global, remove it. 1016 if (SI->getOperand(1) == GV) { 1017 SI->eraseFromParent(); 1018 continue; 1019 } 1020 } else if (PHINode *PN = dyn_cast<PHINode>(U)) { 1021 // Insert the load in the corresponding predecessor, not right before the 1022 // PHI. 1023 InsertPt = PN->getIncomingBlock(*Alloc->use_begin())->getTerminator(); 1024 } else if (isa<BitCastInst>(U)) { 1025 // Must be bitcast between the malloc and store to initialize the global. 1026 ReplaceUsesOfMallocWithGlobal(U, GV); 1027 U->eraseFromParent(); 1028 continue; 1029 } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(U)) { 1030 // If this is a "GEP bitcast" and the user is a store to the global, then 1031 // just process it as a bitcast. 1032 if (GEPI->hasAllZeroIndices() && GEPI->hasOneUse()) 1033 if (StoreInst *SI = dyn_cast<StoreInst>(GEPI->user_back())) 1034 if (SI->getOperand(1) == GV) { 1035 // Must be bitcast GEP between the malloc and store to initialize 1036 // the global. 1037 ReplaceUsesOfMallocWithGlobal(GEPI, GV); 1038 GEPI->eraseFromParent(); 1039 continue; 1040 } 1041 } 1042 1043 // Insert a load from the global, and use it instead of the malloc. 1044 Value *NL = new LoadInst(GV, GV->getName()+".val", InsertPt); 1045 U->replaceUsesOfWith(Alloc, NL); 1046 } 1047 } 1048 1049 /// Verify that all uses of V (a load, or a phi of a load) are simple enough to 1050 /// perform heap SRA on. This permits GEP's that index through the array and 1051 /// struct field, icmps of null, and PHIs. 1052 static bool LoadUsesSimpleEnoughForHeapSRA(const Value *V, 1053 SmallPtrSetImpl<const PHINode*> &LoadUsingPHIs, 1054 SmallPtrSetImpl<const PHINode*> &LoadUsingPHIsPerLoad) { 1055 // We permit two users of the load: setcc comparing against the null 1056 // pointer, and a getelementptr of a specific form. 1057 for (const User *U : V->users()) { 1058 const Instruction *UI = cast<Instruction>(U); 1059 1060 // Comparison against null is ok. 1061 if (const ICmpInst *ICI = dyn_cast<ICmpInst>(UI)) { 1062 if (!isa<ConstantPointerNull>(ICI->getOperand(1))) 1063 return false; 1064 continue; 1065 } 1066 1067 // getelementptr is also ok, but only a simple form. 1068 if (const GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(UI)) { 1069 // Must index into the array and into the struct. 1070 if (GEPI->getNumOperands() < 3) 1071 return false; 1072 1073 // Otherwise the GEP is ok. 1074 continue; 1075 } 1076 1077 if (const PHINode *PN = dyn_cast<PHINode>(UI)) { 1078 if (!LoadUsingPHIsPerLoad.insert(PN).second) 1079 // This means some phi nodes are dependent on each other. 1080 // Avoid infinite looping! 1081 return false; 1082 if (!LoadUsingPHIs.insert(PN).second) 1083 // If we have already analyzed this PHI, then it is safe. 1084 continue; 1085 1086 // Make sure all uses of the PHI are simple enough to transform. 1087 if (!LoadUsesSimpleEnoughForHeapSRA(PN, 1088 LoadUsingPHIs, LoadUsingPHIsPerLoad)) 1089 return false; 1090 1091 continue; 1092 } 1093 1094 // Otherwise we don't know what this is, not ok. 1095 return false; 1096 } 1097 1098 return true; 1099 } 1100 1101 /// If all users of values loaded from GV are simple enough to perform HeapSRA, 1102 /// return true. 1103 static bool AllGlobalLoadUsesSimpleEnoughForHeapSRA(const GlobalVariable *GV, 1104 Instruction *StoredVal) { 1105 SmallPtrSet<const PHINode*, 32> LoadUsingPHIs; 1106 SmallPtrSet<const PHINode*, 32> LoadUsingPHIsPerLoad; 1107 for (const User *U : GV->users()) 1108 if (const LoadInst *LI = dyn_cast<LoadInst>(U)) { 1109 if (!LoadUsesSimpleEnoughForHeapSRA(LI, LoadUsingPHIs, 1110 LoadUsingPHIsPerLoad)) 1111 return false; 1112 LoadUsingPHIsPerLoad.clear(); 1113 } 1114 1115 // If we reach here, we know that all uses of the loads and transitive uses 1116 // (through PHI nodes) are simple enough to transform. However, we don't know 1117 // that all inputs the to the PHI nodes are in the same equivalence sets. 1118 // Check to verify that all operands of the PHIs are either PHIS that can be 1119 // transformed, loads from GV, or MI itself. 1120 for (const PHINode *PN : LoadUsingPHIs) { 1121 for (unsigned op = 0, e = PN->getNumIncomingValues(); op != e; ++op) { 1122 Value *InVal = PN->getIncomingValue(op); 1123 1124 // PHI of the stored value itself is ok. 1125 if (InVal == StoredVal) continue; 1126 1127 if (const PHINode *InPN = dyn_cast<PHINode>(InVal)) { 1128 // One of the PHIs in our set is (optimistically) ok. 1129 if (LoadUsingPHIs.count(InPN)) 1130 continue; 1131 return false; 1132 } 1133 1134 // Load from GV is ok. 1135 if (const LoadInst *LI = dyn_cast<LoadInst>(InVal)) 1136 if (LI->getOperand(0) == GV) 1137 continue; 1138 1139 // UNDEF? NULL? 1140 1141 // Anything else is rejected. 1142 return false; 1143 } 1144 } 1145 1146 return true; 1147 } 1148 1149 static Value *GetHeapSROAValue(Value *V, unsigned FieldNo, 1150 DenseMap<Value *, std::vector<Value *>> &InsertedScalarizedValues, 1151 std::vector<std::pair<PHINode *, unsigned>> &PHIsToRewrite) { 1152 std::vector<Value *> &FieldVals = InsertedScalarizedValues[V]; 1153 1154 if (FieldNo >= FieldVals.size()) 1155 FieldVals.resize(FieldNo+1); 1156 1157 // If we already have this value, just reuse the previously scalarized 1158 // version. 1159 if (Value *FieldVal = FieldVals[FieldNo]) 1160 return FieldVal; 1161 1162 // Depending on what instruction this is, we have several cases. 1163 Value *Result; 1164 if (LoadInst *LI = dyn_cast<LoadInst>(V)) { 1165 // This is a scalarized version of the load from the global. Just create 1166 // a new Load of the scalarized global. 1167 Result = new LoadInst(GetHeapSROAValue(LI->getOperand(0), FieldNo, 1168 InsertedScalarizedValues, 1169 PHIsToRewrite), 1170 LI->getName()+".f"+Twine(FieldNo), LI); 1171 } else { 1172 PHINode *PN = cast<PHINode>(V); 1173 // PN's type is pointer to struct. Make a new PHI of pointer to struct 1174 // field. 1175 1176 PointerType *PTy = cast<PointerType>(PN->getType()); 1177 StructType *ST = cast<StructType>(PTy->getElementType()); 1178 1179 unsigned AS = PTy->getAddressSpace(); 1180 PHINode *NewPN = 1181 PHINode::Create(PointerType::get(ST->getElementType(FieldNo), AS), 1182 PN->getNumIncomingValues(), 1183 PN->getName()+".f"+Twine(FieldNo), PN); 1184 Result = NewPN; 1185 PHIsToRewrite.push_back(std::make_pair(PN, FieldNo)); 1186 } 1187 1188 return FieldVals[FieldNo] = Result; 1189 } 1190 1191 /// Given a load instruction and a value derived from the load, rewrite the 1192 /// derived value to use the HeapSRoA'd load. 1193 static void RewriteHeapSROALoadUser(Instruction *LoadUser, 1194 DenseMap<Value *, std::vector<Value *>> &InsertedScalarizedValues, 1195 std::vector<std::pair<PHINode *, unsigned>> &PHIsToRewrite) { 1196 // If this is a comparison against null, handle it. 1197 if (ICmpInst *SCI = dyn_cast<ICmpInst>(LoadUser)) { 1198 assert(isa<ConstantPointerNull>(SCI->getOperand(1))); 1199 // If we have a setcc of the loaded pointer, we can use a setcc of any 1200 // field. 1201 Value *NPtr = GetHeapSROAValue(SCI->getOperand(0), 0, 1202 InsertedScalarizedValues, PHIsToRewrite); 1203 1204 Value *New = new ICmpInst(SCI, SCI->getPredicate(), NPtr, 1205 Constant::getNullValue(NPtr->getType()), 1206 SCI->getName()); 1207 SCI->replaceAllUsesWith(New); 1208 SCI->eraseFromParent(); 1209 return; 1210 } 1211 1212 // Handle 'getelementptr Ptr, Idx, i32 FieldNo ...' 1213 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(LoadUser)) { 1214 assert(GEPI->getNumOperands() >= 3 && isa<ConstantInt>(GEPI->getOperand(2)) 1215 && "Unexpected GEPI!"); 1216 1217 // Load the pointer for this field. 1218 unsigned FieldNo = cast<ConstantInt>(GEPI->getOperand(2))->getZExtValue(); 1219 Value *NewPtr = GetHeapSROAValue(GEPI->getOperand(0), FieldNo, 1220 InsertedScalarizedValues, PHIsToRewrite); 1221 1222 // Create the new GEP idx vector. 1223 SmallVector<Value*, 8> GEPIdx; 1224 GEPIdx.push_back(GEPI->getOperand(1)); 1225 GEPIdx.append(GEPI->op_begin()+3, GEPI->op_end()); 1226 1227 Value *NGEPI = GetElementPtrInst::Create(GEPI->getResultElementType(), NewPtr, GEPIdx, 1228 GEPI->getName(), GEPI); 1229 GEPI->replaceAllUsesWith(NGEPI); 1230 GEPI->eraseFromParent(); 1231 return; 1232 } 1233 1234 // Recursively transform the users of PHI nodes. This will lazily create the 1235 // PHIs that are needed for individual elements. Keep track of what PHIs we 1236 // see in InsertedScalarizedValues so that we don't get infinite loops (very 1237 // antisocial). If the PHI is already in InsertedScalarizedValues, it has 1238 // already been seen first by another load, so its uses have already been 1239 // processed. 1240 PHINode *PN = cast<PHINode>(LoadUser); 1241 if (!InsertedScalarizedValues.insert(std::make_pair(PN, 1242 std::vector<Value *>())).second) 1243 return; 1244 1245 // If this is the first time we've seen this PHI, recursively process all 1246 // users. 1247 for (auto UI = PN->user_begin(), E = PN->user_end(); UI != E;) { 1248 Instruction *User = cast<Instruction>(*UI++); 1249 RewriteHeapSROALoadUser(User, InsertedScalarizedValues, PHIsToRewrite); 1250 } 1251 } 1252 1253 /// We are performing Heap SRoA on a global. Ptr is a value loaded from the 1254 /// global. Eliminate all uses of Ptr, making them use FieldGlobals instead. 1255 /// All uses of loaded values satisfy AllGlobalLoadUsesSimpleEnoughForHeapSRA. 1256 static void RewriteUsesOfLoadForHeapSRoA(LoadInst *Load, 1257 DenseMap<Value *, std::vector<Value *>> &InsertedScalarizedValues, 1258 std::vector<std::pair<PHINode *, unsigned> > &PHIsToRewrite) { 1259 for (auto UI = Load->user_begin(), E = Load->user_end(); UI != E;) { 1260 Instruction *User = cast<Instruction>(*UI++); 1261 RewriteHeapSROALoadUser(User, InsertedScalarizedValues, PHIsToRewrite); 1262 } 1263 1264 if (Load->use_empty()) { 1265 Load->eraseFromParent(); 1266 InsertedScalarizedValues.erase(Load); 1267 } 1268 } 1269 1270 /// CI is an allocation of an array of structures. Break it up into multiple 1271 /// allocations of arrays of the fields. 1272 static GlobalVariable *PerformHeapAllocSRoA(GlobalVariable *GV, CallInst *CI, 1273 Value *NElems, const DataLayout &DL, 1274 const TargetLibraryInfo *TLI) { 1275 LLVM_DEBUG(dbgs() << "SROA HEAP ALLOC: " << *GV << " MALLOC = " << *CI 1276 << '\n'); 1277 Type *MAT = getMallocAllocatedType(CI, TLI); 1278 StructType *STy = cast<StructType>(MAT); 1279 1280 // There is guaranteed to be at least one use of the malloc (storing 1281 // it into GV). If there are other uses, change them to be uses of 1282 // the global to simplify later code. This also deletes the store 1283 // into GV. 1284 ReplaceUsesOfMallocWithGlobal(CI, GV); 1285 1286 // Okay, at this point, there are no users of the malloc. Insert N 1287 // new mallocs at the same place as CI, and N globals. 1288 std::vector<Value *> FieldGlobals; 1289 std::vector<Value *> FieldMallocs; 1290 1291 SmallVector<OperandBundleDef, 1> OpBundles; 1292 CI->getOperandBundlesAsDefs(OpBundles); 1293 1294 unsigned AS = GV->getType()->getPointerAddressSpace(); 1295 for (unsigned FieldNo = 0, e = STy->getNumElements(); FieldNo != e;++FieldNo){ 1296 Type *FieldTy = STy->getElementType(FieldNo); 1297 PointerType *PFieldTy = PointerType::get(FieldTy, AS); 1298 1299 GlobalVariable *NGV = new GlobalVariable( 1300 *GV->getParent(), PFieldTy, false, GlobalValue::InternalLinkage, 1301 Constant::getNullValue(PFieldTy), GV->getName() + ".f" + Twine(FieldNo), 1302 nullptr, GV->getThreadLocalMode()); 1303 NGV->copyAttributesFrom(GV); 1304 FieldGlobals.push_back(NGV); 1305 1306 unsigned TypeSize = DL.getTypeAllocSize(FieldTy); 1307 if (StructType *ST = dyn_cast<StructType>(FieldTy)) 1308 TypeSize = DL.getStructLayout(ST)->getSizeInBytes(); 1309 Type *IntPtrTy = DL.getIntPtrType(CI->getType()); 1310 Value *NMI = CallInst::CreateMalloc(CI, IntPtrTy, FieldTy, 1311 ConstantInt::get(IntPtrTy, TypeSize), 1312 NElems, OpBundles, nullptr, 1313 CI->getName() + ".f" + Twine(FieldNo)); 1314 FieldMallocs.push_back(NMI); 1315 new StoreInst(NMI, NGV, CI); 1316 } 1317 1318 // The tricky aspect of this transformation is handling the case when malloc 1319 // fails. In the original code, malloc failing would set the result pointer 1320 // of malloc to null. In this case, some mallocs could succeed and others 1321 // could fail. As such, we emit code that looks like this: 1322 // F0 = malloc(field0) 1323 // F1 = malloc(field1) 1324 // F2 = malloc(field2) 1325 // if (F0 == 0 || F1 == 0 || F2 == 0) { 1326 // if (F0) { free(F0); F0 = 0; } 1327 // if (F1) { free(F1); F1 = 0; } 1328 // if (F2) { free(F2); F2 = 0; } 1329 // } 1330 // The malloc can also fail if its argument is too large. 1331 Constant *ConstantZero = ConstantInt::get(CI->getArgOperand(0)->getType(), 0); 1332 Value *RunningOr = new ICmpInst(CI, ICmpInst::ICMP_SLT, CI->getArgOperand(0), 1333 ConstantZero, "isneg"); 1334 for (unsigned i = 0, e = FieldMallocs.size(); i != e; ++i) { 1335 Value *Cond = new ICmpInst(CI, ICmpInst::ICMP_EQ, FieldMallocs[i], 1336 Constant::getNullValue(FieldMallocs[i]->getType()), 1337 "isnull"); 1338 RunningOr = BinaryOperator::CreateOr(RunningOr, Cond, "tmp", CI); 1339 } 1340 1341 // Split the basic block at the old malloc. 1342 BasicBlock *OrigBB = CI->getParent(); 1343 BasicBlock *ContBB = 1344 OrigBB->splitBasicBlock(CI->getIterator(), "malloc_cont"); 1345 1346 // Create the block to check the first condition. Put all these blocks at the 1347 // end of the function as they are unlikely to be executed. 1348 BasicBlock *NullPtrBlock = BasicBlock::Create(OrigBB->getContext(), 1349 "malloc_ret_null", 1350 OrigBB->getParent()); 1351 1352 // Remove the uncond branch from OrigBB to ContBB, turning it into a cond 1353 // branch on RunningOr. 1354 OrigBB->getTerminator()->eraseFromParent(); 1355 BranchInst::Create(NullPtrBlock, ContBB, RunningOr, OrigBB); 1356 1357 // Within the NullPtrBlock, we need to emit a comparison and branch for each 1358 // pointer, because some may be null while others are not. 1359 for (unsigned i = 0, e = FieldGlobals.size(); i != e; ++i) { 1360 Value *GVVal = new LoadInst(FieldGlobals[i], "tmp", NullPtrBlock); 1361 Value *Cmp = new ICmpInst(*NullPtrBlock, ICmpInst::ICMP_NE, GVVal, 1362 Constant::getNullValue(GVVal->getType())); 1363 BasicBlock *FreeBlock = BasicBlock::Create(Cmp->getContext(), "free_it", 1364 OrigBB->getParent()); 1365 BasicBlock *NextBlock = BasicBlock::Create(Cmp->getContext(), "next", 1366 OrigBB->getParent()); 1367 Instruction *BI = BranchInst::Create(FreeBlock, NextBlock, 1368 Cmp, NullPtrBlock); 1369 1370 // Fill in FreeBlock. 1371 CallInst::CreateFree(GVVal, OpBundles, BI); 1372 new StoreInst(Constant::getNullValue(GVVal->getType()), FieldGlobals[i], 1373 FreeBlock); 1374 BranchInst::Create(NextBlock, FreeBlock); 1375 1376 NullPtrBlock = NextBlock; 1377 } 1378 1379 BranchInst::Create(ContBB, NullPtrBlock); 1380 1381 // CI is no longer needed, remove it. 1382 CI->eraseFromParent(); 1383 1384 /// As we process loads, if we can't immediately update all uses of the load, 1385 /// keep track of what scalarized loads are inserted for a given load. 1386 DenseMap<Value *, std::vector<Value *>> InsertedScalarizedValues; 1387 InsertedScalarizedValues[GV] = FieldGlobals; 1388 1389 std::vector<std::pair<PHINode *, unsigned>> PHIsToRewrite; 1390 1391 // Okay, the malloc site is completely handled. All of the uses of GV are now 1392 // loads, and all uses of those loads are simple. Rewrite them to use loads 1393 // of the per-field globals instead. 1394 for (auto UI = GV->user_begin(), E = GV->user_end(); UI != E;) { 1395 Instruction *User = cast<Instruction>(*UI++); 1396 1397 if (LoadInst *LI = dyn_cast<LoadInst>(User)) { 1398 RewriteUsesOfLoadForHeapSRoA(LI, InsertedScalarizedValues, PHIsToRewrite); 1399 continue; 1400 } 1401 1402 // Must be a store of null. 1403 StoreInst *SI = cast<StoreInst>(User); 1404 assert(isa<ConstantPointerNull>(SI->getOperand(0)) && 1405 "Unexpected heap-sra user!"); 1406 1407 // Insert a store of null into each global. 1408 for (unsigned i = 0, e = FieldGlobals.size(); i != e; ++i) { 1409 Type *ValTy = cast<GlobalValue>(FieldGlobals[i])->getValueType(); 1410 Constant *Null = Constant::getNullValue(ValTy); 1411 new StoreInst(Null, FieldGlobals[i], SI); 1412 } 1413 // Erase the original store. 1414 SI->eraseFromParent(); 1415 } 1416 1417 // While we have PHIs that are interesting to rewrite, do it. 1418 while (!PHIsToRewrite.empty()) { 1419 PHINode *PN = PHIsToRewrite.back().first; 1420 unsigned FieldNo = PHIsToRewrite.back().second; 1421 PHIsToRewrite.pop_back(); 1422 PHINode *FieldPN = cast<PHINode>(InsertedScalarizedValues[PN][FieldNo]); 1423 assert(FieldPN->getNumIncomingValues() == 0 &&"Already processed this phi"); 1424 1425 // Add all the incoming values. This can materialize more phis. 1426 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 1427 Value *InVal = PN->getIncomingValue(i); 1428 InVal = GetHeapSROAValue(InVal, FieldNo, InsertedScalarizedValues, 1429 PHIsToRewrite); 1430 FieldPN->addIncoming(InVal, PN->getIncomingBlock(i)); 1431 } 1432 } 1433 1434 // Drop all inter-phi links and any loads that made it this far. 1435 for (DenseMap<Value *, std::vector<Value *>>::iterator 1436 I = InsertedScalarizedValues.begin(), E = InsertedScalarizedValues.end(); 1437 I != E; ++I) { 1438 if (PHINode *PN = dyn_cast<PHINode>(I->first)) 1439 PN->dropAllReferences(); 1440 else if (LoadInst *LI = dyn_cast<LoadInst>(I->first)) 1441 LI->dropAllReferences(); 1442 } 1443 1444 // Delete all the phis and loads now that inter-references are dead. 1445 for (DenseMap<Value *, std::vector<Value *>>::iterator 1446 I = InsertedScalarizedValues.begin(), E = InsertedScalarizedValues.end(); 1447 I != E; ++I) { 1448 if (PHINode *PN = dyn_cast<PHINode>(I->first)) 1449 PN->eraseFromParent(); 1450 else if (LoadInst *LI = dyn_cast<LoadInst>(I->first)) 1451 LI->eraseFromParent(); 1452 } 1453 1454 // The old global is now dead, remove it. 1455 GV->eraseFromParent(); 1456 1457 ++NumHeapSRA; 1458 return cast<GlobalVariable>(FieldGlobals[0]); 1459 } 1460 1461 /// This function is called when we see a pointer global variable with a single 1462 /// value stored it that is a malloc or cast of malloc. 1463 static bool tryToOptimizeStoreOfMallocToGlobal(GlobalVariable *GV, CallInst *CI, 1464 Type *AllocTy, 1465 AtomicOrdering Ordering, 1466 const DataLayout &DL, 1467 TargetLibraryInfo *TLI) { 1468 // If this is a malloc of an abstract type, don't touch it. 1469 if (!AllocTy->isSized()) 1470 return false; 1471 1472 // We can't optimize this global unless all uses of it are *known* to be 1473 // of the malloc value, not of the null initializer value (consider a use 1474 // that compares the global's value against zero to see if the malloc has 1475 // been reached). To do this, we check to see if all uses of the global 1476 // would trap if the global were null: this proves that they must all 1477 // happen after the malloc. 1478 if (!AllUsesOfLoadedValueWillTrapIfNull(GV)) 1479 return false; 1480 1481 // We can't optimize this if the malloc itself is used in a complex way, 1482 // for example, being stored into multiple globals. This allows the 1483 // malloc to be stored into the specified global, loaded icmp'd, and 1484 // GEP'd. These are all things we could transform to using the global 1485 // for. 1486 SmallPtrSet<const PHINode*, 8> PHIs; 1487 if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(CI, GV, PHIs)) 1488 return false; 1489 1490 // If we have a global that is only initialized with a fixed size malloc, 1491 // transform the program to use global memory instead of malloc'd memory. 1492 // This eliminates dynamic allocation, avoids an indirection accessing the 1493 // data, and exposes the resultant global to further GlobalOpt. 1494 // We cannot optimize the malloc if we cannot determine malloc array size. 1495 Value *NElems = getMallocArraySize(CI, DL, TLI, true); 1496 if (!NElems) 1497 return false; 1498 1499 if (ConstantInt *NElements = dyn_cast<ConstantInt>(NElems)) 1500 // Restrict this transformation to only working on small allocations 1501 // (2048 bytes currently), as we don't want to introduce a 16M global or 1502 // something. 1503 if (NElements->getZExtValue() * DL.getTypeAllocSize(AllocTy) < 2048) { 1504 OptimizeGlobalAddressOfMalloc(GV, CI, AllocTy, NElements, DL, TLI); 1505 return true; 1506 } 1507 1508 // If the allocation is an array of structures, consider transforming this 1509 // into multiple malloc'd arrays, one for each field. This is basically 1510 // SRoA for malloc'd memory. 1511 1512 if (Ordering != AtomicOrdering::NotAtomic) 1513 return false; 1514 1515 // If this is an allocation of a fixed size array of structs, analyze as a 1516 // variable size array. malloc [100 x struct],1 -> malloc struct, 100 1517 if (NElems == ConstantInt::get(CI->getArgOperand(0)->getType(), 1)) 1518 if (ArrayType *AT = dyn_cast<ArrayType>(AllocTy)) 1519 AllocTy = AT->getElementType(); 1520 1521 StructType *AllocSTy = dyn_cast<StructType>(AllocTy); 1522 if (!AllocSTy) 1523 return false; 1524 1525 // This the structure has an unreasonable number of fields, leave it 1526 // alone. 1527 if (AllocSTy->getNumElements() <= 16 && AllocSTy->getNumElements() != 0 && 1528 AllGlobalLoadUsesSimpleEnoughForHeapSRA(GV, CI)) { 1529 1530 // If this is a fixed size array, transform the Malloc to be an alloc of 1531 // structs. malloc [100 x struct],1 -> malloc struct, 100 1532 if (ArrayType *AT = dyn_cast<ArrayType>(getMallocAllocatedType(CI, TLI))) { 1533 Type *IntPtrTy = DL.getIntPtrType(CI->getType()); 1534 unsigned TypeSize = DL.getStructLayout(AllocSTy)->getSizeInBytes(); 1535 Value *AllocSize = ConstantInt::get(IntPtrTy, TypeSize); 1536 Value *NumElements = ConstantInt::get(IntPtrTy, AT->getNumElements()); 1537 SmallVector<OperandBundleDef, 1> OpBundles; 1538 CI->getOperandBundlesAsDefs(OpBundles); 1539 Instruction *Malloc = 1540 CallInst::CreateMalloc(CI, IntPtrTy, AllocSTy, AllocSize, NumElements, 1541 OpBundles, nullptr, CI->getName()); 1542 Instruction *Cast = new BitCastInst(Malloc, CI->getType(), "tmp", CI); 1543 CI->replaceAllUsesWith(Cast); 1544 CI->eraseFromParent(); 1545 if (BitCastInst *BCI = dyn_cast<BitCastInst>(Malloc)) 1546 CI = cast<CallInst>(BCI->getOperand(0)); 1547 else 1548 CI = cast<CallInst>(Malloc); 1549 } 1550 1551 PerformHeapAllocSRoA(GV, CI, getMallocArraySize(CI, DL, TLI, true), DL, 1552 TLI); 1553 return true; 1554 } 1555 1556 return false; 1557 } 1558 1559 // Try to optimize globals based on the knowledge that only one value (besides 1560 // its initializer) is ever stored to the global. 1561 static bool optimizeOnceStoredGlobal(GlobalVariable *GV, Value *StoredOnceVal, 1562 AtomicOrdering Ordering, 1563 const DataLayout &DL, 1564 TargetLibraryInfo *TLI) { 1565 // Ignore no-op GEPs and bitcasts. 1566 StoredOnceVal = StoredOnceVal->stripPointerCasts(); 1567 1568 // If we are dealing with a pointer global that is initialized to null and 1569 // only has one (non-null) value stored into it, then we can optimize any 1570 // users of the loaded value (often calls and loads) that would trap if the 1571 // value was null. 1572 if (GV->getInitializer()->getType()->isPointerTy() && 1573 GV->getInitializer()->isNullValue() && 1574 !NullPointerIsDefined( 1575 nullptr /* F */, 1576 GV->getInitializer()->getType()->getPointerAddressSpace())) { 1577 if (Constant *SOVC = dyn_cast<Constant>(StoredOnceVal)) { 1578 if (GV->getInitializer()->getType() != SOVC->getType()) 1579 SOVC = ConstantExpr::getBitCast(SOVC, GV->getInitializer()->getType()); 1580 1581 // Optimize away any trapping uses of the loaded value. 1582 if (OptimizeAwayTrappingUsesOfLoads(GV, SOVC, DL, TLI)) 1583 return true; 1584 } else if (CallInst *CI = extractMallocCall(StoredOnceVal, TLI)) { 1585 Type *MallocType = getMallocAllocatedType(CI, TLI); 1586 if (MallocType && tryToOptimizeStoreOfMallocToGlobal(GV, CI, MallocType, 1587 Ordering, DL, TLI)) 1588 return true; 1589 } 1590 } 1591 1592 return false; 1593 } 1594 1595 /// At this point, we have learned that the only two values ever stored into GV 1596 /// are its initializer and OtherVal. See if we can shrink the global into a 1597 /// boolean and select between the two values whenever it is used. This exposes 1598 /// the values to other scalar optimizations. 1599 static bool TryToShrinkGlobalToBoolean(GlobalVariable *GV, Constant *OtherVal) { 1600 Type *GVElType = GV->getValueType(); 1601 1602 // If GVElType is already i1, it is already shrunk. If the type of the GV is 1603 // an FP value, pointer or vector, don't do this optimization because a select 1604 // between them is very expensive and unlikely to lead to later 1605 // simplification. In these cases, we typically end up with "cond ? v1 : v2" 1606 // where v1 and v2 both require constant pool loads, a big loss. 1607 if (GVElType == Type::getInt1Ty(GV->getContext()) || 1608 GVElType->isFloatingPointTy() || 1609 GVElType->isPointerTy() || GVElType->isVectorTy()) 1610 return false; 1611 1612 // Walk the use list of the global seeing if all the uses are load or store. 1613 // If there is anything else, bail out. 1614 for (User *U : GV->users()) 1615 if (!isa<LoadInst>(U) && !isa<StoreInst>(U)) 1616 return false; 1617 1618 LLVM_DEBUG(dbgs() << " *** SHRINKING TO BOOL: " << *GV << "\n"); 1619 1620 // Create the new global, initializing it to false. 1621 GlobalVariable *NewGV = new GlobalVariable(Type::getInt1Ty(GV->getContext()), 1622 false, 1623 GlobalValue::InternalLinkage, 1624 ConstantInt::getFalse(GV->getContext()), 1625 GV->getName()+".b", 1626 GV->getThreadLocalMode(), 1627 GV->getType()->getAddressSpace()); 1628 NewGV->copyAttributesFrom(GV); 1629 GV->getParent()->getGlobalList().insert(GV->getIterator(), NewGV); 1630 1631 Constant *InitVal = GV->getInitializer(); 1632 assert(InitVal->getType() != Type::getInt1Ty(GV->getContext()) && 1633 "No reason to shrink to bool!"); 1634 1635 SmallVector<DIGlobalVariableExpression *, 1> GVs; 1636 GV->getDebugInfo(GVs); 1637 1638 // If initialized to zero and storing one into the global, we can use a cast 1639 // instead of a select to synthesize the desired value. 1640 bool IsOneZero = false; 1641 bool EmitOneOrZero = true; 1642 if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)){ 1643 IsOneZero = InitVal->isNullValue() && CI->isOne(); 1644 1645 if (ConstantInt *CIInit = dyn_cast<ConstantInt>(GV->getInitializer())){ 1646 uint64_t ValInit = CIInit->getZExtValue(); 1647 uint64_t ValOther = CI->getZExtValue(); 1648 uint64_t ValMinus = ValOther - ValInit; 1649 1650 for(auto *GVe : GVs){ 1651 DIGlobalVariable *DGV = GVe->getVariable(); 1652 DIExpression *E = GVe->getExpression(); 1653 1654 // It is expected that the address of global optimized variable is on 1655 // top of the stack. After optimization, value of that variable will 1656 // be ether 0 for initial value or 1 for other value. The following 1657 // expression should return constant integer value depending on the 1658 // value at global object address: 1659 // val * (ValOther - ValInit) + ValInit: 1660 // DW_OP_deref DW_OP_constu <ValMinus> 1661 // DW_OP_mul DW_OP_constu <ValInit> DW_OP_plus DW_OP_stack_value 1662 SmallVector<uint64_t, 12> Ops = { 1663 dwarf::DW_OP_deref, dwarf::DW_OP_constu, ValMinus, 1664 dwarf::DW_OP_mul, dwarf::DW_OP_constu, ValInit, 1665 dwarf::DW_OP_plus}; 1666 E = DIExpression::prependOpcodes(E, Ops, DIExpression::WithStackValue); 1667 DIGlobalVariableExpression *DGVE = 1668 DIGlobalVariableExpression::get(NewGV->getContext(), DGV, E); 1669 NewGV->addDebugInfo(DGVE); 1670 } 1671 EmitOneOrZero = false; 1672 } 1673 } 1674 1675 if (EmitOneOrZero) { 1676 // FIXME: This will only emit address for debugger on which will 1677 // be written only 0 or 1. 1678 for(auto *GV : GVs) 1679 NewGV->addDebugInfo(GV); 1680 } 1681 1682 while (!GV->use_empty()) { 1683 Instruction *UI = cast<Instruction>(GV->user_back()); 1684 if (StoreInst *SI = dyn_cast<StoreInst>(UI)) { 1685 // Change the store into a boolean store. 1686 bool StoringOther = SI->getOperand(0) == OtherVal; 1687 // Only do this if we weren't storing a loaded value. 1688 Value *StoreVal; 1689 if (StoringOther || SI->getOperand(0) == InitVal) { 1690 StoreVal = ConstantInt::get(Type::getInt1Ty(GV->getContext()), 1691 StoringOther); 1692 } else { 1693 // Otherwise, we are storing a previously loaded copy. To do this, 1694 // change the copy from copying the original value to just copying the 1695 // bool. 1696 Instruction *StoredVal = cast<Instruction>(SI->getOperand(0)); 1697 1698 // If we've already replaced the input, StoredVal will be a cast or 1699 // select instruction. If not, it will be a load of the original 1700 // global. 1701 if (LoadInst *LI = dyn_cast<LoadInst>(StoredVal)) { 1702 assert(LI->getOperand(0) == GV && "Not a copy!"); 1703 // Insert a new load, to preserve the saved value. 1704 StoreVal = new LoadInst(NewGV, LI->getName()+".b", false, 0, 1705 LI->getOrdering(), LI->getSyncScopeID(), LI); 1706 } else { 1707 assert((isa<CastInst>(StoredVal) || isa<SelectInst>(StoredVal)) && 1708 "This is not a form that we understand!"); 1709 StoreVal = StoredVal->getOperand(0); 1710 assert(isa<LoadInst>(StoreVal) && "Not a load of NewGV!"); 1711 } 1712 } 1713 StoreInst *NSI = 1714 new StoreInst(StoreVal, NewGV, false, 0, SI->getOrdering(), 1715 SI->getSyncScopeID(), SI); 1716 NSI->setDebugLoc(SI->getDebugLoc()); 1717 } else { 1718 // Change the load into a load of bool then a select. 1719 LoadInst *LI = cast<LoadInst>(UI); 1720 LoadInst *NLI = new LoadInst(NewGV, LI->getName()+".b", false, 0, 1721 LI->getOrdering(), LI->getSyncScopeID(), LI); 1722 Instruction *NSI; 1723 if (IsOneZero) 1724 NSI = new ZExtInst(NLI, LI->getType(), "", LI); 1725 else 1726 NSI = SelectInst::Create(NLI, OtherVal, InitVal, "", LI); 1727 NSI->takeName(LI); 1728 // Since LI is split into two instructions, NLI and NSI both inherit the 1729 // same DebugLoc 1730 NLI->setDebugLoc(LI->getDebugLoc()); 1731 NSI->setDebugLoc(LI->getDebugLoc()); 1732 LI->replaceAllUsesWith(NSI); 1733 } 1734 UI->eraseFromParent(); 1735 } 1736 1737 // Retain the name of the old global variable. People who are debugging their 1738 // programs may expect these variables to be named the same. 1739 NewGV->takeName(GV); 1740 GV->eraseFromParent(); 1741 return true; 1742 } 1743 1744 static bool deleteIfDead( 1745 GlobalValue &GV, SmallPtrSetImpl<const Comdat *> &NotDiscardableComdats) { 1746 GV.removeDeadConstantUsers(); 1747 1748 if (!GV.isDiscardableIfUnused() && !GV.isDeclaration()) 1749 return false; 1750 1751 if (const Comdat *C = GV.getComdat()) 1752 if (!GV.hasLocalLinkage() && NotDiscardableComdats.count(C)) 1753 return false; 1754 1755 bool Dead; 1756 if (auto *F = dyn_cast<Function>(&GV)) 1757 Dead = (F->isDeclaration() && F->use_empty()) || F->isDefTriviallyDead(); 1758 else 1759 Dead = GV.use_empty(); 1760 if (!Dead) 1761 return false; 1762 1763 LLVM_DEBUG(dbgs() << "GLOBAL DEAD: " << GV << "\n"); 1764 GV.eraseFromParent(); 1765 ++NumDeleted; 1766 return true; 1767 } 1768 1769 static bool isPointerValueDeadOnEntryToFunction( 1770 const Function *F, GlobalValue *GV, 1771 function_ref<DominatorTree &(Function &)> LookupDomTree) { 1772 // Find all uses of GV. We expect them all to be in F, and if we can't 1773 // identify any of the uses we bail out. 1774 // 1775 // On each of these uses, identify if the memory that GV points to is 1776 // used/required/live at the start of the function. If it is not, for example 1777 // if the first thing the function does is store to the GV, the GV can 1778 // possibly be demoted. 1779 // 1780 // We don't do an exhaustive search for memory operations - simply look 1781 // through bitcasts as they're quite common and benign. 1782 const DataLayout &DL = GV->getParent()->getDataLayout(); 1783 SmallVector<LoadInst *, 4> Loads; 1784 SmallVector<StoreInst *, 4> Stores; 1785 for (auto *U : GV->users()) { 1786 if (Operator::getOpcode(U) == Instruction::BitCast) { 1787 for (auto *UU : U->users()) { 1788 if (auto *LI = dyn_cast<LoadInst>(UU)) 1789 Loads.push_back(LI); 1790 else if (auto *SI = dyn_cast<StoreInst>(UU)) 1791 Stores.push_back(SI); 1792 else 1793 return false; 1794 } 1795 continue; 1796 } 1797 1798 Instruction *I = dyn_cast<Instruction>(U); 1799 if (!I) 1800 return false; 1801 assert(I->getParent()->getParent() == F); 1802 1803 if (auto *LI = dyn_cast<LoadInst>(I)) 1804 Loads.push_back(LI); 1805 else if (auto *SI = dyn_cast<StoreInst>(I)) 1806 Stores.push_back(SI); 1807 else 1808 return false; 1809 } 1810 1811 // We have identified all uses of GV into loads and stores. Now check if all 1812 // of them are known not to depend on the value of the global at the function 1813 // entry point. We do this by ensuring that every load is dominated by at 1814 // least one store. 1815 auto &DT = LookupDomTree(*const_cast<Function *>(F)); 1816 1817 // The below check is quadratic. Check we're not going to do too many tests. 1818 // FIXME: Even though this will always have worst-case quadratic time, we 1819 // could put effort into minimizing the average time by putting stores that 1820 // have been shown to dominate at least one load at the beginning of the 1821 // Stores array, making subsequent dominance checks more likely to succeed 1822 // early. 1823 // 1824 // The threshold here is fairly large because global->local demotion is a 1825 // very powerful optimization should it fire. 1826 const unsigned Threshold = 100; 1827 if (Loads.size() * Stores.size() > Threshold) 1828 return false; 1829 1830 for (auto *L : Loads) { 1831 auto *LTy = L->getType(); 1832 if (none_of(Stores, [&](const StoreInst *S) { 1833 auto *STy = S->getValueOperand()->getType(); 1834 // The load is only dominated by the store if DomTree says so 1835 // and the number of bits loaded in L is less than or equal to 1836 // the number of bits stored in S. 1837 return DT.dominates(S, L) && 1838 DL.getTypeStoreSize(LTy) <= DL.getTypeStoreSize(STy); 1839 })) 1840 return false; 1841 } 1842 // All loads have known dependences inside F, so the global can be localized. 1843 return true; 1844 } 1845 1846 /// C may have non-instruction users. Can all of those users be turned into 1847 /// instructions? 1848 static bool allNonInstructionUsersCanBeMadeInstructions(Constant *C) { 1849 // We don't do this exhaustively. The most common pattern that we really need 1850 // to care about is a constant GEP or constant bitcast - so just looking 1851 // through one single ConstantExpr. 1852 // 1853 // The set of constants that this function returns true for must be able to be 1854 // handled by makeAllConstantUsesInstructions. 1855 for (auto *U : C->users()) { 1856 if (isa<Instruction>(U)) 1857 continue; 1858 if (!isa<ConstantExpr>(U)) 1859 // Non instruction, non-constantexpr user; cannot convert this. 1860 return false; 1861 for (auto *UU : U->users()) 1862 if (!isa<Instruction>(UU)) 1863 // A constantexpr used by another constant. We don't try and recurse any 1864 // further but just bail out at this point. 1865 return false; 1866 } 1867 1868 return true; 1869 } 1870 1871 /// C may have non-instruction users, and 1872 /// allNonInstructionUsersCanBeMadeInstructions has returned true. Convert the 1873 /// non-instruction users to instructions. 1874 static void makeAllConstantUsesInstructions(Constant *C) { 1875 SmallVector<ConstantExpr*,4> Users; 1876 for (auto *U : C->users()) { 1877 if (isa<ConstantExpr>(U)) 1878 Users.push_back(cast<ConstantExpr>(U)); 1879 else 1880 // We should never get here; allNonInstructionUsersCanBeMadeInstructions 1881 // should not have returned true for C. 1882 assert( 1883 isa<Instruction>(U) && 1884 "Can't transform non-constantexpr non-instruction to instruction!"); 1885 } 1886 1887 SmallVector<Value*,4> UUsers; 1888 for (auto *U : Users) { 1889 UUsers.clear(); 1890 for (auto *UU : U->users()) 1891 UUsers.push_back(UU); 1892 for (auto *UU : UUsers) { 1893 Instruction *UI = cast<Instruction>(UU); 1894 Instruction *NewU = U->getAsInstruction(); 1895 NewU->insertBefore(UI); 1896 UI->replaceUsesOfWith(U, NewU); 1897 } 1898 // We've replaced all the uses, so destroy the constant. (destroyConstant 1899 // will update value handles and metadata.) 1900 U->destroyConstant(); 1901 } 1902 } 1903 1904 /// Analyze the specified global variable and optimize 1905 /// it if possible. If we make a change, return true. 1906 static bool processInternalGlobal( 1907 GlobalVariable *GV, const GlobalStatus &GS, TargetLibraryInfo *TLI, 1908 function_ref<DominatorTree &(Function &)> LookupDomTree) { 1909 auto &DL = GV->getParent()->getDataLayout(); 1910 // If this is a first class global and has only one accessing function and 1911 // this function is non-recursive, we replace the global with a local alloca 1912 // in this function. 1913 // 1914 // NOTE: It doesn't make sense to promote non-single-value types since we 1915 // are just replacing static memory to stack memory. 1916 // 1917 // If the global is in different address space, don't bring it to stack. 1918 if (!GS.HasMultipleAccessingFunctions && 1919 GS.AccessingFunction && 1920 GV->getValueType()->isSingleValueType() && 1921 GV->getType()->getAddressSpace() == 0 && 1922 !GV->isExternallyInitialized() && 1923 allNonInstructionUsersCanBeMadeInstructions(GV) && 1924 GS.AccessingFunction->doesNotRecurse() && 1925 isPointerValueDeadOnEntryToFunction(GS.AccessingFunction, GV, 1926 LookupDomTree)) { 1927 const DataLayout &DL = GV->getParent()->getDataLayout(); 1928 1929 LLVM_DEBUG(dbgs() << "LOCALIZING GLOBAL: " << *GV << "\n"); 1930 Instruction &FirstI = const_cast<Instruction&>(*GS.AccessingFunction 1931 ->getEntryBlock().begin()); 1932 Type *ElemTy = GV->getValueType(); 1933 // FIXME: Pass Global's alignment when globals have alignment 1934 AllocaInst *Alloca = new AllocaInst(ElemTy, DL.getAllocaAddrSpace(), nullptr, 1935 GV->getName(), &FirstI); 1936 if (!isa<UndefValue>(GV->getInitializer())) 1937 new StoreInst(GV->getInitializer(), Alloca, &FirstI); 1938 1939 makeAllConstantUsesInstructions(GV); 1940 1941 GV->replaceAllUsesWith(Alloca); 1942 GV->eraseFromParent(); 1943 ++NumLocalized; 1944 return true; 1945 } 1946 1947 // If the global is never loaded (but may be stored to), it is dead. 1948 // Delete it now. 1949 if (!GS.IsLoaded) { 1950 LLVM_DEBUG(dbgs() << "GLOBAL NEVER LOADED: " << *GV << "\n"); 1951 1952 bool Changed; 1953 if (isLeakCheckerRoot(GV)) { 1954 // Delete any constant stores to the global. 1955 Changed = CleanupPointerRootUsers(GV, TLI); 1956 } else { 1957 // Delete any stores we can find to the global. We may not be able to 1958 // make it completely dead though. 1959 Changed = CleanupConstantGlobalUsers(GV, GV->getInitializer(), DL, TLI); 1960 } 1961 1962 // If the global is dead now, delete it. 1963 if (GV->use_empty()) { 1964 GV->eraseFromParent(); 1965 ++NumDeleted; 1966 Changed = true; 1967 } 1968 return Changed; 1969 1970 } 1971 if (GS.StoredType <= GlobalStatus::InitializerStored) { 1972 LLVM_DEBUG(dbgs() << "MARKING CONSTANT: " << *GV << "\n"); 1973 GV->setConstant(true); 1974 1975 // Clean up any obviously simplifiable users now. 1976 CleanupConstantGlobalUsers(GV, GV->getInitializer(), DL, TLI); 1977 1978 // If the global is dead now, just nuke it. 1979 if (GV->use_empty()) { 1980 LLVM_DEBUG(dbgs() << " *** Marking constant allowed us to simplify " 1981 << "all users and delete global!\n"); 1982 GV->eraseFromParent(); 1983 ++NumDeleted; 1984 return true; 1985 } 1986 1987 // Fall through to the next check; see if we can optimize further. 1988 ++NumMarked; 1989 } 1990 if (!GV->getInitializer()->getType()->isSingleValueType()) { 1991 const DataLayout &DL = GV->getParent()->getDataLayout(); 1992 if (SRAGlobal(GV, DL)) 1993 return true; 1994 } 1995 if (GS.StoredType == GlobalStatus::StoredOnce && GS.StoredOnceValue) { 1996 // If the initial value for the global was an undef value, and if only 1997 // one other value was stored into it, we can just change the 1998 // initializer to be the stored value, then delete all stores to the 1999 // global. This allows us to mark it constant. 2000 if (Constant *SOVConstant = dyn_cast<Constant>(GS.StoredOnceValue)) 2001 if (isa<UndefValue>(GV->getInitializer())) { 2002 // Change the initial value here. 2003 GV->setInitializer(SOVConstant); 2004 2005 // Clean up any obviously simplifiable users now. 2006 CleanupConstantGlobalUsers(GV, GV->getInitializer(), DL, TLI); 2007 2008 if (GV->use_empty()) { 2009 LLVM_DEBUG(dbgs() << " *** Substituting initializer allowed us to " 2010 << "simplify all users and delete global!\n"); 2011 GV->eraseFromParent(); 2012 ++NumDeleted; 2013 } 2014 ++NumSubstitute; 2015 return true; 2016 } 2017 2018 // Try to optimize globals based on the knowledge that only one value 2019 // (besides its initializer) is ever stored to the global. 2020 if (optimizeOnceStoredGlobal(GV, GS.StoredOnceValue, GS.Ordering, DL, TLI)) 2021 return true; 2022 2023 // Otherwise, if the global was not a boolean, we can shrink it to be a 2024 // boolean. 2025 if (Constant *SOVConstant = dyn_cast<Constant>(GS.StoredOnceValue)) { 2026 if (GS.Ordering == AtomicOrdering::NotAtomic) { 2027 if (TryToShrinkGlobalToBoolean(GV, SOVConstant)) { 2028 ++NumShrunkToBool; 2029 return true; 2030 } 2031 } 2032 } 2033 } 2034 2035 return false; 2036 } 2037 2038 /// Analyze the specified global variable and optimize it if possible. If we 2039 /// make a change, return true. 2040 static bool 2041 processGlobal(GlobalValue &GV, TargetLibraryInfo *TLI, 2042 function_ref<DominatorTree &(Function &)> LookupDomTree) { 2043 if (GV.getName().startswith("llvm.")) 2044 return false; 2045 2046 GlobalStatus GS; 2047 2048 if (GlobalStatus::analyzeGlobal(&GV, GS)) 2049 return false; 2050 2051 bool Changed = false; 2052 if (!GS.IsCompared && !GV.hasGlobalUnnamedAddr()) { 2053 auto NewUnnamedAddr = GV.hasLocalLinkage() ? GlobalValue::UnnamedAddr::Global 2054 : GlobalValue::UnnamedAddr::Local; 2055 if (NewUnnamedAddr != GV.getUnnamedAddr()) { 2056 GV.setUnnamedAddr(NewUnnamedAddr); 2057 NumUnnamed++; 2058 Changed = true; 2059 } 2060 } 2061 2062 // Do more involved optimizations if the global is internal. 2063 if (!GV.hasLocalLinkage()) 2064 return Changed; 2065 2066 auto *GVar = dyn_cast<GlobalVariable>(&GV); 2067 if (!GVar) 2068 return Changed; 2069 2070 if (GVar->isConstant() || !GVar->hasInitializer()) 2071 return Changed; 2072 2073 return processInternalGlobal(GVar, GS, TLI, LookupDomTree) || Changed; 2074 } 2075 2076 /// Walk all of the direct calls of the specified function, changing them to 2077 /// FastCC. 2078 static void ChangeCalleesToFastCall(Function *F) { 2079 for (User *U : F->users()) { 2080 if (isa<BlockAddress>(U)) 2081 continue; 2082 CallSite CS(cast<Instruction>(U)); 2083 CS.setCallingConv(CallingConv::Fast); 2084 } 2085 } 2086 2087 static AttributeList StripNest(LLVMContext &C, AttributeList Attrs) { 2088 // There can be at most one attribute set with a nest attribute. 2089 unsigned NestIndex; 2090 if (Attrs.hasAttrSomewhere(Attribute::Nest, &NestIndex)) 2091 return Attrs.removeAttribute(C, NestIndex, Attribute::Nest); 2092 return Attrs; 2093 } 2094 2095 static void RemoveNestAttribute(Function *F) { 2096 F->setAttributes(StripNest(F->getContext(), F->getAttributes())); 2097 for (User *U : F->users()) { 2098 if (isa<BlockAddress>(U)) 2099 continue; 2100 CallSite CS(cast<Instruction>(U)); 2101 CS.setAttributes(StripNest(F->getContext(), CS.getAttributes())); 2102 } 2103 } 2104 2105 /// Return true if this is a calling convention that we'd like to change. The 2106 /// idea here is that we don't want to mess with the convention if the user 2107 /// explicitly requested something with performance implications like coldcc, 2108 /// GHC, or anyregcc. 2109 static bool hasChangeableCC(Function *F) { 2110 CallingConv::ID CC = F->getCallingConv(); 2111 2112 // FIXME: Is it worth transforming x86_stdcallcc and x86_fastcallcc? 2113 if (CC != CallingConv::C && CC != CallingConv::X86_ThisCall) 2114 return false; 2115 2116 // Don't break the invariant that the inalloca parameter is the only parameter 2117 // passed in memory. 2118 // FIXME: GlobalOpt should remove inalloca when possible and hoist the dynamic 2119 // alloca it uses to the entry block if possible. 2120 if (F->getAttributes().hasAttrSomewhere(Attribute::InAlloca)) 2121 return false; 2122 2123 // FIXME: Change CC for the whole chain of musttail calls when possible. 2124 // 2125 // Can't change CC of the function that either has musttail calls, or is a 2126 // musttail callee itself 2127 for (User *U : F->users()) { 2128 if (isa<BlockAddress>(U)) 2129 continue; 2130 CallInst* CI = dyn_cast<CallInst>(U); 2131 if (!CI) 2132 continue; 2133 2134 if (CI->isMustTailCall()) 2135 return false; 2136 } 2137 2138 for (BasicBlock &BB : *F) 2139 if (BB.getTerminatingMustTailCall()) 2140 return false; 2141 2142 return true; 2143 } 2144 2145 /// Return true if the block containing the call site has a BlockFrequency of 2146 /// less than ColdCCRelFreq% of the entry block. 2147 static bool isColdCallSite(CallSite CS, BlockFrequencyInfo &CallerBFI) { 2148 const BranchProbability ColdProb(ColdCCRelFreq, 100); 2149 auto CallSiteBB = CS.getInstruction()->getParent(); 2150 auto CallSiteFreq = CallerBFI.getBlockFreq(CallSiteBB); 2151 auto CallerEntryFreq = 2152 CallerBFI.getBlockFreq(&(CS.getCaller()->getEntryBlock())); 2153 return CallSiteFreq < CallerEntryFreq * ColdProb; 2154 } 2155 2156 // This function checks if the input function F is cold at all call sites. It 2157 // also looks each call site's containing function, returning false if the 2158 // caller function contains other non cold calls. The input vector AllCallsCold 2159 // contains a list of functions that only have call sites in cold blocks. 2160 static bool 2161 isValidCandidateForColdCC(Function &F, 2162 function_ref<BlockFrequencyInfo &(Function &)> GetBFI, 2163 const std::vector<Function *> &AllCallsCold) { 2164 2165 if (F.user_empty()) 2166 return false; 2167 2168 for (User *U : F.users()) { 2169 if (isa<BlockAddress>(U)) 2170 continue; 2171 2172 CallSite CS(cast<Instruction>(U)); 2173 Function *CallerFunc = CS.getInstruction()->getParent()->getParent(); 2174 BlockFrequencyInfo &CallerBFI = GetBFI(*CallerFunc); 2175 if (!isColdCallSite(CS, CallerBFI)) 2176 return false; 2177 auto It = std::find(AllCallsCold.begin(), AllCallsCold.end(), CallerFunc); 2178 if (It == AllCallsCold.end()) 2179 return false; 2180 } 2181 return true; 2182 } 2183 2184 static void changeCallSitesToColdCC(Function *F) { 2185 for (User *U : F->users()) { 2186 if (isa<BlockAddress>(U)) 2187 continue; 2188 CallSite CS(cast<Instruction>(U)); 2189 CS.setCallingConv(CallingConv::Cold); 2190 } 2191 } 2192 2193 // This function iterates over all the call instructions in the input Function 2194 // and checks that all call sites are in cold blocks and are allowed to use the 2195 // coldcc calling convention. 2196 static bool 2197 hasOnlyColdCalls(Function &F, 2198 function_ref<BlockFrequencyInfo &(Function &)> GetBFI) { 2199 for (BasicBlock &BB : F) { 2200 for (Instruction &I : BB) { 2201 if (CallInst *CI = dyn_cast<CallInst>(&I)) { 2202 CallSite CS(cast<Instruction>(CI)); 2203 // Skip over isline asm instructions since they aren't function calls. 2204 if (CI->isInlineAsm()) 2205 continue; 2206 Function *CalledFn = CI->getCalledFunction(); 2207 if (!CalledFn) 2208 return false; 2209 if (!CalledFn->hasLocalLinkage()) 2210 return false; 2211 // Skip over instrinsics since they won't remain as function calls. 2212 if (CalledFn->getIntrinsicID() != Intrinsic::not_intrinsic) 2213 continue; 2214 // Check if it's valid to use coldcc calling convention. 2215 if (!hasChangeableCC(CalledFn) || CalledFn->isVarArg() || 2216 CalledFn->hasAddressTaken()) 2217 return false; 2218 BlockFrequencyInfo &CallerBFI = GetBFI(F); 2219 if (!isColdCallSite(CS, CallerBFI)) 2220 return false; 2221 } 2222 } 2223 } 2224 return true; 2225 } 2226 2227 static bool 2228 OptimizeFunctions(Module &M, TargetLibraryInfo *TLI, 2229 function_ref<TargetTransformInfo &(Function &)> GetTTI, 2230 function_ref<BlockFrequencyInfo &(Function &)> GetBFI, 2231 function_ref<DominatorTree &(Function &)> LookupDomTree, 2232 SmallPtrSetImpl<const Comdat *> &NotDiscardableComdats) { 2233 2234 bool Changed = false; 2235 2236 std::vector<Function *> AllCallsCold; 2237 for (Module::iterator FI = M.begin(), E = M.end(); FI != E;) { 2238 Function *F = &*FI++; 2239 if (hasOnlyColdCalls(*F, GetBFI)) 2240 AllCallsCold.push_back(F); 2241 } 2242 2243 // Optimize functions. 2244 for (Module::iterator FI = M.begin(), E = M.end(); FI != E; ) { 2245 Function *F = &*FI++; 2246 2247 // Don't perform global opt pass on naked functions; we don't want fast 2248 // calling conventions for naked functions. 2249 if (F->hasFnAttribute(Attribute::Naked)) 2250 continue; 2251 2252 // Functions without names cannot be referenced outside this module. 2253 if (!F->hasName() && !F->isDeclaration() && !F->hasLocalLinkage()) 2254 F->setLinkage(GlobalValue::InternalLinkage); 2255 2256 if (deleteIfDead(*F, NotDiscardableComdats)) { 2257 Changed = true; 2258 continue; 2259 } 2260 2261 // LLVM's definition of dominance allows instructions that are cyclic 2262 // in unreachable blocks, e.g.: 2263 // %pat = select i1 %condition, @global, i16* %pat 2264 // because any instruction dominates an instruction in a block that's 2265 // not reachable from entry. 2266 // So, remove unreachable blocks from the function, because a) there's 2267 // no point in analyzing them and b) GlobalOpt should otherwise grow 2268 // some more complicated logic to break these cycles. 2269 // Removing unreachable blocks might invalidate the dominator so we 2270 // recalculate it. 2271 if (!F->isDeclaration()) { 2272 if (removeUnreachableBlocks(*F)) { 2273 auto &DT = LookupDomTree(*F); 2274 DT.recalculate(*F); 2275 Changed = true; 2276 } 2277 } 2278 2279 Changed |= processGlobal(*F, TLI, LookupDomTree); 2280 2281 if (!F->hasLocalLinkage()) 2282 continue; 2283 2284 if (hasChangeableCC(F) && !F->isVarArg() && !F->hasAddressTaken()) { 2285 NumInternalFunc++; 2286 TargetTransformInfo &TTI = GetTTI(*F); 2287 // Change the calling convention to coldcc if either stress testing is 2288 // enabled or the target would like to use coldcc on functions which are 2289 // cold at all call sites and the callers contain no other non coldcc 2290 // calls. 2291 if (EnableColdCCStressTest || 2292 (isValidCandidateForColdCC(*F, GetBFI, AllCallsCold) && 2293 TTI.useColdCCForColdCall(*F))) { 2294 F->setCallingConv(CallingConv::Cold); 2295 changeCallSitesToColdCC(F); 2296 Changed = true; 2297 NumColdCC++; 2298 } 2299 } 2300 2301 if (hasChangeableCC(F) && !F->isVarArg() && 2302 !F->hasAddressTaken()) { 2303 // If this function has a calling convention worth changing, is not a 2304 // varargs function, and is only called directly, promote it to use the 2305 // Fast calling convention. 2306 F->setCallingConv(CallingConv::Fast); 2307 ChangeCalleesToFastCall(F); 2308 ++NumFastCallFns; 2309 Changed = true; 2310 } 2311 2312 if (F->getAttributes().hasAttrSomewhere(Attribute::Nest) && 2313 !F->hasAddressTaken()) { 2314 // The function is not used by a trampoline intrinsic, so it is safe 2315 // to remove the 'nest' attribute. 2316 RemoveNestAttribute(F); 2317 ++NumNestRemoved; 2318 Changed = true; 2319 } 2320 } 2321 return Changed; 2322 } 2323 2324 static bool 2325 OptimizeGlobalVars(Module &M, TargetLibraryInfo *TLI, 2326 function_ref<DominatorTree &(Function &)> LookupDomTree, 2327 SmallPtrSetImpl<const Comdat *> &NotDiscardableComdats) { 2328 bool Changed = false; 2329 2330 for (Module::global_iterator GVI = M.global_begin(), E = M.global_end(); 2331 GVI != E; ) { 2332 GlobalVariable *GV = &*GVI++; 2333 // Global variables without names cannot be referenced outside this module. 2334 if (!GV->hasName() && !GV->isDeclaration() && !GV->hasLocalLinkage()) 2335 GV->setLinkage(GlobalValue::InternalLinkage); 2336 // Simplify the initializer. 2337 if (GV->hasInitializer()) 2338 if (auto *C = dyn_cast<Constant>(GV->getInitializer())) { 2339 auto &DL = M.getDataLayout(); 2340 Constant *New = ConstantFoldConstant(C, DL, TLI); 2341 if (New && New != C) 2342 GV->setInitializer(New); 2343 } 2344 2345 if (deleteIfDead(*GV, NotDiscardableComdats)) { 2346 Changed = true; 2347 continue; 2348 } 2349 2350 Changed |= processGlobal(*GV, TLI, LookupDomTree); 2351 } 2352 return Changed; 2353 } 2354 2355 /// Evaluate a piece of a constantexpr store into a global initializer. This 2356 /// returns 'Init' modified to reflect 'Val' stored into it. At this point, the 2357 /// GEP operands of Addr [0, OpNo) have been stepped into. 2358 static Constant *EvaluateStoreInto(Constant *Init, Constant *Val, 2359 ConstantExpr *Addr, unsigned OpNo) { 2360 // Base case of the recursion. 2361 if (OpNo == Addr->getNumOperands()) { 2362 assert(Val->getType() == Init->getType() && "Type mismatch!"); 2363 return Val; 2364 } 2365 2366 SmallVector<Constant*, 32> Elts; 2367 if (StructType *STy = dyn_cast<StructType>(Init->getType())) { 2368 // Break up the constant into its elements. 2369 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) 2370 Elts.push_back(Init->getAggregateElement(i)); 2371 2372 // Replace the element that we are supposed to. 2373 ConstantInt *CU = cast<ConstantInt>(Addr->getOperand(OpNo)); 2374 unsigned Idx = CU->getZExtValue(); 2375 assert(Idx < STy->getNumElements() && "Struct index out of range!"); 2376 Elts[Idx] = EvaluateStoreInto(Elts[Idx], Val, Addr, OpNo+1); 2377 2378 // Return the modified struct. 2379 return ConstantStruct::get(STy, Elts); 2380 } 2381 2382 ConstantInt *CI = cast<ConstantInt>(Addr->getOperand(OpNo)); 2383 SequentialType *InitTy = cast<SequentialType>(Init->getType()); 2384 uint64_t NumElts = InitTy->getNumElements(); 2385 2386 // Break up the array into elements. 2387 for (uint64_t i = 0, e = NumElts; i != e; ++i) 2388 Elts.push_back(Init->getAggregateElement(i)); 2389 2390 assert(CI->getZExtValue() < NumElts); 2391 Elts[CI->getZExtValue()] = 2392 EvaluateStoreInto(Elts[CI->getZExtValue()], Val, Addr, OpNo+1); 2393 2394 if (Init->getType()->isArrayTy()) 2395 return ConstantArray::get(cast<ArrayType>(InitTy), Elts); 2396 return ConstantVector::get(Elts); 2397 } 2398 2399 /// We have decided that Addr (which satisfies the predicate 2400 /// isSimpleEnoughPointerToCommit) should get Val as its value. Make it happen. 2401 static void CommitValueTo(Constant *Val, Constant *Addr) { 2402 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Addr)) { 2403 assert(GV->hasInitializer()); 2404 GV->setInitializer(Val); 2405 return; 2406 } 2407 2408 ConstantExpr *CE = cast<ConstantExpr>(Addr); 2409 GlobalVariable *GV = cast<GlobalVariable>(CE->getOperand(0)); 2410 GV->setInitializer(EvaluateStoreInto(GV->getInitializer(), Val, CE, 2)); 2411 } 2412 2413 /// Given a map of address -> value, where addresses are expected to be some form 2414 /// of either a global or a constant GEP, set the initializer for the address to 2415 /// be the value. This performs mostly the same function as CommitValueTo() 2416 /// and EvaluateStoreInto() but is optimized to be more efficient for the common 2417 /// case where the set of addresses are GEPs sharing the same underlying global, 2418 /// processing the GEPs in batches rather than individually. 2419 /// 2420 /// To give an example, consider the following C++ code adapted from the clang 2421 /// regression tests: 2422 /// struct S { 2423 /// int n = 10; 2424 /// int m = 2 * n; 2425 /// S(int a) : n(a) {} 2426 /// }; 2427 /// 2428 /// template<typename T> 2429 /// struct U { 2430 /// T *r = &q; 2431 /// T q = 42; 2432 /// U *p = this; 2433 /// }; 2434 /// 2435 /// U<S> e; 2436 /// 2437 /// The global static constructor for 'e' will need to initialize 'r' and 'p' of 2438 /// the outer struct, while also initializing the inner 'q' structs 'n' and 'm' 2439 /// members. This batch algorithm will simply use general CommitValueTo() method 2440 /// to handle the complex nested S struct initialization of 'q', before 2441 /// processing the outermost members in a single batch. Using CommitValueTo() to 2442 /// handle member in the outer struct is inefficient when the struct/array is 2443 /// very large as we end up creating and destroy constant arrays for each 2444 /// initialization. 2445 /// For the above case, we expect the following IR to be generated: 2446 /// 2447 /// %struct.U = type { %struct.S*, %struct.S, %struct.U* } 2448 /// %struct.S = type { i32, i32 } 2449 /// @e = global %struct.U { %struct.S* gep inbounds (%struct.U, %struct.U* @e, 2450 /// i64 0, i32 1), 2451 /// %struct.S { i32 42, i32 84 }, %struct.U* @e } 2452 /// The %struct.S { i32 42, i32 84 } inner initializer is treated as a complex 2453 /// constant expression, while the other two elements of @e are "simple". 2454 static void BatchCommitValueTo(const DenseMap<Constant*, Constant*> &Mem) { 2455 SmallVector<std::pair<GlobalVariable*, Constant*>, 32> GVs; 2456 SmallVector<std::pair<ConstantExpr*, Constant*>, 32> ComplexCEs; 2457 SmallVector<std::pair<ConstantExpr*, Constant*>, 32> SimpleCEs; 2458 SimpleCEs.reserve(Mem.size()); 2459 2460 for (const auto &I : Mem) { 2461 if (auto *GV = dyn_cast<GlobalVariable>(I.first)) { 2462 GVs.push_back(std::make_pair(GV, I.second)); 2463 } else { 2464 ConstantExpr *GEP = cast<ConstantExpr>(I.first); 2465 // We don't handle the deeply recursive case using the batch method. 2466 if (GEP->getNumOperands() > 3) 2467 ComplexCEs.push_back(std::make_pair(GEP, I.second)); 2468 else 2469 SimpleCEs.push_back(std::make_pair(GEP, I.second)); 2470 } 2471 } 2472 2473 // The algorithm below doesn't handle cases like nested structs, so use the 2474 // slower fully general method if we have to. 2475 for (auto ComplexCE : ComplexCEs) 2476 CommitValueTo(ComplexCE.second, ComplexCE.first); 2477 2478 for (auto GVPair : GVs) { 2479 assert(GVPair.first->hasInitializer()); 2480 GVPair.first->setInitializer(GVPair.second); 2481 } 2482 2483 if (SimpleCEs.empty()) 2484 return; 2485 2486 // We cache a single global's initializer elements in the case where the 2487 // subsequent address/val pair uses the same one. This avoids throwing away and 2488 // rebuilding the constant struct/vector/array just because one element is 2489 // modified at a time. 2490 SmallVector<Constant *, 32> Elts; 2491 Elts.reserve(SimpleCEs.size()); 2492 GlobalVariable *CurrentGV = nullptr; 2493 2494 auto commitAndSetupCache = [&](GlobalVariable *GV, bool Update) { 2495 Constant *Init = GV->getInitializer(); 2496 Type *Ty = Init->getType(); 2497 if (Update) { 2498 if (CurrentGV) { 2499 assert(CurrentGV && "Expected a GV to commit to!"); 2500 Type *CurrentInitTy = CurrentGV->getInitializer()->getType(); 2501 // We have a valid cache that needs to be committed. 2502 if (StructType *STy = dyn_cast<StructType>(CurrentInitTy)) 2503 CurrentGV->setInitializer(ConstantStruct::get(STy, Elts)); 2504 else if (ArrayType *ArrTy = dyn_cast<ArrayType>(CurrentInitTy)) 2505 CurrentGV->setInitializer(ConstantArray::get(ArrTy, Elts)); 2506 else 2507 CurrentGV->setInitializer(ConstantVector::get(Elts)); 2508 } 2509 if (CurrentGV == GV) 2510 return; 2511 // Need to clear and set up cache for new initializer. 2512 CurrentGV = GV; 2513 Elts.clear(); 2514 unsigned NumElts; 2515 if (auto *STy = dyn_cast<StructType>(Ty)) 2516 NumElts = STy->getNumElements(); 2517 else 2518 NumElts = cast<SequentialType>(Ty)->getNumElements(); 2519 for (unsigned i = 0, e = NumElts; i != e; ++i) 2520 Elts.push_back(Init->getAggregateElement(i)); 2521 } 2522 }; 2523 2524 for (auto CEPair : SimpleCEs) { 2525 ConstantExpr *GEP = CEPair.first; 2526 Constant *Val = CEPair.second; 2527 2528 GlobalVariable *GV = cast<GlobalVariable>(GEP->getOperand(0)); 2529 commitAndSetupCache(GV, GV != CurrentGV); 2530 ConstantInt *CI = cast<ConstantInt>(GEP->getOperand(2)); 2531 Elts[CI->getZExtValue()] = Val; 2532 } 2533 // The last initializer in the list needs to be committed, others 2534 // will be committed on a new initializer being processed. 2535 commitAndSetupCache(CurrentGV, true); 2536 } 2537 2538 /// Evaluate static constructors in the function, if we can. Return true if we 2539 /// can, false otherwise. 2540 static bool EvaluateStaticConstructor(Function *F, const DataLayout &DL, 2541 TargetLibraryInfo *TLI) { 2542 // Call the function. 2543 Evaluator Eval(DL, TLI); 2544 Constant *RetValDummy; 2545 bool EvalSuccess = Eval.EvaluateFunction(F, RetValDummy, 2546 SmallVector<Constant*, 0>()); 2547 2548 if (EvalSuccess) { 2549 ++NumCtorsEvaluated; 2550 2551 // We succeeded at evaluation: commit the result. 2552 LLVM_DEBUG(dbgs() << "FULLY EVALUATED GLOBAL CTOR FUNCTION '" 2553 << F->getName() << "' to " 2554 << Eval.getMutatedMemory().size() << " stores.\n"); 2555 BatchCommitValueTo(Eval.getMutatedMemory()); 2556 for (GlobalVariable *GV : Eval.getInvariants()) 2557 GV->setConstant(true); 2558 } 2559 2560 return EvalSuccess; 2561 } 2562 2563 static int compareNames(Constant *const *A, Constant *const *B) { 2564 Value *AStripped = (*A)->stripPointerCastsNoFollowAliases(); 2565 Value *BStripped = (*B)->stripPointerCastsNoFollowAliases(); 2566 return AStripped->getName().compare(BStripped->getName()); 2567 } 2568 2569 static void setUsedInitializer(GlobalVariable &V, 2570 const SmallPtrSetImpl<GlobalValue *> &Init) { 2571 if (Init.empty()) { 2572 V.eraseFromParent(); 2573 return; 2574 } 2575 2576 // Type of pointer to the array of pointers. 2577 PointerType *Int8PtrTy = Type::getInt8PtrTy(V.getContext(), 0); 2578 2579 SmallVector<Constant *, 8> UsedArray; 2580 for (GlobalValue *GV : Init) { 2581 Constant *Cast 2582 = ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, Int8PtrTy); 2583 UsedArray.push_back(Cast); 2584 } 2585 // Sort to get deterministic order. 2586 array_pod_sort(UsedArray.begin(), UsedArray.end(), compareNames); 2587 ArrayType *ATy = ArrayType::get(Int8PtrTy, UsedArray.size()); 2588 2589 Module *M = V.getParent(); 2590 V.removeFromParent(); 2591 GlobalVariable *NV = 2592 new GlobalVariable(*M, ATy, false, GlobalValue::AppendingLinkage, 2593 ConstantArray::get(ATy, UsedArray), ""); 2594 NV->takeName(&V); 2595 NV->setSection("llvm.metadata"); 2596 delete &V; 2597 } 2598 2599 namespace { 2600 2601 /// An easy to access representation of llvm.used and llvm.compiler.used. 2602 class LLVMUsed { 2603 SmallPtrSet<GlobalValue *, 8> Used; 2604 SmallPtrSet<GlobalValue *, 8> CompilerUsed; 2605 GlobalVariable *UsedV; 2606 GlobalVariable *CompilerUsedV; 2607 2608 public: 2609 LLVMUsed(Module &M) { 2610 UsedV = collectUsedGlobalVariables(M, Used, false); 2611 CompilerUsedV = collectUsedGlobalVariables(M, CompilerUsed, true); 2612 } 2613 2614 using iterator = SmallPtrSet<GlobalValue *, 8>::iterator; 2615 using used_iterator_range = iterator_range<iterator>; 2616 2617 iterator usedBegin() { return Used.begin(); } 2618 iterator usedEnd() { return Used.end(); } 2619 2620 used_iterator_range used() { 2621 return used_iterator_range(usedBegin(), usedEnd()); 2622 } 2623 2624 iterator compilerUsedBegin() { return CompilerUsed.begin(); } 2625 iterator compilerUsedEnd() { return CompilerUsed.end(); } 2626 2627 used_iterator_range compilerUsed() { 2628 return used_iterator_range(compilerUsedBegin(), compilerUsedEnd()); 2629 } 2630 2631 bool usedCount(GlobalValue *GV) const { return Used.count(GV); } 2632 2633 bool compilerUsedCount(GlobalValue *GV) const { 2634 return CompilerUsed.count(GV); 2635 } 2636 2637 bool usedErase(GlobalValue *GV) { return Used.erase(GV); } 2638 bool compilerUsedErase(GlobalValue *GV) { return CompilerUsed.erase(GV); } 2639 bool usedInsert(GlobalValue *GV) { return Used.insert(GV).second; } 2640 2641 bool compilerUsedInsert(GlobalValue *GV) { 2642 return CompilerUsed.insert(GV).second; 2643 } 2644 2645 void syncVariablesAndSets() { 2646 if (UsedV) 2647 setUsedInitializer(*UsedV, Used); 2648 if (CompilerUsedV) 2649 setUsedInitializer(*CompilerUsedV, CompilerUsed); 2650 } 2651 }; 2652 2653 } // end anonymous namespace 2654 2655 static bool hasUseOtherThanLLVMUsed(GlobalAlias &GA, const LLVMUsed &U) { 2656 if (GA.use_empty()) // No use at all. 2657 return false; 2658 2659 assert((!U.usedCount(&GA) || !U.compilerUsedCount(&GA)) && 2660 "We should have removed the duplicated " 2661 "element from llvm.compiler.used"); 2662 if (!GA.hasOneUse()) 2663 // Strictly more than one use. So at least one is not in llvm.used and 2664 // llvm.compiler.used. 2665 return true; 2666 2667 // Exactly one use. Check if it is in llvm.used or llvm.compiler.used. 2668 return !U.usedCount(&GA) && !U.compilerUsedCount(&GA); 2669 } 2670 2671 static bool hasMoreThanOneUseOtherThanLLVMUsed(GlobalValue &V, 2672 const LLVMUsed &U) { 2673 unsigned N = 2; 2674 assert((!U.usedCount(&V) || !U.compilerUsedCount(&V)) && 2675 "We should have removed the duplicated " 2676 "element from llvm.compiler.used"); 2677 if (U.usedCount(&V) || U.compilerUsedCount(&V)) 2678 ++N; 2679 return V.hasNUsesOrMore(N); 2680 } 2681 2682 static bool mayHaveOtherReferences(GlobalAlias &GA, const LLVMUsed &U) { 2683 if (!GA.hasLocalLinkage()) 2684 return true; 2685 2686 return U.usedCount(&GA) || U.compilerUsedCount(&GA); 2687 } 2688 2689 static bool hasUsesToReplace(GlobalAlias &GA, const LLVMUsed &U, 2690 bool &RenameTarget) { 2691 RenameTarget = false; 2692 bool Ret = false; 2693 if (hasUseOtherThanLLVMUsed(GA, U)) 2694 Ret = true; 2695 2696 // If the alias is externally visible, we may still be able to simplify it. 2697 if (!mayHaveOtherReferences(GA, U)) 2698 return Ret; 2699 2700 // If the aliasee has internal linkage, give it the name and linkage 2701 // of the alias, and delete the alias. This turns: 2702 // define internal ... @f(...) 2703 // @a = alias ... @f 2704 // into: 2705 // define ... @a(...) 2706 Constant *Aliasee = GA.getAliasee(); 2707 GlobalValue *Target = cast<GlobalValue>(Aliasee->stripPointerCasts()); 2708 if (!Target->hasLocalLinkage()) 2709 return Ret; 2710 2711 // Do not perform the transform if multiple aliases potentially target the 2712 // aliasee. This check also ensures that it is safe to replace the section 2713 // and other attributes of the aliasee with those of the alias. 2714 if (hasMoreThanOneUseOtherThanLLVMUsed(*Target, U)) 2715 return Ret; 2716 2717 RenameTarget = true; 2718 return true; 2719 } 2720 2721 static bool 2722 OptimizeGlobalAliases(Module &M, 2723 SmallPtrSetImpl<const Comdat *> &NotDiscardableComdats) { 2724 bool Changed = false; 2725 LLVMUsed Used(M); 2726 2727 for (GlobalValue *GV : Used.used()) 2728 Used.compilerUsedErase(GV); 2729 2730 for (Module::alias_iterator I = M.alias_begin(), E = M.alias_end(); 2731 I != E;) { 2732 GlobalAlias *J = &*I++; 2733 2734 // Aliases without names cannot be referenced outside this module. 2735 if (!J->hasName() && !J->isDeclaration() && !J->hasLocalLinkage()) 2736 J->setLinkage(GlobalValue::InternalLinkage); 2737 2738 if (deleteIfDead(*J, NotDiscardableComdats)) { 2739 Changed = true; 2740 continue; 2741 } 2742 2743 // If the alias can change at link time, nothing can be done - bail out. 2744 if (J->isInterposable()) 2745 continue; 2746 2747 Constant *Aliasee = J->getAliasee(); 2748 GlobalValue *Target = dyn_cast<GlobalValue>(Aliasee->stripPointerCasts()); 2749 // We can't trivially replace the alias with the aliasee if the aliasee is 2750 // non-trivial in some way. 2751 // TODO: Try to handle non-zero GEPs of local aliasees. 2752 if (!Target) 2753 continue; 2754 Target->removeDeadConstantUsers(); 2755 2756 // Make all users of the alias use the aliasee instead. 2757 bool RenameTarget; 2758 if (!hasUsesToReplace(*J, Used, RenameTarget)) 2759 continue; 2760 2761 J->replaceAllUsesWith(ConstantExpr::getBitCast(Aliasee, J->getType())); 2762 ++NumAliasesResolved; 2763 Changed = true; 2764 2765 if (RenameTarget) { 2766 // Give the aliasee the name, linkage and other attributes of the alias. 2767 Target->takeName(&*J); 2768 Target->setLinkage(J->getLinkage()); 2769 Target->setDSOLocal(J->isDSOLocal()); 2770 Target->setVisibility(J->getVisibility()); 2771 Target->setDLLStorageClass(J->getDLLStorageClass()); 2772 2773 if (Used.usedErase(&*J)) 2774 Used.usedInsert(Target); 2775 2776 if (Used.compilerUsedErase(&*J)) 2777 Used.compilerUsedInsert(Target); 2778 } else if (mayHaveOtherReferences(*J, Used)) 2779 continue; 2780 2781 // Delete the alias. 2782 M.getAliasList().erase(J); 2783 ++NumAliasesRemoved; 2784 Changed = true; 2785 } 2786 2787 Used.syncVariablesAndSets(); 2788 2789 return Changed; 2790 } 2791 2792 static Function *FindCXAAtExit(Module &M, TargetLibraryInfo *TLI) { 2793 LibFunc F = LibFunc_cxa_atexit; 2794 if (!TLI->has(F)) 2795 return nullptr; 2796 2797 Function *Fn = M.getFunction(TLI->getName(F)); 2798 if (!Fn) 2799 return nullptr; 2800 2801 // Make sure that the function has the correct prototype. 2802 if (!TLI->getLibFunc(*Fn, F) || F != LibFunc_cxa_atexit) 2803 return nullptr; 2804 2805 return Fn; 2806 } 2807 2808 /// Returns whether the given function is an empty C++ destructor and can 2809 /// therefore be eliminated. 2810 /// Note that we assume that other optimization passes have already simplified 2811 /// the code so we only look for a function with a single basic block, where 2812 /// the only allowed instructions are 'ret', 'call' to an empty C++ dtor and 2813 /// other side-effect free instructions. 2814 static bool cxxDtorIsEmpty(const Function &Fn, 2815 SmallPtrSet<const Function *, 8> &CalledFunctions) { 2816 // FIXME: We could eliminate C++ destructors if they're readonly/readnone and 2817 // nounwind, but that doesn't seem worth doing. 2818 if (Fn.isDeclaration()) 2819 return false; 2820 2821 if (++Fn.begin() != Fn.end()) 2822 return false; 2823 2824 const BasicBlock &EntryBlock = Fn.getEntryBlock(); 2825 for (BasicBlock::const_iterator I = EntryBlock.begin(), E = EntryBlock.end(); 2826 I != E; ++I) { 2827 if (const CallInst *CI = dyn_cast<CallInst>(I)) { 2828 // Ignore debug intrinsics. 2829 if (isa<DbgInfoIntrinsic>(CI)) 2830 continue; 2831 2832 const Function *CalledFn = CI->getCalledFunction(); 2833 2834 if (!CalledFn) 2835 return false; 2836 2837 SmallPtrSet<const Function *, 8> NewCalledFunctions(CalledFunctions); 2838 2839 // Don't treat recursive functions as empty. 2840 if (!NewCalledFunctions.insert(CalledFn).second) 2841 return false; 2842 2843 if (!cxxDtorIsEmpty(*CalledFn, NewCalledFunctions)) 2844 return false; 2845 } else if (isa<ReturnInst>(*I)) 2846 return true; // We're done. 2847 else if (I->mayHaveSideEffects()) 2848 return false; // Destructor with side effects, bail. 2849 } 2850 2851 return false; 2852 } 2853 2854 static bool OptimizeEmptyGlobalCXXDtors(Function *CXAAtExitFn) { 2855 /// Itanium C++ ABI p3.3.5: 2856 /// 2857 /// After constructing a global (or local static) object, that will require 2858 /// destruction on exit, a termination function is registered as follows: 2859 /// 2860 /// extern "C" int __cxa_atexit ( void (*f)(void *), void *p, void *d ); 2861 /// 2862 /// This registration, e.g. __cxa_atexit(f,p,d), is intended to cause the 2863 /// call f(p) when DSO d is unloaded, before all such termination calls 2864 /// registered before this one. It returns zero if registration is 2865 /// successful, nonzero on failure. 2866 2867 // This pass will look for calls to __cxa_atexit where the function is trivial 2868 // and remove them. 2869 bool Changed = false; 2870 2871 for (auto I = CXAAtExitFn->user_begin(), E = CXAAtExitFn->user_end(); 2872 I != E;) { 2873 // We're only interested in calls. Theoretically, we could handle invoke 2874 // instructions as well, but neither llvm-gcc nor clang generate invokes 2875 // to __cxa_atexit. 2876 CallInst *CI = dyn_cast<CallInst>(*I++); 2877 if (!CI) 2878 continue; 2879 2880 Function *DtorFn = 2881 dyn_cast<Function>(CI->getArgOperand(0)->stripPointerCasts()); 2882 if (!DtorFn) 2883 continue; 2884 2885 SmallPtrSet<const Function *, 8> CalledFunctions; 2886 if (!cxxDtorIsEmpty(*DtorFn, CalledFunctions)) 2887 continue; 2888 2889 // Just remove the call. 2890 CI->replaceAllUsesWith(Constant::getNullValue(CI->getType())); 2891 CI->eraseFromParent(); 2892 2893 ++NumCXXDtorsRemoved; 2894 2895 Changed |= true; 2896 } 2897 2898 return Changed; 2899 } 2900 2901 static bool optimizeGlobalsInModule( 2902 Module &M, const DataLayout &DL, TargetLibraryInfo *TLI, 2903 function_ref<TargetTransformInfo &(Function &)> GetTTI, 2904 function_ref<BlockFrequencyInfo &(Function &)> GetBFI, 2905 function_ref<DominatorTree &(Function &)> LookupDomTree) { 2906 SmallPtrSet<const Comdat *, 8> NotDiscardableComdats; 2907 bool Changed = false; 2908 bool LocalChange = true; 2909 while (LocalChange) { 2910 LocalChange = false; 2911 2912 NotDiscardableComdats.clear(); 2913 for (const GlobalVariable &GV : M.globals()) 2914 if (const Comdat *C = GV.getComdat()) 2915 if (!GV.isDiscardableIfUnused() || !GV.use_empty()) 2916 NotDiscardableComdats.insert(C); 2917 for (Function &F : M) 2918 if (const Comdat *C = F.getComdat()) 2919 if (!F.isDefTriviallyDead()) 2920 NotDiscardableComdats.insert(C); 2921 for (GlobalAlias &GA : M.aliases()) 2922 if (const Comdat *C = GA.getComdat()) 2923 if (!GA.isDiscardableIfUnused() || !GA.use_empty()) 2924 NotDiscardableComdats.insert(C); 2925 2926 // Delete functions that are trivially dead, ccc -> fastcc 2927 LocalChange |= OptimizeFunctions(M, TLI, GetTTI, GetBFI, LookupDomTree, 2928 NotDiscardableComdats); 2929 2930 // Optimize global_ctors list. 2931 LocalChange |= optimizeGlobalCtorsList(M, [&](Function *F) { 2932 return EvaluateStaticConstructor(F, DL, TLI); 2933 }); 2934 2935 // Optimize non-address-taken globals. 2936 LocalChange |= OptimizeGlobalVars(M, TLI, LookupDomTree, 2937 NotDiscardableComdats); 2938 2939 // Resolve aliases, when possible. 2940 LocalChange |= OptimizeGlobalAliases(M, NotDiscardableComdats); 2941 2942 // Try to remove trivial global destructors if they are not removed 2943 // already. 2944 Function *CXAAtExitFn = FindCXAAtExit(M, TLI); 2945 if (CXAAtExitFn) 2946 LocalChange |= OptimizeEmptyGlobalCXXDtors(CXAAtExitFn); 2947 2948 Changed |= LocalChange; 2949 } 2950 2951 // TODO: Move all global ctors functions to the end of the module for code 2952 // layout. 2953 2954 return Changed; 2955 } 2956 2957 PreservedAnalyses GlobalOptPass::run(Module &M, ModuleAnalysisManager &AM) { 2958 auto &DL = M.getDataLayout(); 2959 auto &TLI = AM.getResult<TargetLibraryAnalysis>(M); 2960 auto &FAM = 2961 AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager(); 2962 auto LookupDomTree = [&FAM](Function &F) -> DominatorTree &{ 2963 return FAM.getResult<DominatorTreeAnalysis>(F); 2964 }; 2965 auto GetTTI = [&FAM](Function &F) -> TargetTransformInfo & { 2966 return FAM.getResult<TargetIRAnalysis>(F); 2967 }; 2968 2969 auto GetBFI = [&FAM](Function &F) -> BlockFrequencyInfo & { 2970 return FAM.getResult<BlockFrequencyAnalysis>(F); 2971 }; 2972 2973 if (!optimizeGlobalsInModule(M, DL, &TLI, GetTTI, GetBFI, LookupDomTree)) 2974 return PreservedAnalyses::all(); 2975 return PreservedAnalyses::none(); 2976 } 2977 2978 namespace { 2979 2980 struct GlobalOptLegacyPass : public ModulePass { 2981 static char ID; // Pass identification, replacement for typeid 2982 2983 GlobalOptLegacyPass() : ModulePass(ID) { 2984 initializeGlobalOptLegacyPassPass(*PassRegistry::getPassRegistry()); 2985 } 2986 2987 bool runOnModule(Module &M) override { 2988 if (skipModule(M)) 2989 return false; 2990 2991 auto &DL = M.getDataLayout(); 2992 auto *TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(); 2993 auto LookupDomTree = [this](Function &F) -> DominatorTree & { 2994 return this->getAnalysis<DominatorTreeWrapperPass>(F).getDomTree(); 2995 }; 2996 auto GetTTI = [this](Function &F) -> TargetTransformInfo & { 2997 return this->getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 2998 }; 2999 3000 auto GetBFI = [this](Function &F) -> BlockFrequencyInfo & { 3001 return this->getAnalysis<BlockFrequencyInfoWrapperPass>(F).getBFI(); 3002 }; 3003 3004 return optimizeGlobalsInModule(M, DL, TLI, GetTTI, GetBFI, LookupDomTree); 3005 } 3006 3007 void getAnalysisUsage(AnalysisUsage &AU) const override { 3008 AU.addRequired<TargetLibraryInfoWrapperPass>(); 3009 AU.addRequired<TargetTransformInfoWrapperPass>(); 3010 AU.addRequired<DominatorTreeWrapperPass>(); 3011 AU.addRequired<BlockFrequencyInfoWrapperPass>(); 3012 } 3013 }; 3014 3015 } // end anonymous namespace 3016 3017 char GlobalOptLegacyPass::ID = 0; 3018 3019 INITIALIZE_PASS_BEGIN(GlobalOptLegacyPass, "globalopt", 3020 "Global Variable Optimizer", false, false) 3021 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 3022 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 3023 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass) 3024 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 3025 INITIALIZE_PASS_END(GlobalOptLegacyPass, "globalopt", 3026 "Global Variable Optimizer", false, false) 3027 3028 ModulePass *llvm::createGlobalOptimizerPass() { 3029 return new GlobalOptLegacyPass(); 3030 } 3031