1 //===- GlobalOpt.cpp - Optimize Global Variables --------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass transforms simple global variables that never have their address
11 // taken.  If obviously true, it marks read/write globals as constant, deletes
12 // variables only stored to, etc.
13 //
14 //===----------------------------------------------------------------------===//
15 
16 #include "llvm/Transforms/IPO/GlobalOpt.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SmallPtrSet.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/Statistic.h"
22 #include "llvm/ADT/Twine.h"
23 #include "llvm/ADT/iterator_range.h"
24 #include "llvm/Analysis/BlockFrequencyInfo.h"
25 #include "llvm/Analysis/ConstantFolding.h"
26 #include "llvm/Analysis/MemoryBuiltins.h"
27 #include "llvm/Analysis/TargetLibraryInfo.h"
28 #include "llvm/Analysis/TargetTransformInfo.h"
29 #include "llvm/Transforms/Utils/Local.h"
30 #include "llvm/BinaryFormat/Dwarf.h"
31 #include "llvm/IR/Attributes.h"
32 #include "llvm/IR/BasicBlock.h"
33 #include "llvm/IR/CallSite.h"
34 #include "llvm/IR/CallingConv.h"
35 #include "llvm/IR/Constant.h"
36 #include "llvm/IR/Constants.h"
37 #include "llvm/IR/DataLayout.h"
38 #include "llvm/IR/DebugInfoMetadata.h"
39 #include "llvm/IR/DerivedTypes.h"
40 #include "llvm/IR/Dominators.h"
41 #include "llvm/IR/Function.h"
42 #include "llvm/IR/GetElementPtrTypeIterator.h"
43 #include "llvm/IR/GlobalAlias.h"
44 #include "llvm/IR/GlobalValue.h"
45 #include "llvm/IR/GlobalVariable.h"
46 #include "llvm/IR/InstrTypes.h"
47 #include "llvm/IR/Instruction.h"
48 #include "llvm/IR/Instructions.h"
49 #include "llvm/IR/IntrinsicInst.h"
50 #include "llvm/IR/Module.h"
51 #include "llvm/IR/Operator.h"
52 #include "llvm/IR/Type.h"
53 #include "llvm/IR/Use.h"
54 #include "llvm/IR/User.h"
55 #include "llvm/IR/Value.h"
56 #include "llvm/IR/ValueHandle.h"
57 #include "llvm/Pass.h"
58 #include "llvm/Support/AtomicOrdering.h"
59 #include "llvm/Support/Casting.h"
60 #include "llvm/Support/CommandLine.h"
61 #include "llvm/Support/Debug.h"
62 #include "llvm/Support/ErrorHandling.h"
63 #include "llvm/Support/MathExtras.h"
64 #include "llvm/Support/raw_ostream.h"
65 #include "llvm/Transforms/IPO.h"
66 #include "llvm/Transforms/Utils/CtorUtils.h"
67 #include "llvm/Transforms/Utils/Evaluator.h"
68 #include "llvm/Transforms/Utils/GlobalStatus.h"
69 #include <cassert>
70 #include <cstdint>
71 #include <utility>
72 #include <vector>
73 
74 using namespace llvm;
75 
76 #define DEBUG_TYPE "globalopt"
77 
78 STATISTIC(NumMarked    , "Number of globals marked constant");
79 STATISTIC(NumUnnamed   , "Number of globals marked unnamed_addr");
80 STATISTIC(NumSRA       , "Number of aggregate globals broken into scalars");
81 STATISTIC(NumHeapSRA   , "Number of heap objects SRA'd");
82 STATISTIC(NumSubstitute,"Number of globals with initializers stored into them");
83 STATISTIC(NumDeleted   , "Number of globals deleted");
84 STATISTIC(NumGlobUses  , "Number of global uses devirtualized");
85 STATISTIC(NumLocalized , "Number of globals localized");
86 STATISTIC(NumShrunkToBool  , "Number of global vars shrunk to booleans");
87 STATISTIC(NumFastCallFns   , "Number of functions converted to fastcc");
88 STATISTIC(NumCtorsEvaluated, "Number of static ctors evaluated");
89 STATISTIC(NumNestRemoved   , "Number of nest attributes removed");
90 STATISTIC(NumAliasesResolved, "Number of global aliases resolved");
91 STATISTIC(NumAliasesRemoved, "Number of global aliases eliminated");
92 STATISTIC(NumCXXDtorsRemoved, "Number of global C++ destructors removed");
93 STATISTIC(NumInternalFunc, "Number of internal functions");
94 STATISTIC(NumColdCC, "Number of functions marked coldcc");
95 
96 static cl::opt<bool>
97     EnableColdCCStressTest("enable-coldcc-stress-test",
98                            cl::desc("Enable stress test of coldcc by adding "
99                                     "calling conv to all internal functions."),
100                            cl::init(false), cl::Hidden);
101 
102 static cl::opt<int> ColdCCRelFreq(
103     "coldcc-rel-freq", cl::Hidden, cl::init(2), cl::ZeroOrMore,
104     cl::desc(
105         "Maximum block frequency, expressed as a percentage of caller's "
106         "entry frequency, for a call site to be considered cold for enabling"
107         "coldcc"));
108 
109 /// Is this global variable possibly used by a leak checker as a root?  If so,
110 /// we might not really want to eliminate the stores to it.
isLeakCheckerRoot(GlobalVariable * GV)111 static bool isLeakCheckerRoot(GlobalVariable *GV) {
112   // A global variable is a root if it is a pointer, or could plausibly contain
113   // a pointer.  There are two challenges; one is that we could have a struct
114   // the has an inner member which is a pointer.  We recurse through the type to
115   // detect these (up to a point).  The other is that we may actually be a union
116   // of a pointer and another type, and so our LLVM type is an integer which
117   // gets converted into a pointer, or our type is an [i8 x #] with a pointer
118   // potentially contained here.
119 
120   if (GV->hasPrivateLinkage())
121     return false;
122 
123   SmallVector<Type *, 4> Types;
124   Types.push_back(GV->getValueType());
125 
126   unsigned Limit = 20;
127   do {
128     Type *Ty = Types.pop_back_val();
129     switch (Ty->getTypeID()) {
130       default: break;
131       case Type::PointerTyID: return true;
132       case Type::ArrayTyID:
133       case Type::VectorTyID: {
134         SequentialType *STy = cast<SequentialType>(Ty);
135         Types.push_back(STy->getElementType());
136         break;
137       }
138       case Type::StructTyID: {
139         StructType *STy = cast<StructType>(Ty);
140         if (STy->isOpaque()) return true;
141         for (StructType::element_iterator I = STy->element_begin(),
142                  E = STy->element_end(); I != E; ++I) {
143           Type *InnerTy = *I;
144           if (isa<PointerType>(InnerTy)) return true;
145           if (isa<CompositeType>(InnerTy))
146             Types.push_back(InnerTy);
147         }
148         break;
149       }
150     }
151     if (--Limit == 0) return true;
152   } while (!Types.empty());
153   return false;
154 }
155 
156 /// Given a value that is stored to a global but never read, determine whether
157 /// it's safe to remove the store and the chain of computation that feeds the
158 /// store.
IsSafeComputationToRemove(Value * V,const TargetLibraryInfo * TLI)159 static bool IsSafeComputationToRemove(Value *V, const TargetLibraryInfo *TLI) {
160   do {
161     if (isa<Constant>(V))
162       return true;
163     if (!V->hasOneUse())
164       return false;
165     if (isa<LoadInst>(V) || isa<InvokeInst>(V) || isa<Argument>(V) ||
166         isa<GlobalValue>(V))
167       return false;
168     if (isAllocationFn(V, TLI))
169       return true;
170 
171     Instruction *I = cast<Instruction>(V);
172     if (I->mayHaveSideEffects())
173       return false;
174     if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I)) {
175       if (!GEP->hasAllConstantIndices())
176         return false;
177     } else if (I->getNumOperands() != 1) {
178       return false;
179     }
180 
181     V = I->getOperand(0);
182   } while (true);
183 }
184 
185 /// This GV is a pointer root.  Loop over all users of the global and clean up
186 /// any that obviously don't assign the global a value that isn't dynamically
187 /// allocated.
CleanupPointerRootUsers(GlobalVariable * GV,const TargetLibraryInfo * TLI)188 static bool CleanupPointerRootUsers(GlobalVariable *GV,
189                                     const TargetLibraryInfo *TLI) {
190   // A brief explanation of leak checkers.  The goal is to find bugs where
191   // pointers are forgotten, causing an accumulating growth in memory
192   // usage over time.  The common strategy for leak checkers is to whitelist the
193   // memory pointed to by globals at exit.  This is popular because it also
194   // solves another problem where the main thread of a C++ program may shut down
195   // before other threads that are still expecting to use those globals.  To
196   // handle that case, we expect the program may create a singleton and never
197   // destroy it.
198 
199   bool Changed = false;
200 
201   // If Dead[n].first is the only use of a malloc result, we can delete its
202   // chain of computation and the store to the global in Dead[n].second.
203   SmallVector<std::pair<Instruction *, Instruction *>, 32> Dead;
204 
205   // Constants can't be pointers to dynamically allocated memory.
206   for (Value::user_iterator UI = GV->user_begin(), E = GV->user_end();
207        UI != E;) {
208     User *U = *UI++;
209     if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
210       Value *V = SI->getValueOperand();
211       if (isa<Constant>(V)) {
212         Changed = true;
213         SI->eraseFromParent();
214       } else if (Instruction *I = dyn_cast<Instruction>(V)) {
215         if (I->hasOneUse())
216           Dead.push_back(std::make_pair(I, SI));
217       }
218     } else if (MemSetInst *MSI = dyn_cast<MemSetInst>(U)) {
219       if (isa<Constant>(MSI->getValue())) {
220         Changed = true;
221         MSI->eraseFromParent();
222       } else if (Instruction *I = dyn_cast<Instruction>(MSI->getValue())) {
223         if (I->hasOneUse())
224           Dead.push_back(std::make_pair(I, MSI));
225       }
226     } else if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(U)) {
227       GlobalVariable *MemSrc = dyn_cast<GlobalVariable>(MTI->getSource());
228       if (MemSrc && MemSrc->isConstant()) {
229         Changed = true;
230         MTI->eraseFromParent();
231       } else if (Instruction *I = dyn_cast<Instruction>(MemSrc)) {
232         if (I->hasOneUse())
233           Dead.push_back(std::make_pair(I, MTI));
234       }
235     } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(U)) {
236       if (CE->use_empty()) {
237         CE->destroyConstant();
238         Changed = true;
239       }
240     } else if (Constant *C = dyn_cast<Constant>(U)) {
241       if (isSafeToDestroyConstant(C)) {
242         C->destroyConstant();
243         // This could have invalidated UI, start over from scratch.
244         Dead.clear();
245         CleanupPointerRootUsers(GV, TLI);
246         return true;
247       }
248     }
249   }
250 
251   for (int i = 0, e = Dead.size(); i != e; ++i) {
252     if (IsSafeComputationToRemove(Dead[i].first, TLI)) {
253       Dead[i].second->eraseFromParent();
254       Instruction *I = Dead[i].first;
255       do {
256         if (isAllocationFn(I, TLI))
257           break;
258         Instruction *J = dyn_cast<Instruction>(I->getOperand(0));
259         if (!J)
260           break;
261         I->eraseFromParent();
262         I = J;
263       } while (true);
264       I->eraseFromParent();
265     }
266   }
267 
268   return Changed;
269 }
270 
271 /// We just marked GV constant.  Loop over all users of the global, cleaning up
272 /// the obvious ones.  This is largely just a quick scan over the use list to
273 /// clean up the easy and obvious cruft.  This returns true if it made a change.
CleanupConstantGlobalUsers(Value * V,Constant * Init,const DataLayout & DL,TargetLibraryInfo * TLI)274 static bool CleanupConstantGlobalUsers(Value *V, Constant *Init,
275                                        const DataLayout &DL,
276                                        TargetLibraryInfo *TLI) {
277   bool Changed = false;
278   // Note that we need to use a weak value handle for the worklist items. When
279   // we delete a constant array, we may also be holding pointer to one of its
280   // elements (or an element of one of its elements if we're dealing with an
281   // array of arrays) in the worklist.
282   SmallVector<WeakTrackingVH, 8> WorkList(V->user_begin(), V->user_end());
283   while (!WorkList.empty()) {
284     Value *UV = WorkList.pop_back_val();
285     if (!UV)
286       continue;
287 
288     User *U = cast<User>(UV);
289 
290     if (LoadInst *LI = dyn_cast<LoadInst>(U)) {
291       if (Init) {
292         // Replace the load with the initializer.
293         LI->replaceAllUsesWith(Init);
294         LI->eraseFromParent();
295         Changed = true;
296       }
297     } else if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
298       // Store must be unreachable or storing Init into the global.
299       SI->eraseFromParent();
300       Changed = true;
301     } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(U)) {
302       if (CE->getOpcode() == Instruction::GetElementPtr) {
303         Constant *SubInit = nullptr;
304         if (Init)
305           SubInit = ConstantFoldLoadThroughGEPConstantExpr(Init, CE);
306         Changed |= CleanupConstantGlobalUsers(CE, SubInit, DL, TLI);
307       } else if ((CE->getOpcode() == Instruction::BitCast &&
308                   CE->getType()->isPointerTy()) ||
309                  CE->getOpcode() == Instruction::AddrSpaceCast) {
310         // Pointer cast, delete any stores and memsets to the global.
311         Changed |= CleanupConstantGlobalUsers(CE, nullptr, DL, TLI);
312       }
313 
314       if (CE->use_empty()) {
315         CE->destroyConstant();
316         Changed = true;
317       }
318     } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(U)) {
319       // Do not transform "gepinst (gep constexpr (GV))" here, because forming
320       // "gepconstexpr (gep constexpr (GV))" will cause the two gep's to fold
321       // and will invalidate our notion of what Init is.
322       Constant *SubInit = nullptr;
323       if (!isa<ConstantExpr>(GEP->getOperand(0))) {
324         ConstantExpr *CE = dyn_cast_or_null<ConstantExpr>(
325             ConstantFoldInstruction(GEP, DL, TLI));
326         if (Init && CE && CE->getOpcode() == Instruction::GetElementPtr)
327           SubInit = ConstantFoldLoadThroughGEPConstantExpr(Init, CE);
328 
329         // If the initializer is an all-null value and we have an inbounds GEP,
330         // we already know what the result of any load from that GEP is.
331         // TODO: Handle splats.
332         if (Init && isa<ConstantAggregateZero>(Init) && GEP->isInBounds())
333           SubInit = Constant::getNullValue(GEP->getResultElementType());
334       }
335       Changed |= CleanupConstantGlobalUsers(GEP, SubInit, DL, TLI);
336 
337       if (GEP->use_empty()) {
338         GEP->eraseFromParent();
339         Changed = true;
340       }
341     } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(U)) { // memset/cpy/mv
342       if (MI->getRawDest() == V) {
343         MI->eraseFromParent();
344         Changed = true;
345       }
346 
347     } else if (Constant *C = dyn_cast<Constant>(U)) {
348       // If we have a chain of dead constantexprs or other things dangling from
349       // us, and if they are all dead, nuke them without remorse.
350       if (isSafeToDestroyConstant(C)) {
351         C->destroyConstant();
352         CleanupConstantGlobalUsers(V, Init, DL, TLI);
353         return true;
354       }
355     }
356   }
357   return Changed;
358 }
359 
360 static bool isSafeSROAElementUse(Value *V);
361 
362 /// Return true if the specified GEP is a safe user of a derived
363 /// expression from a global that we want to SROA.
isSafeSROAGEP(User * U)364 static bool isSafeSROAGEP(User *U) {
365   // Check to see if this ConstantExpr GEP is SRA'able.  In particular, we
366   // don't like < 3 operand CE's, and we don't like non-constant integer
367   // indices.  This enforces that all uses are 'gep GV, 0, C, ...' for some
368   // value of C.
369   if (U->getNumOperands() < 3 || !isa<Constant>(U->getOperand(1)) ||
370       !cast<Constant>(U->getOperand(1))->isNullValue())
371     return false;
372 
373   gep_type_iterator GEPI = gep_type_begin(U), E = gep_type_end(U);
374   ++GEPI; // Skip over the pointer index.
375 
376   // For all other level we require that the indices are constant and inrange.
377   // In particular, consider: A[0][i].  We cannot know that the user isn't doing
378   // invalid things like allowing i to index an out-of-range subscript that
379   // accesses A[1]. This can also happen between different members of a struct
380   // in llvm IR.
381   for (; GEPI != E; ++GEPI) {
382     if (GEPI.isStruct())
383       continue;
384 
385     ConstantInt *IdxVal = dyn_cast<ConstantInt>(GEPI.getOperand());
386     if (!IdxVal || (GEPI.isBoundedSequential() &&
387                     IdxVal->getZExtValue() >= GEPI.getSequentialNumElements()))
388       return false;
389   }
390 
391   return llvm::all_of(U->users(),
392                       [](User *UU) { return isSafeSROAElementUse(UU); });
393 }
394 
395 /// Return true if the specified instruction is a safe user of a derived
396 /// expression from a global that we want to SROA.
isSafeSROAElementUse(Value * V)397 static bool isSafeSROAElementUse(Value *V) {
398   // We might have a dead and dangling constant hanging off of here.
399   if (Constant *C = dyn_cast<Constant>(V))
400     return isSafeToDestroyConstant(C);
401 
402   Instruction *I = dyn_cast<Instruction>(V);
403   if (!I) return false;
404 
405   // Loads are ok.
406   if (isa<LoadInst>(I)) return true;
407 
408   // Stores *to* the pointer are ok.
409   if (StoreInst *SI = dyn_cast<StoreInst>(I))
410     return SI->getOperand(0) != V;
411 
412   // Otherwise, it must be a GEP. Check it and its users are safe to SRA.
413   return isa<GetElementPtrInst>(I) && isSafeSROAGEP(I);
414 }
415 
416 /// Look at all uses of the global and decide whether it is safe for us to
417 /// perform this transformation.
GlobalUsersSafeToSRA(GlobalValue * GV)418 static bool GlobalUsersSafeToSRA(GlobalValue *GV) {
419   for (User *U : GV->users()) {
420     // The user of the global must be a GEP Inst or a ConstantExpr GEP.
421     if (!isa<GetElementPtrInst>(U) &&
422         (!isa<ConstantExpr>(U) ||
423         cast<ConstantExpr>(U)->getOpcode() != Instruction::GetElementPtr))
424       return false;
425 
426     // Check the gep and it's users are safe to SRA
427     if (!isSafeSROAGEP(U))
428       return false;
429   }
430 
431   return true;
432 }
433 
434 /// Copy over the debug info for a variable to its SRA replacements.
transferSRADebugInfo(GlobalVariable * GV,GlobalVariable * NGV,uint64_t FragmentOffsetInBits,uint64_t FragmentSizeInBits,unsigned NumElements)435 static void transferSRADebugInfo(GlobalVariable *GV, GlobalVariable *NGV,
436                                  uint64_t FragmentOffsetInBits,
437                                  uint64_t FragmentSizeInBits,
438                                  unsigned NumElements) {
439   SmallVector<DIGlobalVariableExpression *, 1> GVs;
440   GV->getDebugInfo(GVs);
441   for (auto *GVE : GVs) {
442     DIVariable *Var = GVE->getVariable();
443     DIExpression *Expr = GVE->getExpression();
444     if (NumElements > 1) {
445       if (auto E = DIExpression::createFragmentExpression(
446               Expr, FragmentOffsetInBits, FragmentSizeInBits))
447         Expr = *E;
448       else
449         return;
450     }
451     auto *NGVE = DIGlobalVariableExpression::get(GVE->getContext(), Var, Expr);
452     NGV->addDebugInfo(NGVE);
453   }
454 }
455 
456 /// Perform scalar replacement of aggregates on the specified global variable.
457 /// This opens the door for other optimizations by exposing the behavior of the
458 /// program in a more fine-grained way.  We have determined that this
459 /// transformation is safe already.  We return the first global variable we
460 /// insert so that the caller can reprocess it.
SRAGlobal(GlobalVariable * GV,const DataLayout & DL)461 static GlobalVariable *SRAGlobal(GlobalVariable *GV, const DataLayout &DL) {
462   // Make sure this global only has simple uses that we can SRA.
463   if (!GlobalUsersSafeToSRA(GV))
464     return nullptr;
465 
466   assert(GV->hasLocalLinkage());
467   Constant *Init = GV->getInitializer();
468   Type *Ty = Init->getType();
469 
470   std::vector<GlobalVariable *> NewGlobals;
471   Module::GlobalListType &Globals = GV->getParent()->getGlobalList();
472 
473   // Get the alignment of the global, either explicit or target-specific.
474   unsigned StartAlignment = GV->getAlignment();
475   if (StartAlignment == 0)
476     StartAlignment = DL.getABITypeAlignment(GV->getType());
477 
478   if (StructType *STy = dyn_cast<StructType>(Ty)) {
479     unsigned NumElements = STy->getNumElements();
480     NewGlobals.reserve(NumElements);
481     const StructLayout &Layout = *DL.getStructLayout(STy);
482     for (unsigned i = 0, e = NumElements; i != e; ++i) {
483       Constant *In = Init->getAggregateElement(i);
484       assert(In && "Couldn't get element of initializer?");
485       GlobalVariable *NGV = new GlobalVariable(STy->getElementType(i), false,
486                                                GlobalVariable::InternalLinkage,
487                                                In, GV->getName()+"."+Twine(i),
488                                                GV->getThreadLocalMode(),
489                                               GV->getType()->getAddressSpace());
490       NGV->setExternallyInitialized(GV->isExternallyInitialized());
491       NGV->copyAttributesFrom(GV);
492       Globals.push_back(NGV);
493       NewGlobals.push_back(NGV);
494 
495       // Calculate the known alignment of the field.  If the original aggregate
496       // had 256 byte alignment for example, something might depend on that:
497       // propagate info to each field.
498       uint64_t FieldOffset = Layout.getElementOffset(i);
499       unsigned NewAlign = (unsigned)MinAlign(StartAlignment, FieldOffset);
500       if (NewAlign > DL.getABITypeAlignment(STy->getElementType(i)))
501         NGV->setAlignment(NewAlign);
502 
503       // Copy over the debug info for the variable.
504       uint64_t Size = DL.getTypeAllocSizeInBits(NGV->getValueType());
505       uint64_t FragmentOffsetInBits = Layout.getElementOffsetInBits(i);
506       transferSRADebugInfo(GV, NGV, FragmentOffsetInBits, Size, NumElements);
507     }
508   } else if (SequentialType *STy = dyn_cast<SequentialType>(Ty)) {
509     unsigned NumElements = STy->getNumElements();
510     if (NumElements > 16 && GV->hasNUsesOrMore(16))
511       return nullptr; // It's not worth it.
512     NewGlobals.reserve(NumElements);
513     auto ElTy = STy->getElementType();
514     uint64_t EltSize = DL.getTypeAllocSize(ElTy);
515     unsigned EltAlign = DL.getABITypeAlignment(ElTy);
516     uint64_t FragmentSizeInBits = DL.getTypeAllocSizeInBits(ElTy);
517     for (unsigned i = 0, e = NumElements; i != e; ++i) {
518       Constant *In = Init->getAggregateElement(i);
519       assert(In && "Couldn't get element of initializer?");
520 
521       GlobalVariable *NGV = new GlobalVariable(STy->getElementType(), false,
522                                                GlobalVariable::InternalLinkage,
523                                                In, GV->getName()+"."+Twine(i),
524                                                GV->getThreadLocalMode(),
525                                               GV->getType()->getAddressSpace());
526       NGV->setExternallyInitialized(GV->isExternallyInitialized());
527       NGV->copyAttributesFrom(GV);
528       Globals.push_back(NGV);
529       NewGlobals.push_back(NGV);
530 
531       // Calculate the known alignment of the field.  If the original aggregate
532       // had 256 byte alignment for example, something might depend on that:
533       // propagate info to each field.
534       unsigned NewAlign = (unsigned)MinAlign(StartAlignment, EltSize*i);
535       if (NewAlign > EltAlign)
536         NGV->setAlignment(NewAlign);
537       transferSRADebugInfo(GV, NGV, FragmentSizeInBits * i, FragmentSizeInBits,
538                            NumElements);
539     }
540   }
541 
542   if (NewGlobals.empty())
543     return nullptr;
544 
545   LLVM_DEBUG(dbgs() << "PERFORMING GLOBAL SRA ON: " << *GV << "\n");
546 
547   Constant *NullInt =Constant::getNullValue(Type::getInt32Ty(GV->getContext()));
548 
549   // Loop over all of the uses of the global, replacing the constantexpr geps,
550   // with smaller constantexpr geps or direct references.
551   while (!GV->use_empty()) {
552     User *GEP = GV->user_back();
553     assert(((isa<ConstantExpr>(GEP) &&
554              cast<ConstantExpr>(GEP)->getOpcode()==Instruction::GetElementPtr)||
555             isa<GetElementPtrInst>(GEP)) && "NonGEP CE's are not SRAable!");
556 
557     // Ignore the 1th operand, which has to be zero or else the program is quite
558     // broken (undefined).  Get the 2nd operand, which is the structure or array
559     // index.
560     unsigned Val = cast<ConstantInt>(GEP->getOperand(2))->getZExtValue();
561     if (Val >= NewGlobals.size()) Val = 0; // Out of bound array access.
562 
563     Value *NewPtr = NewGlobals[Val];
564     Type *NewTy = NewGlobals[Val]->getValueType();
565 
566     // Form a shorter GEP if needed.
567     if (GEP->getNumOperands() > 3) {
568       if (ConstantExpr *CE = dyn_cast<ConstantExpr>(GEP)) {
569         SmallVector<Constant*, 8> Idxs;
570         Idxs.push_back(NullInt);
571         for (unsigned i = 3, e = CE->getNumOperands(); i != e; ++i)
572           Idxs.push_back(CE->getOperand(i));
573         NewPtr =
574             ConstantExpr::getGetElementPtr(NewTy, cast<Constant>(NewPtr), Idxs);
575       } else {
576         GetElementPtrInst *GEPI = cast<GetElementPtrInst>(GEP);
577         SmallVector<Value*, 8> Idxs;
578         Idxs.push_back(NullInt);
579         for (unsigned i = 3, e = GEPI->getNumOperands(); i != e; ++i)
580           Idxs.push_back(GEPI->getOperand(i));
581         NewPtr = GetElementPtrInst::Create(
582             NewTy, NewPtr, Idxs, GEPI->getName() + "." + Twine(Val), GEPI);
583       }
584     }
585     GEP->replaceAllUsesWith(NewPtr);
586 
587     if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(GEP))
588       GEPI->eraseFromParent();
589     else
590       cast<ConstantExpr>(GEP)->destroyConstant();
591   }
592 
593   // Delete the old global, now that it is dead.
594   Globals.erase(GV);
595   ++NumSRA;
596 
597   // Loop over the new globals array deleting any globals that are obviously
598   // dead.  This can arise due to scalarization of a structure or an array that
599   // has elements that are dead.
600   unsigned FirstGlobal = 0;
601   for (unsigned i = 0, e = NewGlobals.size(); i != e; ++i)
602     if (NewGlobals[i]->use_empty()) {
603       Globals.erase(NewGlobals[i]);
604       if (FirstGlobal == i) ++FirstGlobal;
605     }
606 
607   return FirstGlobal != NewGlobals.size() ? NewGlobals[FirstGlobal] : nullptr;
608 }
609 
610 /// Return true if all users of the specified value will trap if the value is
611 /// dynamically null.  PHIs keeps track of any phi nodes we've seen to avoid
612 /// reprocessing them.
AllUsesOfValueWillTrapIfNull(const Value * V,SmallPtrSetImpl<const PHINode * > & PHIs)613 static bool AllUsesOfValueWillTrapIfNull(const Value *V,
614                                         SmallPtrSetImpl<const PHINode*> &PHIs) {
615   for (const User *U : V->users()) {
616     if (const Instruction *I = dyn_cast<Instruction>(U)) {
617       // If null pointer is considered valid, then all uses are non-trapping.
618       // Non address-space 0 globals have already been pruned by the caller.
619       if (NullPointerIsDefined(I->getFunction()))
620         return false;
621     }
622     if (isa<LoadInst>(U)) {
623       // Will trap.
624     } else if (const StoreInst *SI = dyn_cast<StoreInst>(U)) {
625       if (SI->getOperand(0) == V) {
626         //cerr << "NONTRAPPING USE: " << *U;
627         return false;  // Storing the value.
628       }
629     } else if (const CallInst *CI = dyn_cast<CallInst>(U)) {
630       if (CI->getCalledValue() != V) {
631         //cerr << "NONTRAPPING USE: " << *U;
632         return false;  // Not calling the ptr
633       }
634     } else if (const InvokeInst *II = dyn_cast<InvokeInst>(U)) {
635       if (II->getCalledValue() != V) {
636         //cerr << "NONTRAPPING USE: " << *U;
637         return false;  // Not calling the ptr
638       }
639     } else if (const BitCastInst *CI = dyn_cast<BitCastInst>(U)) {
640       if (!AllUsesOfValueWillTrapIfNull(CI, PHIs)) return false;
641     } else if (const GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(U)) {
642       if (!AllUsesOfValueWillTrapIfNull(GEPI, PHIs)) return false;
643     } else if (const PHINode *PN = dyn_cast<PHINode>(U)) {
644       // If we've already seen this phi node, ignore it, it has already been
645       // checked.
646       if (PHIs.insert(PN).second && !AllUsesOfValueWillTrapIfNull(PN, PHIs))
647         return false;
648     } else if (isa<ICmpInst>(U) &&
649                isa<ConstantPointerNull>(U->getOperand(1))) {
650       // Ignore icmp X, null
651     } else {
652       //cerr << "NONTRAPPING USE: " << *U;
653       return false;
654     }
655   }
656   return true;
657 }
658 
659 /// Return true if all uses of any loads from GV will trap if the loaded value
660 /// is null.  Note that this also permits comparisons of the loaded value
661 /// against null, as a special case.
AllUsesOfLoadedValueWillTrapIfNull(const GlobalVariable * GV)662 static bool AllUsesOfLoadedValueWillTrapIfNull(const GlobalVariable *GV) {
663   for (const User *U : GV->users())
664     if (const LoadInst *LI = dyn_cast<LoadInst>(U)) {
665       SmallPtrSet<const PHINode*, 8> PHIs;
666       if (!AllUsesOfValueWillTrapIfNull(LI, PHIs))
667         return false;
668     } else if (isa<StoreInst>(U)) {
669       // Ignore stores to the global.
670     } else {
671       // We don't know or understand this user, bail out.
672       //cerr << "UNKNOWN USER OF GLOBAL!: " << *U;
673       return false;
674     }
675   return true;
676 }
677 
OptimizeAwayTrappingUsesOfValue(Value * V,Constant * NewV)678 static bool OptimizeAwayTrappingUsesOfValue(Value *V, Constant *NewV) {
679   bool Changed = false;
680   for (auto UI = V->user_begin(), E = V->user_end(); UI != E; ) {
681     Instruction *I = cast<Instruction>(*UI++);
682     // Uses are non-trapping if null pointer is considered valid.
683     // Non address-space 0 globals are already pruned by the caller.
684     if (NullPointerIsDefined(I->getFunction()))
685       return false;
686     if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
687       LI->setOperand(0, NewV);
688       Changed = true;
689     } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
690       if (SI->getOperand(1) == V) {
691         SI->setOperand(1, NewV);
692         Changed = true;
693       }
694     } else if (isa<CallInst>(I) || isa<InvokeInst>(I)) {
695       CallSite CS(I);
696       if (CS.getCalledValue() == V) {
697         // Calling through the pointer!  Turn into a direct call, but be careful
698         // that the pointer is not also being passed as an argument.
699         CS.setCalledFunction(NewV);
700         Changed = true;
701         bool PassedAsArg = false;
702         for (unsigned i = 0, e = CS.arg_size(); i != e; ++i)
703           if (CS.getArgument(i) == V) {
704             PassedAsArg = true;
705             CS.setArgument(i, NewV);
706           }
707 
708         if (PassedAsArg) {
709           // Being passed as an argument also.  Be careful to not invalidate UI!
710           UI = V->user_begin();
711         }
712       }
713     } else if (CastInst *CI = dyn_cast<CastInst>(I)) {
714       Changed |= OptimizeAwayTrappingUsesOfValue(CI,
715                                 ConstantExpr::getCast(CI->getOpcode(),
716                                                       NewV, CI->getType()));
717       if (CI->use_empty()) {
718         Changed = true;
719         CI->eraseFromParent();
720       }
721     } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) {
722       // Should handle GEP here.
723       SmallVector<Constant*, 8> Idxs;
724       Idxs.reserve(GEPI->getNumOperands()-1);
725       for (User::op_iterator i = GEPI->op_begin() + 1, e = GEPI->op_end();
726            i != e; ++i)
727         if (Constant *C = dyn_cast<Constant>(*i))
728           Idxs.push_back(C);
729         else
730           break;
731       if (Idxs.size() == GEPI->getNumOperands()-1)
732         Changed |= OptimizeAwayTrappingUsesOfValue(
733             GEPI, ConstantExpr::getGetElementPtr(nullptr, NewV, Idxs));
734       if (GEPI->use_empty()) {
735         Changed = true;
736         GEPI->eraseFromParent();
737       }
738     }
739   }
740 
741   return Changed;
742 }
743 
744 /// The specified global has only one non-null value stored into it.  If there
745 /// are uses of the loaded value that would trap if the loaded value is
746 /// dynamically null, then we know that they cannot be reachable with a null
747 /// optimize away the load.
OptimizeAwayTrappingUsesOfLoads(GlobalVariable * GV,Constant * LV,const DataLayout & DL,TargetLibraryInfo * TLI)748 static bool OptimizeAwayTrappingUsesOfLoads(GlobalVariable *GV, Constant *LV,
749                                             const DataLayout &DL,
750                                             TargetLibraryInfo *TLI) {
751   bool Changed = false;
752 
753   // Keep track of whether we are able to remove all the uses of the global
754   // other than the store that defines it.
755   bool AllNonStoreUsesGone = true;
756 
757   // Replace all uses of loads with uses of uses of the stored value.
758   for (Value::user_iterator GUI = GV->user_begin(), E = GV->user_end(); GUI != E;){
759     User *GlobalUser = *GUI++;
760     if (LoadInst *LI = dyn_cast<LoadInst>(GlobalUser)) {
761       Changed |= OptimizeAwayTrappingUsesOfValue(LI, LV);
762       // If we were able to delete all uses of the loads
763       if (LI->use_empty()) {
764         LI->eraseFromParent();
765         Changed = true;
766       } else {
767         AllNonStoreUsesGone = false;
768       }
769     } else if (isa<StoreInst>(GlobalUser)) {
770       // Ignore the store that stores "LV" to the global.
771       assert(GlobalUser->getOperand(1) == GV &&
772              "Must be storing *to* the global");
773     } else {
774       AllNonStoreUsesGone = false;
775 
776       // If we get here we could have other crazy uses that are transitively
777       // loaded.
778       assert((isa<PHINode>(GlobalUser) || isa<SelectInst>(GlobalUser) ||
779               isa<ConstantExpr>(GlobalUser) || isa<CmpInst>(GlobalUser) ||
780               isa<BitCastInst>(GlobalUser) ||
781               isa<GetElementPtrInst>(GlobalUser)) &&
782              "Only expect load and stores!");
783     }
784   }
785 
786   if (Changed) {
787     LLVM_DEBUG(dbgs() << "OPTIMIZED LOADS FROM STORED ONCE POINTER: " << *GV
788                       << "\n");
789     ++NumGlobUses;
790   }
791 
792   // If we nuked all of the loads, then none of the stores are needed either,
793   // nor is the global.
794   if (AllNonStoreUsesGone) {
795     if (isLeakCheckerRoot(GV)) {
796       Changed |= CleanupPointerRootUsers(GV, TLI);
797     } else {
798       Changed = true;
799       CleanupConstantGlobalUsers(GV, nullptr, DL, TLI);
800     }
801     if (GV->use_empty()) {
802       LLVM_DEBUG(dbgs() << "  *** GLOBAL NOW DEAD!\n");
803       Changed = true;
804       GV->eraseFromParent();
805       ++NumDeleted;
806     }
807   }
808   return Changed;
809 }
810 
811 /// Walk the use list of V, constant folding all of the instructions that are
812 /// foldable.
ConstantPropUsersOf(Value * V,const DataLayout & DL,TargetLibraryInfo * TLI)813 static void ConstantPropUsersOf(Value *V, const DataLayout &DL,
814                                 TargetLibraryInfo *TLI) {
815   for (Value::user_iterator UI = V->user_begin(), E = V->user_end(); UI != E; )
816     if (Instruction *I = dyn_cast<Instruction>(*UI++))
817       if (Constant *NewC = ConstantFoldInstruction(I, DL, TLI)) {
818         I->replaceAllUsesWith(NewC);
819 
820         // Advance UI to the next non-I use to avoid invalidating it!
821         // Instructions could multiply use V.
822         while (UI != E && *UI == I)
823           ++UI;
824         if (isInstructionTriviallyDead(I, TLI))
825           I->eraseFromParent();
826       }
827 }
828 
829 /// This function takes the specified global variable, and transforms the
830 /// program as if it always contained the result of the specified malloc.
831 /// Because it is always the result of the specified malloc, there is no reason
832 /// to actually DO the malloc.  Instead, turn the malloc into a global, and any
833 /// loads of GV as uses of the new global.
834 static GlobalVariable *
OptimizeGlobalAddressOfMalloc(GlobalVariable * GV,CallInst * CI,Type * AllocTy,ConstantInt * NElements,const DataLayout & DL,TargetLibraryInfo * TLI)835 OptimizeGlobalAddressOfMalloc(GlobalVariable *GV, CallInst *CI, Type *AllocTy,
836                               ConstantInt *NElements, const DataLayout &DL,
837                               TargetLibraryInfo *TLI) {
838   LLVM_DEBUG(errs() << "PROMOTING GLOBAL: " << *GV << "  CALL = " << *CI
839                     << '\n');
840 
841   Type *GlobalType;
842   if (NElements->getZExtValue() == 1)
843     GlobalType = AllocTy;
844   else
845     // If we have an array allocation, the global variable is of an array.
846     GlobalType = ArrayType::get(AllocTy, NElements->getZExtValue());
847 
848   // Create the new global variable.  The contents of the malloc'd memory is
849   // undefined, so initialize with an undef value.
850   GlobalVariable *NewGV = new GlobalVariable(
851       *GV->getParent(), GlobalType, false, GlobalValue::InternalLinkage,
852       UndefValue::get(GlobalType), GV->getName() + ".body", nullptr,
853       GV->getThreadLocalMode());
854 
855   // If there are bitcast users of the malloc (which is typical, usually we have
856   // a malloc + bitcast) then replace them with uses of the new global.  Update
857   // other users to use the global as well.
858   BitCastInst *TheBC = nullptr;
859   while (!CI->use_empty()) {
860     Instruction *User = cast<Instruction>(CI->user_back());
861     if (BitCastInst *BCI = dyn_cast<BitCastInst>(User)) {
862       if (BCI->getType() == NewGV->getType()) {
863         BCI->replaceAllUsesWith(NewGV);
864         BCI->eraseFromParent();
865       } else {
866         BCI->setOperand(0, NewGV);
867       }
868     } else {
869       if (!TheBC)
870         TheBC = new BitCastInst(NewGV, CI->getType(), "newgv", CI);
871       User->replaceUsesOfWith(CI, TheBC);
872     }
873   }
874 
875   Constant *RepValue = NewGV;
876   if (NewGV->getType() != GV->getValueType())
877     RepValue = ConstantExpr::getBitCast(RepValue, GV->getValueType());
878 
879   // If there is a comparison against null, we will insert a global bool to
880   // keep track of whether the global was initialized yet or not.
881   GlobalVariable *InitBool =
882     new GlobalVariable(Type::getInt1Ty(GV->getContext()), false,
883                        GlobalValue::InternalLinkage,
884                        ConstantInt::getFalse(GV->getContext()),
885                        GV->getName()+".init", GV->getThreadLocalMode());
886   bool InitBoolUsed = false;
887 
888   // Loop over all uses of GV, processing them in turn.
889   while (!GV->use_empty()) {
890     if (StoreInst *SI = dyn_cast<StoreInst>(GV->user_back())) {
891       // The global is initialized when the store to it occurs.
892       new StoreInst(ConstantInt::getTrue(GV->getContext()), InitBool, false, 0,
893                     SI->getOrdering(), SI->getSyncScopeID(), SI);
894       SI->eraseFromParent();
895       continue;
896     }
897 
898     LoadInst *LI = cast<LoadInst>(GV->user_back());
899     while (!LI->use_empty()) {
900       Use &LoadUse = *LI->use_begin();
901       ICmpInst *ICI = dyn_cast<ICmpInst>(LoadUse.getUser());
902       if (!ICI) {
903         LoadUse = RepValue;
904         continue;
905       }
906 
907       // Replace the cmp X, 0 with a use of the bool value.
908       // Sink the load to where the compare was, if atomic rules allow us to.
909       Value *LV = new LoadInst(InitBool, InitBool->getName()+".val", false, 0,
910                                LI->getOrdering(), LI->getSyncScopeID(),
911                                LI->isUnordered() ? (Instruction*)ICI : LI);
912       InitBoolUsed = true;
913       switch (ICI->getPredicate()) {
914       default: llvm_unreachable("Unknown ICmp Predicate!");
915       case ICmpInst::ICMP_ULT:
916       case ICmpInst::ICMP_SLT:   // X < null -> always false
917         LV = ConstantInt::getFalse(GV->getContext());
918         break;
919       case ICmpInst::ICMP_ULE:
920       case ICmpInst::ICMP_SLE:
921       case ICmpInst::ICMP_EQ:
922         LV = BinaryOperator::CreateNot(LV, "notinit", ICI);
923         break;
924       case ICmpInst::ICMP_NE:
925       case ICmpInst::ICMP_UGE:
926       case ICmpInst::ICMP_SGE:
927       case ICmpInst::ICMP_UGT:
928       case ICmpInst::ICMP_SGT:
929         break;  // no change.
930       }
931       ICI->replaceAllUsesWith(LV);
932       ICI->eraseFromParent();
933     }
934     LI->eraseFromParent();
935   }
936 
937   // If the initialization boolean was used, insert it, otherwise delete it.
938   if (!InitBoolUsed) {
939     while (!InitBool->use_empty())  // Delete initializations
940       cast<StoreInst>(InitBool->user_back())->eraseFromParent();
941     delete InitBool;
942   } else
943     GV->getParent()->getGlobalList().insert(GV->getIterator(), InitBool);
944 
945   // Now the GV is dead, nuke it and the malloc..
946   GV->eraseFromParent();
947   CI->eraseFromParent();
948 
949   // To further other optimizations, loop over all users of NewGV and try to
950   // constant prop them.  This will promote GEP instructions with constant
951   // indices into GEP constant-exprs, which will allow global-opt to hack on it.
952   ConstantPropUsersOf(NewGV, DL, TLI);
953   if (RepValue != NewGV)
954     ConstantPropUsersOf(RepValue, DL, TLI);
955 
956   return NewGV;
957 }
958 
959 /// Scan the use-list of V checking to make sure that there are no complex uses
960 /// of V.  We permit simple things like dereferencing the pointer, but not
961 /// storing through the address, unless it is to the specified global.
ValueIsOnlyUsedLocallyOrStoredToOneGlobal(const Instruction * V,const GlobalVariable * GV,SmallPtrSetImpl<const PHINode * > & PHIs)962 static bool ValueIsOnlyUsedLocallyOrStoredToOneGlobal(const Instruction *V,
963                                                       const GlobalVariable *GV,
964                                         SmallPtrSetImpl<const PHINode*> &PHIs) {
965   for (const User *U : V->users()) {
966     const Instruction *Inst = cast<Instruction>(U);
967 
968     if (isa<LoadInst>(Inst) || isa<CmpInst>(Inst)) {
969       continue; // Fine, ignore.
970     }
971 
972     if (const StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
973       if (SI->getOperand(0) == V && SI->getOperand(1) != GV)
974         return false;  // Storing the pointer itself... bad.
975       continue; // Otherwise, storing through it, or storing into GV... fine.
976     }
977 
978     // Must index into the array and into the struct.
979     if (isa<GetElementPtrInst>(Inst) && Inst->getNumOperands() >= 3) {
980       if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(Inst, GV, PHIs))
981         return false;
982       continue;
983     }
984 
985     if (const PHINode *PN = dyn_cast<PHINode>(Inst)) {
986       // PHIs are ok if all uses are ok.  Don't infinitely recurse through PHI
987       // cycles.
988       if (PHIs.insert(PN).second)
989         if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(PN, GV, PHIs))
990           return false;
991       continue;
992     }
993 
994     if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Inst)) {
995       if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(BCI, GV, PHIs))
996         return false;
997       continue;
998     }
999 
1000     return false;
1001   }
1002   return true;
1003 }
1004 
1005 /// The Alloc pointer is stored into GV somewhere.  Transform all uses of the
1006 /// allocation into loads from the global and uses of the resultant pointer.
1007 /// Further, delete the store into GV.  This assumes that these value pass the
1008 /// 'ValueIsOnlyUsedLocallyOrStoredToOneGlobal' predicate.
ReplaceUsesOfMallocWithGlobal(Instruction * Alloc,GlobalVariable * GV)1009 static void ReplaceUsesOfMallocWithGlobal(Instruction *Alloc,
1010                                           GlobalVariable *GV) {
1011   while (!Alloc->use_empty()) {
1012     Instruction *U = cast<Instruction>(*Alloc->user_begin());
1013     Instruction *InsertPt = U;
1014     if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
1015       // If this is the store of the allocation into the global, remove it.
1016       if (SI->getOperand(1) == GV) {
1017         SI->eraseFromParent();
1018         continue;
1019       }
1020     } else if (PHINode *PN = dyn_cast<PHINode>(U)) {
1021       // Insert the load in the corresponding predecessor, not right before the
1022       // PHI.
1023       InsertPt = PN->getIncomingBlock(*Alloc->use_begin())->getTerminator();
1024     } else if (isa<BitCastInst>(U)) {
1025       // Must be bitcast between the malloc and store to initialize the global.
1026       ReplaceUsesOfMallocWithGlobal(U, GV);
1027       U->eraseFromParent();
1028       continue;
1029     } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(U)) {
1030       // If this is a "GEP bitcast" and the user is a store to the global, then
1031       // just process it as a bitcast.
1032       if (GEPI->hasAllZeroIndices() && GEPI->hasOneUse())
1033         if (StoreInst *SI = dyn_cast<StoreInst>(GEPI->user_back()))
1034           if (SI->getOperand(1) == GV) {
1035             // Must be bitcast GEP between the malloc and store to initialize
1036             // the global.
1037             ReplaceUsesOfMallocWithGlobal(GEPI, GV);
1038             GEPI->eraseFromParent();
1039             continue;
1040           }
1041     }
1042 
1043     // Insert a load from the global, and use it instead of the malloc.
1044     Value *NL = new LoadInst(GV, GV->getName()+".val", InsertPt);
1045     U->replaceUsesOfWith(Alloc, NL);
1046   }
1047 }
1048 
1049 /// Verify that all uses of V (a load, or a phi of a load) are simple enough to
1050 /// perform heap SRA on.  This permits GEP's that index through the array and
1051 /// struct field, icmps of null, and PHIs.
LoadUsesSimpleEnoughForHeapSRA(const Value * V,SmallPtrSetImpl<const PHINode * > & LoadUsingPHIs,SmallPtrSetImpl<const PHINode * > & LoadUsingPHIsPerLoad)1052 static bool LoadUsesSimpleEnoughForHeapSRA(const Value *V,
1053                         SmallPtrSetImpl<const PHINode*> &LoadUsingPHIs,
1054                         SmallPtrSetImpl<const PHINode*> &LoadUsingPHIsPerLoad) {
1055   // We permit two users of the load: setcc comparing against the null
1056   // pointer, and a getelementptr of a specific form.
1057   for (const User *U : V->users()) {
1058     const Instruction *UI = cast<Instruction>(U);
1059 
1060     // Comparison against null is ok.
1061     if (const ICmpInst *ICI = dyn_cast<ICmpInst>(UI)) {
1062       if (!isa<ConstantPointerNull>(ICI->getOperand(1)))
1063         return false;
1064       continue;
1065     }
1066 
1067     // getelementptr is also ok, but only a simple form.
1068     if (const GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(UI)) {
1069       // Must index into the array and into the struct.
1070       if (GEPI->getNumOperands() < 3)
1071         return false;
1072 
1073       // Otherwise the GEP is ok.
1074       continue;
1075     }
1076 
1077     if (const PHINode *PN = dyn_cast<PHINode>(UI)) {
1078       if (!LoadUsingPHIsPerLoad.insert(PN).second)
1079         // This means some phi nodes are dependent on each other.
1080         // Avoid infinite looping!
1081         return false;
1082       if (!LoadUsingPHIs.insert(PN).second)
1083         // If we have already analyzed this PHI, then it is safe.
1084         continue;
1085 
1086       // Make sure all uses of the PHI are simple enough to transform.
1087       if (!LoadUsesSimpleEnoughForHeapSRA(PN,
1088                                           LoadUsingPHIs, LoadUsingPHIsPerLoad))
1089         return false;
1090 
1091       continue;
1092     }
1093 
1094     // Otherwise we don't know what this is, not ok.
1095     return false;
1096   }
1097 
1098   return true;
1099 }
1100 
1101 /// If all users of values loaded from GV are simple enough to perform HeapSRA,
1102 /// return true.
AllGlobalLoadUsesSimpleEnoughForHeapSRA(const GlobalVariable * GV,Instruction * StoredVal)1103 static bool AllGlobalLoadUsesSimpleEnoughForHeapSRA(const GlobalVariable *GV,
1104                                                     Instruction *StoredVal) {
1105   SmallPtrSet<const PHINode*, 32> LoadUsingPHIs;
1106   SmallPtrSet<const PHINode*, 32> LoadUsingPHIsPerLoad;
1107   for (const User *U : GV->users())
1108     if (const LoadInst *LI = dyn_cast<LoadInst>(U)) {
1109       if (!LoadUsesSimpleEnoughForHeapSRA(LI, LoadUsingPHIs,
1110                                           LoadUsingPHIsPerLoad))
1111         return false;
1112       LoadUsingPHIsPerLoad.clear();
1113     }
1114 
1115   // If we reach here, we know that all uses of the loads and transitive uses
1116   // (through PHI nodes) are simple enough to transform.  However, we don't know
1117   // that all inputs the to the PHI nodes are in the same equivalence sets.
1118   // Check to verify that all operands of the PHIs are either PHIS that can be
1119   // transformed, loads from GV, or MI itself.
1120   for (const PHINode *PN : LoadUsingPHIs) {
1121     for (unsigned op = 0, e = PN->getNumIncomingValues(); op != e; ++op) {
1122       Value *InVal = PN->getIncomingValue(op);
1123 
1124       // PHI of the stored value itself is ok.
1125       if (InVal == StoredVal) continue;
1126 
1127       if (const PHINode *InPN = dyn_cast<PHINode>(InVal)) {
1128         // One of the PHIs in our set is (optimistically) ok.
1129         if (LoadUsingPHIs.count(InPN))
1130           continue;
1131         return false;
1132       }
1133 
1134       // Load from GV is ok.
1135       if (const LoadInst *LI = dyn_cast<LoadInst>(InVal))
1136         if (LI->getOperand(0) == GV)
1137           continue;
1138 
1139       // UNDEF? NULL?
1140 
1141       // Anything else is rejected.
1142       return false;
1143     }
1144   }
1145 
1146   return true;
1147 }
1148 
GetHeapSROAValue(Value * V,unsigned FieldNo,DenseMap<Value *,std::vector<Value * >> & InsertedScalarizedValues,std::vector<std::pair<PHINode *,unsigned>> & PHIsToRewrite)1149 static Value *GetHeapSROAValue(Value *V, unsigned FieldNo,
1150               DenseMap<Value *, std::vector<Value *>> &InsertedScalarizedValues,
1151                    std::vector<std::pair<PHINode *, unsigned>> &PHIsToRewrite) {
1152   std::vector<Value *> &FieldVals = InsertedScalarizedValues[V];
1153 
1154   if (FieldNo >= FieldVals.size())
1155     FieldVals.resize(FieldNo+1);
1156 
1157   // If we already have this value, just reuse the previously scalarized
1158   // version.
1159   if (Value *FieldVal = FieldVals[FieldNo])
1160     return FieldVal;
1161 
1162   // Depending on what instruction this is, we have several cases.
1163   Value *Result;
1164   if (LoadInst *LI = dyn_cast<LoadInst>(V)) {
1165     // This is a scalarized version of the load from the global.  Just create
1166     // a new Load of the scalarized global.
1167     Result = new LoadInst(GetHeapSROAValue(LI->getOperand(0), FieldNo,
1168                                            InsertedScalarizedValues,
1169                                            PHIsToRewrite),
1170                           LI->getName()+".f"+Twine(FieldNo), LI);
1171   } else {
1172     PHINode *PN = cast<PHINode>(V);
1173     // PN's type is pointer to struct.  Make a new PHI of pointer to struct
1174     // field.
1175 
1176     PointerType *PTy = cast<PointerType>(PN->getType());
1177     StructType *ST = cast<StructType>(PTy->getElementType());
1178 
1179     unsigned AS = PTy->getAddressSpace();
1180     PHINode *NewPN =
1181       PHINode::Create(PointerType::get(ST->getElementType(FieldNo), AS),
1182                      PN->getNumIncomingValues(),
1183                      PN->getName()+".f"+Twine(FieldNo), PN);
1184     Result = NewPN;
1185     PHIsToRewrite.push_back(std::make_pair(PN, FieldNo));
1186   }
1187 
1188   return FieldVals[FieldNo] = Result;
1189 }
1190 
1191 /// Given a load instruction and a value derived from the load, rewrite the
1192 /// derived value to use the HeapSRoA'd load.
RewriteHeapSROALoadUser(Instruction * LoadUser,DenseMap<Value *,std::vector<Value * >> & InsertedScalarizedValues,std::vector<std::pair<PHINode *,unsigned>> & PHIsToRewrite)1193 static void RewriteHeapSROALoadUser(Instruction *LoadUser,
1194               DenseMap<Value *, std::vector<Value *>> &InsertedScalarizedValues,
1195                    std::vector<std::pair<PHINode *, unsigned>> &PHIsToRewrite) {
1196   // If this is a comparison against null, handle it.
1197   if (ICmpInst *SCI = dyn_cast<ICmpInst>(LoadUser)) {
1198     assert(isa<ConstantPointerNull>(SCI->getOperand(1)));
1199     // If we have a setcc of the loaded pointer, we can use a setcc of any
1200     // field.
1201     Value *NPtr = GetHeapSROAValue(SCI->getOperand(0), 0,
1202                                    InsertedScalarizedValues, PHIsToRewrite);
1203 
1204     Value *New = new ICmpInst(SCI, SCI->getPredicate(), NPtr,
1205                               Constant::getNullValue(NPtr->getType()),
1206                               SCI->getName());
1207     SCI->replaceAllUsesWith(New);
1208     SCI->eraseFromParent();
1209     return;
1210   }
1211 
1212   // Handle 'getelementptr Ptr, Idx, i32 FieldNo ...'
1213   if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(LoadUser)) {
1214     assert(GEPI->getNumOperands() >= 3 && isa<ConstantInt>(GEPI->getOperand(2))
1215            && "Unexpected GEPI!");
1216 
1217     // Load the pointer for this field.
1218     unsigned FieldNo = cast<ConstantInt>(GEPI->getOperand(2))->getZExtValue();
1219     Value *NewPtr = GetHeapSROAValue(GEPI->getOperand(0), FieldNo,
1220                                      InsertedScalarizedValues, PHIsToRewrite);
1221 
1222     // Create the new GEP idx vector.
1223     SmallVector<Value*, 8> GEPIdx;
1224     GEPIdx.push_back(GEPI->getOperand(1));
1225     GEPIdx.append(GEPI->op_begin()+3, GEPI->op_end());
1226 
1227     Value *NGEPI = GetElementPtrInst::Create(GEPI->getResultElementType(), NewPtr, GEPIdx,
1228                                              GEPI->getName(), GEPI);
1229     GEPI->replaceAllUsesWith(NGEPI);
1230     GEPI->eraseFromParent();
1231     return;
1232   }
1233 
1234   // Recursively transform the users of PHI nodes.  This will lazily create the
1235   // PHIs that are needed for individual elements.  Keep track of what PHIs we
1236   // see in InsertedScalarizedValues so that we don't get infinite loops (very
1237   // antisocial).  If the PHI is already in InsertedScalarizedValues, it has
1238   // already been seen first by another load, so its uses have already been
1239   // processed.
1240   PHINode *PN = cast<PHINode>(LoadUser);
1241   if (!InsertedScalarizedValues.insert(std::make_pair(PN,
1242                                               std::vector<Value *>())).second)
1243     return;
1244 
1245   // If this is the first time we've seen this PHI, recursively process all
1246   // users.
1247   for (auto UI = PN->user_begin(), E = PN->user_end(); UI != E;) {
1248     Instruction *User = cast<Instruction>(*UI++);
1249     RewriteHeapSROALoadUser(User, InsertedScalarizedValues, PHIsToRewrite);
1250   }
1251 }
1252 
1253 /// We are performing Heap SRoA on a global.  Ptr is a value loaded from the
1254 /// global.  Eliminate all uses of Ptr, making them use FieldGlobals instead.
1255 /// All uses of loaded values satisfy AllGlobalLoadUsesSimpleEnoughForHeapSRA.
RewriteUsesOfLoadForHeapSRoA(LoadInst * Load,DenseMap<Value *,std::vector<Value * >> & InsertedScalarizedValues,std::vector<std::pair<PHINode *,unsigned>> & PHIsToRewrite)1256 static void RewriteUsesOfLoadForHeapSRoA(LoadInst *Load,
1257               DenseMap<Value *, std::vector<Value *>> &InsertedScalarizedValues,
1258                   std::vector<std::pair<PHINode *, unsigned> > &PHIsToRewrite) {
1259   for (auto UI = Load->user_begin(), E = Load->user_end(); UI != E;) {
1260     Instruction *User = cast<Instruction>(*UI++);
1261     RewriteHeapSROALoadUser(User, InsertedScalarizedValues, PHIsToRewrite);
1262   }
1263 
1264   if (Load->use_empty()) {
1265     Load->eraseFromParent();
1266     InsertedScalarizedValues.erase(Load);
1267   }
1268 }
1269 
1270 /// CI is an allocation of an array of structures.  Break it up into multiple
1271 /// allocations of arrays of the fields.
PerformHeapAllocSRoA(GlobalVariable * GV,CallInst * CI,Value * NElems,const DataLayout & DL,const TargetLibraryInfo * TLI)1272 static GlobalVariable *PerformHeapAllocSRoA(GlobalVariable *GV, CallInst *CI,
1273                                             Value *NElems, const DataLayout &DL,
1274                                             const TargetLibraryInfo *TLI) {
1275   LLVM_DEBUG(dbgs() << "SROA HEAP ALLOC: " << *GV << "  MALLOC = " << *CI
1276                     << '\n');
1277   Type *MAT = getMallocAllocatedType(CI, TLI);
1278   StructType *STy = cast<StructType>(MAT);
1279 
1280   // There is guaranteed to be at least one use of the malloc (storing
1281   // it into GV).  If there are other uses, change them to be uses of
1282   // the global to simplify later code.  This also deletes the store
1283   // into GV.
1284   ReplaceUsesOfMallocWithGlobal(CI, GV);
1285 
1286   // Okay, at this point, there are no users of the malloc.  Insert N
1287   // new mallocs at the same place as CI, and N globals.
1288   std::vector<Value *> FieldGlobals;
1289   std::vector<Value *> FieldMallocs;
1290 
1291   SmallVector<OperandBundleDef, 1> OpBundles;
1292   CI->getOperandBundlesAsDefs(OpBundles);
1293 
1294   unsigned AS = GV->getType()->getPointerAddressSpace();
1295   for (unsigned FieldNo = 0, e = STy->getNumElements(); FieldNo != e;++FieldNo){
1296     Type *FieldTy = STy->getElementType(FieldNo);
1297     PointerType *PFieldTy = PointerType::get(FieldTy, AS);
1298 
1299     GlobalVariable *NGV = new GlobalVariable(
1300         *GV->getParent(), PFieldTy, false, GlobalValue::InternalLinkage,
1301         Constant::getNullValue(PFieldTy), GV->getName() + ".f" + Twine(FieldNo),
1302         nullptr, GV->getThreadLocalMode());
1303     NGV->copyAttributesFrom(GV);
1304     FieldGlobals.push_back(NGV);
1305 
1306     unsigned TypeSize = DL.getTypeAllocSize(FieldTy);
1307     if (StructType *ST = dyn_cast<StructType>(FieldTy))
1308       TypeSize = DL.getStructLayout(ST)->getSizeInBytes();
1309     Type *IntPtrTy = DL.getIntPtrType(CI->getType());
1310     Value *NMI = CallInst::CreateMalloc(CI, IntPtrTy, FieldTy,
1311                                         ConstantInt::get(IntPtrTy, TypeSize),
1312                                         NElems, OpBundles, nullptr,
1313                                         CI->getName() + ".f" + Twine(FieldNo));
1314     FieldMallocs.push_back(NMI);
1315     new StoreInst(NMI, NGV, CI);
1316   }
1317 
1318   // The tricky aspect of this transformation is handling the case when malloc
1319   // fails.  In the original code, malloc failing would set the result pointer
1320   // of malloc to null.  In this case, some mallocs could succeed and others
1321   // could fail.  As such, we emit code that looks like this:
1322   //    F0 = malloc(field0)
1323   //    F1 = malloc(field1)
1324   //    F2 = malloc(field2)
1325   //    if (F0 == 0 || F1 == 0 || F2 == 0) {
1326   //      if (F0) { free(F0); F0 = 0; }
1327   //      if (F1) { free(F1); F1 = 0; }
1328   //      if (F2) { free(F2); F2 = 0; }
1329   //    }
1330   // The malloc can also fail if its argument is too large.
1331   Constant *ConstantZero = ConstantInt::get(CI->getArgOperand(0)->getType(), 0);
1332   Value *RunningOr = new ICmpInst(CI, ICmpInst::ICMP_SLT, CI->getArgOperand(0),
1333                                   ConstantZero, "isneg");
1334   for (unsigned i = 0, e = FieldMallocs.size(); i != e; ++i) {
1335     Value *Cond = new ICmpInst(CI, ICmpInst::ICMP_EQ, FieldMallocs[i],
1336                              Constant::getNullValue(FieldMallocs[i]->getType()),
1337                                "isnull");
1338     RunningOr = BinaryOperator::CreateOr(RunningOr, Cond, "tmp", CI);
1339   }
1340 
1341   // Split the basic block at the old malloc.
1342   BasicBlock *OrigBB = CI->getParent();
1343   BasicBlock *ContBB =
1344       OrigBB->splitBasicBlock(CI->getIterator(), "malloc_cont");
1345 
1346   // Create the block to check the first condition.  Put all these blocks at the
1347   // end of the function as they are unlikely to be executed.
1348   BasicBlock *NullPtrBlock = BasicBlock::Create(OrigBB->getContext(),
1349                                                 "malloc_ret_null",
1350                                                 OrigBB->getParent());
1351 
1352   // Remove the uncond branch from OrigBB to ContBB, turning it into a cond
1353   // branch on RunningOr.
1354   OrigBB->getTerminator()->eraseFromParent();
1355   BranchInst::Create(NullPtrBlock, ContBB, RunningOr, OrigBB);
1356 
1357   // Within the NullPtrBlock, we need to emit a comparison and branch for each
1358   // pointer, because some may be null while others are not.
1359   for (unsigned i = 0, e = FieldGlobals.size(); i != e; ++i) {
1360     Value *GVVal = new LoadInst(FieldGlobals[i], "tmp", NullPtrBlock);
1361     Value *Cmp = new ICmpInst(*NullPtrBlock, ICmpInst::ICMP_NE, GVVal,
1362                               Constant::getNullValue(GVVal->getType()));
1363     BasicBlock *FreeBlock = BasicBlock::Create(Cmp->getContext(), "free_it",
1364                                                OrigBB->getParent());
1365     BasicBlock *NextBlock = BasicBlock::Create(Cmp->getContext(), "next",
1366                                                OrigBB->getParent());
1367     Instruction *BI = BranchInst::Create(FreeBlock, NextBlock,
1368                                          Cmp, NullPtrBlock);
1369 
1370     // Fill in FreeBlock.
1371     CallInst::CreateFree(GVVal, OpBundles, BI);
1372     new StoreInst(Constant::getNullValue(GVVal->getType()), FieldGlobals[i],
1373                   FreeBlock);
1374     BranchInst::Create(NextBlock, FreeBlock);
1375 
1376     NullPtrBlock = NextBlock;
1377   }
1378 
1379   BranchInst::Create(ContBB, NullPtrBlock);
1380 
1381   // CI is no longer needed, remove it.
1382   CI->eraseFromParent();
1383 
1384   /// As we process loads, if we can't immediately update all uses of the load,
1385   /// keep track of what scalarized loads are inserted for a given load.
1386   DenseMap<Value *, std::vector<Value *>> InsertedScalarizedValues;
1387   InsertedScalarizedValues[GV] = FieldGlobals;
1388 
1389   std::vector<std::pair<PHINode *, unsigned>> PHIsToRewrite;
1390 
1391   // Okay, the malloc site is completely handled.  All of the uses of GV are now
1392   // loads, and all uses of those loads are simple.  Rewrite them to use loads
1393   // of the per-field globals instead.
1394   for (auto UI = GV->user_begin(), E = GV->user_end(); UI != E;) {
1395     Instruction *User = cast<Instruction>(*UI++);
1396 
1397     if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
1398       RewriteUsesOfLoadForHeapSRoA(LI, InsertedScalarizedValues, PHIsToRewrite);
1399       continue;
1400     }
1401 
1402     // Must be a store of null.
1403     StoreInst *SI = cast<StoreInst>(User);
1404     assert(isa<ConstantPointerNull>(SI->getOperand(0)) &&
1405            "Unexpected heap-sra user!");
1406 
1407     // Insert a store of null into each global.
1408     for (unsigned i = 0, e = FieldGlobals.size(); i != e; ++i) {
1409       Type *ValTy = cast<GlobalValue>(FieldGlobals[i])->getValueType();
1410       Constant *Null = Constant::getNullValue(ValTy);
1411       new StoreInst(Null, FieldGlobals[i], SI);
1412     }
1413     // Erase the original store.
1414     SI->eraseFromParent();
1415   }
1416 
1417   // While we have PHIs that are interesting to rewrite, do it.
1418   while (!PHIsToRewrite.empty()) {
1419     PHINode *PN = PHIsToRewrite.back().first;
1420     unsigned FieldNo = PHIsToRewrite.back().second;
1421     PHIsToRewrite.pop_back();
1422     PHINode *FieldPN = cast<PHINode>(InsertedScalarizedValues[PN][FieldNo]);
1423     assert(FieldPN->getNumIncomingValues() == 0 &&"Already processed this phi");
1424 
1425     // Add all the incoming values.  This can materialize more phis.
1426     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1427       Value *InVal = PN->getIncomingValue(i);
1428       InVal = GetHeapSROAValue(InVal, FieldNo, InsertedScalarizedValues,
1429                                PHIsToRewrite);
1430       FieldPN->addIncoming(InVal, PN->getIncomingBlock(i));
1431     }
1432   }
1433 
1434   // Drop all inter-phi links and any loads that made it this far.
1435   for (DenseMap<Value *, std::vector<Value *>>::iterator
1436        I = InsertedScalarizedValues.begin(), E = InsertedScalarizedValues.end();
1437        I != E; ++I) {
1438     if (PHINode *PN = dyn_cast<PHINode>(I->first))
1439       PN->dropAllReferences();
1440     else if (LoadInst *LI = dyn_cast<LoadInst>(I->first))
1441       LI->dropAllReferences();
1442   }
1443 
1444   // Delete all the phis and loads now that inter-references are dead.
1445   for (DenseMap<Value *, std::vector<Value *>>::iterator
1446        I = InsertedScalarizedValues.begin(), E = InsertedScalarizedValues.end();
1447        I != E; ++I) {
1448     if (PHINode *PN = dyn_cast<PHINode>(I->first))
1449       PN->eraseFromParent();
1450     else if (LoadInst *LI = dyn_cast<LoadInst>(I->first))
1451       LI->eraseFromParent();
1452   }
1453 
1454   // The old global is now dead, remove it.
1455   GV->eraseFromParent();
1456 
1457   ++NumHeapSRA;
1458   return cast<GlobalVariable>(FieldGlobals[0]);
1459 }
1460 
1461 /// This function is called when we see a pointer global variable with a single
1462 /// value stored it that is a malloc or cast of malloc.
tryToOptimizeStoreOfMallocToGlobal(GlobalVariable * GV,CallInst * CI,Type * AllocTy,AtomicOrdering Ordering,const DataLayout & DL,TargetLibraryInfo * TLI)1463 static bool tryToOptimizeStoreOfMallocToGlobal(GlobalVariable *GV, CallInst *CI,
1464                                                Type *AllocTy,
1465                                                AtomicOrdering Ordering,
1466                                                const DataLayout &DL,
1467                                                TargetLibraryInfo *TLI) {
1468   // If this is a malloc of an abstract type, don't touch it.
1469   if (!AllocTy->isSized())
1470     return false;
1471 
1472   // We can't optimize this global unless all uses of it are *known* to be
1473   // of the malloc value, not of the null initializer value (consider a use
1474   // that compares the global's value against zero to see if the malloc has
1475   // been reached).  To do this, we check to see if all uses of the global
1476   // would trap if the global were null: this proves that they must all
1477   // happen after the malloc.
1478   if (!AllUsesOfLoadedValueWillTrapIfNull(GV))
1479     return false;
1480 
1481   // We can't optimize this if the malloc itself is used in a complex way,
1482   // for example, being stored into multiple globals.  This allows the
1483   // malloc to be stored into the specified global, loaded icmp'd, and
1484   // GEP'd.  These are all things we could transform to using the global
1485   // for.
1486   SmallPtrSet<const PHINode*, 8> PHIs;
1487   if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(CI, GV, PHIs))
1488     return false;
1489 
1490   // If we have a global that is only initialized with a fixed size malloc,
1491   // transform the program to use global memory instead of malloc'd memory.
1492   // This eliminates dynamic allocation, avoids an indirection accessing the
1493   // data, and exposes the resultant global to further GlobalOpt.
1494   // We cannot optimize the malloc if we cannot determine malloc array size.
1495   Value *NElems = getMallocArraySize(CI, DL, TLI, true);
1496   if (!NElems)
1497     return false;
1498 
1499   if (ConstantInt *NElements = dyn_cast<ConstantInt>(NElems))
1500     // Restrict this transformation to only working on small allocations
1501     // (2048 bytes currently), as we don't want to introduce a 16M global or
1502     // something.
1503     if (NElements->getZExtValue() * DL.getTypeAllocSize(AllocTy) < 2048) {
1504       OptimizeGlobalAddressOfMalloc(GV, CI, AllocTy, NElements, DL, TLI);
1505       return true;
1506     }
1507 
1508   // If the allocation is an array of structures, consider transforming this
1509   // into multiple malloc'd arrays, one for each field.  This is basically
1510   // SRoA for malloc'd memory.
1511 
1512   if (Ordering != AtomicOrdering::NotAtomic)
1513     return false;
1514 
1515   // If this is an allocation of a fixed size array of structs, analyze as a
1516   // variable size array.  malloc [100 x struct],1 -> malloc struct, 100
1517   if (NElems == ConstantInt::get(CI->getArgOperand(0)->getType(), 1))
1518     if (ArrayType *AT = dyn_cast<ArrayType>(AllocTy))
1519       AllocTy = AT->getElementType();
1520 
1521   StructType *AllocSTy = dyn_cast<StructType>(AllocTy);
1522   if (!AllocSTy)
1523     return false;
1524 
1525   // This the structure has an unreasonable number of fields, leave it
1526   // alone.
1527   if (AllocSTy->getNumElements() <= 16 && AllocSTy->getNumElements() != 0 &&
1528       AllGlobalLoadUsesSimpleEnoughForHeapSRA(GV, CI)) {
1529 
1530     // If this is a fixed size array, transform the Malloc to be an alloc of
1531     // structs.  malloc [100 x struct],1 -> malloc struct, 100
1532     if (ArrayType *AT = dyn_cast<ArrayType>(getMallocAllocatedType(CI, TLI))) {
1533       Type *IntPtrTy = DL.getIntPtrType(CI->getType());
1534       unsigned TypeSize = DL.getStructLayout(AllocSTy)->getSizeInBytes();
1535       Value *AllocSize = ConstantInt::get(IntPtrTy, TypeSize);
1536       Value *NumElements = ConstantInt::get(IntPtrTy, AT->getNumElements());
1537       SmallVector<OperandBundleDef, 1> OpBundles;
1538       CI->getOperandBundlesAsDefs(OpBundles);
1539       Instruction *Malloc =
1540           CallInst::CreateMalloc(CI, IntPtrTy, AllocSTy, AllocSize, NumElements,
1541                                  OpBundles, nullptr, CI->getName());
1542       Instruction *Cast = new BitCastInst(Malloc, CI->getType(), "tmp", CI);
1543       CI->replaceAllUsesWith(Cast);
1544       CI->eraseFromParent();
1545       if (BitCastInst *BCI = dyn_cast<BitCastInst>(Malloc))
1546         CI = cast<CallInst>(BCI->getOperand(0));
1547       else
1548         CI = cast<CallInst>(Malloc);
1549     }
1550 
1551     PerformHeapAllocSRoA(GV, CI, getMallocArraySize(CI, DL, TLI, true), DL,
1552                          TLI);
1553     return true;
1554   }
1555 
1556   return false;
1557 }
1558 
1559 // Try to optimize globals based on the knowledge that only one value (besides
1560 // its initializer) is ever stored to the global.
optimizeOnceStoredGlobal(GlobalVariable * GV,Value * StoredOnceVal,AtomicOrdering Ordering,const DataLayout & DL,TargetLibraryInfo * TLI)1561 static bool optimizeOnceStoredGlobal(GlobalVariable *GV, Value *StoredOnceVal,
1562                                      AtomicOrdering Ordering,
1563                                      const DataLayout &DL,
1564                                      TargetLibraryInfo *TLI) {
1565   // Ignore no-op GEPs and bitcasts.
1566   StoredOnceVal = StoredOnceVal->stripPointerCasts();
1567 
1568   // If we are dealing with a pointer global that is initialized to null and
1569   // only has one (non-null) value stored into it, then we can optimize any
1570   // users of the loaded value (often calls and loads) that would trap if the
1571   // value was null.
1572   if (GV->getInitializer()->getType()->isPointerTy() &&
1573       GV->getInitializer()->isNullValue() &&
1574       !NullPointerIsDefined(
1575           nullptr /* F */,
1576           GV->getInitializer()->getType()->getPointerAddressSpace())) {
1577     if (Constant *SOVC = dyn_cast<Constant>(StoredOnceVal)) {
1578       if (GV->getInitializer()->getType() != SOVC->getType())
1579         SOVC = ConstantExpr::getBitCast(SOVC, GV->getInitializer()->getType());
1580 
1581       // Optimize away any trapping uses of the loaded value.
1582       if (OptimizeAwayTrappingUsesOfLoads(GV, SOVC, DL, TLI))
1583         return true;
1584     } else if (CallInst *CI = extractMallocCall(StoredOnceVal, TLI)) {
1585       Type *MallocType = getMallocAllocatedType(CI, TLI);
1586       if (MallocType && tryToOptimizeStoreOfMallocToGlobal(GV, CI, MallocType,
1587                                                            Ordering, DL, TLI))
1588         return true;
1589     }
1590   }
1591 
1592   return false;
1593 }
1594 
1595 /// At this point, we have learned that the only two values ever stored into GV
1596 /// are its initializer and OtherVal.  See if we can shrink the global into a
1597 /// boolean and select between the two values whenever it is used.  This exposes
1598 /// the values to other scalar optimizations.
TryToShrinkGlobalToBoolean(GlobalVariable * GV,Constant * OtherVal)1599 static bool TryToShrinkGlobalToBoolean(GlobalVariable *GV, Constant *OtherVal) {
1600   Type *GVElType = GV->getValueType();
1601 
1602   // If GVElType is already i1, it is already shrunk.  If the type of the GV is
1603   // an FP value, pointer or vector, don't do this optimization because a select
1604   // between them is very expensive and unlikely to lead to later
1605   // simplification.  In these cases, we typically end up with "cond ? v1 : v2"
1606   // where v1 and v2 both require constant pool loads, a big loss.
1607   if (GVElType == Type::getInt1Ty(GV->getContext()) ||
1608       GVElType->isFloatingPointTy() ||
1609       GVElType->isPointerTy() || GVElType->isVectorTy())
1610     return false;
1611 
1612   // Walk the use list of the global seeing if all the uses are load or store.
1613   // If there is anything else, bail out.
1614   for (User *U : GV->users())
1615     if (!isa<LoadInst>(U) && !isa<StoreInst>(U))
1616       return false;
1617 
1618   LLVM_DEBUG(dbgs() << "   *** SHRINKING TO BOOL: " << *GV << "\n");
1619 
1620   // Create the new global, initializing it to false.
1621   GlobalVariable *NewGV = new GlobalVariable(Type::getInt1Ty(GV->getContext()),
1622                                              false,
1623                                              GlobalValue::InternalLinkage,
1624                                         ConstantInt::getFalse(GV->getContext()),
1625                                              GV->getName()+".b",
1626                                              GV->getThreadLocalMode(),
1627                                              GV->getType()->getAddressSpace());
1628   NewGV->copyAttributesFrom(GV);
1629   GV->getParent()->getGlobalList().insert(GV->getIterator(), NewGV);
1630 
1631   Constant *InitVal = GV->getInitializer();
1632   assert(InitVal->getType() != Type::getInt1Ty(GV->getContext()) &&
1633          "No reason to shrink to bool!");
1634 
1635   SmallVector<DIGlobalVariableExpression *, 1> GVs;
1636   GV->getDebugInfo(GVs);
1637 
1638   // If initialized to zero and storing one into the global, we can use a cast
1639   // instead of a select to synthesize the desired value.
1640   bool IsOneZero = false;
1641   bool EmitOneOrZero = true;
1642   if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)){
1643     IsOneZero = InitVal->isNullValue() && CI->isOne();
1644 
1645     if (ConstantInt *CIInit = dyn_cast<ConstantInt>(GV->getInitializer())){
1646       uint64_t ValInit = CIInit->getZExtValue();
1647       uint64_t ValOther = CI->getZExtValue();
1648       uint64_t ValMinus = ValOther - ValInit;
1649 
1650       for(auto *GVe : GVs){
1651         DIGlobalVariable *DGV = GVe->getVariable();
1652         DIExpression *E = GVe->getExpression();
1653 
1654         // It is expected that the address of global optimized variable is on
1655         // top of the stack. After optimization, value of that variable will
1656         // be ether 0 for initial value or 1 for other value. The following
1657         // expression should return constant integer value depending on the
1658         // value at global object address:
1659         // val * (ValOther - ValInit) + ValInit:
1660         // DW_OP_deref DW_OP_constu <ValMinus>
1661         // DW_OP_mul DW_OP_constu <ValInit> DW_OP_plus DW_OP_stack_value
1662         SmallVector<uint64_t, 12> Ops = {
1663             dwarf::DW_OP_deref, dwarf::DW_OP_constu, ValMinus,
1664             dwarf::DW_OP_mul,   dwarf::DW_OP_constu, ValInit,
1665             dwarf::DW_OP_plus};
1666         E = DIExpression::prependOpcodes(E, Ops, DIExpression::WithStackValue);
1667         DIGlobalVariableExpression *DGVE =
1668           DIGlobalVariableExpression::get(NewGV->getContext(), DGV, E);
1669         NewGV->addDebugInfo(DGVE);
1670      }
1671      EmitOneOrZero = false;
1672     }
1673   }
1674 
1675   if (EmitOneOrZero) {
1676      // FIXME: This will only emit address for debugger on which will
1677      // be written only 0 or 1.
1678      for(auto *GV : GVs)
1679        NewGV->addDebugInfo(GV);
1680    }
1681 
1682   while (!GV->use_empty()) {
1683     Instruction *UI = cast<Instruction>(GV->user_back());
1684     if (StoreInst *SI = dyn_cast<StoreInst>(UI)) {
1685       // Change the store into a boolean store.
1686       bool StoringOther = SI->getOperand(0) == OtherVal;
1687       // Only do this if we weren't storing a loaded value.
1688       Value *StoreVal;
1689       if (StoringOther || SI->getOperand(0) == InitVal) {
1690         StoreVal = ConstantInt::get(Type::getInt1Ty(GV->getContext()),
1691                                     StoringOther);
1692       } else {
1693         // Otherwise, we are storing a previously loaded copy.  To do this,
1694         // change the copy from copying the original value to just copying the
1695         // bool.
1696         Instruction *StoredVal = cast<Instruction>(SI->getOperand(0));
1697 
1698         // If we've already replaced the input, StoredVal will be a cast or
1699         // select instruction.  If not, it will be a load of the original
1700         // global.
1701         if (LoadInst *LI = dyn_cast<LoadInst>(StoredVal)) {
1702           assert(LI->getOperand(0) == GV && "Not a copy!");
1703           // Insert a new load, to preserve the saved value.
1704           StoreVal = new LoadInst(NewGV, LI->getName()+".b", false, 0,
1705                                   LI->getOrdering(), LI->getSyncScopeID(), LI);
1706         } else {
1707           assert((isa<CastInst>(StoredVal) || isa<SelectInst>(StoredVal)) &&
1708                  "This is not a form that we understand!");
1709           StoreVal = StoredVal->getOperand(0);
1710           assert(isa<LoadInst>(StoreVal) && "Not a load of NewGV!");
1711         }
1712       }
1713       StoreInst *NSI =
1714           new StoreInst(StoreVal, NewGV, false, 0, SI->getOrdering(),
1715                         SI->getSyncScopeID(), SI);
1716       NSI->setDebugLoc(SI->getDebugLoc());
1717     } else {
1718       // Change the load into a load of bool then a select.
1719       LoadInst *LI = cast<LoadInst>(UI);
1720       LoadInst *NLI = new LoadInst(NewGV, LI->getName()+".b", false, 0,
1721                                    LI->getOrdering(), LI->getSyncScopeID(), LI);
1722       Instruction *NSI;
1723       if (IsOneZero)
1724         NSI = new ZExtInst(NLI, LI->getType(), "", LI);
1725       else
1726         NSI = SelectInst::Create(NLI, OtherVal, InitVal, "", LI);
1727       NSI->takeName(LI);
1728       // Since LI is split into two instructions, NLI and NSI both inherit the
1729       // same DebugLoc
1730       NLI->setDebugLoc(LI->getDebugLoc());
1731       NSI->setDebugLoc(LI->getDebugLoc());
1732       LI->replaceAllUsesWith(NSI);
1733     }
1734     UI->eraseFromParent();
1735   }
1736 
1737   // Retain the name of the old global variable. People who are debugging their
1738   // programs may expect these variables to be named the same.
1739   NewGV->takeName(GV);
1740   GV->eraseFromParent();
1741   return true;
1742 }
1743 
deleteIfDead(GlobalValue & GV,SmallPtrSetImpl<const Comdat * > & NotDiscardableComdats)1744 static bool deleteIfDead(
1745     GlobalValue &GV, SmallPtrSetImpl<const Comdat *> &NotDiscardableComdats) {
1746   GV.removeDeadConstantUsers();
1747 
1748   if (!GV.isDiscardableIfUnused() && !GV.isDeclaration())
1749     return false;
1750 
1751   if (const Comdat *C = GV.getComdat())
1752     if (!GV.hasLocalLinkage() && NotDiscardableComdats.count(C))
1753       return false;
1754 
1755   bool Dead;
1756   if (auto *F = dyn_cast<Function>(&GV))
1757     Dead = (F->isDeclaration() && F->use_empty()) || F->isDefTriviallyDead();
1758   else
1759     Dead = GV.use_empty();
1760   if (!Dead)
1761     return false;
1762 
1763   LLVM_DEBUG(dbgs() << "GLOBAL DEAD: " << GV << "\n");
1764   GV.eraseFromParent();
1765   ++NumDeleted;
1766   return true;
1767 }
1768 
isPointerValueDeadOnEntryToFunction(const Function * F,GlobalValue * GV,function_ref<DominatorTree & (Function &)> LookupDomTree)1769 static bool isPointerValueDeadOnEntryToFunction(
1770     const Function *F, GlobalValue *GV,
1771     function_ref<DominatorTree &(Function &)> LookupDomTree) {
1772   // Find all uses of GV. We expect them all to be in F, and if we can't
1773   // identify any of the uses we bail out.
1774   //
1775   // On each of these uses, identify if the memory that GV points to is
1776   // used/required/live at the start of the function. If it is not, for example
1777   // if the first thing the function does is store to the GV, the GV can
1778   // possibly be demoted.
1779   //
1780   // We don't do an exhaustive search for memory operations - simply look
1781   // through bitcasts as they're quite common and benign.
1782   const DataLayout &DL = GV->getParent()->getDataLayout();
1783   SmallVector<LoadInst *, 4> Loads;
1784   SmallVector<StoreInst *, 4> Stores;
1785   for (auto *U : GV->users()) {
1786     if (Operator::getOpcode(U) == Instruction::BitCast) {
1787       for (auto *UU : U->users()) {
1788         if (auto *LI = dyn_cast<LoadInst>(UU))
1789           Loads.push_back(LI);
1790         else if (auto *SI = dyn_cast<StoreInst>(UU))
1791           Stores.push_back(SI);
1792         else
1793           return false;
1794       }
1795       continue;
1796     }
1797 
1798     Instruction *I = dyn_cast<Instruction>(U);
1799     if (!I)
1800       return false;
1801     assert(I->getParent()->getParent() == F);
1802 
1803     if (auto *LI = dyn_cast<LoadInst>(I))
1804       Loads.push_back(LI);
1805     else if (auto *SI = dyn_cast<StoreInst>(I))
1806       Stores.push_back(SI);
1807     else
1808       return false;
1809   }
1810 
1811   // We have identified all uses of GV into loads and stores. Now check if all
1812   // of them are known not to depend on the value of the global at the function
1813   // entry point. We do this by ensuring that every load is dominated by at
1814   // least one store.
1815   auto &DT = LookupDomTree(*const_cast<Function *>(F));
1816 
1817   // The below check is quadratic. Check we're not going to do too many tests.
1818   // FIXME: Even though this will always have worst-case quadratic time, we
1819   // could put effort into minimizing the average time by putting stores that
1820   // have been shown to dominate at least one load at the beginning of the
1821   // Stores array, making subsequent dominance checks more likely to succeed
1822   // early.
1823   //
1824   // The threshold here is fairly large because global->local demotion is a
1825   // very powerful optimization should it fire.
1826   const unsigned Threshold = 100;
1827   if (Loads.size() * Stores.size() > Threshold)
1828     return false;
1829 
1830   for (auto *L : Loads) {
1831     auto *LTy = L->getType();
1832     if (none_of(Stores, [&](const StoreInst *S) {
1833           auto *STy = S->getValueOperand()->getType();
1834           // The load is only dominated by the store if DomTree says so
1835           // and the number of bits loaded in L is less than or equal to
1836           // the number of bits stored in S.
1837           return DT.dominates(S, L) &&
1838                  DL.getTypeStoreSize(LTy) <= DL.getTypeStoreSize(STy);
1839         }))
1840       return false;
1841   }
1842   // All loads have known dependences inside F, so the global can be localized.
1843   return true;
1844 }
1845 
1846 /// C may have non-instruction users. Can all of those users be turned into
1847 /// instructions?
allNonInstructionUsersCanBeMadeInstructions(Constant * C)1848 static bool allNonInstructionUsersCanBeMadeInstructions(Constant *C) {
1849   // We don't do this exhaustively. The most common pattern that we really need
1850   // to care about is a constant GEP or constant bitcast - so just looking
1851   // through one single ConstantExpr.
1852   //
1853   // The set of constants that this function returns true for must be able to be
1854   // handled by makeAllConstantUsesInstructions.
1855   for (auto *U : C->users()) {
1856     if (isa<Instruction>(U))
1857       continue;
1858     if (!isa<ConstantExpr>(U))
1859       // Non instruction, non-constantexpr user; cannot convert this.
1860       return false;
1861     for (auto *UU : U->users())
1862       if (!isa<Instruction>(UU))
1863         // A constantexpr used by another constant. We don't try and recurse any
1864         // further but just bail out at this point.
1865         return false;
1866   }
1867 
1868   return true;
1869 }
1870 
1871 /// C may have non-instruction users, and
1872 /// allNonInstructionUsersCanBeMadeInstructions has returned true. Convert the
1873 /// non-instruction users to instructions.
makeAllConstantUsesInstructions(Constant * C)1874 static void makeAllConstantUsesInstructions(Constant *C) {
1875   SmallVector<ConstantExpr*,4> Users;
1876   for (auto *U : C->users()) {
1877     if (isa<ConstantExpr>(U))
1878       Users.push_back(cast<ConstantExpr>(U));
1879     else
1880       // We should never get here; allNonInstructionUsersCanBeMadeInstructions
1881       // should not have returned true for C.
1882       assert(
1883           isa<Instruction>(U) &&
1884           "Can't transform non-constantexpr non-instruction to instruction!");
1885   }
1886 
1887   SmallVector<Value*,4> UUsers;
1888   for (auto *U : Users) {
1889     UUsers.clear();
1890     for (auto *UU : U->users())
1891       UUsers.push_back(UU);
1892     for (auto *UU : UUsers) {
1893       Instruction *UI = cast<Instruction>(UU);
1894       Instruction *NewU = U->getAsInstruction();
1895       NewU->insertBefore(UI);
1896       UI->replaceUsesOfWith(U, NewU);
1897     }
1898     // We've replaced all the uses, so destroy the constant. (destroyConstant
1899     // will update value handles and metadata.)
1900     U->destroyConstant();
1901   }
1902 }
1903 
1904 /// Analyze the specified global variable and optimize
1905 /// it if possible.  If we make a change, return true.
processInternalGlobal(GlobalVariable * GV,const GlobalStatus & GS,TargetLibraryInfo * TLI,function_ref<DominatorTree & (Function &)> LookupDomTree)1906 static bool processInternalGlobal(
1907     GlobalVariable *GV, const GlobalStatus &GS, TargetLibraryInfo *TLI,
1908     function_ref<DominatorTree &(Function &)> LookupDomTree) {
1909   auto &DL = GV->getParent()->getDataLayout();
1910   // If this is a first class global and has only one accessing function and
1911   // this function is non-recursive, we replace the global with a local alloca
1912   // in this function.
1913   //
1914   // NOTE: It doesn't make sense to promote non-single-value types since we
1915   // are just replacing static memory to stack memory.
1916   //
1917   // If the global is in different address space, don't bring it to stack.
1918   if (!GS.HasMultipleAccessingFunctions &&
1919       GS.AccessingFunction &&
1920       GV->getValueType()->isSingleValueType() &&
1921       GV->getType()->getAddressSpace() == 0 &&
1922       !GV->isExternallyInitialized() &&
1923       allNonInstructionUsersCanBeMadeInstructions(GV) &&
1924       GS.AccessingFunction->doesNotRecurse() &&
1925       isPointerValueDeadOnEntryToFunction(GS.AccessingFunction, GV,
1926                                           LookupDomTree)) {
1927     const DataLayout &DL = GV->getParent()->getDataLayout();
1928 
1929     LLVM_DEBUG(dbgs() << "LOCALIZING GLOBAL: " << *GV << "\n");
1930     Instruction &FirstI = const_cast<Instruction&>(*GS.AccessingFunction
1931                                                    ->getEntryBlock().begin());
1932     Type *ElemTy = GV->getValueType();
1933     // FIXME: Pass Global's alignment when globals have alignment
1934     AllocaInst *Alloca = new AllocaInst(ElemTy, DL.getAllocaAddrSpace(), nullptr,
1935                                         GV->getName(), &FirstI);
1936     if (!isa<UndefValue>(GV->getInitializer()))
1937       new StoreInst(GV->getInitializer(), Alloca, &FirstI);
1938 
1939     makeAllConstantUsesInstructions(GV);
1940 
1941     GV->replaceAllUsesWith(Alloca);
1942     GV->eraseFromParent();
1943     ++NumLocalized;
1944     return true;
1945   }
1946 
1947   // If the global is never loaded (but may be stored to), it is dead.
1948   // Delete it now.
1949   if (!GS.IsLoaded) {
1950     LLVM_DEBUG(dbgs() << "GLOBAL NEVER LOADED: " << *GV << "\n");
1951 
1952     bool Changed;
1953     if (isLeakCheckerRoot(GV)) {
1954       // Delete any constant stores to the global.
1955       Changed = CleanupPointerRootUsers(GV, TLI);
1956     } else {
1957       // Delete any stores we can find to the global.  We may not be able to
1958       // make it completely dead though.
1959       Changed = CleanupConstantGlobalUsers(GV, GV->getInitializer(), DL, TLI);
1960     }
1961 
1962     // If the global is dead now, delete it.
1963     if (GV->use_empty()) {
1964       GV->eraseFromParent();
1965       ++NumDeleted;
1966       Changed = true;
1967     }
1968     return Changed;
1969 
1970   }
1971   if (GS.StoredType <= GlobalStatus::InitializerStored) {
1972     LLVM_DEBUG(dbgs() << "MARKING CONSTANT: " << *GV << "\n");
1973     GV->setConstant(true);
1974 
1975     // Clean up any obviously simplifiable users now.
1976     CleanupConstantGlobalUsers(GV, GV->getInitializer(), DL, TLI);
1977 
1978     // If the global is dead now, just nuke it.
1979     if (GV->use_empty()) {
1980       LLVM_DEBUG(dbgs() << "   *** Marking constant allowed us to simplify "
1981                         << "all users and delete global!\n");
1982       GV->eraseFromParent();
1983       ++NumDeleted;
1984       return true;
1985     }
1986 
1987     // Fall through to the next check; see if we can optimize further.
1988     ++NumMarked;
1989   }
1990   if (!GV->getInitializer()->getType()->isSingleValueType()) {
1991     const DataLayout &DL = GV->getParent()->getDataLayout();
1992     if (SRAGlobal(GV, DL))
1993       return true;
1994   }
1995   if (GS.StoredType == GlobalStatus::StoredOnce && GS.StoredOnceValue) {
1996     // If the initial value for the global was an undef value, and if only
1997     // one other value was stored into it, we can just change the
1998     // initializer to be the stored value, then delete all stores to the
1999     // global.  This allows us to mark it constant.
2000     if (Constant *SOVConstant = dyn_cast<Constant>(GS.StoredOnceValue))
2001       if (isa<UndefValue>(GV->getInitializer())) {
2002         // Change the initial value here.
2003         GV->setInitializer(SOVConstant);
2004 
2005         // Clean up any obviously simplifiable users now.
2006         CleanupConstantGlobalUsers(GV, GV->getInitializer(), DL, TLI);
2007 
2008         if (GV->use_empty()) {
2009           LLVM_DEBUG(dbgs() << "   *** Substituting initializer allowed us to "
2010                             << "simplify all users and delete global!\n");
2011           GV->eraseFromParent();
2012           ++NumDeleted;
2013         }
2014         ++NumSubstitute;
2015         return true;
2016       }
2017 
2018     // Try to optimize globals based on the knowledge that only one value
2019     // (besides its initializer) is ever stored to the global.
2020     if (optimizeOnceStoredGlobal(GV, GS.StoredOnceValue, GS.Ordering, DL, TLI))
2021       return true;
2022 
2023     // Otherwise, if the global was not a boolean, we can shrink it to be a
2024     // boolean.
2025     if (Constant *SOVConstant = dyn_cast<Constant>(GS.StoredOnceValue)) {
2026       if (GS.Ordering == AtomicOrdering::NotAtomic) {
2027         if (TryToShrinkGlobalToBoolean(GV, SOVConstant)) {
2028           ++NumShrunkToBool;
2029           return true;
2030         }
2031       }
2032     }
2033   }
2034 
2035   return false;
2036 }
2037 
2038 /// Analyze the specified global variable and optimize it if possible.  If we
2039 /// make a change, return true.
2040 static bool
processGlobal(GlobalValue & GV,TargetLibraryInfo * TLI,function_ref<DominatorTree & (Function &)> LookupDomTree)2041 processGlobal(GlobalValue &GV, TargetLibraryInfo *TLI,
2042               function_ref<DominatorTree &(Function &)> LookupDomTree) {
2043   if (GV.getName().startswith("llvm."))
2044     return false;
2045 
2046   GlobalStatus GS;
2047 
2048   if (GlobalStatus::analyzeGlobal(&GV, GS))
2049     return false;
2050 
2051   bool Changed = false;
2052   if (!GS.IsCompared && !GV.hasGlobalUnnamedAddr()) {
2053     auto NewUnnamedAddr = GV.hasLocalLinkage() ? GlobalValue::UnnamedAddr::Global
2054                                                : GlobalValue::UnnamedAddr::Local;
2055     if (NewUnnamedAddr != GV.getUnnamedAddr()) {
2056       GV.setUnnamedAddr(NewUnnamedAddr);
2057       NumUnnamed++;
2058       Changed = true;
2059     }
2060   }
2061 
2062   // Do more involved optimizations if the global is internal.
2063   if (!GV.hasLocalLinkage())
2064     return Changed;
2065 
2066   auto *GVar = dyn_cast<GlobalVariable>(&GV);
2067   if (!GVar)
2068     return Changed;
2069 
2070   if (GVar->isConstant() || !GVar->hasInitializer())
2071     return Changed;
2072 
2073   return processInternalGlobal(GVar, GS, TLI, LookupDomTree) || Changed;
2074 }
2075 
2076 /// Walk all of the direct calls of the specified function, changing them to
2077 /// FastCC.
ChangeCalleesToFastCall(Function * F)2078 static void ChangeCalleesToFastCall(Function *F) {
2079   for (User *U : F->users()) {
2080     if (isa<BlockAddress>(U))
2081       continue;
2082     CallSite CS(cast<Instruction>(U));
2083     CS.setCallingConv(CallingConv::Fast);
2084   }
2085 }
2086 
StripNest(LLVMContext & C,AttributeList Attrs)2087 static AttributeList StripNest(LLVMContext &C, AttributeList Attrs) {
2088   // There can be at most one attribute set with a nest attribute.
2089   unsigned NestIndex;
2090   if (Attrs.hasAttrSomewhere(Attribute::Nest, &NestIndex))
2091     return Attrs.removeAttribute(C, NestIndex, Attribute::Nest);
2092   return Attrs;
2093 }
2094 
RemoveNestAttribute(Function * F)2095 static void RemoveNestAttribute(Function *F) {
2096   F->setAttributes(StripNest(F->getContext(), F->getAttributes()));
2097   for (User *U : F->users()) {
2098     if (isa<BlockAddress>(U))
2099       continue;
2100     CallSite CS(cast<Instruction>(U));
2101     CS.setAttributes(StripNest(F->getContext(), CS.getAttributes()));
2102   }
2103 }
2104 
2105 /// Return true if this is a calling convention that we'd like to change.  The
2106 /// idea here is that we don't want to mess with the convention if the user
2107 /// explicitly requested something with performance implications like coldcc,
2108 /// GHC, or anyregcc.
hasChangeableCC(Function * F)2109 static bool hasChangeableCC(Function *F) {
2110   CallingConv::ID CC = F->getCallingConv();
2111 
2112   // FIXME: Is it worth transforming x86_stdcallcc and x86_fastcallcc?
2113   if (CC != CallingConv::C && CC != CallingConv::X86_ThisCall)
2114     return false;
2115 
2116   // Don't break the invariant that the inalloca parameter is the only parameter
2117   // passed in memory.
2118   // FIXME: GlobalOpt should remove inalloca when possible and hoist the dynamic
2119   // alloca it uses to the entry block if possible.
2120   if (F->getAttributes().hasAttrSomewhere(Attribute::InAlloca))
2121     return false;
2122 
2123   // FIXME: Change CC for the whole chain of musttail calls when possible.
2124   //
2125   // Can't change CC of the function that either has musttail calls, or is a
2126   // musttail callee itself
2127   for (User *U : F->users()) {
2128     if (isa<BlockAddress>(U))
2129       continue;
2130     CallInst* CI = dyn_cast<CallInst>(U);
2131     if (!CI)
2132       continue;
2133 
2134     if (CI->isMustTailCall())
2135       return false;
2136   }
2137 
2138   for (BasicBlock &BB : *F)
2139     if (BB.getTerminatingMustTailCall())
2140       return false;
2141 
2142   return true;
2143 }
2144 
2145 /// Return true if the block containing the call site has a BlockFrequency of
2146 /// less than ColdCCRelFreq% of the entry block.
isColdCallSite(CallSite CS,BlockFrequencyInfo & CallerBFI)2147 static bool isColdCallSite(CallSite CS, BlockFrequencyInfo &CallerBFI) {
2148   const BranchProbability ColdProb(ColdCCRelFreq, 100);
2149   auto CallSiteBB = CS.getInstruction()->getParent();
2150   auto CallSiteFreq = CallerBFI.getBlockFreq(CallSiteBB);
2151   auto CallerEntryFreq =
2152       CallerBFI.getBlockFreq(&(CS.getCaller()->getEntryBlock()));
2153   return CallSiteFreq < CallerEntryFreq * ColdProb;
2154 }
2155 
2156 // This function checks if the input function F is cold at all call sites. It
2157 // also looks each call site's containing function, returning false if the
2158 // caller function contains other non cold calls. The input vector AllCallsCold
2159 // contains a list of functions that only have call sites in cold blocks.
2160 static bool
isValidCandidateForColdCC(Function & F,function_ref<BlockFrequencyInfo & (Function &)> GetBFI,const std::vector<Function * > & AllCallsCold)2161 isValidCandidateForColdCC(Function &F,
2162                           function_ref<BlockFrequencyInfo &(Function &)> GetBFI,
2163                           const std::vector<Function *> &AllCallsCold) {
2164 
2165   if (F.user_empty())
2166     return false;
2167 
2168   for (User *U : F.users()) {
2169     if (isa<BlockAddress>(U))
2170       continue;
2171 
2172     CallSite CS(cast<Instruction>(U));
2173     Function *CallerFunc = CS.getInstruction()->getParent()->getParent();
2174     BlockFrequencyInfo &CallerBFI = GetBFI(*CallerFunc);
2175     if (!isColdCallSite(CS, CallerBFI))
2176       return false;
2177     auto It = std::find(AllCallsCold.begin(), AllCallsCold.end(), CallerFunc);
2178     if (It == AllCallsCold.end())
2179       return false;
2180   }
2181   return true;
2182 }
2183 
changeCallSitesToColdCC(Function * F)2184 static void changeCallSitesToColdCC(Function *F) {
2185   for (User *U : F->users()) {
2186     if (isa<BlockAddress>(U))
2187       continue;
2188     CallSite CS(cast<Instruction>(U));
2189     CS.setCallingConv(CallingConv::Cold);
2190   }
2191 }
2192 
2193 // This function iterates over all the call instructions in the input Function
2194 // and checks that all call sites are in cold blocks and are allowed to use the
2195 // coldcc calling convention.
2196 static bool
hasOnlyColdCalls(Function & F,function_ref<BlockFrequencyInfo & (Function &)> GetBFI)2197 hasOnlyColdCalls(Function &F,
2198                  function_ref<BlockFrequencyInfo &(Function &)> GetBFI) {
2199   for (BasicBlock &BB : F) {
2200     for (Instruction &I : BB) {
2201       if (CallInst *CI = dyn_cast<CallInst>(&I)) {
2202         CallSite CS(cast<Instruction>(CI));
2203         // Skip over isline asm instructions since they aren't function calls.
2204         if (CI->isInlineAsm())
2205           continue;
2206         Function *CalledFn = CI->getCalledFunction();
2207         if (!CalledFn)
2208           return false;
2209         if (!CalledFn->hasLocalLinkage())
2210           return false;
2211         // Skip over instrinsics since they won't remain as function calls.
2212         if (CalledFn->getIntrinsicID() != Intrinsic::not_intrinsic)
2213           continue;
2214         // Check if it's valid to use coldcc calling convention.
2215         if (!hasChangeableCC(CalledFn) || CalledFn->isVarArg() ||
2216             CalledFn->hasAddressTaken())
2217           return false;
2218         BlockFrequencyInfo &CallerBFI = GetBFI(F);
2219         if (!isColdCallSite(CS, CallerBFI))
2220           return false;
2221       }
2222     }
2223   }
2224   return true;
2225 }
2226 
2227 static bool
OptimizeFunctions(Module & M,TargetLibraryInfo * TLI,function_ref<TargetTransformInfo & (Function &)> GetTTI,function_ref<BlockFrequencyInfo & (Function &)> GetBFI,function_ref<DominatorTree & (Function &)> LookupDomTree,SmallPtrSetImpl<const Comdat * > & NotDiscardableComdats)2228 OptimizeFunctions(Module &M, TargetLibraryInfo *TLI,
2229                   function_ref<TargetTransformInfo &(Function &)> GetTTI,
2230                   function_ref<BlockFrequencyInfo &(Function &)> GetBFI,
2231                   function_ref<DominatorTree &(Function &)> LookupDomTree,
2232                   SmallPtrSetImpl<const Comdat *> &NotDiscardableComdats) {
2233 
2234   bool Changed = false;
2235 
2236   std::vector<Function *> AllCallsCold;
2237   for (Module::iterator FI = M.begin(), E = M.end(); FI != E;) {
2238     Function *F = &*FI++;
2239     if (hasOnlyColdCalls(*F, GetBFI))
2240       AllCallsCold.push_back(F);
2241   }
2242 
2243   // Optimize functions.
2244   for (Module::iterator FI = M.begin(), E = M.end(); FI != E; ) {
2245     Function *F = &*FI++;
2246 
2247     // Don't perform global opt pass on naked functions; we don't want fast
2248     // calling conventions for naked functions.
2249     if (F->hasFnAttribute(Attribute::Naked))
2250       continue;
2251 
2252     // Functions without names cannot be referenced outside this module.
2253     if (!F->hasName() && !F->isDeclaration() && !F->hasLocalLinkage())
2254       F->setLinkage(GlobalValue::InternalLinkage);
2255 
2256     if (deleteIfDead(*F, NotDiscardableComdats)) {
2257       Changed = true;
2258       continue;
2259     }
2260 
2261     // LLVM's definition of dominance allows instructions that are cyclic
2262     // in unreachable blocks, e.g.:
2263     // %pat = select i1 %condition, @global, i16* %pat
2264     // because any instruction dominates an instruction in a block that's
2265     // not reachable from entry.
2266     // So, remove unreachable blocks from the function, because a) there's
2267     // no point in analyzing them and b) GlobalOpt should otherwise grow
2268     // some more complicated logic to break these cycles.
2269     // Removing unreachable blocks might invalidate the dominator so we
2270     // recalculate it.
2271     if (!F->isDeclaration()) {
2272       if (removeUnreachableBlocks(*F)) {
2273         auto &DT = LookupDomTree(*F);
2274         DT.recalculate(*F);
2275         Changed = true;
2276       }
2277     }
2278 
2279     Changed |= processGlobal(*F, TLI, LookupDomTree);
2280 
2281     if (!F->hasLocalLinkage())
2282       continue;
2283 
2284     if (hasChangeableCC(F) && !F->isVarArg() && !F->hasAddressTaken()) {
2285       NumInternalFunc++;
2286       TargetTransformInfo &TTI = GetTTI(*F);
2287       // Change the calling convention to coldcc if either stress testing is
2288       // enabled or the target would like to use coldcc on functions which are
2289       // cold at all call sites and the callers contain no other non coldcc
2290       // calls.
2291       if (EnableColdCCStressTest ||
2292           (isValidCandidateForColdCC(*F, GetBFI, AllCallsCold) &&
2293            TTI.useColdCCForColdCall(*F))) {
2294         F->setCallingConv(CallingConv::Cold);
2295         changeCallSitesToColdCC(F);
2296         Changed = true;
2297         NumColdCC++;
2298       }
2299     }
2300 
2301     if (hasChangeableCC(F) && !F->isVarArg() &&
2302         !F->hasAddressTaken()) {
2303       // If this function has a calling convention worth changing, is not a
2304       // varargs function, and is only called directly, promote it to use the
2305       // Fast calling convention.
2306       F->setCallingConv(CallingConv::Fast);
2307       ChangeCalleesToFastCall(F);
2308       ++NumFastCallFns;
2309       Changed = true;
2310     }
2311 
2312     if (F->getAttributes().hasAttrSomewhere(Attribute::Nest) &&
2313         !F->hasAddressTaken()) {
2314       // The function is not used by a trampoline intrinsic, so it is safe
2315       // to remove the 'nest' attribute.
2316       RemoveNestAttribute(F);
2317       ++NumNestRemoved;
2318       Changed = true;
2319     }
2320   }
2321   return Changed;
2322 }
2323 
2324 static bool
OptimizeGlobalVars(Module & M,TargetLibraryInfo * TLI,function_ref<DominatorTree & (Function &)> LookupDomTree,SmallPtrSetImpl<const Comdat * > & NotDiscardableComdats)2325 OptimizeGlobalVars(Module &M, TargetLibraryInfo *TLI,
2326                    function_ref<DominatorTree &(Function &)> LookupDomTree,
2327                    SmallPtrSetImpl<const Comdat *> &NotDiscardableComdats) {
2328   bool Changed = false;
2329 
2330   for (Module::global_iterator GVI = M.global_begin(), E = M.global_end();
2331        GVI != E; ) {
2332     GlobalVariable *GV = &*GVI++;
2333     // Global variables without names cannot be referenced outside this module.
2334     if (!GV->hasName() && !GV->isDeclaration() && !GV->hasLocalLinkage())
2335       GV->setLinkage(GlobalValue::InternalLinkage);
2336     // Simplify the initializer.
2337     if (GV->hasInitializer())
2338       if (auto *C = dyn_cast<Constant>(GV->getInitializer())) {
2339         auto &DL = M.getDataLayout();
2340         Constant *New = ConstantFoldConstant(C, DL, TLI);
2341         if (New && New != C)
2342           GV->setInitializer(New);
2343       }
2344 
2345     if (deleteIfDead(*GV, NotDiscardableComdats)) {
2346       Changed = true;
2347       continue;
2348     }
2349 
2350     Changed |= processGlobal(*GV, TLI, LookupDomTree);
2351   }
2352   return Changed;
2353 }
2354 
2355 /// Evaluate a piece of a constantexpr store into a global initializer.  This
2356 /// returns 'Init' modified to reflect 'Val' stored into it.  At this point, the
2357 /// GEP operands of Addr [0, OpNo) have been stepped into.
EvaluateStoreInto(Constant * Init,Constant * Val,ConstantExpr * Addr,unsigned OpNo)2358 static Constant *EvaluateStoreInto(Constant *Init, Constant *Val,
2359                                    ConstantExpr *Addr, unsigned OpNo) {
2360   // Base case of the recursion.
2361   if (OpNo == Addr->getNumOperands()) {
2362     assert(Val->getType() == Init->getType() && "Type mismatch!");
2363     return Val;
2364   }
2365 
2366   SmallVector<Constant*, 32> Elts;
2367   if (StructType *STy = dyn_cast<StructType>(Init->getType())) {
2368     // Break up the constant into its elements.
2369     for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
2370       Elts.push_back(Init->getAggregateElement(i));
2371 
2372     // Replace the element that we are supposed to.
2373     ConstantInt *CU = cast<ConstantInt>(Addr->getOperand(OpNo));
2374     unsigned Idx = CU->getZExtValue();
2375     assert(Idx < STy->getNumElements() && "Struct index out of range!");
2376     Elts[Idx] = EvaluateStoreInto(Elts[Idx], Val, Addr, OpNo+1);
2377 
2378     // Return the modified struct.
2379     return ConstantStruct::get(STy, Elts);
2380   }
2381 
2382   ConstantInt *CI = cast<ConstantInt>(Addr->getOperand(OpNo));
2383   SequentialType *InitTy = cast<SequentialType>(Init->getType());
2384   uint64_t NumElts = InitTy->getNumElements();
2385 
2386   // Break up the array into elements.
2387   for (uint64_t i = 0, e = NumElts; i != e; ++i)
2388     Elts.push_back(Init->getAggregateElement(i));
2389 
2390   assert(CI->getZExtValue() < NumElts);
2391   Elts[CI->getZExtValue()] =
2392     EvaluateStoreInto(Elts[CI->getZExtValue()], Val, Addr, OpNo+1);
2393 
2394   if (Init->getType()->isArrayTy())
2395     return ConstantArray::get(cast<ArrayType>(InitTy), Elts);
2396   return ConstantVector::get(Elts);
2397 }
2398 
2399 /// We have decided that Addr (which satisfies the predicate
2400 /// isSimpleEnoughPointerToCommit) should get Val as its value.  Make it happen.
CommitValueTo(Constant * Val,Constant * Addr)2401 static void CommitValueTo(Constant *Val, Constant *Addr) {
2402   if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Addr)) {
2403     assert(GV->hasInitializer());
2404     GV->setInitializer(Val);
2405     return;
2406   }
2407 
2408   ConstantExpr *CE = cast<ConstantExpr>(Addr);
2409   GlobalVariable *GV = cast<GlobalVariable>(CE->getOperand(0));
2410   GV->setInitializer(EvaluateStoreInto(GV->getInitializer(), Val, CE, 2));
2411 }
2412 
2413 /// Given a map of address -> value, where addresses are expected to be some form
2414 /// of either a global or a constant GEP, set the initializer for the address to
2415 /// be the value. This performs mostly the same function as CommitValueTo()
2416 /// and EvaluateStoreInto() but is optimized to be more efficient for the common
2417 /// case where the set of addresses are GEPs sharing the same underlying global,
2418 /// processing the GEPs in batches rather than individually.
2419 ///
2420 /// To give an example, consider the following C++ code adapted from the clang
2421 /// regression tests:
2422 /// struct S {
2423 ///  int n = 10;
2424 ///  int m = 2 * n;
2425 ///  S(int a) : n(a) {}
2426 /// };
2427 ///
2428 /// template<typename T>
2429 /// struct U {
2430 ///  T *r = &q;
2431 ///  T q = 42;
2432 ///  U *p = this;
2433 /// };
2434 ///
2435 /// U<S> e;
2436 ///
2437 /// The global static constructor for 'e' will need to initialize 'r' and 'p' of
2438 /// the outer struct, while also initializing the inner 'q' structs 'n' and 'm'
2439 /// members. This batch algorithm will simply use general CommitValueTo() method
2440 /// to handle the complex nested S struct initialization of 'q', before
2441 /// processing the outermost members in a single batch. Using CommitValueTo() to
2442 /// handle member in the outer struct is inefficient when the struct/array is
2443 /// very large as we end up creating and destroy constant arrays for each
2444 /// initialization.
2445 /// For the above case, we expect the following IR to be generated:
2446 ///
2447 /// %struct.U = type { %struct.S*, %struct.S, %struct.U* }
2448 /// %struct.S = type { i32, i32 }
2449 /// @e = global %struct.U { %struct.S* gep inbounds (%struct.U, %struct.U* @e,
2450 ///                                                  i64 0, i32 1),
2451 ///                         %struct.S { i32 42, i32 84 }, %struct.U* @e }
2452 /// The %struct.S { i32 42, i32 84 } inner initializer is treated as a complex
2453 /// constant expression, while the other two elements of @e are "simple".
BatchCommitValueTo(const DenseMap<Constant *,Constant * > & Mem)2454 static void BatchCommitValueTo(const DenseMap<Constant*, Constant*> &Mem) {
2455   SmallVector<std::pair<GlobalVariable*, Constant*>, 32> GVs;
2456   SmallVector<std::pair<ConstantExpr*, Constant*>, 32> ComplexCEs;
2457   SmallVector<std::pair<ConstantExpr*, Constant*>, 32> SimpleCEs;
2458   SimpleCEs.reserve(Mem.size());
2459 
2460   for (const auto &I : Mem) {
2461     if (auto *GV = dyn_cast<GlobalVariable>(I.first)) {
2462       GVs.push_back(std::make_pair(GV, I.second));
2463     } else {
2464       ConstantExpr *GEP = cast<ConstantExpr>(I.first);
2465       // We don't handle the deeply recursive case using the batch method.
2466       if (GEP->getNumOperands() > 3)
2467         ComplexCEs.push_back(std::make_pair(GEP, I.second));
2468       else
2469         SimpleCEs.push_back(std::make_pair(GEP, I.second));
2470     }
2471   }
2472 
2473   // The algorithm below doesn't handle cases like nested structs, so use the
2474   // slower fully general method if we have to.
2475   for (auto ComplexCE : ComplexCEs)
2476     CommitValueTo(ComplexCE.second, ComplexCE.first);
2477 
2478   for (auto GVPair : GVs) {
2479     assert(GVPair.first->hasInitializer());
2480     GVPair.first->setInitializer(GVPair.second);
2481   }
2482 
2483   if (SimpleCEs.empty())
2484     return;
2485 
2486   // We cache a single global's initializer elements in the case where the
2487   // subsequent address/val pair uses the same one. This avoids throwing away and
2488   // rebuilding the constant struct/vector/array just because one element is
2489   // modified at a time.
2490   SmallVector<Constant *, 32> Elts;
2491   Elts.reserve(SimpleCEs.size());
2492   GlobalVariable *CurrentGV = nullptr;
2493 
2494   auto commitAndSetupCache = [&](GlobalVariable *GV, bool Update) {
2495     Constant *Init = GV->getInitializer();
2496     Type *Ty = Init->getType();
2497     if (Update) {
2498       if (CurrentGV) {
2499         assert(CurrentGV && "Expected a GV to commit to!");
2500         Type *CurrentInitTy = CurrentGV->getInitializer()->getType();
2501         // We have a valid cache that needs to be committed.
2502         if (StructType *STy = dyn_cast<StructType>(CurrentInitTy))
2503           CurrentGV->setInitializer(ConstantStruct::get(STy, Elts));
2504         else if (ArrayType *ArrTy = dyn_cast<ArrayType>(CurrentInitTy))
2505           CurrentGV->setInitializer(ConstantArray::get(ArrTy, Elts));
2506         else
2507           CurrentGV->setInitializer(ConstantVector::get(Elts));
2508       }
2509       if (CurrentGV == GV)
2510         return;
2511       // Need to clear and set up cache for new initializer.
2512       CurrentGV = GV;
2513       Elts.clear();
2514       unsigned NumElts;
2515       if (auto *STy = dyn_cast<StructType>(Ty))
2516         NumElts = STy->getNumElements();
2517       else
2518         NumElts = cast<SequentialType>(Ty)->getNumElements();
2519       for (unsigned i = 0, e = NumElts; i != e; ++i)
2520         Elts.push_back(Init->getAggregateElement(i));
2521     }
2522   };
2523 
2524   for (auto CEPair : SimpleCEs) {
2525     ConstantExpr *GEP = CEPair.first;
2526     Constant *Val = CEPair.second;
2527 
2528     GlobalVariable *GV = cast<GlobalVariable>(GEP->getOperand(0));
2529     commitAndSetupCache(GV, GV != CurrentGV);
2530     ConstantInt *CI = cast<ConstantInt>(GEP->getOperand(2));
2531     Elts[CI->getZExtValue()] = Val;
2532   }
2533   // The last initializer in the list needs to be committed, others
2534   // will be committed on a new initializer being processed.
2535   commitAndSetupCache(CurrentGV, true);
2536 }
2537 
2538 /// Evaluate static constructors in the function, if we can.  Return true if we
2539 /// can, false otherwise.
EvaluateStaticConstructor(Function * F,const DataLayout & DL,TargetLibraryInfo * TLI)2540 static bool EvaluateStaticConstructor(Function *F, const DataLayout &DL,
2541                                       TargetLibraryInfo *TLI) {
2542   // Call the function.
2543   Evaluator Eval(DL, TLI);
2544   Constant *RetValDummy;
2545   bool EvalSuccess = Eval.EvaluateFunction(F, RetValDummy,
2546                                            SmallVector<Constant*, 0>());
2547 
2548   if (EvalSuccess) {
2549     ++NumCtorsEvaluated;
2550 
2551     // We succeeded at evaluation: commit the result.
2552     LLVM_DEBUG(dbgs() << "FULLY EVALUATED GLOBAL CTOR FUNCTION '"
2553                       << F->getName() << "' to "
2554                       << Eval.getMutatedMemory().size() << " stores.\n");
2555     BatchCommitValueTo(Eval.getMutatedMemory());
2556     for (GlobalVariable *GV : Eval.getInvariants())
2557       GV->setConstant(true);
2558   }
2559 
2560   return EvalSuccess;
2561 }
2562 
compareNames(Constant * const * A,Constant * const * B)2563 static int compareNames(Constant *const *A, Constant *const *B) {
2564   Value *AStripped = (*A)->stripPointerCastsNoFollowAliases();
2565   Value *BStripped = (*B)->stripPointerCastsNoFollowAliases();
2566   return AStripped->getName().compare(BStripped->getName());
2567 }
2568 
setUsedInitializer(GlobalVariable & V,const SmallPtrSetImpl<GlobalValue * > & Init)2569 static void setUsedInitializer(GlobalVariable &V,
2570                                const SmallPtrSetImpl<GlobalValue *> &Init) {
2571   if (Init.empty()) {
2572     V.eraseFromParent();
2573     return;
2574   }
2575 
2576   // Type of pointer to the array of pointers.
2577   PointerType *Int8PtrTy = Type::getInt8PtrTy(V.getContext(), 0);
2578 
2579   SmallVector<Constant *, 8> UsedArray;
2580   for (GlobalValue *GV : Init) {
2581     Constant *Cast
2582       = ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, Int8PtrTy);
2583     UsedArray.push_back(Cast);
2584   }
2585   // Sort to get deterministic order.
2586   array_pod_sort(UsedArray.begin(), UsedArray.end(), compareNames);
2587   ArrayType *ATy = ArrayType::get(Int8PtrTy, UsedArray.size());
2588 
2589   Module *M = V.getParent();
2590   V.removeFromParent();
2591   GlobalVariable *NV =
2592       new GlobalVariable(*M, ATy, false, GlobalValue::AppendingLinkage,
2593                          ConstantArray::get(ATy, UsedArray), "");
2594   NV->takeName(&V);
2595   NV->setSection("llvm.metadata");
2596   delete &V;
2597 }
2598 
2599 namespace {
2600 
2601 /// An easy to access representation of llvm.used and llvm.compiler.used.
2602 class LLVMUsed {
2603   SmallPtrSet<GlobalValue *, 8> Used;
2604   SmallPtrSet<GlobalValue *, 8> CompilerUsed;
2605   GlobalVariable *UsedV;
2606   GlobalVariable *CompilerUsedV;
2607 
2608 public:
LLVMUsed(Module & M)2609   LLVMUsed(Module &M) {
2610     UsedV = collectUsedGlobalVariables(M, Used, false);
2611     CompilerUsedV = collectUsedGlobalVariables(M, CompilerUsed, true);
2612   }
2613 
2614   using iterator = SmallPtrSet<GlobalValue *, 8>::iterator;
2615   using used_iterator_range = iterator_range<iterator>;
2616 
usedBegin()2617   iterator usedBegin() { return Used.begin(); }
usedEnd()2618   iterator usedEnd() { return Used.end(); }
2619 
used()2620   used_iterator_range used() {
2621     return used_iterator_range(usedBegin(), usedEnd());
2622   }
2623 
compilerUsedBegin()2624   iterator compilerUsedBegin() { return CompilerUsed.begin(); }
compilerUsedEnd()2625   iterator compilerUsedEnd() { return CompilerUsed.end(); }
2626 
compilerUsed()2627   used_iterator_range compilerUsed() {
2628     return used_iterator_range(compilerUsedBegin(), compilerUsedEnd());
2629   }
2630 
usedCount(GlobalValue * GV) const2631   bool usedCount(GlobalValue *GV) const { return Used.count(GV); }
2632 
compilerUsedCount(GlobalValue * GV) const2633   bool compilerUsedCount(GlobalValue *GV) const {
2634     return CompilerUsed.count(GV);
2635   }
2636 
usedErase(GlobalValue * GV)2637   bool usedErase(GlobalValue *GV) { return Used.erase(GV); }
compilerUsedErase(GlobalValue * GV)2638   bool compilerUsedErase(GlobalValue *GV) { return CompilerUsed.erase(GV); }
usedInsert(GlobalValue * GV)2639   bool usedInsert(GlobalValue *GV) { return Used.insert(GV).second; }
2640 
compilerUsedInsert(GlobalValue * GV)2641   bool compilerUsedInsert(GlobalValue *GV) {
2642     return CompilerUsed.insert(GV).second;
2643   }
2644 
syncVariablesAndSets()2645   void syncVariablesAndSets() {
2646     if (UsedV)
2647       setUsedInitializer(*UsedV, Used);
2648     if (CompilerUsedV)
2649       setUsedInitializer(*CompilerUsedV, CompilerUsed);
2650   }
2651 };
2652 
2653 } // end anonymous namespace
2654 
hasUseOtherThanLLVMUsed(GlobalAlias & GA,const LLVMUsed & U)2655 static bool hasUseOtherThanLLVMUsed(GlobalAlias &GA, const LLVMUsed &U) {
2656   if (GA.use_empty()) // No use at all.
2657     return false;
2658 
2659   assert((!U.usedCount(&GA) || !U.compilerUsedCount(&GA)) &&
2660          "We should have removed the duplicated "
2661          "element from llvm.compiler.used");
2662   if (!GA.hasOneUse())
2663     // Strictly more than one use. So at least one is not in llvm.used and
2664     // llvm.compiler.used.
2665     return true;
2666 
2667   // Exactly one use. Check if it is in llvm.used or llvm.compiler.used.
2668   return !U.usedCount(&GA) && !U.compilerUsedCount(&GA);
2669 }
2670 
hasMoreThanOneUseOtherThanLLVMUsed(GlobalValue & V,const LLVMUsed & U)2671 static bool hasMoreThanOneUseOtherThanLLVMUsed(GlobalValue &V,
2672                                                const LLVMUsed &U) {
2673   unsigned N = 2;
2674   assert((!U.usedCount(&V) || !U.compilerUsedCount(&V)) &&
2675          "We should have removed the duplicated "
2676          "element from llvm.compiler.used");
2677   if (U.usedCount(&V) || U.compilerUsedCount(&V))
2678     ++N;
2679   return V.hasNUsesOrMore(N);
2680 }
2681 
mayHaveOtherReferences(GlobalAlias & GA,const LLVMUsed & U)2682 static bool mayHaveOtherReferences(GlobalAlias &GA, const LLVMUsed &U) {
2683   if (!GA.hasLocalLinkage())
2684     return true;
2685 
2686   return U.usedCount(&GA) || U.compilerUsedCount(&GA);
2687 }
2688 
hasUsesToReplace(GlobalAlias & GA,const LLVMUsed & U,bool & RenameTarget)2689 static bool hasUsesToReplace(GlobalAlias &GA, const LLVMUsed &U,
2690                              bool &RenameTarget) {
2691   RenameTarget = false;
2692   bool Ret = false;
2693   if (hasUseOtherThanLLVMUsed(GA, U))
2694     Ret = true;
2695 
2696   // If the alias is externally visible, we may still be able to simplify it.
2697   if (!mayHaveOtherReferences(GA, U))
2698     return Ret;
2699 
2700   // If the aliasee has internal linkage, give it the name and linkage
2701   // of the alias, and delete the alias.  This turns:
2702   //   define internal ... @f(...)
2703   //   @a = alias ... @f
2704   // into:
2705   //   define ... @a(...)
2706   Constant *Aliasee = GA.getAliasee();
2707   GlobalValue *Target = cast<GlobalValue>(Aliasee->stripPointerCasts());
2708   if (!Target->hasLocalLinkage())
2709     return Ret;
2710 
2711   // Do not perform the transform if multiple aliases potentially target the
2712   // aliasee. This check also ensures that it is safe to replace the section
2713   // and other attributes of the aliasee with those of the alias.
2714   if (hasMoreThanOneUseOtherThanLLVMUsed(*Target, U))
2715     return Ret;
2716 
2717   RenameTarget = true;
2718   return true;
2719 }
2720 
2721 static bool
OptimizeGlobalAliases(Module & M,SmallPtrSetImpl<const Comdat * > & NotDiscardableComdats)2722 OptimizeGlobalAliases(Module &M,
2723                       SmallPtrSetImpl<const Comdat *> &NotDiscardableComdats) {
2724   bool Changed = false;
2725   LLVMUsed Used(M);
2726 
2727   for (GlobalValue *GV : Used.used())
2728     Used.compilerUsedErase(GV);
2729 
2730   for (Module::alias_iterator I = M.alias_begin(), E = M.alias_end();
2731        I != E;) {
2732     GlobalAlias *J = &*I++;
2733 
2734     // Aliases without names cannot be referenced outside this module.
2735     if (!J->hasName() && !J->isDeclaration() && !J->hasLocalLinkage())
2736       J->setLinkage(GlobalValue::InternalLinkage);
2737 
2738     if (deleteIfDead(*J, NotDiscardableComdats)) {
2739       Changed = true;
2740       continue;
2741     }
2742 
2743     // If the alias can change at link time, nothing can be done - bail out.
2744     if (J->isInterposable())
2745       continue;
2746 
2747     Constant *Aliasee = J->getAliasee();
2748     GlobalValue *Target = dyn_cast<GlobalValue>(Aliasee->stripPointerCasts());
2749     // We can't trivially replace the alias with the aliasee if the aliasee is
2750     // non-trivial in some way.
2751     // TODO: Try to handle non-zero GEPs of local aliasees.
2752     if (!Target)
2753       continue;
2754     Target->removeDeadConstantUsers();
2755 
2756     // Make all users of the alias use the aliasee instead.
2757     bool RenameTarget;
2758     if (!hasUsesToReplace(*J, Used, RenameTarget))
2759       continue;
2760 
2761     J->replaceAllUsesWith(ConstantExpr::getBitCast(Aliasee, J->getType()));
2762     ++NumAliasesResolved;
2763     Changed = true;
2764 
2765     if (RenameTarget) {
2766       // Give the aliasee the name, linkage and other attributes of the alias.
2767       Target->takeName(&*J);
2768       Target->setLinkage(J->getLinkage());
2769       Target->setDSOLocal(J->isDSOLocal());
2770       Target->setVisibility(J->getVisibility());
2771       Target->setDLLStorageClass(J->getDLLStorageClass());
2772 
2773       if (Used.usedErase(&*J))
2774         Used.usedInsert(Target);
2775 
2776       if (Used.compilerUsedErase(&*J))
2777         Used.compilerUsedInsert(Target);
2778     } else if (mayHaveOtherReferences(*J, Used))
2779       continue;
2780 
2781     // Delete the alias.
2782     M.getAliasList().erase(J);
2783     ++NumAliasesRemoved;
2784     Changed = true;
2785   }
2786 
2787   Used.syncVariablesAndSets();
2788 
2789   return Changed;
2790 }
2791 
FindCXAAtExit(Module & M,TargetLibraryInfo * TLI)2792 static Function *FindCXAAtExit(Module &M, TargetLibraryInfo *TLI) {
2793   LibFunc F = LibFunc_cxa_atexit;
2794   if (!TLI->has(F))
2795     return nullptr;
2796 
2797   Function *Fn = M.getFunction(TLI->getName(F));
2798   if (!Fn)
2799     return nullptr;
2800 
2801   // Make sure that the function has the correct prototype.
2802   if (!TLI->getLibFunc(*Fn, F) || F != LibFunc_cxa_atexit)
2803     return nullptr;
2804 
2805   return Fn;
2806 }
2807 
2808 /// Returns whether the given function is an empty C++ destructor and can
2809 /// therefore be eliminated.
2810 /// Note that we assume that other optimization passes have already simplified
2811 /// the code so we only look for a function with a single basic block, where
2812 /// the only allowed instructions are 'ret', 'call' to an empty C++ dtor and
2813 /// other side-effect free instructions.
cxxDtorIsEmpty(const Function & Fn,SmallPtrSet<const Function *,8> & CalledFunctions)2814 static bool cxxDtorIsEmpty(const Function &Fn,
2815                            SmallPtrSet<const Function *, 8> &CalledFunctions) {
2816   // FIXME: We could eliminate C++ destructors if they're readonly/readnone and
2817   // nounwind, but that doesn't seem worth doing.
2818   if (Fn.isDeclaration())
2819     return false;
2820 
2821   if (++Fn.begin() != Fn.end())
2822     return false;
2823 
2824   const BasicBlock &EntryBlock = Fn.getEntryBlock();
2825   for (BasicBlock::const_iterator I = EntryBlock.begin(), E = EntryBlock.end();
2826        I != E; ++I) {
2827     if (const CallInst *CI = dyn_cast<CallInst>(I)) {
2828       // Ignore debug intrinsics.
2829       if (isa<DbgInfoIntrinsic>(CI))
2830         continue;
2831 
2832       const Function *CalledFn = CI->getCalledFunction();
2833 
2834       if (!CalledFn)
2835         return false;
2836 
2837       SmallPtrSet<const Function *, 8> NewCalledFunctions(CalledFunctions);
2838 
2839       // Don't treat recursive functions as empty.
2840       if (!NewCalledFunctions.insert(CalledFn).second)
2841         return false;
2842 
2843       if (!cxxDtorIsEmpty(*CalledFn, NewCalledFunctions))
2844         return false;
2845     } else if (isa<ReturnInst>(*I))
2846       return true; // We're done.
2847     else if (I->mayHaveSideEffects())
2848       return false; // Destructor with side effects, bail.
2849   }
2850 
2851   return false;
2852 }
2853 
OptimizeEmptyGlobalCXXDtors(Function * CXAAtExitFn)2854 static bool OptimizeEmptyGlobalCXXDtors(Function *CXAAtExitFn) {
2855   /// Itanium C++ ABI p3.3.5:
2856   ///
2857   ///   After constructing a global (or local static) object, that will require
2858   ///   destruction on exit, a termination function is registered as follows:
2859   ///
2860   ///   extern "C" int __cxa_atexit ( void (*f)(void *), void *p, void *d );
2861   ///
2862   ///   This registration, e.g. __cxa_atexit(f,p,d), is intended to cause the
2863   ///   call f(p) when DSO d is unloaded, before all such termination calls
2864   ///   registered before this one. It returns zero if registration is
2865   ///   successful, nonzero on failure.
2866 
2867   // This pass will look for calls to __cxa_atexit where the function is trivial
2868   // and remove them.
2869   bool Changed = false;
2870 
2871   for (auto I = CXAAtExitFn->user_begin(), E = CXAAtExitFn->user_end();
2872        I != E;) {
2873     // We're only interested in calls. Theoretically, we could handle invoke
2874     // instructions as well, but neither llvm-gcc nor clang generate invokes
2875     // to __cxa_atexit.
2876     CallInst *CI = dyn_cast<CallInst>(*I++);
2877     if (!CI)
2878       continue;
2879 
2880     Function *DtorFn =
2881       dyn_cast<Function>(CI->getArgOperand(0)->stripPointerCasts());
2882     if (!DtorFn)
2883       continue;
2884 
2885     SmallPtrSet<const Function *, 8> CalledFunctions;
2886     if (!cxxDtorIsEmpty(*DtorFn, CalledFunctions))
2887       continue;
2888 
2889     // Just remove the call.
2890     CI->replaceAllUsesWith(Constant::getNullValue(CI->getType()));
2891     CI->eraseFromParent();
2892 
2893     ++NumCXXDtorsRemoved;
2894 
2895     Changed |= true;
2896   }
2897 
2898   return Changed;
2899 }
2900 
optimizeGlobalsInModule(Module & M,const DataLayout & DL,TargetLibraryInfo * TLI,function_ref<TargetTransformInfo & (Function &)> GetTTI,function_ref<BlockFrequencyInfo & (Function &)> GetBFI,function_ref<DominatorTree & (Function &)> LookupDomTree)2901 static bool optimizeGlobalsInModule(
2902     Module &M, const DataLayout &DL, TargetLibraryInfo *TLI,
2903     function_ref<TargetTransformInfo &(Function &)> GetTTI,
2904     function_ref<BlockFrequencyInfo &(Function &)> GetBFI,
2905     function_ref<DominatorTree &(Function &)> LookupDomTree) {
2906   SmallPtrSet<const Comdat *, 8> NotDiscardableComdats;
2907   bool Changed = false;
2908   bool LocalChange = true;
2909   while (LocalChange) {
2910     LocalChange = false;
2911 
2912     NotDiscardableComdats.clear();
2913     for (const GlobalVariable &GV : M.globals())
2914       if (const Comdat *C = GV.getComdat())
2915         if (!GV.isDiscardableIfUnused() || !GV.use_empty())
2916           NotDiscardableComdats.insert(C);
2917     for (Function &F : M)
2918       if (const Comdat *C = F.getComdat())
2919         if (!F.isDefTriviallyDead())
2920           NotDiscardableComdats.insert(C);
2921     for (GlobalAlias &GA : M.aliases())
2922       if (const Comdat *C = GA.getComdat())
2923         if (!GA.isDiscardableIfUnused() || !GA.use_empty())
2924           NotDiscardableComdats.insert(C);
2925 
2926     // Delete functions that are trivially dead, ccc -> fastcc
2927     LocalChange |= OptimizeFunctions(M, TLI, GetTTI, GetBFI, LookupDomTree,
2928                                      NotDiscardableComdats);
2929 
2930     // Optimize global_ctors list.
2931     LocalChange |= optimizeGlobalCtorsList(M, [&](Function *F) {
2932       return EvaluateStaticConstructor(F, DL, TLI);
2933     });
2934 
2935     // Optimize non-address-taken globals.
2936     LocalChange |= OptimizeGlobalVars(M, TLI, LookupDomTree,
2937                                       NotDiscardableComdats);
2938 
2939     // Resolve aliases, when possible.
2940     LocalChange |= OptimizeGlobalAliases(M, NotDiscardableComdats);
2941 
2942     // Try to remove trivial global destructors if they are not removed
2943     // already.
2944     Function *CXAAtExitFn = FindCXAAtExit(M, TLI);
2945     if (CXAAtExitFn)
2946       LocalChange |= OptimizeEmptyGlobalCXXDtors(CXAAtExitFn);
2947 
2948     Changed |= LocalChange;
2949   }
2950 
2951   // TODO: Move all global ctors functions to the end of the module for code
2952   // layout.
2953 
2954   return Changed;
2955 }
2956 
run(Module & M,ModuleAnalysisManager & AM)2957 PreservedAnalyses GlobalOptPass::run(Module &M, ModuleAnalysisManager &AM) {
2958     auto &DL = M.getDataLayout();
2959     auto &TLI = AM.getResult<TargetLibraryAnalysis>(M);
2960     auto &FAM =
2961         AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
2962     auto LookupDomTree = [&FAM](Function &F) -> DominatorTree &{
2963       return FAM.getResult<DominatorTreeAnalysis>(F);
2964     };
2965     auto GetTTI = [&FAM](Function &F) -> TargetTransformInfo & {
2966       return FAM.getResult<TargetIRAnalysis>(F);
2967     };
2968 
2969     auto GetBFI = [&FAM](Function &F) -> BlockFrequencyInfo & {
2970       return FAM.getResult<BlockFrequencyAnalysis>(F);
2971     };
2972 
2973     if (!optimizeGlobalsInModule(M, DL, &TLI, GetTTI, GetBFI, LookupDomTree))
2974       return PreservedAnalyses::all();
2975     return PreservedAnalyses::none();
2976 }
2977 
2978 namespace {
2979 
2980 struct GlobalOptLegacyPass : public ModulePass {
2981   static char ID; // Pass identification, replacement for typeid
2982 
GlobalOptLegacyPass__anon2967a68e0911::GlobalOptLegacyPass2983   GlobalOptLegacyPass() : ModulePass(ID) {
2984     initializeGlobalOptLegacyPassPass(*PassRegistry::getPassRegistry());
2985   }
2986 
runOnModule__anon2967a68e0911::GlobalOptLegacyPass2987   bool runOnModule(Module &M) override {
2988     if (skipModule(M))
2989       return false;
2990 
2991     auto &DL = M.getDataLayout();
2992     auto *TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
2993     auto LookupDomTree = [this](Function &F) -> DominatorTree & {
2994       return this->getAnalysis<DominatorTreeWrapperPass>(F).getDomTree();
2995     };
2996     auto GetTTI = [this](Function &F) -> TargetTransformInfo & {
2997       return this->getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
2998     };
2999 
3000     auto GetBFI = [this](Function &F) -> BlockFrequencyInfo & {
3001       return this->getAnalysis<BlockFrequencyInfoWrapperPass>(F).getBFI();
3002     };
3003 
3004     return optimizeGlobalsInModule(M, DL, TLI, GetTTI, GetBFI, LookupDomTree);
3005   }
3006 
getAnalysisUsage__anon2967a68e0911::GlobalOptLegacyPass3007   void getAnalysisUsage(AnalysisUsage &AU) const override {
3008     AU.addRequired<TargetLibraryInfoWrapperPass>();
3009     AU.addRequired<TargetTransformInfoWrapperPass>();
3010     AU.addRequired<DominatorTreeWrapperPass>();
3011     AU.addRequired<BlockFrequencyInfoWrapperPass>();
3012   }
3013 };
3014 
3015 } // end anonymous namespace
3016 
3017 char GlobalOptLegacyPass::ID = 0;
3018 
3019 INITIALIZE_PASS_BEGIN(GlobalOptLegacyPass, "globalopt",
3020                       "Global Variable Optimizer", false, false)
INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)3021 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
3022 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
3023 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass)
3024 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
3025 INITIALIZE_PASS_END(GlobalOptLegacyPass, "globalopt",
3026                     "Global Variable Optimizer", false, false)
3027 
3028 ModulePass *llvm::createGlobalOptimizerPass() {
3029   return new GlobalOptLegacyPass();
3030 }
3031