1 //===- GlobalOpt.cpp - Optimize Global Variables --------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass transforms simple global variables that never have their address
11 // taken. If obviously true, it marks read/write globals as constant, deletes
12 // variables only stored to, etc.
13 //
14 //===----------------------------------------------------------------------===//
15
16 #include "llvm/Transforms/IPO/GlobalOpt.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SmallPtrSet.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/Statistic.h"
22 #include "llvm/ADT/Twine.h"
23 #include "llvm/ADT/iterator_range.h"
24 #include "llvm/Analysis/BlockFrequencyInfo.h"
25 #include "llvm/Analysis/ConstantFolding.h"
26 #include "llvm/Analysis/MemoryBuiltins.h"
27 #include "llvm/Analysis/TargetLibraryInfo.h"
28 #include "llvm/Analysis/TargetTransformInfo.h"
29 #include "llvm/Transforms/Utils/Local.h"
30 #include "llvm/BinaryFormat/Dwarf.h"
31 #include "llvm/IR/Attributes.h"
32 #include "llvm/IR/BasicBlock.h"
33 #include "llvm/IR/CallSite.h"
34 #include "llvm/IR/CallingConv.h"
35 #include "llvm/IR/Constant.h"
36 #include "llvm/IR/Constants.h"
37 #include "llvm/IR/DataLayout.h"
38 #include "llvm/IR/DebugInfoMetadata.h"
39 #include "llvm/IR/DerivedTypes.h"
40 #include "llvm/IR/Dominators.h"
41 #include "llvm/IR/Function.h"
42 #include "llvm/IR/GetElementPtrTypeIterator.h"
43 #include "llvm/IR/GlobalAlias.h"
44 #include "llvm/IR/GlobalValue.h"
45 #include "llvm/IR/GlobalVariable.h"
46 #include "llvm/IR/InstrTypes.h"
47 #include "llvm/IR/Instruction.h"
48 #include "llvm/IR/Instructions.h"
49 #include "llvm/IR/IntrinsicInst.h"
50 #include "llvm/IR/Module.h"
51 #include "llvm/IR/Operator.h"
52 #include "llvm/IR/Type.h"
53 #include "llvm/IR/Use.h"
54 #include "llvm/IR/User.h"
55 #include "llvm/IR/Value.h"
56 #include "llvm/IR/ValueHandle.h"
57 #include "llvm/Pass.h"
58 #include "llvm/Support/AtomicOrdering.h"
59 #include "llvm/Support/Casting.h"
60 #include "llvm/Support/CommandLine.h"
61 #include "llvm/Support/Debug.h"
62 #include "llvm/Support/ErrorHandling.h"
63 #include "llvm/Support/MathExtras.h"
64 #include "llvm/Support/raw_ostream.h"
65 #include "llvm/Transforms/IPO.h"
66 #include "llvm/Transforms/Utils/CtorUtils.h"
67 #include "llvm/Transforms/Utils/Evaluator.h"
68 #include "llvm/Transforms/Utils/GlobalStatus.h"
69 #include <cassert>
70 #include <cstdint>
71 #include <utility>
72 #include <vector>
73
74 using namespace llvm;
75
76 #define DEBUG_TYPE "globalopt"
77
78 STATISTIC(NumMarked , "Number of globals marked constant");
79 STATISTIC(NumUnnamed , "Number of globals marked unnamed_addr");
80 STATISTIC(NumSRA , "Number of aggregate globals broken into scalars");
81 STATISTIC(NumHeapSRA , "Number of heap objects SRA'd");
82 STATISTIC(NumSubstitute,"Number of globals with initializers stored into them");
83 STATISTIC(NumDeleted , "Number of globals deleted");
84 STATISTIC(NumGlobUses , "Number of global uses devirtualized");
85 STATISTIC(NumLocalized , "Number of globals localized");
86 STATISTIC(NumShrunkToBool , "Number of global vars shrunk to booleans");
87 STATISTIC(NumFastCallFns , "Number of functions converted to fastcc");
88 STATISTIC(NumCtorsEvaluated, "Number of static ctors evaluated");
89 STATISTIC(NumNestRemoved , "Number of nest attributes removed");
90 STATISTIC(NumAliasesResolved, "Number of global aliases resolved");
91 STATISTIC(NumAliasesRemoved, "Number of global aliases eliminated");
92 STATISTIC(NumCXXDtorsRemoved, "Number of global C++ destructors removed");
93 STATISTIC(NumInternalFunc, "Number of internal functions");
94 STATISTIC(NumColdCC, "Number of functions marked coldcc");
95
96 static cl::opt<bool>
97 EnableColdCCStressTest("enable-coldcc-stress-test",
98 cl::desc("Enable stress test of coldcc by adding "
99 "calling conv to all internal functions."),
100 cl::init(false), cl::Hidden);
101
102 static cl::opt<int> ColdCCRelFreq(
103 "coldcc-rel-freq", cl::Hidden, cl::init(2), cl::ZeroOrMore,
104 cl::desc(
105 "Maximum block frequency, expressed as a percentage of caller's "
106 "entry frequency, for a call site to be considered cold for enabling"
107 "coldcc"));
108
109 /// Is this global variable possibly used by a leak checker as a root? If so,
110 /// we might not really want to eliminate the stores to it.
isLeakCheckerRoot(GlobalVariable * GV)111 static bool isLeakCheckerRoot(GlobalVariable *GV) {
112 // A global variable is a root if it is a pointer, or could plausibly contain
113 // a pointer. There are two challenges; one is that we could have a struct
114 // the has an inner member which is a pointer. We recurse through the type to
115 // detect these (up to a point). The other is that we may actually be a union
116 // of a pointer and another type, and so our LLVM type is an integer which
117 // gets converted into a pointer, or our type is an [i8 x #] with a pointer
118 // potentially contained here.
119
120 if (GV->hasPrivateLinkage())
121 return false;
122
123 SmallVector<Type *, 4> Types;
124 Types.push_back(GV->getValueType());
125
126 unsigned Limit = 20;
127 do {
128 Type *Ty = Types.pop_back_val();
129 switch (Ty->getTypeID()) {
130 default: break;
131 case Type::PointerTyID: return true;
132 case Type::ArrayTyID:
133 case Type::VectorTyID: {
134 SequentialType *STy = cast<SequentialType>(Ty);
135 Types.push_back(STy->getElementType());
136 break;
137 }
138 case Type::StructTyID: {
139 StructType *STy = cast<StructType>(Ty);
140 if (STy->isOpaque()) return true;
141 for (StructType::element_iterator I = STy->element_begin(),
142 E = STy->element_end(); I != E; ++I) {
143 Type *InnerTy = *I;
144 if (isa<PointerType>(InnerTy)) return true;
145 if (isa<CompositeType>(InnerTy))
146 Types.push_back(InnerTy);
147 }
148 break;
149 }
150 }
151 if (--Limit == 0) return true;
152 } while (!Types.empty());
153 return false;
154 }
155
156 /// Given a value that is stored to a global but never read, determine whether
157 /// it's safe to remove the store and the chain of computation that feeds the
158 /// store.
IsSafeComputationToRemove(Value * V,const TargetLibraryInfo * TLI)159 static bool IsSafeComputationToRemove(Value *V, const TargetLibraryInfo *TLI) {
160 do {
161 if (isa<Constant>(V))
162 return true;
163 if (!V->hasOneUse())
164 return false;
165 if (isa<LoadInst>(V) || isa<InvokeInst>(V) || isa<Argument>(V) ||
166 isa<GlobalValue>(V))
167 return false;
168 if (isAllocationFn(V, TLI))
169 return true;
170
171 Instruction *I = cast<Instruction>(V);
172 if (I->mayHaveSideEffects())
173 return false;
174 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I)) {
175 if (!GEP->hasAllConstantIndices())
176 return false;
177 } else if (I->getNumOperands() != 1) {
178 return false;
179 }
180
181 V = I->getOperand(0);
182 } while (true);
183 }
184
185 /// This GV is a pointer root. Loop over all users of the global and clean up
186 /// any that obviously don't assign the global a value that isn't dynamically
187 /// allocated.
CleanupPointerRootUsers(GlobalVariable * GV,const TargetLibraryInfo * TLI)188 static bool CleanupPointerRootUsers(GlobalVariable *GV,
189 const TargetLibraryInfo *TLI) {
190 // A brief explanation of leak checkers. The goal is to find bugs where
191 // pointers are forgotten, causing an accumulating growth in memory
192 // usage over time. The common strategy for leak checkers is to whitelist the
193 // memory pointed to by globals at exit. This is popular because it also
194 // solves another problem where the main thread of a C++ program may shut down
195 // before other threads that are still expecting to use those globals. To
196 // handle that case, we expect the program may create a singleton and never
197 // destroy it.
198
199 bool Changed = false;
200
201 // If Dead[n].first is the only use of a malloc result, we can delete its
202 // chain of computation and the store to the global in Dead[n].second.
203 SmallVector<std::pair<Instruction *, Instruction *>, 32> Dead;
204
205 // Constants can't be pointers to dynamically allocated memory.
206 for (Value::user_iterator UI = GV->user_begin(), E = GV->user_end();
207 UI != E;) {
208 User *U = *UI++;
209 if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
210 Value *V = SI->getValueOperand();
211 if (isa<Constant>(V)) {
212 Changed = true;
213 SI->eraseFromParent();
214 } else if (Instruction *I = dyn_cast<Instruction>(V)) {
215 if (I->hasOneUse())
216 Dead.push_back(std::make_pair(I, SI));
217 }
218 } else if (MemSetInst *MSI = dyn_cast<MemSetInst>(U)) {
219 if (isa<Constant>(MSI->getValue())) {
220 Changed = true;
221 MSI->eraseFromParent();
222 } else if (Instruction *I = dyn_cast<Instruction>(MSI->getValue())) {
223 if (I->hasOneUse())
224 Dead.push_back(std::make_pair(I, MSI));
225 }
226 } else if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(U)) {
227 GlobalVariable *MemSrc = dyn_cast<GlobalVariable>(MTI->getSource());
228 if (MemSrc && MemSrc->isConstant()) {
229 Changed = true;
230 MTI->eraseFromParent();
231 } else if (Instruction *I = dyn_cast<Instruction>(MemSrc)) {
232 if (I->hasOneUse())
233 Dead.push_back(std::make_pair(I, MTI));
234 }
235 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(U)) {
236 if (CE->use_empty()) {
237 CE->destroyConstant();
238 Changed = true;
239 }
240 } else if (Constant *C = dyn_cast<Constant>(U)) {
241 if (isSafeToDestroyConstant(C)) {
242 C->destroyConstant();
243 // This could have invalidated UI, start over from scratch.
244 Dead.clear();
245 CleanupPointerRootUsers(GV, TLI);
246 return true;
247 }
248 }
249 }
250
251 for (int i = 0, e = Dead.size(); i != e; ++i) {
252 if (IsSafeComputationToRemove(Dead[i].first, TLI)) {
253 Dead[i].second->eraseFromParent();
254 Instruction *I = Dead[i].first;
255 do {
256 if (isAllocationFn(I, TLI))
257 break;
258 Instruction *J = dyn_cast<Instruction>(I->getOperand(0));
259 if (!J)
260 break;
261 I->eraseFromParent();
262 I = J;
263 } while (true);
264 I->eraseFromParent();
265 }
266 }
267
268 return Changed;
269 }
270
271 /// We just marked GV constant. Loop over all users of the global, cleaning up
272 /// the obvious ones. This is largely just a quick scan over the use list to
273 /// clean up the easy and obvious cruft. This returns true if it made a change.
CleanupConstantGlobalUsers(Value * V,Constant * Init,const DataLayout & DL,TargetLibraryInfo * TLI)274 static bool CleanupConstantGlobalUsers(Value *V, Constant *Init,
275 const DataLayout &DL,
276 TargetLibraryInfo *TLI) {
277 bool Changed = false;
278 // Note that we need to use a weak value handle for the worklist items. When
279 // we delete a constant array, we may also be holding pointer to one of its
280 // elements (or an element of one of its elements if we're dealing with an
281 // array of arrays) in the worklist.
282 SmallVector<WeakTrackingVH, 8> WorkList(V->user_begin(), V->user_end());
283 while (!WorkList.empty()) {
284 Value *UV = WorkList.pop_back_val();
285 if (!UV)
286 continue;
287
288 User *U = cast<User>(UV);
289
290 if (LoadInst *LI = dyn_cast<LoadInst>(U)) {
291 if (Init) {
292 // Replace the load with the initializer.
293 LI->replaceAllUsesWith(Init);
294 LI->eraseFromParent();
295 Changed = true;
296 }
297 } else if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
298 // Store must be unreachable or storing Init into the global.
299 SI->eraseFromParent();
300 Changed = true;
301 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(U)) {
302 if (CE->getOpcode() == Instruction::GetElementPtr) {
303 Constant *SubInit = nullptr;
304 if (Init)
305 SubInit = ConstantFoldLoadThroughGEPConstantExpr(Init, CE);
306 Changed |= CleanupConstantGlobalUsers(CE, SubInit, DL, TLI);
307 } else if ((CE->getOpcode() == Instruction::BitCast &&
308 CE->getType()->isPointerTy()) ||
309 CE->getOpcode() == Instruction::AddrSpaceCast) {
310 // Pointer cast, delete any stores and memsets to the global.
311 Changed |= CleanupConstantGlobalUsers(CE, nullptr, DL, TLI);
312 }
313
314 if (CE->use_empty()) {
315 CE->destroyConstant();
316 Changed = true;
317 }
318 } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(U)) {
319 // Do not transform "gepinst (gep constexpr (GV))" here, because forming
320 // "gepconstexpr (gep constexpr (GV))" will cause the two gep's to fold
321 // and will invalidate our notion of what Init is.
322 Constant *SubInit = nullptr;
323 if (!isa<ConstantExpr>(GEP->getOperand(0))) {
324 ConstantExpr *CE = dyn_cast_or_null<ConstantExpr>(
325 ConstantFoldInstruction(GEP, DL, TLI));
326 if (Init && CE && CE->getOpcode() == Instruction::GetElementPtr)
327 SubInit = ConstantFoldLoadThroughGEPConstantExpr(Init, CE);
328
329 // If the initializer is an all-null value and we have an inbounds GEP,
330 // we already know what the result of any load from that GEP is.
331 // TODO: Handle splats.
332 if (Init && isa<ConstantAggregateZero>(Init) && GEP->isInBounds())
333 SubInit = Constant::getNullValue(GEP->getResultElementType());
334 }
335 Changed |= CleanupConstantGlobalUsers(GEP, SubInit, DL, TLI);
336
337 if (GEP->use_empty()) {
338 GEP->eraseFromParent();
339 Changed = true;
340 }
341 } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(U)) { // memset/cpy/mv
342 if (MI->getRawDest() == V) {
343 MI->eraseFromParent();
344 Changed = true;
345 }
346
347 } else if (Constant *C = dyn_cast<Constant>(U)) {
348 // If we have a chain of dead constantexprs or other things dangling from
349 // us, and if they are all dead, nuke them without remorse.
350 if (isSafeToDestroyConstant(C)) {
351 C->destroyConstant();
352 CleanupConstantGlobalUsers(V, Init, DL, TLI);
353 return true;
354 }
355 }
356 }
357 return Changed;
358 }
359
360 static bool isSafeSROAElementUse(Value *V);
361
362 /// Return true if the specified GEP is a safe user of a derived
363 /// expression from a global that we want to SROA.
isSafeSROAGEP(User * U)364 static bool isSafeSROAGEP(User *U) {
365 // Check to see if this ConstantExpr GEP is SRA'able. In particular, we
366 // don't like < 3 operand CE's, and we don't like non-constant integer
367 // indices. This enforces that all uses are 'gep GV, 0, C, ...' for some
368 // value of C.
369 if (U->getNumOperands() < 3 || !isa<Constant>(U->getOperand(1)) ||
370 !cast<Constant>(U->getOperand(1))->isNullValue())
371 return false;
372
373 gep_type_iterator GEPI = gep_type_begin(U), E = gep_type_end(U);
374 ++GEPI; // Skip over the pointer index.
375
376 // For all other level we require that the indices are constant and inrange.
377 // In particular, consider: A[0][i]. We cannot know that the user isn't doing
378 // invalid things like allowing i to index an out-of-range subscript that
379 // accesses A[1]. This can also happen between different members of a struct
380 // in llvm IR.
381 for (; GEPI != E; ++GEPI) {
382 if (GEPI.isStruct())
383 continue;
384
385 ConstantInt *IdxVal = dyn_cast<ConstantInt>(GEPI.getOperand());
386 if (!IdxVal || (GEPI.isBoundedSequential() &&
387 IdxVal->getZExtValue() >= GEPI.getSequentialNumElements()))
388 return false;
389 }
390
391 return llvm::all_of(U->users(),
392 [](User *UU) { return isSafeSROAElementUse(UU); });
393 }
394
395 /// Return true if the specified instruction is a safe user of a derived
396 /// expression from a global that we want to SROA.
isSafeSROAElementUse(Value * V)397 static bool isSafeSROAElementUse(Value *V) {
398 // We might have a dead and dangling constant hanging off of here.
399 if (Constant *C = dyn_cast<Constant>(V))
400 return isSafeToDestroyConstant(C);
401
402 Instruction *I = dyn_cast<Instruction>(V);
403 if (!I) return false;
404
405 // Loads are ok.
406 if (isa<LoadInst>(I)) return true;
407
408 // Stores *to* the pointer are ok.
409 if (StoreInst *SI = dyn_cast<StoreInst>(I))
410 return SI->getOperand(0) != V;
411
412 // Otherwise, it must be a GEP. Check it and its users are safe to SRA.
413 return isa<GetElementPtrInst>(I) && isSafeSROAGEP(I);
414 }
415
416 /// Look at all uses of the global and decide whether it is safe for us to
417 /// perform this transformation.
GlobalUsersSafeToSRA(GlobalValue * GV)418 static bool GlobalUsersSafeToSRA(GlobalValue *GV) {
419 for (User *U : GV->users()) {
420 // The user of the global must be a GEP Inst or a ConstantExpr GEP.
421 if (!isa<GetElementPtrInst>(U) &&
422 (!isa<ConstantExpr>(U) ||
423 cast<ConstantExpr>(U)->getOpcode() != Instruction::GetElementPtr))
424 return false;
425
426 // Check the gep and it's users are safe to SRA
427 if (!isSafeSROAGEP(U))
428 return false;
429 }
430
431 return true;
432 }
433
434 /// Copy over the debug info for a variable to its SRA replacements.
transferSRADebugInfo(GlobalVariable * GV,GlobalVariable * NGV,uint64_t FragmentOffsetInBits,uint64_t FragmentSizeInBits,unsigned NumElements)435 static void transferSRADebugInfo(GlobalVariable *GV, GlobalVariable *NGV,
436 uint64_t FragmentOffsetInBits,
437 uint64_t FragmentSizeInBits,
438 unsigned NumElements) {
439 SmallVector<DIGlobalVariableExpression *, 1> GVs;
440 GV->getDebugInfo(GVs);
441 for (auto *GVE : GVs) {
442 DIVariable *Var = GVE->getVariable();
443 DIExpression *Expr = GVE->getExpression();
444 if (NumElements > 1) {
445 if (auto E = DIExpression::createFragmentExpression(
446 Expr, FragmentOffsetInBits, FragmentSizeInBits))
447 Expr = *E;
448 else
449 return;
450 }
451 auto *NGVE = DIGlobalVariableExpression::get(GVE->getContext(), Var, Expr);
452 NGV->addDebugInfo(NGVE);
453 }
454 }
455
456 /// Perform scalar replacement of aggregates on the specified global variable.
457 /// This opens the door for other optimizations by exposing the behavior of the
458 /// program in a more fine-grained way. We have determined that this
459 /// transformation is safe already. We return the first global variable we
460 /// insert so that the caller can reprocess it.
SRAGlobal(GlobalVariable * GV,const DataLayout & DL)461 static GlobalVariable *SRAGlobal(GlobalVariable *GV, const DataLayout &DL) {
462 // Make sure this global only has simple uses that we can SRA.
463 if (!GlobalUsersSafeToSRA(GV))
464 return nullptr;
465
466 assert(GV->hasLocalLinkage());
467 Constant *Init = GV->getInitializer();
468 Type *Ty = Init->getType();
469
470 std::vector<GlobalVariable *> NewGlobals;
471 Module::GlobalListType &Globals = GV->getParent()->getGlobalList();
472
473 // Get the alignment of the global, either explicit or target-specific.
474 unsigned StartAlignment = GV->getAlignment();
475 if (StartAlignment == 0)
476 StartAlignment = DL.getABITypeAlignment(GV->getType());
477
478 if (StructType *STy = dyn_cast<StructType>(Ty)) {
479 unsigned NumElements = STy->getNumElements();
480 NewGlobals.reserve(NumElements);
481 const StructLayout &Layout = *DL.getStructLayout(STy);
482 for (unsigned i = 0, e = NumElements; i != e; ++i) {
483 Constant *In = Init->getAggregateElement(i);
484 assert(In && "Couldn't get element of initializer?");
485 GlobalVariable *NGV = new GlobalVariable(STy->getElementType(i), false,
486 GlobalVariable::InternalLinkage,
487 In, GV->getName()+"."+Twine(i),
488 GV->getThreadLocalMode(),
489 GV->getType()->getAddressSpace());
490 NGV->setExternallyInitialized(GV->isExternallyInitialized());
491 NGV->copyAttributesFrom(GV);
492 Globals.push_back(NGV);
493 NewGlobals.push_back(NGV);
494
495 // Calculate the known alignment of the field. If the original aggregate
496 // had 256 byte alignment for example, something might depend on that:
497 // propagate info to each field.
498 uint64_t FieldOffset = Layout.getElementOffset(i);
499 unsigned NewAlign = (unsigned)MinAlign(StartAlignment, FieldOffset);
500 if (NewAlign > DL.getABITypeAlignment(STy->getElementType(i)))
501 NGV->setAlignment(NewAlign);
502
503 // Copy over the debug info for the variable.
504 uint64_t Size = DL.getTypeAllocSizeInBits(NGV->getValueType());
505 uint64_t FragmentOffsetInBits = Layout.getElementOffsetInBits(i);
506 transferSRADebugInfo(GV, NGV, FragmentOffsetInBits, Size, NumElements);
507 }
508 } else if (SequentialType *STy = dyn_cast<SequentialType>(Ty)) {
509 unsigned NumElements = STy->getNumElements();
510 if (NumElements > 16 && GV->hasNUsesOrMore(16))
511 return nullptr; // It's not worth it.
512 NewGlobals.reserve(NumElements);
513 auto ElTy = STy->getElementType();
514 uint64_t EltSize = DL.getTypeAllocSize(ElTy);
515 unsigned EltAlign = DL.getABITypeAlignment(ElTy);
516 uint64_t FragmentSizeInBits = DL.getTypeAllocSizeInBits(ElTy);
517 for (unsigned i = 0, e = NumElements; i != e; ++i) {
518 Constant *In = Init->getAggregateElement(i);
519 assert(In && "Couldn't get element of initializer?");
520
521 GlobalVariable *NGV = new GlobalVariable(STy->getElementType(), false,
522 GlobalVariable::InternalLinkage,
523 In, GV->getName()+"."+Twine(i),
524 GV->getThreadLocalMode(),
525 GV->getType()->getAddressSpace());
526 NGV->setExternallyInitialized(GV->isExternallyInitialized());
527 NGV->copyAttributesFrom(GV);
528 Globals.push_back(NGV);
529 NewGlobals.push_back(NGV);
530
531 // Calculate the known alignment of the field. If the original aggregate
532 // had 256 byte alignment for example, something might depend on that:
533 // propagate info to each field.
534 unsigned NewAlign = (unsigned)MinAlign(StartAlignment, EltSize*i);
535 if (NewAlign > EltAlign)
536 NGV->setAlignment(NewAlign);
537 transferSRADebugInfo(GV, NGV, FragmentSizeInBits * i, FragmentSizeInBits,
538 NumElements);
539 }
540 }
541
542 if (NewGlobals.empty())
543 return nullptr;
544
545 LLVM_DEBUG(dbgs() << "PERFORMING GLOBAL SRA ON: " << *GV << "\n");
546
547 Constant *NullInt =Constant::getNullValue(Type::getInt32Ty(GV->getContext()));
548
549 // Loop over all of the uses of the global, replacing the constantexpr geps,
550 // with smaller constantexpr geps or direct references.
551 while (!GV->use_empty()) {
552 User *GEP = GV->user_back();
553 assert(((isa<ConstantExpr>(GEP) &&
554 cast<ConstantExpr>(GEP)->getOpcode()==Instruction::GetElementPtr)||
555 isa<GetElementPtrInst>(GEP)) && "NonGEP CE's are not SRAable!");
556
557 // Ignore the 1th operand, which has to be zero or else the program is quite
558 // broken (undefined). Get the 2nd operand, which is the structure or array
559 // index.
560 unsigned Val = cast<ConstantInt>(GEP->getOperand(2))->getZExtValue();
561 if (Val >= NewGlobals.size()) Val = 0; // Out of bound array access.
562
563 Value *NewPtr = NewGlobals[Val];
564 Type *NewTy = NewGlobals[Val]->getValueType();
565
566 // Form a shorter GEP if needed.
567 if (GEP->getNumOperands() > 3) {
568 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(GEP)) {
569 SmallVector<Constant*, 8> Idxs;
570 Idxs.push_back(NullInt);
571 for (unsigned i = 3, e = CE->getNumOperands(); i != e; ++i)
572 Idxs.push_back(CE->getOperand(i));
573 NewPtr =
574 ConstantExpr::getGetElementPtr(NewTy, cast<Constant>(NewPtr), Idxs);
575 } else {
576 GetElementPtrInst *GEPI = cast<GetElementPtrInst>(GEP);
577 SmallVector<Value*, 8> Idxs;
578 Idxs.push_back(NullInt);
579 for (unsigned i = 3, e = GEPI->getNumOperands(); i != e; ++i)
580 Idxs.push_back(GEPI->getOperand(i));
581 NewPtr = GetElementPtrInst::Create(
582 NewTy, NewPtr, Idxs, GEPI->getName() + "." + Twine(Val), GEPI);
583 }
584 }
585 GEP->replaceAllUsesWith(NewPtr);
586
587 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(GEP))
588 GEPI->eraseFromParent();
589 else
590 cast<ConstantExpr>(GEP)->destroyConstant();
591 }
592
593 // Delete the old global, now that it is dead.
594 Globals.erase(GV);
595 ++NumSRA;
596
597 // Loop over the new globals array deleting any globals that are obviously
598 // dead. This can arise due to scalarization of a structure or an array that
599 // has elements that are dead.
600 unsigned FirstGlobal = 0;
601 for (unsigned i = 0, e = NewGlobals.size(); i != e; ++i)
602 if (NewGlobals[i]->use_empty()) {
603 Globals.erase(NewGlobals[i]);
604 if (FirstGlobal == i) ++FirstGlobal;
605 }
606
607 return FirstGlobal != NewGlobals.size() ? NewGlobals[FirstGlobal] : nullptr;
608 }
609
610 /// Return true if all users of the specified value will trap if the value is
611 /// dynamically null. PHIs keeps track of any phi nodes we've seen to avoid
612 /// reprocessing them.
AllUsesOfValueWillTrapIfNull(const Value * V,SmallPtrSetImpl<const PHINode * > & PHIs)613 static bool AllUsesOfValueWillTrapIfNull(const Value *V,
614 SmallPtrSetImpl<const PHINode*> &PHIs) {
615 for (const User *U : V->users()) {
616 if (const Instruction *I = dyn_cast<Instruction>(U)) {
617 // If null pointer is considered valid, then all uses are non-trapping.
618 // Non address-space 0 globals have already been pruned by the caller.
619 if (NullPointerIsDefined(I->getFunction()))
620 return false;
621 }
622 if (isa<LoadInst>(U)) {
623 // Will trap.
624 } else if (const StoreInst *SI = dyn_cast<StoreInst>(U)) {
625 if (SI->getOperand(0) == V) {
626 //cerr << "NONTRAPPING USE: " << *U;
627 return false; // Storing the value.
628 }
629 } else if (const CallInst *CI = dyn_cast<CallInst>(U)) {
630 if (CI->getCalledValue() != V) {
631 //cerr << "NONTRAPPING USE: " << *U;
632 return false; // Not calling the ptr
633 }
634 } else if (const InvokeInst *II = dyn_cast<InvokeInst>(U)) {
635 if (II->getCalledValue() != V) {
636 //cerr << "NONTRAPPING USE: " << *U;
637 return false; // Not calling the ptr
638 }
639 } else if (const BitCastInst *CI = dyn_cast<BitCastInst>(U)) {
640 if (!AllUsesOfValueWillTrapIfNull(CI, PHIs)) return false;
641 } else if (const GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(U)) {
642 if (!AllUsesOfValueWillTrapIfNull(GEPI, PHIs)) return false;
643 } else if (const PHINode *PN = dyn_cast<PHINode>(U)) {
644 // If we've already seen this phi node, ignore it, it has already been
645 // checked.
646 if (PHIs.insert(PN).second && !AllUsesOfValueWillTrapIfNull(PN, PHIs))
647 return false;
648 } else if (isa<ICmpInst>(U) &&
649 isa<ConstantPointerNull>(U->getOperand(1))) {
650 // Ignore icmp X, null
651 } else {
652 //cerr << "NONTRAPPING USE: " << *U;
653 return false;
654 }
655 }
656 return true;
657 }
658
659 /// Return true if all uses of any loads from GV will trap if the loaded value
660 /// is null. Note that this also permits comparisons of the loaded value
661 /// against null, as a special case.
AllUsesOfLoadedValueWillTrapIfNull(const GlobalVariable * GV)662 static bool AllUsesOfLoadedValueWillTrapIfNull(const GlobalVariable *GV) {
663 for (const User *U : GV->users())
664 if (const LoadInst *LI = dyn_cast<LoadInst>(U)) {
665 SmallPtrSet<const PHINode*, 8> PHIs;
666 if (!AllUsesOfValueWillTrapIfNull(LI, PHIs))
667 return false;
668 } else if (isa<StoreInst>(U)) {
669 // Ignore stores to the global.
670 } else {
671 // We don't know or understand this user, bail out.
672 //cerr << "UNKNOWN USER OF GLOBAL!: " << *U;
673 return false;
674 }
675 return true;
676 }
677
OptimizeAwayTrappingUsesOfValue(Value * V,Constant * NewV)678 static bool OptimizeAwayTrappingUsesOfValue(Value *V, Constant *NewV) {
679 bool Changed = false;
680 for (auto UI = V->user_begin(), E = V->user_end(); UI != E; ) {
681 Instruction *I = cast<Instruction>(*UI++);
682 // Uses are non-trapping if null pointer is considered valid.
683 // Non address-space 0 globals are already pruned by the caller.
684 if (NullPointerIsDefined(I->getFunction()))
685 return false;
686 if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
687 LI->setOperand(0, NewV);
688 Changed = true;
689 } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
690 if (SI->getOperand(1) == V) {
691 SI->setOperand(1, NewV);
692 Changed = true;
693 }
694 } else if (isa<CallInst>(I) || isa<InvokeInst>(I)) {
695 CallSite CS(I);
696 if (CS.getCalledValue() == V) {
697 // Calling through the pointer! Turn into a direct call, but be careful
698 // that the pointer is not also being passed as an argument.
699 CS.setCalledFunction(NewV);
700 Changed = true;
701 bool PassedAsArg = false;
702 for (unsigned i = 0, e = CS.arg_size(); i != e; ++i)
703 if (CS.getArgument(i) == V) {
704 PassedAsArg = true;
705 CS.setArgument(i, NewV);
706 }
707
708 if (PassedAsArg) {
709 // Being passed as an argument also. Be careful to not invalidate UI!
710 UI = V->user_begin();
711 }
712 }
713 } else if (CastInst *CI = dyn_cast<CastInst>(I)) {
714 Changed |= OptimizeAwayTrappingUsesOfValue(CI,
715 ConstantExpr::getCast(CI->getOpcode(),
716 NewV, CI->getType()));
717 if (CI->use_empty()) {
718 Changed = true;
719 CI->eraseFromParent();
720 }
721 } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) {
722 // Should handle GEP here.
723 SmallVector<Constant*, 8> Idxs;
724 Idxs.reserve(GEPI->getNumOperands()-1);
725 for (User::op_iterator i = GEPI->op_begin() + 1, e = GEPI->op_end();
726 i != e; ++i)
727 if (Constant *C = dyn_cast<Constant>(*i))
728 Idxs.push_back(C);
729 else
730 break;
731 if (Idxs.size() == GEPI->getNumOperands()-1)
732 Changed |= OptimizeAwayTrappingUsesOfValue(
733 GEPI, ConstantExpr::getGetElementPtr(nullptr, NewV, Idxs));
734 if (GEPI->use_empty()) {
735 Changed = true;
736 GEPI->eraseFromParent();
737 }
738 }
739 }
740
741 return Changed;
742 }
743
744 /// The specified global has only one non-null value stored into it. If there
745 /// are uses of the loaded value that would trap if the loaded value is
746 /// dynamically null, then we know that they cannot be reachable with a null
747 /// optimize away the load.
OptimizeAwayTrappingUsesOfLoads(GlobalVariable * GV,Constant * LV,const DataLayout & DL,TargetLibraryInfo * TLI)748 static bool OptimizeAwayTrappingUsesOfLoads(GlobalVariable *GV, Constant *LV,
749 const DataLayout &DL,
750 TargetLibraryInfo *TLI) {
751 bool Changed = false;
752
753 // Keep track of whether we are able to remove all the uses of the global
754 // other than the store that defines it.
755 bool AllNonStoreUsesGone = true;
756
757 // Replace all uses of loads with uses of uses of the stored value.
758 for (Value::user_iterator GUI = GV->user_begin(), E = GV->user_end(); GUI != E;){
759 User *GlobalUser = *GUI++;
760 if (LoadInst *LI = dyn_cast<LoadInst>(GlobalUser)) {
761 Changed |= OptimizeAwayTrappingUsesOfValue(LI, LV);
762 // If we were able to delete all uses of the loads
763 if (LI->use_empty()) {
764 LI->eraseFromParent();
765 Changed = true;
766 } else {
767 AllNonStoreUsesGone = false;
768 }
769 } else if (isa<StoreInst>(GlobalUser)) {
770 // Ignore the store that stores "LV" to the global.
771 assert(GlobalUser->getOperand(1) == GV &&
772 "Must be storing *to* the global");
773 } else {
774 AllNonStoreUsesGone = false;
775
776 // If we get here we could have other crazy uses that are transitively
777 // loaded.
778 assert((isa<PHINode>(GlobalUser) || isa<SelectInst>(GlobalUser) ||
779 isa<ConstantExpr>(GlobalUser) || isa<CmpInst>(GlobalUser) ||
780 isa<BitCastInst>(GlobalUser) ||
781 isa<GetElementPtrInst>(GlobalUser)) &&
782 "Only expect load and stores!");
783 }
784 }
785
786 if (Changed) {
787 LLVM_DEBUG(dbgs() << "OPTIMIZED LOADS FROM STORED ONCE POINTER: " << *GV
788 << "\n");
789 ++NumGlobUses;
790 }
791
792 // If we nuked all of the loads, then none of the stores are needed either,
793 // nor is the global.
794 if (AllNonStoreUsesGone) {
795 if (isLeakCheckerRoot(GV)) {
796 Changed |= CleanupPointerRootUsers(GV, TLI);
797 } else {
798 Changed = true;
799 CleanupConstantGlobalUsers(GV, nullptr, DL, TLI);
800 }
801 if (GV->use_empty()) {
802 LLVM_DEBUG(dbgs() << " *** GLOBAL NOW DEAD!\n");
803 Changed = true;
804 GV->eraseFromParent();
805 ++NumDeleted;
806 }
807 }
808 return Changed;
809 }
810
811 /// Walk the use list of V, constant folding all of the instructions that are
812 /// foldable.
ConstantPropUsersOf(Value * V,const DataLayout & DL,TargetLibraryInfo * TLI)813 static void ConstantPropUsersOf(Value *V, const DataLayout &DL,
814 TargetLibraryInfo *TLI) {
815 for (Value::user_iterator UI = V->user_begin(), E = V->user_end(); UI != E; )
816 if (Instruction *I = dyn_cast<Instruction>(*UI++))
817 if (Constant *NewC = ConstantFoldInstruction(I, DL, TLI)) {
818 I->replaceAllUsesWith(NewC);
819
820 // Advance UI to the next non-I use to avoid invalidating it!
821 // Instructions could multiply use V.
822 while (UI != E && *UI == I)
823 ++UI;
824 if (isInstructionTriviallyDead(I, TLI))
825 I->eraseFromParent();
826 }
827 }
828
829 /// This function takes the specified global variable, and transforms the
830 /// program as if it always contained the result of the specified malloc.
831 /// Because it is always the result of the specified malloc, there is no reason
832 /// to actually DO the malloc. Instead, turn the malloc into a global, and any
833 /// loads of GV as uses of the new global.
834 static GlobalVariable *
OptimizeGlobalAddressOfMalloc(GlobalVariable * GV,CallInst * CI,Type * AllocTy,ConstantInt * NElements,const DataLayout & DL,TargetLibraryInfo * TLI)835 OptimizeGlobalAddressOfMalloc(GlobalVariable *GV, CallInst *CI, Type *AllocTy,
836 ConstantInt *NElements, const DataLayout &DL,
837 TargetLibraryInfo *TLI) {
838 LLVM_DEBUG(errs() << "PROMOTING GLOBAL: " << *GV << " CALL = " << *CI
839 << '\n');
840
841 Type *GlobalType;
842 if (NElements->getZExtValue() == 1)
843 GlobalType = AllocTy;
844 else
845 // If we have an array allocation, the global variable is of an array.
846 GlobalType = ArrayType::get(AllocTy, NElements->getZExtValue());
847
848 // Create the new global variable. The contents of the malloc'd memory is
849 // undefined, so initialize with an undef value.
850 GlobalVariable *NewGV = new GlobalVariable(
851 *GV->getParent(), GlobalType, false, GlobalValue::InternalLinkage,
852 UndefValue::get(GlobalType), GV->getName() + ".body", nullptr,
853 GV->getThreadLocalMode());
854
855 // If there are bitcast users of the malloc (which is typical, usually we have
856 // a malloc + bitcast) then replace them with uses of the new global. Update
857 // other users to use the global as well.
858 BitCastInst *TheBC = nullptr;
859 while (!CI->use_empty()) {
860 Instruction *User = cast<Instruction>(CI->user_back());
861 if (BitCastInst *BCI = dyn_cast<BitCastInst>(User)) {
862 if (BCI->getType() == NewGV->getType()) {
863 BCI->replaceAllUsesWith(NewGV);
864 BCI->eraseFromParent();
865 } else {
866 BCI->setOperand(0, NewGV);
867 }
868 } else {
869 if (!TheBC)
870 TheBC = new BitCastInst(NewGV, CI->getType(), "newgv", CI);
871 User->replaceUsesOfWith(CI, TheBC);
872 }
873 }
874
875 Constant *RepValue = NewGV;
876 if (NewGV->getType() != GV->getValueType())
877 RepValue = ConstantExpr::getBitCast(RepValue, GV->getValueType());
878
879 // If there is a comparison against null, we will insert a global bool to
880 // keep track of whether the global was initialized yet or not.
881 GlobalVariable *InitBool =
882 new GlobalVariable(Type::getInt1Ty(GV->getContext()), false,
883 GlobalValue::InternalLinkage,
884 ConstantInt::getFalse(GV->getContext()),
885 GV->getName()+".init", GV->getThreadLocalMode());
886 bool InitBoolUsed = false;
887
888 // Loop over all uses of GV, processing them in turn.
889 while (!GV->use_empty()) {
890 if (StoreInst *SI = dyn_cast<StoreInst>(GV->user_back())) {
891 // The global is initialized when the store to it occurs.
892 new StoreInst(ConstantInt::getTrue(GV->getContext()), InitBool, false, 0,
893 SI->getOrdering(), SI->getSyncScopeID(), SI);
894 SI->eraseFromParent();
895 continue;
896 }
897
898 LoadInst *LI = cast<LoadInst>(GV->user_back());
899 while (!LI->use_empty()) {
900 Use &LoadUse = *LI->use_begin();
901 ICmpInst *ICI = dyn_cast<ICmpInst>(LoadUse.getUser());
902 if (!ICI) {
903 LoadUse = RepValue;
904 continue;
905 }
906
907 // Replace the cmp X, 0 with a use of the bool value.
908 // Sink the load to where the compare was, if atomic rules allow us to.
909 Value *LV = new LoadInst(InitBool, InitBool->getName()+".val", false, 0,
910 LI->getOrdering(), LI->getSyncScopeID(),
911 LI->isUnordered() ? (Instruction*)ICI : LI);
912 InitBoolUsed = true;
913 switch (ICI->getPredicate()) {
914 default: llvm_unreachable("Unknown ICmp Predicate!");
915 case ICmpInst::ICMP_ULT:
916 case ICmpInst::ICMP_SLT: // X < null -> always false
917 LV = ConstantInt::getFalse(GV->getContext());
918 break;
919 case ICmpInst::ICMP_ULE:
920 case ICmpInst::ICMP_SLE:
921 case ICmpInst::ICMP_EQ:
922 LV = BinaryOperator::CreateNot(LV, "notinit", ICI);
923 break;
924 case ICmpInst::ICMP_NE:
925 case ICmpInst::ICMP_UGE:
926 case ICmpInst::ICMP_SGE:
927 case ICmpInst::ICMP_UGT:
928 case ICmpInst::ICMP_SGT:
929 break; // no change.
930 }
931 ICI->replaceAllUsesWith(LV);
932 ICI->eraseFromParent();
933 }
934 LI->eraseFromParent();
935 }
936
937 // If the initialization boolean was used, insert it, otherwise delete it.
938 if (!InitBoolUsed) {
939 while (!InitBool->use_empty()) // Delete initializations
940 cast<StoreInst>(InitBool->user_back())->eraseFromParent();
941 delete InitBool;
942 } else
943 GV->getParent()->getGlobalList().insert(GV->getIterator(), InitBool);
944
945 // Now the GV is dead, nuke it and the malloc..
946 GV->eraseFromParent();
947 CI->eraseFromParent();
948
949 // To further other optimizations, loop over all users of NewGV and try to
950 // constant prop them. This will promote GEP instructions with constant
951 // indices into GEP constant-exprs, which will allow global-opt to hack on it.
952 ConstantPropUsersOf(NewGV, DL, TLI);
953 if (RepValue != NewGV)
954 ConstantPropUsersOf(RepValue, DL, TLI);
955
956 return NewGV;
957 }
958
959 /// Scan the use-list of V checking to make sure that there are no complex uses
960 /// of V. We permit simple things like dereferencing the pointer, but not
961 /// storing through the address, unless it is to the specified global.
ValueIsOnlyUsedLocallyOrStoredToOneGlobal(const Instruction * V,const GlobalVariable * GV,SmallPtrSetImpl<const PHINode * > & PHIs)962 static bool ValueIsOnlyUsedLocallyOrStoredToOneGlobal(const Instruction *V,
963 const GlobalVariable *GV,
964 SmallPtrSetImpl<const PHINode*> &PHIs) {
965 for (const User *U : V->users()) {
966 const Instruction *Inst = cast<Instruction>(U);
967
968 if (isa<LoadInst>(Inst) || isa<CmpInst>(Inst)) {
969 continue; // Fine, ignore.
970 }
971
972 if (const StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
973 if (SI->getOperand(0) == V && SI->getOperand(1) != GV)
974 return false; // Storing the pointer itself... bad.
975 continue; // Otherwise, storing through it, or storing into GV... fine.
976 }
977
978 // Must index into the array and into the struct.
979 if (isa<GetElementPtrInst>(Inst) && Inst->getNumOperands() >= 3) {
980 if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(Inst, GV, PHIs))
981 return false;
982 continue;
983 }
984
985 if (const PHINode *PN = dyn_cast<PHINode>(Inst)) {
986 // PHIs are ok if all uses are ok. Don't infinitely recurse through PHI
987 // cycles.
988 if (PHIs.insert(PN).second)
989 if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(PN, GV, PHIs))
990 return false;
991 continue;
992 }
993
994 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Inst)) {
995 if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(BCI, GV, PHIs))
996 return false;
997 continue;
998 }
999
1000 return false;
1001 }
1002 return true;
1003 }
1004
1005 /// The Alloc pointer is stored into GV somewhere. Transform all uses of the
1006 /// allocation into loads from the global and uses of the resultant pointer.
1007 /// Further, delete the store into GV. This assumes that these value pass the
1008 /// 'ValueIsOnlyUsedLocallyOrStoredToOneGlobal' predicate.
ReplaceUsesOfMallocWithGlobal(Instruction * Alloc,GlobalVariable * GV)1009 static void ReplaceUsesOfMallocWithGlobal(Instruction *Alloc,
1010 GlobalVariable *GV) {
1011 while (!Alloc->use_empty()) {
1012 Instruction *U = cast<Instruction>(*Alloc->user_begin());
1013 Instruction *InsertPt = U;
1014 if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
1015 // If this is the store of the allocation into the global, remove it.
1016 if (SI->getOperand(1) == GV) {
1017 SI->eraseFromParent();
1018 continue;
1019 }
1020 } else if (PHINode *PN = dyn_cast<PHINode>(U)) {
1021 // Insert the load in the corresponding predecessor, not right before the
1022 // PHI.
1023 InsertPt = PN->getIncomingBlock(*Alloc->use_begin())->getTerminator();
1024 } else if (isa<BitCastInst>(U)) {
1025 // Must be bitcast between the malloc and store to initialize the global.
1026 ReplaceUsesOfMallocWithGlobal(U, GV);
1027 U->eraseFromParent();
1028 continue;
1029 } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(U)) {
1030 // If this is a "GEP bitcast" and the user is a store to the global, then
1031 // just process it as a bitcast.
1032 if (GEPI->hasAllZeroIndices() && GEPI->hasOneUse())
1033 if (StoreInst *SI = dyn_cast<StoreInst>(GEPI->user_back()))
1034 if (SI->getOperand(1) == GV) {
1035 // Must be bitcast GEP between the malloc and store to initialize
1036 // the global.
1037 ReplaceUsesOfMallocWithGlobal(GEPI, GV);
1038 GEPI->eraseFromParent();
1039 continue;
1040 }
1041 }
1042
1043 // Insert a load from the global, and use it instead of the malloc.
1044 Value *NL = new LoadInst(GV, GV->getName()+".val", InsertPt);
1045 U->replaceUsesOfWith(Alloc, NL);
1046 }
1047 }
1048
1049 /// Verify that all uses of V (a load, or a phi of a load) are simple enough to
1050 /// perform heap SRA on. This permits GEP's that index through the array and
1051 /// struct field, icmps of null, and PHIs.
LoadUsesSimpleEnoughForHeapSRA(const Value * V,SmallPtrSetImpl<const PHINode * > & LoadUsingPHIs,SmallPtrSetImpl<const PHINode * > & LoadUsingPHIsPerLoad)1052 static bool LoadUsesSimpleEnoughForHeapSRA(const Value *V,
1053 SmallPtrSetImpl<const PHINode*> &LoadUsingPHIs,
1054 SmallPtrSetImpl<const PHINode*> &LoadUsingPHIsPerLoad) {
1055 // We permit two users of the load: setcc comparing against the null
1056 // pointer, and a getelementptr of a specific form.
1057 for (const User *U : V->users()) {
1058 const Instruction *UI = cast<Instruction>(U);
1059
1060 // Comparison against null is ok.
1061 if (const ICmpInst *ICI = dyn_cast<ICmpInst>(UI)) {
1062 if (!isa<ConstantPointerNull>(ICI->getOperand(1)))
1063 return false;
1064 continue;
1065 }
1066
1067 // getelementptr is also ok, but only a simple form.
1068 if (const GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(UI)) {
1069 // Must index into the array and into the struct.
1070 if (GEPI->getNumOperands() < 3)
1071 return false;
1072
1073 // Otherwise the GEP is ok.
1074 continue;
1075 }
1076
1077 if (const PHINode *PN = dyn_cast<PHINode>(UI)) {
1078 if (!LoadUsingPHIsPerLoad.insert(PN).second)
1079 // This means some phi nodes are dependent on each other.
1080 // Avoid infinite looping!
1081 return false;
1082 if (!LoadUsingPHIs.insert(PN).second)
1083 // If we have already analyzed this PHI, then it is safe.
1084 continue;
1085
1086 // Make sure all uses of the PHI are simple enough to transform.
1087 if (!LoadUsesSimpleEnoughForHeapSRA(PN,
1088 LoadUsingPHIs, LoadUsingPHIsPerLoad))
1089 return false;
1090
1091 continue;
1092 }
1093
1094 // Otherwise we don't know what this is, not ok.
1095 return false;
1096 }
1097
1098 return true;
1099 }
1100
1101 /// If all users of values loaded from GV are simple enough to perform HeapSRA,
1102 /// return true.
AllGlobalLoadUsesSimpleEnoughForHeapSRA(const GlobalVariable * GV,Instruction * StoredVal)1103 static bool AllGlobalLoadUsesSimpleEnoughForHeapSRA(const GlobalVariable *GV,
1104 Instruction *StoredVal) {
1105 SmallPtrSet<const PHINode*, 32> LoadUsingPHIs;
1106 SmallPtrSet<const PHINode*, 32> LoadUsingPHIsPerLoad;
1107 for (const User *U : GV->users())
1108 if (const LoadInst *LI = dyn_cast<LoadInst>(U)) {
1109 if (!LoadUsesSimpleEnoughForHeapSRA(LI, LoadUsingPHIs,
1110 LoadUsingPHIsPerLoad))
1111 return false;
1112 LoadUsingPHIsPerLoad.clear();
1113 }
1114
1115 // If we reach here, we know that all uses of the loads and transitive uses
1116 // (through PHI nodes) are simple enough to transform. However, we don't know
1117 // that all inputs the to the PHI nodes are in the same equivalence sets.
1118 // Check to verify that all operands of the PHIs are either PHIS that can be
1119 // transformed, loads from GV, or MI itself.
1120 for (const PHINode *PN : LoadUsingPHIs) {
1121 for (unsigned op = 0, e = PN->getNumIncomingValues(); op != e; ++op) {
1122 Value *InVal = PN->getIncomingValue(op);
1123
1124 // PHI of the stored value itself is ok.
1125 if (InVal == StoredVal) continue;
1126
1127 if (const PHINode *InPN = dyn_cast<PHINode>(InVal)) {
1128 // One of the PHIs in our set is (optimistically) ok.
1129 if (LoadUsingPHIs.count(InPN))
1130 continue;
1131 return false;
1132 }
1133
1134 // Load from GV is ok.
1135 if (const LoadInst *LI = dyn_cast<LoadInst>(InVal))
1136 if (LI->getOperand(0) == GV)
1137 continue;
1138
1139 // UNDEF? NULL?
1140
1141 // Anything else is rejected.
1142 return false;
1143 }
1144 }
1145
1146 return true;
1147 }
1148
GetHeapSROAValue(Value * V,unsigned FieldNo,DenseMap<Value *,std::vector<Value * >> & InsertedScalarizedValues,std::vector<std::pair<PHINode *,unsigned>> & PHIsToRewrite)1149 static Value *GetHeapSROAValue(Value *V, unsigned FieldNo,
1150 DenseMap<Value *, std::vector<Value *>> &InsertedScalarizedValues,
1151 std::vector<std::pair<PHINode *, unsigned>> &PHIsToRewrite) {
1152 std::vector<Value *> &FieldVals = InsertedScalarizedValues[V];
1153
1154 if (FieldNo >= FieldVals.size())
1155 FieldVals.resize(FieldNo+1);
1156
1157 // If we already have this value, just reuse the previously scalarized
1158 // version.
1159 if (Value *FieldVal = FieldVals[FieldNo])
1160 return FieldVal;
1161
1162 // Depending on what instruction this is, we have several cases.
1163 Value *Result;
1164 if (LoadInst *LI = dyn_cast<LoadInst>(V)) {
1165 // This is a scalarized version of the load from the global. Just create
1166 // a new Load of the scalarized global.
1167 Result = new LoadInst(GetHeapSROAValue(LI->getOperand(0), FieldNo,
1168 InsertedScalarizedValues,
1169 PHIsToRewrite),
1170 LI->getName()+".f"+Twine(FieldNo), LI);
1171 } else {
1172 PHINode *PN = cast<PHINode>(V);
1173 // PN's type is pointer to struct. Make a new PHI of pointer to struct
1174 // field.
1175
1176 PointerType *PTy = cast<PointerType>(PN->getType());
1177 StructType *ST = cast<StructType>(PTy->getElementType());
1178
1179 unsigned AS = PTy->getAddressSpace();
1180 PHINode *NewPN =
1181 PHINode::Create(PointerType::get(ST->getElementType(FieldNo), AS),
1182 PN->getNumIncomingValues(),
1183 PN->getName()+".f"+Twine(FieldNo), PN);
1184 Result = NewPN;
1185 PHIsToRewrite.push_back(std::make_pair(PN, FieldNo));
1186 }
1187
1188 return FieldVals[FieldNo] = Result;
1189 }
1190
1191 /// Given a load instruction and a value derived from the load, rewrite the
1192 /// derived value to use the HeapSRoA'd load.
RewriteHeapSROALoadUser(Instruction * LoadUser,DenseMap<Value *,std::vector<Value * >> & InsertedScalarizedValues,std::vector<std::pair<PHINode *,unsigned>> & PHIsToRewrite)1193 static void RewriteHeapSROALoadUser(Instruction *LoadUser,
1194 DenseMap<Value *, std::vector<Value *>> &InsertedScalarizedValues,
1195 std::vector<std::pair<PHINode *, unsigned>> &PHIsToRewrite) {
1196 // If this is a comparison against null, handle it.
1197 if (ICmpInst *SCI = dyn_cast<ICmpInst>(LoadUser)) {
1198 assert(isa<ConstantPointerNull>(SCI->getOperand(1)));
1199 // If we have a setcc of the loaded pointer, we can use a setcc of any
1200 // field.
1201 Value *NPtr = GetHeapSROAValue(SCI->getOperand(0), 0,
1202 InsertedScalarizedValues, PHIsToRewrite);
1203
1204 Value *New = new ICmpInst(SCI, SCI->getPredicate(), NPtr,
1205 Constant::getNullValue(NPtr->getType()),
1206 SCI->getName());
1207 SCI->replaceAllUsesWith(New);
1208 SCI->eraseFromParent();
1209 return;
1210 }
1211
1212 // Handle 'getelementptr Ptr, Idx, i32 FieldNo ...'
1213 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(LoadUser)) {
1214 assert(GEPI->getNumOperands() >= 3 && isa<ConstantInt>(GEPI->getOperand(2))
1215 && "Unexpected GEPI!");
1216
1217 // Load the pointer for this field.
1218 unsigned FieldNo = cast<ConstantInt>(GEPI->getOperand(2))->getZExtValue();
1219 Value *NewPtr = GetHeapSROAValue(GEPI->getOperand(0), FieldNo,
1220 InsertedScalarizedValues, PHIsToRewrite);
1221
1222 // Create the new GEP idx vector.
1223 SmallVector<Value*, 8> GEPIdx;
1224 GEPIdx.push_back(GEPI->getOperand(1));
1225 GEPIdx.append(GEPI->op_begin()+3, GEPI->op_end());
1226
1227 Value *NGEPI = GetElementPtrInst::Create(GEPI->getResultElementType(), NewPtr, GEPIdx,
1228 GEPI->getName(), GEPI);
1229 GEPI->replaceAllUsesWith(NGEPI);
1230 GEPI->eraseFromParent();
1231 return;
1232 }
1233
1234 // Recursively transform the users of PHI nodes. This will lazily create the
1235 // PHIs that are needed for individual elements. Keep track of what PHIs we
1236 // see in InsertedScalarizedValues so that we don't get infinite loops (very
1237 // antisocial). If the PHI is already in InsertedScalarizedValues, it has
1238 // already been seen first by another load, so its uses have already been
1239 // processed.
1240 PHINode *PN = cast<PHINode>(LoadUser);
1241 if (!InsertedScalarizedValues.insert(std::make_pair(PN,
1242 std::vector<Value *>())).second)
1243 return;
1244
1245 // If this is the first time we've seen this PHI, recursively process all
1246 // users.
1247 for (auto UI = PN->user_begin(), E = PN->user_end(); UI != E;) {
1248 Instruction *User = cast<Instruction>(*UI++);
1249 RewriteHeapSROALoadUser(User, InsertedScalarizedValues, PHIsToRewrite);
1250 }
1251 }
1252
1253 /// We are performing Heap SRoA on a global. Ptr is a value loaded from the
1254 /// global. Eliminate all uses of Ptr, making them use FieldGlobals instead.
1255 /// All uses of loaded values satisfy AllGlobalLoadUsesSimpleEnoughForHeapSRA.
RewriteUsesOfLoadForHeapSRoA(LoadInst * Load,DenseMap<Value *,std::vector<Value * >> & InsertedScalarizedValues,std::vector<std::pair<PHINode *,unsigned>> & PHIsToRewrite)1256 static void RewriteUsesOfLoadForHeapSRoA(LoadInst *Load,
1257 DenseMap<Value *, std::vector<Value *>> &InsertedScalarizedValues,
1258 std::vector<std::pair<PHINode *, unsigned> > &PHIsToRewrite) {
1259 for (auto UI = Load->user_begin(), E = Load->user_end(); UI != E;) {
1260 Instruction *User = cast<Instruction>(*UI++);
1261 RewriteHeapSROALoadUser(User, InsertedScalarizedValues, PHIsToRewrite);
1262 }
1263
1264 if (Load->use_empty()) {
1265 Load->eraseFromParent();
1266 InsertedScalarizedValues.erase(Load);
1267 }
1268 }
1269
1270 /// CI is an allocation of an array of structures. Break it up into multiple
1271 /// allocations of arrays of the fields.
PerformHeapAllocSRoA(GlobalVariable * GV,CallInst * CI,Value * NElems,const DataLayout & DL,const TargetLibraryInfo * TLI)1272 static GlobalVariable *PerformHeapAllocSRoA(GlobalVariable *GV, CallInst *CI,
1273 Value *NElems, const DataLayout &DL,
1274 const TargetLibraryInfo *TLI) {
1275 LLVM_DEBUG(dbgs() << "SROA HEAP ALLOC: " << *GV << " MALLOC = " << *CI
1276 << '\n');
1277 Type *MAT = getMallocAllocatedType(CI, TLI);
1278 StructType *STy = cast<StructType>(MAT);
1279
1280 // There is guaranteed to be at least one use of the malloc (storing
1281 // it into GV). If there are other uses, change them to be uses of
1282 // the global to simplify later code. This also deletes the store
1283 // into GV.
1284 ReplaceUsesOfMallocWithGlobal(CI, GV);
1285
1286 // Okay, at this point, there are no users of the malloc. Insert N
1287 // new mallocs at the same place as CI, and N globals.
1288 std::vector<Value *> FieldGlobals;
1289 std::vector<Value *> FieldMallocs;
1290
1291 SmallVector<OperandBundleDef, 1> OpBundles;
1292 CI->getOperandBundlesAsDefs(OpBundles);
1293
1294 unsigned AS = GV->getType()->getPointerAddressSpace();
1295 for (unsigned FieldNo = 0, e = STy->getNumElements(); FieldNo != e;++FieldNo){
1296 Type *FieldTy = STy->getElementType(FieldNo);
1297 PointerType *PFieldTy = PointerType::get(FieldTy, AS);
1298
1299 GlobalVariable *NGV = new GlobalVariable(
1300 *GV->getParent(), PFieldTy, false, GlobalValue::InternalLinkage,
1301 Constant::getNullValue(PFieldTy), GV->getName() + ".f" + Twine(FieldNo),
1302 nullptr, GV->getThreadLocalMode());
1303 NGV->copyAttributesFrom(GV);
1304 FieldGlobals.push_back(NGV);
1305
1306 unsigned TypeSize = DL.getTypeAllocSize(FieldTy);
1307 if (StructType *ST = dyn_cast<StructType>(FieldTy))
1308 TypeSize = DL.getStructLayout(ST)->getSizeInBytes();
1309 Type *IntPtrTy = DL.getIntPtrType(CI->getType());
1310 Value *NMI = CallInst::CreateMalloc(CI, IntPtrTy, FieldTy,
1311 ConstantInt::get(IntPtrTy, TypeSize),
1312 NElems, OpBundles, nullptr,
1313 CI->getName() + ".f" + Twine(FieldNo));
1314 FieldMallocs.push_back(NMI);
1315 new StoreInst(NMI, NGV, CI);
1316 }
1317
1318 // The tricky aspect of this transformation is handling the case when malloc
1319 // fails. In the original code, malloc failing would set the result pointer
1320 // of malloc to null. In this case, some mallocs could succeed and others
1321 // could fail. As such, we emit code that looks like this:
1322 // F0 = malloc(field0)
1323 // F1 = malloc(field1)
1324 // F2 = malloc(field2)
1325 // if (F0 == 0 || F1 == 0 || F2 == 0) {
1326 // if (F0) { free(F0); F0 = 0; }
1327 // if (F1) { free(F1); F1 = 0; }
1328 // if (F2) { free(F2); F2 = 0; }
1329 // }
1330 // The malloc can also fail if its argument is too large.
1331 Constant *ConstantZero = ConstantInt::get(CI->getArgOperand(0)->getType(), 0);
1332 Value *RunningOr = new ICmpInst(CI, ICmpInst::ICMP_SLT, CI->getArgOperand(0),
1333 ConstantZero, "isneg");
1334 for (unsigned i = 0, e = FieldMallocs.size(); i != e; ++i) {
1335 Value *Cond = new ICmpInst(CI, ICmpInst::ICMP_EQ, FieldMallocs[i],
1336 Constant::getNullValue(FieldMallocs[i]->getType()),
1337 "isnull");
1338 RunningOr = BinaryOperator::CreateOr(RunningOr, Cond, "tmp", CI);
1339 }
1340
1341 // Split the basic block at the old malloc.
1342 BasicBlock *OrigBB = CI->getParent();
1343 BasicBlock *ContBB =
1344 OrigBB->splitBasicBlock(CI->getIterator(), "malloc_cont");
1345
1346 // Create the block to check the first condition. Put all these blocks at the
1347 // end of the function as they are unlikely to be executed.
1348 BasicBlock *NullPtrBlock = BasicBlock::Create(OrigBB->getContext(),
1349 "malloc_ret_null",
1350 OrigBB->getParent());
1351
1352 // Remove the uncond branch from OrigBB to ContBB, turning it into a cond
1353 // branch on RunningOr.
1354 OrigBB->getTerminator()->eraseFromParent();
1355 BranchInst::Create(NullPtrBlock, ContBB, RunningOr, OrigBB);
1356
1357 // Within the NullPtrBlock, we need to emit a comparison and branch for each
1358 // pointer, because some may be null while others are not.
1359 for (unsigned i = 0, e = FieldGlobals.size(); i != e; ++i) {
1360 Value *GVVal = new LoadInst(FieldGlobals[i], "tmp", NullPtrBlock);
1361 Value *Cmp = new ICmpInst(*NullPtrBlock, ICmpInst::ICMP_NE, GVVal,
1362 Constant::getNullValue(GVVal->getType()));
1363 BasicBlock *FreeBlock = BasicBlock::Create(Cmp->getContext(), "free_it",
1364 OrigBB->getParent());
1365 BasicBlock *NextBlock = BasicBlock::Create(Cmp->getContext(), "next",
1366 OrigBB->getParent());
1367 Instruction *BI = BranchInst::Create(FreeBlock, NextBlock,
1368 Cmp, NullPtrBlock);
1369
1370 // Fill in FreeBlock.
1371 CallInst::CreateFree(GVVal, OpBundles, BI);
1372 new StoreInst(Constant::getNullValue(GVVal->getType()), FieldGlobals[i],
1373 FreeBlock);
1374 BranchInst::Create(NextBlock, FreeBlock);
1375
1376 NullPtrBlock = NextBlock;
1377 }
1378
1379 BranchInst::Create(ContBB, NullPtrBlock);
1380
1381 // CI is no longer needed, remove it.
1382 CI->eraseFromParent();
1383
1384 /// As we process loads, if we can't immediately update all uses of the load,
1385 /// keep track of what scalarized loads are inserted for a given load.
1386 DenseMap<Value *, std::vector<Value *>> InsertedScalarizedValues;
1387 InsertedScalarizedValues[GV] = FieldGlobals;
1388
1389 std::vector<std::pair<PHINode *, unsigned>> PHIsToRewrite;
1390
1391 // Okay, the malloc site is completely handled. All of the uses of GV are now
1392 // loads, and all uses of those loads are simple. Rewrite them to use loads
1393 // of the per-field globals instead.
1394 for (auto UI = GV->user_begin(), E = GV->user_end(); UI != E;) {
1395 Instruction *User = cast<Instruction>(*UI++);
1396
1397 if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
1398 RewriteUsesOfLoadForHeapSRoA(LI, InsertedScalarizedValues, PHIsToRewrite);
1399 continue;
1400 }
1401
1402 // Must be a store of null.
1403 StoreInst *SI = cast<StoreInst>(User);
1404 assert(isa<ConstantPointerNull>(SI->getOperand(0)) &&
1405 "Unexpected heap-sra user!");
1406
1407 // Insert a store of null into each global.
1408 for (unsigned i = 0, e = FieldGlobals.size(); i != e; ++i) {
1409 Type *ValTy = cast<GlobalValue>(FieldGlobals[i])->getValueType();
1410 Constant *Null = Constant::getNullValue(ValTy);
1411 new StoreInst(Null, FieldGlobals[i], SI);
1412 }
1413 // Erase the original store.
1414 SI->eraseFromParent();
1415 }
1416
1417 // While we have PHIs that are interesting to rewrite, do it.
1418 while (!PHIsToRewrite.empty()) {
1419 PHINode *PN = PHIsToRewrite.back().first;
1420 unsigned FieldNo = PHIsToRewrite.back().second;
1421 PHIsToRewrite.pop_back();
1422 PHINode *FieldPN = cast<PHINode>(InsertedScalarizedValues[PN][FieldNo]);
1423 assert(FieldPN->getNumIncomingValues() == 0 &&"Already processed this phi");
1424
1425 // Add all the incoming values. This can materialize more phis.
1426 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1427 Value *InVal = PN->getIncomingValue(i);
1428 InVal = GetHeapSROAValue(InVal, FieldNo, InsertedScalarizedValues,
1429 PHIsToRewrite);
1430 FieldPN->addIncoming(InVal, PN->getIncomingBlock(i));
1431 }
1432 }
1433
1434 // Drop all inter-phi links and any loads that made it this far.
1435 for (DenseMap<Value *, std::vector<Value *>>::iterator
1436 I = InsertedScalarizedValues.begin(), E = InsertedScalarizedValues.end();
1437 I != E; ++I) {
1438 if (PHINode *PN = dyn_cast<PHINode>(I->first))
1439 PN->dropAllReferences();
1440 else if (LoadInst *LI = dyn_cast<LoadInst>(I->first))
1441 LI->dropAllReferences();
1442 }
1443
1444 // Delete all the phis and loads now that inter-references are dead.
1445 for (DenseMap<Value *, std::vector<Value *>>::iterator
1446 I = InsertedScalarizedValues.begin(), E = InsertedScalarizedValues.end();
1447 I != E; ++I) {
1448 if (PHINode *PN = dyn_cast<PHINode>(I->first))
1449 PN->eraseFromParent();
1450 else if (LoadInst *LI = dyn_cast<LoadInst>(I->first))
1451 LI->eraseFromParent();
1452 }
1453
1454 // The old global is now dead, remove it.
1455 GV->eraseFromParent();
1456
1457 ++NumHeapSRA;
1458 return cast<GlobalVariable>(FieldGlobals[0]);
1459 }
1460
1461 /// This function is called when we see a pointer global variable with a single
1462 /// value stored it that is a malloc or cast of malloc.
tryToOptimizeStoreOfMallocToGlobal(GlobalVariable * GV,CallInst * CI,Type * AllocTy,AtomicOrdering Ordering,const DataLayout & DL,TargetLibraryInfo * TLI)1463 static bool tryToOptimizeStoreOfMallocToGlobal(GlobalVariable *GV, CallInst *CI,
1464 Type *AllocTy,
1465 AtomicOrdering Ordering,
1466 const DataLayout &DL,
1467 TargetLibraryInfo *TLI) {
1468 // If this is a malloc of an abstract type, don't touch it.
1469 if (!AllocTy->isSized())
1470 return false;
1471
1472 // We can't optimize this global unless all uses of it are *known* to be
1473 // of the malloc value, not of the null initializer value (consider a use
1474 // that compares the global's value against zero to see if the malloc has
1475 // been reached). To do this, we check to see if all uses of the global
1476 // would trap if the global were null: this proves that they must all
1477 // happen after the malloc.
1478 if (!AllUsesOfLoadedValueWillTrapIfNull(GV))
1479 return false;
1480
1481 // We can't optimize this if the malloc itself is used in a complex way,
1482 // for example, being stored into multiple globals. This allows the
1483 // malloc to be stored into the specified global, loaded icmp'd, and
1484 // GEP'd. These are all things we could transform to using the global
1485 // for.
1486 SmallPtrSet<const PHINode*, 8> PHIs;
1487 if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(CI, GV, PHIs))
1488 return false;
1489
1490 // If we have a global that is only initialized with a fixed size malloc,
1491 // transform the program to use global memory instead of malloc'd memory.
1492 // This eliminates dynamic allocation, avoids an indirection accessing the
1493 // data, and exposes the resultant global to further GlobalOpt.
1494 // We cannot optimize the malloc if we cannot determine malloc array size.
1495 Value *NElems = getMallocArraySize(CI, DL, TLI, true);
1496 if (!NElems)
1497 return false;
1498
1499 if (ConstantInt *NElements = dyn_cast<ConstantInt>(NElems))
1500 // Restrict this transformation to only working on small allocations
1501 // (2048 bytes currently), as we don't want to introduce a 16M global or
1502 // something.
1503 if (NElements->getZExtValue() * DL.getTypeAllocSize(AllocTy) < 2048) {
1504 OptimizeGlobalAddressOfMalloc(GV, CI, AllocTy, NElements, DL, TLI);
1505 return true;
1506 }
1507
1508 // If the allocation is an array of structures, consider transforming this
1509 // into multiple malloc'd arrays, one for each field. This is basically
1510 // SRoA for malloc'd memory.
1511
1512 if (Ordering != AtomicOrdering::NotAtomic)
1513 return false;
1514
1515 // If this is an allocation of a fixed size array of structs, analyze as a
1516 // variable size array. malloc [100 x struct],1 -> malloc struct, 100
1517 if (NElems == ConstantInt::get(CI->getArgOperand(0)->getType(), 1))
1518 if (ArrayType *AT = dyn_cast<ArrayType>(AllocTy))
1519 AllocTy = AT->getElementType();
1520
1521 StructType *AllocSTy = dyn_cast<StructType>(AllocTy);
1522 if (!AllocSTy)
1523 return false;
1524
1525 // This the structure has an unreasonable number of fields, leave it
1526 // alone.
1527 if (AllocSTy->getNumElements() <= 16 && AllocSTy->getNumElements() != 0 &&
1528 AllGlobalLoadUsesSimpleEnoughForHeapSRA(GV, CI)) {
1529
1530 // If this is a fixed size array, transform the Malloc to be an alloc of
1531 // structs. malloc [100 x struct],1 -> malloc struct, 100
1532 if (ArrayType *AT = dyn_cast<ArrayType>(getMallocAllocatedType(CI, TLI))) {
1533 Type *IntPtrTy = DL.getIntPtrType(CI->getType());
1534 unsigned TypeSize = DL.getStructLayout(AllocSTy)->getSizeInBytes();
1535 Value *AllocSize = ConstantInt::get(IntPtrTy, TypeSize);
1536 Value *NumElements = ConstantInt::get(IntPtrTy, AT->getNumElements());
1537 SmallVector<OperandBundleDef, 1> OpBundles;
1538 CI->getOperandBundlesAsDefs(OpBundles);
1539 Instruction *Malloc =
1540 CallInst::CreateMalloc(CI, IntPtrTy, AllocSTy, AllocSize, NumElements,
1541 OpBundles, nullptr, CI->getName());
1542 Instruction *Cast = new BitCastInst(Malloc, CI->getType(), "tmp", CI);
1543 CI->replaceAllUsesWith(Cast);
1544 CI->eraseFromParent();
1545 if (BitCastInst *BCI = dyn_cast<BitCastInst>(Malloc))
1546 CI = cast<CallInst>(BCI->getOperand(0));
1547 else
1548 CI = cast<CallInst>(Malloc);
1549 }
1550
1551 PerformHeapAllocSRoA(GV, CI, getMallocArraySize(CI, DL, TLI, true), DL,
1552 TLI);
1553 return true;
1554 }
1555
1556 return false;
1557 }
1558
1559 // Try to optimize globals based on the knowledge that only one value (besides
1560 // its initializer) is ever stored to the global.
optimizeOnceStoredGlobal(GlobalVariable * GV,Value * StoredOnceVal,AtomicOrdering Ordering,const DataLayout & DL,TargetLibraryInfo * TLI)1561 static bool optimizeOnceStoredGlobal(GlobalVariable *GV, Value *StoredOnceVal,
1562 AtomicOrdering Ordering,
1563 const DataLayout &DL,
1564 TargetLibraryInfo *TLI) {
1565 // Ignore no-op GEPs and bitcasts.
1566 StoredOnceVal = StoredOnceVal->stripPointerCasts();
1567
1568 // If we are dealing with a pointer global that is initialized to null and
1569 // only has one (non-null) value stored into it, then we can optimize any
1570 // users of the loaded value (often calls and loads) that would trap if the
1571 // value was null.
1572 if (GV->getInitializer()->getType()->isPointerTy() &&
1573 GV->getInitializer()->isNullValue() &&
1574 !NullPointerIsDefined(
1575 nullptr /* F */,
1576 GV->getInitializer()->getType()->getPointerAddressSpace())) {
1577 if (Constant *SOVC = dyn_cast<Constant>(StoredOnceVal)) {
1578 if (GV->getInitializer()->getType() != SOVC->getType())
1579 SOVC = ConstantExpr::getBitCast(SOVC, GV->getInitializer()->getType());
1580
1581 // Optimize away any trapping uses of the loaded value.
1582 if (OptimizeAwayTrappingUsesOfLoads(GV, SOVC, DL, TLI))
1583 return true;
1584 } else if (CallInst *CI = extractMallocCall(StoredOnceVal, TLI)) {
1585 Type *MallocType = getMallocAllocatedType(CI, TLI);
1586 if (MallocType && tryToOptimizeStoreOfMallocToGlobal(GV, CI, MallocType,
1587 Ordering, DL, TLI))
1588 return true;
1589 }
1590 }
1591
1592 return false;
1593 }
1594
1595 /// At this point, we have learned that the only two values ever stored into GV
1596 /// are its initializer and OtherVal. See if we can shrink the global into a
1597 /// boolean and select between the two values whenever it is used. This exposes
1598 /// the values to other scalar optimizations.
TryToShrinkGlobalToBoolean(GlobalVariable * GV,Constant * OtherVal)1599 static bool TryToShrinkGlobalToBoolean(GlobalVariable *GV, Constant *OtherVal) {
1600 Type *GVElType = GV->getValueType();
1601
1602 // If GVElType is already i1, it is already shrunk. If the type of the GV is
1603 // an FP value, pointer or vector, don't do this optimization because a select
1604 // between them is very expensive and unlikely to lead to later
1605 // simplification. In these cases, we typically end up with "cond ? v1 : v2"
1606 // where v1 and v2 both require constant pool loads, a big loss.
1607 if (GVElType == Type::getInt1Ty(GV->getContext()) ||
1608 GVElType->isFloatingPointTy() ||
1609 GVElType->isPointerTy() || GVElType->isVectorTy())
1610 return false;
1611
1612 // Walk the use list of the global seeing if all the uses are load or store.
1613 // If there is anything else, bail out.
1614 for (User *U : GV->users())
1615 if (!isa<LoadInst>(U) && !isa<StoreInst>(U))
1616 return false;
1617
1618 LLVM_DEBUG(dbgs() << " *** SHRINKING TO BOOL: " << *GV << "\n");
1619
1620 // Create the new global, initializing it to false.
1621 GlobalVariable *NewGV = new GlobalVariable(Type::getInt1Ty(GV->getContext()),
1622 false,
1623 GlobalValue::InternalLinkage,
1624 ConstantInt::getFalse(GV->getContext()),
1625 GV->getName()+".b",
1626 GV->getThreadLocalMode(),
1627 GV->getType()->getAddressSpace());
1628 NewGV->copyAttributesFrom(GV);
1629 GV->getParent()->getGlobalList().insert(GV->getIterator(), NewGV);
1630
1631 Constant *InitVal = GV->getInitializer();
1632 assert(InitVal->getType() != Type::getInt1Ty(GV->getContext()) &&
1633 "No reason to shrink to bool!");
1634
1635 SmallVector<DIGlobalVariableExpression *, 1> GVs;
1636 GV->getDebugInfo(GVs);
1637
1638 // If initialized to zero and storing one into the global, we can use a cast
1639 // instead of a select to synthesize the desired value.
1640 bool IsOneZero = false;
1641 bool EmitOneOrZero = true;
1642 if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)){
1643 IsOneZero = InitVal->isNullValue() && CI->isOne();
1644
1645 if (ConstantInt *CIInit = dyn_cast<ConstantInt>(GV->getInitializer())){
1646 uint64_t ValInit = CIInit->getZExtValue();
1647 uint64_t ValOther = CI->getZExtValue();
1648 uint64_t ValMinus = ValOther - ValInit;
1649
1650 for(auto *GVe : GVs){
1651 DIGlobalVariable *DGV = GVe->getVariable();
1652 DIExpression *E = GVe->getExpression();
1653
1654 // It is expected that the address of global optimized variable is on
1655 // top of the stack. After optimization, value of that variable will
1656 // be ether 0 for initial value or 1 for other value. The following
1657 // expression should return constant integer value depending on the
1658 // value at global object address:
1659 // val * (ValOther - ValInit) + ValInit:
1660 // DW_OP_deref DW_OP_constu <ValMinus>
1661 // DW_OP_mul DW_OP_constu <ValInit> DW_OP_plus DW_OP_stack_value
1662 SmallVector<uint64_t, 12> Ops = {
1663 dwarf::DW_OP_deref, dwarf::DW_OP_constu, ValMinus,
1664 dwarf::DW_OP_mul, dwarf::DW_OP_constu, ValInit,
1665 dwarf::DW_OP_plus};
1666 E = DIExpression::prependOpcodes(E, Ops, DIExpression::WithStackValue);
1667 DIGlobalVariableExpression *DGVE =
1668 DIGlobalVariableExpression::get(NewGV->getContext(), DGV, E);
1669 NewGV->addDebugInfo(DGVE);
1670 }
1671 EmitOneOrZero = false;
1672 }
1673 }
1674
1675 if (EmitOneOrZero) {
1676 // FIXME: This will only emit address for debugger on which will
1677 // be written only 0 or 1.
1678 for(auto *GV : GVs)
1679 NewGV->addDebugInfo(GV);
1680 }
1681
1682 while (!GV->use_empty()) {
1683 Instruction *UI = cast<Instruction>(GV->user_back());
1684 if (StoreInst *SI = dyn_cast<StoreInst>(UI)) {
1685 // Change the store into a boolean store.
1686 bool StoringOther = SI->getOperand(0) == OtherVal;
1687 // Only do this if we weren't storing a loaded value.
1688 Value *StoreVal;
1689 if (StoringOther || SI->getOperand(0) == InitVal) {
1690 StoreVal = ConstantInt::get(Type::getInt1Ty(GV->getContext()),
1691 StoringOther);
1692 } else {
1693 // Otherwise, we are storing a previously loaded copy. To do this,
1694 // change the copy from copying the original value to just copying the
1695 // bool.
1696 Instruction *StoredVal = cast<Instruction>(SI->getOperand(0));
1697
1698 // If we've already replaced the input, StoredVal will be a cast or
1699 // select instruction. If not, it will be a load of the original
1700 // global.
1701 if (LoadInst *LI = dyn_cast<LoadInst>(StoredVal)) {
1702 assert(LI->getOperand(0) == GV && "Not a copy!");
1703 // Insert a new load, to preserve the saved value.
1704 StoreVal = new LoadInst(NewGV, LI->getName()+".b", false, 0,
1705 LI->getOrdering(), LI->getSyncScopeID(), LI);
1706 } else {
1707 assert((isa<CastInst>(StoredVal) || isa<SelectInst>(StoredVal)) &&
1708 "This is not a form that we understand!");
1709 StoreVal = StoredVal->getOperand(0);
1710 assert(isa<LoadInst>(StoreVal) && "Not a load of NewGV!");
1711 }
1712 }
1713 StoreInst *NSI =
1714 new StoreInst(StoreVal, NewGV, false, 0, SI->getOrdering(),
1715 SI->getSyncScopeID(), SI);
1716 NSI->setDebugLoc(SI->getDebugLoc());
1717 } else {
1718 // Change the load into a load of bool then a select.
1719 LoadInst *LI = cast<LoadInst>(UI);
1720 LoadInst *NLI = new LoadInst(NewGV, LI->getName()+".b", false, 0,
1721 LI->getOrdering(), LI->getSyncScopeID(), LI);
1722 Instruction *NSI;
1723 if (IsOneZero)
1724 NSI = new ZExtInst(NLI, LI->getType(), "", LI);
1725 else
1726 NSI = SelectInst::Create(NLI, OtherVal, InitVal, "", LI);
1727 NSI->takeName(LI);
1728 // Since LI is split into two instructions, NLI and NSI both inherit the
1729 // same DebugLoc
1730 NLI->setDebugLoc(LI->getDebugLoc());
1731 NSI->setDebugLoc(LI->getDebugLoc());
1732 LI->replaceAllUsesWith(NSI);
1733 }
1734 UI->eraseFromParent();
1735 }
1736
1737 // Retain the name of the old global variable. People who are debugging their
1738 // programs may expect these variables to be named the same.
1739 NewGV->takeName(GV);
1740 GV->eraseFromParent();
1741 return true;
1742 }
1743
deleteIfDead(GlobalValue & GV,SmallPtrSetImpl<const Comdat * > & NotDiscardableComdats)1744 static bool deleteIfDead(
1745 GlobalValue &GV, SmallPtrSetImpl<const Comdat *> &NotDiscardableComdats) {
1746 GV.removeDeadConstantUsers();
1747
1748 if (!GV.isDiscardableIfUnused() && !GV.isDeclaration())
1749 return false;
1750
1751 if (const Comdat *C = GV.getComdat())
1752 if (!GV.hasLocalLinkage() && NotDiscardableComdats.count(C))
1753 return false;
1754
1755 bool Dead;
1756 if (auto *F = dyn_cast<Function>(&GV))
1757 Dead = (F->isDeclaration() && F->use_empty()) || F->isDefTriviallyDead();
1758 else
1759 Dead = GV.use_empty();
1760 if (!Dead)
1761 return false;
1762
1763 LLVM_DEBUG(dbgs() << "GLOBAL DEAD: " << GV << "\n");
1764 GV.eraseFromParent();
1765 ++NumDeleted;
1766 return true;
1767 }
1768
isPointerValueDeadOnEntryToFunction(const Function * F,GlobalValue * GV,function_ref<DominatorTree & (Function &)> LookupDomTree)1769 static bool isPointerValueDeadOnEntryToFunction(
1770 const Function *F, GlobalValue *GV,
1771 function_ref<DominatorTree &(Function &)> LookupDomTree) {
1772 // Find all uses of GV. We expect them all to be in F, and if we can't
1773 // identify any of the uses we bail out.
1774 //
1775 // On each of these uses, identify if the memory that GV points to is
1776 // used/required/live at the start of the function. If it is not, for example
1777 // if the first thing the function does is store to the GV, the GV can
1778 // possibly be demoted.
1779 //
1780 // We don't do an exhaustive search for memory operations - simply look
1781 // through bitcasts as they're quite common and benign.
1782 const DataLayout &DL = GV->getParent()->getDataLayout();
1783 SmallVector<LoadInst *, 4> Loads;
1784 SmallVector<StoreInst *, 4> Stores;
1785 for (auto *U : GV->users()) {
1786 if (Operator::getOpcode(U) == Instruction::BitCast) {
1787 for (auto *UU : U->users()) {
1788 if (auto *LI = dyn_cast<LoadInst>(UU))
1789 Loads.push_back(LI);
1790 else if (auto *SI = dyn_cast<StoreInst>(UU))
1791 Stores.push_back(SI);
1792 else
1793 return false;
1794 }
1795 continue;
1796 }
1797
1798 Instruction *I = dyn_cast<Instruction>(U);
1799 if (!I)
1800 return false;
1801 assert(I->getParent()->getParent() == F);
1802
1803 if (auto *LI = dyn_cast<LoadInst>(I))
1804 Loads.push_back(LI);
1805 else if (auto *SI = dyn_cast<StoreInst>(I))
1806 Stores.push_back(SI);
1807 else
1808 return false;
1809 }
1810
1811 // We have identified all uses of GV into loads and stores. Now check if all
1812 // of them are known not to depend on the value of the global at the function
1813 // entry point. We do this by ensuring that every load is dominated by at
1814 // least one store.
1815 auto &DT = LookupDomTree(*const_cast<Function *>(F));
1816
1817 // The below check is quadratic. Check we're not going to do too many tests.
1818 // FIXME: Even though this will always have worst-case quadratic time, we
1819 // could put effort into minimizing the average time by putting stores that
1820 // have been shown to dominate at least one load at the beginning of the
1821 // Stores array, making subsequent dominance checks more likely to succeed
1822 // early.
1823 //
1824 // The threshold here is fairly large because global->local demotion is a
1825 // very powerful optimization should it fire.
1826 const unsigned Threshold = 100;
1827 if (Loads.size() * Stores.size() > Threshold)
1828 return false;
1829
1830 for (auto *L : Loads) {
1831 auto *LTy = L->getType();
1832 if (none_of(Stores, [&](const StoreInst *S) {
1833 auto *STy = S->getValueOperand()->getType();
1834 // The load is only dominated by the store if DomTree says so
1835 // and the number of bits loaded in L is less than or equal to
1836 // the number of bits stored in S.
1837 return DT.dominates(S, L) &&
1838 DL.getTypeStoreSize(LTy) <= DL.getTypeStoreSize(STy);
1839 }))
1840 return false;
1841 }
1842 // All loads have known dependences inside F, so the global can be localized.
1843 return true;
1844 }
1845
1846 /// C may have non-instruction users. Can all of those users be turned into
1847 /// instructions?
allNonInstructionUsersCanBeMadeInstructions(Constant * C)1848 static bool allNonInstructionUsersCanBeMadeInstructions(Constant *C) {
1849 // We don't do this exhaustively. The most common pattern that we really need
1850 // to care about is a constant GEP or constant bitcast - so just looking
1851 // through one single ConstantExpr.
1852 //
1853 // The set of constants that this function returns true for must be able to be
1854 // handled by makeAllConstantUsesInstructions.
1855 for (auto *U : C->users()) {
1856 if (isa<Instruction>(U))
1857 continue;
1858 if (!isa<ConstantExpr>(U))
1859 // Non instruction, non-constantexpr user; cannot convert this.
1860 return false;
1861 for (auto *UU : U->users())
1862 if (!isa<Instruction>(UU))
1863 // A constantexpr used by another constant. We don't try and recurse any
1864 // further but just bail out at this point.
1865 return false;
1866 }
1867
1868 return true;
1869 }
1870
1871 /// C may have non-instruction users, and
1872 /// allNonInstructionUsersCanBeMadeInstructions has returned true. Convert the
1873 /// non-instruction users to instructions.
makeAllConstantUsesInstructions(Constant * C)1874 static void makeAllConstantUsesInstructions(Constant *C) {
1875 SmallVector<ConstantExpr*,4> Users;
1876 for (auto *U : C->users()) {
1877 if (isa<ConstantExpr>(U))
1878 Users.push_back(cast<ConstantExpr>(U));
1879 else
1880 // We should never get here; allNonInstructionUsersCanBeMadeInstructions
1881 // should not have returned true for C.
1882 assert(
1883 isa<Instruction>(U) &&
1884 "Can't transform non-constantexpr non-instruction to instruction!");
1885 }
1886
1887 SmallVector<Value*,4> UUsers;
1888 for (auto *U : Users) {
1889 UUsers.clear();
1890 for (auto *UU : U->users())
1891 UUsers.push_back(UU);
1892 for (auto *UU : UUsers) {
1893 Instruction *UI = cast<Instruction>(UU);
1894 Instruction *NewU = U->getAsInstruction();
1895 NewU->insertBefore(UI);
1896 UI->replaceUsesOfWith(U, NewU);
1897 }
1898 // We've replaced all the uses, so destroy the constant. (destroyConstant
1899 // will update value handles and metadata.)
1900 U->destroyConstant();
1901 }
1902 }
1903
1904 /// Analyze the specified global variable and optimize
1905 /// it if possible. If we make a change, return true.
processInternalGlobal(GlobalVariable * GV,const GlobalStatus & GS,TargetLibraryInfo * TLI,function_ref<DominatorTree & (Function &)> LookupDomTree)1906 static bool processInternalGlobal(
1907 GlobalVariable *GV, const GlobalStatus &GS, TargetLibraryInfo *TLI,
1908 function_ref<DominatorTree &(Function &)> LookupDomTree) {
1909 auto &DL = GV->getParent()->getDataLayout();
1910 // If this is a first class global and has only one accessing function and
1911 // this function is non-recursive, we replace the global with a local alloca
1912 // in this function.
1913 //
1914 // NOTE: It doesn't make sense to promote non-single-value types since we
1915 // are just replacing static memory to stack memory.
1916 //
1917 // If the global is in different address space, don't bring it to stack.
1918 if (!GS.HasMultipleAccessingFunctions &&
1919 GS.AccessingFunction &&
1920 GV->getValueType()->isSingleValueType() &&
1921 GV->getType()->getAddressSpace() == 0 &&
1922 !GV->isExternallyInitialized() &&
1923 allNonInstructionUsersCanBeMadeInstructions(GV) &&
1924 GS.AccessingFunction->doesNotRecurse() &&
1925 isPointerValueDeadOnEntryToFunction(GS.AccessingFunction, GV,
1926 LookupDomTree)) {
1927 const DataLayout &DL = GV->getParent()->getDataLayout();
1928
1929 LLVM_DEBUG(dbgs() << "LOCALIZING GLOBAL: " << *GV << "\n");
1930 Instruction &FirstI = const_cast<Instruction&>(*GS.AccessingFunction
1931 ->getEntryBlock().begin());
1932 Type *ElemTy = GV->getValueType();
1933 // FIXME: Pass Global's alignment when globals have alignment
1934 AllocaInst *Alloca = new AllocaInst(ElemTy, DL.getAllocaAddrSpace(), nullptr,
1935 GV->getName(), &FirstI);
1936 if (!isa<UndefValue>(GV->getInitializer()))
1937 new StoreInst(GV->getInitializer(), Alloca, &FirstI);
1938
1939 makeAllConstantUsesInstructions(GV);
1940
1941 GV->replaceAllUsesWith(Alloca);
1942 GV->eraseFromParent();
1943 ++NumLocalized;
1944 return true;
1945 }
1946
1947 // If the global is never loaded (but may be stored to), it is dead.
1948 // Delete it now.
1949 if (!GS.IsLoaded) {
1950 LLVM_DEBUG(dbgs() << "GLOBAL NEVER LOADED: " << *GV << "\n");
1951
1952 bool Changed;
1953 if (isLeakCheckerRoot(GV)) {
1954 // Delete any constant stores to the global.
1955 Changed = CleanupPointerRootUsers(GV, TLI);
1956 } else {
1957 // Delete any stores we can find to the global. We may not be able to
1958 // make it completely dead though.
1959 Changed = CleanupConstantGlobalUsers(GV, GV->getInitializer(), DL, TLI);
1960 }
1961
1962 // If the global is dead now, delete it.
1963 if (GV->use_empty()) {
1964 GV->eraseFromParent();
1965 ++NumDeleted;
1966 Changed = true;
1967 }
1968 return Changed;
1969
1970 }
1971 if (GS.StoredType <= GlobalStatus::InitializerStored) {
1972 LLVM_DEBUG(dbgs() << "MARKING CONSTANT: " << *GV << "\n");
1973 GV->setConstant(true);
1974
1975 // Clean up any obviously simplifiable users now.
1976 CleanupConstantGlobalUsers(GV, GV->getInitializer(), DL, TLI);
1977
1978 // If the global is dead now, just nuke it.
1979 if (GV->use_empty()) {
1980 LLVM_DEBUG(dbgs() << " *** Marking constant allowed us to simplify "
1981 << "all users and delete global!\n");
1982 GV->eraseFromParent();
1983 ++NumDeleted;
1984 return true;
1985 }
1986
1987 // Fall through to the next check; see if we can optimize further.
1988 ++NumMarked;
1989 }
1990 if (!GV->getInitializer()->getType()->isSingleValueType()) {
1991 const DataLayout &DL = GV->getParent()->getDataLayout();
1992 if (SRAGlobal(GV, DL))
1993 return true;
1994 }
1995 if (GS.StoredType == GlobalStatus::StoredOnce && GS.StoredOnceValue) {
1996 // If the initial value for the global was an undef value, and if only
1997 // one other value was stored into it, we can just change the
1998 // initializer to be the stored value, then delete all stores to the
1999 // global. This allows us to mark it constant.
2000 if (Constant *SOVConstant = dyn_cast<Constant>(GS.StoredOnceValue))
2001 if (isa<UndefValue>(GV->getInitializer())) {
2002 // Change the initial value here.
2003 GV->setInitializer(SOVConstant);
2004
2005 // Clean up any obviously simplifiable users now.
2006 CleanupConstantGlobalUsers(GV, GV->getInitializer(), DL, TLI);
2007
2008 if (GV->use_empty()) {
2009 LLVM_DEBUG(dbgs() << " *** Substituting initializer allowed us to "
2010 << "simplify all users and delete global!\n");
2011 GV->eraseFromParent();
2012 ++NumDeleted;
2013 }
2014 ++NumSubstitute;
2015 return true;
2016 }
2017
2018 // Try to optimize globals based on the knowledge that only one value
2019 // (besides its initializer) is ever stored to the global.
2020 if (optimizeOnceStoredGlobal(GV, GS.StoredOnceValue, GS.Ordering, DL, TLI))
2021 return true;
2022
2023 // Otherwise, if the global was not a boolean, we can shrink it to be a
2024 // boolean.
2025 if (Constant *SOVConstant = dyn_cast<Constant>(GS.StoredOnceValue)) {
2026 if (GS.Ordering == AtomicOrdering::NotAtomic) {
2027 if (TryToShrinkGlobalToBoolean(GV, SOVConstant)) {
2028 ++NumShrunkToBool;
2029 return true;
2030 }
2031 }
2032 }
2033 }
2034
2035 return false;
2036 }
2037
2038 /// Analyze the specified global variable and optimize it if possible. If we
2039 /// make a change, return true.
2040 static bool
processGlobal(GlobalValue & GV,TargetLibraryInfo * TLI,function_ref<DominatorTree & (Function &)> LookupDomTree)2041 processGlobal(GlobalValue &GV, TargetLibraryInfo *TLI,
2042 function_ref<DominatorTree &(Function &)> LookupDomTree) {
2043 if (GV.getName().startswith("llvm."))
2044 return false;
2045
2046 GlobalStatus GS;
2047
2048 if (GlobalStatus::analyzeGlobal(&GV, GS))
2049 return false;
2050
2051 bool Changed = false;
2052 if (!GS.IsCompared && !GV.hasGlobalUnnamedAddr()) {
2053 auto NewUnnamedAddr = GV.hasLocalLinkage() ? GlobalValue::UnnamedAddr::Global
2054 : GlobalValue::UnnamedAddr::Local;
2055 if (NewUnnamedAddr != GV.getUnnamedAddr()) {
2056 GV.setUnnamedAddr(NewUnnamedAddr);
2057 NumUnnamed++;
2058 Changed = true;
2059 }
2060 }
2061
2062 // Do more involved optimizations if the global is internal.
2063 if (!GV.hasLocalLinkage())
2064 return Changed;
2065
2066 auto *GVar = dyn_cast<GlobalVariable>(&GV);
2067 if (!GVar)
2068 return Changed;
2069
2070 if (GVar->isConstant() || !GVar->hasInitializer())
2071 return Changed;
2072
2073 return processInternalGlobal(GVar, GS, TLI, LookupDomTree) || Changed;
2074 }
2075
2076 /// Walk all of the direct calls of the specified function, changing them to
2077 /// FastCC.
ChangeCalleesToFastCall(Function * F)2078 static void ChangeCalleesToFastCall(Function *F) {
2079 for (User *U : F->users()) {
2080 if (isa<BlockAddress>(U))
2081 continue;
2082 CallSite CS(cast<Instruction>(U));
2083 CS.setCallingConv(CallingConv::Fast);
2084 }
2085 }
2086
StripNest(LLVMContext & C,AttributeList Attrs)2087 static AttributeList StripNest(LLVMContext &C, AttributeList Attrs) {
2088 // There can be at most one attribute set with a nest attribute.
2089 unsigned NestIndex;
2090 if (Attrs.hasAttrSomewhere(Attribute::Nest, &NestIndex))
2091 return Attrs.removeAttribute(C, NestIndex, Attribute::Nest);
2092 return Attrs;
2093 }
2094
RemoveNestAttribute(Function * F)2095 static void RemoveNestAttribute(Function *F) {
2096 F->setAttributes(StripNest(F->getContext(), F->getAttributes()));
2097 for (User *U : F->users()) {
2098 if (isa<BlockAddress>(U))
2099 continue;
2100 CallSite CS(cast<Instruction>(U));
2101 CS.setAttributes(StripNest(F->getContext(), CS.getAttributes()));
2102 }
2103 }
2104
2105 /// Return true if this is a calling convention that we'd like to change. The
2106 /// idea here is that we don't want to mess with the convention if the user
2107 /// explicitly requested something with performance implications like coldcc,
2108 /// GHC, or anyregcc.
hasChangeableCC(Function * F)2109 static bool hasChangeableCC(Function *F) {
2110 CallingConv::ID CC = F->getCallingConv();
2111
2112 // FIXME: Is it worth transforming x86_stdcallcc and x86_fastcallcc?
2113 if (CC != CallingConv::C && CC != CallingConv::X86_ThisCall)
2114 return false;
2115
2116 // Don't break the invariant that the inalloca parameter is the only parameter
2117 // passed in memory.
2118 // FIXME: GlobalOpt should remove inalloca when possible and hoist the dynamic
2119 // alloca it uses to the entry block if possible.
2120 if (F->getAttributes().hasAttrSomewhere(Attribute::InAlloca))
2121 return false;
2122
2123 // FIXME: Change CC for the whole chain of musttail calls when possible.
2124 //
2125 // Can't change CC of the function that either has musttail calls, or is a
2126 // musttail callee itself
2127 for (User *U : F->users()) {
2128 if (isa<BlockAddress>(U))
2129 continue;
2130 CallInst* CI = dyn_cast<CallInst>(U);
2131 if (!CI)
2132 continue;
2133
2134 if (CI->isMustTailCall())
2135 return false;
2136 }
2137
2138 for (BasicBlock &BB : *F)
2139 if (BB.getTerminatingMustTailCall())
2140 return false;
2141
2142 return true;
2143 }
2144
2145 /// Return true if the block containing the call site has a BlockFrequency of
2146 /// less than ColdCCRelFreq% of the entry block.
isColdCallSite(CallSite CS,BlockFrequencyInfo & CallerBFI)2147 static bool isColdCallSite(CallSite CS, BlockFrequencyInfo &CallerBFI) {
2148 const BranchProbability ColdProb(ColdCCRelFreq, 100);
2149 auto CallSiteBB = CS.getInstruction()->getParent();
2150 auto CallSiteFreq = CallerBFI.getBlockFreq(CallSiteBB);
2151 auto CallerEntryFreq =
2152 CallerBFI.getBlockFreq(&(CS.getCaller()->getEntryBlock()));
2153 return CallSiteFreq < CallerEntryFreq * ColdProb;
2154 }
2155
2156 // This function checks if the input function F is cold at all call sites. It
2157 // also looks each call site's containing function, returning false if the
2158 // caller function contains other non cold calls. The input vector AllCallsCold
2159 // contains a list of functions that only have call sites in cold blocks.
2160 static bool
isValidCandidateForColdCC(Function & F,function_ref<BlockFrequencyInfo & (Function &)> GetBFI,const std::vector<Function * > & AllCallsCold)2161 isValidCandidateForColdCC(Function &F,
2162 function_ref<BlockFrequencyInfo &(Function &)> GetBFI,
2163 const std::vector<Function *> &AllCallsCold) {
2164
2165 if (F.user_empty())
2166 return false;
2167
2168 for (User *U : F.users()) {
2169 if (isa<BlockAddress>(U))
2170 continue;
2171
2172 CallSite CS(cast<Instruction>(U));
2173 Function *CallerFunc = CS.getInstruction()->getParent()->getParent();
2174 BlockFrequencyInfo &CallerBFI = GetBFI(*CallerFunc);
2175 if (!isColdCallSite(CS, CallerBFI))
2176 return false;
2177 auto It = std::find(AllCallsCold.begin(), AllCallsCold.end(), CallerFunc);
2178 if (It == AllCallsCold.end())
2179 return false;
2180 }
2181 return true;
2182 }
2183
changeCallSitesToColdCC(Function * F)2184 static void changeCallSitesToColdCC(Function *F) {
2185 for (User *U : F->users()) {
2186 if (isa<BlockAddress>(U))
2187 continue;
2188 CallSite CS(cast<Instruction>(U));
2189 CS.setCallingConv(CallingConv::Cold);
2190 }
2191 }
2192
2193 // This function iterates over all the call instructions in the input Function
2194 // and checks that all call sites are in cold blocks and are allowed to use the
2195 // coldcc calling convention.
2196 static bool
hasOnlyColdCalls(Function & F,function_ref<BlockFrequencyInfo & (Function &)> GetBFI)2197 hasOnlyColdCalls(Function &F,
2198 function_ref<BlockFrequencyInfo &(Function &)> GetBFI) {
2199 for (BasicBlock &BB : F) {
2200 for (Instruction &I : BB) {
2201 if (CallInst *CI = dyn_cast<CallInst>(&I)) {
2202 CallSite CS(cast<Instruction>(CI));
2203 // Skip over isline asm instructions since they aren't function calls.
2204 if (CI->isInlineAsm())
2205 continue;
2206 Function *CalledFn = CI->getCalledFunction();
2207 if (!CalledFn)
2208 return false;
2209 if (!CalledFn->hasLocalLinkage())
2210 return false;
2211 // Skip over instrinsics since they won't remain as function calls.
2212 if (CalledFn->getIntrinsicID() != Intrinsic::not_intrinsic)
2213 continue;
2214 // Check if it's valid to use coldcc calling convention.
2215 if (!hasChangeableCC(CalledFn) || CalledFn->isVarArg() ||
2216 CalledFn->hasAddressTaken())
2217 return false;
2218 BlockFrequencyInfo &CallerBFI = GetBFI(F);
2219 if (!isColdCallSite(CS, CallerBFI))
2220 return false;
2221 }
2222 }
2223 }
2224 return true;
2225 }
2226
2227 static bool
OptimizeFunctions(Module & M,TargetLibraryInfo * TLI,function_ref<TargetTransformInfo & (Function &)> GetTTI,function_ref<BlockFrequencyInfo & (Function &)> GetBFI,function_ref<DominatorTree & (Function &)> LookupDomTree,SmallPtrSetImpl<const Comdat * > & NotDiscardableComdats)2228 OptimizeFunctions(Module &M, TargetLibraryInfo *TLI,
2229 function_ref<TargetTransformInfo &(Function &)> GetTTI,
2230 function_ref<BlockFrequencyInfo &(Function &)> GetBFI,
2231 function_ref<DominatorTree &(Function &)> LookupDomTree,
2232 SmallPtrSetImpl<const Comdat *> &NotDiscardableComdats) {
2233
2234 bool Changed = false;
2235
2236 std::vector<Function *> AllCallsCold;
2237 for (Module::iterator FI = M.begin(), E = M.end(); FI != E;) {
2238 Function *F = &*FI++;
2239 if (hasOnlyColdCalls(*F, GetBFI))
2240 AllCallsCold.push_back(F);
2241 }
2242
2243 // Optimize functions.
2244 for (Module::iterator FI = M.begin(), E = M.end(); FI != E; ) {
2245 Function *F = &*FI++;
2246
2247 // Don't perform global opt pass on naked functions; we don't want fast
2248 // calling conventions for naked functions.
2249 if (F->hasFnAttribute(Attribute::Naked))
2250 continue;
2251
2252 // Functions without names cannot be referenced outside this module.
2253 if (!F->hasName() && !F->isDeclaration() && !F->hasLocalLinkage())
2254 F->setLinkage(GlobalValue::InternalLinkage);
2255
2256 if (deleteIfDead(*F, NotDiscardableComdats)) {
2257 Changed = true;
2258 continue;
2259 }
2260
2261 // LLVM's definition of dominance allows instructions that are cyclic
2262 // in unreachable blocks, e.g.:
2263 // %pat = select i1 %condition, @global, i16* %pat
2264 // because any instruction dominates an instruction in a block that's
2265 // not reachable from entry.
2266 // So, remove unreachable blocks from the function, because a) there's
2267 // no point in analyzing them and b) GlobalOpt should otherwise grow
2268 // some more complicated logic to break these cycles.
2269 // Removing unreachable blocks might invalidate the dominator so we
2270 // recalculate it.
2271 if (!F->isDeclaration()) {
2272 if (removeUnreachableBlocks(*F)) {
2273 auto &DT = LookupDomTree(*F);
2274 DT.recalculate(*F);
2275 Changed = true;
2276 }
2277 }
2278
2279 Changed |= processGlobal(*F, TLI, LookupDomTree);
2280
2281 if (!F->hasLocalLinkage())
2282 continue;
2283
2284 if (hasChangeableCC(F) && !F->isVarArg() && !F->hasAddressTaken()) {
2285 NumInternalFunc++;
2286 TargetTransformInfo &TTI = GetTTI(*F);
2287 // Change the calling convention to coldcc if either stress testing is
2288 // enabled or the target would like to use coldcc on functions which are
2289 // cold at all call sites and the callers contain no other non coldcc
2290 // calls.
2291 if (EnableColdCCStressTest ||
2292 (isValidCandidateForColdCC(*F, GetBFI, AllCallsCold) &&
2293 TTI.useColdCCForColdCall(*F))) {
2294 F->setCallingConv(CallingConv::Cold);
2295 changeCallSitesToColdCC(F);
2296 Changed = true;
2297 NumColdCC++;
2298 }
2299 }
2300
2301 if (hasChangeableCC(F) && !F->isVarArg() &&
2302 !F->hasAddressTaken()) {
2303 // If this function has a calling convention worth changing, is not a
2304 // varargs function, and is only called directly, promote it to use the
2305 // Fast calling convention.
2306 F->setCallingConv(CallingConv::Fast);
2307 ChangeCalleesToFastCall(F);
2308 ++NumFastCallFns;
2309 Changed = true;
2310 }
2311
2312 if (F->getAttributes().hasAttrSomewhere(Attribute::Nest) &&
2313 !F->hasAddressTaken()) {
2314 // The function is not used by a trampoline intrinsic, so it is safe
2315 // to remove the 'nest' attribute.
2316 RemoveNestAttribute(F);
2317 ++NumNestRemoved;
2318 Changed = true;
2319 }
2320 }
2321 return Changed;
2322 }
2323
2324 static bool
OptimizeGlobalVars(Module & M,TargetLibraryInfo * TLI,function_ref<DominatorTree & (Function &)> LookupDomTree,SmallPtrSetImpl<const Comdat * > & NotDiscardableComdats)2325 OptimizeGlobalVars(Module &M, TargetLibraryInfo *TLI,
2326 function_ref<DominatorTree &(Function &)> LookupDomTree,
2327 SmallPtrSetImpl<const Comdat *> &NotDiscardableComdats) {
2328 bool Changed = false;
2329
2330 for (Module::global_iterator GVI = M.global_begin(), E = M.global_end();
2331 GVI != E; ) {
2332 GlobalVariable *GV = &*GVI++;
2333 // Global variables without names cannot be referenced outside this module.
2334 if (!GV->hasName() && !GV->isDeclaration() && !GV->hasLocalLinkage())
2335 GV->setLinkage(GlobalValue::InternalLinkage);
2336 // Simplify the initializer.
2337 if (GV->hasInitializer())
2338 if (auto *C = dyn_cast<Constant>(GV->getInitializer())) {
2339 auto &DL = M.getDataLayout();
2340 Constant *New = ConstantFoldConstant(C, DL, TLI);
2341 if (New && New != C)
2342 GV->setInitializer(New);
2343 }
2344
2345 if (deleteIfDead(*GV, NotDiscardableComdats)) {
2346 Changed = true;
2347 continue;
2348 }
2349
2350 Changed |= processGlobal(*GV, TLI, LookupDomTree);
2351 }
2352 return Changed;
2353 }
2354
2355 /// Evaluate a piece of a constantexpr store into a global initializer. This
2356 /// returns 'Init' modified to reflect 'Val' stored into it. At this point, the
2357 /// GEP operands of Addr [0, OpNo) have been stepped into.
EvaluateStoreInto(Constant * Init,Constant * Val,ConstantExpr * Addr,unsigned OpNo)2358 static Constant *EvaluateStoreInto(Constant *Init, Constant *Val,
2359 ConstantExpr *Addr, unsigned OpNo) {
2360 // Base case of the recursion.
2361 if (OpNo == Addr->getNumOperands()) {
2362 assert(Val->getType() == Init->getType() && "Type mismatch!");
2363 return Val;
2364 }
2365
2366 SmallVector<Constant*, 32> Elts;
2367 if (StructType *STy = dyn_cast<StructType>(Init->getType())) {
2368 // Break up the constant into its elements.
2369 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
2370 Elts.push_back(Init->getAggregateElement(i));
2371
2372 // Replace the element that we are supposed to.
2373 ConstantInt *CU = cast<ConstantInt>(Addr->getOperand(OpNo));
2374 unsigned Idx = CU->getZExtValue();
2375 assert(Idx < STy->getNumElements() && "Struct index out of range!");
2376 Elts[Idx] = EvaluateStoreInto(Elts[Idx], Val, Addr, OpNo+1);
2377
2378 // Return the modified struct.
2379 return ConstantStruct::get(STy, Elts);
2380 }
2381
2382 ConstantInt *CI = cast<ConstantInt>(Addr->getOperand(OpNo));
2383 SequentialType *InitTy = cast<SequentialType>(Init->getType());
2384 uint64_t NumElts = InitTy->getNumElements();
2385
2386 // Break up the array into elements.
2387 for (uint64_t i = 0, e = NumElts; i != e; ++i)
2388 Elts.push_back(Init->getAggregateElement(i));
2389
2390 assert(CI->getZExtValue() < NumElts);
2391 Elts[CI->getZExtValue()] =
2392 EvaluateStoreInto(Elts[CI->getZExtValue()], Val, Addr, OpNo+1);
2393
2394 if (Init->getType()->isArrayTy())
2395 return ConstantArray::get(cast<ArrayType>(InitTy), Elts);
2396 return ConstantVector::get(Elts);
2397 }
2398
2399 /// We have decided that Addr (which satisfies the predicate
2400 /// isSimpleEnoughPointerToCommit) should get Val as its value. Make it happen.
CommitValueTo(Constant * Val,Constant * Addr)2401 static void CommitValueTo(Constant *Val, Constant *Addr) {
2402 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Addr)) {
2403 assert(GV->hasInitializer());
2404 GV->setInitializer(Val);
2405 return;
2406 }
2407
2408 ConstantExpr *CE = cast<ConstantExpr>(Addr);
2409 GlobalVariable *GV = cast<GlobalVariable>(CE->getOperand(0));
2410 GV->setInitializer(EvaluateStoreInto(GV->getInitializer(), Val, CE, 2));
2411 }
2412
2413 /// Given a map of address -> value, where addresses are expected to be some form
2414 /// of either a global or a constant GEP, set the initializer for the address to
2415 /// be the value. This performs mostly the same function as CommitValueTo()
2416 /// and EvaluateStoreInto() but is optimized to be more efficient for the common
2417 /// case where the set of addresses are GEPs sharing the same underlying global,
2418 /// processing the GEPs in batches rather than individually.
2419 ///
2420 /// To give an example, consider the following C++ code adapted from the clang
2421 /// regression tests:
2422 /// struct S {
2423 /// int n = 10;
2424 /// int m = 2 * n;
2425 /// S(int a) : n(a) {}
2426 /// };
2427 ///
2428 /// template<typename T>
2429 /// struct U {
2430 /// T *r = &q;
2431 /// T q = 42;
2432 /// U *p = this;
2433 /// };
2434 ///
2435 /// U<S> e;
2436 ///
2437 /// The global static constructor for 'e' will need to initialize 'r' and 'p' of
2438 /// the outer struct, while also initializing the inner 'q' structs 'n' and 'm'
2439 /// members. This batch algorithm will simply use general CommitValueTo() method
2440 /// to handle the complex nested S struct initialization of 'q', before
2441 /// processing the outermost members in a single batch. Using CommitValueTo() to
2442 /// handle member in the outer struct is inefficient when the struct/array is
2443 /// very large as we end up creating and destroy constant arrays for each
2444 /// initialization.
2445 /// For the above case, we expect the following IR to be generated:
2446 ///
2447 /// %struct.U = type { %struct.S*, %struct.S, %struct.U* }
2448 /// %struct.S = type { i32, i32 }
2449 /// @e = global %struct.U { %struct.S* gep inbounds (%struct.U, %struct.U* @e,
2450 /// i64 0, i32 1),
2451 /// %struct.S { i32 42, i32 84 }, %struct.U* @e }
2452 /// The %struct.S { i32 42, i32 84 } inner initializer is treated as a complex
2453 /// constant expression, while the other two elements of @e are "simple".
BatchCommitValueTo(const DenseMap<Constant *,Constant * > & Mem)2454 static void BatchCommitValueTo(const DenseMap<Constant*, Constant*> &Mem) {
2455 SmallVector<std::pair<GlobalVariable*, Constant*>, 32> GVs;
2456 SmallVector<std::pair<ConstantExpr*, Constant*>, 32> ComplexCEs;
2457 SmallVector<std::pair<ConstantExpr*, Constant*>, 32> SimpleCEs;
2458 SimpleCEs.reserve(Mem.size());
2459
2460 for (const auto &I : Mem) {
2461 if (auto *GV = dyn_cast<GlobalVariable>(I.first)) {
2462 GVs.push_back(std::make_pair(GV, I.second));
2463 } else {
2464 ConstantExpr *GEP = cast<ConstantExpr>(I.first);
2465 // We don't handle the deeply recursive case using the batch method.
2466 if (GEP->getNumOperands() > 3)
2467 ComplexCEs.push_back(std::make_pair(GEP, I.second));
2468 else
2469 SimpleCEs.push_back(std::make_pair(GEP, I.second));
2470 }
2471 }
2472
2473 // The algorithm below doesn't handle cases like nested structs, so use the
2474 // slower fully general method if we have to.
2475 for (auto ComplexCE : ComplexCEs)
2476 CommitValueTo(ComplexCE.second, ComplexCE.first);
2477
2478 for (auto GVPair : GVs) {
2479 assert(GVPair.first->hasInitializer());
2480 GVPair.first->setInitializer(GVPair.second);
2481 }
2482
2483 if (SimpleCEs.empty())
2484 return;
2485
2486 // We cache a single global's initializer elements in the case where the
2487 // subsequent address/val pair uses the same one. This avoids throwing away and
2488 // rebuilding the constant struct/vector/array just because one element is
2489 // modified at a time.
2490 SmallVector<Constant *, 32> Elts;
2491 Elts.reserve(SimpleCEs.size());
2492 GlobalVariable *CurrentGV = nullptr;
2493
2494 auto commitAndSetupCache = [&](GlobalVariable *GV, bool Update) {
2495 Constant *Init = GV->getInitializer();
2496 Type *Ty = Init->getType();
2497 if (Update) {
2498 if (CurrentGV) {
2499 assert(CurrentGV && "Expected a GV to commit to!");
2500 Type *CurrentInitTy = CurrentGV->getInitializer()->getType();
2501 // We have a valid cache that needs to be committed.
2502 if (StructType *STy = dyn_cast<StructType>(CurrentInitTy))
2503 CurrentGV->setInitializer(ConstantStruct::get(STy, Elts));
2504 else if (ArrayType *ArrTy = dyn_cast<ArrayType>(CurrentInitTy))
2505 CurrentGV->setInitializer(ConstantArray::get(ArrTy, Elts));
2506 else
2507 CurrentGV->setInitializer(ConstantVector::get(Elts));
2508 }
2509 if (CurrentGV == GV)
2510 return;
2511 // Need to clear and set up cache for new initializer.
2512 CurrentGV = GV;
2513 Elts.clear();
2514 unsigned NumElts;
2515 if (auto *STy = dyn_cast<StructType>(Ty))
2516 NumElts = STy->getNumElements();
2517 else
2518 NumElts = cast<SequentialType>(Ty)->getNumElements();
2519 for (unsigned i = 0, e = NumElts; i != e; ++i)
2520 Elts.push_back(Init->getAggregateElement(i));
2521 }
2522 };
2523
2524 for (auto CEPair : SimpleCEs) {
2525 ConstantExpr *GEP = CEPair.first;
2526 Constant *Val = CEPair.second;
2527
2528 GlobalVariable *GV = cast<GlobalVariable>(GEP->getOperand(0));
2529 commitAndSetupCache(GV, GV != CurrentGV);
2530 ConstantInt *CI = cast<ConstantInt>(GEP->getOperand(2));
2531 Elts[CI->getZExtValue()] = Val;
2532 }
2533 // The last initializer in the list needs to be committed, others
2534 // will be committed on a new initializer being processed.
2535 commitAndSetupCache(CurrentGV, true);
2536 }
2537
2538 /// Evaluate static constructors in the function, if we can. Return true if we
2539 /// can, false otherwise.
EvaluateStaticConstructor(Function * F,const DataLayout & DL,TargetLibraryInfo * TLI)2540 static bool EvaluateStaticConstructor(Function *F, const DataLayout &DL,
2541 TargetLibraryInfo *TLI) {
2542 // Call the function.
2543 Evaluator Eval(DL, TLI);
2544 Constant *RetValDummy;
2545 bool EvalSuccess = Eval.EvaluateFunction(F, RetValDummy,
2546 SmallVector<Constant*, 0>());
2547
2548 if (EvalSuccess) {
2549 ++NumCtorsEvaluated;
2550
2551 // We succeeded at evaluation: commit the result.
2552 LLVM_DEBUG(dbgs() << "FULLY EVALUATED GLOBAL CTOR FUNCTION '"
2553 << F->getName() << "' to "
2554 << Eval.getMutatedMemory().size() << " stores.\n");
2555 BatchCommitValueTo(Eval.getMutatedMemory());
2556 for (GlobalVariable *GV : Eval.getInvariants())
2557 GV->setConstant(true);
2558 }
2559
2560 return EvalSuccess;
2561 }
2562
compareNames(Constant * const * A,Constant * const * B)2563 static int compareNames(Constant *const *A, Constant *const *B) {
2564 Value *AStripped = (*A)->stripPointerCastsNoFollowAliases();
2565 Value *BStripped = (*B)->stripPointerCastsNoFollowAliases();
2566 return AStripped->getName().compare(BStripped->getName());
2567 }
2568
setUsedInitializer(GlobalVariable & V,const SmallPtrSetImpl<GlobalValue * > & Init)2569 static void setUsedInitializer(GlobalVariable &V,
2570 const SmallPtrSetImpl<GlobalValue *> &Init) {
2571 if (Init.empty()) {
2572 V.eraseFromParent();
2573 return;
2574 }
2575
2576 // Type of pointer to the array of pointers.
2577 PointerType *Int8PtrTy = Type::getInt8PtrTy(V.getContext(), 0);
2578
2579 SmallVector<Constant *, 8> UsedArray;
2580 for (GlobalValue *GV : Init) {
2581 Constant *Cast
2582 = ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, Int8PtrTy);
2583 UsedArray.push_back(Cast);
2584 }
2585 // Sort to get deterministic order.
2586 array_pod_sort(UsedArray.begin(), UsedArray.end(), compareNames);
2587 ArrayType *ATy = ArrayType::get(Int8PtrTy, UsedArray.size());
2588
2589 Module *M = V.getParent();
2590 V.removeFromParent();
2591 GlobalVariable *NV =
2592 new GlobalVariable(*M, ATy, false, GlobalValue::AppendingLinkage,
2593 ConstantArray::get(ATy, UsedArray), "");
2594 NV->takeName(&V);
2595 NV->setSection("llvm.metadata");
2596 delete &V;
2597 }
2598
2599 namespace {
2600
2601 /// An easy to access representation of llvm.used and llvm.compiler.used.
2602 class LLVMUsed {
2603 SmallPtrSet<GlobalValue *, 8> Used;
2604 SmallPtrSet<GlobalValue *, 8> CompilerUsed;
2605 GlobalVariable *UsedV;
2606 GlobalVariable *CompilerUsedV;
2607
2608 public:
LLVMUsed(Module & M)2609 LLVMUsed(Module &M) {
2610 UsedV = collectUsedGlobalVariables(M, Used, false);
2611 CompilerUsedV = collectUsedGlobalVariables(M, CompilerUsed, true);
2612 }
2613
2614 using iterator = SmallPtrSet<GlobalValue *, 8>::iterator;
2615 using used_iterator_range = iterator_range<iterator>;
2616
usedBegin()2617 iterator usedBegin() { return Used.begin(); }
usedEnd()2618 iterator usedEnd() { return Used.end(); }
2619
used()2620 used_iterator_range used() {
2621 return used_iterator_range(usedBegin(), usedEnd());
2622 }
2623
compilerUsedBegin()2624 iterator compilerUsedBegin() { return CompilerUsed.begin(); }
compilerUsedEnd()2625 iterator compilerUsedEnd() { return CompilerUsed.end(); }
2626
compilerUsed()2627 used_iterator_range compilerUsed() {
2628 return used_iterator_range(compilerUsedBegin(), compilerUsedEnd());
2629 }
2630
usedCount(GlobalValue * GV) const2631 bool usedCount(GlobalValue *GV) const { return Used.count(GV); }
2632
compilerUsedCount(GlobalValue * GV) const2633 bool compilerUsedCount(GlobalValue *GV) const {
2634 return CompilerUsed.count(GV);
2635 }
2636
usedErase(GlobalValue * GV)2637 bool usedErase(GlobalValue *GV) { return Used.erase(GV); }
compilerUsedErase(GlobalValue * GV)2638 bool compilerUsedErase(GlobalValue *GV) { return CompilerUsed.erase(GV); }
usedInsert(GlobalValue * GV)2639 bool usedInsert(GlobalValue *GV) { return Used.insert(GV).second; }
2640
compilerUsedInsert(GlobalValue * GV)2641 bool compilerUsedInsert(GlobalValue *GV) {
2642 return CompilerUsed.insert(GV).second;
2643 }
2644
syncVariablesAndSets()2645 void syncVariablesAndSets() {
2646 if (UsedV)
2647 setUsedInitializer(*UsedV, Used);
2648 if (CompilerUsedV)
2649 setUsedInitializer(*CompilerUsedV, CompilerUsed);
2650 }
2651 };
2652
2653 } // end anonymous namespace
2654
hasUseOtherThanLLVMUsed(GlobalAlias & GA,const LLVMUsed & U)2655 static bool hasUseOtherThanLLVMUsed(GlobalAlias &GA, const LLVMUsed &U) {
2656 if (GA.use_empty()) // No use at all.
2657 return false;
2658
2659 assert((!U.usedCount(&GA) || !U.compilerUsedCount(&GA)) &&
2660 "We should have removed the duplicated "
2661 "element from llvm.compiler.used");
2662 if (!GA.hasOneUse())
2663 // Strictly more than one use. So at least one is not in llvm.used and
2664 // llvm.compiler.used.
2665 return true;
2666
2667 // Exactly one use. Check if it is in llvm.used or llvm.compiler.used.
2668 return !U.usedCount(&GA) && !U.compilerUsedCount(&GA);
2669 }
2670
hasMoreThanOneUseOtherThanLLVMUsed(GlobalValue & V,const LLVMUsed & U)2671 static bool hasMoreThanOneUseOtherThanLLVMUsed(GlobalValue &V,
2672 const LLVMUsed &U) {
2673 unsigned N = 2;
2674 assert((!U.usedCount(&V) || !U.compilerUsedCount(&V)) &&
2675 "We should have removed the duplicated "
2676 "element from llvm.compiler.used");
2677 if (U.usedCount(&V) || U.compilerUsedCount(&V))
2678 ++N;
2679 return V.hasNUsesOrMore(N);
2680 }
2681
mayHaveOtherReferences(GlobalAlias & GA,const LLVMUsed & U)2682 static bool mayHaveOtherReferences(GlobalAlias &GA, const LLVMUsed &U) {
2683 if (!GA.hasLocalLinkage())
2684 return true;
2685
2686 return U.usedCount(&GA) || U.compilerUsedCount(&GA);
2687 }
2688
hasUsesToReplace(GlobalAlias & GA,const LLVMUsed & U,bool & RenameTarget)2689 static bool hasUsesToReplace(GlobalAlias &GA, const LLVMUsed &U,
2690 bool &RenameTarget) {
2691 RenameTarget = false;
2692 bool Ret = false;
2693 if (hasUseOtherThanLLVMUsed(GA, U))
2694 Ret = true;
2695
2696 // If the alias is externally visible, we may still be able to simplify it.
2697 if (!mayHaveOtherReferences(GA, U))
2698 return Ret;
2699
2700 // If the aliasee has internal linkage, give it the name and linkage
2701 // of the alias, and delete the alias. This turns:
2702 // define internal ... @f(...)
2703 // @a = alias ... @f
2704 // into:
2705 // define ... @a(...)
2706 Constant *Aliasee = GA.getAliasee();
2707 GlobalValue *Target = cast<GlobalValue>(Aliasee->stripPointerCasts());
2708 if (!Target->hasLocalLinkage())
2709 return Ret;
2710
2711 // Do not perform the transform if multiple aliases potentially target the
2712 // aliasee. This check also ensures that it is safe to replace the section
2713 // and other attributes of the aliasee with those of the alias.
2714 if (hasMoreThanOneUseOtherThanLLVMUsed(*Target, U))
2715 return Ret;
2716
2717 RenameTarget = true;
2718 return true;
2719 }
2720
2721 static bool
OptimizeGlobalAliases(Module & M,SmallPtrSetImpl<const Comdat * > & NotDiscardableComdats)2722 OptimizeGlobalAliases(Module &M,
2723 SmallPtrSetImpl<const Comdat *> &NotDiscardableComdats) {
2724 bool Changed = false;
2725 LLVMUsed Used(M);
2726
2727 for (GlobalValue *GV : Used.used())
2728 Used.compilerUsedErase(GV);
2729
2730 for (Module::alias_iterator I = M.alias_begin(), E = M.alias_end();
2731 I != E;) {
2732 GlobalAlias *J = &*I++;
2733
2734 // Aliases without names cannot be referenced outside this module.
2735 if (!J->hasName() && !J->isDeclaration() && !J->hasLocalLinkage())
2736 J->setLinkage(GlobalValue::InternalLinkage);
2737
2738 if (deleteIfDead(*J, NotDiscardableComdats)) {
2739 Changed = true;
2740 continue;
2741 }
2742
2743 // If the alias can change at link time, nothing can be done - bail out.
2744 if (J->isInterposable())
2745 continue;
2746
2747 Constant *Aliasee = J->getAliasee();
2748 GlobalValue *Target = dyn_cast<GlobalValue>(Aliasee->stripPointerCasts());
2749 // We can't trivially replace the alias with the aliasee if the aliasee is
2750 // non-trivial in some way.
2751 // TODO: Try to handle non-zero GEPs of local aliasees.
2752 if (!Target)
2753 continue;
2754 Target->removeDeadConstantUsers();
2755
2756 // Make all users of the alias use the aliasee instead.
2757 bool RenameTarget;
2758 if (!hasUsesToReplace(*J, Used, RenameTarget))
2759 continue;
2760
2761 J->replaceAllUsesWith(ConstantExpr::getBitCast(Aliasee, J->getType()));
2762 ++NumAliasesResolved;
2763 Changed = true;
2764
2765 if (RenameTarget) {
2766 // Give the aliasee the name, linkage and other attributes of the alias.
2767 Target->takeName(&*J);
2768 Target->setLinkage(J->getLinkage());
2769 Target->setDSOLocal(J->isDSOLocal());
2770 Target->setVisibility(J->getVisibility());
2771 Target->setDLLStorageClass(J->getDLLStorageClass());
2772
2773 if (Used.usedErase(&*J))
2774 Used.usedInsert(Target);
2775
2776 if (Used.compilerUsedErase(&*J))
2777 Used.compilerUsedInsert(Target);
2778 } else if (mayHaveOtherReferences(*J, Used))
2779 continue;
2780
2781 // Delete the alias.
2782 M.getAliasList().erase(J);
2783 ++NumAliasesRemoved;
2784 Changed = true;
2785 }
2786
2787 Used.syncVariablesAndSets();
2788
2789 return Changed;
2790 }
2791
FindCXAAtExit(Module & M,TargetLibraryInfo * TLI)2792 static Function *FindCXAAtExit(Module &M, TargetLibraryInfo *TLI) {
2793 LibFunc F = LibFunc_cxa_atexit;
2794 if (!TLI->has(F))
2795 return nullptr;
2796
2797 Function *Fn = M.getFunction(TLI->getName(F));
2798 if (!Fn)
2799 return nullptr;
2800
2801 // Make sure that the function has the correct prototype.
2802 if (!TLI->getLibFunc(*Fn, F) || F != LibFunc_cxa_atexit)
2803 return nullptr;
2804
2805 return Fn;
2806 }
2807
2808 /// Returns whether the given function is an empty C++ destructor and can
2809 /// therefore be eliminated.
2810 /// Note that we assume that other optimization passes have already simplified
2811 /// the code so we only look for a function with a single basic block, where
2812 /// the only allowed instructions are 'ret', 'call' to an empty C++ dtor and
2813 /// other side-effect free instructions.
cxxDtorIsEmpty(const Function & Fn,SmallPtrSet<const Function *,8> & CalledFunctions)2814 static bool cxxDtorIsEmpty(const Function &Fn,
2815 SmallPtrSet<const Function *, 8> &CalledFunctions) {
2816 // FIXME: We could eliminate C++ destructors if they're readonly/readnone and
2817 // nounwind, but that doesn't seem worth doing.
2818 if (Fn.isDeclaration())
2819 return false;
2820
2821 if (++Fn.begin() != Fn.end())
2822 return false;
2823
2824 const BasicBlock &EntryBlock = Fn.getEntryBlock();
2825 for (BasicBlock::const_iterator I = EntryBlock.begin(), E = EntryBlock.end();
2826 I != E; ++I) {
2827 if (const CallInst *CI = dyn_cast<CallInst>(I)) {
2828 // Ignore debug intrinsics.
2829 if (isa<DbgInfoIntrinsic>(CI))
2830 continue;
2831
2832 const Function *CalledFn = CI->getCalledFunction();
2833
2834 if (!CalledFn)
2835 return false;
2836
2837 SmallPtrSet<const Function *, 8> NewCalledFunctions(CalledFunctions);
2838
2839 // Don't treat recursive functions as empty.
2840 if (!NewCalledFunctions.insert(CalledFn).second)
2841 return false;
2842
2843 if (!cxxDtorIsEmpty(*CalledFn, NewCalledFunctions))
2844 return false;
2845 } else if (isa<ReturnInst>(*I))
2846 return true; // We're done.
2847 else if (I->mayHaveSideEffects())
2848 return false; // Destructor with side effects, bail.
2849 }
2850
2851 return false;
2852 }
2853
OptimizeEmptyGlobalCXXDtors(Function * CXAAtExitFn)2854 static bool OptimizeEmptyGlobalCXXDtors(Function *CXAAtExitFn) {
2855 /// Itanium C++ ABI p3.3.5:
2856 ///
2857 /// After constructing a global (or local static) object, that will require
2858 /// destruction on exit, a termination function is registered as follows:
2859 ///
2860 /// extern "C" int __cxa_atexit ( void (*f)(void *), void *p, void *d );
2861 ///
2862 /// This registration, e.g. __cxa_atexit(f,p,d), is intended to cause the
2863 /// call f(p) when DSO d is unloaded, before all such termination calls
2864 /// registered before this one. It returns zero if registration is
2865 /// successful, nonzero on failure.
2866
2867 // This pass will look for calls to __cxa_atexit where the function is trivial
2868 // and remove them.
2869 bool Changed = false;
2870
2871 for (auto I = CXAAtExitFn->user_begin(), E = CXAAtExitFn->user_end();
2872 I != E;) {
2873 // We're only interested in calls. Theoretically, we could handle invoke
2874 // instructions as well, but neither llvm-gcc nor clang generate invokes
2875 // to __cxa_atexit.
2876 CallInst *CI = dyn_cast<CallInst>(*I++);
2877 if (!CI)
2878 continue;
2879
2880 Function *DtorFn =
2881 dyn_cast<Function>(CI->getArgOperand(0)->stripPointerCasts());
2882 if (!DtorFn)
2883 continue;
2884
2885 SmallPtrSet<const Function *, 8> CalledFunctions;
2886 if (!cxxDtorIsEmpty(*DtorFn, CalledFunctions))
2887 continue;
2888
2889 // Just remove the call.
2890 CI->replaceAllUsesWith(Constant::getNullValue(CI->getType()));
2891 CI->eraseFromParent();
2892
2893 ++NumCXXDtorsRemoved;
2894
2895 Changed |= true;
2896 }
2897
2898 return Changed;
2899 }
2900
optimizeGlobalsInModule(Module & M,const DataLayout & DL,TargetLibraryInfo * TLI,function_ref<TargetTransformInfo & (Function &)> GetTTI,function_ref<BlockFrequencyInfo & (Function &)> GetBFI,function_ref<DominatorTree & (Function &)> LookupDomTree)2901 static bool optimizeGlobalsInModule(
2902 Module &M, const DataLayout &DL, TargetLibraryInfo *TLI,
2903 function_ref<TargetTransformInfo &(Function &)> GetTTI,
2904 function_ref<BlockFrequencyInfo &(Function &)> GetBFI,
2905 function_ref<DominatorTree &(Function &)> LookupDomTree) {
2906 SmallPtrSet<const Comdat *, 8> NotDiscardableComdats;
2907 bool Changed = false;
2908 bool LocalChange = true;
2909 while (LocalChange) {
2910 LocalChange = false;
2911
2912 NotDiscardableComdats.clear();
2913 for (const GlobalVariable &GV : M.globals())
2914 if (const Comdat *C = GV.getComdat())
2915 if (!GV.isDiscardableIfUnused() || !GV.use_empty())
2916 NotDiscardableComdats.insert(C);
2917 for (Function &F : M)
2918 if (const Comdat *C = F.getComdat())
2919 if (!F.isDefTriviallyDead())
2920 NotDiscardableComdats.insert(C);
2921 for (GlobalAlias &GA : M.aliases())
2922 if (const Comdat *C = GA.getComdat())
2923 if (!GA.isDiscardableIfUnused() || !GA.use_empty())
2924 NotDiscardableComdats.insert(C);
2925
2926 // Delete functions that are trivially dead, ccc -> fastcc
2927 LocalChange |= OptimizeFunctions(M, TLI, GetTTI, GetBFI, LookupDomTree,
2928 NotDiscardableComdats);
2929
2930 // Optimize global_ctors list.
2931 LocalChange |= optimizeGlobalCtorsList(M, [&](Function *F) {
2932 return EvaluateStaticConstructor(F, DL, TLI);
2933 });
2934
2935 // Optimize non-address-taken globals.
2936 LocalChange |= OptimizeGlobalVars(M, TLI, LookupDomTree,
2937 NotDiscardableComdats);
2938
2939 // Resolve aliases, when possible.
2940 LocalChange |= OptimizeGlobalAliases(M, NotDiscardableComdats);
2941
2942 // Try to remove trivial global destructors if they are not removed
2943 // already.
2944 Function *CXAAtExitFn = FindCXAAtExit(M, TLI);
2945 if (CXAAtExitFn)
2946 LocalChange |= OptimizeEmptyGlobalCXXDtors(CXAAtExitFn);
2947
2948 Changed |= LocalChange;
2949 }
2950
2951 // TODO: Move all global ctors functions to the end of the module for code
2952 // layout.
2953
2954 return Changed;
2955 }
2956
run(Module & M,ModuleAnalysisManager & AM)2957 PreservedAnalyses GlobalOptPass::run(Module &M, ModuleAnalysisManager &AM) {
2958 auto &DL = M.getDataLayout();
2959 auto &TLI = AM.getResult<TargetLibraryAnalysis>(M);
2960 auto &FAM =
2961 AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
2962 auto LookupDomTree = [&FAM](Function &F) -> DominatorTree &{
2963 return FAM.getResult<DominatorTreeAnalysis>(F);
2964 };
2965 auto GetTTI = [&FAM](Function &F) -> TargetTransformInfo & {
2966 return FAM.getResult<TargetIRAnalysis>(F);
2967 };
2968
2969 auto GetBFI = [&FAM](Function &F) -> BlockFrequencyInfo & {
2970 return FAM.getResult<BlockFrequencyAnalysis>(F);
2971 };
2972
2973 if (!optimizeGlobalsInModule(M, DL, &TLI, GetTTI, GetBFI, LookupDomTree))
2974 return PreservedAnalyses::all();
2975 return PreservedAnalyses::none();
2976 }
2977
2978 namespace {
2979
2980 struct GlobalOptLegacyPass : public ModulePass {
2981 static char ID; // Pass identification, replacement for typeid
2982
GlobalOptLegacyPass__anon2967a68e0911::GlobalOptLegacyPass2983 GlobalOptLegacyPass() : ModulePass(ID) {
2984 initializeGlobalOptLegacyPassPass(*PassRegistry::getPassRegistry());
2985 }
2986
runOnModule__anon2967a68e0911::GlobalOptLegacyPass2987 bool runOnModule(Module &M) override {
2988 if (skipModule(M))
2989 return false;
2990
2991 auto &DL = M.getDataLayout();
2992 auto *TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
2993 auto LookupDomTree = [this](Function &F) -> DominatorTree & {
2994 return this->getAnalysis<DominatorTreeWrapperPass>(F).getDomTree();
2995 };
2996 auto GetTTI = [this](Function &F) -> TargetTransformInfo & {
2997 return this->getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
2998 };
2999
3000 auto GetBFI = [this](Function &F) -> BlockFrequencyInfo & {
3001 return this->getAnalysis<BlockFrequencyInfoWrapperPass>(F).getBFI();
3002 };
3003
3004 return optimizeGlobalsInModule(M, DL, TLI, GetTTI, GetBFI, LookupDomTree);
3005 }
3006
getAnalysisUsage__anon2967a68e0911::GlobalOptLegacyPass3007 void getAnalysisUsage(AnalysisUsage &AU) const override {
3008 AU.addRequired<TargetLibraryInfoWrapperPass>();
3009 AU.addRequired<TargetTransformInfoWrapperPass>();
3010 AU.addRequired<DominatorTreeWrapperPass>();
3011 AU.addRequired<BlockFrequencyInfoWrapperPass>();
3012 }
3013 };
3014
3015 } // end anonymous namespace
3016
3017 char GlobalOptLegacyPass::ID = 0;
3018
3019 INITIALIZE_PASS_BEGIN(GlobalOptLegacyPass, "globalopt",
3020 "Global Variable Optimizer", false, false)
INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)3021 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
3022 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
3023 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass)
3024 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
3025 INITIALIZE_PASS_END(GlobalOptLegacyPass, "globalopt",
3026 "Global Variable Optimizer", false, false)
3027
3028 ModulePass *llvm::createGlobalOptimizerPass() {
3029 return new GlobalOptLegacyPass();
3030 }
3031