1 //=== WebAssemblyLowerEmscriptenEHSjLj.cpp - Lower exceptions for Emscripten =//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 ///
10 /// \file
11 /// This file lowers exception-related instructions and setjmp/longjmp
12 /// function calls in order to use Emscripten's JavaScript try and catch
13 /// mechanism.
14 ///
15 /// To handle exceptions and setjmp/longjmps, this scheme relies on JavaScript's
16 /// try and catch syntax and relevant exception-related libraries implemented
17 /// in JavaScript glue code that will be produced by Emscripten. This is similar
18 /// to the current Emscripten asm.js exception handling in fastcomp. For
19 /// fastcomp's EH / SjLj scheme, see these files in fastcomp LLVM branch:
20 /// (Location: https://github.com/kripken/emscripten-fastcomp)
21 /// lib/Target/JSBackend/NaCl/LowerEmExceptionsPass.cpp
22 /// lib/Target/JSBackend/NaCl/LowerEmSetjmp.cpp
23 /// lib/Target/JSBackend/JSBackend.cpp
24 /// lib/Target/JSBackend/CallHandlers.h
25 ///
26 /// * Exception handling
27 /// This pass lowers invokes and landingpads into library functions in JS glue
28 /// code. Invokes are lowered into function wrappers called invoke wrappers that
29 /// exist in JS side, which wraps the original function call with JS try-catch.
30 /// If an exception occurred, cxa_throw() function in JS side sets some
31 /// variables (see below) so we can check whether an exception occurred from
32 /// wasm code and handle it appropriately.
33 ///
34 /// * Setjmp-longjmp handling
35 /// This pass lowers setjmp to a reasonably-performant approach for emscripten.
36 /// The idea is that each block with a setjmp is broken up into two parts: the
37 /// part containing setjmp and the part right after the setjmp. The latter part
38 /// is either reached from the setjmp, or later from a longjmp. To handle the
39 /// longjmp, all calls that might longjmp are also called using invoke wrappers
40 /// and thus JS / try-catch. JS longjmp() function also sets some variables so
41 /// we can check / whether a longjmp occurred from wasm code. Each block with a
42 /// function call that might longjmp is also split up after the longjmp call.
43 /// After the longjmp call, we check whether a longjmp occurred, and if it did,
44 /// which setjmp it corresponds to, and jump to the right post-setjmp block.
45 /// We assume setjmp-longjmp handling always run after EH handling, which means
46 /// we don't expect any exception-related instructions when SjLj runs.
47 /// FIXME Currently this scheme does not support indirect call of setjmp,
48 /// because of the limitation of the scheme itself. fastcomp does not support it
49 /// either.
50 ///
51 /// In detail, this pass does following things:
52 ///
53 /// 1) Assumes the existence of global variables: __THREW__, __threwValue
54 /// __THREW__ and __threwValue will be set in invoke wrappers
55 /// in JS glue code. For what invoke wrappers are, refer to 3). These
56 /// variables are used for both exceptions and setjmp/longjmps.
57 /// __THREW__ indicates whether an exception or a longjmp occurred or not. 0
58 /// means nothing occurred, 1 means an exception occurred, and other numbers
59 /// mean a longjmp occurred. In the case of longjmp, __threwValue variable
60 /// indicates the corresponding setjmp buffer the longjmp corresponds to.
61 ///
62 /// * Exception handling
63 ///
64 /// 2) We assume the existence of setThrew and setTempRet0/getTempRet0 functions
65 /// at link time.
66 /// The global variables in 1) will exist in wasm address space,
67 /// but their values should be set in JS code, so these functions
68 /// as interfaces to JS glue code. These functions are equivalent to the
69 /// following JS functions, which actually exist in asm.js version of JS
70 /// library.
71 ///
72 /// function setThrew(threw, value) {
73 /// if (__THREW__ == 0) {
74 /// __THREW__ = threw;
75 /// __threwValue = value;
76 /// }
77 /// }
78 //
79 /// setTempRet0 is called from __cxa_find_matching_catch() in JS glue code.
80 ///
81 /// In exception handling, getTempRet0 indicates the type of an exception
82 /// caught, and in setjmp/longjmp, it means the second argument to longjmp
83 /// function.
84 ///
85 /// 3) Lower
86 /// invoke @func(arg1, arg2) to label %invoke.cont unwind label %lpad
87 /// into
88 /// __THREW__ = 0;
89 /// call @__invoke_SIG(func, arg1, arg2)
90 /// %__THREW__.val = __THREW__;
91 /// __THREW__ = 0;
92 /// if (%__THREW__.val == 1)
93 /// goto %lpad
94 /// else
95 /// goto %invoke.cont
96 /// SIG is a mangled string generated based on the LLVM IR-level function
97 /// signature. After LLVM IR types are lowered to the target wasm types,
98 /// the names for these wrappers will change based on wasm types as well,
99 /// as in invoke_vi (function takes an int and returns void). The bodies of
100 /// these wrappers will be generated in JS glue code, and inside those
101 /// wrappers we use JS try-catch to generate actual exception effects. It
102 /// also calls the original callee function. An example wrapper in JS code
103 /// would look like this:
104 /// function invoke_vi(index,a1) {
105 /// try {
106 /// Module["dynCall_vi"](index,a1); // This calls original callee
107 /// } catch(e) {
108 /// if (typeof e !== 'number' && e !== 'longjmp') throw e;
109 /// asm["setThrew"](1, 0); // setThrew is called here
110 /// }
111 /// }
112 /// If an exception is thrown, __THREW__ will be set to true in a wrapper,
113 /// so we can jump to the right BB based on this value.
114 ///
115 /// 4) Lower
116 /// %val = landingpad catch c1 catch c2 catch c3 ...
117 /// ... use %val ...
118 /// into
119 /// %fmc = call @__cxa_find_matching_catch_N(c1, c2, c3, ...)
120 /// %val = {%fmc, getTempRet0()}
121 /// ... use %val ...
122 /// Here N is a number calculated based on the number of clauses.
123 /// setTempRet0 is called from __cxa_find_matching_catch() in JS glue code.
124 ///
125 /// 5) Lower
126 /// resume {%a, %b}
127 /// into
128 /// call @__resumeException(%a)
129 /// where __resumeException() is a function in JS glue code.
130 ///
131 /// 6) Lower
132 /// call @llvm.eh.typeid.for(type) (intrinsic)
133 /// into
134 /// call @llvm_eh_typeid_for(type)
135 /// llvm_eh_typeid_for function will be generated in JS glue code.
136 ///
137 /// * Setjmp / Longjmp handling
138 ///
139 /// In case calls to longjmp() exists
140 ///
141 /// 1) Lower
142 /// longjmp(buf, value)
143 /// into
144 /// emscripten_longjmp_jmpbuf(buf, value)
145 /// emscripten_longjmp_jmpbuf will be lowered to emscripten_longjmp later.
146 ///
147 /// In case calls to setjmp() exists
148 ///
149 /// 2) In the function entry that calls setjmp, initialize setjmpTable and
150 /// sejmpTableSize as follows:
151 /// setjmpTableSize = 4;
152 /// setjmpTable = (int *) malloc(40);
153 /// setjmpTable[0] = 0;
154 /// setjmpTable and setjmpTableSize are used in saveSetjmp() function in JS
155 /// code.
156 ///
157 /// 3) Lower
158 /// setjmp(buf)
159 /// into
160 /// setjmpTable = saveSetjmp(buf, label, setjmpTable, setjmpTableSize);
161 /// setjmpTableSize = getTempRet0();
162 /// For each dynamic setjmp call, setjmpTable stores its ID (a number which
163 /// is incrementally assigned from 0) and its label (a unique number that
164 /// represents each callsite of setjmp). When we need more entries in
165 /// setjmpTable, it is reallocated in saveSetjmp() in JS code and it will
166 /// return the new table address, and assign the new table size in
167 /// setTempRet0(). saveSetjmp also stores the setjmp's ID into the buffer
168 /// buf. A BB with setjmp is split into two after setjmp call in order to
169 /// make the post-setjmp BB the possible destination of longjmp BB.
170 ///
171 ///
172 /// 4) Lower every call that might longjmp into
173 /// __THREW__ = 0;
174 /// call @__invoke_SIG(func, arg1, arg2)
175 /// %__THREW__.val = __THREW__;
176 /// __THREW__ = 0;
177 /// if (%__THREW__.val != 0 & __threwValue != 0) {
178 /// %label = testSetjmp(mem[%__THREW__.val], setjmpTable,
179 /// setjmpTableSize);
180 /// if (%label == 0)
181 /// emscripten_longjmp(%__THREW__.val, __threwValue);
182 /// setTempRet0(__threwValue);
183 /// } else {
184 /// %label = -1;
185 /// }
186 /// longjmp_result = getTempRet0();
187 /// switch label {
188 /// label 1: goto post-setjmp BB 1
189 /// label 2: goto post-setjmp BB 2
190 /// ...
191 /// default: goto splitted next BB
192 /// }
193 /// testSetjmp examines setjmpTable to see if there is a matching setjmp
194 /// call. After calling an invoke wrapper, if a longjmp occurred, __THREW__
195 /// will be the address of matching jmp_buf buffer and __threwValue be the
196 /// second argument to longjmp. mem[__THREW__.val] is a setjmp ID that is
197 /// stored in saveSetjmp. testSetjmp returns a setjmp label, a unique ID to
198 /// each setjmp callsite. Label 0 means this longjmp buffer does not
199 /// correspond to one of the setjmp callsites in this function, so in this
200 /// case we just chain the longjmp to the caller. (Here we call
201 /// emscripten_longjmp, which is different from emscripten_longjmp_jmpbuf.
202 /// emscripten_longjmp_jmpbuf takes jmp_buf as its first argument, while
203 /// emscripten_longjmp takes an int. Both of them will eventually be lowered
204 /// to emscripten_longjmp in s2wasm, but here we need two signatures - we
205 /// can't translate an int value to a jmp_buf.)
206 /// Label -1 means no longjmp occurred. Otherwise we jump to the right
207 /// post-setjmp BB based on the label.
208 ///
209 ///===----------------------------------------------------------------------===//
210
211 #include "WebAssembly.h"
212 #include "llvm/IR/CallSite.h"
213 #include "llvm/IR/Dominators.h"
214 #include "llvm/IR/IRBuilder.h"
215 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
216 #include "llvm/Transforms/Utils/SSAUpdater.h"
217
218 using namespace llvm;
219
220 #define DEBUG_TYPE "wasm-lower-em-ehsjlj"
221
222 static cl::list<std::string>
223 EHWhitelist("emscripten-cxx-exceptions-whitelist",
224 cl::desc("The list of function names in which Emscripten-style "
225 "exception handling is enabled (see emscripten "
226 "EMSCRIPTEN_CATCHING_WHITELIST options)"),
227 cl::CommaSeparated);
228
229 namespace {
230 class WebAssemblyLowerEmscriptenEHSjLj final : public ModulePass {
231 static const char *ResumeFName;
232 static const char *EHTypeIDFName;
233 static const char *EmLongjmpFName;
234 static const char *EmLongjmpJmpbufFName;
235 static const char *SaveSetjmpFName;
236 static const char *TestSetjmpFName;
237 static const char *FindMatchingCatchPrefix;
238 static const char *InvokePrefix;
239
240 bool EnableEH; // Enable exception handling
241 bool EnableSjLj; // Enable setjmp/longjmp handling
242
243 GlobalVariable *ThrewGV;
244 GlobalVariable *ThrewValueGV;
245 Function *GetTempRet0Func;
246 Function *SetTempRet0Func;
247 Function *ResumeF;
248 Function *EHTypeIDF;
249 Function *EmLongjmpF;
250 Function *EmLongjmpJmpbufF;
251 Function *SaveSetjmpF;
252 Function *TestSetjmpF;
253
254 // __cxa_find_matching_catch_N functions.
255 // Indexed by the number of clauses in an original landingpad instruction.
256 DenseMap<int, Function *> FindMatchingCatches;
257 // Map of <function signature string, invoke_ wrappers>
258 StringMap<Function *> InvokeWrappers;
259 // Set of whitelisted function names for exception handling
260 std::set<std::string> EHWhitelistSet;
261
getPassName() const262 StringRef getPassName() const override {
263 return "WebAssembly Lower Emscripten Exceptions";
264 }
265
266 bool runEHOnFunction(Function &F);
267 bool runSjLjOnFunction(Function &F);
268 Function *getFindMatchingCatch(Module &M, unsigned NumClauses);
269
270 template <typename CallOrInvoke> Value *wrapInvoke(CallOrInvoke *CI);
271 void wrapTestSetjmp(BasicBlock *BB, Instruction *InsertPt, Value *Threw,
272 Value *SetjmpTable, Value *SetjmpTableSize, Value *&Label,
273 Value *&LongjmpResult, BasicBlock *&EndBB);
274 template <typename CallOrInvoke> Function *getInvokeWrapper(CallOrInvoke *CI);
275
areAllExceptionsAllowed() const276 bool areAllExceptionsAllowed() const { return EHWhitelistSet.empty(); }
277 bool canLongjmp(Module &M, const Value *Callee) const;
278
279 void rebuildSSA(Function &F);
280
281 public:
282 static char ID;
283
WebAssemblyLowerEmscriptenEHSjLj(bool EnableEH=true,bool EnableSjLj=true)284 WebAssemblyLowerEmscriptenEHSjLj(bool EnableEH = true, bool EnableSjLj = true)
285 : ModulePass(ID), EnableEH(EnableEH), EnableSjLj(EnableSjLj),
286 ThrewGV(nullptr), ThrewValueGV(nullptr), GetTempRet0Func(nullptr),
287 SetTempRet0Func(nullptr), ResumeF(nullptr), EHTypeIDF(nullptr),
288 EmLongjmpF(nullptr), EmLongjmpJmpbufF(nullptr), SaveSetjmpF(nullptr),
289 TestSetjmpF(nullptr) {
290 EHWhitelistSet.insert(EHWhitelist.begin(), EHWhitelist.end());
291 }
292 bool runOnModule(Module &M) override;
293
getAnalysisUsage(AnalysisUsage & AU) const294 void getAnalysisUsage(AnalysisUsage &AU) const override {
295 AU.addRequired<DominatorTreeWrapperPass>();
296 }
297 };
298 } // End anonymous namespace
299
300 const char *WebAssemblyLowerEmscriptenEHSjLj::ResumeFName = "__resumeException";
301 const char *WebAssemblyLowerEmscriptenEHSjLj::EHTypeIDFName =
302 "llvm_eh_typeid_for";
303 const char *WebAssemblyLowerEmscriptenEHSjLj::EmLongjmpFName =
304 "emscripten_longjmp";
305 const char *WebAssemblyLowerEmscriptenEHSjLj::EmLongjmpJmpbufFName =
306 "emscripten_longjmp_jmpbuf";
307 const char *WebAssemblyLowerEmscriptenEHSjLj::SaveSetjmpFName = "saveSetjmp";
308 const char *WebAssemblyLowerEmscriptenEHSjLj::TestSetjmpFName = "testSetjmp";
309 const char *WebAssemblyLowerEmscriptenEHSjLj::FindMatchingCatchPrefix =
310 "__cxa_find_matching_catch_";
311 const char *WebAssemblyLowerEmscriptenEHSjLj::InvokePrefix = "__invoke_";
312
313 char WebAssemblyLowerEmscriptenEHSjLj::ID = 0;
314 INITIALIZE_PASS(WebAssemblyLowerEmscriptenEHSjLj, DEBUG_TYPE,
315 "WebAssembly Lower Emscripten Exceptions / Setjmp / Longjmp",
316 false, false)
317
createWebAssemblyLowerEmscriptenEHSjLj(bool EnableEH,bool EnableSjLj)318 ModulePass *llvm::createWebAssemblyLowerEmscriptenEHSjLj(bool EnableEH,
319 bool EnableSjLj) {
320 return new WebAssemblyLowerEmscriptenEHSjLj(EnableEH, EnableSjLj);
321 }
322
canThrow(const Value * V)323 static bool canThrow(const Value *V) {
324 if (const auto *F = dyn_cast<const Function>(V)) {
325 // Intrinsics cannot throw
326 if (F->isIntrinsic())
327 return false;
328 StringRef Name = F->getName();
329 // leave setjmp and longjmp (mostly) alone, we process them properly later
330 if (Name == "setjmp" || Name == "longjmp")
331 return false;
332 return !F->doesNotThrow();
333 }
334 // not a function, so an indirect call - can throw, we can't tell
335 return true;
336 }
337
338 // Get a global variable with the given name. If it doesn't exist declare it,
339 // which will generate an import and asssumes that it will exist at link time.
getGlobalVariableI32(Module & M,IRBuilder<> & IRB,const char * Name)340 static GlobalVariable *getGlobalVariableI32(Module &M, IRBuilder<> &IRB,
341 const char *Name) {
342 if (M.getNamedGlobal(Name))
343 report_fatal_error(Twine("variable name is reserved: ") + Name);
344
345 return new GlobalVariable(M, IRB.getInt32Ty(), false,
346 GlobalValue::ExternalLinkage, nullptr, Name);
347 }
348
349 // Simple function name mangler.
350 // This function simply takes LLVM's string representation of parameter types
351 // and concatenate them with '_'. There are non-alphanumeric characters but llc
352 // is ok with it, and we need to postprocess these names after the lowering
353 // phase anyway.
getSignature(FunctionType * FTy)354 static std::string getSignature(FunctionType *FTy) {
355 std::string Sig;
356 raw_string_ostream OS(Sig);
357 OS << *FTy->getReturnType();
358 for (Type *ParamTy : FTy->params())
359 OS << "_" << *ParamTy;
360 if (FTy->isVarArg())
361 OS << "_...";
362 Sig = OS.str();
363 Sig.erase(remove_if(Sig, isspace), Sig.end());
364 // When s2wasm parses .s file, a comma means the end of an argument. So a
365 // mangled function name can contain any character but a comma.
366 std::replace(Sig.begin(), Sig.end(), ',', '.');
367 return Sig;
368 }
369
370 // Returns __cxa_find_matching_catch_N function, where N = NumClauses + 2.
371 // This is because a landingpad instruction contains two more arguments, a
372 // personality function and a cleanup bit, and __cxa_find_matching_catch_N
373 // functions are named after the number of arguments in the original landingpad
374 // instruction.
375 Function *
getFindMatchingCatch(Module & M,unsigned NumClauses)376 WebAssemblyLowerEmscriptenEHSjLj::getFindMatchingCatch(Module &M,
377 unsigned NumClauses) {
378 if (FindMatchingCatches.count(NumClauses))
379 return FindMatchingCatches[NumClauses];
380 PointerType *Int8PtrTy = Type::getInt8PtrTy(M.getContext());
381 SmallVector<Type *, 16> Args(NumClauses, Int8PtrTy);
382 FunctionType *FTy = FunctionType::get(Int8PtrTy, Args, false);
383 Function *F =
384 Function::Create(FTy, GlobalValue::ExternalLinkage,
385 FindMatchingCatchPrefix + Twine(NumClauses + 2), &M);
386 FindMatchingCatches[NumClauses] = F;
387 return F;
388 }
389
390 // Generate invoke wrapper seqence with preamble and postamble
391 // Preamble:
392 // __THREW__ = 0;
393 // Postamble:
394 // %__THREW__.val = __THREW__; __THREW__ = 0;
395 // Returns %__THREW__.val, which indicates whether an exception is thrown (or
396 // whether longjmp occurred), for future use.
397 template <typename CallOrInvoke>
wrapInvoke(CallOrInvoke * CI)398 Value *WebAssemblyLowerEmscriptenEHSjLj::wrapInvoke(CallOrInvoke *CI) {
399 LLVMContext &C = CI->getModule()->getContext();
400
401 // If we are calling a function that is noreturn, we must remove that
402 // attribute. The code we insert here does expect it to return, after we
403 // catch the exception.
404 if (CI->doesNotReturn()) {
405 if (auto *F = dyn_cast<Function>(CI->getCalledValue()))
406 F->removeFnAttr(Attribute::NoReturn);
407 CI->removeAttribute(AttributeList::FunctionIndex, Attribute::NoReturn);
408 }
409
410 IRBuilder<> IRB(C);
411 IRB.SetInsertPoint(CI);
412
413 // Pre-invoke
414 // __THREW__ = 0;
415 IRB.CreateStore(IRB.getInt32(0), ThrewGV);
416
417 // Invoke function wrapper in JavaScript
418 SmallVector<Value *, 16> Args;
419 // Put the pointer to the callee as first argument, so it can be called
420 // within the invoke wrapper later
421 Args.push_back(CI->getCalledValue());
422 Args.append(CI->arg_begin(), CI->arg_end());
423 CallInst *NewCall = IRB.CreateCall(getInvokeWrapper(CI), Args);
424 NewCall->takeName(CI);
425 NewCall->setCallingConv(CI->getCallingConv());
426 NewCall->setDebugLoc(CI->getDebugLoc());
427
428 // Because we added the pointer to the callee as first argument, all
429 // argument attribute indices have to be incremented by one.
430 SmallVector<AttributeSet, 8> ArgAttributes;
431 const AttributeList &InvokeAL = CI->getAttributes();
432
433 // No attributes for the callee pointer.
434 ArgAttributes.push_back(AttributeSet());
435 // Copy the argument attributes from the original
436 for (unsigned i = 0, e = CI->getNumArgOperands(); i < e; ++i)
437 ArgAttributes.push_back(InvokeAL.getParamAttributes(i));
438
439 // Reconstruct the AttributesList based on the vector we constructed.
440 AttributeList NewCallAL =
441 AttributeList::get(C, InvokeAL.getFnAttributes(),
442 InvokeAL.getRetAttributes(), ArgAttributes);
443 NewCall->setAttributes(NewCallAL);
444
445 CI->replaceAllUsesWith(NewCall);
446
447 // Post-invoke
448 // %__THREW__.val = __THREW__; __THREW__ = 0;
449 Value *Threw = IRB.CreateLoad(ThrewGV, ThrewGV->getName() + ".val");
450 IRB.CreateStore(IRB.getInt32(0), ThrewGV);
451 return Threw;
452 }
453
454 // Get matching invoke wrapper based on callee signature
455 template <typename CallOrInvoke>
getInvokeWrapper(CallOrInvoke * CI)456 Function *WebAssemblyLowerEmscriptenEHSjLj::getInvokeWrapper(CallOrInvoke *CI) {
457 Module *M = CI->getModule();
458 SmallVector<Type *, 16> ArgTys;
459 Value *Callee = CI->getCalledValue();
460 FunctionType *CalleeFTy;
461 if (auto *F = dyn_cast<Function>(Callee))
462 CalleeFTy = F->getFunctionType();
463 else {
464 auto *CalleeTy = cast<PointerType>(Callee->getType())->getElementType();
465 CalleeFTy = dyn_cast<FunctionType>(CalleeTy);
466 }
467
468 std::string Sig = getSignature(CalleeFTy);
469 if (InvokeWrappers.find(Sig) != InvokeWrappers.end())
470 return InvokeWrappers[Sig];
471
472 // Put the pointer to the callee as first argument
473 ArgTys.push_back(PointerType::getUnqual(CalleeFTy));
474 // Add argument types
475 ArgTys.append(CalleeFTy->param_begin(), CalleeFTy->param_end());
476
477 FunctionType *FTy = FunctionType::get(CalleeFTy->getReturnType(), ArgTys,
478 CalleeFTy->isVarArg());
479 Function *F = Function::Create(FTy, GlobalValue::ExternalLinkage,
480 InvokePrefix + Sig, M);
481 InvokeWrappers[Sig] = F;
482 return F;
483 }
484
canLongjmp(Module & M,const Value * Callee) const485 bool WebAssemblyLowerEmscriptenEHSjLj::canLongjmp(Module &M,
486 const Value *Callee) const {
487 if (auto *CalleeF = dyn_cast<Function>(Callee))
488 if (CalleeF->isIntrinsic())
489 return false;
490
491 // The reason we include malloc/free here is to exclude the malloc/free
492 // calls generated in setjmp prep / cleanup routines.
493 Function *SetjmpF = M.getFunction("setjmp");
494 Function *MallocF = M.getFunction("malloc");
495 Function *FreeF = M.getFunction("free");
496 if (Callee == SetjmpF || Callee == MallocF || Callee == FreeF)
497 return false;
498
499 // There are functions in JS glue code
500 if (Callee == ResumeF || Callee == EHTypeIDF || Callee == SaveSetjmpF ||
501 Callee == TestSetjmpF)
502 return false;
503
504 // __cxa_find_matching_catch_N functions cannot longjmp
505 if (Callee->getName().startswith(FindMatchingCatchPrefix))
506 return false;
507
508 // Exception-catching related functions
509 Function *BeginCatchF = M.getFunction("__cxa_begin_catch");
510 Function *EndCatchF = M.getFunction("__cxa_end_catch");
511 Function *AllocExceptionF = M.getFunction("__cxa_allocate_exception");
512 Function *ThrowF = M.getFunction("__cxa_throw");
513 Function *TerminateF = M.getFunction("__clang_call_terminate");
514 if (Callee == BeginCatchF || Callee == EndCatchF ||
515 Callee == AllocExceptionF || Callee == ThrowF || Callee == TerminateF ||
516 Callee == GetTempRet0Func || Callee == SetTempRet0Func)
517 return false;
518
519 // Otherwise we don't know
520 return true;
521 }
522
523 // Generate testSetjmp function call seqence with preamble and postamble.
524 // The code this generates is equivalent to the following JavaScript code:
525 // if (%__THREW__.val != 0 & threwValue != 0) {
526 // %label = _testSetjmp(mem[%__THREW__.val], setjmpTable, setjmpTableSize);
527 // if (%label == 0)
528 // emscripten_longjmp(%__THREW__.val, threwValue);
529 // setTempRet0(threwValue);
530 // } else {
531 // %label = -1;
532 // }
533 // %longjmp_result = getTempRet0();
534 //
535 // As output parameters. returns %label, %longjmp_result, and the BB the last
536 // instruction (%longjmp_result = ...) is in.
wrapTestSetjmp(BasicBlock * BB,Instruction * InsertPt,Value * Threw,Value * SetjmpTable,Value * SetjmpTableSize,Value * & Label,Value * & LongjmpResult,BasicBlock * & EndBB)537 void WebAssemblyLowerEmscriptenEHSjLj::wrapTestSetjmp(
538 BasicBlock *BB, Instruction *InsertPt, Value *Threw, Value *SetjmpTable,
539 Value *SetjmpTableSize, Value *&Label, Value *&LongjmpResult,
540 BasicBlock *&EndBB) {
541 Function *F = BB->getParent();
542 LLVMContext &C = BB->getModule()->getContext();
543 IRBuilder<> IRB(C);
544 IRB.SetInsertPoint(InsertPt);
545
546 // if (%__THREW__.val != 0 & threwValue != 0)
547 IRB.SetInsertPoint(BB);
548 BasicBlock *ThenBB1 = BasicBlock::Create(C, "if.then1", F);
549 BasicBlock *ElseBB1 = BasicBlock::Create(C, "if.else1", F);
550 BasicBlock *EndBB1 = BasicBlock::Create(C, "if.end", F);
551 Value *ThrewCmp = IRB.CreateICmpNE(Threw, IRB.getInt32(0));
552 Value *ThrewValue =
553 IRB.CreateLoad(ThrewValueGV, ThrewValueGV->getName() + ".val");
554 Value *ThrewValueCmp = IRB.CreateICmpNE(ThrewValue, IRB.getInt32(0));
555 Value *Cmp1 = IRB.CreateAnd(ThrewCmp, ThrewValueCmp, "cmp1");
556 IRB.CreateCondBr(Cmp1, ThenBB1, ElseBB1);
557
558 // %label = _testSetjmp(mem[%__THREW__.val], _setjmpTable, _setjmpTableSize);
559 // if (%label == 0)
560 IRB.SetInsertPoint(ThenBB1);
561 BasicBlock *ThenBB2 = BasicBlock::Create(C, "if.then2", F);
562 BasicBlock *EndBB2 = BasicBlock::Create(C, "if.end2", F);
563 Value *ThrewInt = IRB.CreateIntToPtr(Threw, Type::getInt32PtrTy(C),
564 Threw->getName() + ".i32p");
565 Value *LoadedThrew =
566 IRB.CreateLoad(ThrewInt, ThrewInt->getName() + ".loaded");
567 Value *ThenLabel = IRB.CreateCall(
568 TestSetjmpF, {LoadedThrew, SetjmpTable, SetjmpTableSize}, "label");
569 Value *Cmp2 = IRB.CreateICmpEQ(ThenLabel, IRB.getInt32(0));
570 IRB.CreateCondBr(Cmp2, ThenBB2, EndBB2);
571
572 // emscripten_longjmp(%__THREW__.val, threwValue);
573 IRB.SetInsertPoint(ThenBB2);
574 IRB.CreateCall(EmLongjmpF, {Threw, ThrewValue});
575 IRB.CreateUnreachable();
576
577 // setTempRet0(threwValue);
578 IRB.SetInsertPoint(EndBB2);
579 IRB.CreateCall(SetTempRet0Func, ThrewValue);
580 IRB.CreateBr(EndBB1);
581
582 IRB.SetInsertPoint(ElseBB1);
583 IRB.CreateBr(EndBB1);
584
585 // longjmp_result = getTempRet0();
586 IRB.SetInsertPoint(EndBB1);
587 PHINode *LabelPHI = IRB.CreatePHI(IRB.getInt32Ty(), 2, "label");
588 LabelPHI->addIncoming(ThenLabel, EndBB2);
589
590 LabelPHI->addIncoming(IRB.getInt32(-1), ElseBB1);
591
592 // Output parameter assignment
593 Label = LabelPHI;
594 EndBB = EndBB1;
595 LongjmpResult = IRB.CreateCall(GetTempRet0Func, None, "longjmp_result");
596 }
597
rebuildSSA(Function & F)598 void WebAssemblyLowerEmscriptenEHSjLj::rebuildSSA(Function &F) {
599 DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>(F).getDomTree();
600 DT.recalculate(F); // CFG has been changed
601 SSAUpdater SSA;
602 for (BasicBlock &BB : F) {
603 for (Instruction &I : BB) {
604 for (auto UI = I.use_begin(), UE = I.use_end(); UI != UE;) {
605 Use &U = *UI;
606 ++UI;
607 SSA.Initialize(I.getType(), I.getName());
608 SSA.AddAvailableValue(&BB, &I);
609 Instruction *User = cast<Instruction>(U.getUser());
610 if (User->getParent() == &BB)
611 continue;
612
613 if (PHINode *UserPN = dyn_cast<PHINode>(User))
614 if (UserPN->getIncomingBlock(U) == &BB)
615 continue;
616
617 if (DT.dominates(&I, User))
618 continue;
619 SSA.RewriteUseAfterInsertions(U);
620 }
621 }
622 }
623 }
624
runOnModule(Module & M)625 bool WebAssemblyLowerEmscriptenEHSjLj::runOnModule(Module &M) {
626 LLVM_DEBUG(dbgs() << "********** Lower Emscripten EH & SjLj **********\n");
627
628 LLVMContext &C = M.getContext();
629 IRBuilder<> IRB(C);
630
631 Function *SetjmpF = M.getFunction("setjmp");
632 Function *LongjmpF = M.getFunction("longjmp");
633 bool SetjmpUsed = SetjmpF && !SetjmpF->use_empty();
634 bool LongjmpUsed = LongjmpF && !LongjmpF->use_empty();
635 bool DoSjLj = EnableSjLj && (SetjmpUsed || LongjmpUsed);
636
637 // Declare (or get) global variables __THREW__, __threwValue, and
638 // getTempRet0/setTempRet0 function which are used in common for both
639 // exception handling and setjmp/longjmp handling
640 ThrewGV = getGlobalVariableI32(M, IRB, "__THREW__");
641 ThrewValueGV = getGlobalVariableI32(M, IRB, "__threwValue");
642 GetTempRet0Func =
643 Function::Create(FunctionType::get(IRB.getInt32Ty(), false),
644 GlobalValue::ExternalLinkage, "getTempRet0", &M);
645 SetTempRet0Func = Function::Create(
646 FunctionType::get(IRB.getVoidTy(), IRB.getInt32Ty(), false),
647 GlobalValue::ExternalLinkage, "setTempRet0", &M);
648 GetTempRet0Func->setDoesNotThrow();
649 SetTempRet0Func->setDoesNotThrow();
650
651 bool Changed = false;
652
653 // Exception handling
654 if (EnableEH) {
655 // Register __resumeException function
656 FunctionType *ResumeFTy =
657 FunctionType::get(IRB.getVoidTy(), IRB.getInt8PtrTy(), false);
658 ResumeF = Function::Create(ResumeFTy, GlobalValue::ExternalLinkage,
659 ResumeFName, &M);
660
661 // Register llvm_eh_typeid_for function
662 FunctionType *EHTypeIDTy =
663 FunctionType::get(IRB.getInt32Ty(), IRB.getInt8PtrTy(), false);
664 EHTypeIDF = Function::Create(EHTypeIDTy, GlobalValue::ExternalLinkage,
665 EHTypeIDFName, &M);
666
667 for (Function &F : M) {
668 if (F.isDeclaration())
669 continue;
670 Changed |= runEHOnFunction(F);
671 }
672 }
673
674 // Setjmp/longjmp handling
675 if (DoSjLj) {
676 Changed = true; // We have setjmp or longjmp somewhere
677
678 if (LongjmpF) {
679 // Replace all uses of longjmp with emscripten_longjmp_jmpbuf, which is
680 // defined in JS code
681 EmLongjmpJmpbufF = Function::Create(LongjmpF->getFunctionType(),
682 GlobalValue::ExternalLinkage,
683 EmLongjmpJmpbufFName, &M);
684
685 LongjmpF->replaceAllUsesWith(EmLongjmpJmpbufF);
686 }
687
688 if (SetjmpF) {
689 // Register saveSetjmp function
690 FunctionType *SetjmpFTy = SetjmpF->getFunctionType();
691 SmallVector<Type *, 4> Params = {SetjmpFTy->getParamType(0),
692 IRB.getInt32Ty(), Type::getInt32PtrTy(C),
693 IRB.getInt32Ty()};
694 FunctionType *FTy =
695 FunctionType::get(Type::getInt32PtrTy(C), Params, false);
696 SaveSetjmpF = Function::Create(FTy, GlobalValue::ExternalLinkage,
697 SaveSetjmpFName, &M);
698
699 // Register testSetjmp function
700 Params = {IRB.getInt32Ty(), Type::getInt32PtrTy(C), IRB.getInt32Ty()};
701 FTy = FunctionType::get(IRB.getInt32Ty(), Params, false);
702 TestSetjmpF = Function::Create(FTy, GlobalValue::ExternalLinkage,
703 TestSetjmpFName, &M);
704
705 FTy = FunctionType::get(IRB.getVoidTy(),
706 {IRB.getInt32Ty(), IRB.getInt32Ty()}, false);
707 EmLongjmpF = Function::Create(FTy, GlobalValue::ExternalLinkage,
708 EmLongjmpFName, &M);
709
710 // Only traverse functions that uses setjmp in order not to insert
711 // unnecessary prep / cleanup code in every function
712 SmallPtrSet<Function *, 8> SetjmpUsers;
713 for (User *U : SetjmpF->users()) {
714 auto *UI = cast<Instruction>(U);
715 SetjmpUsers.insert(UI->getFunction());
716 }
717 for (Function *F : SetjmpUsers)
718 runSjLjOnFunction(*F);
719 }
720 }
721
722 if (!Changed) {
723 // Delete unused global variables and functions
724 if (ResumeF)
725 ResumeF->eraseFromParent();
726 if (EHTypeIDF)
727 EHTypeIDF->eraseFromParent();
728 if (EmLongjmpF)
729 EmLongjmpF->eraseFromParent();
730 if (SaveSetjmpF)
731 SaveSetjmpF->eraseFromParent();
732 if (TestSetjmpF)
733 TestSetjmpF->eraseFromParent();
734 return false;
735 }
736
737 return true;
738 }
739
runEHOnFunction(Function & F)740 bool WebAssemblyLowerEmscriptenEHSjLj::runEHOnFunction(Function &F) {
741 Module &M = *F.getParent();
742 LLVMContext &C = F.getContext();
743 IRBuilder<> IRB(C);
744 bool Changed = false;
745 SmallVector<Instruction *, 64> ToErase;
746 SmallPtrSet<LandingPadInst *, 32> LandingPads;
747 bool AllowExceptions =
748 areAllExceptionsAllowed() || EHWhitelistSet.count(F.getName());
749
750 for (BasicBlock &BB : F) {
751 auto *II = dyn_cast<InvokeInst>(BB.getTerminator());
752 if (!II)
753 continue;
754 Changed = true;
755 LandingPads.insert(II->getLandingPadInst());
756 IRB.SetInsertPoint(II);
757
758 bool NeedInvoke = AllowExceptions && canThrow(II->getCalledValue());
759 if (NeedInvoke) {
760 // Wrap invoke with invoke wrapper and generate preamble/postamble
761 Value *Threw = wrapInvoke(II);
762 ToErase.push_back(II);
763
764 // Insert a branch based on __THREW__ variable
765 Value *Cmp = IRB.CreateICmpEQ(Threw, IRB.getInt32(1), "cmp");
766 IRB.CreateCondBr(Cmp, II->getUnwindDest(), II->getNormalDest());
767
768 } else {
769 // This can't throw, and we don't need this invoke, just replace it with a
770 // call+branch
771 SmallVector<Value *, 16> Args(II->arg_begin(), II->arg_end());
772 CallInst *NewCall = IRB.CreateCall(II->getCalledValue(), Args);
773 NewCall->takeName(II);
774 NewCall->setCallingConv(II->getCallingConv());
775 NewCall->setDebugLoc(II->getDebugLoc());
776 NewCall->setAttributes(II->getAttributes());
777 II->replaceAllUsesWith(NewCall);
778 ToErase.push_back(II);
779
780 IRB.CreateBr(II->getNormalDest());
781
782 // Remove any PHI node entries from the exception destination
783 II->getUnwindDest()->removePredecessor(&BB);
784 }
785 }
786
787 // Process resume instructions
788 for (BasicBlock &BB : F) {
789 // Scan the body of the basic block for resumes
790 for (Instruction &I : BB) {
791 auto *RI = dyn_cast<ResumeInst>(&I);
792 if (!RI)
793 continue;
794
795 // Split the input into legal values
796 Value *Input = RI->getValue();
797 IRB.SetInsertPoint(RI);
798 Value *Low = IRB.CreateExtractValue(Input, 0, "low");
799 // Create a call to __resumeException function
800 IRB.CreateCall(ResumeF, {Low});
801 // Add a terminator to the block
802 IRB.CreateUnreachable();
803 ToErase.push_back(RI);
804 }
805 }
806
807 // Process llvm.eh.typeid.for intrinsics
808 for (BasicBlock &BB : F) {
809 for (Instruction &I : BB) {
810 auto *CI = dyn_cast<CallInst>(&I);
811 if (!CI)
812 continue;
813 const Function *Callee = CI->getCalledFunction();
814 if (!Callee)
815 continue;
816 if (Callee->getIntrinsicID() != Intrinsic::eh_typeid_for)
817 continue;
818
819 IRB.SetInsertPoint(CI);
820 CallInst *NewCI =
821 IRB.CreateCall(EHTypeIDF, CI->getArgOperand(0), "typeid");
822 CI->replaceAllUsesWith(NewCI);
823 ToErase.push_back(CI);
824 }
825 }
826
827 // Look for orphan landingpads, can occur in blocks with no predecessors
828 for (BasicBlock &BB : F) {
829 Instruction *I = BB.getFirstNonPHI();
830 if (auto *LPI = dyn_cast<LandingPadInst>(I))
831 LandingPads.insert(LPI);
832 }
833
834 // Handle all the landingpad for this function together, as multiple invokes
835 // may share a single lp
836 for (LandingPadInst *LPI : LandingPads) {
837 IRB.SetInsertPoint(LPI);
838 SmallVector<Value *, 16> FMCArgs;
839 for (unsigned i = 0, e = LPI->getNumClauses(); i < e; ++i) {
840 Constant *Clause = LPI->getClause(i);
841 // As a temporary workaround for the lack of aggregate varargs support
842 // in the interface between JS and wasm, break out filter operands into
843 // their component elements.
844 if (LPI->isFilter(i)) {
845 auto *ATy = cast<ArrayType>(Clause->getType());
846 for (unsigned j = 0, e = ATy->getNumElements(); j < e; ++j) {
847 Value *EV = IRB.CreateExtractValue(Clause, makeArrayRef(j), "filter");
848 FMCArgs.push_back(EV);
849 }
850 } else
851 FMCArgs.push_back(Clause);
852 }
853
854 // Create a call to __cxa_find_matching_catch_N function
855 Function *FMCF = getFindMatchingCatch(M, FMCArgs.size());
856 CallInst *FMCI = IRB.CreateCall(FMCF, FMCArgs, "fmc");
857 Value *Undef = UndefValue::get(LPI->getType());
858 Value *Pair0 = IRB.CreateInsertValue(Undef, FMCI, 0, "pair0");
859 Value *TempRet0 = IRB.CreateCall(GetTempRet0Func, None, "tempret0");
860 Value *Pair1 = IRB.CreateInsertValue(Pair0, TempRet0, 1, "pair1");
861
862 LPI->replaceAllUsesWith(Pair1);
863 ToErase.push_back(LPI);
864 }
865
866 // Erase everything we no longer need in this function
867 for (Instruction *I : ToErase)
868 I->eraseFromParent();
869
870 return Changed;
871 }
872
runSjLjOnFunction(Function & F)873 bool WebAssemblyLowerEmscriptenEHSjLj::runSjLjOnFunction(Function &F) {
874 Module &M = *F.getParent();
875 LLVMContext &C = F.getContext();
876 IRBuilder<> IRB(C);
877 SmallVector<Instruction *, 64> ToErase;
878 // Vector of %setjmpTable values
879 std::vector<Instruction *> SetjmpTableInsts;
880 // Vector of %setjmpTableSize values
881 std::vector<Instruction *> SetjmpTableSizeInsts;
882
883 // Setjmp preparation
884
885 // This instruction effectively means %setjmpTableSize = 4.
886 // We create this as an instruction intentionally, and we don't want to fold
887 // this instruction to a constant 4, because this value will be used in
888 // SSAUpdater.AddAvailableValue(...) later.
889 BasicBlock &EntryBB = F.getEntryBlock();
890 BinaryOperator *SetjmpTableSize = BinaryOperator::Create(
891 Instruction::Add, IRB.getInt32(4), IRB.getInt32(0), "setjmpTableSize",
892 &*EntryBB.getFirstInsertionPt());
893 // setjmpTable = (int *) malloc(40);
894 Instruction *SetjmpTable = CallInst::CreateMalloc(
895 SetjmpTableSize, IRB.getInt32Ty(), IRB.getInt32Ty(), IRB.getInt32(40),
896 nullptr, nullptr, "setjmpTable");
897 // setjmpTable[0] = 0;
898 IRB.SetInsertPoint(SetjmpTableSize);
899 IRB.CreateStore(IRB.getInt32(0), SetjmpTable);
900 SetjmpTableInsts.push_back(SetjmpTable);
901 SetjmpTableSizeInsts.push_back(SetjmpTableSize);
902
903 // Setjmp transformation
904 std::vector<PHINode *> SetjmpRetPHIs;
905 Function *SetjmpF = M.getFunction("setjmp");
906 for (User *U : SetjmpF->users()) {
907 auto *CI = dyn_cast<CallInst>(U);
908 if (!CI)
909 report_fatal_error("Does not support indirect calls to setjmp");
910
911 BasicBlock *BB = CI->getParent();
912 if (BB->getParent() != &F) // in other function
913 continue;
914
915 // The tail is everything right after the call, and will be reached once
916 // when setjmp is called, and later when longjmp returns to the setjmp
917 BasicBlock *Tail = SplitBlock(BB, CI->getNextNode());
918 // Add a phi to the tail, which will be the output of setjmp, which
919 // indicates if this is the first call or a longjmp back. The phi directly
920 // uses the right value based on where we arrive from
921 IRB.SetInsertPoint(Tail->getFirstNonPHI());
922 PHINode *SetjmpRet = IRB.CreatePHI(IRB.getInt32Ty(), 2, "setjmp.ret");
923
924 // setjmp initial call returns 0
925 SetjmpRet->addIncoming(IRB.getInt32(0), BB);
926 // The proper output is now this, not the setjmp call itself
927 CI->replaceAllUsesWith(SetjmpRet);
928 // longjmp returns to the setjmp will add themselves to this phi
929 SetjmpRetPHIs.push_back(SetjmpRet);
930
931 // Fix call target
932 // Our index in the function is our place in the array + 1 to avoid index
933 // 0, because index 0 means the longjmp is not ours to handle.
934 IRB.SetInsertPoint(CI);
935 Value *Args[] = {CI->getArgOperand(0), IRB.getInt32(SetjmpRetPHIs.size()),
936 SetjmpTable, SetjmpTableSize};
937 Instruction *NewSetjmpTable =
938 IRB.CreateCall(SaveSetjmpF, Args, "setjmpTable");
939 Instruction *NewSetjmpTableSize =
940 IRB.CreateCall(GetTempRet0Func, None, "setjmpTableSize");
941 SetjmpTableInsts.push_back(NewSetjmpTable);
942 SetjmpTableSizeInsts.push_back(NewSetjmpTableSize);
943 ToErase.push_back(CI);
944 }
945
946 // Update each call that can longjmp so it can return to a setjmp where
947 // relevant.
948
949 // Because we are creating new BBs while processing and don't want to make
950 // all these newly created BBs candidates again for longjmp processing, we
951 // first make the vector of candidate BBs.
952 std::vector<BasicBlock *> BBs;
953 for (BasicBlock &BB : F)
954 BBs.push_back(&BB);
955
956 // BBs.size() will change within the loop, so we query it every time
957 for (unsigned i = 0; i < BBs.size(); i++) {
958 BasicBlock *BB = BBs[i];
959 for (Instruction &I : *BB) {
960 assert(!isa<InvokeInst>(&I));
961 auto *CI = dyn_cast<CallInst>(&I);
962 if (!CI)
963 continue;
964
965 const Value *Callee = CI->getCalledValue();
966 if (!canLongjmp(M, Callee))
967 continue;
968
969 Value *Threw = nullptr;
970 BasicBlock *Tail;
971 if (Callee->getName().startswith(InvokePrefix)) {
972 // If invoke wrapper has already been generated for this call in
973 // previous EH phase, search for the load instruction
974 // %__THREW__.val = __THREW__;
975 // in postamble after the invoke wrapper call
976 LoadInst *ThrewLI = nullptr;
977 StoreInst *ThrewResetSI = nullptr;
978 for (auto I = std::next(BasicBlock::iterator(CI)), IE = BB->end();
979 I != IE; ++I) {
980 if (auto *LI = dyn_cast<LoadInst>(I))
981 if (auto *GV = dyn_cast<GlobalVariable>(LI->getPointerOperand()))
982 if (GV == ThrewGV) {
983 Threw = ThrewLI = LI;
984 break;
985 }
986 }
987 // Search for the store instruction after the load above
988 // __THREW__ = 0;
989 for (auto I = std::next(BasicBlock::iterator(ThrewLI)), IE = BB->end();
990 I != IE; ++I) {
991 if (auto *SI = dyn_cast<StoreInst>(I))
992 if (auto *GV = dyn_cast<GlobalVariable>(SI->getPointerOperand()))
993 if (GV == ThrewGV && SI->getValueOperand() == IRB.getInt32(0)) {
994 ThrewResetSI = SI;
995 break;
996 }
997 }
998 assert(Threw && ThrewLI && "Cannot find __THREW__ load after invoke");
999 assert(ThrewResetSI && "Cannot find __THREW__ store after invoke");
1000 Tail = SplitBlock(BB, ThrewResetSI->getNextNode());
1001
1002 } else {
1003 // Wrap call with invoke wrapper and generate preamble/postamble
1004 Threw = wrapInvoke(CI);
1005 ToErase.push_back(CI);
1006 Tail = SplitBlock(BB, CI->getNextNode());
1007 }
1008
1009 // We need to replace the terminator in Tail - SplitBlock makes BB go
1010 // straight to Tail, we need to check if a longjmp occurred, and go to the
1011 // right setjmp-tail if so
1012 ToErase.push_back(BB->getTerminator());
1013
1014 // Generate a function call to testSetjmp function and preamble/postamble
1015 // code to figure out (1) whether longjmp occurred (2) if longjmp
1016 // occurred, which setjmp it corresponds to
1017 Value *Label = nullptr;
1018 Value *LongjmpResult = nullptr;
1019 BasicBlock *EndBB = nullptr;
1020 wrapTestSetjmp(BB, CI, Threw, SetjmpTable, SetjmpTableSize, Label,
1021 LongjmpResult, EndBB);
1022 assert(Label && LongjmpResult && EndBB);
1023
1024 // Create switch instruction
1025 IRB.SetInsertPoint(EndBB);
1026 SwitchInst *SI = IRB.CreateSwitch(Label, Tail, SetjmpRetPHIs.size());
1027 // -1 means no longjmp happened, continue normally (will hit the default
1028 // switch case). 0 means a longjmp that is not ours to handle, needs a
1029 // rethrow. Otherwise the index is the same as the index in P+1 (to avoid
1030 // 0).
1031 for (unsigned i = 0; i < SetjmpRetPHIs.size(); i++) {
1032 SI->addCase(IRB.getInt32(i + 1), SetjmpRetPHIs[i]->getParent());
1033 SetjmpRetPHIs[i]->addIncoming(LongjmpResult, EndBB);
1034 }
1035
1036 // We are splitting the block here, and must continue to find other calls
1037 // in the block - which is now split. so continue to traverse in the Tail
1038 BBs.push_back(Tail);
1039 }
1040 }
1041
1042 // Erase everything we no longer need in this function
1043 for (Instruction *I : ToErase)
1044 I->eraseFromParent();
1045
1046 // Free setjmpTable buffer before each return instruction
1047 for (BasicBlock &BB : F) {
1048 Instruction *TI = BB.getTerminator();
1049 if (isa<ReturnInst>(TI))
1050 CallInst::CreateFree(SetjmpTable, TI);
1051 }
1052
1053 // Every call to saveSetjmp can change setjmpTable and setjmpTableSize
1054 // (when buffer reallocation occurs)
1055 // entry:
1056 // setjmpTableSize = 4;
1057 // setjmpTable = (int *) malloc(40);
1058 // setjmpTable[0] = 0;
1059 // ...
1060 // somebb:
1061 // setjmpTable = saveSetjmp(buf, label, setjmpTable, setjmpTableSize);
1062 // setjmpTableSize = getTempRet0();
1063 // So we need to make sure the SSA for these variables is valid so that every
1064 // saveSetjmp and testSetjmp calls have the correct arguments.
1065 SSAUpdater SetjmpTableSSA;
1066 SSAUpdater SetjmpTableSizeSSA;
1067 SetjmpTableSSA.Initialize(Type::getInt32PtrTy(C), "setjmpTable");
1068 SetjmpTableSizeSSA.Initialize(Type::getInt32Ty(C), "setjmpTableSize");
1069 for (Instruction *I : SetjmpTableInsts)
1070 SetjmpTableSSA.AddAvailableValue(I->getParent(), I);
1071 for (Instruction *I : SetjmpTableSizeInsts)
1072 SetjmpTableSizeSSA.AddAvailableValue(I->getParent(), I);
1073
1074 for (auto UI = SetjmpTable->use_begin(), UE = SetjmpTable->use_end();
1075 UI != UE;) {
1076 // Grab the use before incrementing the iterator.
1077 Use &U = *UI;
1078 // Increment the iterator before removing the use from the list.
1079 ++UI;
1080 if (Instruction *I = dyn_cast<Instruction>(U.getUser()))
1081 if (I->getParent() != &EntryBB)
1082 SetjmpTableSSA.RewriteUse(U);
1083 }
1084 for (auto UI = SetjmpTableSize->use_begin(), UE = SetjmpTableSize->use_end();
1085 UI != UE;) {
1086 Use &U = *UI;
1087 ++UI;
1088 if (Instruction *I = dyn_cast<Instruction>(U.getUser()))
1089 if (I->getParent() != &EntryBB)
1090 SetjmpTableSizeSSA.RewriteUse(U);
1091 }
1092
1093 // Finally, our modifications to the cfg can break dominance of SSA variables.
1094 // For example, in this code,
1095 // if (x()) { .. setjmp() .. }
1096 // if (y()) { .. longjmp() .. }
1097 // We must split the longjmp block, and it can jump into the block splitted
1098 // from setjmp one. But that means that when we split the setjmp block, it's
1099 // first part no longer dominates its second part - there is a theoretically
1100 // possible control flow path where x() is false, then y() is true and we
1101 // reach the second part of the setjmp block, without ever reaching the first
1102 // part. So, we rebuild SSA form here.
1103 rebuildSSA(F);
1104 return true;
1105 }
1106