1 //===- FunctionAttrs.cpp - Pass which marks functions attributes ----------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 /// \file
11 /// This file implements interprocedural passes which walk the
12 /// call-graph deducing and/or propagating function attributes.
13 //
14 //===----------------------------------------------------------------------===//
15
16 #include "llvm/Transforms/IPO/FunctionAttrs.h"
17 #include "llvm/ADT/SCCIterator.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SetVector.h"
20 #include "llvm/ADT/SmallPtrSet.h"
21 #include "llvm/ADT/SmallVector.h"
22 #include "llvm/ADT/Statistic.h"
23 #include "llvm/Analysis/AliasAnalysis.h"
24 #include "llvm/Analysis/AssumptionCache.h"
25 #include "llvm/Analysis/BasicAliasAnalysis.h"
26 #include "llvm/Analysis/CGSCCPassManager.h"
27 #include "llvm/Analysis/CallGraph.h"
28 #include "llvm/Analysis/CallGraphSCCPass.h"
29 #include "llvm/Analysis/CaptureTracking.h"
30 #include "llvm/Analysis/LazyCallGraph.h"
31 #include "llvm/Analysis/MemoryLocation.h"
32 #include "llvm/Analysis/ValueTracking.h"
33 #include "llvm/IR/Argument.h"
34 #include "llvm/IR/Attributes.h"
35 #include "llvm/IR/BasicBlock.h"
36 #include "llvm/IR/CallSite.h"
37 #include "llvm/IR/Constant.h"
38 #include "llvm/IR/Constants.h"
39 #include "llvm/IR/Function.h"
40 #include "llvm/IR/InstIterator.h"
41 #include "llvm/IR/InstrTypes.h"
42 #include "llvm/IR/Instruction.h"
43 #include "llvm/IR/Instructions.h"
44 #include "llvm/IR/IntrinsicInst.h"
45 #include "llvm/IR/Metadata.h"
46 #include "llvm/IR/PassManager.h"
47 #include "llvm/IR/Type.h"
48 #include "llvm/IR/Use.h"
49 #include "llvm/IR/User.h"
50 #include "llvm/IR/Value.h"
51 #include "llvm/Pass.h"
52 #include "llvm/Support/Casting.h"
53 #include "llvm/Support/CommandLine.h"
54 #include "llvm/Support/Compiler.h"
55 #include "llvm/Support/Debug.h"
56 #include "llvm/Support/ErrorHandling.h"
57 #include "llvm/Support/raw_ostream.h"
58 #include "llvm/Transforms/IPO.h"
59 #include <cassert>
60 #include <iterator>
61 #include <map>
62 #include <vector>
63
64 using namespace llvm;
65
66 #define DEBUG_TYPE "functionattrs"
67
68 STATISTIC(NumReadNone, "Number of functions marked readnone");
69 STATISTIC(NumReadOnly, "Number of functions marked readonly");
70 STATISTIC(NumWriteOnly, "Number of functions marked writeonly");
71 STATISTIC(NumNoCapture, "Number of arguments marked nocapture");
72 STATISTIC(NumReturned, "Number of arguments marked returned");
73 STATISTIC(NumReadNoneArg, "Number of arguments marked readnone");
74 STATISTIC(NumReadOnlyArg, "Number of arguments marked readonly");
75 STATISTIC(NumNoAlias, "Number of function returns marked noalias");
76 STATISTIC(NumNonNullReturn, "Number of function returns marked nonnull");
77 STATISTIC(NumNoRecurse, "Number of functions marked as norecurse");
78 STATISTIC(NumNoUnwind, "Number of functions marked as nounwind");
79
80 // FIXME: This is disabled by default to avoid exposing security vulnerabilities
81 // in C/C++ code compiled by clang:
82 // http://lists.llvm.org/pipermail/cfe-dev/2017-January/052066.html
83 static cl::opt<bool> EnableNonnullArgPropagation(
84 "enable-nonnull-arg-prop", cl::Hidden,
85 cl::desc("Try to propagate nonnull argument attributes from callsites to "
86 "caller functions."));
87
88 static cl::opt<bool> DisableNoUnwindInference(
89 "disable-nounwind-inference", cl::Hidden,
90 cl::desc("Stop inferring nounwind attribute during function-attrs pass"));
91
92 namespace {
93
94 using SCCNodeSet = SmallSetVector<Function *, 8>;
95
96 } // end anonymous namespace
97
98 /// Returns the memory access attribute for function F using AAR for AA results,
99 /// where SCCNodes is the current SCC.
100 ///
101 /// If ThisBody is true, this function may examine the function body and will
102 /// return a result pertaining to this copy of the function. If it is false, the
103 /// result will be based only on AA results for the function declaration; it
104 /// will be assumed that some other (perhaps less optimized) version of the
105 /// function may be selected at link time.
checkFunctionMemoryAccess(Function & F,bool ThisBody,AAResults & AAR,const SCCNodeSet & SCCNodes)106 static MemoryAccessKind checkFunctionMemoryAccess(Function &F, bool ThisBody,
107 AAResults &AAR,
108 const SCCNodeSet &SCCNodes) {
109 FunctionModRefBehavior MRB = AAR.getModRefBehavior(&F);
110 if (MRB == FMRB_DoesNotAccessMemory)
111 // Already perfect!
112 return MAK_ReadNone;
113
114 if (!ThisBody) {
115 if (AliasAnalysis::onlyReadsMemory(MRB))
116 return MAK_ReadOnly;
117
118 if (AliasAnalysis::doesNotReadMemory(MRB))
119 return MAK_WriteOnly;
120
121 // Conservatively assume it reads and writes to memory.
122 return MAK_MayWrite;
123 }
124
125 // Scan the function body for instructions that may read or write memory.
126 bool ReadsMemory = false;
127 bool WritesMemory = false;
128 for (inst_iterator II = inst_begin(F), E = inst_end(F); II != E; ++II) {
129 Instruction *I = &*II;
130
131 // Some instructions can be ignored even if they read or write memory.
132 // Detect these now, skipping to the next instruction if one is found.
133 if (auto *Call = dyn_cast<CallBase>(I)) {
134 // Ignore calls to functions in the same SCC, as long as the call sites
135 // don't have operand bundles. Calls with operand bundles are allowed to
136 // have memory effects not described by the memory effects of the call
137 // target.
138 if (!Call->hasOperandBundles() && Call->getCalledFunction() &&
139 SCCNodes.count(Call->getCalledFunction()))
140 continue;
141 FunctionModRefBehavior MRB = AAR.getModRefBehavior(Call);
142 ModRefInfo MRI = createModRefInfo(MRB);
143
144 // If the call doesn't access memory, we're done.
145 if (isNoModRef(MRI))
146 continue;
147
148 if (!AliasAnalysis::onlyAccessesArgPointees(MRB)) {
149 // The call could access any memory. If that includes writes, note it.
150 if (isModSet(MRI))
151 WritesMemory = true;
152 // If it reads, note it.
153 if (isRefSet(MRI))
154 ReadsMemory = true;
155 continue;
156 }
157
158 // Check whether all pointer arguments point to local memory, and
159 // ignore calls that only access local memory.
160 for (CallSite::arg_iterator CI = Call->arg_begin(), CE = Call->arg_end();
161 CI != CE; ++CI) {
162 Value *Arg = *CI;
163 if (!Arg->getType()->isPtrOrPtrVectorTy())
164 continue;
165
166 AAMDNodes AAInfo;
167 I->getAAMetadata(AAInfo);
168 MemoryLocation Loc(Arg, LocationSize::unknown(), AAInfo);
169
170 // Skip accesses to local or constant memory as they don't impact the
171 // externally visible mod/ref behavior.
172 if (AAR.pointsToConstantMemory(Loc, /*OrLocal=*/true))
173 continue;
174
175 if (isModSet(MRI))
176 // Writes non-local memory.
177 WritesMemory = true;
178 if (isRefSet(MRI))
179 // Ok, it reads non-local memory.
180 ReadsMemory = true;
181 }
182 continue;
183 } else if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
184 // Ignore non-volatile loads from local memory. (Atomic is okay here.)
185 if (!LI->isVolatile()) {
186 MemoryLocation Loc = MemoryLocation::get(LI);
187 if (AAR.pointsToConstantMemory(Loc, /*OrLocal=*/true))
188 continue;
189 }
190 } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
191 // Ignore non-volatile stores to local memory. (Atomic is okay here.)
192 if (!SI->isVolatile()) {
193 MemoryLocation Loc = MemoryLocation::get(SI);
194 if (AAR.pointsToConstantMemory(Loc, /*OrLocal=*/true))
195 continue;
196 }
197 } else if (VAArgInst *VI = dyn_cast<VAArgInst>(I)) {
198 // Ignore vaargs on local memory.
199 MemoryLocation Loc = MemoryLocation::get(VI);
200 if (AAR.pointsToConstantMemory(Loc, /*OrLocal=*/true))
201 continue;
202 }
203
204 // Any remaining instructions need to be taken seriously! Check if they
205 // read or write memory.
206 //
207 // Writes memory, remember that.
208 WritesMemory |= I->mayWriteToMemory();
209
210 // If this instruction may read memory, remember that.
211 ReadsMemory |= I->mayReadFromMemory();
212 }
213
214 if (WritesMemory) {
215 if (!ReadsMemory)
216 return MAK_WriteOnly;
217 else
218 return MAK_MayWrite;
219 }
220
221 return ReadsMemory ? MAK_ReadOnly : MAK_ReadNone;
222 }
223
computeFunctionBodyMemoryAccess(Function & F,AAResults & AAR)224 MemoryAccessKind llvm::computeFunctionBodyMemoryAccess(Function &F,
225 AAResults &AAR) {
226 return checkFunctionMemoryAccess(F, /*ThisBody=*/true, AAR, {});
227 }
228
229 /// Deduce readonly/readnone attributes for the SCC.
230 template <typename AARGetterT>
addReadAttrs(const SCCNodeSet & SCCNodes,AARGetterT && AARGetter)231 static bool addReadAttrs(const SCCNodeSet &SCCNodes, AARGetterT &&AARGetter) {
232 // Check if any of the functions in the SCC read or write memory. If they
233 // write memory then they can't be marked readnone or readonly.
234 bool ReadsMemory = false;
235 bool WritesMemory = false;
236 for (Function *F : SCCNodes) {
237 // Call the callable parameter to look up AA results for this function.
238 AAResults &AAR = AARGetter(*F);
239
240 // Non-exact function definitions may not be selected at link time, and an
241 // alternative version that writes to memory may be selected. See the
242 // comment on GlobalValue::isDefinitionExact for more details.
243 switch (checkFunctionMemoryAccess(*F, F->hasExactDefinition(),
244 AAR, SCCNodes)) {
245 case MAK_MayWrite:
246 return false;
247 case MAK_ReadOnly:
248 ReadsMemory = true;
249 break;
250 case MAK_WriteOnly:
251 WritesMemory = true;
252 break;
253 case MAK_ReadNone:
254 // Nothing to do!
255 break;
256 }
257 }
258
259 // Success! Functions in this SCC do not access memory, or only read memory.
260 // Give them the appropriate attribute.
261 bool MadeChange = false;
262
263 assert(!(ReadsMemory && WritesMemory) &&
264 "Function marked read-only and write-only");
265 for (Function *F : SCCNodes) {
266 if (F->doesNotAccessMemory())
267 // Already perfect!
268 continue;
269
270 if (F->onlyReadsMemory() && ReadsMemory)
271 // No change.
272 continue;
273
274 if (F->doesNotReadMemory() && WritesMemory)
275 continue;
276
277 MadeChange = true;
278
279 // Clear out any existing attributes.
280 F->removeFnAttr(Attribute::ReadOnly);
281 F->removeFnAttr(Attribute::ReadNone);
282 F->removeFnAttr(Attribute::WriteOnly);
283
284 if (!WritesMemory && !ReadsMemory) {
285 // Clear out any "access range attributes" if readnone was deduced.
286 F->removeFnAttr(Attribute::ArgMemOnly);
287 F->removeFnAttr(Attribute::InaccessibleMemOnly);
288 F->removeFnAttr(Attribute::InaccessibleMemOrArgMemOnly);
289 }
290
291 // Add in the new attribute.
292 if (WritesMemory && !ReadsMemory)
293 F->addFnAttr(Attribute::WriteOnly);
294 else
295 F->addFnAttr(ReadsMemory ? Attribute::ReadOnly : Attribute::ReadNone);
296
297 if (WritesMemory && !ReadsMemory)
298 ++NumWriteOnly;
299 else if (ReadsMemory)
300 ++NumReadOnly;
301 else
302 ++NumReadNone;
303 }
304
305 return MadeChange;
306 }
307
308 namespace {
309
310 /// For a given pointer Argument, this retains a list of Arguments of functions
311 /// in the same SCC that the pointer data flows into. We use this to build an
312 /// SCC of the arguments.
313 struct ArgumentGraphNode {
314 Argument *Definition;
315 SmallVector<ArgumentGraphNode *, 4> Uses;
316 };
317
318 class ArgumentGraph {
319 // We store pointers to ArgumentGraphNode objects, so it's important that
320 // that they not move around upon insert.
321 using ArgumentMapTy = std::map<Argument *, ArgumentGraphNode>;
322
323 ArgumentMapTy ArgumentMap;
324
325 // There is no root node for the argument graph, in fact:
326 // void f(int *x, int *y) { if (...) f(x, y); }
327 // is an example where the graph is disconnected. The SCCIterator requires a
328 // single entry point, so we maintain a fake ("synthetic") root node that
329 // uses every node. Because the graph is directed and nothing points into
330 // the root, it will not participate in any SCCs (except for its own).
331 ArgumentGraphNode SyntheticRoot;
332
333 public:
ArgumentGraph()334 ArgumentGraph() { SyntheticRoot.Definition = nullptr; }
335
336 using iterator = SmallVectorImpl<ArgumentGraphNode *>::iterator;
337
begin()338 iterator begin() { return SyntheticRoot.Uses.begin(); }
end()339 iterator end() { return SyntheticRoot.Uses.end(); }
getEntryNode()340 ArgumentGraphNode *getEntryNode() { return &SyntheticRoot; }
341
operator [](Argument * A)342 ArgumentGraphNode *operator[](Argument *A) {
343 ArgumentGraphNode &Node = ArgumentMap[A];
344 Node.Definition = A;
345 SyntheticRoot.Uses.push_back(&Node);
346 return &Node;
347 }
348 };
349
350 /// This tracker checks whether callees are in the SCC, and if so it does not
351 /// consider that a capture, instead adding it to the "Uses" list and
352 /// continuing with the analysis.
353 struct ArgumentUsesTracker : public CaptureTracker {
ArgumentUsesTracker__anon3955e1fe0211::ArgumentUsesTracker354 ArgumentUsesTracker(const SCCNodeSet &SCCNodes) : SCCNodes(SCCNodes) {}
355
tooManyUses__anon3955e1fe0211::ArgumentUsesTracker356 void tooManyUses() override { Captured = true; }
357
captured__anon3955e1fe0211::ArgumentUsesTracker358 bool captured(const Use *U) override {
359 CallSite CS(U->getUser());
360 if (!CS.getInstruction()) {
361 Captured = true;
362 return true;
363 }
364
365 Function *F = CS.getCalledFunction();
366 if (!F || !F->hasExactDefinition() || !SCCNodes.count(F)) {
367 Captured = true;
368 return true;
369 }
370
371 // Note: the callee and the two successor blocks *follow* the argument
372 // operands. This means there is no need to adjust UseIndex to account for
373 // these.
374
375 unsigned UseIndex =
376 std::distance(const_cast<const Use *>(CS.arg_begin()), U);
377
378 assert(UseIndex < CS.data_operands_size() &&
379 "Indirect function calls should have been filtered above!");
380
381 if (UseIndex >= CS.getNumArgOperands()) {
382 // Data operand, but not a argument operand -- must be a bundle operand
383 assert(CS.hasOperandBundles() && "Must be!");
384
385 // CaptureTracking told us that we're being captured by an operand bundle
386 // use. In this case it does not matter if the callee is within our SCC
387 // or not -- we've been captured in some unknown way, and we have to be
388 // conservative.
389 Captured = true;
390 return true;
391 }
392
393 if (UseIndex >= F->arg_size()) {
394 assert(F->isVarArg() && "More params than args in non-varargs call");
395 Captured = true;
396 return true;
397 }
398
399 Uses.push_back(&*std::next(F->arg_begin(), UseIndex));
400 return false;
401 }
402
403 // True only if certainly captured (used outside our SCC).
404 bool Captured = false;
405
406 // Uses within our SCC.
407 SmallVector<Argument *, 4> Uses;
408
409 const SCCNodeSet &SCCNodes;
410 };
411
412 } // end anonymous namespace
413
414 namespace llvm {
415
416 template <> struct GraphTraits<ArgumentGraphNode *> {
417 using NodeRef = ArgumentGraphNode *;
418 using ChildIteratorType = SmallVectorImpl<ArgumentGraphNode *>::iterator;
419
getEntryNodellvm::GraphTraits420 static NodeRef getEntryNode(NodeRef A) { return A; }
child_beginllvm::GraphTraits421 static ChildIteratorType child_begin(NodeRef N) { return N->Uses.begin(); }
child_endllvm::GraphTraits422 static ChildIteratorType child_end(NodeRef N) { return N->Uses.end(); }
423 };
424
425 template <>
426 struct GraphTraits<ArgumentGraph *> : public GraphTraits<ArgumentGraphNode *> {
getEntryNodellvm::GraphTraits427 static NodeRef getEntryNode(ArgumentGraph *AG) { return AG->getEntryNode(); }
428
nodes_beginllvm::GraphTraits429 static ChildIteratorType nodes_begin(ArgumentGraph *AG) {
430 return AG->begin();
431 }
432
nodes_endllvm::GraphTraits433 static ChildIteratorType nodes_end(ArgumentGraph *AG) { return AG->end(); }
434 };
435
436 } // end namespace llvm
437
438 /// Returns Attribute::None, Attribute::ReadOnly or Attribute::ReadNone.
439 static Attribute::AttrKind
determinePointerReadAttrs(Argument * A,const SmallPtrSet<Argument *,8> & SCCNodes)440 determinePointerReadAttrs(Argument *A,
441 const SmallPtrSet<Argument *, 8> &SCCNodes) {
442 SmallVector<Use *, 32> Worklist;
443 SmallPtrSet<Use *, 32> Visited;
444
445 // inalloca arguments are always clobbered by the call.
446 if (A->hasInAllocaAttr())
447 return Attribute::None;
448
449 bool IsRead = false;
450 // We don't need to track IsWritten. If A is written to, return immediately.
451
452 for (Use &U : A->uses()) {
453 Visited.insert(&U);
454 Worklist.push_back(&U);
455 }
456
457 while (!Worklist.empty()) {
458 Use *U = Worklist.pop_back_val();
459 Instruction *I = cast<Instruction>(U->getUser());
460
461 switch (I->getOpcode()) {
462 case Instruction::BitCast:
463 case Instruction::GetElementPtr:
464 case Instruction::PHI:
465 case Instruction::Select:
466 case Instruction::AddrSpaceCast:
467 // The original value is not read/written via this if the new value isn't.
468 for (Use &UU : I->uses())
469 if (Visited.insert(&UU).second)
470 Worklist.push_back(&UU);
471 break;
472
473 case Instruction::Call:
474 case Instruction::Invoke: {
475 bool Captures = true;
476
477 if (I->getType()->isVoidTy())
478 Captures = false;
479
480 auto AddUsersToWorklistIfCapturing = [&] {
481 if (Captures)
482 for (Use &UU : I->uses())
483 if (Visited.insert(&UU).second)
484 Worklist.push_back(&UU);
485 };
486
487 CallSite CS(I);
488 if (CS.doesNotAccessMemory()) {
489 AddUsersToWorklistIfCapturing();
490 continue;
491 }
492
493 Function *F = CS.getCalledFunction();
494 if (!F) {
495 if (CS.onlyReadsMemory()) {
496 IsRead = true;
497 AddUsersToWorklistIfCapturing();
498 continue;
499 }
500 return Attribute::None;
501 }
502
503 // Note: the callee and the two successor blocks *follow* the argument
504 // operands. This means there is no need to adjust UseIndex to account
505 // for these.
506
507 unsigned UseIndex = std::distance(CS.arg_begin(), U);
508
509 // U cannot be the callee operand use: since we're exploring the
510 // transitive uses of an Argument, having such a use be a callee would
511 // imply the CallSite is an indirect call or invoke; and we'd take the
512 // early exit above.
513 assert(UseIndex < CS.data_operands_size() &&
514 "Data operand use expected!");
515
516 bool IsOperandBundleUse = UseIndex >= CS.getNumArgOperands();
517
518 if (UseIndex >= F->arg_size() && !IsOperandBundleUse) {
519 assert(F->isVarArg() && "More params than args in non-varargs call");
520 return Attribute::None;
521 }
522
523 Captures &= !CS.doesNotCapture(UseIndex);
524
525 // Since the optimizer (by design) cannot see the data flow corresponding
526 // to a operand bundle use, these cannot participate in the optimistic SCC
527 // analysis. Instead, we model the operand bundle uses as arguments in
528 // call to a function external to the SCC.
529 if (IsOperandBundleUse ||
530 !SCCNodes.count(&*std::next(F->arg_begin(), UseIndex))) {
531
532 // The accessors used on CallSite here do the right thing for calls and
533 // invokes with operand bundles.
534
535 if (!CS.onlyReadsMemory() && !CS.onlyReadsMemory(UseIndex))
536 return Attribute::None;
537 if (!CS.doesNotAccessMemory(UseIndex))
538 IsRead = true;
539 }
540
541 AddUsersToWorklistIfCapturing();
542 break;
543 }
544
545 case Instruction::Load:
546 // A volatile load has side effects beyond what readonly can be relied
547 // upon.
548 if (cast<LoadInst>(I)->isVolatile())
549 return Attribute::None;
550
551 IsRead = true;
552 break;
553
554 case Instruction::ICmp:
555 case Instruction::Ret:
556 break;
557
558 default:
559 return Attribute::None;
560 }
561 }
562
563 return IsRead ? Attribute::ReadOnly : Attribute::ReadNone;
564 }
565
566 /// Deduce returned attributes for the SCC.
addArgumentReturnedAttrs(const SCCNodeSet & SCCNodes)567 static bool addArgumentReturnedAttrs(const SCCNodeSet &SCCNodes) {
568 bool Changed = false;
569
570 // Check each function in turn, determining if an argument is always returned.
571 for (Function *F : SCCNodes) {
572 // We can infer and propagate function attributes only when we know that the
573 // definition we'll get at link time is *exactly* the definition we see now.
574 // For more details, see GlobalValue::mayBeDerefined.
575 if (!F->hasExactDefinition())
576 continue;
577
578 if (F->getReturnType()->isVoidTy())
579 continue;
580
581 // There is nothing to do if an argument is already marked as 'returned'.
582 if (llvm::any_of(F->args(),
583 [](const Argument &Arg) { return Arg.hasReturnedAttr(); }))
584 continue;
585
586 auto FindRetArg = [&]() -> Value * {
587 Value *RetArg = nullptr;
588 for (BasicBlock &BB : *F)
589 if (auto *Ret = dyn_cast<ReturnInst>(BB.getTerminator())) {
590 // Note that stripPointerCasts should look through functions with
591 // returned arguments.
592 Value *RetVal = Ret->getReturnValue()->stripPointerCasts();
593 if (!isa<Argument>(RetVal) || RetVal->getType() != F->getReturnType())
594 return nullptr;
595
596 if (!RetArg)
597 RetArg = RetVal;
598 else if (RetArg != RetVal)
599 return nullptr;
600 }
601
602 return RetArg;
603 };
604
605 if (Value *RetArg = FindRetArg()) {
606 auto *A = cast<Argument>(RetArg);
607 A->addAttr(Attribute::Returned);
608 ++NumReturned;
609 Changed = true;
610 }
611 }
612
613 return Changed;
614 }
615
616 /// If a callsite has arguments that are also arguments to the parent function,
617 /// try to propagate attributes from the callsite's arguments to the parent's
618 /// arguments. This may be important because inlining can cause information loss
619 /// when attribute knowledge disappears with the inlined call.
addArgumentAttrsFromCallsites(Function & F)620 static bool addArgumentAttrsFromCallsites(Function &F) {
621 if (!EnableNonnullArgPropagation)
622 return false;
623
624 bool Changed = false;
625
626 // For an argument attribute to transfer from a callsite to the parent, the
627 // call must be guaranteed to execute every time the parent is called.
628 // Conservatively, just check for calls in the entry block that are guaranteed
629 // to execute.
630 // TODO: This could be enhanced by testing if the callsite post-dominates the
631 // entry block or by doing simple forward walks or backward walks to the
632 // callsite.
633 BasicBlock &Entry = F.getEntryBlock();
634 for (Instruction &I : Entry) {
635 if (auto CS = CallSite(&I)) {
636 if (auto *CalledFunc = CS.getCalledFunction()) {
637 for (auto &CSArg : CalledFunc->args()) {
638 if (!CSArg.hasNonNullAttr())
639 continue;
640
641 // If the non-null callsite argument operand is an argument to 'F'
642 // (the caller) and the call is guaranteed to execute, then the value
643 // must be non-null throughout 'F'.
644 auto *FArg = dyn_cast<Argument>(CS.getArgOperand(CSArg.getArgNo()));
645 if (FArg && !FArg->hasNonNullAttr()) {
646 FArg->addAttr(Attribute::NonNull);
647 Changed = true;
648 }
649 }
650 }
651 }
652 if (!isGuaranteedToTransferExecutionToSuccessor(&I))
653 break;
654 }
655
656 return Changed;
657 }
658
659 /// Deduce nocapture attributes for the SCC.
addArgumentAttrs(const SCCNodeSet & SCCNodes)660 static bool addArgumentAttrs(const SCCNodeSet &SCCNodes) {
661 bool Changed = false;
662
663 ArgumentGraph AG;
664
665 // Check each function in turn, determining which pointer arguments are not
666 // captured.
667 for (Function *F : SCCNodes) {
668 // We can infer and propagate function attributes only when we know that the
669 // definition we'll get at link time is *exactly* the definition we see now.
670 // For more details, see GlobalValue::mayBeDerefined.
671 if (!F->hasExactDefinition())
672 continue;
673
674 Changed |= addArgumentAttrsFromCallsites(*F);
675
676 // Functions that are readonly (or readnone) and nounwind and don't return
677 // a value can't capture arguments. Don't analyze them.
678 if (F->onlyReadsMemory() && F->doesNotThrow() &&
679 F->getReturnType()->isVoidTy()) {
680 for (Function::arg_iterator A = F->arg_begin(), E = F->arg_end(); A != E;
681 ++A) {
682 if (A->getType()->isPointerTy() && !A->hasNoCaptureAttr()) {
683 A->addAttr(Attribute::NoCapture);
684 ++NumNoCapture;
685 Changed = true;
686 }
687 }
688 continue;
689 }
690
691 for (Function::arg_iterator A = F->arg_begin(), E = F->arg_end(); A != E;
692 ++A) {
693 if (!A->getType()->isPointerTy())
694 continue;
695 bool HasNonLocalUses = false;
696 if (!A->hasNoCaptureAttr()) {
697 ArgumentUsesTracker Tracker(SCCNodes);
698 PointerMayBeCaptured(&*A, &Tracker);
699 if (!Tracker.Captured) {
700 if (Tracker.Uses.empty()) {
701 // If it's trivially not captured, mark it nocapture now.
702 A->addAttr(Attribute::NoCapture);
703 ++NumNoCapture;
704 Changed = true;
705 } else {
706 // If it's not trivially captured and not trivially not captured,
707 // then it must be calling into another function in our SCC. Save
708 // its particulars for Argument-SCC analysis later.
709 ArgumentGraphNode *Node = AG[&*A];
710 for (Argument *Use : Tracker.Uses) {
711 Node->Uses.push_back(AG[Use]);
712 if (Use != &*A)
713 HasNonLocalUses = true;
714 }
715 }
716 }
717 // Otherwise, it's captured. Don't bother doing SCC analysis on it.
718 }
719 if (!HasNonLocalUses && !A->onlyReadsMemory()) {
720 // Can we determine that it's readonly/readnone without doing an SCC?
721 // Note that we don't allow any calls at all here, or else our result
722 // will be dependent on the iteration order through the functions in the
723 // SCC.
724 SmallPtrSet<Argument *, 8> Self;
725 Self.insert(&*A);
726 Attribute::AttrKind R = determinePointerReadAttrs(&*A, Self);
727 if (R != Attribute::None) {
728 A->addAttr(R);
729 Changed = true;
730 R == Attribute::ReadOnly ? ++NumReadOnlyArg : ++NumReadNoneArg;
731 }
732 }
733 }
734 }
735
736 // The graph we've collected is partial because we stopped scanning for
737 // argument uses once we solved the argument trivially. These partial nodes
738 // show up as ArgumentGraphNode objects with an empty Uses list, and for
739 // these nodes the final decision about whether they capture has already been
740 // made. If the definition doesn't have a 'nocapture' attribute by now, it
741 // captures.
742
743 for (scc_iterator<ArgumentGraph *> I = scc_begin(&AG); !I.isAtEnd(); ++I) {
744 const std::vector<ArgumentGraphNode *> &ArgumentSCC = *I;
745 if (ArgumentSCC.size() == 1) {
746 if (!ArgumentSCC[0]->Definition)
747 continue; // synthetic root node
748
749 // eg. "void f(int* x) { if (...) f(x); }"
750 if (ArgumentSCC[0]->Uses.size() == 1 &&
751 ArgumentSCC[0]->Uses[0] == ArgumentSCC[0]) {
752 Argument *A = ArgumentSCC[0]->Definition;
753 A->addAttr(Attribute::NoCapture);
754 ++NumNoCapture;
755 Changed = true;
756 }
757 continue;
758 }
759
760 bool SCCCaptured = false;
761 for (auto I = ArgumentSCC.begin(), E = ArgumentSCC.end();
762 I != E && !SCCCaptured; ++I) {
763 ArgumentGraphNode *Node = *I;
764 if (Node->Uses.empty()) {
765 if (!Node->Definition->hasNoCaptureAttr())
766 SCCCaptured = true;
767 }
768 }
769 if (SCCCaptured)
770 continue;
771
772 SmallPtrSet<Argument *, 8> ArgumentSCCNodes;
773 // Fill ArgumentSCCNodes with the elements of the ArgumentSCC. Used for
774 // quickly looking up whether a given Argument is in this ArgumentSCC.
775 for (ArgumentGraphNode *I : ArgumentSCC) {
776 ArgumentSCCNodes.insert(I->Definition);
777 }
778
779 for (auto I = ArgumentSCC.begin(), E = ArgumentSCC.end();
780 I != E && !SCCCaptured; ++I) {
781 ArgumentGraphNode *N = *I;
782 for (ArgumentGraphNode *Use : N->Uses) {
783 Argument *A = Use->Definition;
784 if (A->hasNoCaptureAttr() || ArgumentSCCNodes.count(A))
785 continue;
786 SCCCaptured = true;
787 break;
788 }
789 }
790 if (SCCCaptured)
791 continue;
792
793 for (unsigned i = 0, e = ArgumentSCC.size(); i != e; ++i) {
794 Argument *A = ArgumentSCC[i]->Definition;
795 A->addAttr(Attribute::NoCapture);
796 ++NumNoCapture;
797 Changed = true;
798 }
799
800 // We also want to compute readonly/readnone. With a small number of false
801 // negatives, we can assume that any pointer which is captured isn't going
802 // to be provably readonly or readnone, since by definition we can't
803 // analyze all uses of a captured pointer.
804 //
805 // The false negatives happen when the pointer is captured by a function
806 // that promises readonly/readnone behaviour on the pointer, then the
807 // pointer's lifetime ends before anything that writes to arbitrary memory.
808 // Also, a readonly/readnone pointer may be returned, but returning a
809 // pointer is capturing it.
810
811 Attribute::AttrKind ReadAttr = Attribute::ReadNone;
812 for (unsigned i = 0, e = ArgumentSCC.size(); i != e; ++i) {
813 Argument *A = ArgumentSCC[i]->Definition;
814 Attribute::AttrKind K = determinePointerReadAttrs(A, ArgumentSCCNodes);
815 if (K == Attribute::ReadNone)
816 continue;
817 if (K == Attribute::ReadOnly) {
818 ReadAttr = Attribute::ReadOnly;
819 continue;
820 }
821 ReadAttr = K;
822 break;
823 }
824
825 if (ReadAttr != Attribute::None) {
826 for (unsigned i = 0, e = ArgumentSCC.size(); i != e; ++i) {
827 Argument *A = ArgumentSCC[i]->Definition;
828 // Clear out existing readonly/readnone attributes
829 A->removeAttr(Attribute::ReadOnly);
830 A->removeAttr(Attribute::ReadNone);
831 A->addAttr(ReadAttr);
832 ReadAttr == Attribute::ReadOnly ? ++NumReadOnlyArg : ++NumReadNoneArg;
833 Changed = true;
834 }
835 }
836 }
837
838 return Changed;
839 }
840
841 /// Tests whether a function is "malloc-like".
842 ///
843 /// A function is "malloc-like" if it returns either null or a pointer that
844 /// doesn't alias any other pointer visible to the caller.
isFunctionMallocLike(Function * F,const SCCNodeSet & SCCNodes)845 static bool isFunctionMallocLike(Function *F, const SCCNodeSet &SCCNodes) {
846 SmallSetVector<Value *, 8> FlowsToReturn;
847 for (BasicBlock &BB : *F)
848 if (ReturnInst *Ret = dyn_cast<ReturnInst>(BB.getTerminator()))
849 FlowsToReturn.insert(Ret->getReturnValue());
850
851 for (unsigned i = 0; i != FlowsToReturn.size(); ++i) {
852 Value *RetVal = FlowsToReturn[i];
853
854 if (Constant *C = dyn_cast<Constant>(RetVal)) {
855 if (!C->isNullValue() && !isa<UndefValue>(C))
856 return false;
857
858 continue;
859 }
860
861 if (isa<Argument>(RetVal))
862 return false;
863
864 if (Instruction *RVI = dyn_cast<Instruction>(RetVal))
865 switch (RVI->getOpcode()) {
866 // Extend the analysis by looking upwards.
867 case Instruction::BitCast:
868 case Instruction::GetElementPtr:
869 case Instruction::AddrSpaceCast:
870 FlowsToReturn.insert(RVI->getOperand(0));
871 continue;
872 case Instruction::Select: {
873 SelectInst *SI = cast<SelectInst>(RVI);
874 FlowsToReturn.insert(SI->getTrueValue());
875 FlowsToReturn.insert(SI->getFalseValue());
876 continue;
877 }
878 case Instruction::PHI: {
879 PHINode *PN = cast<PHINode>(RVI);
880 for (Value *IncValue : PN->incoming_values())
881 FlowsToReturn.insert(IncValue);
882 continue;
883 }
884
885 // Check whether the pointer came from an allocation.
886 case Instruction::Alloca:
887 break;
888 case Instruction::Call:
889 case Instruction::Invoke: {
890 CallSite CS(RVI);
891 if (CS.hasRetAttr(Attribute::NoAlias))
892 break;
893 if (CS.getCalledFunction() && SCCNodes.count(CS.getCalledFunction()))
894 break;
895 LLVM_FALLTHROUGH;
896 }
897 default:
898 return false; // Did not come from an allocation.
899 }
900
901 if (PointerMayBeCaptured(RetVal, false, /*StoreCaptures=*/false))
902 return false;
903 }
904
905 return true;
906 }
907
908 /// Deduce noalias attributes for the SCC.
addNoAliasAttrs(const SCCNodeSet & SCCNodes)909 static bool addNoAliasAttrs(const SCCNodeSet &SCCNodes) {
910 // Check each function in turn, determining which functions return noalias
911 // pointers.
912 for (Function *F : SCCNodes) {
913 // Already noalias.
914 if (F->returnDoesNotAlias())
915 continue;
916
917 // We can infer and propagate function attributes only when we know that the
918 // definition we'll get at link time is *exactly* the definition we see now.
919 // For more details, see GlobalValue::mayBeDerefined.
920 if (!F->hasExactDefinition())
921 return false;
922
923 // We annotate noalias return values, which are only applicable to
924 // pointer types.
925 if (!F->getReturnType()->isPointerTy())
926 continue;
927
928 if (!isFunctionMallocLike(F, SCCNodes))
929 return false;
930 }
931
932 bool MadeChange = false;
933 for (Function *F : SCCNodes) {
934 if (F->returnDoesNotAlias() ||
935 !F->getReturnType()->isPointerTy())
936 continue;
937
938 F->setReturnDoesNotAlias();
939 ++NumNoAlias;
940 MadeChange = true;
941 }
942
943 return MadeChange;
944 }
945
946 /// Tests whether this function is known to not return null.
947 ///
948 /// Requires that the function returns a pointer.
949 ///
950 /// Returns true if it believes the function will not return a null, and sets
951 /// \p Speculative based on whether the returned conclusion is a speculative
952 /// conclusion due to SCC calls.
isReturnNonNull(Function * F,const SCCNodeSet & SCCNodes,bool & Speculative)953 static bool isReturnNonNull(Function *F, const SCCNodeSet &SCCNodes,
954 bool &Speculative) {
955 assert(F->getReturnType()->isPointerTy() &&
956 "nonnull only meaningful on pointer types");
957 Speculative = false;
958
959 SmallSetVector<Value *, 8> FlowsToReturn;
960 for (BasicBlock &BB : *F)
961 if (auto *Ret = dyn_cast<ReturnInst>(BB.getTerminator()))
962 FlowsToReturn.insert(Ret->getReturnValue());
963
964 auto &DL = F->getParent()->getDataLayout();
965
966 for (unsigned i = 0; i != FlowsToReturn.size(); ++i) {
967 Value *RetVal = FlowsToReturn[i];
968
969 // If this value is locally known to be non-null, we're good
970 if (isKnownNonZero(RetVal, DL))
971 continue;
972
973 // Otherwise, we need to look upwards since we can't make any local
974 // conclusions.
975 Instruction *RVI = dyn_cast<Instruction>(RetVal);
976 if (!RVI)
977 return false;
978 switch (RVI->getOpcode()) {
979 // Extend the analysis by looking upwards.
980 case Instruction::BitCast:
981 case Instruction::GetElementPtr:
982 case Instruction::AddrSpaceCast:
983 FlowsToReturn.insert(RVI->getOperand(0));
984 continue;
985 case Instruction::Select: {
986 SelectInst *SI = cast<SelectInst>(RVI);
987 FlowsToReturn.insert(SI->getTrueValue());
988 FlowsToReturn.insert(SI->getFalseValue());
989 continue;
990 }
991 case Instruction::PHI: {
992 PHINode *PN = cast<PHINode>(RVI);
993 for (int i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
994 FlowsToReturn.insert(PN->getIncomingValue(i));
995 continue;
996 }
997 case Instruction::Call:
998 case Instruction::Invoke: {
999 CallSite CS(RVI);
1000 Function *Callee = CS.getCalledFunction();
1001 // A call to a node within the SCC is assumed to return null until
1002 // proven otherwise
1003 if (Callee && SCCNodes.count(Callee)) {
1004 Speculative = true;
1005 continue;
1006 }
1007 return false;
1008 }
1009 default:
1010 return false; // Unknown source, may be null
1011 };
1012 llvm_unreachable("should have either continued or returned");
1013 }
1014
1015 return true;
1016 }
1017
1018 /// Deduce nonnull attributes for the SCC.
addNonNullAttrs(const SCCNodeSet & SCCNodes)1019 static bool addNonNullAttrs(const SCCNodeSet &SCCNodes) {
1020 // Speculative that all functions in the SCC return only nonnull
1021 // pointers. We may refute this as we analyze functions.
1022 bool SCCReturnsNonNull = true;
1023
1024 bool MadeChange = false;
1025
1026 // Check each function in turn, determining which functions return nonnull
1027 // pointers.
1028 for (Function *F : SCCNodes) {
1029 // Already nonnull.
1030 if (F->getAttributes().hasAttribute(AttributeList::ReturnIndex,
1031 Attribute::NonNull))
1032 continue;
1033
1034 // We can infer and propagate function attributes only when we know that the
1035 // definition we'll get at link time is *exactly* the definition we see now.
1036 // For more details, see GlobalValue::mayBeDerefined.
1037 if (!F->hasExactDefinition())
1038 return false;
1039
1040 // We annotate nonnull return values, which are only applicable to
1041 // pointer types.
1042 if (!F->getReturnType()->isPointerTy())
1043 continue;
1044
1045 bool Speculative = false;
1046 if (isReturnNonNull(F, SCCNodes, Speculative)) {
1047 if (!Speculative) {
1048 // Mark the function eagerly since we may discover a function
1049 // which prevents us from speculating about the entire SCC
1050 LLVM_DEBUG(dbgs() << "Eagerly marking " << F->getName()
1051 << " as nonnull\n");
1052 F->addAttribute(AttributeList::ReturnIndex, Attribute::NonNull);
1053 ++NumNonNullReturn;
1054 MadeChange = true;
1055 }
1056 continue;
1057 }
1058 // At least one function returns something which could be null, can't
1059 // speculate any more.
1060 SCCReturnsNonNull = false;
1061 }
1062
1063 if (SCCReturnsNonNull) {
1064 for (Function *F : SCCNodes) {
1065 if (F->getAttributes().hasAttribute(AttributeList::ReturnIndex,
1066 Attribute::NonNull) ||
1067 !F->getReturnType()->isPointerTy())
1068 continue;
1069
1070 LLVM_DEBUG(dbgs() << "SCC marking " << F->getName() << " as nonnull\n");
1071 F->addAttribute(AttributeList::ReturnIndex, Attribute::NonNull);
1072 ++NumNonNullReturn;
1073 MadeChange = true;
1074 }
1075 }
1076
1077 return MadeChange;
1078 }
1079
1080 namespace {
1081
1082 /// Collects a set of attribute inference requests and performs them all in one
1083 /// go on a single SCC Node. Inference involves scanning function bodies
1084 /// looking for instructions that violate attribute assumptions.
1085 /// As soon as all the bodies are fine we are free to set the attribute.
1086 /// Customization of inference for individual attributes is performed by
1087 /// providing a handful of predicates for each attribute.
1088 class AttributeInferer {
1089 public:
1090 /// Describes a request for inference of a single attribute.
1091 struct InferenceDescriptor {
1092
1093 /// Returns true if this function does not have to be handled.
1094 /// General intent for this predicate is to provide an optimization
1095 /// for functions that do not need this attribute inference at all
1096 /// (say, for functions that already have the attribute).
1097 std::function<bool(const Function &)> SkipFunction;
1098
1099 /// Returns true if this instruction violates attribute assumptions.
1100 std::function<bool(Instruction &)> InstrBreaksAttribute;
1101
1102 /// Sets the inferred attribute for this function.
1103 std::function<void(Function &)> SetAttribute;
1104
1105 /// Attribute we derive.
1106 Attribute::AttrKind AKind;
1107
1108 /// If true, only "exact" definitions can be used to infer this attribute.
1109 /// See GlobalValue::isDefinitionExact.
1110 bool RequiresExactDefinition;
1111
InferenceDescriptor__anon3955e1fe0611::AttributeInferer::InferenceDescriptor1112 InferenceDescriptor(Attribute::AttrKind AK,
1113 std::function<bool(const Function &)> SkipFunc,
1114 std::function<bool(Instruction &)> InstrScan,
1115 std::function<void(Function &)> SetAttr,
1116 bool ReqExactDef)
1117 : SkipFunction(SkipFunc), InstrBreaksAttribute(InstrScan),
1118 SetAttribute(SetAttr), AKind(AK),
1119 RequiresExactDefinition(ReqExactDef) {}
1120 };
1121
1122 private:
1123 SmallVector<InferenceDescriptor, 4> InferenceDescriptors;
1124
1125 public:
registerAttrInference(InferenceDescriptor AttrInference)1126 void registerAttrInference(InferenceDescriptor AttrInference) {
1127 InferenceDescriptors.push_back(AttrInference);
1128 }
1129
1130 bool run(const SCCNodeSet &SCCNodes);
1131 };
1132
1133 /// Perform all the requested attribute inference actions according to the
1134 /// attribute predicates stored before.
run(const SCCNodeSet & SCCNodes)1135 bool AttributeInferer::run(const SCCNodeSet &SCCNodes) {
1136 SmallVector<InferenceDescriptor, 4> InferInSCC = InferenceDescriptors;
1137 // Go through all the functions in SCC and check corresponding attribute
1138 // assumptions for each of them. Attributes that are invalid for this SCC
1139 // will be removed from InferInSCC.
1140 for (Function *F : SCCNodes) {
1141
1142 // No attributes whose assumptions are still valid - done.
1143 if (InferInSCC.empty())
1144 return false;
1145
1146 // Check if our attributes ever need scanning/can be scanned.
1147 llvm::erase_if(InferInSCC, [F](const InferenceDescriptor &ID) {
1148 if (ID.SkipFunction(*F))
1149 return false;
1150
1151 // Remove from further inference (invalidate) when visiting a function
1152 // that has no instructions to scan/has an unsuitable definition.
1153 return F->isDeclaration() ||
1154 (ID.RequiresExactDefinition && !F->hasExactDefinition());
1155 });
1156
1157 // For each attribute still in InferInSCC that doesn't explicitly skip F,
1158 // set up the F instructions scan to verify assumptions of the attribute.
1159 SmallVector<InferenceDescriptor, 4> InferInThisFunc;
1160 llvm::copy_if(
1161 InferInSCC, std::back_inserter(InferInThisFunc),
1162 [F](const InferenceDescriptor &ID) { return !ID.SkipFunction(*F); });
1163
1164 if (InferInThisFunc.empty())
1165 continue;
1166
1167 // Start instruction scan.
1168 for (Instruction &I : instructions(*F)) {
1169 llvm::erase_if(InferInThisFunc, [&](const InferenceDescriptor &ID) {
1170 if (!ID.InstrBreaksAttribute(I))
1171 return false;
1172 // Remove attribute from further inference on any other functions
1173 // because attribute assumptions have just been violated.
1174 llvm::erase_if(InferInSCC, [&ID](const InferenceDescriptor &D) {
1175 return D.AKind == ID.AKind;
1176 });
1177 // Remove attribute from the rest of current instruction scan.
1178 return true;
1179 });
1180
1181 if (InferInThisFunc.empty())
1182 break;
1183 }
1184 }
1185
1186 if (InferInSCC.empty())
1187 return false;
1188
1189 bool Changed = false;
1190 for (Function *F : SCCNodes)
1191 // At this point InferInSCC contains only functions that were either:
1192 // - explicitly skipped from scan/inference, or
1193 // - verified to have no instructions that break attribute assumptions.
1194 // Hence we just go and force the attribute for all non-skipped functions.
1195 for (auto &ID : InferInSCC) {
1196 if (ID.SkipFunction(*F))
1197 continue;
1198 Changed = true;
1199 ID.SetAttribute(*F);
1200 }
1201 return Changed;
1202 }
1203
1204 } // end anonymous namespace
1205
1206 /// Helper for non-Convergent inference predicate InstrBreaksAttribute.
InstrBreaksNonConvergent(Instruction & I,const SCCNodeSet & SCCNodes)1207 static bool InstrBreaksNonConvergent(Instruction &I,
1208 const SCCNodeSet &SCCNodes) {
1209 const CallSite CS(&I);
1210 // Breaks non-convergent assumption if CS is a convergent call to a function
1211 // not in the SCC.
1212 return CS && CS.isConvergent() && SCCNodes.count(CS.getCalledFunction()) == 0;
1213 }
1214
1215 /// Helper for NoUnwind inference predicate InstrBreaksAttribute.
InstrBreaksNonThrowing(Instruction & I,const SCCNodeSet & SCCNodes)1216 static bool InstrBreaksNonThrowing(Instruction &I, const SCCNodeSet &SCCNodes) {
1217 if (!I.mayThrow())
1218 return false;
1219 if (const auto *CI = dyn_cast<CallInst>(&I)) {
1220 if (Function *Callee = CI->getCalledFunction()) {
1221 // I is a may-throw call to a function inside our SCC. This doesn't
1222 // invalidate our current working assumption that the SCC is no-throw; we
1223 // just have to scan that other function.
1224 if (SCCNodes.count(Callee) > 0)
1225 return false;
1226 }
1227 }
1228 return true;
1229 }
1230
1231 /// Infer attributes from all functions in the SCC by scanning every
1232 /// instruction for compliance to the attribute assumptions. Currently it
1233 /// does:
1234 /// - removal of Convergent attribute
1235 /// - addition of NoUnwind attribute
1236 ///
1237 /// Returns true if any changes to function attributes were made.
inferAttrsFromFunctionBodies(const SCCNodeSet & SCCNodes)1238 static bool inferAttrsFromFunctionBodies(const SCCNodeSet &SCCNodes) {
1239
1240 AttributeInferer AI;
1241
1242 // Request to remove the convergent attribute from all functions in the SCC
1243 // if every callsite within the SCC is not convergent (except for calls
1244 // to functions within the SCC).
1245 // Note: Removal of the attr from the callsites will happen in
1246 // InstCombineCalls separately.
1247 AI.registerAttrInference(AttributeInferer::InferenceDescriptor{
1248 Attribute::Convergent,
1249 // Skip non-convergent functions.
1250 [](const Function &F) { return !F.isConvergent(); },
1251 // Instructions that break non-convergent assumption.
1252 [SCCNodes](Instruction &I) {
1253 return InstrBreaksNonConvergent(I, SCCNodes);
1254 },
1255 [](Function &F) {
1256 LLVM_DEBUG(dbgs() << "Removing convergent attr from fn " << F.getName()
1257 << "\n");
1258 F.setNotConvergent();
1259 },
1260 /* RequiresExactDefinition= */ false});
1261
1262 if (!DisableNoUnwindInference)
1263 // Request to infer nounwind attribute for all the functions in the SCC if
1264 // every callsite within the SCC is not throwing (except for calls to
1265 // functions within the SCC). Note that nounwind attribute suffers from
1266 // derefinement - results may change depending on how functions are
1267 // optimized. Thus it can be inferred only from exact definitions.
1268 AI.registerAttrInference(AttributeInferer::InferenceDescriptor{
1269 Attribute::NoUnwind,
1270 // Skip non-throwing functions.
1271 [](const Function &F) { return F.doesNotThrow(); },
1272 // Instructions that break non-throwing assumption.
1273 [SCCNodes](Instruction &I) {
1274 return InstrBreaksNonThrowing(I, SCCNodes);
1275 },
1276 [](Function &F) {
1277 LLVM_DEBUG(dbgs()
1278 << "Adding nounwind attr to fn " << F.getName() << "\n");
1279 F.setDoesNotThrow();
1280 ++NumNoUnwind;
1281 },
1282 /* RequiresExactDefinition= */ true});
1283
1284 // Perform all the requested attribute inference actions.
1285 return AI.run(SCCNodes);
1286 }
1287
setDoesNotRecurse(Function & F)1288 static bool setDoesNotRecurse(Function &F) {
1289 if (F.doesNotRecurse())
1290 return false;
1291 F.setDoesNotRecurse();
1292 ++NumNoRecurse;
1293 return true;
1294 }
1295
addNoRecurseAttrs(const SCCNodeSet & SCCNodes)1296 static bool addNoRecurseAttrs(const SCCNodeSet &SCCNodes) {
1297 // Try and identify functions that do not recurse.
1298
1299 // If the SCC contains multiple nodes we know for sure there is recursion.
1300 if (SCCNodes.size() != 1)
1301 return false;
1302
1303 Function *F = *SCCNodes.begin();
1304 if (!F || F->isDeclaration() || F->doesNotRecurse())
1305 return false;
1306
1307 // If all of the calls in F are identifiable and are to norecurse functions, F
1308 // is norecurse. This check also detects self-recursion as F is not currently
1309 // marked norecurse, so any called from F to F will not be marked norecurse.
1310 for (auto &BB : *F)
1311 for (auto &I : BB.instructionsWithoutDebug())
1312 if (auto CS = CallSite(&I)) {
1313 Function *Callee = CS.getCalledFunction();
1314 if (!Callee || Callee == F || !Callee->doesNotRecurse())
1315 // Function calls a potentially recursive function.
1316 return false;
1317 }
1318
1319 // Every call was to a non-recursive function other than this function, and
1320 // we have no indirect recursion as the SCC size is one. This function cannot
1321 // recurse.
1322 return setDoesNotRecurse(*F);
1323 }
1324
1325 template <typename AARGetterT>
deriveAttrsInPostOrder(SCCNodeSet & SCCNodes,AARGetterT && AARGetter,bool HasUnknownCall)1326 static bool deriveAttrsInPostOrder(SCCNodeSet &SCCNodes, AARGetterT &&AARGetter,
1327 bool HasUnknownCall) {
1328 bool Changed = false;
1329
1330 // Bail if the SCC only contains optnone functions.
1331 if (SCCNodes.empty())
1332 return Changed;
1333
1334 Changed |= addArgumentReturnedAttrs(SCCNodes);
1335 Changed |= addReadAttrs(SCCNodes, AARGetter);
1336 Changed |= addArgumentAttrs(SCCNodes);
1337
1338 // If we have no external nodes participating in the SCC, we can deduce some
1339 // more precise attributes as well.
1340 if (!HasUnknownCall) {
1341 Changed |= addNoAliasAttrs(SCCNodes);
1342 Changed |= addNonNullAttrs(SCCNodes);
1343 Changed |= inferAttrsFromFunctionBodies(SCCNodes);
1344 Changed |= addNoRecurseAttrs(SCCNodes);
1345 }
1346
1347 return Changed;
1348 }
1349
run(LazyCallGraph::SCC & C,CGSCCAnalysisManager & AM,LazyCallGraph & CG,CGSCCUpdateResult &)1350 PreservedAnalyses PostOrderFunctionAttrsPass::run(LazyCallGraph::SCC &C,
1351 CGSCCAnalysisManager &AM,
1352 LazyCallGraph &CG,
1353 CGSCCUpdateResult &) {
1354 FunctionAnalysisManager &FAM =
1355 AM.getResult<FunctionAnalysisManagerCGSCCProxy>(C, CG).getManager();
1356
1357 // We pass a lambda into functions to wire them up to the analysis manager
1358 // for getting function analyses.
1359 auto AARGetter = [&](Function &F) -> AAResults & {
1360 return FAM.getResult<AAManager>(F);
1361 };
1362
1363 // Fill SCCNodes with the elements of the SCC. Also track whether there are
1364 // any external or opt-none nodes that will prevent us from optimizing any
1365 // part of the SCC.
1366 SCCNodeSet SCCNodes;
1367 bool HasUnknownCall = false;
1368 for (LazyCallGraph::Node &N : C) {
1369 Function &F = N.getFunction();
1370 if (F.hasFnAttribute(Attribute::OptimizeNone) ||
1371 F.hasFnAttribute(Attribute::Naked)) {
1372 // Treat any function we're trying not to optimize as if it were an
1373 // indirect call and omit it from the node set used below.
1374 HasUnknownCall = true;
1375 continue;
1376 }
1377 // Track whether any functions in this SCC have an unknown call edge.
1378 // Note: if this is ever a performance hit, we can common it with
1379 // subsequent routines which also do scans over the instructions of the
1380 // function.
1381 if (!HasUnknownCall)
1382 for (Instruction &I : instructions(F))
1383 if (auto CS = CallSite(&I))
1384 if (!CS.getCalledFunction()) {
1385 HasUnknownCall = true;
1386 break;
1387 }
1388
1389 SCCNodes.insert(&F);
1390 }
1391
1392 if (deriveAttrsInPostOrder(SCCNodes, AARGetter, HasUnknownCall))
1393 return PreservedAnalyses::none();
1394
1395 return PreservedAnalyses::all();
1396 }
1397
1398 namespace {
1399
1400 struct PostOrderFunctionAttrsLegacyPass : public CallGraphSCCPass {
1401 // Pass identification, replacement for typeid
1402 static char ID;
1403
PostOrderFunctionAttrsLegacyPass__anon3955e1fe1211::PostOrderFunctionAttrsLegacyPass1404 PostOrderFunctionAttrsLegacyPass() : CallGraphSCCPass(ID) {
1405 initializePostOrderFunctionAttrsLegacyPassPass(
1406 *PassRegistry::getPassRegistry());
1407 }
1408
1409 bool runOnSCC(CallGraphSCC &SCC) override;
1410
getAnalysisUsage__anon3955e1fe1211::PostOrderFunctionAttrsLegacyPass1411 void getAnalysisUsage(AnalysisUsage &AU) const override {
1412 AU.setPreservesCFG();
1413 AU.addRequired<AssumptionCacheTracker>();
1414 getAAResultsAnalysisUsage(AU);
1415 CallGraphSCCPass::getAnalysisUsage(AU);
1416 }
1417 };
1418
1419 } // end anonymous namespace
1420
1421 char PostOrderFunctionAttrsLegacyPass::ID = 0;
1422 INITIALIZE_PASS_BEGIN(PostOrderFunctionAttrsLegacyPass, "functionattrs",
1423 "Deduce function attributes", false, false)
INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)1424 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
1425 INITIALIZE_PASS_DEPENDENCY(CallGraphWrapperPass)
1426 INITIALIZE_PASS_END(PostOrderFunctionAttrsLegacyPass, "functionattrs",
1427 "Deduce function attributes", false, false)
1428
1429 Pass *llvm::createPostOrderFunctionAttrsLegacyPass() {
1430 return new PostOrderFunctionAttrsLegacyPass();
1431 }
1432
1433 template <typename AARGetterT>
runImpl(CallGraphSCC & SCC,AARGetterT AARGetter)1434 static bool runImpl(CallGraphSCC &SCC, AARGetterT AARGetter) {
1435
1436 // Fill SCCNodes with the elements of the SCC. Used for quickly looking up
1437 // whether a given CallGraphNode is in this SCC. Also track whether there are
1438 // any external or opt-none nodes that will prevent us from optimizing any
1439 // part of the SCC.
1440 SCCNodeSet SCCNodes;
1441 bool ExternalNode = false;
1442 for (CallGraphNode *I : SCC) {
1443 Function *F = I->getFunction();
1444 if (!F || F->hasFnAttribute(Attribute::OptimizeNone) ||
1445 F->hasFnAttribute(Attribute::Naked)) {
1446 // External node or function we're trying not to optimize - we both avoid
1447 // transform them and avoid leveraging information they provide.
1448 ExternalNode = true;
1449 continue;
1450 }
1451
1452 SCCNodes.insert(F);
1453 }
1454
1455 return deriveAttrsInPostOrder(SCCNodes, AARGetter, ExternalNode);
1456 }
1457
runOnSCC(CallGraphSCC & SCC)1458 bool PostOrderFunctionAttrsLegacyPass::runOnSCC(CallGraphSCC &SCC) {
1459 if (skipSCC(SCC))
1460 return false;
1461 return runImpl(SCC, LegacyAARGetter(*this));
1462 }
1463
1464 namespace {
1465
1466 struct ReversePostOrderFunctionAttrsLegacyPass : public ModulePass {
1467 // Pass identification, replacement for typeid
1468 static char ID;
1469
ReversePostOrderFunctionAttrsLegacyPass__anon3955e1fe1311::ReversePostOrderFunctionAttrsLegacyPass1470 ReversePostOrderFunctionAttrsLegacyPass() : ModulePass(ID) {
1471 initializeReversePostOrderFunctionAttrsLegacyPassPass(
1472 *PassRegistry::getPassRegistry());
1473 }
1474
1475 bool runOnModule(Module &M) override;
1476
getAnalysisUsage__anon3955e1fe1311::ReversePostOrderFunctionAttrsLegacyPass1477 void getAnalysisUsage(AnalysisUsage &AU) const override {
1478 AU.setPreservesCFG();
1479 AU.addRequired<CallGraphWrapperPass>();
1480 AU.addPreserved<CallGraphWrapperPass>();
1481 }
1482 };
1483
1484 } // end anonymous namespace
1485
1486 char ReversePostOrderFunctionAttrsLegacyPass::ID = 0;
1487
1488 INITIALIZE_PASS_BEGIN(ReversePostOrderFunctionAttrsLegacyPass, "rpo-functionattrs",
1489 "Deduce function attributes in RPO", false, false)
INITIALIZE_PASS_DEPENDENCY(CallGraphWrapperPass)1490 INITIALIZE_PASS_DEPENDENCY(CallGraphWrapperPass)
1491 INITIALIZE_PASS_END(ReversePostOrderFunctionAttrsLegacyPass, "rpo-functionattrs",
1492 "Deduce function attributes in RPO", false, false)
1493
1494 Pass *llvm::createReversePostOrderFunctionAttrsPass() {
1495 return new ReversePostOrderFunctionAttrsLegacyPass();
1496 }
1497
addNoRecurseAttrsTopDown(Function & F)1498 static bool addNoRecurseAttrsTopDown(Function &F) {
1499 // We check the preconditions for the function prior to calling this to avoid
1500 // the cost of building up a reversible post-order list. We assert them here
1501 // to make sure none of the invariants this relies on were violated.
1502 assert(!F.isDeclaration() && "Cannot deduce norecurse without a definition!");
1503 assert(!F.doesNotRecurse() &&
1504 "This function has already been deduced as norecurs!");
1505 assert(F.hasInternalLinkage() &&
1506 "Can only do top-down deduction for internal linkage functions!");
1507
1508 // If F is internal and all of its uses are calls from a non-recursive
1509 // functions, then none of its calls could in fact recurse without going
1510 // through a function marked norecurse, and so we can mark this function too
1511 // as norecurse. Note that the uses must actually be calls -- otherwise
1512 // a pointer to this function could be returned from a norecurse function but
1513 // this function could be recursively (indirectly) called. Note that this
1514 // also detects if F is directly recursive as F is not yet marked as
1515 // a norecurse function.
1516 for (auto *U : F.users()) {
1517 auto *I = dyn_cast<Instruction>(U);
1518 if (!I)
1519 return false;
1520 CallSite CS(I);
1521 if (!CS || !CS.getParent()->getParent()->doesNotRecurse())
1522 return false;
1523 }
1524 return setDoesNotRecurse(F);
1525 }
1526
deduceFunctionAttributeInRPO(Module & M,CallGraph & CG)1527 static bool deduceFunctionAttributeInRPO(Module &M, CallGraph &CG) {
1528 // We only have a post-order SCC traversal (because SCCs are inherently
1529 // discovered in post-order), so we accumulate them in a vector and then walk
1530 // it in reverse. This is simpler than using the RPO iterator infrastructure
1531 // because we need to combine SCC detection and the PO walk of the call
1532 // graph. We can also cheat egregiously because we're primarily interested in
1533 // synthesizing norecurse and so we can only save the singular SCCs as SCCs
1534 // with multiple functions in them will clearly be recursive.
1535 SmallVector<Function *, 16> Worklist;
1536 for (scc_iterator<CallGraph *> I = scc_begin(&CG); !I.isAtEnd(); ++I) {
1537 if (I->size() != 1)
1538 continue;
1539
1540 Function *F = I->front()->getFunction();
1541 if (F && !F->isDeclaration() && !F->doesNotRecurse() &&
1542 F->hasInternalLinkage())
1543 Worklist.push_back(F);
1544 }
1545
1546 bool Changed = false;
1547 for (auto *F : llvm::reverse(Worklist))
1548 Changed |= addNoRecurseAttrsTopDown(*F);
1549
1550 return Changed;
1551 }
1552
runOnModule(Module & M)1553 bool ReversePostOrderFunctionAttrsLegacyPass::runOnModule(Module &M) {
1554 if (skipModule(M))
1555 return false;
1556
1557 auto &CG = getAnalysis<CallGraphWrapperPass>().getCallGraph();
1558
1559 return deduceFunctionAttributeInRPO(M, CG);
1560 }
1561
1562 PreservedAnalyses
run(Module & M,ModuleAnalysisManager & AM)1563 ReversePostOrderFunctionAttrsPass::run(Module &M, ModuleAnalysisManager &AM) {
1564 auto &CG = AM.getResult<CallGraphAnalysis>(M);
1565
1566 if (!deduceFunctionAttributeInRPO(M, CG))
1567 return PreservedAnalyses::all();
1568
1569 PreservedAnalyses PA;
1570 PA.preserve<CallGraphAnalysis>();
1571 return PA;
1572 }
1573