1 //===- FunctionAttrs.cpp - Pass which marks functions attributes ----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 /// 10 /// \file 11 /// This file implements interprocedural passes which walk the 12 /// call-graph deducing and/or propagating function attributes. 13 /// 14 //===----------------------------------------------------------------------===// 15 16 #include "llvm/Transforms/IPO/FunctionAttrs.h" 17 #include "llvm/Transforms/IPO.h" 18 #include "llvm/ADT/SCCIterator.h" 19 #include "llvm/ADT/SetVector.h" 20 #include "llvm/ADT/SmallSet.h" 21 #include "llvm/ADT/Statistic.h" 22 #include "llvm/ADT/StringSwitch.h" 23 #include "llvm/Analysis/AliasAnalysis.h" 24 #include "llvm/Analysis/AssumptionCache.h" 25 #include "llvm/Analysis/BasicAliasAnalysis.h" 26 #include "llvm/Analysis/CallGraph.h" 27 #include "llvm/Analysis/CallGraphSCCPass.h" 28 #include "llvm/Analysis/CaptureTracking.h" 29 #include "llvm/Analysis/TargetLibraryInfo.h" 30 #include "llvm/Analysis/ValueTracking.h" 31 #include "llvm/IR/GlobalVariable.h" 32 #include "llvm/IR/InstIterator.h" 33 #include "llvm/IR/IntrinsicInst.h" 34 #include "llvm/IR/LLVMContext.h" 35 #include "llvm/Support/Debug.h" 36 #include "llvm/Support/raw_ostream.h" 37 #include "llvm/Analysis/TargetLibraryInfo.h" 38 using namespace llvm; 39 40 #define DEBUG_TYPE "functionattrs" 41 42 STATISTIC(NumReadNone, "Number of functions marked readnone"); 43 STATISTIC(NumReadOnly, "Number of functions marked readonly"); 44 STATISTIC(NumNoCapture, "Number of arguments marked nocapture"); 45 STATISTIC(NumReadNoneArg, "Number of arguments marked readnone"); 46 STATISTIC(NumReadOnlyArg, "Number of arguments marked readonly"); 47 STATISTIC(NumNoAlias, "Number of function returns marked noalias"); 48 STATISTIC(NumNonNullReturn, "Number of function returns marked nonnull"); 49 STATISTIC(NumNoRecurse, "Number of functions marked as norecurse"); 50 51 namespace { 52 typedef SmallSetVector<Function *, 8> SCCNodeSet; 53 } 54 55 namespace { 56 /// The three kinds of memory access relevant to 'readonly' and 57 /// 'readnone' attributes. 58 enum MemoryAccessKind { 59 MAK_ReadNone = 0, 60 MAK_ReadOnly = 1, 61 MAK_MayWrite = 2 62 }; 63 } 64 65 static MemoryAccessKind checkFunctionMemoryAccess(Function &F, AAResults &AAR, 66 const SCCNodeSet &SCCNodes) { 67 FunctionModRefBehavior MRB = AAR.getModRefBehavior(&F); 68 if (MRB == FMRB_DoesNotAccessMemory) 69 // Already perfect! 70 return MAK_ReadNone; 71 72 // Non-exact function definitions may not be selected at link time, and an 73 // alternative version that writes to memory may be selected. See the comment 74 // on GlobalValue::isDefinitionExact for more details. 75 if (!F.hasExactDefinition()) { 76 if (AliasAnalysis::onlyReadsMemory(MRB)) 77 return MAK_ReadOnly; 78 79 // Conservatively assume it writes to memory. 80 return MAK_MayWrite; 81 } 82 83 // Scan the function body for instructions that may read or write memory. 84 bool ReadsMemory = false; 85 for (inst_iterator II = inst_begin(F), E = inst_end(F); II != E; ++II) { 86 Instruction *I = &*II; 87 88 // Some instructions can be ignored even if they read or write memory. 89 // Detect these now, skipping to the next instruction if one is found. 90 CallSite CS(cast<Value>(I)); 91 if (CS) { 92 // Ignore calls to functions in the same SCC, as long as the call sites 93 // don't have operand bundles. Calls with operand bundles are allowed to 94 // have memory effects not described by the memory effects of the call 95 // target. 96 if (!CS.hasOperandBundles() && CS.getCalledFunction() && 97 SCCNodes.count(CS.getCalledFunction())) 98 continue; 99 FunctionModRefBehavior MRB = AAR.getModRefBehavior(CS); 100 101 // If the call doesn't access memory, we're done. 102 if (!(MRB & MRI_ModRef)) 103 continue; 104 105 if (!AliasAnalysis::onlyAccessesArgPointees(MRB)) { 106 // The call could access any memory. If that includes writes, give up. 107 if (MRB & MRI_Mod) 108 return MAK_MayWrite; 109 // If it reads, note it. 110 if (MRB & MRI_Ref) 111 ReadsMemory = true; 112 continue; 113 } 114 115 // Check whether all pointer arguments point to local memory, and 116 // ignore calls that only access local memory. 117 for (CallSite::arg_iterator CI = CS.arg_begin(), CE = CS.arg_end(); 118 CI != CE; ++CI) { 119 Value *Arg = *CI; 120 if (!Arg->getType()->isPtrOrPtrVectorTy()) 121 continue; 122 123 AAMDNodes AAInfo; 124 I->getAAMetadata(AAInfo); 125 MemoryLocation Loc(Arg, MemoryLocation::UnknownSize, AAInfo); 126 127 // Skip accesses to local or constant memory as they don't impact the 128 // externally visible mod/ref behavior. 129 if (AAR.pointsToConstantMemory(Loc, /*OrLocal=*/true)) 130 continue; 131 132 if (MRB & MRI_Mod) 133 // Writes non-local memory. Give up. 134 return MAK_MayWrite; 135 if (MRB & MRI_Ref) 136 // Ok, it reads non-local memory. 137 ReadsMemory = true; 138 } 139 continue; 140 } else if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 141 // Ignore non-volatile loads from local memory. (Atomic is okay here.) 142 if (!LI->isVolatile()) { 143 MemoryLocation Loc = MemoryLocation::get(LI); 144 if (AAR.pointsToConstantMemory(Loc, /*OrLocal=*/true)) 145 continue; 146 } 147 } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) { 148 // Ignore non-volatile stores to local memory. (Atomic is okay here.) 149 if (!SI->isVolatile()) { 150 MemoryLocation Loc = MemoryLocation::get(SI); 151 if (AAR.pointsToConstantMemory(Loc, /*OrLocal=*/true)) 152 continue; 153 } 154 } else if (VAArgInst *VI = dyn_cast<VAArgInst>(I)) { 155 // Ignore vaargs on local memory. 156 MemoryLocation Loc = MemoryLocation::get(VI); 157 if (AAR.pointsToConstantMemory(Loc, /*OrLocal=*/true)) 158 continue; 159 } 160 161 // Any remaining instructions need to be taken seriously! Check if they 162 // read or write memory. 163 if (I->mayWriteToMemory()) 164 // Writes memory. Just give up. 165 return MAK_MayWrite; 166 167 // If this instruction may read memory, remember that. 168 ReadsMemory |= I->mayReadFromMemory(); 169 } 170 171 return ReadsMemory ? MAK_ReadOnly : MAK_ReadNone; 172 } 173 174 /// Deduce readonly/readnone attributes for the SCC. 175 template <typename AARGetterT> 176 static bool addReadAttrs(const SCCNodeSet &SCCNodes, AARGetterT AARGetter) { 177 // Check if any of the functions in the SCC read or write memory. If they 178 // write memory then they can't be marked readnone or readonly. 179 bool ReadsMemory = false; 180 for (Function *F : SCCNodes) { 181 // Call the callable parameter to look up AA results for this function. 182 AAResults &AAR = AARGetter(*F); 183 184 switch (checkFunctionMemoryAccess(*F, AAR, SCCNodes)) { 185 case MAK_MayWrite: 186 return false; 187 case MAK_ReadOnly: 188 ReadsMemory = true; 189 break; 190 case MAK_ReadNone: 191 // Nothing to do! 192 break; 193 } 194 } 195 196 // Success! Functions in this SCC do not access memory, or only read memory. 197 // Give them the appropriate attribute. 198 bool MadeChange = false; 199 for (Function *F : SCCNodes) { 200 if (F->doesNotAccessMemory()) 201 // Already perfect! 202 continue; 203 204 if (F->onlyReadsMemory() && ReadsMemory) 205 // No change. 206 continue; 207 208 MadeChange = true; 209 210 // Clear out any existing attributes. 211 AttrBuilder B; 212 B.addAttribute(Attribute::ReadOnly).addAttribute(Attribute::ReadNone); 213 F->removeAttributes( 214 AttributeSet::FunctionIndex, 215 AttributeSet::get(F->getContext(), AttributeSet::FunctionIndex, B)); 216 217 // Add in the new attribute. 218 F->addAttribute(AttributeSet::FunctionIndex, 219 ReadsMemory ? Attribute::ReadOnly : Attribute::ReadNone); 220 221 if (ReadsMemory) 222 ++NumReadOnly; 223 else 224 ++NumReadNone; 225 } 226 227 return MadeChange; 228 } 229 230 namespace { 231 /// For a given pointer Argument, this retains a list of Arguments of functions 232 /// in the same SCC that the pointer data flows into. We use this to build an 233 /// SCC of the arguments. 234 struct ArgumentGraphNode { 235 Argument *Definition; 236 SmallVector<ArgumentGraphNode *, 4> Uses; 237 }; 238 239 class ArgumentGraph { 240 // We store pointers to ArgumentGraphNode objects, so it's important that 241 // that they not move around upon insert. 242 typedef std::map<Argument *, ArgumentGraphNode> ArgumentMapTy; 243 244 ArgumentMapTy ArgumentMap; 245 246 // There is no root node for the argument graph, in fact: 247 // void f(int *x, int *y) { if (...) f(x, y); } 248 // is an example where the graph is disconnected. The SCCIterator requires a 249 // single entry point, so we maintain a fake ("synthetic") root node that 250 // uses every node. Because the graph is directed and nothing points into 251 // the root, it will not participate in any SCCs (except for its own). 252 ArgumentGraphNode SyntheticRoot; 253 254 public: 255 ArgumentGraph() { SyntheticRoot.Definition = nullptr; } 256 257 typedef SmallVectorImpl<ArgumentGraphNode *>::iterator iterator; 258 259 iterator begin() { return SyntheticRoot.Uses.begin(); } 260 iterator end() { return SyntheticRoot.Uses.end(); } 261 ArgumentGraphNode *getEntryNode() { return &SyntheticRoot; } 262 263 ArgumentGraphNode *operator[](Argument *A) { 264 ArgumentGraphNode &Node = ArgumentMap[A]; 265 Node.Definition = A; 266 SyntheticRoot.Uses.push_back(&Node); 267 return &Node; 268 } 269 }; 270 271 /// This tracker checks whether callees are in the SCC, and if so it does not 272 /// consider that a capture, instead adding it to the "Uses" list and 273 /// continuing with the analysis. 274 struct ArgumentUsesTracker : public CaptureTracker { 275 ArgumentUsesTracker(const SCCNodeSet &SCCNodes) 276 : Captured(false), SCCNodes(SCCNodes) {} 277 278 void tooManyUses() override { Captured = true; } 279 280 bool captured(const Use *U) override { 281 CallSite CS(U->getUser()); 282 if (!CS.getInstruction()) { 283 Captured = true; 284 return true; 285 } 286 287 Function *F = CS.getCalledFunction(); 288 if (!F || !F->hasExactDefinition() || !SCCNodes.count(F)) { 289 Captured = true; 290 return true; 291 } 292 293 // Note: the callee and the two successor blocks *follow* the argument 294 // operands. This means there is no need to adjust UseIndex to account for 295 // these. 296 297 unsigned UseIndex = 298 std::distance(const_cast<const Use *>(CS.arg_begin()), U); 299 300 assert(UseIndex < CS.data_operands_size() && 301 "Indirect function calls should have been filtered above!"); 302 303 if (UseIndex >= CS.getNumArgOperands()) { 304 // Data operand, but not a argument operand -- must be a bundle operand 305 assert(CS.hasOperandBundles() && "Must be!"); 306 307 // CaptureTracking told us that we're being captured by an operand bundle 308 // use. In this case it does not matter if the callee is within our SCC 309 // or not -- we've been captured in some unknown way, and we have to be 310 // conservative. 311 Captured = true; 312 return true; 313 } 314 315 if (UseIndex >= F->arg_size()) { 316 assert(F->isVarArg() && "More params than args in non-varargs call"); 317 Captured = true; 318 return true; 319 } 320 321 Uses.push_back(&*std::next(F->arg_begin(), UseIndex)); 322 return false; 323 } 324 325 bool Captured; // True only if certainly captured (used outside our SCC). 326 SmallVector<Argument *, 4> Uses; // Uses within our SCC. 327 328 const SCCNodeSet &SCCNodes; 329 }; 330 } 331 332 namespace llvm { 333 template <> struct GraphTraits<ArgumentGraphNode *> { 334 typedef ArgumentGraphNode NodeType; 335 typedef ArgumentGraphNode *NodeRef; 336 typedef SmallVectorImpl<ArgumentGraphNode *>::iterator ChildIteratorType; 337 338 static inline NodeType *getEntryNode(NodeType *A) { return A; } 339 static inline ChildIteratorType child_begin(NodeType *N) { 340 return N->Uses.begin(); 341 } 342 static inline ChildIteratorType child_end(NodeType *N) { 343 return N->Uses.end(); 344 } 345 }; 346 template <> 347 struct GraphTraits<ArgumentGraph *> : public GraphTraits<ArgumentGraphNode *> { 348 static NodeType *getEntryNode(ArgumentGraph *AG) { 349 return AG->getEntryNode(); 350 } 351 static ChildIteratorType nodes_begin(ArgumentGraph *AG) { 352 return AG->begin(); 353 } 354 static ChildIteratorType nodes_end(ArgumentGraph *AG) { return AG->end(); } 355 }; 356 } 357 358 /// Returns Attribute::None, Attribute::ReadOnly or Attribute::ReadNone. 359 static Attribute::AttrKind 360 determinePointerReadAttrs(Argument *A, 361 const SmallPtrSet<Argument *, 8> &SCCNodes) { 362 363 SmallVector<Use *, 32> Worklist; 364 SmallSet<Use *, 32> Visited; 365 366 // inalloca arguments are always clobbered by the call. 367 if (A->hasInAllocaAttr()) 368 return Attribute::None; 369 370 bool IsRead = false; 371 // We don't need to track IsWritten. If A is written to, return immediately. 372 373 for (Use &U : A->uses()) { 374 Visited.insert(&U); 375 Worklist.push_back(&U); 376 } 377 378 while (!Worklist.empty()) { 379 Use *U = Worklist.pop_back_val(); 380 Instruction *I = cast<Instruction>(U->getUser()); 381 382 switch (I->getOpcode()) { 383 case Instruction::BitCast: 384 case Instruction::GetElementPtr: 385 case Instruction::PHI: 386 case Instruction::Select: 387 case Instruction::AddrSpaceCast: 388 // The original value is not read/written via this if the new value isn't. 389 for (Use &UU : I->uses()) 390 if (Visited.insert(&UU).second) 391 Worklist.push_back(&UU); 392 break; 393 394 case Instruction::Call: 395 case Instruction::Invoke: { 396 bool Captures = true; 397 398 if (I->getType()->isVoidTy()) 399 Captures = false; 400 401 auto AddUsersToWorklistIfCapturing = [&] { 402 if (Captures) 403 for (Use &UU : I->uses()) 404 if (Visited.insert(&UU).second) 405 Worklist.push_back(&UU); 406 }; 407 408 CallSite CS(I); 409 if (CS.doesNotAccessMemory()) { 410 AddUsersToWorklistIfCapturing(); 411 continue; 412 } 413 414 Function *F = CS.getCalledFunction(); 415 if (!F) { 416 if (CS.onlyReadsMemory()) { 417 IsRead = true; 418 AddUsersToWorklistIfCapturing(); 419 continue; 420 } 421 return Attribute::None; 422 } 423 424 // Note: the callee and the two successor blocks *follow* the argument 425 // operands. This means there is no need to adjust UseIndex to account 426 // for these. 427 428 unsigned UseIndex = std::distance(CS.arg_begin(), U); 429 430 // U cannot be the callee operand use: since we're exploring the 431 // transitive uses of an Argument, having such a use be a callee would 432 // imply the CallSite is an indirect call or invoke; and we'd take the 433 // early exit above. 434 assert(UseIndex < CS.data_operands_size() && 435 "Data operand use expected!"); 436 437 bool IsOperandBundleUse = UseIndex >= CS.getNumArgOperands(); 438 439 if (UseIndex >= F->arg_size() && !IsOperandBundleUse) { 440 assert(F->isVarArg() && "More params than args in non-varargs call"); 441 return Attribute::None; 442 } 443 444 Captures &= !CS.doesNotCapture(UseIndex); 445 446 // Since the optimizer (by design) cannot see the data flow corresponding 447 // to a operand bundle use, these cannot participate in the optimistic SCC 448 // analysis. Instead, we model the operand bundle uses as arguments in 449 // call to a function external to the SCC. 450 if (!SCCNodes.count(&*std::next(F->arg_begin(), UseIndex)) || 451 IsOperandBundleUse) { 452 453 // The accessors used on CallSite here do the right thing for calls and 454 // invokes with operand bundles. 455 456 if (!CS.onlyReadsMemory() && !CS.onlyReadsMemory(UseIndex)) 457 return Attribute::None; 458 if (!CS.doesNotAccessMemory(UseIndex)) 459 IsRead = true; 460 } 461 462 AddUsersToWorklistIfCapturing(); 463 break; 464 } 465 466 case Instruction::Load: 467 // A volatile load has side effects beyond what readonly can be relied 468 // upon. 469 if (cast<LoadInst>(I)->isVolatile()) 470 return Attribute::None; 471 472 IsRead = true; 473 break; 474 475 case Instruction::ICmp: 476 case Instruction::Ret: 477 break; 478 479 default: 480 return Attribute::None; 481 } 482 } 483 484 return IsRead ? Attribute::ReadOnly : Attribute::ReadNone; 485 } 486 487 /// Deduce nocapture attributes for the SCC. 488 static bool addArgumentAttrs(const SCCNodeSet &SCCNodes) { 489 bool Changed = false; 490 491 ArgumentGraph AG; 492 493 AttrBuilder B; 494 B.addAttribute(Attribute::NoCapture); 495 496 // Check each function in turn, determining which pointer arguments are not 497 // captured. 498 for (Function *F : SCCNodes) { 499 // We can infer and propagate function attributes only when we know that the 500 // definition we'll get at link time is *exactly* the definition we see now. 501 // For more details, see GlobalValue::mayBeDerefined. 502 if (!F->hasExactDefinition()) 503 continue; 504 505 // Functions that are readonly (or readnone) and nounwind and don't return 506 // a value can't capture arguments. Don't analyze them. 507 if (F->onlyReadsMemory() && F->doesNotThrow() && 508 F->getReturnType()->isVoidTy()) { 509 for (Function::arg_iterator A = F->arg_begin(), E = F->arg_end(); A != E; 510 ++A) { 511 if (A->getType()->isPointerTy() && !A->hasNoCaptureAttr()) { 512 A->addAttr(AttributeSet::get(F->getContext(), A->getArgNo() + 1, B)); 513 ++NumNoCapture; 514 Changed = true; 515 } 516 } 517 continue; 518 } 519 520 for (Function::arg_iterator A = F->arg_begin(), E = F->arg_end(); A != E; 521 ++A) { 522 if (!A->getType()->isPointerTy()) 523 continue; 524 bool HasNonLocalUses = false; 525 if (!A->hasNoCaptureAttr()) { 526 ArgumentUsesTracker Tracker(SCCNodes); 527 PointerMayBeCaptured(&*A, &Tracker); 528 if (!Tracker.Captured) { 529 if (Tracker.Uses.empty()) { 530 // If it's trivially not captured, mark it nocapture now. 531 A->addAttr( 532 AttributeSet::get(F->getContext(), A->getArgNo() + 1, B)); 533 ++NumNoCapture; 534 Changed = true; 535 } else { 536 // If it's not trivially captured and not trivially not captured, 537 // then it must be calling into another function in our SCC. Save 538 // its particulars for Argument-SCC analysis later. 539 ArgumentGraphNode *Node = AG[&*A]; 540 for (Argument *Use : Tracker.Uses) { 541 Node->Uses.push_back(AG[Use]); 542 if (Use != &*A) 543 HasNonLocalUses = true; 544 } 545 } 546 } 547 // Otherwise, it's captured. Don't bother doing SCC analysis on it. 548 } 549 if (!HasNonLocalUses && !A->onlyReadsMemory()) { 550 // Can we determine that it's readonly/readnone without doing an SCC? 551 // Note that we don't allow any calls at all here, or else our result 552 // will be dependent on the iteration order through the functions in the 553 // SCC. 554 SmallPtrSet<Argument *, 8> Self; 555 Self.insert(&*A); 556 Attribute::AttrKind R = determinePointerReadAttrs(&*A, Self); 557 if (R != Attribute::None) { 558 AttrBuilder B; 559 B.addAttribute(R); 560 A->addAttr(AttributeSet::get(A->getContext(), A->getArgNo() + 1, B)); 561 Changed = true; 562 R == Attribute::ReadOnly ? ++NumReadOnlyArg : ++NumReadNoneArg; 563 } 564 } 565 } 566 } 567 568 // The graph we've collected is partial because we stopped scanning for 569 // argument uses once we solved the argument trivially. These partial nodes 570 // show up as ArgumentGraphNode objects with an empty Uses list, and for 571 // these nodes the final decision about whether they capture has already been 572 // made. If the definition doesn't have a 'nocapture' attribute by now, it 573 // captures. 574 575 for (scc_iterator<ArgumentGraph *> I = scc_begin(&AG); !I.isAtEnd(); ++I) { 576 const std::vector<ArgumentGraphNode *> &ArgumentSCC = *I; 577 if (ArgumentSCC.size() == 1) { 578 if (!ArgumentSCC[0]->Definition) 579 continue; // synthetic root node 580 581 // eg. "void f(int* x) { if (...) f(x); }" 582 if (ArgumentSCC[0]->Uses.size() == 1 && 583 ArgumentSCC[0]->Uses[0] == ArgumentSCC[0]) { 584 Argument *A = ArgumentSCC[0]->Definition; 585 A->addAttr(AttributeSet::get(A->getContext(), A->getArgNo() + 1, B)); 586 ++NumNoCapture; 587 Changed = true; 588 } 589 continue; 590 } 591 592 bool SCCCaptured = false; 593 for (auto I = ArgumentSCC.begin(), E = ArgumentSCC.end(); 594 I != E && !SCCCaptured; ++I) { 595 ArgumentGraphNode *Node = *I; 596 if (Node->Uses.empty()) { 597 if (!Node->Definition->hasNoCaptureAttr()) 598 SCCCaptured = true; 599 } 600 } 601 if (SCCCaptured) 602 continue; 603 604 SmallPtrSet<Argument *, 8> ArgumentSCCNodes; 605 // Fill ArgumentSCCNodes with the elements of the ArgumentSCC. Used for 606 // quickly looking up whether a given Argument is in this ArgumentSCC. 607 for (ArgumentGraphNode *I : ArgumentSCC) { 608 ArgumentSCCNodes.insert(I->Definition); 609 } 610 611 for (auto I = ArgumentSCC.begin(), E = ArgumentSCC.end(); 612 I != E && !SCCCaptured; ++I) { 613 ArgumentGraphNode *N = *I; 614 for (ArgumentGraphNode *Use : N->Uses) { 615 Argument *A = Use->Definition; 616 if (A->hasNoCaptureAttr() || ArgumentSCCNodes.count(A)) 617 continue; 618 SCCCaptured = true; 619 break; 620 } 621 } 622 if (SCCCaptured) 623 continue; 624 625 for (unsigned i = 0, e = ArgumentSCC.size(); i != e; ++i) { 626 Argument *A = ArgumentSCC[i]->Definition; 627 A->addAttr(AttributeSet::get(A->getContext(), A->getArgNo() + 1, B)); 628 ++NumNoCapture; 629 Changed = true; 630 } 631 632 // We also want to compute readonly/readnone. With a small number of false 633 // negatives, we can assume that any pointer which is captured isn't going 634 // to be provably readonly or readnone, since by definition we can't 635 // analyze all uses of a captured pointer. 636 // 637 // The false negatives happen when the pointer is captured by a function 638 // that promises readonly/readnone behaviour on the pointer, then the 639 // pointer's lifetime ends before anything that writes to arbitrary memory. 640 // Also, a readonly/readnone pointer may be returned, but returning a 641 // pointer is capturing it. 642 643 Attribute::AttrKind ReadAttr = Attribute::ReadNone; 644 for (unsigned i = 0, e = ArgumentSCC.size(); i != e; ++i) { 645 Argument *A = ArgumentSCC[i]->Definition; 646 Attribute::AttrKind K = determinePointerReadAttrs(A, ArgumentSCCNodes); 647 if (K == Attribute::ReadNone) 648 continue; 649 if (K == Attribute::ReadOnly) { 650 ReadAttr = Attribute::ReadOnly; 651 continue; 652 } 653 ReadAttr = K; 654 break; 655 } 656 657 if (ReadAttr != Attribute::None) { 658 AttrBuilder B, R; 659 B.addAttribute(ReadAttr); 660 R.addAttribute(Attribute::ReadOnly).addAttribute(Attribute::ReadNone); 661 for (unsigned i = 0, e = ArgumentSCC.size(); i != e; ++i) { 662 Argument *A = ArgumentSCC[i]->Definition; 663 // Clear out existing readonly/readnone attributes 664 A->removeAttr(AttributeSet::get(A->getContext(), A->getArgNo() + 1, R)); 665 A->addAttr(AttributeSet::get(A->getContext(), A->getArgNo() + 1, B)); 666 ReadAttr == Attribute::ReadOnly ? ++NumReadOnlyArg : ++NumReadNoneArg; 667 Changed = true; 668 } 669 } 670 } 671 672 return Changed; 673 } 674 675 /// Tests whether a function is "malloc-like". 676 /// 677 /// A function is "malloc-like" if it returns either null or a pointer that 678 /// doesn't alias any other pointer visible to the caller. 679 static bool isFunctionMallocLike(Function *F, const SCCNodeSet &SCCNodes) { 680 SmallSetVector<Value *, 8> FlowsToReturn; 681 for (BasicBlock &BB : *F) 682 if (ReturnInst *Ret = dyn_cast<ReturnInst>(BB.getTerminator())) 683 FlowsToReturn.insert(Ret->getReturnValue()); 684 685 for (unsigned i = 0; i != FlowsToReturn.size(); ++i) { 686 Value *RetVal = FlowsToReturn[i]; 687 688 if (Constant *C = dyn_cast<Constant>(RetVal)) { 689 if (!C->isNullValue() && !isa<UndefValue>(C)) 690 return false; 691 692 continue; 693 } 694 695 if (isa<Argument>(RetVal)) 696 return false; 697 698 if (Instruction *RVI = dyn_cast<Instruction>(RetVal)) 699 switch (RVI->getOpcode()) { 700 // Extend the analysis by looking upwards. 701 case Instruction::BitCast: 702 case Instruction::GetElementPtr: 703 case Instruction::AddrSpaceCast: 704 FlowsToReturn.insert(RVI->getOperand(0)); 705 continue; 706 case Instruction::Select: { 707 SelectInst *SI = cast<SelectInst>(RVI); 708 FlowsToReturn.insert(SI->getTrueValue()); 709 FlowsToReturn.insert(SI->getFalseValue()); 710 continue; 711 } 712 case Instruction::PHI: { 713 PHINode *PN = cast<PHINode>(RVI); 714 for (Value *IncValue : PN->incoming_values()) 715 FlowsToReturn.insert(IncValue); 716 continue; 717 } 718 719 // Check whether the pointer came from an allocation. 720 case Instruction::Alloca: 721 break; 722 case Instruction::Call: 723 case Instruction::Invoke: { 724 CallSite CS(RVI); 725 if (CS.paramHasAttr(0, Attribute::NoAlias)) 726 break; 727 if (CS.getCalledFunction() && SCCNodes.count(CS.getCalledFunction())) 728 break; 729 } // fall-through 730 default: 731 return false; // Did not come from an allocation. 732 } 733 734 if (PointerMayBeCaptured(RetVal, false, /*StoreCaptures=*/false)) 735 return false; 736 } 737 738 return true; 739 } 740 741 /// Deduce noalias attributes for the SCC. 742 static bool addNoAliasAttrs(const SCCNodeSet &SCCNodes) { 743 // Check each function in turn, determining which functions return noalias 744 // pointers. 745 for (Function *F : SCCNodes) { 746 // Already noalias. 747 if (F->doesNotAlias(0)) 748 continue; 749 750 // We can infer and propagate function attributes only when we know that the 751 // definition we'll get at link time is *exactly* the definition we see now. 752 // For more details, see GlobalValue::mayBeDerefined. 753 if (!F->hasExactDefinition()) 754 return false; 755 756 // We annotate noalias return values, which are only applicable to 757 // pointer types. 758 if (!F->getReturnType()->isPointerTy()) 759 continue; 760 761 if (!isFunctionMallocLike(F, SCCNodes)) 762 return false; 763 } 764 765 bool MadeChange = false; 766 for (Function *F : SCCNodes) { 767 if (F->doesNotAlias(0) || !F->getReturnType()->isPointerTy()) 768 continue; 769 770 F->setDoesNotAlias(0); 771 ++NumNoAlias; 772 MadeChange = true; 773 } 774 775 return MadeChange; 776 } 777 778 /// Tests whether this function is known to not return null. 779 /// 780 /// Requires that the function returns a pointer. 781 /// 782 /// Returns true if it believes the function will not return a null, and sets 783 /// \p Speculative based on whether the returned conclusion is a speculative 784 /// conclusion due to SCC calls. 785 static bool isReturnNonNull(Function *F, const SCCNodeSet &SCCNodes, 786 bool &Speculative) { 787 assert(F->getReturnType()->isPointerTy() && 788 "nonnull only meaningful on pointer types"); 789 Speculative = false; 790 791 SmallSetVector<Value *, 8> FlowsToReturn; 792 for (BasicBlock &BB : *F) 793 if (auto *Ret = dyn_cast<ReturnInst>(BB.getTerminator())) 794 FlowsToReturn.insert(Ret->getReturnValue()); 795 796 for (unsigned i = 0; i != FlowsToReturn.size(); ++i) { 797 Value *RetVal = FlowsToReturn[i]; 798 799 // If this value is locally known to be non-null, we're good 800 if (isKnownNonNull(RetVal)) 801 continue; 802 803 // Otherwise, we need to look upwards since we can't make any local 804 // conclusions. 805 Instruction *RVI = dyn_cast<Instruction>(RetVal); 806 if (!RVI) 807 return false; 808 switch (RVI->getOpcode()) { 809 // Extend the analysis by looking upwards. 810 case Instruction::BitCast: 811 case Instruction::GetElementPtr: 812 case Instruction::AddrSpaceCast: 813 FlowsToReturn.insert(RVI->getOperand(0)); 814 continue; 815 case Instruction::Select: { 816 SelectInst *SI = cast<SelectInst>(RVI); 817 FlowsToReturn.insert(SI->getTrueValue()); 818 FlowsToReturn.insert(SI->getFalseValue()); 819 continue; 820 } 821 case Instruction::PHI: { 822 PHINode *PN = cast<PHINode>(RVI); 823 for (int i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 824 FlowsToReturn.insert(PN->getIncomingValue(i)); 825 continue; 826 } 827 case Instruction::Call: 828 case Instruction::Invoke: { 829 CallSite CS(RVI); 830 Function *Callee = CS.getCalledFunction(); 831 // A call to a node within the SCC is assumed to return null until 832 // proven otherwise 833 if (Callee && SCCNodes.count(Callee)) { 834 Speculative = true; 835 continue; 836 } 837 return false; 838 } 839 default: 840 return false; // Unknown source, may be null 841 }; 842 llvm_unreachable("should have either continued or returned"); 843 } 844 845 return true; 846 } 847 848 /// Deduce nonnull attributes for the SCC. 849 static bool addNonNullAttrs(const SCCNodeSet &SCCNodes) { 850 // Speculative that all functions in the SCC return only nonnull 851 // pointers. We may refute this as we analyze functions. 852 bool SCCReturnsNonNull = true; 853 854 bool MadeChange = false; 855 856 // Check each function in turn, determining which functions return nonnull 857 // pointers. 858 for (Function *F : SCCNodes) { 859 // Already nonnull. 860 if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, 861 Attribute::NonNull)) 862 continue; 863 864 // We can infer and propagate function attributes only when we know that the 865 // definition we'll get at link time is *exactly* the definition we see now. 866 // For more details, see GlobalValue::mayBeDerefined. 867 if (!F->hasExactDefinition()) 868 return false; 869 870 // We annotate nonnull return values, which are only applicable to 871 // pointer types. 872 if (!F->getReturnType()->isPointerTy()) 873 continue; 874 875 bool Speculative = false; 876 if (isReturnNonNull(F, SCCNodes, Speculative)) { 877 if (!Speculative) { 878 // Mark the function eagerly since we may discover a function 879 // which prevents us from speculating about the entire SCC 880 DEBUG(dbgs() << "Eagerly marking " << F->getName() << " as nonnull\n"); 881 F->addAttribute(AttributeSet::ReturnIndex, Attribute::NonNull); 882 ++NumNonNullReturn; 883 MadeChange = true; 884 } 885 continue; 886 } 887 // At least one function returns something which could be null, can't 888 // speculate any more. 889 SCCReturnsNonNull = false; 890 } 891 892 if (SCCReturnsNonNull) { 893 for (Function *F : SCCNodes) { 894 if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, 895 Attribute::NonNull) || 896 !F->getReturnType()->isPointerTy()) 897 continue; 898 899 DEBUG(dbgs() << "SCC marking " << F->getName() << " as nonnull\n"); 900 F->addAttribute(AttributeSet::ReturnIndex, Attribute::NonNull); 901 ++NumNonNullReturn; 902 MadeChange = true; 903 } 904 } 905 906 return MadeChange; 907 } 908 909 /// Remove the convergent attribute from all functions in the SCC if every 910 /// callsite within the SCC is not convergent (except for calls to functions 911 /// within the SCC). Returns true if changes were made. 912 static bool removeConvergentAttrs(const SCCNodeSet &SCCNodes) { 913 // For every function in SCC, ensure that either 914 // * it is not convergent, or 915 // * we can remove its convergent attribute. 916 bool HasConvergentFn = false; 917 for (Function *F : SCCNodes) { 918 if (!F->isConvergent()) continue; 919 HasConvergentFn = true; 920 921 // Can't remove convergent from function declarations. 922 if (F->isDeclaration()) return false; 923 924 // Can't remove convergent if any of our functions has a convergent call to a 925 // function not in the SCC. 926 for (Instruction &I : instructions(*F)) { 927 CallSite CS(&I); 928 // Bail if CS is a convergent call to a function not in the SCC. 929 if (CS && CS.isConvergent() && 930 SCCNodes.count(CS.getCalledFunction()) == 0) 931 return false; 932 } 933 } 934 935 // If the SCC doesn't have any convergent functions, we have nothing to do. 936 if (!HasConvergentFn) return false; 937 938 // If we got here, all of the calls the SCC makes to functions not in the SCC 939 // are non-convergent. Therefore all of the SCC's functions can also be made 940 // non-convergent. We'll remove the attr from the callsites in 941 // InstCombineCalls. 942 for (Function *F : SCCNodes) { 943 if (!F->isConvergent()) continue; 944 945 DEBUG(dbgs() << "Removing convergent attr from fn " << F->getName() 946 << "\n"); 947 F->setNotConvergent(); 948 } 949 return true; 950 } 951 952 static bool setDoesNotRecurse(Function &F) { 953 if (F.doesNotRecurse()) 954 return false; 955 F.setDoesNotRecurse(); 956 ++NumNoRecurse; 957 return true; 958 } 959 960 static bool addNoRecurseAttrs(const SCCNodeSet &SCCNodes) { 961 // Try and identify functions that do not recurse. 962 963 // If the SCC contains multiple nodes we know for sure there is recursion. 964 if (SCCNodes.size() != 1) 965 return false; 966 967 Function *F = *SCCNodes.begin(); 968 if (!F || F->isDeclaration() || F->doesNotRecurse()) 969 return false; 970 971 // If all of the calls in F are identifiable and are to norecurse functions, F 972 // is norecurse. This check also detects self-recursion as F is not currently 973 // marked norecurse, so any called from F to F will not be marked norecurse. 974 for (Instruction &I : instructions(*F)) 975 if (auto CS = CallSite(&I)) { 976 Function *Callee = CS.getCalledFunction(); 977 if (!Callee || Callee == F || !Callee->doesNotRecurse()) 978 // Function calls a potentially recursive function. 979 return false; 980 } 981 982 // Every call was to a non-recursive function other than this function, and 983 // we have no indirect recursion as the SCC size is one. This function cannot 984 // recurse. 985 return setDoesNotRecurse(*F); 986 } 987 988 PreservedAnalyses PostOrderFunctionAttrsPass::run(LazyCallGraph::SCC &C, 989 CGSCCAnalysisManager &AM) { 990 FunctionAnalysisManager &FAM = 991 AM.getResult<FunctionAnalysisManagerCGSCCProxy>(C).getManager(); 992 993 // We pass a lambda into functions to wire them up to the analysis manager 994 // for getting function analyses. 995 auto AARGetter = [&](Function &F) -> AAResults & { 996 return FAM.getResult<AAManager>(F); 997 }; 998 999 // Fill SCCNodes with the elements of the SCC. Also track whether there are 1000 // any external or opt-none nodes that will prevent us from optimizing any 1001 // part of the SCC. 1002 SCCNodeSet SCCNodes; 1003 bool HasUnknownCall = false; 1004 for (LazyCallGraph::Node &N : C) { 1005 Function &F = N.getFunction(); 1006 if (F.hasFnAttribute(Attribute::OptimizeNone)) { 1007 // Treat any function we're trying not to optimize as if it were an 1008 // indirect call and omit it from the node set used below. 1009 HasUnknownCall = true; 1010 continue; 1011 } 1012 // Track whether any functions in this SCC have an unknown call edge. 1013 // Note: if this is ever a performance hit, we can common it with 1014 // subsequent routines which also do scans over the instructions of the 1015 // function. 1016 if (!HasUnknownCall) 1017 for (Instruction &I : instructions(F)) 1018 if (auto CS = CallSite(&I)) 1019 if (!CS.getCalledFunction()) { 1020 HasUnknownCall = true; 1021 break; 1022 } 1023 1024 SCCNodes.insert(&F); 1025 } 1026 1027 bool Changed = false; 1028 Changed |= addReadAttrs(SCCNodes, AARGetter); 1029 Changed |= addArgumentAttrs(SCCNodes); 1030 1031 // If we have no external nodes participating in the SCC, we can deduce some 1032 // more precise attributes as well. 1033 if (!HasUnknownCall) { 1034 Changed |= addNoAliasAttrs(SCCNodes); 1035 Changed |= addNonNullAttrs(SCCNodes); 1036 Changed |= removeConvergentAttrs(SCCNodes); 1037 Changed |= addNoRecurseAttrs(SCCNodes); 1038 } 1039 1040 return Changed ? PreservedAnalyses::none() : PreservedAnalyses::all(); 1041 } 1042 1043 namespace { 1044 struct PostOrderFunctionAttrsLegacyPass : public CallGraphSCCPass { 1045 static char ID; // Pass identification, replacement for typeid 1046 PostOrderFunctionAttrsLegacyPass() : CallGraphSCCPass(ID) { 1047 initializePostOrderFunctionAttrsLegacyPassPass(*PassRegistry::getPassRegistry()); 1048 } 1049 1050 bool runOnSCC(CallGraphSCC &SCC) override; 1051 1052 void getAnalysisUsage(AnalysisUsage &AU) const override { 1053 AU.setPreservesCFG(); 1054 AU.addRequired<AssumptionCacheTracker>(); 1055 getAAResultsAnalysisUsage(AU); 1056 CallGraphSCCPass::getAnalysisUsage(AU); 1057 } 1058 }; 1059 } 1060 1061 char PostOrderFunctionAttrsLegacyPass::ID = 0; 1062 INITIALIZE_PASS_BEGIN(PostOrderFunctionAttrsLegacyPass, "functionattrs", 1063 "Deduce function attributes", false, false) 1064 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 1065 INITIALIZE_PASS_DEPENDENCY(CallGraphWrapperPass) 1066 INITIALIZE_PASS_END(PostOrderFunctionAttrsLegacyPass, "functionattrs", 1067 "Deduce function attributes", false, false) 1068 1069 Pass *llvm::createPostOrderFunctionAttrsLegacyPass() { return new PostOrderFunctionAttrsLegacyPass(); } 1070 1071 template <typename AARGetterT> 1072 static bool runImpl(CallGraphSCC &SCC, AARGetterT AARGetter) { 1073 bool Changed = false; 1074 1075 // Fill SCCNodes with the elements of the SCC. Used for quickly looking up 1076 // whether a given CallGraphNode is in this SCC. Also track whether there are 1077 // any external or opt-none nodes that will prevent us from optimizing any 1078 // part of the SCC. 1079 SCCNodeSet SCCNodes; 1080 bool ExternalNode = false; 1081 for (CallGraphNode *I : SCC) { 1082 Function *F = I->getFunction(); 1083 if (!F || F->hasFnAttribute(Attribute::OptimizeNone)) { 1084 // External node or function we're trying not to optimize - we both avoid 1085 // transform them and avoid leveraging information they provide. 1086 ExternalNode = true; 1087 continue; 1088 } 1089 1090 SCCNodes.insert(F); 1091 } 1092 1093 Changed |= addReadAttrs(SCCNodes, AARGetter); 1094 Changed |= addArgumentAttrs(SCCNodes); 1095 1096 // If we have no external nodes participating in the SCC, we can deduce some 1097 // more precise attributes as well. 1098 if (!ExternalNode) { 1099 Changed |= addNoAliasAttrs(SCCNodes); 1100 Changed |= addNonNullAttrs(SCCNodes); 1101 Changed |= removeConvergentAttrs(SCCNodes); 1102 Changed |= addNoRecurseAttrs(SCCNodes); 1103 } 1104 1105 return Changed; 1106 } 1107 1108 bool PostOrderFunctionAttrsLegacyPass::runOnSCC(CallGraphSCC &SCC) { 1109 if (skipSCC(SCC)) 1110 return false; 1111 1112 // We compute dedicated AA results for each function in the SCC as needed. We 1113 // use a lambda referencing external objects so that they live long enough to 1114 // be queried, but we re-use them each time. 1115 Optional<BasicAAResult> BAR; 1116 Optional<AAResults> AAR; 1117 auto AARGetter = [&](Function &F) -> AAResults & { 1118 BAR.emplace(createLegacyPMBasicAAResult(*this, F)); 1119 AAR.emplace(createLegacyPMAAResults(*this, F, *BAR)); 1120 return *AAR; 1121 }; 1122 1123 return runImpl(SCC, AARGetter); 1124 } 1125 1126 namespace { 1127 struct ReversePostOrderFunctionAttrsLegacyPass : public ModulePass { 1128 static char ID; // Pass identification, replacement for typeid 1129 ReversePostOrderFunctionAttrsLegacyPass() : ModulePass(ID) { 1130 initializeReversePostOrderFunctionAttrsLegacyPassPass(*PassRegistry::getPassRegistry()); 1131 } 1132 1133 bool runOnModule(Module &M) override; 1134 1135 void getAnalysisUsage(AnalysisUsage &AU) const override { 1136 AU.setPreservesCFG(); 1137 AU.addRequired<CallGraphWrapperPass>(); 1138 AU.addPreserved<CallGraphWrapperPass>(); 1139 } 1140 }; 1141 } 1142 1143 char ReversePostOrderFunctionAttrsLegacyPass::ID = 0; 1144 INITIALIZE_PASS_BEGIN(ReversePostOrderFunctionAttrsLegacyPass, "rpo-functionattrs", 1145 "Deduce function attributes in RPO", false, false) 1146 INITIALIZE_PASS_DEPENDENCY(CallGraphWrapperPass) 1147 INITIALIZE_PASS_END(ReversePostOrderFunctionAttrsLegacyPass, "rpo-functionattrs", 1148 "Deduce function attributes in RPO", false, false) 1149 1150 Pass *llvm::createReversePostOrderFunctionAttrsPass() { 1151 return new ReversePostOrderFunctionAttrsLegacyPass(); 1152 } 1153 1154 static bool addNoRecurseAttrsTopDown(Function &F) { 1155 // We check the preconditions for the function prior to calling this to avoid 1156 // the cost of building up a reversible post-order list. We assert them here 1157 // to make sure none of the invariants this relies on were violated. 1158 assert(!F.isDeclaration() && "Cannot deduce norecurse without a definition!"); 1159 assert(!F.doesNotRecurse() && 1160 "This function has already been deduced as norecurs!"); 1161 assert(F.hasInternalLinkage() && 1162 "Can only do top-down deduction for internal linkage functions!"); 1163 1164 // If F is internal and all of its uses are calls from a non-recursive 1165 // functions, then none of its calls could in fact recurse without going 1166 // through a function marked norecurse, and so we can mark this function too 1167 // as norecurse. Note that the uses must actually be calls -- otherwise 1168 // a pointer to this function could be returned from a norecurse function but 1169 // this function could be recursively (indirectly) called. Note that this 1170 // also detects if F is directly recursive as F is not yet marked as 1171 // a norecurse function. 1172 for (auto *U : F.users()) { 1173 auto *I = dyn_cast<Instruction>(U); 1174 if (!I) 1175 return false; 1176 CallSite CS(I); 1177 if (!CS || !CS.getParent()->getParent()->doesNotRecurse()) 1178 return false; 1179 } 1180 return setDoesNotRecurse(F); 1181 } 1182 1183 static bool deduceFunctionAttributeInRPO(Module &M, CallGraph &CG) { 1184 // We only have a post-order SCC traversal (because SCCs are inherently 1185 // discovered in post-order), so we accumulate them in a vector and then walk 1186 // it in reverse. This is simpler than using the RPO iterator infrastructure 1187 // because we need to combine SCC detection and the PO walk of the call 1188 // graph. We can also cheat egregiously because we're primarily interested in 1189 // synthesizing norecurse and so we can only save the singular SCCs as SCCs 1190 // with multiple functions in them will clearly be recursive. 1191 SmallVector<Function *, 16> Worklist; 1192 for (scc_iterator<CallGraph *> I = scc_begin(&CG); !I.isAtEnd(); ++I) { 1193 if (I->size() != 1) 1194 continue; 1195 1196 Function *F = I->front()->getFunction(); 1197 if (F && !F->isDeclaration() && !F->doesNotRecurse() && 1198 F->hasInternalLinkage()) 1199 Worklist.push_back(F); 1200 } 1201 1202 bool Changed = false; 1203 for (auto *F : reverse(Worklist)) 1204 Changed |= addNoRecurseAttrsTopDown(*F); 1205 1206 return Changed; 1207 } 1208 1209 bool ReversePostOrderFunctionAttrsLegacyPass::runOnModule(Module &M) { 1210 if (skipModule(M)) 1211 return false; 1212 1213 auto &CG = getAnalysis<CallGraphWrapperPass>().getCallGraph(); 1214 1215 return deduceFunctionAttributeInRPO(M, CG); 1216 } 1217 1218 PreservedAnalyses 1219 ReversePostOrderFunctionAttrsPass::run(Module &M, AnalysisManager<Module> &AM) { 1220 auto &CG = AM.getResult<CallGraphAnalysis>(M); 1221 1222 bool Changed = deduceFunctionAttributeInRPO(M, CG); 1223 if (!Changed) 1224 return PreservedAnalyses::all(); 1225 PreservedAnalyses PA; 1226 PA.preserve<CallGraphAnalysis>(); 1227 return PA; 1228 } 1229