1 //===-- SystemZISelLowering.cpp - SystemZ DAG lowering implementation -----===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the SystemZTargetLowering class. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "SystemZISelLowering.h" 15 #include "SystemZCallingConv.h" 16 #include "SystemZConstantPoolValue.h" 17 #include "SystemZMachineFunctionInfo.h" 18 #include "SystemZTargetMachine.h" 19 #include "llvm/CodeGen/CallingConvLower.h" 20 #include "llvm/CodeGen/MachineInstrBuilder.h" 21 #include "llvm/CodeGen/MachineRegisterInfo.h" 22 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" 23 #include "llvm/IR/Intrinsics.h" 24 #include <cctype> 25 26 using namespace llvm; 27 28 #define DEBUG_TYPE "systemz-lower" 29 30 namespace { 31 // Represents a sequence for extracting a 0/1 value from an IPM result: 32 // (((X ^ XORValue) + AddValue) >> Bit) 33 struct IPMConversion { 34 IPMConversion(unsigned xorValue, int64_t addValue, unsigned bit) 35 : XORValue(xorValue), AddValue(addValue), Bit(bit) {} 36 37 int64_t XORValue; 38 int64_t AddValue; 39 unsigned Bit; 40 }; 41 42 // Represents information about a comparison. 43 struct Comparison { 44 Comparison(SDValue Op0In, SDValue Op1In) 45 : Op0(Op0In), Op1(Op1In), Opcode(0), ICmpType(0), CCValid(0), CCMask(0) {} 46 47 // The operands to the comparison. 48 SDValue Op0, Op1; 49 50 // The opcode that should be used to compare Op0 and Op1. 51 unsigned Opcode; 52 53 // A SystemZICMP value. Only used for integer comparisons. 54 unsigned ICmpType; 55 56 // The mask of CC values that Opcode can produce. 57 unsigned CCValid; 58 59 // The mask of CC values for which the original condition is true. 60 unsigned CCMask; 61 }; 62 } // end anonymous namespace 63 64 // Classify VT as either 32 or 64 bit. 65 static bool is32Bit(EVT VT) { 66 switch (VT.getSimpleVT().SimpleTy) { 67 case MVT::i32: 68 return true; 69 case MVT::i64: 70 return false; 71 default: 72 llvm_unreachable("Unsupported type"); 73 } 74 } 75 76 // Return a version of MachineOperand that can be safely used before the 77 // final use. 78 static MachineOperand earlyUseOperand(MachineOperand Op) { 79 if (Op.isReg()) 80 Op.setIsKill(false); 81 return Op; 82 } 83 84 SystemZTargetLowering::SystemZTargetLowering(const TargetMachine &TM, 85 const SystemZSubtarget &STI) 86 : TargetLowering(TM), Subtarget(STI) { 87 auto &DL = *TM.getDataLayout(); 88 MVT PtrVT = getPointerTy(DL); 89 90 // Set up the register classes. 91 if (Subtarget.hasHighWord()) 92 addRegisterClass(MVT::i32, &SystemZ::GRX32BitRegClass); 93 else 94 addRegisterClass(MVT::i32, &SystemZ::GR32BitRegClass); 95 addRegisterClass(MVT::i64, &SystemZ::GR64BitRegClass); 96 if (Subtarget.hasVector()) { 97 addRegisterClass(MVT::f32, &SystemZ::VR32BitRegClass); 98 addRegisterClass(MVT::f64, &SystemZ::VR64BitRegClass); 99 } else { 100 addRegisterClass(MVT::f32, &SystemZ::FP32BitRegClass); 101 addRegisterClass(MVT::f64, &SystemZ::FP64BitRegClass); 102 } 103 addRegisterClass(MVT::f128, &SystemZ::FP128BitRegClass); 104 105 if (Subtarget.hasVector()) { 106 addRegisterClass(MVT::v16i8, &SystemZ::VR128BitRegClass); 107 addRegisterClass(MVT::v8i16, &SystemZ::VR128BitRegClass); 108 addRegisterClass(MVT::v4i32, &SystemZ::VR128BitRegClass); 109 addRegisterClass(MVT::v2i64, &SystemZ::VR128BitRegClass); 110 addRegisterClass(MVT::v4f32, &SystemZ::VR128BitRegClass); 111 addRegisterClass(MVT::v2f64, &SystemZ::VR128BitRegClass); 112 } 113 114 // Compute derived properties from the register classes 115 computeRegisterProperties(Subtarget.getRegisterInfo()); 116 117 // Set up special registers. 118 setExceptionPointerRegister(SystemZ::R6D); 119 setExceptionSelectorRegister(SystemZ::R7D); 120 setStackPointerRegisterToSaveRestore(SystemZ::R15D); 121 122 // TODO: It may be better to default to latency-oriented scheduling, however 123 // LLVM's current latency-oriented scheduler can't handle physreg definitions 124 // such as SystemZ has with CC, so set this to the register-pressure 125 // scheduler, because it can. 126 setSchedulingPreference(Sched::RegPressure); 127 128 setBooleanContents(ZeroOrOneBooleanContent); 129 setBooleanVectorContents(ZeroOrNegativeOneBooleanContent); 130 131 // Instructions are strings of 2-byte aligned 2-byte values. 132 setMinFunctionAlignment(2); 133 134 // Handle operations that are handled in a similar way for all types. 135 for (unsigned I = MVT::FIRST_INTEGER_VALUETYPE; 136 I <= MVT::LAST_FP_VALUETYPE; 137 ++I) { 138 MVT VT = MVT::SimpleValueType(I); 139 if (isTypeLegal(VT)) { 140 // Lower SET_CC into an IPM-based sequence. 141 setOperationAction(ISD::SETCC, VT, Custom); 142 143 // Expand SELECT(C, A, B) into SELECT_CC(X, 0, A, B, NE). 144 setOperationAction(ISD::SELECT, VT, Expand); 145 146 // Lower SELECT_CC and BR_CC into separate comparisons and branches. 147 setOperationAction(ISD::SELECT_CC, VT, Custom); 148 setOperationAction(ISD::BR_CC, VT, Custom); 149 } 150 } 151 152 // Expand jump table branches as address arithmetic followed by an 153 // indirect jump. 154 setOperationAction(ISD::BR_JT, MVT::Other, Expand); 155 156 // Expand BRCOND into a BR_CC (see above). 157 setOperationAction(ISD::BRCOND, MVT::Other, Expand); 158 159 // Handle integer types. 160 for (unsigned I = MVT::FIRST_INTEGER_VALUETYPE; 161 I <= MVT::LAST_INTEGER_VALUETYPE; 162 ++I) { 163 MVT VT = MVT::SimpleValueType(I); 164 if (isTypeLegal(VT)) { 165 // Expand individual DIV and REMs into DIVREMs. 166 setOperationAction(ISD::SDIV, VT, Expand); 167 setOperationAction(ISD::UDIV, VT, Expand); 168 setOperationAction(ISD::SREM, VT, Expand); 169 setOperationAction(ISD::UREM, VT, Expand); 170 setOperationAction(ISD::SDIVREM, VT, Custom); 171 setOperationAction(ISD::UDIVREM, VT, Custom); 172 173 // Lower ATOMIC_LOAD and ATOMIC_STORE into normal volatile loads and 174 // stores, putting a serialization instruction after the stores. 175 setOperationAction(ISD::ATOMIC_LOAD, VT, Custom); 176 setOperationAction(ISD::ATOMIC_STORE, VT, Custom); 177 178 // Lower ATOMIC_LOAD_SUB into ATOMIC_LOAD_ADD if LAA and LAAG are 179 // available, or if the operand is constant. 180 setOperationAction(ISD::ATOMIC_LOAD_SUB, VT, Custom); 181 182 // Use POPCNT on z196 and above. 183 if (Subtarget.hasPopulationCount()) 184 setOperationAction(ISD::CTPOP, VT, Custom); 185 else 186 setOperationAction(ISD::CTPOP, VT, Expand); 187 188 // No special instructions for these. 189 setOperationAction(ISD::CTTZ, VT, Expand); 190 setOperationAction(ISD::CTTZ_ZERO_UNDEF, VT, Expand); 191 setOperationAction(ISD::CTLZ_ZERO_UNDEF, VT, Expand); 192 setOperationAction(ISD::ROTR, VT, Expand); 193 194 // Use *MUL_LOHI where possible instead of MULH*. 195 setOperationAction(ISD::MULHS, VT, Expand); 196 setOperationAction(ISD::MULHU, VT, Expand); 197 setOperationAction(ISD::SMUL_LOHI, VT, Custom); 198 setOperationAction(ISD::UMUL_LOHI, VT, Custom); 199 200 // Only z196 and above have native support for conversions to unsigned. 201 if (!Subtarget.hasFPExtension()) 202 setOperationAction(ISD::FP_TO_UINT, VT, Expand); 203 } 204 } 205 206 // Type legalization will convert 8- and 16-bit atomic operations into 207 // forms that operate on i32s (but still keeping the original memory VT). 208 // Lower them into full i32 operations. 209 setOperationAction(ISD::ATOMIC_SWAP, MVT::i32, Custom); 210 setOperationAction(ISD::ATOMIC_LOAD_ADD, MVT::i32, Custom); 211 setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i32, Custom); 212 setOperationAction(ISD::ATOMIC_LOAD_AND, MVT::i32, Custom); 213 setOperationAction(ISD::ATOMIC_LOAD_OR, MVT::i32, Custom); 214 setOperationAction(ISD::ATOMIC_LOAD_XOR, MVT::i32, Custom); 215 setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i32, Custom); 216 setOperationAction(ISD::ATOMIC_LOAD_MIN, MVT::i32, Custom); 217 setOperationAction(ISD::ATOMIC_LOAD_MAX, MVT::i32, Custom); 218 setOperationAction(ISD::ATOMIC_LOAD_UMIN, MVT::i32, Custom); 219 setOperationAction(ISD::ATOMIC_LOAD_UMAX, MVT::i32, Custom); 220 setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i32, Custom); 221 222 // z10 has instructions for signed but not unsigned FP conversion. 223 // Handle unsigned 32-bit types as signed 64-bit types. 224 if (!Subtarget.hasFPExtension()) { 225 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Promote); 226 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand); 227 } 228 229 // We have native support for a 64-bit CTLZ, via FLOGR. 230 setOperationAction(ISD::CTLZ, MVT::i32, Promote); 231 setOperationAction(ISD::CTLZ, MVT::i64, Legal); 232 233 // Give LowerOperation the chance to replace 64-bit ORs with subregs. 234 setOperationAction(ISD::OR, MVT::i64, Custom); 235 236 // FIXME: Can we support these natively? 237 setOperationAction(ISD::SRL_PARTS, MVT::i64, Expand); 238 setOperationAction(ISD::SHL_PARTS, MVT::i64, Expand); 239 setOperationAction(ISD::SRA_PARTS, MVT::i64, Expand); 240 241 // We have native instructions for i8, i16 and i32 extensions, but not i1. 242 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 243 for (MVT VT : MVT::integer_valuetypes()) { 244 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote); 245 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote); 246 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i1, Promote); 247 } 248 249 // Handle the various types of symbolic address. 250 setOperationAction(ISD::ConstantPool, PtrVT, Custom); 251 setOperationAction(ISD::GlobalAddress, PtrVT, Custom); 252 setOperationAction(ISD::GlobalTLSAddress, PtrVT, Custom); 253 setOperationAction(ISD::BlockAddress, PtrVT, Custom); 254 setOperationAction(ISD::JumpTable, PtrVT, Custom); 255 256 // We need to handle dynamic allocations specially because of the 257 // 160-byte area at the bottom of the stack. 258 setOperationAction(ISD::DYNAMIC_STACKALLOC, PtrVT, Custom); 259 260 // Use custom expanders so that we can force the function to use 261 // a frame pointer. 262 setOperationAction(ISD::STACKSAVE, MVT::Other, Custom); 263 setOperationAction(ISD::STACKRESTORE, MVT::Other, Custom); 264 265 // Handle prefetches with PFD or PFDRL. 266 setOperationAction(ISD::PREFETCH, MVT::Other, Custom); 267 268 for (MVT VT : MVT::vector_valuetypes()) { 269 // Assume by default that all vector operations need to be expanded. 270 for (unsigned Opcode = 0; Opcode < ISD::BUILTIN_OP_END; ++Opcode) 271 if (getOperationAction(Opcode, VT) == Legal) 272 setOperationAction(Opcode, VT, Expand); 273 274 // Likewise all truncating stores and extending loads. 275 for (MVT InnerVT : MVT::vector_valuetypes()) { 276 setTruncStoreAction(VT, InnerVT, Expand); 277 setLoadExtAction(ISD::SEXTLOAD, VT, InnerVT, Expand); 278 setLoadExtAction(ISD::ZEXTLOAD, VT, InnerVT, Expand); 279 setLoadExtAction(ISD::EXTLOAD, VT, InnerVT, Expand); 280 } 281 282 if (isTypeLegal(VT)) { 283 // These operations are legal for anything that can be stored in a 284 // vector register, even if there is no native support for the format 285 // as such. In particular, we can do these for v4f32 even though there 286 // are no specific instructions for that format. 287 setOperationAction(ISD::LOAD, VT, Legal); 288 setOperationAction(ISD::STORE, VT, Legal); 289 setOperationAction(ISD::VSELECT, VT, Legal); 290 setOperationAction(ISD::BITCAST, VT, Legal); 291 setOperationAction(ISD::UNDEF, VT, Legal); 292 293 // Likewise, except that we need to replace the nodes with something 294 // more specific. 295 setOperationAction(ISD::BUILD_VECTOR, VT, Custom); 296 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom); 297 } 298 } 299 300 // Handle integer vector types. 301 for (MVT VT : MVT::integer_vector_valuetypes()) { 302 if (isTypeLegal(VT)) { 303 // These operations have direct equivalents. 304 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Legal); 305 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Legal); 306 setOperationAction(ISD::ADD, VT, Legal); 307 setOperationAction(ISD::SUB, VT, Legal); 308 if (VT != MVT::v2i64) 309 setOperationAction(ISD::MUL, VT, Legal); 310 setOperationAction(ISD::AND, VT, Legal); 311 setOperationAction(ISD::OR, VT, Legal); 312 setOperationAction(ISD::XOR, VT, Legal); 313 setOperationAction(ISD::CTPOP, VT, Custom); 314 setOperationAction(ISD::CTTZ, VT, Legal); 315 setOperationAction(ISD::CTLZ, VT, Legal); 316 setOperationAction(ISD::CTTZ_ZERO_UNDEF, VT, Custom); 317 setOperationAction(ISD::CTLZ_ZERO_UNDEF, VT, Custom); 318 319 // Convert a GPR scalar to a vector by inserting it into element 0. 320 setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Custom); 321 322 // Use a series of unpacks for extensions. 323 setOperationAction(ISD::SIGN_EXTEND_VECTOR_INREG, VT, Custom); 324 setOperationAction(ISD::ZERO_EXTEND_VECTOR_INREG, VT, Custom); 325 326 // Detect shifts by a scalar amount and convert them into 327 // V*_BY_SCALAR. 328 setOperationAction(ISD::SHL, VT, Custom); 329 setOperationAction(ISD::SRA, VT, Custom); 330 setOperationAction(ISD::SRL, VT, Custom); 331 332 // At present ROTL isn't matched by DAGCombiner. ROTR should be 333 // converted into ROTL. 334 setOperationAction(ISD::ROTL, VT, Expand); 335 setOperationAction(ISD::ROTR, VT, Expand); 336 337 // Map SETCCs onto one of VCE, VCH or VCHL, swapping the operands 338 // and inverting the result as necessary. 339 setOperationAction(ISD::SETCC, VT, Custom); 340 } 341 } 342 343 if (Subtarget.hasVector()) { 344 // There should be no need to check for float types other than v2f64 345 // since <2 x f32> isn't a legal type. 346 setOperationAction(ISD::FP_TO_SINT, MVT::v2i64, Legal); 347 setOperationAction(ISD::FP_TO_UINT, MVT::v2i64, Legal); 348 setOperationAction(ISD::SINT_TO_FP, MVT::v2i64, Legal); 349 setOperationAction(ISD::UINT_TO_FP, MVT::v2i64, Legal); 350 } 351 352 // Handle floating-point types. 353 for (unsigned I = MVT::FIRST_FP_VALUETYPE; 354 I <= MVT::LAST_FP_VALUETYPE; 355 ++I) { 356 MVT VT = MVT::SimpleValueType(I); 357 if (isTypeLegal(VT)) { 358 // We can use FI for FRINT. 359 setOperationAction(ISD::FRINT, VT, Legal); 360 361 // We can use the extended form of FI for other rounding operations. 362 if (Subtarget.hasFPExtension()) { 363 setOperationAction(ISD::FNEARBYINT, VT, Legal); 364 setOperationAction(ISD::FFLOOR, VT, Legal); 365 setOperationAction(ISD::FCEIL, VT, Legal); 366 setOperationAction(ISD::FTRUNC, VT, Legal); 367 setOperationAction(ISD::FROUND, VT, Legal); 368 } 369 370 // No special instructions for these. 371 setOperationAction(ISD::FSIN, VT, Expand); 372 setOperationAction(ISD::FCOS, VT, Expand); 373 setOperationAction(ISD::FREM, VT, Expand); 374 } 375 } 376 377 // Handle floating-point vector types. 378 if (Subtarget.hasVector()) { 379 // Scalar-to-vector conversion is just a subreg. 380 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal); 381 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2f64, Legal); 382 383 // Some insertions and extractions can be done directly but others 384 // need to go via integers. 385 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom); 386 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2f64, Custom); 387 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom); 388 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom); 389 390 // These operations have direct equivalents. 391 setOperationAction(ISD::FADD, MVT::v2f64, Legal); 392 setOperationAction(ISD::FNEG, MVT::v2f64, Legal); 393 setOperationAction(ISD::FSUB, MVT::v2f64, Legal); 394 setOperationAction(ISD::FMUL, MVT::v2f64, Legal); 395 setOperationAction(ISD::FMA, MVT::v2f64, Legal); 396 setOperationAction(ISD::FDIV, MVT::v2f64, Legal); 397 setOperationAction(ISD::FABS, MVT::v2f64, Legal); 398 setOperationAction(ISD::FSQRT, MVT::v2f64, Legal); 399 setOperationAction(ISD::FRINT, MVT::v2f64, Legal); 400 setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Legal); 401 setOperationAction(ISD::FFLOOR, MVT::v2f64, Legal); 402 setOperationAction(ISD::FCEIL, MVT::v2f64, Legal); 403 setOperationAction(ISD::FTRUNC, MVT::v2f64, Legal); 404 setOperationAction(ISD::FROUND, MVT::v2f64, Legal); 405 } 406 407 // We have fused multiply-addition for f32 and f64 but not f128. 408 setOperationAction(ISD::FMA, MVT::f32, Legal); 409 setOperationAction(ISD::FMA, MVT::f64, Legal); 410 setOperationAction(ISD::FMA, MVT::f128, Expand); 411 412 // Needed so that we don't try to implement f128 constant loads using 413 // a load-and-extend of a f80 constant (in cases where the constant 414 // would fit in an f80). 415 for (MVT VT : MVT::fp_valuetypes()) 416 setLoadExtAction(ISD::EXTLOAD, VT, MVT::f80, Expand); 417 418 // Floating-point truncation and stores need to be done separately. 419 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 420 setTruncStoreAction(MVT::f128, MVT::f32, Expand); 421 setTruncStoreAction(MVT::f128, MVT::f64, Expand); 422 423 // We have 64-bit FPR<->GPR moves, but need special handling for 424 // 32-bit forms. 425 if (!Subtarget.hasVector()) { 426 setOperationAction(ISD::BITCAST, MVT::i32, Custom); 427 setOperationAction(ISD::BITCAST, MVT::f32, Custom); 428 } 429 430 // VASTART and VACOPY need to deal with the SystemZ-specific varargs 431 // structure, but VAEND is a no-op. 432 setOperationAction(ISD::VASTART, MVT::Other, Custom); 433 setOperationAction(ISD::VACOPY, MVT::Other, Custom); 434 setOperationAction(ISD::VAEND, MVT::Other, Expand); 435 436 // Codes for which we want to perform some z-specific combinations. 437 setTargetDAGCombine(ISD::SIGN_EXTEND); 438 setTargetDAGCombine(ISD::STORE); 439 setTargetDAGCombine(ISD::EXTRACT_VECTOR_ELT); 440 setTargetDAGCombine(ISD::FP_ROUND); 441 442 // Handle intrinsics. 443 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom); 444 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); 445 446 // We want to use MVC in preference to even a single load/store pair. 447 MaxStoresPerMemcpy = 0; 448 MaxStoresPerMemcpyOptSize = 0; 449 450 // The main memset sequence is a byte store followed by an MVC. 451 // Two STC or MV..I stores win over that, but the kind of fused stores 452 // generated by target-independent code don't when the byte value is 453 // variable. E.g. "STC <reg>;MHI <reg>,257;STH <reg>" is not better 454 // than "STC;MVC". Handle the choice in target-specific code instead. 455 MaxStoresPerMemset = 0; 456 MaxStoresPerMemsetOptSize = 0; 457 } 458 459 EVT SystemZTargetLowering::getSetCCResultType(const DataLayout &DL, 460 LLVMContext &, EVT VT) const { 461 if (!VT.isVector()) 462 return MVT::i32; 463 return VT.changeVectorElementTypeToInteger(); 464 } 465 466 bool SystemZTargetLowering::isFMAFasterThanFMulAndFAdd(EVT VT) const { 467 VT = VT.getScalarType(); 468 469 if (!VT.isSimple()) 470 return false; 471 472 switch (VT.getSimpleVT().SimpleTy) { 473 case MVT::f32: 474 case MVT::f64: 475 return true; 476 case MVT::f128: 477 return false; 478 default: 479 break; 480 } 481 482 return false; 483 } 484 485 bool SystemZTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const { 486 // We can load zero using LZ?R and negative zero using LZ?R;LC?BR. 487 return Imm.isZero() || Imm.isNegZero(); 488 } 489 490 bool SystemZTargetLowering::isLegalICmpImmediate(int64_t Imm) const { 491 // We can use CGFI or CLGFI. 492 return isInt<32>(Imm) || isUInt<32>(Imm); 493 } 494 495 bool SystemZTargetLowering::isLegalAddImmediate(int64_t Imm) const { 496 // We can use ALGFI or SLGFI. 497 return isUInt<32>(Imm) || isUInt<32>(-Imm); 498 } 499 500 bool SystemZTargetLowering::allowsMisalignedMemoryAccesses(EVT VT, 501 unsigned, 502 unsigned, 503 bool *Fast) const { 504 // Unaligned accesses should never be slower than the expanded version. 505 // We check specifically for aligned accesses in the few cases where 506 // they are required. 507 if (Fast) 508 *Fast = true; 509 return true; 510 } 511 512 bool SystemZTargetLowering::isLegalAddressingMode(const DataLayout &DL, 513 const AddrMode &AM, Type *Ty, 514 unsigned AS) const { 515 // Punt on globals for now, although they can be used in limited 516 // RELATIVE LONG cases. 517 if (AM.BaseGV) 518 return false; 519 520 // Require a 20-bit signed offset. 521 if (!isInt<20>(AM.BaseOffs)) 522 return false; 523 524 // Indexing is OK but no scale factor can be applied. 525 return AM.Scale == 0 || AM.Scale == 1; 526 } 527 528 bool SystemZTargetLowering::isTruncateFree(Type *FromType, Type *ToType) const { 529 if (!FromType->isIntegerTy() || !ToType->isIntegerTy()) 530 return false; 531 unsigned FromBits = FromType->getPrimitiveSizeInBits(); 532 unsigned ToBits = ToType->getPrimitiveSizeInBits(); 533 return FromBits > ToBits; 534 } 535 536 bool SystemZTargetLowering::isTruncateFree(EVT FromVT, EVT ToVT) const { 537 if (!FromVT.isInteger() || !ToVT.isInteger()) 538 return false; 539 unsigned FromBits = FromVT.getSizeInBits(); 540 unsigned ToBits = ToVT.getSizeInBits(); 541 return FromBits > ToBits; 542 } 543 544 //===----------------------------------------------------------------------===// 545 // Inline asm support 546 //===----------------------------------------------------------------------===// 547 548 TargetLowering::ConstraintType 549 SystemZTargetLowering::getConstraintType(StringRef Constraint) const { 550 if (Constraint.size() == 1) { 551 switch (Constraint[0]) { 552 case 'a': // Address register 553 case 'd': // Data register (equivalent to 'r') 554 case 'f': // Floating-point register 555 case 'h': // High-part register 556 case 'r': // General-purpose register 557 return C_RegisterClass; 558 559 case 'Q': // Memory with base and unsigned 12-bit displacement 560 case 'R': // Likewise, plus an index 561 case 'S': // Memory with base and signed 20-bit displacement 562 case 'T': // Likewise, plus an index 563 case 'm': // Equivalent to 'T'. 564 return C_Memory; 565 566 case 'I': // Unsigned 8-bit constant 567 case 'J': // Unsigned 12-bit constant 568 case 'K': // Signed 16-bit constant 569 case 'L': // Signed 20-bit displacement (on all targets we support) 570 case 'M': // 0x7fffffff 571 return C_Other; 572 573 default: 574 break; 575 } 576 } 577 return TargetLowering::getConstraintType(Constraint); 578 } 579 580 TargetLowering::ConstraintWeight SystemZTargetLowering:: 581 getSingleConstraintMatchWeight(AsmOperandInfo &info, 582 const char *constraint) const { 583 ConstraintWeight weight = CW_Invalid; 584 Value *CallOperandVal = info.CallOperandVal; 585 // If we don't have a value, we can't do a match, 586 // but allow it at the lowest weight. 587 if (!CallOperandVal) 588 return CW_Default; 589 Type *type = CallOperandVal->getType(); 590 // Look at the constraint type. 591 switch (*constraint) { 592 default: 593 weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint); 594 break; 595 596 case 'a': // Address register 597 case 'd': // Data register (equivalent to 'r') 598 case 'h': // High-part register 599 case 'r': // General-purpose register 600 if (CallOperandVal->getType()->isIntegerTy()) 601 weight = CW_Register; 602 break; 603 604 case 'f': // Floating-point register 605 if (type->isFloatingPointTy()) 606 weight = CW_Register; 607 break; 608 609 case 'I': // Unsigned 8-bit constant 610 if (auto *C = dyn_cast<ConstantInt>(CallOperandVal)) 611 if (isUInt<8>(C->getZExtValue())) 612 weight = CW_Constant; 613 break; 614 615 case 'J': // Unsigned 12-bit constant 616 if (auto *C = dyn_cast<ConstantInt>(CallOperandVal)) 617 if (isUInt<12>(C->getZExtValue())) 618 weight = CW_Constant; 619 break; 620 621 case 'K': // Signed 16-bit constant 622 if (auto *C = dyn_cast<ConstantInt>(CallOperandVal)) 623 if (isInt<16>(C->getSExtValue())) 624 weight = CW_Constant; 625 break; 626 627 case 'L': // Signed 20-bit displacement (on all targets we support) 628 if (auto *C = dyn_cast<ConstantInt>(CallOperandVal)) 629 if (isInt<20>(C->getSExtValue())) 630 weight = CW_Constant; 631 break; 632 633 case 'M': // 0x7fffffff 634 if (auto *C = dyn_cast<ConstantInt>(CallOperandVal)) 635 if (C->getZExtValue() == 0x7fffffff) 636 weight = CW_Constant; 637 break; 638 } 639 return weight; 640 } 641 642 // Parse a "{tNNN}" register constraint for which the register type "t" 643 // has already been verified. MC is the class associated with "t" and 644 // Map maps 0-based register numbers to LLVM register numbers. 645 static std::pair<unsigned, const TargetRegisterClass *> 646 parseRegisterNumber(StringRef Constraint, const TargetRegisterClass *RC, 647 const unsigned *Map) { 648 assert(*(Constraint.end()-1) == '}' && "Missing '}'"); 649 if (isdigit(Constraint[2])) { 650 unsigned Index; 651 bool Failed = 652 Constraint.slice(2, Constraint.size() - 1).getAsInteger(10, Index); 653 if (!Failed && Index < 16 && Map[Index]) 654 return std::make_pair(Map[Index], RC); 655 } 656 return std::make_pair(0U, nullptr); 657 } 658 659 std::pair<unsigned, const TargetRegisterClass *> 660 SystemZTargetLowering::getRegForInlineAsmConstraint( 661 const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const { 662 if (Constraint.size() == 1) { 663 // GCC Constraint Letters 664 switch (Constraint[0]) { 665 default: break; 666 case 'd': // Data register (equivalent to 'r') 667 case 'r': // General-purpose register 668 if (VT == MVT::i64) 669 return std::make_pair(0U, &SystemZ::GR64BitRegClass); 670 else if (VT == MVT::i128) 671 return std::make_pair(0U, &SystemZ::GR128BitRegClass); 672 return std::make_pair(0U, &SystemZ::GR32BitRegClass); 673 674 case 'a': // Address register 675 if (VT == MVT::i64) 676 return std::make_pair(0U, &SystemZ::ADDR64BitRegClass); 677 else if (VT == MVT::i128) 678 return std::make_pair(0U, &SystemZ::ADDR128BitRegClass); 679 return std::make_pair(0U, &SystemZ::ADDR32BitRegClass); 680 681 case 'h': // High-part register (an LLVM extension) 682 return std::make_pair(0U, &SystemZ::GRH32BitRegClass); 683 684 case 'f': // Floating-point register 685 if (VT == MVT::f64) 686 return std::make_pair(0U, &SystemZ::FP64BitRegClass); 687 else if (VT == MVT::f128) 688 return std::make_pair(0U, &SystemZ::FP128BitRegClass); 689 return std::make_pair(0U, &SystemZ::FP32BitRegClass); 690 } 691 } 692 if (Constraint.size() > 0 && Constraint[0] == '{') { 693 // We need to override the default register parsing for GPRs and FPRs 694 // because the interpretation depends on VT. The internal names of 695 // the registers are also different from the external names 696 // (F0D and F0S instead of F0, etc.). 697 if (Constraint[1] == 'r') { 698 if (VT == MVT::i32) 699 return parseRegisterNumber(Constraint, &SystemZ::GR32BitRegClass, 700 SystemZMC::GR32Regs); 701 if (VT == MVT::i128) 702 return parseRegisterNumber(Constraint, &SystemZ::GR128BitRegClass, 703 SystemZMC::GR128Regs); 704 return parseRegisterNumber(Constraint, &SystemZ::GR64BitRegClass, 705 SystemZMC::GR64Regs); 706 } 707 if (Constraint[1] == 'f') { 708 if (VT == MVT::f32) 709 return parseRegisterNumber(Constraint, &SystemZ::FP32BitRegClass, 710 SystemZMC::FP32Regs); 711 if (VT == MVT::f128) 712 return parseRegisterNumber(Constraint, &SystemZ::FP128BitRegClass, 713 SystemZMC::FP128Regs); 714 return parseRegisterNumber(Constraint, &SystemZ::FP64BitRegClass, 715 SystemZMC::FP64Regs); 716 } 717 } 718 return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); 719 } 720 721 void SystemZTargetLowering:: 722 LowerAsmOperandForConstraint(SDValue Op, std::string &Constraint, 723 std::vector<SDValue> &Ops, 724 SelectionDAG &DAG) const { 725 // Only support length 1 constraints for now. 726 if (Constraint.length() == 1) { 727 switch (Constraint[0]) { 728 case 'I': // Unsigned 8-bit constant 729 if (auto *C = dyn_cast<ConstantSDNode>(Op)) 730 if (isUInt<8>(C->getZExtValue())) 731 Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op), 732 Op.getValueType())); 733 return; 734 735 case 'J': // Unsigned 12-bit constant 736 if (auto *C = dyn_cast<ConstantSDNode>(Op)) 737 if (isUInt<12>(C->getZExtValue())) 738 Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op), 739 Op.getValueType())); 740 return; 741 742 case 'K': // Signed 16-bit constant 743 if (auto *C = dyn_cast<ConstantSDNode>(Op)) 744 if (isInt<16>(C->getSExtValue())) 745 Ops.push_back(DAG.getTargetConstant(C->getSExtValue(), SDLoc(Op), 746 Op.getValueType())); 747 return; 748 749 case 'L': // Signed 20-bit displacement (on all targets we support) 750 if (auto *C = dyn_cast<ConstantSDNode>(Op)) 751 if (isInt<20>(C->getSExtValue())) 752 Ops.push_back(DAG.getTargetConstant(C->getSExtValue(), SDLoc(Op), 753 Op.getValueType())); 754 return; 755 756 case 'M': // 0x7fffffff 757 if (auto *C = dyn_cast<ConstantSDNode>(Op)) 758 if (C->getZExtValue() == 0x7fffffff) 759 Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op), 760 Op.getValueType())); 761 return; 762 } 763 } 764 TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG); 765 } 766 767 //===----------------------------------------------------------------------===// 768 // Calling conventions 769 //===----------------------------------------------------------------------===// 770 771 #include "SystemZGenCallingConv.inc" 772 773 bool SystemZTargetLowering::allowTruncateForTailCall(Type *FromType, 774 Type *ToType) const { 775 return isTruncateFree(FromType, ToType); 776 } 777 778 bool SystemZTargetLowering::mayBeEmittedAsTailCall(CallInst *CI) const { 779 if (!CI->isTailCall()) 780 return false; 781 return true; 782 } 783 784 // We do not yet support 128-bit single-element vector types. If the user 785 // attempts to use such types as function argument or return type, prefer 786 // to error out instead of emitting code violating the ABI. 787 static void VerifyVectorType(MVT VT, EVT ArgVT) { 788 if (ArgVT.isVector() && !VT.isVector()) 789 report_fatal_error("Unsupported vector argument or return type"); 790 } 791 792 static void VerifyVectorTypes(const SmallVectorImpl<ISD::InputArg> &Ins) { 793 for (unsigned i = 0; i < Ins.size(); ++i) 794 VerifyVectorType(Ins[i].VT, Ins[i].ArgVT); 795 } 796 797 static void VerifyVectorTypes(const SmallVectorImpl<ISD::OutputArg> &Outs) { 798 for (unsigned i = 0; i < Outs.size(); ++i) 799 VerifyVectorType(Outs[i].VT, Outs[i].ArgVT); 800 } 801 802 // Value is a value that has been passed to us in the location described by VA 803 // (and so has type VA.getLocVT()). Convert Value to VA.getValVT(), chaining 804 // any loads onto Chain. 805 static SDValue convertLocVTToValVT(SelectionDAG &DAG, SDLoc DL, 806 CCValAssign &VA, SDValue Chain, 807 SDValue Value) { 808 // If the argument has been promoted from a smaller type, insert an 809 // assertion to capture this. 810 if (VA.getLocInfo() == CCValAssign::SExt) 811 Value = DAG.getNode(ISD::AssertSext, DL, VA.getLocVT(), Value, 812 DAG.getValueType(VA.getValVT())); 813 else if (VA.getLocInfo() == CCValAssign::ZExt) 814 Value = DAG.getNode(ISD::AssertZext, DL, VA.getLocVT(), Value, 815 DAG.getValueType(VA.getValVT())); 816 817 if (VA.isExtInLoc()) 818 Value = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Value); 819 else if (VA.getLocInfo() == CCValAssign::Indirect) 820 Value = DAG.getLoad(VA.getValVT(), DL, Chain, Value, 821 MachinePointerInfo(), false, false, false, 0); 822 else if (VA.getLocInfo() == CCValAssign::BCvt) { 823 // If this is a short vector argument loaded from the stack, 824 // extend from i64 to full vector size and then bitcast. 825 assert(VA.getLocVT() == MVT::i64); 826 assert(VA.getValVT().isVector()); 827 Value = DAG.getNode(ISD::BUILD_VECTOR, DL, MVT::v2i64, 828 Value, DAG.getUNDEF(MVT::i64)); 829 Value = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Value); 830 } else 831 assert(VA.getLocInfo() == CCValAssign::Full && "Unsupported getLocInfo"); 832 return Value; 833 } 834 835 // Value is a value of type VA.getValVT() that we need to copy into 836 // the location described by VA. Return a copy of Value converted to 837 // VA.getValVT(). The caller is responsible for handling indirect values. 838 static SDValue convertValVTToLocVT(SelectionDAG &DAG, SDLoc DL, 839 CCValAssign &VA, SDValue Value) { 840 switch (VA.getLocInfo()) { 841 case CCValAssign::SExt: 842 return DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Value); 843 case CCValAssign::ZExt: 844 return DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Value); 845 case CCValAssign::AExt: 846 return DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Value); 847 case CCValAssign::BCvt: 848 // If this is a short vector argument to be stored to the stack, 849 // bitcast to v2i64 and then extract first element. 850 assert(VA.getLocVT() == MVT::i64); 851 assert(VA.getValVT().isVector()); 852 Value = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Value); 853 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VA.getLocVT(), Value, 854 DAG.getConstant(0, DL, MVT::i32)); 855 case CCValAssign::Full: 856 return Value; 857 default: 858 llvm_unreachable("Unhandled getLocInfo()"); 859 } 860 } 861 862 SDValue SystemZTargetLowering:: 863 LowerFormalArguments(SDValue Chain, CallingConv::ID CallConv, bool IsVarArg, 864 const SmallVectorImpl<ISD::InputArg> &Ins, 865 SDLoc DL, SelectionDAG &DAG, 866 SmallVectorImpl<SDValue> &InVals) const { 867 MachineFunction &MF = DAG.getMachineFunction(); 868 MachineFrameInfo *MFI = MF.getFrameInfo(); 869 MachineRegisterInfo &MRI = MF.getRegInfo(); 870 SystemZMachineFunctionInfo *FuncInfo = 871 MF.getInfo<SystemZMachineFunctionInfo>(); 872 auto *TFL = 873 static_cast<const SystemZFrameLowering *>(Subtarget.getFrameLowering()); 874 875 // Detect unsupported vector argument types. 876 if (Subtarget.hasVector()) 877 VerifyVectorTypes(Ins); 878 879 // Assign locations to all of the incoming arguments. 880 SmallVector<CCValAssign, 16> ArgLocs; 881 SystemZCCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 882 CCInfo.AnalyzeFormalArguments(Ins, CC_SystemZ); 883 884 unsigned NumFixedGPRs = 0; 885 unsigned NumFixedFPRs = 0; 886 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) { 887 SDValue ArgValue; 888 CCValAssign &VA = ArgLocs[I]; 889 EVT LocVT = VA.getLocVT(); 890 if (VA.isRegLoc()) { 891 // Arguments passed in registers 892 const TargetRegisterClass *RC; 893 switch (LocVT.getSimpleVT().SimpleTy) { 894 default: 895 // Integers smaller than i64 should be promoted to i64. 896 llvm_unreachable("Unexpected argument type"); 897 case MVT::i32: 898 NumFixedGPRs += 1; 899 RC = &SystemZ::GR32BitRegClass; 900 break; 901 case MVT::i64: 902 NumFixedGPRs += 1; 903 RC = &SystemZ::GR64BitRegClass; 904 break; 905 case MVT::f32: 906 NumFixedFPRs += 1; 907 RC = &SystemZ::FP32BitRegClass; 908 break; 909 case MVT::f64: 910 NumFixedFPRs += 1; 911 RC = &SystemZ::FP64BitRegClass; 912 break; 913 case MVT::v16i8: 914 case MVT::v8i16: 915 case MVT::v4i32: 916 case MVT::v2i64: 917 case MVT::v4f32: 918 case MVT::v2f64: 919 RC = &SystemZ::VR128BitRegClass; 920 break; 921 } 922 923 unsigned VReg = MRI.createVirtualRegister(RC); 924 MRI.addLiveIn(VA.getLocReg(), VReg); 925 ArgValue = DAG.getCopyFromReg(Chain, DL, VReg, LocVT); 926 } else { 927 assert(VA.isMemLoc() && "Argument not register or memory"); 928 929 // Create the frame index object for this incoming parameter. 930 int FI = MFI->CreateFixedObject(LocVT.getSizeInBits() / 8, 931 VA.getLocMemOffset(), true); 932 933 // Create the SelectionDAG nodes corresponding to a load 934 // from this parameter. Unpromoted ints and floats are 935 // passed as right-justified 8-byte values. 936 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 937 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 938 if (VA.getLocVT() == MVT::i32 || VA.getLocVT() == MVT::f32) 939 FIN = DAG.getNode(ISD::ADD, DL, PtrVT, FIN, 940 DAG.getIntPtrConstant(4, DL)); 941 ArgValue = DAG.getLoad(LocVT, DL, Chain, FIN, 942 MachinePointerInfo::getFixedStack(FI), 943 false, false, false, 0); 944 } 945 946 // Convert the value of the argument register into the value that's 947 // being passed. 948 InVals.push_back(convertLocVTToValVT(DAG, DL, VA, Chain, ArgValue)); 949 } 950 951 if (IsVarArg) { 952 // Save the number of non-varargs registers for later use by va_start, etc. 953 FuncInfo->setVarArgsFirstGPR(NumFixedGPRs); 954 FuncInfo->setVarArgsFirstFPR(NumFixedFPRs); 955 956 // Likewise the address (in the form of a frame index) of where the 957 // first stack vararg would be. The 1-byte size here is arbitrary. 958 int64_t StackSize = CCInfo.getNextStackOffset(); 959 FuncInfo->setVarArgsFrameIndex(MFI->CreateFixedObject(1, StackSize, true)); 960 961 // ...and a similar frame index for the caller-allocated save area 962 // that will be used to store the incoming registers. 963 int64_t RegSaveOffset = TFL->getOffsetOfLocalArea(); 964 unsigned RegSaveIndex = MFI->CreateFixedObject(1, RegSaveOffset, true); 965 FuncInfo->setRegSaveFrameIndex(RegSaveIndex); 966 967 // Store the FPR varargs in the reserved frame slots. (We store the 968 // GPRs as part of the prologue.) 969 if (NumFixedFPRs < SystemZ::NumArgFPRs) { 970 SDValue MemOps[SystemZ::NumArgFPRs]; 971 for (unsigned I = NumFixedFPRs; I < SystemZ::NumArgFPRs; ++I) { 972 unsigned Offset = TFL->getRegSpillOffset(SystemZ::ArgFPRs[I]); 973 int FI = MFI->CreateFixedObject(8, RegSaveOffset + Offset, true); 974 SDValue FIN = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout())); 975 unsigned VReg = MF.addLiveIn(SystemZ::ArgFPRs[I], 976 &SystemZ::FP64BitRegClass); 977 SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, VReg, MVT::f64); 978 MemOps[I] = DAG.getStore(ArgValue.getValue(1), DL, ArgValue, FIN, 979 MachinePointerInfo::getFixedStack(FI), 980 false, false, 0); 981 982 } 983 // Join the stores, which are independent of one another. 984 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, 985 makeArrayRef(&MemOps[NumFixedFPRs], 986 SystemZ::NumArgFPRs-NumFixedFPRs)); 987 } 988 } 989 990 return Chain; 991 } 992 993 static bool canUseSiblingCall(const CCState &ArgCCInfo, 994 SmallVectorImpl<CCValAssign> &ArgLocs) { 995 // Punt if there are any indirect or stack arguments, or if the call 996 // needs the call-saved argument register R6. 997 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) { 998 CCValAssign &VA = ArgLocs[I]; 999 if (VA.getLocInfo() == CCValAssign::Indirect) 1000 return false; 1001 if (!VA.isRegLoc()) 1002 return false; 1003 unsigned Reg = VA.getLocReg(); 1004 if (Reg == SystemZ::R6H || Reg == SystemZ::R6L || Reg == SystemZ::R6D) 1005 return false; 1006 } 1007 return true; 1008 } 1009 1010 SDValue 1011 SystemZTargetLowering::LowerCall(CallLoweringInfo &CLI, 1012 SmallVectorImpl<SDValue> &InVals) const { 1013 SelectionDAG &DAG = CLI.DAG; 1014 SDLoc &DL = CLI.DL; 1015 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs; 1016 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals; 1017 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins; 1018 SDValue Chain = CLI.Chain; 1019 SDValue Callee = CLI.Callee; 1020 bool &IsTailCall = CLI.IsTailCall; 1021 CallingConv::ID CallConv = CLI.CallConv; 1022 bool IsVarArg = CLI.IsVarArg; 1023 MachineFunction &MF = DAG.getMachineFunction(); 1024 EVT PtrVT = getPointerTy(MF.getDataLayout()); 1025 1026 // Detect unsupported vector argument and return types. 1027 if (Subtarget.hasVector()) { 1028 VerifyVectorTypes(Outs); 1029 VerifyVectorTypes(Ins); 1030 } 1031 1032 // Analyze the operands of the call, assigning locations to each operand. 1033 SmallVector<CCValAssign, 16> ArgLocs; 1034 SystemZCCState ArgCCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 1035 ArgCCInfo.AnalyzeCallOperands(Outs, CC_SystemZ); 1036 1037 // We don't support GuaranteedTailCallOpt, only automatically-detected 1038 // sibling calls. 1039 if (IsTailCall && !canUseSiblingCall(ArgCCInfo, ArgLocs)) 1040 IsTailCall = false; 1041 1042 // Get a count of how many bytes are to be pushed on the stack. 1043 unsigned NumBytes = ArgCCInfo.getNextStackOffset(); 1044 1045 // Mark the start of the call. 1046 if (!IsTailCall) 1047 Chain = DAG.getCALLSEQ_START(Chain, 1048 DAG.getConstant(NumBytes, DL, PtrVT, true), 1049 DL); 1050 1051 // Copy argument values to their designated locations. 1052 SmallVector<std::pair<unsigned, SDValue>, 9> RegsToPass; 1053 SmallVector<SDValue, 8> MemOpChains; 1054 SDValue StackPtr; 1055 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) { 1056 CCValAssign &VA = ArgLocs[I]; 1057 SDValue ArgValue = OutVals[I]; 1058 1059 if (VA.getLocInfo() == CCValAssign::Indirect) { 1060 // Store the argument in a stack slot and pass its address. 1061 SDValue SpillSlot = DAG.CreateStackTemporary(VA.getValVT()); 1062 int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex(); 1063 MemOpChains.push_back(DAG.getStore(Chain, DL, ArgValue, SpillSlot, 1064 MachinePointerInfo::getFixedStack(FI), 1065 false, false, 0)); 1066 ArgValue = SpillSlot; 1067 } else 1068 ArgValue = convertValVTToLocVT(DAG, DL, VA, ArgValue); 1069 1070 if (VA.isRegLoc()) 1071 // Queue up the argument copies and emit them at the end. 1072 RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgValue)); 1073 else { 1074 assert(VA.isMemLoc() && "Argument not register or memory"); 1075 1076 // Work out the address of the stack slot. Unpromoted ints and 1077 // floats are passed as right-justified 8-byte values. 1078 if (!StackPtr.getNode()) 1079 StackPtr = DAG.getCopyFromReg(Chain, DL, SystemZ::R15D, PtrVT); 1080 unsigned Offset = SystemZMC::CallFrameSize + VA.getLocMemOffset(); 1081 if (VA.getLocVT() == MVT::i32 || VA.getLocVT() == MVT::f32) 1082 Offset += 4; 1083 SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, 1084 DAG.getIntPtrConstant(Offset, DL)); 1085 1086 // Emit the store. 1087 MemOpChains.push_back(DAG.getStore(Chain, DL, ArgValue, Address, 1088 MachinePointerInfo(), 1089 false, false, 0)); 1090 } 1091 } 1092 1093 // Join the stores, which are independent of one another. 1094 if (!MemOpChains.empty()) 1095 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains); 1096 1097 // Accept direct calls by converting symbolic call addresses to the 1098 // associated Target* opcodes. Force %r1 to be used for indirect 1099 // tail calls. 1100 SDValue Glue; 1101 if (auto *G = dyn_cast<GlobalAddressSDNode>(Callee)) { 1102 Callee = DAG.getTargetGlobalAddress(G->getGlobal(), DL, PtrVT); 1103 Callee = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Callee); 1104 } else if (auto *E = dyn_cast<ExternalSymbolSDNode>(Callee)) { 1105 Callee = DAG.getTargetExternalSymbol(E->getSymbol(), PtrVT); 1106 Callee = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Callee); 1107 } else if (IsTailCall) { 1108 Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R1D, Callee, Glue); 1109 Glue = Chain.getValue(1); 1110 Callee = DAG.getRegister(SystemZ::R1D, Callee.getValueType()); 1111 } 1112 1113 // Build a sequence of copy-to-reg nodes, chained and glued together. 1114 for (unsigned I = 0, E = RegsToPass.size(); I != E; ++I) { 1115 Chain = DAG.getCopyToReg(Chain, DL, RegsToPass[I].first, 1116 RegsToPass[I].second, Glue); 1117 Glue = Chain.getValue(1); 1118 } 1119 1120 // The first call operand is the chain and the second is the target address. 1121 SmallVector<SDValue, 8> Ops; 1122 Ops.push_back(Chain); 1123 Ops.push_back(Callee); 1124 1125 // Add argument registers to the end of the list so that they are 1126 // known live into the call. 1127 for (unsigned I = 0, E = RegsToPass.size(); I != E; ++I) 1128 Ops.push_back(DAG.getRegister(RegsToPass[I].first, 1129 RegsToPass[I].second.getValueType())); 1130 1131 // Add a register mask operand representing the call-preserved registers. 1132 const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo(); 1133 const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv); 1134 assert(Mask && "Missing call preserved mask for calling convention"); 1135 Ops.push_back(DAG.getRegisterMask(Mask)); 1136 1137 // Glue the call to the argument copies, if any. 1138 if (Glue.getNode()) 1139 Ops.push_back(Glue); 1140 1141 // Emit the call. 1142 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 1143 if (IsTailCall) 1144 return DAG.getNode(SystemZISD::SIBCALL, DL, NodeTys, Ops); 1145 Chain = DAG.getNode(SystemZISD::CALL, DL, NodeTys, Ops); 1146 Glue = Chain.getValue(1); 1147 1148 // Mark the end of the call, which is glued to the call itself. 1149 Chain = DAG.getCALLSEQ_END(Chain, 1150 DAG.getConstant(NumBytes, DL, PtrVT, true), 1151 DAG.getConstant(0, DL, PtrVT, true), 1152 Glue, DL); 1153 Glue = Chain.getValue(1); 1154 1155 // Assign locations to each value returned by this call. 1156 SmallVector<CCValAssign, 16> RetLocs; 1157 CCState RetCCInfo(CallConv, IsVarArg, MF, RetLocs, *DAG.getContext()); 1158 RetCCInfo.AnalyzeCallResult(Ins, RetCC_SystemZ); 1159 1160 // Copy all of the result registers out of their specified physreg. 1161 for (unsigned I = 0, E = RetLocs.size(); I != E; ++I) { 1162 CCValAssign &VA = RetLocs[I]; 1163 1164 // Copy the value out, gluing the copy to the end of the call sequence. 1165 SDValue RetValue = DAG.getCopyFromReg(Chain, DL, VA.getLocReg(), 1166 VA.getLocVT(), Glue); 1167 Chain = RetValue.getValue(1); 1168 Glue = RetValue.getValue(2); 1169 1170 // Convert the value of the return register into the value that's 1171 // being returned. 1172 InVals.push_back(convertLocVTToValVT(DAG, DL, VA, Chain, RetValue)); 1173 } 1174 1175 return Chain; 1176 } 1177 1178 bool SystemZTargetLowering:: 1179 CanLowerReturn(CallingConv::ID CallConv, 1180 MachineFunction &MF, bool isVarArg, 1181 const SmallVectorImpl<ISD::OutputArg> &Outs, 1182 LLVMContext &Context) const { 1183 // Detect unsupported vector return types. 1184 if (Subtarget.hasVector()) 1185 VerifyVectorTypes(Outs); 1186 1187 SmallVector<CCValAssign, 16> RetLocs; 1188 CCState RetCCInfo(CallConv, isVarArg, MF, RetLocs, Context); 1189 return RetCCInfo.CheckReturn(Outs, RetCC_SystemZ); 1190 } 1191 1192 SDValue 1193 SystemZTargetLowering::LowerReturn(SDValue Chain, 1194 CallingConv::ID CallConv, bool IsVarArg, 1195 const SmallVectorImpl<ISD::OutputArg> &Outs, 1196 const SmallVectorImpl<SDValue> &OutVals, 1197 SDLoc DL, SelectionDAG &DAG) const { 1198 MachineFunction &MF = DAG.getMachineFunction(); 1199 1200 // Detect unsupported vector return types. 1201 if (Subtarget.hasVector()) 1202 VerifyVectorTypes(Outs); 1203 1204 // Assign locations to each returned value. 1205 SmallVector<CCValAssign, 16> RetLocs; 1206 CCState RetCCInfo(CallConv, IsVarArg, MF, RetLocs, *DAG.getContext()); 1207 RetCCInfo.AnalyzeReturn(Outs, RetCC_SystemZ); 1208 1209 // Quick exit for void returns 1210 if (RetLocs.empty()) 1211 return DAG.getNode(SystemZISD::RET_FLAG, DL, MVT::Other, Chain); 1212 1213 // Copy the result values into the output registers. 1214 SDValue Glue; 1215 SmallVector<SDValue, 4> RetOps; 1216 RetOps.push_back(Chain); 1217 for (unsigned I = 0, E = RetLocs.size(); I != E; ++I) { 1218 CCValAssign &VA = RetLocs[I]; 1219 SDValue RetValue = OutVals[I]; 1220 1221 // Make the return register live on exit. 1222 assert(VA.isRegLoc() && "Can only return in registers!"); 1223 1224 // Promote the value as required. 1225 RetValue = convertValVTToLocVT(DAG, DL, VA, RetValue); 1226 1227 // Chain and glue the copies together. 1228 unsigned Reg = VA.getLocReg(); 1229 Chain = DAG.getCopyToReg(Chain, DL, Reg, RetValue, Glue); 1230 Glue = Chain.getValue(1); 1231 RetOps.push_back(DAG.getRegister(Reg, VA.getLocVT())); 1232 } 1233 1234 // Update chain and glue. 1235 RetOps[0] = Chain; 1236 if (Glue.getNode()) 1237 RetOps.push_back(Glue); 1238 1239 return DAG.getNode(SystemZISD::RET_FLAG, DL, MVT::Other, RetOps); 1240 } 1241 1242 SDValue SystemZTargetLowering:: 1243 prepareVolatileOrAtomicLoad(SDValue Chain, SDLoc DL, SelectionDAG &DAG) const { 1244 return DAG.getNode(SystemZISD::SERIALIZE, DL, MVT::Other, Chain); 1245 } 1246 1247 // Return true if Op is an intrinsic node with chain that returns the CC value 1248 // as its only (other) argument. Provide the associated SystemZISD opcode and 1249 // the mask of valid CC values if so. 1250 static bool isIntrinsicWithCCAndChain(SDValue Op, unsigned &Opcode, 1251 unsigned &CCValid) { 1252 unsigned Id = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); 1253 switch (Id) { 1254 case Intrinsic::s390_tbegin: 1255 Opcode = SystemZISD::TBEGIN; 1256 CCValid = SystemZ::CCMASK_TBEGIN; 1257 return true; 1258 1259 case Intrinsic::s390_tbegin_nofloat: 1260 Opcode = SystemZISD::TBEGIN_NOFLOAT; 1261 CCValid = SystemZ::CCMASK_TBEGIN; 1262 return true; 1263 1264 case Intrinsic::s390_tend: 1265 Opcode = SystemZISD::TEND; 1266 CCValid = SystemZ::CCMASK_TEND; 1267 return true; 1268 1269 default: 1270 return false; 1271 } 1272 } 1273 1274 // Return true if Op is an intrinsic node without chain that returns the 1275 // CC value as its final argument. Provide the associated SystemZISD 1276 // opcode and the mask of valid CC values if so. 1277 static bool isIntrinsicWithCC(SDValue Op, unsigned &Opcode, unsigned &CCValid) { 1278 unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 1279 switch (Id) { 1280 case Intrinsic::s390_vpkshs: 1281 case Intrinsic::s390_vpksfs: 1282 case Intrinsic::s390_vpksgs: 1283 Opcode = SystemZISD::PACKS_CC; 1284 CCValid = SystemZ::CCMASK_VCMP; 1285 return true; 1286 1287 case Intrinsic::s390_vpklshs: 1288 case Intrinsic::s390_vpklsfs: 1289 case Intrinsic::s390_vpklsgs: 1290 Opcode = SystemZISD::PACKLS_CC; 1291 CCValid = SystemZ::CCMASK_VCMP; 1292 return true; 1293 1294 case Intrinsic::s390_vceqbs: 1295 case Intrinsic::s390_vceqhs: 1296 case Intrinsic::s390_vceqfs: 1297 case Intrinsic::s390_vceqgs: 1298 Opcode = SystemZISD::VICMPES; 1299 CCValid = SystemZ::CCMASK_VCMP; 1300 return true; 1301 1302 case Intrinsic::s390_vchbs: 1303 case Intrinsic::s390_vchhs: 1304 case Intrinsic::s390_vchfs: 1305 case Intrinsic::s390_vchgs: 1306 Opcode = SystemZISD::VICMPHS; 1307 CCValid = SystemZ::CCMASK_VCMP; 1308 return true; 1309 1310 case Intrinsic::s390_vchlbs: 1311 case Intrinsic::s390_vchlhs: 1312 case Intrinsic::s390_vchlfs: 1313 case Intrinsic::s390_vchlgs: 1314 Opcode = SystemZISD::VICMPHLS; 1315 CCValid = SystemZ::CCMASK_VCMP; 1316 return true; 1317 1318 case Intrinsic::s390_vtm: 1319 Opcode = SystemZISD::VTM; 1320 CCValid = SystemZ::CCMASK_VCMP; 1321 return true; 1322 1323 case Intrinsic::s390_vfaebs: 1324 case Intrinsic::s390_vfaehs: 1325 case Intrinsic::s390_vfaefs: 1326 Opcode = SystemZISD::VFAE_CC; 1327 CCValid = SystemZ::CCMASK_ANY; 1328 return true; 1329 1330 case Intrinsic::s390_vfaezbs: 1331 case Intrinsic::s390_vfaezhs: 1332 case Intrinsic::s390_vfaezfs: 1333 Opcode = SystemZISD::VFAEZ_CC; 1334 CCValid = SystemZ::CCMASK_ANY; 1335 return true; 1336 1337 case Intrinsic::s390_vfeebs: 1338 case Intrinsic::s390_vfeehs: 1339 case Intrinsic::s390_vfeefs: 1340 Opcode = SystemZISD::VFEE_CC; 1341 CCValid = SystemZ::CCMASK_ANY; 1342 return true; 1343 1344 case Intrinsic::s390_vfeezbs: 1345 case Intrinsic::s390_vfeezhs: 1346 case Intrinsic::s390_vfeezfs: 1347 Opcode = SystemZISD::VFEEZ_CC; 1348 CCValid = SystemZ::CCMASK_ANY; 1349 return true; 1350 1351 case Intrinsic::s390_vfenebs: 1352 case Intrinsic::s390_vfenehs: 1353 case Intrinsic::s390_vfenefs: 1354 Opcode = SystemZISD::VFENE_CC; 1355 CCValid = SystemZ::CCMASK_ANY; 1356 return true; 1357 1358 case Intrinsic::s390_vfenezbs: 1359 case Intrinsic::s390_vfenezhs: 1360 case Intrinsic::s390_vfenezfs: 1361 Opcode = SystemZISD::VFENEZ_CC; 1362 CCValid = SystemZ::CCMASK_ANY; 1363 return true; 1364 1365 case Intrinsic::s390_vistrbs: 1366 case Intrinsic::s390_vistrhs: 1367 case Intrinsic::s390_vistrfs: 1368 Opcode = SystemZISD::VISTR_CC; 1369 CCValid = SystemZ::CCMASK_0 | SystemZ::CCMASK_3; 1370 return true; 1371 1372 case Intrinsic::s390_vstrcbs: 1373 case Intrinsic::s390_vstrchs: 1374 case Intrinsic::s390_vstrcfs: 1375 Opcode = SystemZISD::VSTRC_CC; 1376 CCValid = SystemZ::CCMASK_ANY; 1377 return true; 1378 1379 case Intrinsic::s390_vstrczbs: 1380 case Intrinsic::s390_vstrczhs: 1381 case Intrinsic::s390_vstrczfs: 1382 Opcode = SystemZISD::VSTRCZ_CC; 1383 CCValid = SystemZ::CCMASK_ANY; 1384 return true; 1385 1386 case Intrinsic::s390_vfcedbs: 1387 Opcode = SystemZISD::VFCMPES; 1388 CCValid = SystemZ::CCMASK_VCMP; 1389 return true; 1390 1391 case Intrinsic::s390_vfchdbs: 1392 Opcode = SystemZISD::VFCMPHS; 1393 CCValid = SystemZ::CCMASK_VCMP; 1394 return true; 1395 1396 case Intrinsic::s390_vfchedbs: 1397 Opcode = SystemZISD::VFCMPHES; 1398 CCValid = SystemZ::CCMASK_VCMP; 1399 return true; 1400 1401 case Intrinsic::s390_vftcidb: 1402 Opcode = SystemZISD::VFTCI; 1403 CCValid = SystemZ::CCMASK_VCMP; 1404 return true; 1405 1406 default: 1407 return false; 1408 } 1409 } 1410 1411 // Emit an intrinsic with chain with a glued value instead of its CC result. 1412 static SDValue emitIntrinsicWithChainAndGlue(SelectionDAG &DAG, SDValue Op, 1413 unsigned Opcode) { 1414 // Copy all operands except the intrinsic ID. 1415 unsigned NumOps = Op.getNumOperands(); 1416 SmallVector<SDValue, 6> Ops; 1417 Ops.reserve(NumOps - 1); 1418 Ops.push_back(Op.getOperand(0)); 1419 for (unsigned I = 2; I < NumOps; ++I) 1420 Ops.push_back(Op.getOperand(I)); 1421 1422 assert(Op->getNumValues() == 2 && "Expected only CC result and chain"); 1423 SDVTList RawVTs = DAG.getVTList(MVT::Other, MVT::Glue); 1424 SDValue Intr = DAG.getNode(Opcode, SDLoc(Op), RawVTs, Ops); 1425 SDValue OldChain = SDValue(Op.getNode(), 1); 1426 SDValue NewChain = SDValue(Intr.getNode(), 0); 1427 DAG.ReplaceAllUsesOfValueWith(OldChain, NewChain); 1428 return Intr; 1429 } 1430 1431 // Emit an intrinsic with a glued value instead of its CC result. 1432 static SDValue emitIntrinsicWithGlue(SelectionDAG &DAG, SDValue Op, 1433 unsigned Opcode) { 1434 // Copy all operands except the intrinsic ID. 1435 unsigned NumOps = Op.getNumOperands(); 1436 SmallVector<SDValue, 6> Ops; 1437 Ops.reserve(NumOps - 1); 1438 for (unsigned I = 1; I < NumOps; ++I) 1439 Ops.push_back(Op.getOperand(I)); 1440 1441 if (Op->getNumValues() == 1) 1442 return DAG.getNode(Opcode, SDLoc(Op), MVT::Glue, Ops); 1443 assert(Op->getNumValues() == 2 && "Expected exactly one non-CC result"); 1444 SDVTList RawVTs = DAG.getVTList(Op->getValueType(0), MVT::Glue); 1445 return DAG.getNode(Opcode, SDLoc(Op), RawVTs, Ops); 1446 } 1447 1448 // CC is a comparison that will be implemented using an integer or 1449 // floating-point comparison. Return the condition code mask for 1450 // a branch on true. In the integer case, CCMASK_CMP_UO is set for 1451 // unsigned comparisons and clear for signed ones. In the floating-point 1452 // case, CCMASK_CMP_UO has its normal mask meaning (unordered). 1453 static unsigned CCMaskForCondCode(ISD::CondCode CC) { 1454 #define CONV(X) \ 1455 case ISD::SET##X: return SystemZ::CCMASK_CMP_##X; \ 1456 case ISD::SETO##X: return SystemZ::CCMASK_CMP_##X; \ 1457 case ISD::SETU##X: return SystemZ::CCMASK_CMP_UO | SystemZ::CCMASK_CMP_##X 1458 1459 switch (CC) { 1460 default: 1461 llvm_unreachable("Invalid integer condition!"); 1462 1463 CONV(EQ); 1464 CONV(NE); 1465 CONV(GT); 1466 CONV(GE); 1467 CONV(LT); 1468 CONV(LE); 1469 1470 case ISD::SETO: return SystemZ::CCMASK_CMP_O; 1471 case ISD::SETUO: return SystemZ::CCMASK_CMP_UO; 1472 } 1473 #undef CONV 1474 } 1475 1476 // Return a sequence for getting a 1 from an IPM result when CC has a 1477 // value in CCMask and a 0 when CC has a value in CCValid & ~CCMask. 1478 // The handling of CC values outside CCValid doesn't matter. 1479 static IPMConversion getIPMConversion(unsigned CCValid, unsigned CCMask) { 1480 // Deal with cases where the result can be taken directly from a bit 1481 // of the IPM result. 1482 if (CCMask == (CCValid & (SystemZ::CCMASK_1 | SystemZ::CCMASK_3))) 1483 return IPMConversion(0, 0, SystemZ::IPM_CC); 1484 if (CCMask == (CCValid & (SystemZ::CCMASK_2 | SystemZ::CCMASK_3))) 1485 return IPMConversion(0, 0, SystemZ::IPM_CC + 1); 1486 1487 // Deal with cases where we can add a value to force the sign bit 1488 // to contain the right value. Putting the bit in 31 means we can 1489 // use SRL rather than RISBG(L), and also makes it easier to get a 1490 // 0/-1 value, so it has priority over the other tests below. 1491 // 1492 // These sequences rely on the fact that the upper two bits of the 1493 // IPM result are zero. 1494 uint64_t TopBit = uint64_t(1) << 31; 1495 if (CCMask == (CCValid & SystemZ::CCMASK_0)) 1496 return IPMConversion(0, -(1 << SystemZ::IPM_CC), 31); 1497 if (CCMask == (CCValid & (SystemZ::CCMASK_0 | SystemZ::CCMASK_1))) 1498 return IPMConversion(0, -(2 << SystemZ::IPM_CC), 31); 1499 if (CCMask == (CCValid & (SystemZ::CCMASK_0 1500 | SystemZ::CCMASK_1 1501 | SystemZ::CCMASK_2))) 1502 return IPMConversion(0, -(3 << SystemZ::IPM_CC), 31); 1503 if (CCMask == (CCValid & SystemZ::CCMASK_3)) 1504 return IPMConversion(0, TopBit - (3 << SystemZ::IPM_CC), 31); 1505 if (CCMask == (CCValid & (SystemZ::CCMASK_1 1506 | SystemZ::CCMASK_2 1507 | SystemZ::CCMASK_3))) 1508 return IPMConversion(0, TopBit - (1 << SystemZ::IPM_CC), 31); 1509 1510 // Next try inverting the value and testing a bit. 0/1 could be 1511 // handled this way too, but we dealt with that case above. 1512 if (CCMask == (CCValid & (SystemZ::CCMASK_0 | SystemZ::CCMASK_2))) 1513 return IPMConversion(-1, 0, SystemZ::IPM_CC); 1514 1515 // Handle cases where adding a value forces a non-sign bit to contain 1516 // the right value. 1517 if (CCMask == (CCValid & (SystemZ::CCMASK_1 | SystemZ::CCMASK_2))) 1518 return IPMConversion(0, 1 << SystemZ::IPM_CC, SystemZ::IPM_CC + 1); 1519 if (CCMask == (CCValid & (SystemZ::CCMASK_0 | SystemZ::CCMASK_3))) 1520 return IPMConversion(0, -(1 << SystemZ::IPM_CC), SystemZ::IPM_CC + 1); 1521 1522 // The remaining cases are 1, 2, 0/1/3 and 0/2/3. All these are 1523 // can be done by inverting the low CC bit and applying one of the 1524 // sign-based extractions above. 1525 if (CCMask == (CCValid & SystemZ::CCMASK_1)) 1526 return IPMConversion(1 << SystemZ::IPM_CC, -(1 << SystemZ::IPM_CC), 31); 1527 if (CCMask == (CCValid & SystemZ::CCMASK_2)) 1528 return IPMConversion(1 << SystemZ::IPM_CC, 1529 TopBit - (3 << SystemZ::IPM_CC), 31); 1530 if (CCMask == (CCValid & (SystemZ::CCMASK_0 1531 | SystemZ::CCMASK_1 1532 | SystemZ::CCMASK_3))) 1533 return IPMConversion(1 << SystemZ::IPM_CC, -(3 << SystemZ::IPM_CC), 31); 1534 if (CCMask == (CCValid & (SystemZ::CCMASK_0 1535 | SystemZ::CCMASK_2 1536 | SystemZ::CCMASK_3))) 1537 return IPMConversion(1 << SystemZ::IPM_CC, 1538 TopBit - (1 << SystemZ::IPM_CC), 31); 1539 1540 llvm_unreachable("Unexpected CC combination"); 1541 } 1542 1543 // If C can be converted to a comparison against zero, adjust the operands 1544 // as necessary. 1545 static void adjustZeroCmp(SelectionDAG &DAG, SDLoc DL, Comparison &C) { 1546 if (C.ICmpType == SystemZICMP::UnsignedOnly) 1547 return; 1548 1549 auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1.getNode()); 1550 if (!ConstOp1) 1551 return; 1552 1553 int64_t Value = ConstOp1->getSExtValue(); 1554 if ((Value == -1 && C.CCMask == SystemZ::CCMASK_CMP_GT) || 1555 (Value == -1 && C.CCMask == SystemZ::CCMASK_CMP_LE) || 1556 (Value == 1 && C.CCMask == SystemZ::CCMASK_CMP_LT) || 1557 (Value == 1 && C.CCMask == SystemZ::CCMASK_CMP_GE)) { 1558 C.CCMask ^= SystemZ::CCMASK_CMP_EQ; 1559 C.Op1 = DAG.getConstant(0, DL, C.Op1.getValueType()); 1560 } 1561 } 1562 1563 // If a comparison described by C is suitable for CLI(Y), CHHSI or CLHHSI, 1564 // adjust the operands as necessary. 1565 static void adjustSubwordCmp(SelectionDAG &DAG, SDLoc DL, Comparison &C) { 1566 // For us to make any changes, it must a comparison between a single-use 1567 // load and a constant. 1568 if (!C.Op0.hasOneUse() || 1569 C.Op0.getOpcode() != ISD::LOAD || 1570 C.Op1.getOpcode() != ISD::Constant) 1571 return; 1572 1573 // We must have an 8- or 16-bit load. 1574 auto *Load = cast<LoadSDNode>(C.Op0); 1575 unsigned NumBits = Load->getMemoryVT().getStoreSizeInBits(); 1576 if (NumBits != 8 && NumBits != 16) 1577 return; 1578 1579 // The load must be an extending one and the constant must be within the 1580 // range of the unextended value. 1581 auto *ConstOp1 = cast<ConstantSDNode>(C.Op1); 1582 uint64_t Value = ConstOp1->getZExtValue(); 1583 uint64_t Mask = (1 << NumBits) - 1; 1584 if (Load->getExtensionType() == ISD::SEXTLOAD) { 1585 // Make sure that ConstOp1 is in range of C.Op0. 1586 int64_t SignedValue = ConstOp1->getSExtValue(); 1587 if (uint64_t(SignedValue) + (uint64_t(1) << (NumBits - 1)) > Mask) 1588 return; 1589 if (C.ICmpType != SystemZICMP::SignedOnly) { 1590 // Unsigned comparison between two sign-extended values is equivalent 1591 // to unsigned comparison between two zero-extended values. 1592 Value &= Mask; 1593 } else if (NumBits == 8) { 1594 // Try to treat the comparison as unsigned, so that we can use CLI. 1595 // Adjust CCMask and Value as necessary. 1596 if (Value == 0 && C.CCMask == SystemZ::CCMASK_CMP_LT) 1597 // Test whether the high bit of the byte is set. 1598 Value = 127, C.CCMask = SystemZ::CCMASK_CMP_GT; 1599 else if (Value == 0 && C.CCMask == SystemZ::CCMASK_CMP_GE) 1600 // Test whether the high bit of the byte is clear. 1601 Value = 128, C.CCMask = SystemZ::CCMASK_CMP_LT; 1602 else 1603 // No instruction exists for this combination. 1604 return; 1605 C.ICmpType = SystemZICMP::UnsignedOnly; 1606 } 1607 } else if (Load->getExtensionType() == ISD::ZEXTLOAD) { 1608 if (Value > Mask) 1609 return; 1610 assert(C.ICmpType == SystemZICMP::Any && 1611 "Signedness shouldn't matter here."); 1612 } else 1613 return; 1614 1615 // Make sure that the first operand is an i32 of the right extension type. 1616 ISD::LoadExtType ExtType = (C.ICmpType == SystemZICMP::SignedOnly ? 1617 ISD::SEXTLOAD : 1618 ISD::ZEXTLOAD); 1619 if (C.Op0.getValueType() != MVT::i32 || 1620 Load->getExtensionType() != ExtType) 1621 C.Op0 = DAG.getExtLoad(ExtType, SDLoc(Load), MVT::i32, 1622 Load->getChain(), Load->getBasePtr(), 1623 Load->getPointerInfo(), Load->getMemoryVT(), 1624 Load->isVolatile(), Load->isNonTemporal(), 1625 Load->isInvariant(), Load->getAlignment()); 1626 1627 // Make sure that the second operand is an i32 with the right value. 1628 if (C.Op1.getValueType() != MVT::i32 || 1629 Value != ConstOp1->getZExtValue()) 1630 C.Op1 = DAG.getConstant(Value, DL, MVT::i32); 1631 } 1632 1633 // Return true if Op is either an unextended load, or a load suitable 1634 // for integer register-memory comparisons of type ICmpType. 1635 static bool isNaturalMemoryOperand(SDValue Op, unsigned ICmpType) { 1636 auto *Load = dyn_cast<LoadSDNode>(Op.getNode()); 1637 if (Load) { 1638 // There are no instructions to compare a register with a memory byte. 1639 if (Load->getMemoryVT() == MVT::i8) 1640 return false; 1641 // Otherwise decide on extension type. 1642 switch (Load->getExtensionType()) { 1643 case ISD::NON_EXTLOAD: 1644 return true; 1645 case ISD::SEXTLOAD: 1646 return ICmpType != SystemZICMP::UnsignedOnly; 1647 case ISD::ZEXTLOAD: 1648 return ICmpType != SystemZICMP::SignedOnly; 1649 default: 1650 break; 1651 } 1652 } 1653 return false; 1654 } 1655 1656 // Return true if it is better to swap the operands of C. 1657 static bool shouldSwapCmpOperands(const Comparison &C) { 1658 // Leave f128 comparisons alone, since they have no memory forms. 1659 if (C.Op0.getValueType() == MVT::f128) 1660 return false; 1661 1662 // Always keep a floating-point constant second, since comparisons with 1663 // zero can use LOAD TEST and comparisons with other constants make a 1664 // natural memory operand. 1665 if (isa<ConstantFPSDNode>(C.Op1)) 1666 return false; 1667 1668 // Never swap comparisons with zero since there are many ways to optimize 1669 // those later. 1670 auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1); 1671 if (ConstOp1 && ConstOp1->getZExtValue() == 0) 1672 return false; 1673 1674 // Also keep natural memory operands second if the loaded value is 1675 // only used here. Several comparisons have memory forms. 1676 if (isNaturalMemoryOperand(C.Op1, C.ICmpType) && C.Op1.hasOneUse()) 1677 return false; 1678 1679 // Look for cases where Cmp0 is a single-use load and Cmp1 isn't. 1680 // In that case we generally prefer the memory to be second. 1681 if (isNaturalMemoryOperand(C.Op0, C.ICmpType) && C.Op0.hasOneUse()) { 1682 // The only exceptions are when the second operand is a constant and 1683 // we can use things like CHHSI. 1684 if (!ConstOp1) 1685 return true; 1686 // The unsigned memory-immediate instructions can handle 16-bit 1687 // unsigned integers. 1688 if (C.ICmpType != SystemZICMP::SignedOnly && 1689 isUInt<16>(ConstOp1->getZExtValue())) 1690 return false; 1691 // The signed memory-immediate instructions can handle 16-bit 1692 // signed integers. 1693 if (C.ICmpType != SystemZICMP::UnsignedOnly && 1694 isInt<16>(ConstOp1->getSExtValue())) 1695 return false; 1696 return true; 1697 } 1698 1699 // Try to promote the use of CGFR and CLGFR. 1700 unsigned Opcode0 = C.Op0.getOpcode(); 1701 if (C.ICmpType != SystemZICMP::UnsignedOnly && Opcode0 == ISD::SIGN_EXTEND) 1702 return true; 1703 if (C.ICmpType != SystemZICMP::SignedOnly && Opcode0 == ISD::ZERO_EXTEND) 1704 return true; 1705 if (C.ICmpType != SystemZICMP::SignedOnly && 1706 Opcode0 == ISD::AND && 1707 C.Op0.getOperand(1).getOpcode() == ISD::Constant && 1708 cast<ConstantSDNode>(C.Op0.getOperand(1))->getZExtValue() == 0xffffffff) 1709 return true; 1710 1711 return false; 1712 } 1713 1714 // Return a version of comparison CC mask CCMask in which the LT and GT 1715 // actions are swapped. 1716 static unsigned reverseCCMask(unsigned CCMask) { 1717 return ((CCMask & SystemZ::CCMASK_CMP_EQ) | 1718 (CCMask & SystemZ::CCMASK_CMP_GT ? SystemZ::CCMASK_CMP_LT : 0) | 1719 (CCMask & SystemZ::CCMASK_CMP_LT ? SystemZ::CCMASK_CMP_GT : 0) | 1720 (CCMask & SystemZ::CCMASK_CMP_UO)); 1721 } 1722 1723 // Check whether C tests for equality between X and Y and whether X - Y 1724 // or Y - X is also computed. In that case it's better to compare the 1725 // result of the subtraction against zero. 1726 static void adjustForSubtraction(SelectionDAG &DAG, SDLoc DL, Comparison &C) { 1727 if (C.CCMask == SystemZ::CCMASK_CMP_EQ || 1728 C.CCMask == SystemZ::CCMASK_CMP_NE) { 1729 for (auto I = C.Op0->use_begin(), E = C.Op0->use_end(); I != E; ++I) { 1730 SDNode *N = *I; 1731 if (N->getOpcode() == ISD::SUB && 1732 ((N->getOperand(0) == C.Op0 && N->getOperand(1) == C.Op1) || 1733 (N->getOperand(0) == C.Op1 && N->getOperand(1) == C.Op0))) { 1734 C.Op0 = SDValue(N, 0); 1735 C.Op1 = DAG.getConstant(0, DL, N->getValueType(0)); 1736 return; 1737 } 1738 } 1739 } 1740 } 1741 1742 // Check whether C compares a floating-point value with zero and if that 1743 // floating-point value is also negated. In this case we can use the 1744 // negation to set CC, so avoiding separate LOAD AND TEST and 1745 // LOAD (NEGATIVE/COMPLEMENT) instructions. 1746 static void adjustForFNeg(Comparison &C) { 1747 auto *C1 = dyn_cast<ConstantFPSDNode>(C.Op1); 1748 if (C1 && C1->isZero()) { 1749 for (auto I = C.Op0->use_begin(), E = C.Op0->use_end(); I != E; ++I) { 1750 SDNode *N = *I; 1751 if (N->getOpcode() == ISD::FNEG) { 1752 C.Op0 = SDValue(N, 0); 1753 C.CCMask = reverseCCMask(C.CCMask); 1754 return; 1755 } 1756 } 1757 } 1758 } 1759 1760 // Check whether C compares (shl X, 32) with 0 and whether X is 1761 // also sign-extended. In that case it is better to test the result 1762 // of the sign extension using LTGFR. 1763 // 1764 // This case is important because InstCombine transforms a comparison 1765 // with (sext (trunc X)) into a comparison with (shl X, 32). 1766 static void adjustForLTGFR(Comparison &C) { 1767 // Check for a comparison between (shl X, 32) and 0. 1768 if (C.Op0.getOpcode() == ISD::SHL && 1769 C.Op0.getValueType() == MVT::i64 && 1770 C.Op1.getOpcode() == ISD::Constant && 1771 cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) { 1772 auto *C1 = dyn_cast<ConstantSDNode>(C.Op0.getOperand(1)); 1773 if (C1 && C1->getZExtValue() == 32) { 1774 SDValue ShlOp0 = C.Op0.getOperand(0); 1775 // See whether X has any SIGN_EXTEND_INREG uses. 1776 for (auto I = ShlOp0->use_begin(), E = ShlOp0->use_end(); I != E; ++I) { 1777 SDNode *N = *I; 1778 if (N->getOpcode() == ISD::SIGN_EXTEND_INREG && 1779 cast<VTSDNode>(N->getOperand(1))->getVT() == MVT::i32) { 1780 C.Op0 = SDValue(N, 0); 1781 return; 1782 } 1783 } 1784 } 1785 } 1786 } 1787 1788 // If C compares the truncation of an extending load, try to compare 1789 // the untruncated value instead. This exposes more opportunities to 1790 // reuse CC. 1791 static void adjustICmpTruncate(SelectionDAG &DAG, SDLoc DL, Comparison &C) { 1792 if (C.Op0.getOpcode() == ISD::TRUNCATE && 1793 C.Op0.getOperand(0).getOpcode() == ISD::LOAD && 1794 C.Op1.getOpcode() == ISD::Constant && 1795 cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) { 1796 auto *L = cast<LoadSDNode>(C.Op0.getOperand(0)); 1797 if (L->getMemoryVT().getStoreSizeInBits() 1798 <= C.Op0.getValueType().getSizeInBits()) { 1799 unsigned Type = L->getExtensionType(); 1800 if ((Type == ISD::ZEXTLOAD && C.ICmpType != SystemZICMP::SignedOnly) || 1801 (Type == ISD::SEXTLOAD && C.ICmpType != SystemZICMP::UnsignedOnly)) { 1802 C.Op0 = C.Op0.getOperand(0); 1803 C.Op1 = DAG.getConstant(0, DL, C.Op0.getValueType()); 1804 } 1805 } 1806 } 1807 } 1808 1809 // Return true if shift operation N has an in-range constant shift value. 1810 // Store it in ShiftVal if so. 1811 static bool isSimpleShift(SDValue N, unsigned &ShiftVal) { 1812 auto *Shift = dyn_cast<ConstantSDNode>(N.getOperand(1)); 1813 if (!Shift) 1814 return false; 1815 1816 uint64_t Amount = Shift->getZExtValue(); 1817 if (Amount >= N.getValueType().getSizeInBits()) 1818 return false; 1819 1820 ShiftVal = Amount; 1821 return true; 1822 } 1823 1824 // Check whether an AND with Mask is suitable for a TEST UNDER MASK 1825 // instruction and whether the CC value is descriptive enough to handle 1826 // a comparison of type Opcode between the AND result and CmpVal. 1827 // CCMask says which comparison result is being tested and BitSize is 1828 // the number of bits in the operands. If TEST UNDER MASK can be used, 1829 // return the corresponding CC mask, otherwise return 0. 1830 static unsigned getTestUnderMaskCond(unsigned BitSize, unsigned CCMask, 1831 uint64_t Mask, uint64_t CmpVal, 1832 unsigned ICmpType) { 1833 assert(Mask != 0 && "ANDs with zero should have been removed by now"); 1834 1835 // Check whether the mask is suitable for TMHH, TMHL, TMLH or TMLL. 1836 if (!SystemZ::isImmLL(Mask) && !SystemZ::isImmLH(Mask) && 1837 !SystemZ::isImmHL(Mask) && !SystemZ::isImmHH(Mask)) 1838 return 0; 1839 1840 // Work out the masks for the lowest and highest bits. 1841 unsigned HighShift = 63 - countLeadingZeros(Mask); 1842 uint64_t High = uint64_t(1) << HighShift; 1843 uint64_t Low = uint64_t(1) << countTrailingZeros(Mask); 1844 1845 // Signed ordered comparisons are effectively unsigned if the sign 1846 // bit is dropped. 1847 bool EffectivelyUnsigned = (ICmpType != SystemZICMP::SignedOnly); 1848 1849 // Check for equality comparisons with 0, or the equivalent. 1850 if (CmpVal == 0) { 1851 if (CCMask == SystemZ::CCMASK_CMP_EQ) 1852 return SystemZ::CCMASK_TM_ALL_0; 1853 if (CCMask == SystemZ::CCMASK_CMP_NE) 1854 return SystemZ::CCMASK_TM_SOME_1; 1855 } 1856 if (EffectivelyUnsigned && CmpVal <= Low) { 1857 if (CCMask == SystemZ::CCMASK_CMP_LT) 1858 return SystemZ::CCMASK_TM_ALL_0; 1859 if (CCMask == SystemZ::CCMASK_CMP_GE) 1860 return SystemZ::CCMASK_TM_SOME_1; 1861 } 1862 if (EffectivelyUnsigned && CmpVal < Low) { 1863 if (CCMask == SystemZ::CCMASK_CMP_LE) 1864 return SystemZ::CCMASK_TM_ALL_0; 1865 if (CCMask == SystemZ::CCMASK_CMP_GT) 1866 return SystemZ::CCMASK_TM_SOME_1; 1867 } 1868 1869 // Check for equality comparisons with the mask, or the equivalent. 1870 if (CmpVal == Mask) { 1871 if (CCMask == SystemZ::CCMASK_CMP_EQ) 1872 return SystemZ::CCMASK_TM_ALL_1; 1873 if (CCMask == SystemZ::CCMASK_CMP_NE) 1874 return SystemZ::CCMASK_TM_SOME_0; 1875 } 1876 if (EffectivelyUnsigned && CmpVal >= Mask - Low && CmpVal < Mask) { 1877 if (CCMask == SystemZ::CCMASK_CMP_GT) 1878 return SystemZ::CCMASK_TM_ALL_1; 1879 if (CCMask == SystemZ::CCMASK_CMP_LE) 1880 return SystemZ::CCMASK_TM_SOME_0; 1881 } 1882 if (EffectivelyUnsigned && CmpVal > Mask - Low && CmpVal <= Mask) { 1883 if (CCMask == SystemZ::CCMASK_CMP_GE) 1884 return SystemZ::CCMASK_TM_ALL_1; 1885 if (CCMask == SystemZ::CCMASK_CMP_LT) 1886 return SystemZ::CCMASK_TM_SOME_0; 1887 } 1888 1889 // Check for ordered comparisons with the top bit. 1890 if (EffectivelyUnsigned && CmpVal >= Mask - High && CmpVal < High) { 1891 if (CCMask == SystemZ::CCMASK_CMP_LE) 1892 return SystemZ::CCMASK_TM_MSB_0; 1893 if (CCMask == SystemZ::CCMASK_CMP_GT) 1894 return SystemZ::CCMASK_TM_MSB_1; 1895 } 1896 if (EffectivelyUnsigned && CmpVal > Mask - High && CmpVal <= High) { 1897 if (CCMask == SystemZ::CCMASK_CMP_LT) 1898 return SystemZ::CCMASK_TM_MSB_0; 1899 if (CCMask == SystemZ::CCMASK_CMP_GE) 1900 return SystemZ::CCMASK_TM_MSB_1; 1901 } 1902 1903 // If there are just two bits, we can do equality checks for Low and High 1904 // as well. 1905 if (Mask == Low + High) { 1906 if (CCMask == SystemZ::CCMASK_CMP_EQ && CmpVal == Low) 1907 return SystemZ::CCMASK_TM_MIXED_MSB_0; 1908 if (CCMask == SystemZ::CCMASK_CMP_NE && CmpVal == Low) 1909 return SystemZ::CCMASK_TM_MIXED_MSB_0 ^ SystemZ::CCMASK_ANY; 1910 if (CCMask == SystemZ::CCMASK_CMP_EQ && CmpVal == High) 1911 return SystemZ::CCMASK_TM_MIXED_MSB_1; 1912 if (CCMask == SystemZ::CCMASK_CMP_NE && CmpVal == High) 1913 return SystemZ::CCMASK_TM_MIXED_MSB_1 ^ SystemZ::CCMASK_ANY; 1914 } 1915 1916 // Looks like we've exhausted our options. 1917 return 0; 1918 } 1919 1920 // See whether C can be implemented as a TEST UNDER MASK instruction. 1921 // Update the arguments with the TM version if so. 1922 static void adjustForTestUnderMask(SelectionDAG &DAG, SDLoc DL, Comparison &C) { 1923 // Check that we have a comparison with a constant. 1924 auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1); 1925 if (!ConstOp1) 1926 return; 1927 uint64_t CmpVal = ConstOp1->getZExtValue(); 1928 1929 // Check whether the nonconstant input is an AND with a constant mask. 1930 Comparison NewC(C); 1931 uint64_t MaskVal; 1932 ConstantSDNode *Mask = nullptr; 1933 if (C.Op0.getOpcode() == ISD::AND) { 1934 NewC.Op0 = C.Op0.getOperand(0); 1935 NewC.Op1 = C.Op0.getOperand(1); 1936 Mask = dyn_cast<ConstantSDNode>(NewC.Op1); 1937 if (!Mask) 1938 return; 1939 MaskVal = Mask->getZExtValue(); 1940 } else { 1941 // There is no instruction to compare with a 64-bit immediate 1942 // so use TMHH instead if possible. We need an unsigned ordered 1943 // comparison with an i64 immediate. 1944 if (NewC.Op0.getValueType() != MVT::i64 || 1945 NewC.CCMask == SystemZ::CCMASK_CMP_EQ || 1946 NewC.CCMask == SystemZ::CCMASK_CMP_NE || 1947 NewC.ICmpType == SystemZICMP::SignedOnly) 1948 return; 1949 // Convert LE and GT comparisons into LT and GE. 1950 if (NewC.CCMask == SystemZ::CCMASK_CMP_LE || 1951 NewC.CCMask == SystemZ::CCMASK_CMP_GT) { 1952 if (CmpVal == uint64_t(-1)) 1953 return; 1954 CmpVal += 1; 1955 NewC.CCMask ^= SystemZ::CCMASK_CMP_EQ; 1956 } 1957 // If the low N bits of Op1 are zero than the low N bits of Op0 can 1958 // be masked off without changing the result. 1959 MaskVal = -(CmpVal & -CmpVal); 1960 NewC.ICmpType = SystemZICMP::UnsignedOnly; 1961 } 1962 if (!MaskVal) 1963 return; 1964 1965 // Check whether the combination of mask, comparison value and comparison 1966 // type are suitable. 1967 unsigned BitSize = NewC.Op0.getValueType().getSizeInBits(); 1968 unsigned NewCCMask, ShiftVal; 1969 if (NewC.ICmpType != SystemZICMP::SignedOnly && 1970 NewC.Op0.getOpcode() == ISD::SHL && 1971 isSimpleShift(NewC.Op0, ShiftVal) && 1972 (NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask, 1973 MaskVal >> ShiftVal, 1974 CmpVal >> ShiftVal, 1975 SystemZICMP::Any))) { 1976 NewC.Op0 = NewC.Op0.getOperand(0); 1977 MaskVal >>= ShiftVal; 1978 } else if (NewC.ICmpType != SystemZICMP::SignedOnly && 1979 NewC.Op0.getOpcode() == ISD::SRL && 1980 isSimpleShift(NewC.Op0, ShiftVal) && 1981 (NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask, 1982 MaskVal << ShiftVal, 1983 CmpVal << ShiftVal, 1984 SystemZICMP::UnsignedOnly))) { 1985 NewC.Op0 = NewC.Op0.getOperand(0); 1986 MaskVal <<= ShiftVal; 1987 } else { 1988 NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask, MaskVal, CmpVal, 1989 NewC.ICmpType); 1990 if (!NewCCMask) 1991 return; 1992 } 1993 1994 // Go ahead and make the change. 1995 C.Opcode = SystemZISD::TM; 1996 C.Op0 = NewC.Op0; 1997 if (Mask && Mask->getZExtValue() == MaskVal) 1998 C.Op1 = SDValue(Mask, 0); 1999 else 2000 C.Op1 = DAG.getConstant(MaskVal, DL, C.Op0.getValueType()); 2001 C.CCValid = SystemZ::CCMASK_TM; 2002 C.CCMask = NewCCMask; 2003 } 2004 2005 // Return a Comparison that tests the condition-code result of intrinsic 2006 // node Call against constant integer CC using comparison code Cond. 2007 // Opcode is the opcode of the SystemZISD operation for the intrinsic 2008 // and CCValid is the set of possible condition-code results. 2009 static Comparison getIntrinsicCmp(SelectionDAG &DAG, unsigned Opcode, 2010 SDValue Call, unsigned CCValid, uint64_t CC, 2011 ISD::CondCode Cond) { 2012 Comparison C(Call, SDValue()); 2013 C.Opcode = Opcode; 2014 C.CCValid = CCValid; 2015 if (Cond == ISD::SETEQ) 2016 // bit 3 for CC==0, bit 0 for CC==3, always false for CC>3. 2017 C.CCMask = CC < 4 ? 1 << (3 - CC) : 0; 2018 else if (Cond == ISD::SETNE) 2019 // ...and the inverse of that. 2020 C.CCMask = CC < 4 ? ~(1 << (3 - CC)) : -1; 2021 else if (Cond == ISD::SETLT || Cond == ISD::SETULT) 2022 // bits above bit 3 for CC==0 (always false), bits above bit 0 for CC==3, 2023 // always true for CC>3. 2024 C.CCMask = CC < 4 ? ~0U << (4 - CC) : -1; 2025 else if (Cond == ISD::SETGE || Cond == ISD::SETUGE) 2026 // ...and the inverse of that. 2027 C.CCMask = CC < 4 ? ~(~0U << (4 - CC)) : 0; 2028 else if (Cond == ISD::SETLE || Cond == ISD::SETULE) 2029 // bit 3 and above for CC==0, bit 0 and above for CC==3 (always true), 2030 // always true for CC>3. 2031 C.CCMask = CC < 4 ? ~0U << (3 - CC) : -1; 2032 else if (Cond == ISD::SETGT || Cond == ISD::SETUGT) 2033 // ...and the inverse of that. 2034 C.CCMask = CC < 4 ? ~(~0U << (3 - CC)) : 0; 2035 else 2036 llvm_unreachable("Unexpected integer comparison type"); 2037 C.CCMask &= CCValid; 2038 return C; 2039 } 2040 2041 // Decide how to implement a comparison of type Cond between CmpOp0 with CmpOp1. 2042 static Comparison getCmp(SelectionDAG &DAG, SDValue CmpOp0, SDValue CmpOp1, 2043 ISD::CondCode Cond, SDLoc DL) { 2044 if (CmpOp1.getOpcode() == ISD::Constant) { 2045 uint64_t Constant = cast<ConstantSDNode>(CmpOp1)->getZExtValue(); 2046 unsigned Opcode, CCValid; 2047 if (CmpOp0.getOpcode() == ISD::INTRINSIC_W_CHAIN && 2048 CmpOp0.getResNo() == 0 && CmpOp0->hasNUsesOfValue(1, 0) && 2049 isIntrinsicWithCCAndChain(CmpOp0, Opcode, CCValid)) 2050 return getIntrinsicCmp(DAG, Opcode, CmpOp0, CCValid, Constant, Cond); 2051 if (CmpOp0.getOpcode() == ISD::INTRINSIC_WO_CHAIN && 2052 CmpOp0.getResNo() == CmpOp0->getNumValues() - 1 && 2053 isIntrinsicWithCC(CmpOp0, Opcode, CCValid)) 2054 return getIntrinsicCmp(DAG, Opcode, CmpOp0, CCValid, Constant, Cond); 2055 } 2056 Comparison C(CmpOp0, CmpOp1); 2057 C.CCMask = CCMaskForCondCode(Cond); 2058 if (C.Op0.getValueType().isFloatingPoint()) { 2059 C.CCValid = SystemZ::CCMASK_FCMP; 2060 C.Opcode = SystemZISD::FCMP; 2061 adjustForFNeg(C); 2062 } else { 2063 C.CCValid = SystemZ::CCMASK_ICMP; 2064 C.Opcode = SystemZISD::ICMP; 2065 // Choose the type of comparison. Equality and inequality tests can 2066 // use either signed or unsigned comparisons. The choice also doesn't 2067 // matter if both sign bits are known to be clear. In those cases we 2068 // want to give the main isel code the freedom to choose whichever 2069 // form fits best. 2070 if (C.CCMask == SystemZ::CCMASK_CMP_EQ || 2071 C.CCMask == SystemZ::CCMASK_CMP_NE || 2072 (DAG.SignBitIsZero(C.Op0) && DAG.SignBitIsZero(C.Op1))) 2073 C.ICmpType = SystemZICMP::Any; 2074 else if (C.CCMask & SystemZ::CCMASK_CMP_UO) 2075 C.ICmpType = SystemZICMP::UnsignedOnly; 2076 else 2077 C.ICmpType = SystemZICMP::SignedOnly; 2078 C.CCMask &= ~SystemZ::CCMASK_CMP_UO; 2079 adjustZeroCmp(DAG, DL, C); 2080 adjustSubwordCmp(DAG, DL, C); 2081 adjustForSubtraction(DAG, DL, C); 2082 adjustForLTGFR(C); 2083 adjustICmpTruncate(DAG, DL, C); 2084 } 2085 2086 if (shouldSwapCmpOperands(C)) { 2087 std::swap(C.Op0, C.Op1); 2088 C.CCMask = reverseCCMask(C.CCMask); 2089 } 2090 2091 adjustForTestUnderMask(DAG, DL, C); 2092 return C; 2093 } 2094 2095 // Emit the comparison instruction described by C. 2096 static SDValue emitCmp(SelectionDAG &DAG, SDLoc DL, Comparison &C) { 2097 if (!C.Op1.getNode()) { 2098 SDValue Op; 2099 switch (C.Op0.getOpcode()) { 2100 case ISD::INTRINSIC_W_CHAIN: 2101 Op = emitIntrinsicWithChainAndGlue(DAG, C.Op0, C.Opcode); 2102 break; 2103 case ISD::INTRINSIC_WO_CHAIN: 2104 Op = emitIntrinsicWithGlue(DAG, C.Op0, C.Opcode); 2105 break; 2106 default: 2107 llvm_unreachable("Invalid comparison operands"); 2108 } 2109 return SDValue(Op.getNode(), Op->getNumValues() - 1); 2110 } 2111 if (C.Opcode == SystemZISD::ICMP) 2112 return DAG.getNode(SystemZISD::ICMP, DL, MVT::Glue, C.Op0, C.Op1, 2113 DAG.getConstant(C.ICmpType, DL, MVT::i32)); 2114 if (C.Opcode == SystemZISD::TM) { 2115 bool RegisterOnly = (bool(C.CCMask & SystemZ::CCMASK_TM_MIXED_MSB_0) != 2116 bool(C.CCMask & SystemZ::CCMASK_TM_MIXED_MSB_1)); 2117 return DAG.getNode(SystemZISD::TM, DL, MVT::Glue, C.Op0, C.Op1, 2118 DAG.getConstant(RegisterOnly, DL, MVT::i32)); 2119 } 2120 return DAG.getNode(C.Opcode, DL, MVT::Glue, C.Op0, C.Op1); 2121 } 2122 2123 // Implement a 32-bit *MUL_LOHI operation by extending both operands to 2124 // 64 bits. Extend is the extension type to use. Store the high part 2125 // in Hi and the low part in Lo. 2126 static void lowerMUL_LOHI32(SelectionDAG &DAG, SDLoc DL, 2127 unsigned Extend, SDValue Op0, SDValue Op1, 2128 SDValue &Hi, SDValue &Lo) { 2129 Op0 = DAG.getNode(Extend, DL, MVT::i64, Op0); 2130 Op1 = DAG.getNode(Extend, DL, MVT::i64, Op1); 2131 SDValue Mul = DAG.getNode(ISD::MUL, DL, MVT::i64, Op0, Op1); 2132 Hi = DAG.getNode(ISD::SRL, DL, MVT::i64, Mul, 2133 DAG.getConstant(32, DL, MVT::i64)); 2134 Hi = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Hi); 2135 Lo = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Mul); 2136 } 2137 2138 // Lower a binary operation that produces two VT results, one in each 2139 // half of a GR128 pair. Op0 and Op1 are the VT operands to the operation, 2140 // Extend extends Op0 to a GR128, and Opcode performs the GR128 operation 2141 // on the extended Op0 and (unextended) Op1. Store the even register result 2142 // in Even and the odd register result in Odd. 2143 static void lowerGR128Binary(SelectionDAG &DAG, SDLoc DL, EVT VT, 2144 unsigned Extend, unsigned Opcode, 2145 SDValue Op0, SDValue Op1, 2146 SDValue &Even, SDValue &Odd) { 2147 SDNode *In128 = DAG.getMachineNode(Extend, DL, MVT::Untyped, Op0); 2148 SDValue Result = DAG.getNode(Opcode, DL, MVT::Untyped, 2149 SDValue(In128, 0), Op1); 2150 bool Is32Bit = is32Bit(VT); 2151 Even = DAG.getTargetExtractSubreg(SystemZ::even128(Is32Bit), DL, VT, Result); 2152 Odd = DAG.getTargetExtractSubreg(SystemZ::odd128(Is32Bit), DL, VT, Result); 2153 } 2154 2155 // Return an i32 value that is 1 if the CC value produced by Glue is 2156 // in the mask CCMask and 0 otherwise. CC is known to have a value 2157 // in CCValid, so other values can be ignored. 2158 static SDValue emitSETCC(SelectionDAG &DAG, SDLoc DL, SDValue Glue, 2159 unsigned CCValid, unsigned CCMask) { 2160 IPMConversion Conversion = getIPMConversion(CCValid, CCMask); 2161 SDValue Result = DAG.getNode(SystemZISD::IPM, DL, MVT::i32, Glue); 2162 2163 if (Conversion.XORValue) 2164 Result = DAG.getNode(ISD::XOR, DL, MVT::i32, Result, 2165 DAG.getConstant(Conversion.XORValue, DL, MVT::i32)); 2166 2167 if (Conversion.AddValue) 2168 Result = DAG.getNode(ISD::ADD, DL, MVT::i32, Result, 2169 DAG.getConstant(Conversion.AddValue, DL, MVT::i32)); 2170 2171 // The SHR/AND sequence should get optimized to an RISBG. 2172 Result = DAG.getNode(ISD::SRL, DL, MVT::i32, Result, 2173 DAG.getConstant(Conversion.Bit, DL, MVT::i32)); 2174 if (Conversion.Bit != 31) 2175 Result = DAG.getNode(ISD::AND, DL, MVT::i32, Result, 2176 DAG.getConstant(1, DL, MVT::i32)); 2177 return Result; 2178 } 2179 2180 // Return the SystemISD vector comparison operation for CC, or 0 if it cannot 2181 // be done directly. IsFP is true if CC is for a floating-point rather than 2182 // integer comparison. 2183 static unsigned getVectorComparison(ISD::CondCode CC, bool IsFP) { 2184 switch (CC) { 2185 case ISD::SETOEQ: 2186 case ISD::SETEQ: 2187 return IsFP ? SystemZISD::VFCMPE : SystemZISD::VICMPE; 2188 2189 case ISD::SETOGE: 2190 case ISD::SETGE: 2191 return IsFP ? SystemZISD::VFCMPHE : static_cast<SystemZISD::NodeType>(0); 2192 2193 case ISD::SETOGT: 2194 case ISD::SETGT: 2195 return IsFP ? SystemZISD::VFCMPH : SystemZISD::VICMPH; 2196 2197 case ISD::SETUGT: 2198 return IsFP ? static_cast<SystemZISD::NodeType>(0) : SystemZISD::VICMPHL; 2199 2200 default: 2201 return 0; 2202 } 2203 } 2204 2205 // Return the SystemZISD vector comparison operation for CC or its inverse, 2206 // or 0 if neither can be done directly. Indicate in Invert whether the 2207 // result is for the inverse of CC. IsFP is true if CC is for a 2208 // floating-point rather than integer comparison. 2209 static unsigned getVectorComparisonOrInvert(ISD::CondCode CC, bool IsFP, 2210 bool &Invert) { 2211 if (unsigned Opcode = getVectorComparison(CC, IsFP)) { 2212 Invert = false; 2213 return Opcode; 2214 } 2215 2216 CC = ISD::getSetCCInverse(CC, !IsFP); 2217 if (unsigned Opcode = getVectorComparison(CC, IsFP)) { 2218 Invert = true; 2219 return Opcode; 2220 } 2221 2222 return 0; 2223 } 2224 2225 // Return a v2f64 that contains the extended form of elements Start and Start+1 2226 // of v4f32 value Op. 2227 static SDValue expandV4F32ToV2F64(SelectionDAG &DAG, int Start, SDLoc DL, 2228 SDValue Op) { 2229 int Mask[] = { Start, -1, Start + 1, -1 }; 2230 Op = DAG.getVectorShuffle(MVT::v4f32, DL, Op, DAG.getUNDEF(MVT::v4f32), Mask); 2231 return DAG.getNode(SystemZISD::VEXTEND, DL, MVT::v2f64, Op); 2232 } 2233 2234 // Build a comparison of vectors CmpOp0 and CmpOp1 using opcode Opcode, 2235 // producing a result of type VT. 2236 static SDValue getVectorCmp(SelectionDAG &DAG, unsigned Opcode, SDLoc DL, 2237 EVT VT, SDValue CmpOp0, SDValue CmpOp1) { 2238 // There is no hardware support for v4f32, so extend the vector into 2239 // two v2f64s and compare those. 2240 if (CmpOp0.getValueType() == MVT::v4f32) { 2241 SDValue H0 = expandV4F32ToV2F64(DAG, 0, DL, CmpOp0); 2242 SDValue L0 = expandV4F32ToV2F64(DAG, 2, DL, CmpOp0); 2243 SDValue H1 = expandV4F32ToV2F64(DAG, 0, DL, CmpOp1); 2244 SDValue L1 = expandV4F32ToV2F64(DAG, 2, DL, CmpOp1); 2245 SDValue HRes = DAG.getNode(Opcode, DL, MVT::v2i64, H0, H1); 2246 SDValue LRes = DAG.getNode(Opcode, DL, MVT::v2i64, L0, L1); 2247 return DAG.getNode(SystemZISD::PACK, DL, VT, HRes, LRes); 2248 } 2249 return DAG.getNode(Opcode, DL, VT, CmpOp0, CmpOp1); 2250 } 2251 2252 // Lower a vector comparison of type CC between CmpOp0 and CmpOp1, producing 2253 // an integer mask of type VT. 2254 static SDValue lowerVectorSETCC(SelectionDAG &DAG, SDLoc DL, EVT VT, 2255 ISD::CondCode CC, SDValue CmpOp0, 2256 SDValue CmpOp1) { 2257 bool IsFP = CmpOp0.getValueType().isFloatingPoint(); 2258 bool Invert = false; 2259 SDValue Cmp; 2260 switch (CC) { 2261 // Handle tests for order using (or (ogt y x) (oge x y)). 2262 case ISD::SETUO: 2263 Invert = true; 2264 case ISD::SETO: { 2265 assert(IsFP && "Unexpected integer comparison"); 2266 SDValue LT = getVectorCmp(DAG, SystemZISD::VFCMPH, DL, VT, CmpOp1, CmpOp0); 2267 SDValue GE = getVectorCmp(DAG, SystemZISD::VFCMPHE, DL, VT, CmpOp0, CmpOp1); 2268 Cmp = DAG.getNode(ISD::OR, DL, VT, LT, GE); 2269 break; 2270 } 2271 2272 // Handle <> tests using (or (ogt y x) (ogt x y)). 2273 case ISD::SETUEQ: 2274 Invert = true; 2275 case ISD::SETONE: { 2276 assert(IsFP && "Unexpected integer comparison"); 2277 SDValue LT = getVectorCmp(DAG, SystemZISD::VFCMPH, DL, VT, CmpOp1, CmpOp0); 2278 SDValue GT = getVectorCmp(DAG, SystemZISD::VFCMPH, DL, VT, CmpOp0, CmpOp1); 2279 Cmp = DAG.getNode(ISD::OR, DL, VT, LT, GT); 2280 break; 2281 } 2282 2283 // Otherwise a single comparison is enough. It doesn't really 2284 // matter whether we try the inversion or the swap first, since 2285 // there are no cases where both work. 2286 default: 2287 if (unsigned Opcode = getVectorComparisonOrInvert(CC, IsFP, Invert)) 2288 Cmp = getVectorCmp(DAG, Opcode, DL, VT, CmpOp0, CmpOp1); 2289 else { 2290 CC = ISD::getSetCCSwappedOperands(CC); 2291 if (unsigned Opcode = getVectorComparisonOrInvert(CC, IsFP, Invert)) 2292 Cmp = getVectorCmp(DAG, Opcode, DL, VT, CmpOp1, CmpOp0); 2293 else 2294 llvm_unreachable("Unhandled comparison"); 2295 } 2296 break; 2297 } 2298 if (Invert) { 2299 SDValue Mask = DAG.getNode(SystemZISD::BYTE_MASK, DL, MVT::v16i8, 2300 DAG.getConstant(65535, DL, MVT::i32)); 2301 Mask = DAG.getNode(ISD::BITCAST, DL, VT, Mask); 2302 Cmp = DAG.getNode(ISD::XOR, DL, VT, Cmp, Mask); 2303 } 2304 return Cmp; 2305 } 2306 2307 SDValue SystemZTargetLowering::lowerSETCC(SDValue Op, 2308 SelectionDAG &DAG) const { 2309 SDValue CmpOp0 = Op.getOperand(0); 2310 SDValue CmpOp1 = Op.getOperand(1); 2311 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 2312 SDLoc DL(Op); 2313 EVT VT = Op.getValueType(); 2314 if (VT.isVector()) 2315 return lowerVectorSETCC(DAG, DL, VT, CC, CmpOp0, CmpOp1); 2316 2317 Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL)); 2318 SDValue Glue = emitCmp(DAG, DL, C); 2319 return emitSETCC(DAG, DL, Glue, C.CCValid, C.CCMask); 2320 } 2321 2322 SDValue SystemZTargetLowering::lowerBR_CC(SDValue Op, SelectionDAG &DAG) const { 2323 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get(); 2324 SDValue CmpOp0 = Op.getOperand(2); 2325 SDValue CmpOp1 = Op.getOperand(3); 2326 SDValue Dest = Op.getOperand(4); 2327 SDLoc DL(Op); 2328 2329 Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL)); 2330 SDValue Glue = emitCmp(DAG, DL, C); 2331 return DAG.getNode(SystemZISD::BR_CCMASK, DL, Op.getValueType(), 2332 Op.getOperand(0), DAG.getConstant(C.CCValid, DL, MVT::i32), 2333 DAG.getConstant(C.CCMask, DL, MVT::i32), Dest, Glue); 2334 } 2335 2336 // Return true if Pos is CmpOp and Neg is the negative of CmpOp, 2337 // allowing Pos and Neg to be wider than CmpOp. 2338 static bool isAbsolute(SDValue CmpOp, SDValue Pos, SDValue Neg) { 2339 return (Neg.getOpcode() == ISD::SUB && 2340 Neg.getOperand(0).getOpcode() == ISD::Constant && 2341 cast<ConstantSDNode>(Neg.getOperand(0))->getZExtValue() == 0 && 2342 Neg.getOperand(1) == Pos && 2343 (Pos == CmpOp || 2344 (Pos.getOpcode() == ISD::SIGN_EXTEND && 2345 Pos.getOperand(0) == CmpOp))); 2346 } 2347 2348 // Return the absolute or negative absolute of Op; IsNegative decides which. 2349 static SDValue getAbsolute(SelectionDAG &DAG, SDLoc DL, SDValue Op, 2350 bool IsNegative) { 2351 Op = DAG.getNode(SystemZISD::IABS, DL, Op.getValueType(), Op); 2352 if (IsNegative) 2353 Op = DAG.getNode(ISD::SUB, DL, Op.getValueType(), 2354 DAG.getConstant(0, DL, Op.getValueType()), Op); 2355 return Op; 2356 } 2357 2358 SDValue SystemZTargetLowering::lowerSELECT_CC(SDValue Op, 2359 SelectionDAG &DAG) const { 2360 SDValue CmpOp0 = Op.getOperand(0); 2361 SDValue CmpOp1 = Op.getOperand(1); 2362 SDValue TrueOp = Op.getOperand(2); 2363 SDValue FalseOp = Op.getOperand(3); 2364 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get(); 2365 SDLoc DL(Op); 2366 2367 Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL)); 2368 2369 // Check for absolute and negative-absolute selections, including those 2370 // where the comparison value is sign-extended (for LPGFR and LNGFR). 2371 // This check supplements the one in DAGCombiner. 2372 if (C.Opcode == SystemZISD::ICMP && 2373 C.CCMask != SystemZ::CCMASK_CMP_EQ && 2374 C.CCMask != SystemZ::CCMASK_CMP_NE && 2375 C.Op1.getOpcode() == ISD::Constant && 2376 cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) { 2377 if (isAbsolute(C.Op0, TrueOp, FalseOp)) 2378 return getAbsolute(DAG, DL, TrueOp, C.CCMask & SystemZ::CCMASK_CMP_LT); 2379 if (isAbsolute(C.Op0, FalseOp, TrueOp)) 2380 return getAbsolute(DAG, DL, FalseOp, C.CCMask & SystemZ::CCMASK_CMP_GT); 2381 } 2382 2383 SDValue Glue = emitCmp(DAG, DL, C); 2384 2385 // Special case for handling -1/0 results. The shifts we use here 2386 // should get optimized with the IPM conversion sequence. 2387 auto *TrueC = dyn_cast<ConstantSDNode>(TrueOp); 2388 auto *FalseC = dyn_cast<ConstantSDNode>(FalseOp); 2389 if (TrueC && FalseC) { 2390 int64_t TrueVal = TrueC->getSExtValue(); 2391 int64_t FalseVal = FalseC->getSExtValue(); 2392 if ((TrueVal == -1 && FalseVal == 0) || (TrueVal == 0 && FalseVal == -1)) { 2393 // Invert the condition if we want -1 on false. 2394 if (TrueVal == 0) 2395 C.CCMask ^= C.CCValid; 2396 SDValue Result = emitSETCC(DAG, DL, Glue, C.CCValid, C.CCMask); 2397 EVT VT = Op.getValueType(); 2398 // Extend the result to VT. Upper bits are ignored. 2399 if (!is32Bit(VT)) 2400 Result = DAG.getNode(ISD::ANY_EXTEND, DL, VT, Result); 2401 // Sign-extend from the low bit. 2402 SDValue ShAmt = DAG.getConstant(VT.getSizeInBits() - 1, DL, MVT::i32); 2403 SDValue Shl = DAG.getNode(ISD::SHL, DL, VT, Result, ShAmt); 2404 return DAG.getNode(ISD::SRA, DL, VT, Shl, ShAmt); 2405 } 2406 } 2407 2408 SDValue Ops[] = {TrueOp, FalseOp, DAG.getConstant(C.CCValid, DL, MVT::i32), 2409 DAG.getConstant(C.CCMask, DL, MVT::i32), Glue}; 2410 2411 SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue); 2412 return DAG.getNode(SystemZISD::SELECT_CCMASK, DL, VTs, Ops); 2413 } 2414 2415 SDValue SystemZTargetLowering::lowerGlobalAddress(GlobalAddressSDNode *Node, 2416 SelectionDAG &DAG) const { 2417 SDLoc DL(Node); 2418 const GlobalValue *GV = Node->getGlobal(); 2419 int64_t Offset = Node->getOffset(); 2420 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 2421 Reloc::Model RM = DAG.getTarget().getRelocationModel(); 2422 CodeModel::Model CM = DAG.getTarget().getCodeModel(); 2423 2424 SDValue Result; 2425 if (Subtarget.isPC32DBLSymbol(GV, RM, CM)) { 2426 // Assign anchors at 1<<12 byte boundaries. 2427 uint64_t Anchor = Offset & ~uint64_t(0xfff); 2428 Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT, Anchor); 2429 Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result); 2430 2431 // The offset can be folded into the address if it is aligned to a halfword. 2432 Offset -= Anchor; 2433 if (Offset != 0 && (Offset & 1) == 0) { 2434 SDValue Full = DAG.getTargetGlobalAddress(GV, DL, PtrVT, Anchor + Offset); 2435 Result = DAG.getNode(SystemZISD::PCREL_OFFSET, DL, PtrVT, Full, Result); 2436 Offset = 0; 2437 } 2438 } else { 2439 Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, SystemZII::MO_GOT); 2440 Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result); 2441 Result = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Result, 2442 MachinePointerInfo::getGOT(), false, false, false, 0); 2443 } 2444 2445 // If there was a non-zero offset that we didn't fold, create an explicit 2446 // addition for it. 2447 if (Offset != 0) 2448 Result = DAG.getNode(ISD::ADD, DL, PtrVT, Result, 2449 DAG.getConstant(Offset, DL, PtrVT)); 2450 2451 return Result; 2452 } 2453 2454 SDValue SystemZTargetLowering::lowerTLSGetOffset(GlobalAddressSDNode *Node, 2455 SelectionDAG &DAG, 2456 unsigned Opcode, 2457 SDValue GOTOffset) const { 2458 SDLoc DL(Node); 2459 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 2460 SDValue Chain = DAG.getEntryNode(); 2461 SDValue Glue; 2462 2463 // __tls_get_offset takes the GOT offset in %r2 and the GOT in %r12. 2464 SDValue GOT = DAG.getGLOBAL_OFFSET_TABLE(PtrVT); 2465 Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R12D, GOT, Glue); 2466 Glue = Chain.getValue(1); 2467 Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R2D, GOTOffset, Glue); 2468 Glue = Chain.getValue(1); 2469 2470 // The first call operand is the chain and the second is the TLS symbol. 2471 SmallVector<SDValue, 8> Ops; 2472 Ops.push_back(Chain); 2473 Ops.push_back(DAG.getTargetGlobalAddress(Node->getGlobal(), DL, 2474 Node->getValueType(0), 2475 0, 0)); 2476 2477 // Add argument registers to the end of the list so that they are 2478 // known live into the call. 2479 Ops.push_back(DAG.getRegister(SystemZ::R2D, PtrVT)); 2480 Ops.push_back(DAG.getRegister(SystemZ::R12D, PtrVT)); 2481 2482 // Add a register mask operand representing the call-preserved registers. 2483 const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo(); 2484 const uint32_t *Mask = 2485 TRI->getCallPreservedMask(DAG.getMachineFunction(), CallingConv::C); 2486 assert(Mask && "Missing call preserved mask for calling convention"); 2487 Ops.push_back(DAG.getRegisterMask(Mask)); 2488 2489 // Glue the call to the argument copies. 2490 Ops.push_back(Glue); 2491 2492 // Emit the call. 2493 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 2494 Chain = DAG.getNode(Opcode, DL, NodeTys, Ops); 2495 Glue = Chain.getValue(1); 2496 2497 // Copy the return value from %r2. 2498 return DAG.getCopyFromReg(Chain, DL, SystemZ::R2D, PtrVT, Glue); 2499 } 2500 2501 SDValue SystemZTargetLowering::lowerGlobalTLSAddress(GlobalAddressSDNode *Node, 2502 SelectionDAG &DAG) const { 2503 SDLoc DL(Node); 2504 const GlobalValue *GV = Node->getGlobal(); 2505 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 2506 TLSModel::Model model = DAG.getTarget().getTLSModel(GV); 2507 2508 // The high part of the thread pointer is in access register 0. 2509 SDValue TPHi = DAG.getNode(SystemZISD::EXTRACT_ACCESS, DL, MVT::i32, 2510 DAG.getConstant(0, DL, MVT::i32)); 2511 TPHi = DAG.getNode(ISD::ANY_EXTEND, DL, PtrVT, TPHi); 2512 2513 // The low part of the thread pointer is in access register 1. 2514 SDValue TPLo = DAG.getNode(SystemZISD::EXTRACT_ACCESS, DL, MVT::i32, 2515 DAG.getConstant(1, DL, MVT::i32)); 2516 TPLo = DAG.getNode(ISD::ZERO_EXTEND, DL, PtrVT, TPLo); 2517 2518 // Merge them into a single 64-bit address. 2519 SDValue TPHiShifted = DAG.getNode(ISD::SHL, DL, PtrVT, TPHi, 2520 DAG.getConstant(32, DL, PtrVT)); 2521 SDValue TP = DAG.getNode(ISD::OR, DL, PtrVT, TPHiShifted, TPLo); 2522 2523 // Get the offset of GA from the thread pointer, based on the TLS model. 2524 SDValue Offset; 2525 switch (model) { 2526 case TLSModel::GeneralDynamic: { 2527 // Load the GOT offset of the tls_index (module ID / per-symbol offset). 2528 SystemZConstantPoolValue *CPV = 2529 SystemZConstantPoolValue::Create(GV, SystemZCP::TLSGD); 2530 2531 Offset = DAG.getConstantPool(CPV, PtrVT, 8); 2532 Offset = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), 2533 Offset, MachinePointerInfo::getConstantPool(), 2534 false, false, false, 0); 2535 2536 // Call __tls_get_offset to retrieve the offset. 2537 Offset = lowerTLSGetOffset(Node, DAG, SystemZISD::TLS_GDCALL, Offset); 2538 break; 2539 } 2540 2541 case TLSModel::LocalDynamic: { 2542 // Load the GOT offset of the module ID. 2543 SystemZConstantPoolValue *CPV = 2544 SystemZConstantPoolValue::Create(GV, SystemZCP::TLSLDM); 2545 2546 Offset = DAG.getConstantPool(CPV, PtrVT, 8); 2547 Offset = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), 2548 Offset, MachinePointerInfo::getConstantPool(), 2549 false, false, false, 0); 2550 2551 // Call __tls_get_offset to retrieve the module base offset. 2552 Offset = lowerTLSGetOffset(Node, DAG, SystemZISD::TLS_LDCALL, Offset); 2553 2554 // Note: The SystemZLDCleanupPass will remove redundant computations 2555 // of the module base offset. Count total number of local-dynamic 2556 // accesses to trigger execution of that pass. 2557 SystemZMachineFunctionInfo* MFI = 2558 DAG.getMachineFunction().getInfo<SystemZMachineFunctionInfo>(); 2559 MFI->incNumLocalDynamicTLSAccesses(); 2560 2561 // Add the per-symbol offset. 2562 CPV = SystemZConstantPoolValue::Create(GV, SystemZCP::DTPOFF); 2563 2564 SDValue DTPOffset = DAG.getConstantPool(CPV, PtrVT, 8); 2565 DTPOffset = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), 2566 DTPOffset, MachinePointerInfo::getConstantPool(), 2567 false, false, false, 0); 2568 2569 Offset = DAG.getNode(ISD::ADD, DL, PtrVT, Offset, DTPOffset); 2570 break; 2571 } 2572 2573 case TLSModel::InitialExec: { 2574 // Load the offset from the GOT. 2575 Offset = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, 2576 SystemZII::MO_INDNTPOFF); 2577 Offset = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Offset); 2578 Offset = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), 2579 Offset, MachinePointerInfo::getGOT(), 2580 false, false, false, 0); 2581 break; 2582 } 2583 2584 case TLSModel::LocalExec: { 2585 // Force the offset into the constant pool and load it from there. 2586 SystemZConstantPoolValue *CPV = 2587 SystemZConstantPoolValue::Create(GV, SystemZCP::NTPOFF); 2588 2589 Offset = DAG.getConstantPool(CPV, PtrVT, 8); 2590 Offset = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), 2591 Offset, MachinePointerInfo::getConstantPool(), 2592 false, false, false, 0); 2593 break; 2594 } 2595 } 2596 2597 // Add the base and offset together. 2598 return DAG.getNode(ISD::ADD, DL, PtrVT, TP, Offset); 2599 } 2600 2601 SDValue SystemZTargetLowering::lowerBlockAddress(BlockAddressSDNode *Node, 2602 SelectionDAG &DAG) const { 2603 SDLoc DL(Node); 2604 const BlockAddress *BA = Node->getBlockAddress(); 2605 int64_t Offset = Node->getOffset(); 2606 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 2607 2608 SDValue Result = DAG.getTargetBlockAddress(BA, PtrVT, Offset); 2609 Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result); 2610 return Result; 2611 } 2612 2613 SDValue SystemZTargetLowering::lowerJumpTable(JumpTableSDNode *JT, 2614 SelectionDAG &DAG) const { 2615 SDLoc DL(JT); 2616 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 2617 SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), PtrVT); 2618 2619 // Use LARL to load the address of the table. 2620 return DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result); 2621 } 2622 2623 SDValue SystemZTargetLowering::lowerConstantPool(ConstantPoolSDNode *CP, 2624 SelectionDAG &DAG) const { 2625 SDLoc DL(CP); 2626 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 2627 2628 SDValue Result; 2629 if (CP->isMachineConstantPoolEntry()) 2630 Result = DAG.getTargetConstantPool(CP->getMachineCPVal(), PtrVT, 2631 CP->getAlignment()); 2632 else 2633 Result = DAG.getTargetConstantPool(CP->getConstVal(), PtrVT, 2634 CP->getAlignment(), CP->getOffset()); 2635 2636 // Use LARL to load the address of the constant pool entry. 2637 return DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result); 2638 } 2639 2640 SDValue SystemZTargetLowering::lowerBITCAST(SDValue Op, 2641 SelectionDAG &DAG) const { 2642 SDLoc DL(Op); 2643 SDValue In = Op.getOperand(0); 2644 EVT InVT = In.getValueType(); 2645 EVT ResVT = Op.getValueType(); 2646 2647 // Convert loads directly. This is normally done by DAGCombiner, 2648 // but we need this case for bitcasts that are created during lowering 2649 // and which are then lowered themselves. 2650 if (auto *LoadN = dyn_cast<LoadSDNode>(In)) 2651 return DAG.getLoad(ResVT, DL, LoadN->getChain(), LoadN->getBasePtr(), 2652 LoadN->getMemOperand()); 2653 2654 if (InVT == MVT::i32 && ResVT == MVT::f32) { 2655 SDValue In64; 2656 if (Subtarget.hasHighWord()) { 2657 SDNode *U64 = DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL, 2658 MVT::i64); 2659 In64 = DAG.getTargetInsertSubreg(SystemZ::subreg_h32, DL, 2660 MVT::i64, SDValue(U64, 0), In); 2661 } else { 2662 In64 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, In); 2663 In64 = DAG.getNode(ISD::SHL, DL, MVT::i64, In64, 2664 DAG.getConstant(32, DL, MVT::i64)); 2665 } 2666 SDValue Out64 = DAG.getNode(ISD::BITCAST, DL, MVT::f64, In64); 2667 return DAG.getTargetExtractSubreg(SystemZ::subreg_r32, 2668 DL, MVT::f32, Out64); 2669 } 2670 if (InVT == MVT::f32 && ResVT == MVT::i32) { 2671 SDNode *U64 = DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL, MVT::f64); 2672 SDValue In64 = DAG.getTargetInsertSubreg(SystemZ::subreg_r32, DL, 2673 MVT::f64, SDValue(U64, 0), In); 2674 SDValue Out64 = DAG.getNode(ISD::BITCAST, DL, MVT::i64, In64); 2675 if (Subtarget.hasHighWord()) 2676 return DAG.getTargetExtractSubreg(SystemZ::subreg_h32, DL, 2677 MVT::i32, Out64); 2678 SDValue Shift = DAG.getNode(ISD::SRL, DL, MVT::i64, Out64, 2679 DAG.getConstant(32, DL, MVT::i64)); 2680 return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Shift); 2681 } 2682 llvm_unreachable("Unexpected bitcast combination"); 2683 } 2684 2685 SDValue SystemZTargetLowering::lowerVASTART(SDValue Op, 2686 SelectionDAG &DAG) const { 2687 MachineFunction &MF = DAG.getMachineFunction(); 2688 SystemZMachineFunctionInfo *FuncInfo = 2689 MF.getInfo<SystemZMachineFunctionInfo>(); 2690 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 2691 2692 SDValue Chain = Op.getOperand(0); 2693 SDValue Addr = Op.getOperand(1); 2694 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 2695 SDLoc DL(Op); 2696 2697 // The initial values of each field. 2698 const unsigned NumFields = 4; 2699 SDValue Fields[NumFields] = { 2700 DAG.getConstant(FuncInfo->getVarArgsFirstGPR(), DL, PtrVT), 2701 DAG.getConstant(FuncInfo->getVarArgsFirstFPR(), DL, PtrVT), 2702 DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT), 2703 DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(), PtrVT) 2704 }; 2705 2706 // Store each field into its respective slot. 2707 SDValue MemOps[NumFields]; 2708 unsigned Offset = 0; 2709 for (unsigned I = 0; I < NumFields; ++I) { 2710 SDValue FieldAddr = Addr; 2711 if (Offset != 0) 2712 FieldAddr = DAG.getNode(ISD::ADD, DL, PtrVT, FieldAddr, 2713 DAG.getIntPtrConstant(Offset, DL)); 2714 MemOps[I] = DAG.getStore(Chain, DL, Fields[I], FieldAddr, 2715 MachinePointerInfo(SV, Offset), 2716 false, false, 0); 2717 Offset += 8; 2718 } 2719 return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOps); 2720 } 2721 2722 SDValue SystemZTargetLowering::lowerVACOPY(SDValue Op, 2723 SelectionDAG &DAG) const { 2724 SDValue Chain = Op.getOperand(0); 2725 SDValue DstPtr = Op.getOperand(1); 2726 SDValue SrcPtr = Op.getOperand(2); 2727 const Value *DstSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue(); 2728 const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue(); 2729 SDLoc DL(Op); 2730 2731 return DAG.getMemcpy(Chain, DL, DstPtr, SrcPtr, DAG.getIntPtrConstant(32, DL), 2732 /*Align*/8, /*isVolatile*/false, /*AlwaysInline*/false, 2733 /*isTailCall*/false, 2734 MachinePointerInfo(DstSV), MachinePointerInfo(SrcSV)); 2735 } 2736 2737 SDValue SystemZTargetLowering:: 2738 lowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG) const { 2739 SDValue Chain = Op.getOperand(0); 2740 SDValue Size = Op.getOperand(1); 2741 SDLoc DL(Op); 2742 2743 unsigned SPReg = getStackPointerRegisterToSaveRestore(); 2744 2745 // Get a reference to the stack pointer. 2746 SDValue OldSP = DAG.getCopyFromReg(Chain, DL, SPReg, MVT::i64); 2747 2748 // Get the new stack pointer value. 2749 SDValue NewSP = DAG.getNode(ISD::SUB, DL, MVT::i64, OldSP, Size); 2750 2751 // Copy the new stack pointer back. 2752 Chain = DAG.getCopyToReg(Chain, DL, SPReg, NewSP); 2753 2754 // The allocated data lives above the 160 bytes allocated for the standard 2755 // frame, plus any outgoing stack arguments. We don't know how much that 2756 // amounts to yet, so emit a special ADJDYNALLOC placeholder. 2757 SDValue ArgAdjust = DAG.getNode(SystemZISD::ADJDYNALLOC, DL, MVT::i64); 2758 SDValue Result = DAG.getNode(ISD::ADD, DL, MVT::i64, NewSP, ArgAdjust); 2759 2760 SDValue Ops[2] = { Result, Chain }; 2761 return DAG.getMergeValues(Ops, DL); 2762 } 2763 2764 SDValue SystemZTargetLowering::lowerSMUL_LOHI(SDValue Op, 2765 SelectionDAG &DAG) const { 2766 EVT VT = Op.getValueType(); 2767 SDLoc DL(Op); 2768 SDValue Ops[2]; 2769 if (is32Bit(VT)) 2770 // Just do a normal 64-bit multiplication and extract the results. 2771 // We define this so that it can be used for constant division. 2772 lowerMUL_LOHI32(DAG, DL, ISD::SIGN_EXTEND, Op.getOperand(0), 2773 Op.getOperand(1), Ops[1], Ops[0]); 2774 else { 2775 // Do a full 128-bit multiplication based on UMUL_LOHI64: 2776 // 2777 // (ll * rl) + ((lh * rl) << 64) + ((ll * rh) << 64) 2778 // 2779 // but using the fact that the upper halves are either all zeros 2780 // or all ones: 2781 // 2782 // (ll * rl) - ((lh & rl) << 64) - ((ll & rh) << 64) 2783 // 2784 // and grouping the right terms together since they are quicker than the 2785 // multiplication: 2786 // 2787 // (ll * rl) - (((lh & rl) + (ll & rh)) << 64) 2788 SDValue C63 = DAG.getConstant(63, DL, MVT::i64); 2789 SDValue LL = Op.getOperand(0); 2790 SDValue RL = Op.getOperand(1); 2791 SDValue LH = DAG.getNode(ISD::SRA, DL, VT, LL, C63); 2792 SDValue RH = DAG.getNode(ISD::SRA, DL, VT, RL, C63); 2793 // UMUL_LOHI64 returns the low result in the odd register and the high 2794 // result in the even register. SMUL_LOHI is defined to return the 2795 // low half first, so the results are in reverse order. 2796 lowerGR128Binary(DAG, DL, VT, SystemZ::AEXT128_64, SystemZISD::UMUL_LOHI64, 2797 LL, RL, Ops[1], Ops[0]); 2798 SDValue NegLLTimesRH = DAG.getNode(ISD::AND, DL, VT, LL, RH); 2799 SDValue NegLHTimesRL = DAG.getNode(ISD::AND, DL, VT, LH, RL); 2800 SDValue NegSum = DAG.getNode(ISD::ADD, DL, VT, NegLLTimesRH, NegLHTimesRL); 2801 Ops[1] = DAG.getNode(ISD::SUB, DL, VT, Ops[1], NegSum); 2802 } 2803 return DAG.getMergeValues(Ops, DL); 2804 } 2805 2806 SDValue SystemZTargetLowering::lowerUMUL_LOHI(SDValue Op, 2807 SelectionDAG &DAG) const { 2808 EVT VT = Op.getValueType(); 2809 SDLoc DL(Op); 2810 SDValue Ops[2]; 2811 if (is32Bit(VT)) 2812 // Just do a normal 64-bit multiplication and extract the results. 2813 // We define this so that it can be used for constant division. 2814 lowerMUL_LOHI32(DAG, DL, ISD::ZERO_EXTEND, Op.getOperand(0), 2815 Op.getOperand(1), Ops[1], Ops[0]); 2816 else 2817 // UMUL_LOHI64 returns the low result in the odd register and the high 2818 // result in the even register. UMUL_LOHI is defined to return the 2819 // low half first, so the results are in reverse order. 2820 lowerGR128Binary(DAG, DL, VT, SystemZ::AEXT128_64, SystemZISD::UMUL_LOHI64, 2821 Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]); 2822 return DAG.getMergeValues(Ops, DL); 2823 } 2824 2825 SDValue SystemZTargetLowering::lowerSDIVREM(SDValue Op, 2826 SelectionDAG &DAG) const { 2827 SDValue Op0 = Op.getOperand(0); 2828 SDValue Op1 = Op.getOperand(1); 2829 EVT VT = Op.getValueType(); 2830 SDLoc DL(Op); 2831 unsigned Opcode; 2832 2833 // We use DSGF for 32-bit division. 2834 if (is32Bit(VT)) { 2835 Op0 = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, Op0); 2836 Opcode = SystemZISD::SDIVREM32; 2837 } else if (DAG.ComputeNumSignBits(Op1) > 32) { 2838 Op1 = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Op1); 2839 Opcode = SystemZISD::SDIVREM32; 2840 } else 2841 Opcode = SystemZISD::SDIVREM64; 2842 2843 // DSG(F) takes a 64-bit dividend, so the even register in the GR128 2844 // input is "don't care". The instruction returns the remainder in 2845 // the even register and the quotient in the odd register. 2846 SDValue Ops[2]; 2847 lowerGR128Binary(DAG, DL, VT, SystemZ::AEXT128_64, Opcode, 2848 Op0, Op1, Ops[1], Ops[0]); 2849 return DAG.getMergeValues(Ops, DL); 2850 } 2851 2852 SDValue SystemZTargetLowering::lowerUDIVREM(SDValue Op, 2853 SelectionDAG &DAG) const { 2854 EVT VT = Op.getValueType(); 2855 SDLoc DL(Op); 2856 2857 // DL(G) uses a double-width dividend, so we need to clear the even 2858 // register in the GR128 input. The instruction returns the remainder 2859 // in the even register and the quotient in the odd register. 2860 SDValue Ops[2]; 2861 if (is32Bit(VT)) 2862 lowerGR128Binary(DAG, DL, VT, SystemZ::ZEXT128_32, SystemZISD::UDIVREM32, 2863 Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]); 2864 else 2865 lowerGR128Binary(DAG, DL, VT, SystemZ::ZEXT128_64, SystemZISD::UDIVREM64, 2866 Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]); 2867 return DAG.getMergeValues(Ops, DL); 2868 } 2869 2870 SDValue SystemZTargetLowering::lowerOR(SDValue Op, SelectionDAG &DAG) const { 2871 assert(Op.getValueType() == MVT::i64 && "Should be 64-bit operation"); 2872 2873 // Get the known-zero masks for each operand. 2874 SDValue Ops[] = { Op.getOperand(0), Op.getOperand(1) }; 2875 APInt KnownZero[2], KnownOne[2]; 2876 DAG.computeKnownBits(Ops[0], KnownZero[0], KnownOne[0]); 2877 DAG.computeKnownBits(Ops[1], KnownZero[1], KnownOne[1]); 2878 2879 // See if the upper 32 bits of one operand and the lower 32 bits of the 2880 // other are known zero. They are the low and high operands respectively. 2881 uint64_t Masks[] = { KnownZero[0].getZExtValue(), 2882 KnownZero[1].getZExtValue() }; 2883 unsigned High, Low; 2884 if ((Masks[0] >> 32) == 0xffffffff && uint32_t(Masks[1]) == 0xffffffff) 2885 High = 1, Low = 0; 2886 else if ((Masks[1] >> 32) == 0xffffffff && uint32_t(Masks[0]) == 0xffffffff) 2887 High = 0, Low = 1; 2888 else 2889 return Op; 2890 2891 SDValue LowOp = Ops[Low]; 2892 SDValue HighOp = Ops[High]; 2893 2894 // If the high part is a constant, we're better off using IILH. 2895 if (HighOp.getOpcode() == ISD::Constant) 2896 return Op; 2897 2898 // If the low part is a constant that is outside the range of LHI, 2899 // then we're better off using IILF. 2900 if (LowOp.getOpcode() == ISD::Constant) { 2901 int64_t Value = int32_t(cast<ConstantSDNode>(LowOp)->getZExtValue()); 2902 if (!isInt<16>(Value)) 2903 return Op; 2904 } 2905 2906 // Check whether the high part is an AND that doesn't change the 2907 // high 32 bits and just masks out low bits. We can skip it if so. 2908 if (HighOp.getOpcode() == ISD::AND && 2909 HighOp.getOperand(1).getOpcode() == ISD::Constant) { 2910 SDValue HighOp0 = HighOp.getOperand(0); 2911 uint64_t Mask = cast<ConstantSDNode>(HighOp.getOperand(1))->getZExtValue(); 2912 if (DAG.MaskedValueIsZero(HighOp0, APInt(64, ~(Mask | 0xffffffff)))) 2913 HighOp = HighOp0; 2914 } 2915 2916 // Take advantage of the fact that all GR32 operations only change the 2917 // low 32 bits by truncating Low to an i32 and inserting it directly 2918 // using a subreg. The interesting cases are those where the truncation 2919 // can be folded. 2920 SDLoc DL(Op); 2921 SDValue Low32 = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, LowOp); 2922 return DAG.getTargetInsertSubreg(SystemZ::subreg_l32, DL, 2923 MVT::i64, HighOp, Low32); 2924 } 2925 2926 SDValue SystemZTargetLowering::lowerCTPOP(SDValue Op, 2927 SelectionDAG &DAG) const { 2928 EVT VT = Op.getValueType(); 2929 SDLoc DL(Op); 2930 Op = Op.getOperand(0); 2931 2932 // Handle vector types via VPOPCT. 2933 if (VT.isVector()) { 2934 Op = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, Op); 2935 Op = DAG.getNode(SystemZISD::POPCNT, DL, MVT::v16i8, Op); 2936 switch (VT.getVectorElementType().getSizeInBits()) { 2937 case 8: 2938 break; 2939 case 16: { 2940 Op = DAG.getNode(ISD::BITCAST, DL, VT, Op); 2941 SDValue Shift = DAG.getConstant(8, DL, MVT::i32); 2942 SDValue Tmp = DAG.getNode(SystemZISD::VSHL_BY_SCALAR, DL, VT, Op, Shift); 2943 Op = DAG.getNode(ISD::ADD, DL, VT, Op, Tmp); 2944 Op = DAG.getNode(SystemZISD::VSRL_BY_SCALAR, DL, VT, Op, Shift); 2945 break; 2946 } 2947 case 32: { 2948 SDValue Tmp = DAG.getNode(SystemZISD::BYTE_MASK, DL, MVT::v16i8, 2949 DAG.getConstant(0, DL, MVT::i32)); 2950 Op = DAG.getNode(SystemZISD::VSUM, DL, VT, Op, Tmp); 2951 break; 2952 } 2953 case 64: { 2954 SDValue Tmp = DAG.getNode(SystemZISD::BYTE_MASK, DL, MVT::v16i8, 2955 DAG.getConstant(0, DL, MVT::i32)); 2956 Op = DAG.getNode(SystemZISD::VSUM, DL, MVT::v4i32, Op, Tmp); 2957 Op = DAG.getNode(SystemZISD::VSUM, DL, VT, Op, Tmp); 2958 break; 2959 } 2960 default: 2961 llvm_unreachable("Unexpected type"); 2962 } 2963 return Op; 2964 } 2965 2966 // Get the known-zero mask for the operand. 2967 APInt KnownZero, KnownOne; 2968 DAG.computeKnownBits(Op, KnownZero, KnownOne); 2969 unsigned NumSignificantBits = (~KnownZero).getActiveBits(); 2970 if (NumSignificantBits == 0) 2971 return DAG.getConstant(0, DL, VT); 2972 2973 // Skip known-zero high parts of the operand. 2974 int64_t OrigBitSize = VT.getSizeInBits(); 2975 int64_t BitSize = (int64_t)1 << Log2_32_Ceil(NumSignificantBits); 2976 BitSize = std::min(BitSize, OrigBitSize); 2977 2978 // The POPCNT instruction counts the number of bits in each byte. 2979 Op = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op); 2980 Op = DAG.getNode(SystemZISD::POPCNT, DL, MVT::i64, Op); 2981 Op = DAG.getNode(ISD::TRUNCATE, DL, VT, Op); 2982 2983 // Add up per-byte counts in a binary tree. All bits of Op at 2984 // position larger than BitSize remain zero throughout. 2985 for (int64_t I = BitSize / 2; I >= 8; I = I / 2) { 2986 SDValue Tmp = DAG.getNode(ISD::SHL, DL, VT, Op, DAG.getConstant(I, DL, VT)); 2987 if (BitSize != OrigBitSize) 2988 Tmp = DAG.getNode(ISD::AND, DL, VT, Tmp, 2989 DAG.getConstant(((uint64_t)1 << BitSize) - 1, DL, VT)); 2990 Op = DAG.getNode(ISD::ADD, DL, VT, Op, Tmp); 2991 } 2992 2993 // Extract overall result from high byte. 2994 if (BitSize > 8) 2995 Op = DAG.getNode(ISD::SRL, DL, VT, Op, 2996 DAG.getConstant(BitSize - 8, DL, VT)); 2997 2998 return Op; 2999 } 3000 3001 // Op is an atomic load. Lower it into a normal volatile load. 3002 SDValue SystemZTargetLowering::lowerATOMIC_LOAD(SDValue Op, 3003 SelectionDAG &DAG) const { 3004 auto *Node = cast<AtomicSDNode>(Op.getNode()); 3005 return DAG.getExtLoad(ISD::EXTLOAD, SDLoc(Op), Op.getValueType(), 3006 Node->getChain(), Node->getBasePtr(), 3007 Node->getMemoryVT(), Node->getMemOperand()); 3008 } 3009 3010 // Op is an atomic store. Lower it into a normal volatile store followed 3011 // by a serialization. 3012 SDValue SystemZTargetLowering::lowerATOMIC_STORE(SDValue Op, 3013 SelectionDAG &DAG) const { 3014 auto *Node = cast<AtomicSDNode>(Op.getNode()); 3015 SDValue Chain = DAG.getTruncStore(Node->getChain(), SDLoc(Op), Node->getVal(), 3016 Node->getBasePtr(), Node->getMemoryVT(), 3017 Node->getMemOperand()); 3018 return SDValue(DAG.getMachineNode(SystemZ::Serialize, SDLoc(Op), MVT::Other, 3019 Chain), 0); 3020 } 3021 3022 // Op is an 8-, 16-bit or 32-bit ATOMIC_LOAD_* operation. Lower the first 3023 // two into the fullword ATOMIC_LOADW_* operation given by Opcode. 3024 SDValue SystemZTargetLowering::lowerATOMIC_LOAD_OP(SDValue Op, 3025 SelectionDAG &DAG, 3026 unsigned Opcode) const { 3027 auto *Node = cast<AtomicSDNode>(Op.getNode()); 3028 3029 // 32-bit operations need no code outside the main loop. 3030 EVT NarrowVT = Node->getMemoryVT(); 3031 EVT WideVT = MVT::i32; 3032 if (NarrowVT == WideVT) 3033 return Op; 3034 3035 int64_t BitSize = NarrowVT.getSizeInBits(); 3036 SDValue ChainIn = Node->getChain(); 3037 SDValue Addr = Node->getBasePtr(); 3038 SDValue Src2 = Node->getVal(); 3039 MachineMemOperand *MMO = Node->getMemOperand(); 3040 SDLoc DL(Node); 3041 EVT PtrVT = Addr.getValueType(); 3042 3043 // Convert atomic subtracts of constants into additions. 3044 if (Opcode == SystemZISD::ATOMIC_LOADW_SUB) 3045 if (auto *Const = dyn_cast<ConstantSDNode>(Src2)) { 3046 Opcode = SystemZISD::ATOMIC_LOADW_ADD; 3047 Src2 = DAG.getConstant(-Const->getSExtValue(), DL, Src2.getValueType()); 3048 } 3049 3050 // Get the address of the containing word. 3051 SDValue AlignedAddr = DAG.getNode(ISD::AND, DL, PtrVT, Addr, 3052 DAG.getConstant(-4, DL, PtrVT)); 3053 3054 // Get the number of bits that the word must be rotated left in order 3055 // to bring the field to the top bits of a GR32. 3056 SDValue BitShift = DAG.getNode(ISD::SHL, DL, PtrVT, Addr, 3057 DAG.getConstant(3, DL, PtrVT)); 3058 BitShift = DAG.getNode(ISD::TRUNCATE, DL, WideVT, BitShift); 3059 3060 // Get the complementing shift amount, for rotating a field in the top 3061 // bits back to its proper position. 3062 SDValue NegBitShift = DAG.getNode(ISD::SUB, DL, WideVT, 3063 DAG.getConstant(0, DL, WideVT), BitShift); 3064 3065 // Extend the source operand to 32 bits and prepare it for the inner loop. 3066 // ATOMIC_SWAPW uses RISBG to rotate the field left, but all other 3067 // operations require the source to be shifted in advance. (This shift 3068 // can be folded if the source is constant.) For AND and NAND, the lower 3069 // bits must be set, while for other opcodes they should be left clear. 3070 if (Opcode != SystemZISD::ATOMIC_SWAPW) 3071 Src2 = DAG.getNode(ISD::SHL, DL, WideVT, Src2, 3072 DAG.getConstant(32 - BitSize, DL, WideVT)); 3073 if (Opcode == SystemZISD::ATOMIC_LOADW_AND || 3074 Opcode == SystemZISD::ATOMIC_LOADW_NAND) 3075 Src2 = DAG.getNode(ISD::OR, DL, WideVT, Src2, 3076 DAG.getConstant(uint32_t(-1) >> BitSize, DL, WideVT)); 3077 3078 // Construct the ATOMIC_LOADW_* node. 3079 SDVTList VTList = DAG.getVTList(WideVT, MVT::Other); 3080 SDValue Ops[] = { ChainIn, AlignedAddr, Src2, BitShift, NegBitShift, 3081 DAG.getConstant(BitSize, DL, WideVT) }; 3082 SDValue AtomicOp = DAG.getMemIntrinsicNode(Opcode, DL, VTList, Ops, 3083 NarrowVT, MMO); 3084 3085 // Rotate the result of the final CS so that the field is in the lower 3086 // bits of a GR32, then truncate it. 3087 SDValue ResultShift = DAG.getNode(ISD::ADD, DL, WideVT, BitShift, 3088 DAG.getConstant(BitSize, DL, WideVT)); 3089 SDValue Result = DAG.getNode(ISD::ROTL, DL, WideVT, AtomicOp, ResultShift); 3090 3091 SDValue RetOps[2] = { Result, AtomicOp.getValue(1) }; 3092 return DAG.getMergeValues(RetOps, DL); 3093 } 3094 3095 // Op is an ATOMIC_LOAD_SUB operation. Lower 8- and 16-bit operations 3096 // into ATOMIC_LOADW_SUBs and decide whether to convert 32- and 64-bit 3097 // operations into additions. 3098 SDValue SystemZTargetLowering::lowerATOMIC_LOAD_SUB(SDValue Op, 3099 SelectionDAG &DAG) const { 3100 auto *Node = cast<AtomicSDNode>(Op.getNode()); 3101 EVT MemVT = Node->getMemoryVT(); 3102 if (MemVT == MVT::i32 || MemVT == MVT::i64) { 3103 // A full-width operation. 3104 assert(Op.getValueType() == MemVT && "Mismatched VTs"); 3105 SDValue Src2 = Node->getVal(); 3106 SDValue NegSrc2; 3107 SDLoc DL(Src2); 3108 3109 if (auto *Op2 = dyn_cast<ConstantSDNode>(Src2)) { 3110 // Use an addition if the operand is constant and either LAA(G) is 3111 // available or the negative value is in the range of A(G)FHI. 3112 int64_t Value = (-Op2->getAPIntValue()).getSExtValue(); 3113 if (isInt<32>(Value) || Subtarget.hasInterlockedAccess1()) 3114 NegSrc2 = DAG.getConstant(Value, DL, MemVT); 3115 } else if (Subtarget.hasInterlockedAccess1()) 3116 // Use LAA(G) if available. 3117 NegSrc2 = DAG.getNode(ISD::SUB, DL, MemVT, DAG.getConstant(0, DL, MemVT), 3118 Src2); 3119 3120 if (NegSrc2.getNode()) 3121 return DAG.getAtomic(ISD::ATOMIC_LOAD_ADD, DL, MemVT, 3122 Node->getChain(), Node->getBasePtr(), NegSrc2, 3123 Node->getMemOperand(), Node->getOrdering(), 3124 Node->getSynchScope()); 3125 3126 // Use the node as-is. 3127 return Op; 3128 } 3129 3130 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_SUB); 3131 } 3132 3133 // Node is an 8- or 16-bit ATOMIC_CMP_SWAP operation. Lower the first two 3134 // into a fullword ATOMIC_CMP_SWAPW operation. 3135 SDValue SystemZTargetLowering::lowerATOMIC_CMP_SWAP(SDValue Op, 3136 SelectionDAG &DAG) const { 3137 auto *Node = cast<AtomicSDNode>(Op.getNode()); 3138 3139 // We have native support for 32-bit compare and swap. 3140 EVT NarrowVT = Node->getMemoryVT(); 3141 EVT WideVT = MVT::i32; 3142 if (NarrowVT == WideVT) 3143 return Op; 3144 3145 int64_t BitSize = NarrowVT.getSizeInBits(); 3146 SDValue ChainIn = Node->getOperand(0); 3147 SDValue Addr = Node->getOperand(1); 3148 SDValue CmpVal = Node->getOperand(2); 3149 SDValue SwapVal = Node->getOperand(3); 3150 MachineMemOperand *MMO = Node->getMemOperand(); 3151 SDLoc DL(Node); 3152 EVT PtrVT = Addr.getValueType(); 3153 3154 // Get the address of the containing word. 3155 SDValue AlignedAddr = DAG.getNode(ISD::AND, DL, PtrVT, Addr, 3156 DAG.getConstant(-4, DL, PtrVT)); 3157 3158 // Get the number of bits that the word must be rotated left in order 3159 // to bring the field to the top bits of a GR32. 3160 SDValue BitShift = DAG.getNode(ISD::SHL, DL, PtrVT, Addr, 3161 DAG.getConstant(3, DL, PtrVT)); 3162 BitShift = DAG.getNode(ISD::TRUNCATE, DL, WideVT, BitShift); 3163 3164 // Get the complementing shift amount, for rotating a field in the top 3165 // bits back to its proper position. 3166 SDValue NegBitShift = DAG.getNode(ISD::SUB, DL, WideVT, 3167 DAG.getConstant(0, DL, WideVT), BitShift); 3168 3169 // Construct the ATOMIC_CMP_SWAPW node. 3170 SDVTList VTList = DAG.getVTList(WideVT, MVT::Other); 3171 SDValue Ops[] = { ChainIn, AlignedAddr, CmpVal, SwapVal, BitShift, 3172 NegBitShift, DAG.getConstant(BitSize, DL, WideVT) }; 3173 SDValue AtomicOp = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_CMP_SWAPW, DL, 3174 VTList, Ops, NarrowVT, MMO); 3175 return AtomicOp; 3176 } 3177 3178 SDValue SystemZTargetLowering::lowerSTACKSAVE(SDValue Op, 3179 SelectionDAG &DAG) const { 3180 MachineFunction &MF = DAG.getMachineFunction(); 3181 MF.getInfo<SystemZMachineFunctionInfo>()->setManipulatesSP(true); 3182 return DAG.getCopyFromReg(Op.getOperand(0), SDLoc(Op), 3183 SystemZ::R15D, Op.getValueType()); 3184 } 3185 3186 SDValue SystemZTargetLowering::lowerSTACKRESTORE(SDValue Op, 3187 SelectionDAG &DAG) const { 3188 MachineFunction &MF = DAG.getMachineFunction(); 3189 MF.getInfo<SystemZMachineFunctionInfo>()->setManipulatesSP(true); 3190 return DAG.getCopyToReg(Op.getOperand(0), SDLoc(Op), 3191 SystemZ::R15D, Op.getOperand(1)); 3192 } 3193 3194 SDValue SystemZTargetLowering::lowerPREFETCH(SDValue Op, 3195 SelectionDAG &DAG) const { 3196 bool IsData = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue(); 3197 if (!IsData) 3198 // Just preserve the chain. 3199 return Op.getOperand(0); 3200 3201 SDLoc DL(Op); 3202 bool IsWrite = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue(); 3203 unsigned Code = IsWrite ? SystemZ::PFD_WRITE : SystemZ::PFD_READ; 3204 auto *Node = cast<MemIntrinsicSDNode>(Op.getNode()); 3205 SDValue Ops[] = { 3206 Op.getOperand(0), 3207 DAG.getConstant(Code, DL, MVT::i32), 3208 Op.getOperand(1) 3209 }; 3210 return DAG.getMemIntrinsicNode(SystemZISD::PREFETCH, DL, 3211 Node->getVTList(), Ops, 3212 Node->getMemoryVT(), Node->getMemOperand()); 3213 } 3214 3215 // Return an i32 that contains the value of CC immediately after After, 3216 // whose final operand must be MVT::Glue. 3217 static SDValue getCCResult(SelectionDAG &DAG, SDNode *After) { 3218 SDLoc DL(After); 3219 SDValue Glue = SDValue(After, After->getNumValues() - 1); 3220 SDValue IPM = DAG.getNode(SystemZISD::IPM, DL, MVT::i32, Glue); 3221 return DAG.getNode(ISD::SRL, DL, MVT::i32, IPM, 3222 DAG.getConstant(SystemZ::IPM_CC, DL, MVT::i32)); 3223 } 3224 3225 SDValue 3226 SystemZTargetLowering::lowerINTRINSIC_W_CHAIN(SDValue Op, 3227 SelectionDAG &DAG) const { 3228 unsigned Opcode, CCValid; 3229 if (isIntrinsicWithCCAndChain(Op, Opcode, CCValid)) { 3230 assert(Op->getNumValues() == 2 && "Expected only CC result and chain"); 3231 SDValue Glued = emitIntrinsicWithChainAndGlue(DAG, Op, Opcode); 3232 SDValue CC = getCCResult(DAG, Glued.getNode()); 3233 DAG.ReplaceAllUsesOfValueWith(SDValue(Op.getNode(), 0), CC); 3234 return SDValue(); 3235 } 3236 3237 return SDValue(); 3238 } 3239 3240 SDValue 3241 SystemZTargetLowering::lowerINTRINSIC_WO_CHAIN(SDValue Op, 3242 SelectionDAG &DAG) const { 3243 unsigned Opcode, CCValid; 3244 if (isIntrinsicWithCC(Op, Opcode, CCValid)) { 3245 SDValue Glued = emitIntrinsicWithGlue(DAG, Op, Opcode); 3246 SDValue CC = getCCResult(DAG, Glued.getNode()); 3247 if (Op->getNumValues() == 1) 3248 return CC; 3249 assert(Op->getNumValues() == 2 && "Expected a CC and non-CC result"); 3250 return DAG.getNode(ISD::MERGE_VALUES, SDLoc(Op), Op->getVTList(), 3251 Glued, CC); 3252 } 3253 3254 unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 3255 switch (Id) { 3256 case Intrinsic::s390_vpdi: 3257 return DAG.getNode(SystemZISD::PERMUTE_DWORDS, SDLoc(Op), Op.getValueType(), 3258 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3)); 3259 3260 case Intrinsic::s390_vperm: 3261 return DAG.getNode(SystemZISD::PERMUTE, SDLoc(Op), Op.getValueType(), 3262 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3)); 3263 3264 case Intrinsic::s390_vuphb: 3265 case Intrinsic::s390_vuphh: 3266 case Intrinsic::s390_vuphf: 3267 return DAG.getNode(SystemZISD::UNPACK_HIGH, SDLoc(Op), Op.getValueType(), 3268 Op.getOperand(1)); 3269 3270 case Intrinsic::s390_vuplhb: 3271 case Intrinsic::s390_vuplhh: 3272 case Intrinsic::s390_vuplhf: 3273 return DAG.getNode(SystemZISD::UNPACKL_HIGH, SDLoc(Op), Op.getValueType(), 3274 Op.getOperand(1)); 3275 3276 case Intrinsic::s390_vuplb: 3277 case Intrinsic::s390_vuplhw: 3278 case Intrinsic::s390_vuplf: 3279 return DAG.getNode(SystemZISD::UNPACK_LOW, SDLoc(Op), Op.getValueType(), 3280 Op.getOperand(1)); 3281 3282 case Intrinsic::s390_vupllb: 3283 case Intrinsic::s390_vupllh: 3284 case Intrinsic::s390_vupllf: 3285 return DAG.getNode(SystemZISD::UNPACKL_LOW, SDLoc(Op), Op.getValueType(), 3286 Op.getOperand(1)); 3287 3288 case Intrinsic::s390_vsumb: 3289 case Intrinsic::s390_vsumh: 3290 case Intrinsic::s390_vsumgh: 3291 case Intrinsic::s390_vsumgf: 3292 case Intrinsic::s390_vsumqf: 3293 case Intrinsic::s390_vsumqg: 3294 return DAG.getNode(SystemZISD::VSUM, SDLoc(Op), Op.getValueType(), 3295 Op.getOperand(1), Op.getOperand(2)); 3296 } 3297 3298 return SDValue(); 3299 } 3300 3301 namespace { 3302 // Says that SystemZISD operation Opcode can be used to perform the equivalent 3303 // of a VPERM with permute vector Bytes. If Opcode takes three operands, 3304 // Operand is the constant third operand, otherwise it is the number of 3305 // bytes in each element of the result. 3306 struct Permute { 3307 unsigned Opcode; 3308 unsigned Operand; 3309 unsigned char Bytes[SystemZ::VectorBytes]; 3310 }; 3311 } 3312 3313 static const Permute PermuteForms[] = { 3314 // VMRHG 3315 { SystemZISD::MERGE_HIGH, 8, 3316 { 0, 1, 2, 3, 4, 5, 6, 7, 16, 17, 18, 19, 20, 21, 22, 23 } }, 3317 // VMRHF 3318 { SystemZISD::MERGE_HIGH, 4, 3319 { 0, 1, 2, 3, 16, 17, 18, 19, 4, 5, 6, 7, 20, 21, 22, 23 } }, 3320 // VMRHH 3321 { SystemZISD::MERGE_HIGH, 2, 3322 { 0, 1, 16, 17, 2, 3, 18, 19, 4, 5, 20, 21, 6, 7, 22, 23 } }, 3323 // VMRHB 3324 { SystemZISD::MERGE_HIGH, 1, 3325 { 0, 16, 1, 17, 2, 18, 3, 19, 4, 20, 5, 21, 6, 22, 7, 23 } }, 3326 // VMRLG 3327 { SystemZISD::MERGE_LOW, 8, 3328 { 8, 9, 10, 11, 12, 13, 14, 15, 24, 25, 26, 27, 28, 29, 30, 31 } }, 3329 // VMRLF 3330 { SystemZISD::MERGE_LOW, 4, 3331 { 8, 9, 10, 11, 24, 25, 26, 27, 12, 13, 14, 15, 28, 29, 30, 31 } }, 3332 // VMRLH 3333 { SystemZISD::MERGE_LOW, 2, 3334 { 8, 9, 24, 25, 10, 11, 26, 27, 12, 13, 28, 29, 14, 15, 30, 31 } }, 3335 // VMRLB 3336 { SystemZISD::MERGE_LOW, 1, 3337 { 8, 24, 9, 25, 10, 26, 11, 27, 12, 28, 13, 29, 14, 30, 15, 31 } }, 3338 // VPKG 3339 { SystemZISD::PACK, 4, 3340 { 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31 } }, 3341 // VPKF 3342 { SystemZISD::PACK, 2, 3343 { 2, 3, 6, 7, 10, 11, 14, 15, 18, 19, 22, 23, 26, 27, 30, 31 } }, 3344 // VPKH 3345 { SystemZISD::PACK, 1, 3346 { 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31 } }, 3347 // VPDI V1, V2, 4 (low half of V1, high half of V2) 3348 { SystemZISD::PERMUTE_DWORDS, 4, 3349 { 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23 } }, 3350 // VPDI V1, V2, 1 (high half of V1, low half of V2) 3351 { SystemZISD::PERMUTE_DWORDS, 1, 3352 { 0, 1, 2, 3, 4, 5, 6, 7, 24, 25, 26, 27, 28, 29, 30, 31 } } 3353 }; 3354 3355 // Called after matching a vector shuffle against a particular pattern. 3356 // Both the original shuffle and the pattern have two vector operands. 3357 // OpNos[0] is the operand of the original shuffle that should be used for 3358 // operand 0 of the pattern, or -1 if operand 0 of the pattern can be anything. 3359 // OpNos[1] is the same for operand 1 of the pattern. Resolve these -1s and 3360 // set OpNo0 and OpNo1 to the shuffle operands that should actually be used 3361 // for operands 0 and 1 of the pattern. 3362 static bool chooseShuffleOpNos(int *OpNos, unsigned &OpNo0, unsigned &OpNo1) { 3363 if (OpNos[0] < 0) { 3364 if (OpNos[1] < 0) 3365 return false; 3366 OpNo0 = OpNo1 = OpNos[1]; 3367 } else if (OpNos[1] < 0) { 3368 OpNo0 = OpNo1 = OpNos[0]; 3369 } else { 3370 OpNo0 = OpNos[0]; 3371 OpNo1 = OpNos[1]; 3372 } 3373 return true; 3374 } 3375 3376 // Bytes is a VPERM-like permute vector, except that -1 is used for 3377 // undefined bytes. Return true if the VPERM can be implemented using P. 3378 // When returning true set OpNo0 to the VPERM operand that should be 3379 // used for operand 0 of P and likewise OpNo1 for operand 1 of P. 3380 // 3381 // For example, if swapping the VPERM operands allows P to match, OpNo0 3382 // will be 1 and OpNo1 will be 0. If instead Bytes only refers to one 3383 // operand, but rewriting it to use two duplicated operands allows it to 3384 // match P, then OpNo0 and OpNo1 will be the same. 3385 static bool matchPermute(const SmallVectorImpl<int> &Bytes, const Permute &P, 3386 unsigned &OpNo0, unsigned &OpNo1) { 3387 int OpNos[] = { -1, -1 }; 3388 for (unsigned I = 0; I < SystemZ::VectorBytes; ++I) { 3389 int Elt = Bytes[I]; 3390 if (Elt >= 0) { 3391 // Make sure that the two permute vectors use the same suboperand 3392 // byte number. Only the operand numbers (the high bits) are 3393 // allowed to differ. 3394 if ((Elt ^ P.Bytes[I]) & (SystemZ::VectorBytes - 1)) 3395 return false; 3396 int ModelOpNo = P.Bytes[I] / SystemZ::VectorBytes; 3397 int RealOpNo = unsigned(Elt) / SystemZ::VectorBytes; 3398 // Make sure that the operand mappings are consistent with previous 3399 // elements. 3400 if (OpNos[ModelOpNo] == 1 - RealOpNo) 3401 return false; 3402 OpNos[ModelOpNo] = RealOpNo; 3403 } 3404 } 3405 return chooseShuffleOpNos(OpNos, OpNo0, OpNo1); 3406 } 3407 3408 // As above, but search for a matching permute. 3409 static const Permute *matchPermute(const SmallVectorImpl<int> &Bytes, 3410 unsigned &OpNo0, unsigned &OpNo1) { 3411 for (auto &P : PermuteForms) 3412 if (matchPermute(Bytes, P, OpNo0, OpNo1)) 3413 return &P; 3414 return nullptr; 3415 } 3416 3417 // Bytes is a VPERM-like permute vector, except that -1 is used for 3418 // undefined bytes. This permute is an operand of an outer permute. 3419 // See whether redistributing the -1 bytes gives a shuffle that can be 3420 // implemented using P. If so, set Transform to a VPERM-like permute vector 3421 // that, when applied to the result of P, gives the original permute in Bytes. 3422 static bool matchDoublePermute(const SmallVectorImpl<int> &Bytes, 3423 const Permute &P, 3424 SmallVectorImpl<int> &Transform) { 3425 unsigned To = 0; 3426 for (unsigned From = 0; From < SystemZ::VectorBytes; ++From) { 3427 int Elt = Bytes[From]; 3428 if (Elt < 0) 3429 // Byte number From of the result is undefined. 3430 Transform[From] = -1; 3431 else { 3432 while (P.Bytes[To] != Elt) { 3433 To += 1; 3434 if (To == SystemZ::VectorBytes) 3435 return false; 3436 } 3437 Transform[From] = To; 3438 } 3439 } 3440 return true; 3441 } 3442 3443 // As above, but search for a matching permute. 3444 static const Permute *matchDoublePermute(const SmallVectorImpl<int> &Bytes, 3445 SmallVectorImpl<int> &Transform) { 3446 for (auto &P : PermuteForms) 3447 if (matchDoublePermute(Bytes, P, Transform)) 3448 return &P; 3449 return nullptr; 3450 } 3451 3452 // Convert the mask of the given VECTOR_SHUFFLE into a byte-level mask, 3453 // as if it had type vNi8. 3454 static void getVPermMask(ShuffleVectorSDNode *VSN, 3455 SmallVectorImpl<int> &Bytes) { 3456 EVT VT = VSN->getValueType(0); 3457 unsigned NumElements = VT.getVectorNumElements(); 3458 unsigned BytesPerElement = VT.getVectorElementType().getStoreSize(); 3459 Bytes.resize(NumElements * BytesPerElement, -1); 3460 for (unsigned I = 0; I < NumElements; ++I) { 3461 int Index = VSN->getMaskElt(I); 3462 if (Index >= 0) 3463 for (unsigned J = 0; J < BytesPerElement; ++J) 3464 Bytes[I * BytesPerElement + J] = Index * BytesPerElement + J; 3465 } 3466 } 3467 3468 // Bytes is a VPERM-like permute vector, except that -1 is used for 3469 // undefined bytes. See whether bytes [Start, Start + BytesPerElement) of 3470 // the result come from a contiguous sequence of bytes from one input. 3471 // Set Base to the selector for the first byte if so. 3472 static bool getShuffleInput(const SmallVectorImpl<int> &Bytes, unsigned Start, 3473 unsigned BytesPerElement, int &Base) { 3474 Base = -1; 3475 for (unsigned I = 0; I < BytesPerElement; ++I) { 3476 if (Bytes[Start + I] >= 0) { 3477 unsigned Elem = Bytes[Start + I]; 3478 if (Base < 0) { 3479 Base = Elem - I; 3480 // Make sure the bytes would come from one input operand. 3481 if (unsigned(Base) % Bytes.size() + BytesPerElement > Bytes.size()) 3482 return false; 3483 } else if (unsigned(Base) != Elem - I) 3484 return false; 3485 } 3486 } 3487 return true; 3488 } 3489 3490 // Bytes is a VPERM-like permute vector, except that -1 is used for 3491 // undefined bytes. Return true if it can be performed using VSLDI. 3492 // When returning true, set StartIndex to the shift amount and OpNo0 3493 // and OpNo1 to the VPERM operands that should be used as the first 3494 // and second shift operand respectively. 3495 static bool isShlDoublePermute(const SmallVectorImpl<int> &Bytes, 3496 unsigned &StartIndex, unsigned &OpNo0, 3497 unsigned &OpNo1) { 3498 int OpNos[] = { -1, -1 }; 3499 int Shift = -1; 3500 for (unsigned I = 0; I < 16; ++I) { 3501 int Index = Bytes[I]; 3502 if (Index >= 0) { 3503 int ExpectedShift = (Index - I) % SystemZ::VectorBytes; 3504 int ModelOpNo = unsigned(ExpectedShift + I) / SystemZ::VectorBytes; 3505 int RealOpNo = unsigned(Index) / SystemZ::VectorBytes; 3506 if (Shift < 0) 3507 Shift = ExpectedShift; 3508 else if (Shift != ExpectedShift) 3509 return false; 3510 // Make sure that the operand mappings are consistent with previous 3511 // elements. 3512 if (OpNos[ModelOpNo] == 1 - RealOpNo) 3513 return false; 3514 OpNos[ModelOpNo] = RealOpNo; 3515 } 3516 } 3517 StartIndex = Shift; 3518 return chooseShuffleOpNos(OpNos, OpNo0, OpNo1); 3519 } 3520 3521 // Create a node that performs P on operands Op0 and Op1, casting the 3522 // operands to the appropriate type. The type of the result is determined by P. 3523 static SDValue getPermuteNode(SelectionDAG &DAG, SDLoc DL, 3524 const Permute &P, SDValue Op0, SDValue Op1) { 3525 // VPDI (PERMUTE_DWORDS) always operates on v2i64s. The input 3526 // elements of a PACK are twice as wide as the outputs. 3527 unsigned InBytes = (P.Opcode == SystemZISD::PERMUTE_DWORDS ? 8 : 3528 P.Opcode == SystemZISD::PACK ? P.Operand * 2 : 3529 P.Operand); 3530 // Cast both operands to the appropriate type. 3531 MVT InVT = MVT::getVectorVT(MVT::getIntegerVT(InBytes * 8), 3532 SystemZ::VectorBytes / InBytes); 3533 Op0 = DAG.getNode(ISD::BITCAST, DL, InVT, Op0); 3534 Op1 = DAG.getNode(ISD::BITCAST, DL, InVT, Op1); 3535 SDValue Op; 3536 if (P.Opcode == SystemZISD::PERMUTE_DWORDS) { 3537 SDValue Op2 = DAG.getConstant(P.Operand, DL, MVT::i32); 3538 Op = DAG.getNode(SystemZISD::PERMUTE_DWORDS, DL, InVT, Op0, Op1, Op2); 3539 } else if (P.Opcode == SystemZISD::PACK) { 3540 MVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(P.Operand * 8), 3541 SystemZ::VectorBytes / P.Operand); 3542 Op = DAG.getNode(SystemZISD::PACK, DL, OutVT, Op0, Op1); 3543 } else { 3544 Op = DAG.getNode(P.Opcode, DL, InVT, Op0, Op1); 3545 } 3546 return Op; 3547 } 3548 3549 // Bytes is a VPERM-like permute vector, except that -1 is used for 3550 // undefined bytes. Implement it on operands Ops[0] and Ops[1] using 3551 // VSLDI or VPERM. 3552 static SDValue getGeneralPermuteNode(SelectionDAG &DAG, SDLoc DL, SDValue *Ops, 3553 const SmallVectorImpl<int> &Bytes) { 3554 for (unsigned I = 0; I < 2; ++I) 3555 Ops[I] = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, Ops[I]); 3556 3557 // First see whether VSLDI can be used. 3558 unsigned StartIndex, OpNo0, OpNo1; 3559 if (isShlDoublePermute(Bytes, StartIndex, OpNo0, OpNo1)) 3560 return DAG.getNode(SystemZISD::SHL_DOUBLE, DL, MVT::v16i8, Ops[OpNo0], 3561 Ops[OpNo1], DAG.getConstant(StartIndex, DL, MVT::i32)); 3562 3563 // Fall back on VPERM. Construct an SDNode for the permute vector. 3564 SDValue IndexNodes[SystemZ::VectorBytes]; 3565 for (unsigned I = 0; I < SystemZ::VectorBytes; ++I) 3566 if (Bytes[I] >= 0) 3567 IndexNodes[I] = DAG.getConstant(Bytes[I], DL, MVT::i32); 3568 else 3569 IndexNodes[I] = DAG.getUNDEF(MVT::i32); 3570 SDValue Op2 = DAG.getNode(ISD::BUILD_VECTOR, DL, MVT::v16i8, IndexNodes); 3571 return DAG.getNode(SystemZISD::PERMUTE, DL, MVT::v16i8, Ops[0], Ops[1], Op2); 3572 } 3573 3574 namespace { 3575 // Describes a general N-operand vector shuffle. 3576 struct GeneralShuffle { 3577 GeneralShuffle(EVT vt) : VT(vt) {} 3578 void addUndef(); 3579 void add(SDValue, unsigned); 3580 SDValue getNode(SelectionDAG &, SDLoc); 3581 3582 // The operands of the shuffle. 3583 SmallVector<SDValue, SystemZ::VectorBytes> Ops; 3584 3585 // Index I is -1 if byte I of the result is undefined. Otherwise the 3586 // result comes from byte Bytes[I] % SystemZ::VectorBytes of operand 3587 // Bytes[I] / SystemZ::VectorBytes. 3588 SmallVector<int, SystemZ::VectorBytes> Bytes; 3589 3590 // The type of the shuffle result. 3591 EVT VT; 3592 }; 3593 } 3594 3595 // Add an extra undefined element to the shuffle. 3596 void GeneralShuffle::addUndef() { 3597 unsigned BytesPerElement = VT.getVectorElementType().getStoreSize(); 3598 for (unsigned I = 0; I < BytesPerElement; ++I) 3599 Bytes.push_back(-1); 3600 } 3601 3602 // Add an extra element to the shuffle, taking it from element Elem of Op. 3603 // A null Op indicates a vector input whose value will be calculated later; 3604 // there is at most one such input per shuffle and it always has the same 3605 // type as the result. 3606 void GeneralShuffle::add(SDValue Op, unsigned Elem) { 3607 unsigned BytesPerElement = VT.getVectorElementType().getStoreSize(); 3608 3609 // The source vector can have wider elements than the result, 3610 // either through an explicit TRUNCATE or because of type legalization. 3611 // We want the least significant part. 3612 EVT FromVT = Op.getNode() ? Op.getValueType() : VT; 3613 unsigned FromBytesPerElement = FromVT.getVectorElementType().getStoreSize(); 3614 assert(FromBytesPerElement >= BytesPerElement && 3615 "Invalid EXTRACT_VECTOR_ELT"); 3616 unsigned Byte = ((Elem * FromBytesPerElement) % SystemZ::VectorBytes + 3617 (FromBytesPerElement - BytesPerElement)); 3618 3619 // Look through things like shuffles and bitcasts. 3620 while (Op.getNode()) { 3621 if (Op.getOpcode() == ISD::BITCAST) 3622 Op = Op.getOperand(0); 3623 else if (Op.getOpcode() == ISD::VECTOR_SHUFFLE && Op.hasOneUse()) { 3624 // See whether the bytes we need come from a contiguous part of one 3625 // operand. 3626 SmallVector<int, SystemZ::VectorBytes> OpBytes; 3627 getVPermMask(cast<ShuffleVectorSDNode>(Op), OpBytes); 3628 int NewByte; 3629 if (!getShuffleInput(OpBytes, Byte, BytesPerElement, NewByte)) 3630 break; 3631 if (NewByte < 0) { 3632 addUndef(); 3633 return; 3634 } 3635 Op = Op.getOperand(unsigned(NewByte) / SystemZ::VectorBytes); 3636 Byte = unsigned(NewByte) % SystemZ::VectorBytes; 3637 } else if (Op.getOpcode() == ISD::UNDEF) { 3638 addUndef(); 3639 return; 3640 } else 3641 break; 3642 } 3643 3644 // Make sure that the source of the extraction is in Ops. 3645 unsigned OpNo = 0; 3646 for (; OpNo < Ops.size(); ++OpNo) 3647 if (Ops[OpNo] == Op) 3648 break; 3649 if (OpNo == Ops.size()) 3650 Ops.push_back(Op); 3651 3652 // Add the element to Bytes. 3653 unsigned Base = OpNo * SystemZ::VectorBytes + Byte; 3654 for (unsigned I = 0; I < BytesPerElement; ++I) 3655 Bytes.push_back(Base + I); 3656 } 3657 3658 // Return SDNodes for the completed shuffle. 3659 SDValue GeneralShuffle::getNode(SelectionDAG &DAG, SDLoc DL) { 3660 assert(Bytes.size() == SystemZ::VectorBytes && "Incomplete vector"); 3661 3662 if (Ops.size() == 0) 3663 return DAG.getUNDEF(VT); 3664 3665 // Make sure that there are at least two shuffle operands. 3666 if (Ops.size() == 1) 3667 Ops.push_back(DAG.getUNDEF(MVT::v16i8)); 3668 3669 // Create a tree of shuffles, deferring root node until after the loop. 3670 // Try to redistribute the undefined elements of non-root nodes so that 3671 // the non-root shuffles match something like a pack or merge, then adjust 3672 // the parent node's permute vector to compensate for the new order. 3673 // Among other things, this copes with vectors like <2 x i16> that were 3674 // padded with undefined elements during type legalization. 3675 // 3676 // In the best case this redistribution will lead to the whole tree 3677 // using packs and merges. It should rarely be a loss in other cases. 3678 unsigned Stride = 1; 3679 for (; Stride * 2 < Ops.size(); Stride *= 2) { 3680 for (unsigned I = 0; I < Ops.size() - Stride; I += Stride * 2) { 3681 SDValue SubOps[] = { Ops[I], Ops[I + Stride] }; 3682 3683 // Create a mask for just these two operands. 3684 SmallVector<int, SystemZ::VectorBytes> NewBytes(SystemZ::VectorBytes); 3685 for (unsigned J = 0; J < SystemZ::VectorBytes; ++J) { 3686 unsigned OpNo = unsigned(Bytes[J]) / SystemZ::VectorBytes; 3687 unsigned Byte = unsigned(Bytes[J]) % SystemZ::VectorBytes; 3688 if (OpNo == I) 3689 NewBytes[J] = Byte; 3690 else if (OpNo == I + Stride) 3691 NewBytes[J] = SystemZ::VectorBytes + Byte; 3692 else 3693 NewBytes[J] = -1; 3694 } 3695 // See if it would be better to reorganize NewMask to avoid using VPERM. 3696 SmallVector<int, SystemZ::VectorBytes> NewBytesMap(SystemZ::VectorBytes); 3697 if (const Permute *P = matchDoublePermute(NewBytes, NewBytesMap)) { 3698 Ops[I] = getPermuteNode(DAG, DL, *P, SubOps[0], SubOps[1]); 3699 // Applying NewBytesMap to Ops[I] gets back to NewBytes. 3700 for (unsigned J = 0; J < SystemZ::VectorBytes; ++J) { 3701 if (NewBytes[J] >= 0) { 3702 assert(unsigned(NewBytesMap[J]) < SystemZ::VectorBytes && 3703 "Invalid double permute"); 3704 Bytes[J] = I * SystemZ::VectorBytes + NewBytesMap[J]; 3705 } else 3706 assert(NewBytesMap[J] < 0 && "Invalid double permute"); 3707 } 3708 } else { 3709 // Just use NewBytes on the operands. 3710 Ops[I] = getGeneralPermuteNode(DAG, DL, SubOps, NewBytes); 3711 for (unsigned J = 0; J < SystemZ::VectorBytes; ++J) 3712 if (NewBytes[J] >= 0) 3713 Bytes[J] = I * SystemZ::VectorBytes + J; 3714 } 3715 } 3716 } 3717 3718 // Now we just have 2 inputs. Put the second operand in Ops[1]. 3719 if (Stride > 1) { 3720 Ops[1] = Ops[Stride]; 3721 for (unsigned I = 0; I < SystemZ::VectorBytes; ++I) 3722 if (Bytes[I] >= int(SystemZ::VectorBytes)) 3723 Bytes[I] -= (Stride - 1) * SystemZ::VectorBytes; 3724 } 3725 3726 // Look for an instruction that can do the permute without resorting 3727 // to VPERM. 3728 unsigned OpNo0, OpNo1; 3729 SDValue Op; 3730 if (const Permute *P = matchPermute(Bytes, OpNo0, OpNo1)) 3731 Op = getPermuteNode(DAG, DL, *P, Ops[OpNo0], Ops[OpNo1]); 3732 else 3733 Op = getGeneralPermuteNode(DAG, DL, &Ops[0], Bytes); 3734 return DAG.getNode(ISD::BITCAST, DL, VT, Op); 3735 } 3736 3737 // Return true if the given BUILD_VECTOR is a scalar-to-vector conversion. 3738 static bool isScalarToVector(SDValue Op) { 3739 for (unsigned I = 1, E = Op.getNumOperands(); I != E; ++I) 3740 if (Op.getOperand(I).getOpcode() != ISD::UNDEF) 3741 return false; 3742 return true; 3743 } 3744 3745 // Return a vector of type VT that contains Value in the first element. 3746 // The other elements don't matter. 3747 static SDValue buildScalarToVector(SelectionDAG &DAG, SDLoc DL, EVT VT, 3748 SDValue Value) { 3749 // If we have a constant, replicate it to all elements and let the 3750 // BUILD_VECTOR lowering take care of it. 3751 if (Value.getOpcode() == ISD::Constant || 3752 Value.getOpcode() == ISD::ConstantFP) { 3753 SmallVector<SDValue, 16> Ops(VT.getVectorNumElements(), Value); 3754 return DAG.getNode(ISD::BUILD_VECTOR, DL, VT, Ops); 3755 } 3756 if (Value.getOpcode() == ISD::UNDEF) 3757 return DAG.getUNDEF(VT); 3758 return DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, VT, Value); 3759 } 3760 3761 // Return a vector of type VT in which Op0 is in element 0 and Op1 is in 3762 // element 1. Used for cases in which replication is cheap. 3763 static SDValue buildMergeScalars(SelectionDAG &DAG, SDLoc DL, EVT VT, 3764 SDValue Op0, SDValue Op1) { 3765 if (Op0.getOpcode() == ISD::UNDEF) { 3766 if (Op1.getOpcode() == ISD::UNDEF) 3767 return DAG.getUNDEF(VT); 3768 return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Op1); 3769 } 3770 if (Op1.getOpcode() == ISD::UNDEF) 3771 return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Op0); 3772 return DAG.getNode(SystemZISD::MERGE_HIGH, DL, VT, 3773 buildScalarToVector(DAG, DL, VT, Op0), 3774 buildScalarToVector(DAG, DL, VT, Op1)); 3775 } 3776 3777 // Extend GPR scalars Op0 and Op1 to doublewords and return a v2i64 3778 // vector for them. 3779 static SDValue joinDwords(SelectionDAG &DAG, SDLoc DL, SDValue Op0, 3780 SDValue Op1) { 3781 if (Op0.getOpcode() == ISD::UNDEF && Op1.getOpcode() == ISD::UNDEF) 3782 return DAG.getUNDEF(MVT::v2i64); 3783 // If one of the two inputs is undefined then replicate the other one, 3784 // in order to avoid using another register unnecessarily. 3785 if (Op0.getOpcode() == ISD::UNDEF) 3786 Op0 = Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op1); 3787 else if (Op1.getOpcode() == ISD::UNDEF) 3788 Op0 = Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0); 3789 else { 3790 Op0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0); 3791 Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op1); 3792 } 3793 return DAG.getNode(SystemZISD::JOIN_DWORDS, DL, MVT::v2i64, Op0, Op1); 3794 } 3795 3796 // Try to represent constant BUILD_VECTOR node BVN using a 3797 // SystemZISD::BYTE_MASK-style mask. Store the mask value in Mask 3798 // on success. 3799 static bool tryBuildVectorByteMask(BuildVectorSDNode *BVN, uint64_t &Mask) { 3800 EVT ElemVT = BVN->getValueType(0).getVectorElementType(); 3801 unsigned BytesPerElement = ElemVT.getStoreSize(); 3802 for (unsigned I = 0, E = BVN->getNumOperands(); I != E; ++I) { 3803 SDValue Op = BVN->getOperand(I); 3804 if (Op.getOpcode() != ISD::UNDEF) { 3805 uint64_t Value; 3806 if (Op.getOpcode() == ISD::Constant) 3807 Value = dyn_cast<ConstantSDNode>(Op)->getZExtValue(); 3808 else if (Op.getOpcode() == ISD::ConstantFP) 3809 Value = (dyn_cast<ConstantFPSDNode>(Op)->getValueAPF().bitcastToAPInt() 3810 .getZExtValue()); 3811 else 3812 return false; 3813 for (unsigned J = 0; J < BytesPerElement; ++J) { 3814 uint64_t Byte = (Value >> (J * 8)) & 0xff; 3815 if (Byte == 0xff) 3816 Mask |= 1ULL << ((E - I - 1) * BytesPerElement + J); 3817 else if (Byte != 0) 3818 return false; 3819 } 3820 } 3821 } 3822 return true; 3823 } 3824 3825 // Try to load a vector constant in which BitsPerElement-bit value Value 3826 // is replicated to fill the vector. VT is the type of the resulting 3827 // constant, which may have elements of a different size from BitsPerElement. 3828 // Return the SDValue of the constant on success, otherwise return 3829 // an empty value. 3830 static SDValue tryBuildVectorReplicate(SelectionDAG &DAG, 3831 const SystemZInstrInfo *TII, 3832 SDLoc DL, EVT VT, uint64_t Value, 3833 unsigned BitsPerElement) { 3834 // Signed 16-bit values can be replicated using VREPI. 3835 int64_t SignedValue = SignExtend64(Value, BitsPerElement); 3836 if (isInt<16>(SignedValue)) { 3837 MVT VecVT = MVT::getVectorVT(MVT::getIntegerVT(BitsPerElement), 3838 SystemZ::VectorBits / BitsPerElement); 3839 SDValue Op = DAG.getNode(SystemZISD::REPLICATE, DL, VecVT, 3840 DAG.getConstant(SignedValue, DL, MVT::i32)); 3841 return DAG.getNode(ISD::BITCAST, DL, VT, Op); 3842 } 3843 // See whether rotating the constant left some N places gives a value that 3844 // is one less than a power of 2 (i.e. all zeros followed by all ones). 3845 // If so we can use VGM. 3846 unsigned Start, End; 3847 if (TII->isRxSBGMask(Value, BitsPerElement, Start, End)) { 3848 // isRxSBGMask returns the bit numbers for a full 64-bit value, 3849 // with 0 denoting 1 << 63 and 63 denoting 1. Convert them to 3850 // bit numbers for an BitsPerElement value, so that 0 denotes 3851 // 1 << (BitsPerElement-1). 3852 Start -= 64 - BitsPerElement; 3853 End -= 64 - BitsPerElement; 3854 MVT VecVT = MVT::getVectorVT(MVT::getIntegerVT(BitsPerElement), 3855 SystemZ::VectorBits / BitsPerElement); 3856 SDValue Op = DAG.getNode(SystemZISD::ROTATE_MASK, DL, VecVT, 3857 DAG.getConstant(Start, DL, MVT::i32), 3858 DAG.getConstant(End, DL, MVT::i32)); 3859 return DAG.getNode(ISD::BITCAST, DL, VT, Op); 3860 } 3861 return SDValue(); 3862 } 3863 3864 // If a BUILD_VECTOR contains some EXTRACT_VECTOR_ELTs, it's usually 3865 // better to use VECTOR_SHUFFLEs on them, only using BUILD_VECTOR for 3866 // the non-EXTRACT_VECTOR_ELT elements. See if the given BUILD_VECTOR 3867 // would benefit from this representation and return it if so. 3868 static SDValue tryBuildVectorShuffle(SelectionDAG &DAG, 3869 BuildVectorSDNode *BVN) { 3870 EVT VT = BVN->getValueType(0); 3871 unsigned NumElements = VT.getVectorNumElements(); 3872 3873 // Represent the BUILD_VECTOR as an N-operand VECTOR_SHUFFLE-like operation 3874 // on byte vectors. If there are non-EXTRACT_VECTOR_ELT elements that still 3875 // need a BUILD_VECTOR, add an additional placeholder operand for that 3876 // BUILD_VECTOR and store its operands in ResidueOps. 3877 GeneralShuffle GS(VT); 3878 SmallVector<SDValue, SystemZ::VectorBytes> ResidueOps; 3879 bool FoundOne = false; 3880 for (unsigned I = 0; I < NumElements; ++I) { 3881 SDValue Op = BVN->getOperand(I); 3882 if (Op.getOpcode() == ISD::TRUNCATE) 3883 Op = Op.getOperand(0); 3884 if (Op.getOpcode() == ISD::EXTRACT_VECTOR_ELT && 3885 Op.getOperand(1).getOpcode() == ISD::Constant) { 3886 unsigned Elem = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); 3887 GS.add(Op.getOperand(0), Elem); 3888 FoundOne = true; 3889 } else if (Op.getOpcode() == ISD::UNDEF) { 3890 GS.addUndef(); 3891 } else { 3892 GS.add(SDValue(), ResidueOps.size()); 3893 ResidueOps.push_back(Op); 3894 } 3895 } 3896 3897 // Nothing to do if there are no EXTRACT_VECTOR_ELTs. 3898 if (!FoundOne) 3899 return SDValue(); 3900 3901 // Create the BUILD_VECTOR for the remaining elements, if any. 3902 if (!ResidueOps.empty()) { 3903 while (ResidueOps.size() < NumElements) 3904 ResidueOps.push_back(DAG.getUNDEF(VT.getVectorElementType())); 3905 for (auto &Op : GS.Ops) { 3906 if (!Op.getNode()) { 3907 Op = DAG.getNode(ISD::BUILD_VECTOR, SDLoc(BVN), VT, ResidueOps); 3908 break; 3909 } 3910 } 3911 } 3912 return GS.getNode(DAG, SDLoc(BVN)); 3913 } 3914 3915 // Combine GPR scalar values Elems into a vector of type VT. 3916 static SDValue buildVector(SelectionDAG &DAG, SDLoc DL, EVT VT, 3917 SmallVectorImpl<SDValue> &Elems) { 3918 // See whether there is a single replicated value. 3919 SDValue Single; 3920 unsigned int NumElements = Elems.size(); 3921 unsigned int Count = 0; 3922 for (auto Elem : Elems) { 3923 if (Elem.getOpcode() != ISD::UNDEF) { 3924 if (!Single.getNode()) 3925 Single = Elem; 3926 else if (Elem != Single) { 3927 Single = SDValue(); 3928 break; 3929 } 3930 Count += 1; 3931 } 3932 } 3933 // There are three cases here: 3934 // 3935 // - if the only defined element is a loaded one, the best sequence 3936 // is a replicating load. 3937 // 3938 // - otherwise, if the only defined element is an i64 value, we will 3939 // end up with the same VLVGP sequence regardless of whether we short-cut 3940 // for replication or fall through to the later code. 3941 // 3942 // - otherwise, if the only defined element is an i32 or smaller value, 3943 // we would need 2 instructions to replicate it: VLVGP followed by VREPx. 3944 // This is only a win if the single defined element is used more than once. 3945 // In other cases we're better off using a single VLVGx. 3946 if (Single.getNode() && (Count > 1 || Single.getOpcode() == ISD::LOAD)) 3947 return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Single); 3948 3949 // The best way of building a v2i64 from two i64s is to use VLVGP. 3950 if (VT == MVT::v2i64) 3951 return joinDwords(DAG, DL, Elems[0], Elems[1]); 3952 3953 // Use a 64-bit merge high to combine two doubles. 3954 if (VT == MVT::v2f64) 3955 return buildMergeScalars(DAG, DL, VT, Elems[0], Elems[1]); 3956 3957 // Build v4f32 values directly from the FPRs: 3958 // 3959 // <Axxx> <Bxxx> <Cxxxx> <Dxxx> 3960 // V V VMRHF 3961 // <ABxx> <CDxx> 3962 // V VMRHG 3963 // <ABCD> 3964 if (VT == MVT::v4f32) { 3965 SDValue Op01 = buildMergeScalars(DAG, DL, VT, Elems[0], Elems[1]); 3966 SDValue Op23 = buildMergeScalars(DAG, DL, VT, Elems[2], Elems[3]); 3967 // Avoid unnecessary undefs by reusing the other operand. 3968 if (Op01.getOpcode() == ISD::UNDEF) 3969 Op01 = Op23; 3970 else if (Op23.getOpcode() == ISD::UNDEF) 3971 Op23 = Op01; 3972 // Merging identical replications is a no-op. 3973 if (Op01.getOpcode() == SystemZISD::REPLICATE && Op01 == Op23) 3974 return Op01; 3975 Op01 = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Op01); 3976 Op23 = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Op23); 3977 SDValue Op = DAG.getNode(SystemZISD::MERGE_HIGH, 3978 DL, MVT::v2i64, Op01, Op23); 3979 return DAG.getNode(ISD::BITCAST, DL, VT, Op); 3980 } 3981 3982 // Collect the constant terms. 3983 SmallVector<SDValue, SystemZ::VectorBytes> Constants(NumElements, SDValue()); 3984 SmallVector<bool, SystemZ::VectorBytes> Done(NumElements, false); 3985 3986 unsigned NumConstants = 0; 3987 for (unsigned I = 0; I < NumElements; ++I) { 3988 SDValue Elem = Elems[I]; 3989 if (Elem.getOpcode() == ISD::Constant || 3990 Elem.getOpcode() == ISD::ConstantFP) { 3991 NumConstants += 1; 3992 Constants[I] = Elem; 3993 Done[I] = true; 3994 } 3995 } 3996 // If there was at least one constant, fill in the other elements of 3997 // Constants with undefs to get a full vector constant and use that 3998 // as the starting point. 3999 SDValue Result; 4000 if (NumConstants > 0) { 4001 for (unsigned I = 0; I < NumElements; ++I) 4002 if (!Constants[I].getNode()) 4003 Constants[I] = DAG.getUNDEF(Elems[I].getValueType()); 4004 Result = DAG.getNode(ISD::BUILD_VECTOR, DL, VT, Constants); 4005 } else { 4006 // Otherwise try to use VLVGP to start the sequence in order to 4007 // avoid a false dependency on any previous contents of the vector 4008 // register. This only makes sense if one of the associated elements 4009 // is defined. 4010 unsigned I1 = NumElements / 2 - 1; 4011 unsigned I2 = NumElements - 1; 4012 bool Def1 = (Elems[I1].getOpcode() != ISD::UNDEF); 4013 bool Def2 = (Elems[I2].getOpcode() != ISD::UNDEF); 4014 if (Def1 || Def2) { 4015 SDValue Elem1 = Elems[Def1 ? I1 : I2]; 4016 SDValue Elem2 = Elems[Def2 ? I2 : I1]; 4017 Result = DAG.getNode(ISD::BITCAST, DL, VT, 4018 joinDwords(DAG, DL, Elem1, Elem2)); 4019 Done[I1] = true; 4020 Done[I2] = true; 4021 } else 4022 Result = DAG.getUNDEF(VT); 4023 } 4024 4025 // Use VLVGx to insert the other elements. 4026 for (unsigned I = 0; I < NumElements; ++I) 4027 if (!Done[I] && Elems[I].getOpcode() != ISD::UNDEF) 4028 Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VT, Result, Elems[I], 4029 DAG.getConstant(I, DL, MVT::i32)); 4030 return Result; 4031 } 4032 4033 SDValue SystemZTargetLowering::lowerBUILD_VECTOR(SDValue Op, 4034 SelectionDAG &DAG) const { 4035 const SystemZInstrInfo *TII = 4036 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 4037 auto *BVN = cast<BuildVectorSDNode>(Op.getNode()); 4038 SDLoc DL(Op); 4039 EVT VT = Op.getValueType(); 4040 4041 if (BVN->isConstant()) { 4042 // Try using VECTOR GENERATE BYTE MASK. This is the architecturally- 4043 // preferred way of creating all-zero and all-one vectors so give it 4044 // priority over other methods below. 4045 uint64_t Mask = 0; 4046 if (tryBuildVectorByteMask(BVN, Mask)) { 4047 SDValue Op = DAG.getNode(SystemZISD::BYTE_MASK, DL, MVT::v16i8, 4048 DAG.getConstant(Mask, DL, MVT::i32)); 4049 return DAG.getNode(ISD::BITCAST, DL, VT, Op); 4050 } 4051 4052 // Try using some form of replication. 4053 APInt SplatBits, SplatUndef; 4054 unsigned SplatBitSize; 4055 bool HasAnyUndefs; 4056 if (BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs, 4057 8, true) && 4058 SplatBitSize <= 64) { 4059 // First try assuming that any undefined bits above the highest set bit 4060 // and below the lowest set bit are 1s. This increases the likelihood of 4061 // being able to use a sign-extended element value in VECTOR REPLICATE 4062 // IMMEDIATE or a wraparound mask in VECTOR GENERATE MASK. 4063 uint64_t SplatBitsZ = SplatBits.getZExtValue(); 4064 uint64_t SplatUndefZ = SplatUndef.getZExtValue(); 4065 uint64_t Lower = (SplatUndefZ 4066 & ((uint64_t(1) << findFirstSet(SplatBitsZ)) - 1)); 4067 uint64_t Upper = (SplatUndefZ 4068 & ~((uint64_t(1) << findLastSet(SplatBitsZ)) - 1)); 4069 uint64_t Value = SplatBitsZ | Upper | Lower; 4070 SDValue Op = tryBuildVectorReplicate(DAG, TII, DL, VT, Value, 4071 SplatBitSize); 4072 if (Op.getNode()) 4073 return Op; 4074 4075 // Now try assuming that any undefined bits between the first and 4076 // last defined set bits are set. This increases the chances of 4077 // using a non-wraparound mask. 4078 uint64_t Middle = SplatUndefZ & ~Upper & ~Lower; 4079 Value = SplatBitsZ | Middle; 4080 Op = tryBuildVectorReplicate(DAG, TII, DL, VT, Value, SplatBitSize); 4081 if (Op.getNode()) 4082 return Op; 4083 } 4084 4085 // Fall back to loading it from memory. 4086 return SDValue(); 4087 } 4088 4089 // See if we should use shuffles to construct the vector from other vectors. 4090 SDValue Res = tryBuildVectorShuffle(DAG, BVN); 4091 if (Res.getNode()) 4092 return Res; 4093 4094 // Detect SCALAR_TO_VECTOR conversions. 4095 if (isOperationLegal(ISD::SCALAR_TO_VECTOR, VT) && isScalarToVector(Op)) 4096 return buildScalarToVector(DAG, DL, VT, Op.getOperand(0)); 4097 4098 // Otherwise use buildVector to build the vector up from GPRs. 4099 unsigned NumElements = Op.getNumOperands(); 4100 SmallVector<SDValue, SystemZ::VectorBytes> Ops(NumElements); 4101 for (unsigned I = 0; I < NumElements; ++I) 4102 Ops[I] = Op.getOperand(I); 4103 return buildVector(DAG, DL, VT, Ops); 4104 } 4105 4106 SDValue SystemZTargetLowering::lowerVECTOR_SHUFFLE(SDValue Op, 4107 SelectionDAG &DAG) const { 4108 auto *VSN = cast<ShuffleVectorSDNode>(Op.getNode()); 4109 SDLoc DL(Op); 4110 EVT VT = Op.getValueType(); 4111 unsigned NumElements = VT.getVectorNumElements(); 4112 4113 if (VSN->isSplat()) { 4114 SDValue Op0 = Op.getOperand(0); 4115 unsigned Index = VSN->getSplatIndex(); 4116 assert(Index < VT.getVectorNumElements() && 4117 "Splat index should be defined and in first operand"); 4118 // See whether the value we're splatting is directly available as a scalar. 4119 if ((Index == 0 && Op0.getOpcode() == ISD::SCALAR_TO_VECTOR) || 4120 Op0.getOpcode() == ISD::BUILD_VECTOR) 4121 return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Op0.getOperand(Index)); 4122 // Otherwise keep it as a vector-to-vector operation. 4123 return DAG.getNode(SystemZISD::SPLAT, DL, VT, Op.getOperand(0), 4124 DAG.getConstant(Index, DL, MVT::i32)); 4125 } 4126 4127 GeneralShuffle GS(VT); 4128 for (unsigned I = 0; I < NumElements; ++I) { 4129 int Elt = VSN->getMaskElt(I); 4130 if (Elt < 0) 4131 GS.addUndef(); 4132 else 4133 GS.add(Op.getOperand(unsigned(Elt) / NumElements), 4134 unsigned(Elt) % NumElements); 4135 } 4136 return GS.getNode(DAG, SDLoc(VSN)); 4137 } 4138 4139 SDValue SystemZTargetLowering::lowerSCALAR_TO_VECTOR(SDValue Op, 4140 SelectionDAG &DAG) const { 4141 SDLoc DL(Op); 4142 // Just insert the scalar into element 0 of an undefined vector. 4143 return DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, 4144 Op.getValueType(), DAG.getUNDEF(Op.getValueType()), 4145 Op.getOperand(0), DAG.getConstant(0, DL, MVT::i32)); 4146 } 4147 4148 SDValue SystemZTargetLowering::lowerINSERT_VECTOR_ELT(SDValue Op, 4149 SelectionDAG &DAG) const { 4150 // Handle insertions of floating-point values. 4151 SDLoc DL(Op); 4152 SDValue Op0 = Op.getOperand(0); 4153 SDValue Op1 = Op.getOperand(1); 4154 SDValue Op2 = Op.getOperand(2); 4155 EVT VT = Op.getValueType(); 4156 4157 // Insertions into constant indices of a v2f64 can be done using VPDI. 4158 // However, if the inserted value is a bitcast or a constant then it's 4159 // better to use GPRs, as below. 4160 if (VT == MVT::v2f64 && 4161 Op1.getOpcode() != ISD::BITCAST && 4162 Op1.getOpcode() != ISD::ConstantFP && 4163 Op2.getOpcode() == ISD::Constant) { 4164 uint64_t Index = dyn_cast<ConstantSDNode>(Op2)->getZExtValue(); 4165 unsigned Mask = VT.getVectorNumElements() - 1; 4166 if (Index <= Mask) 4167 return Op; 4168 } 4169 4170 // Otherwise bitcast to the equivalent integer form and insert via a GPR. 4171 MVT IntVT = MVT::getIntegerVT(VT.getVectorElementType().getSizeInBits()); 4172 MVT IntVecVT = MVT::getVectorVT(IntVT, VT.getVectorNumElements()); 4173 SDValue Res = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, IntVecVT, 4174 DAG.getNode(ISD::BITCAST, DL, IntVecVT, Op0), 4175 DAG.getNode(ISD::BITCAST, DL, IntVT, Op1), Op2); 4176 return DAG.getNode(ISD::BITCAST, DL, VT, Res); 4177 } 4178 4179 SDValue 4180 SystemZTargetLowering::lowerEXTRACT_VECTOR_ELT(SDValue Op, 4181 SelectionDAG &DAG) const { 4182 // Handle extractions of floating-point values. 4183 SDLoc DL(Op); 4184 SDValue Op0 = Op.getOperand(0); 4185 SDValue Op1 = Op.getOperand(1); 4186 EVT VT = Op.getValueType(); 4187 EVT VecVT = Op0.getValueType(); 4188 4189 // Extractions of constant indices can be done directly. 4190 if (auto *CIndexN = dyn_cast<ConstantSDNode>(Op1)) { 4191 uint64_t Index = CIndexN->getZExtValue(); 4192 unsigned Mask = VecVT.getVectorNumElements() - 1; 4193 if (Index <= Mask) 4194 return Op; 4195 } 4196 4197 // Otherwise bitcast to the equivalent integer form and extract via a GPR. 4198 MVT IntVT = MVT::getIntegerVT(VT.getSizeInBits()); 4199 MVT IntVecVT = MVT::getVectorVT(IntVT, VecVT.getVectorNumElements()); 4200 SDValue Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, IntVT, 4201 DAG.getNode(ISD::BITCAST, DL, IntVecVT, Op0), Op1); 4202 return DAG.getNode(ISD::BITCAST, DL, VT, Res); 4203 } 4204 4205 SDValue 4206 SystemZTargetLowering::lowerExtendVectorInreg(SDValue Op, SelectionDAG &DAG, 4207 unsigned UnpackHigh) const { 4208 SDValue PackedOp = Op.getOperand(0); 4209 EVT OutVT = Op.getValueType(); 4210 EVT InVT = PackedOp.getValueType(); 4211 unsigned ToBits = OutVT.getVectorElementType().getSizeInBits(); 4212 unsigned FromBits = InVT.getVectorElementType().getSizeInBits(); 4213 do { 4214 FromBits *= 2; 4215 EVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(FromBits), 4216 SystemZ::VectorBits / FromBits); 4217 PackedOp = DAG.getNode(UnpackHigh, SDLoc(PackedOp), OutVT, PackedOp); 4218 } while (FromBits != ToBits); 4219 return PackedOp; 4220 } 4221 4222 SDValue SystemZTargetLowering::lowerShift(SDValue Op, SelectionDAG &DAG, 4223 unsigned ByScalar) const { 4224 // Look for cases where a vector shift can use the *_BY_SCALAR form. 4225 SDValue Op0 = Op.getOperand(0); 4226 SDValue Op1 = Op.getOperand(1); 4227 SDLoc DL(Op); 4228 EVT VT = Op.getValueType(); 4229 unsigned ElemBitSize = VT.getVectorElementType().getSizeInBits(); 4230 4231 // See whether the shift vector is a splat represented as BUILD_VECTOR. 4232 if (auto *BVN = dyn_cast<BuildVectorSDNode>(Op1)) { 4233 APInt SplatBits, SplatUndef; 4234 unsigned SplatBitSize; 4235 bool HasAnyUndefs; 4236 // Check for constant splats. Use ElemBitSize as the minimum element 4237 // width and reject splats that need wider elements. 4238 if (BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs, 4239 ElemBitSize, true) && 4240 SplatBitSize == ElemBitSize) { 4241 SDValue Shift = DAG.getConstant(SplatBits.getZExtValue() & 0xfff, 4242 DL, MVT::i32); 4243 return DAG.getNode(ByScalar, DL, VT, Op0, Shift); 4244 } 4245 // Check for variable splats. 4246 BitVector UndefElements; 4247 SDValue Splat = BVN->getSplatValue(&UndefElements); 4248 if (Splat) { 4249 // Since i32 is the smallest legal type, we either need a no-op 4250 // or a truncation. 4251 SDValue Shift = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Splat); 4252 return DAG.getNode(ByScalar, DL, VT, Op0, Shift); 4253 } 4254 } 4255 4256 // See whether the shift vector is a splat represented as SHUFFLE_VECTOR, 4257 // and the shift amount is directly available in a GPR. 4258 if (auto *VSN = dyn_cast<ShuffleVectorSDNode>(Op1)) { 4259 if (VSN->isSplat()) { 4260 SDValue VSNOp0 = VSN->getOperand(0); 4261 unsigned Index = VSN->getSplatIndex(); 4262 assert(Index < VT.getVectorNumElements() && 4263 "Splat index should be defined and in first operand"); 4264 if ((Index == 0 && VSNOp0.getOpcode() == ISD::SCALAR_TO_VECTOR) || 4265 VSNOp0.getOpcode() == ISD::BUILD_VECTOR) { 4266 // Since i32 is the smallest legal type, we either need a no-op 4267 // or a truncation. 4268 SDValue Shift = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, 4269 VSNOp0.getOperand(Index)); 4270 return DAG.getNode(ByScalar, DL, VT, Op0, Shift); 4271 } 4272 } 4273 } 4274 4275 // Otherwise just treat the current form as legal. 4276 return Op; 4277 } 4278 4279 SDValue SystemZTargetLowering::LowerOperation(SDValue Op, 4280 SelectionDAG &DAG) const { 4281 switch (Op.getOpcode()) { 4282 case ISD::BR_CC: 4283 return lowerBR_CC(Op, DAG); 4284 case ISD::SELECT_CC: 4285 return lowerSELECT_CC(Op, DAG); 4286 case ISD::SETCC: 4287 return lowerSETCC(Op, DAG); 4288 case ISD::GlobalAddress: 4289 return lowerGlobalAddress(cast<GlobalAddressSDNode>(Op), DAG); 4290 case ISD::GlobalTLSAddress: 4291 return lowerGlobalTLSAddress(cast<GlobalAddressSDNode>(Op), DAG); 4292 case ISD::BlockAddress: 4293 return lowerBlockAddress(cast<BlockAddressSDNode>(Op), DAG); 4294 case ISD::JumpTable: 4295 return lowerJumpTable(cast<JumpTableSDNode>(Op), DAG); 4296 case ISD::ConstantPool: 4297 return lowerConstantPool(cast<ConstantPoolSDNode>(Op), DAG); 4298 case ISD::BITCAST: 4299 return lowerBITCAST(Op, DAG); 4300 case ISD::VASTART: 4301 return lowerVASTART(Op, DAG); 4302 case ISD::VACOPY: 4303 return lowerVACOPY(Op, DAG); 4304 case ISD::DYNAMIC_STACKALLOC: 4305 return lowerDYNAMIC_STACKALLOC(Op, DAG); 4306 case ISD::SMUL_LOHI: 4307 return lowerSMUL_LOHI(Op, DAG); 4308 case ISD::UMUL_LOHI: 4309 return lowerUMUL_LOHI(Op, DAG); 4310 case ISD::SDIVREM: 4311 return lowerSDIVREM(Op, DAG); 4312 case ISD::UDIVREM: 4313 return lowerUDIVREM(Op, DAG); 4314 case ISD::OR: 4315 return lowerOR(Op, DAG); 4316 case ISD::CTPOP: 4317 return lowerCTPOP(Op, DAG); 4318 case ISD::CTLZ_ZERO_UNDEF: 4319 return DAG.getNode(ISD::CTLZ, SDLoc(Op), 4320 Op.getValueType(), Op.getOperand(0)); 4321 case ISD::CTTZ_ZERO_UNDEF: 4322 return DAG.getNode(ISD::CTTZ, SDLoc(Op), 4323 Op.getValueType(), Op.getOperand(0)); 4324 case ISD::ATOMIC_SWAP: 4325 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_SWAPW); 4326 case ISD::ATOMIC_STORE: 4327 return lowerATOMIC_STORE(Op, DAG); 4328 case ISD::ATOMIC_LOAD: 4329 return lowerATOMIC_LOAD(Op, DAG); 4330 case ISD::ATOMIC_LOAD_ADD: 4331 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_ADD); 4332 case ISD::ATOMIC_LOAD_SUB: 4333 return lowerATOMIC_LOAD_SUB(Op, DAG); 4334 case ISD::ATOMIC_LOAD_AND: 4335 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_AND); 4336 case ISD::ATOMIC_LOAD_OR: 4337 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_OR); 4338 case ISD::ATOMIC_LOAD_XOR: 4339 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_XOR); 4340 case ISD::ATOMIC_LOAD_NAND: 4341 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_NAND); 4342 case ISD::ATOMIC_LOAD_MIN: 4343 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_MIN); 4344 case ISD::ATOMIC_LOAD_MAX: 4345 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_MAX); 4346 case ISD::ATOMIC_LOAD_UMIN: 4347 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_UMIN); 4348 case ISD::ATOMIC_LOAD_UMAX: 4349 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_UMAX); 4350 case ISD::ATOMIC_CMP_SWAP: 4351 return lowerATOMIC_CMP_SWAP(Op, DAG); 4352 case ISD::STACKSAVE: 4353 return lowerSTACKSAVE(Op, DAG); 4354 case ISD::STACKRESTORE: 4355 return lowerSTACKRESTORE(Op, DAG); 4356 case ISD::PREFETCH: 4357 return lowerPREFETCH(Op, DAG); 4358 case ISD::INTRINSIC_W_CHAIN: 4359 return lowerINTRINSIC_W_CHAIN(Op, DAG); 4360 case ISD::INTRINSIC_WO_CHAIN: 4361 return lowerINTRINSIC_WO_CHAIN(Op, DAG); 4362 case ISD::BUILD_VECTOR: 4363 return lowerBUILD_VECTOR(Op, DAG); 4364 case ISD::VECTOR_SHUFFLE: 4365 return lowerVECTOR_SHUFFLE(Op, DAG); 4366 case ISD::SCALAR_TO_VECTOR: 4367 return lowerSCALAR_TO_VECTOR(Op, DAG); 4368 case ISD::INSERT_VECTOR_ELT: 4369 return lowerINSERT_VECTOR_ELT(Op, DAG); 4370 case ISD::EXTRACT_VECTOR_ELT: 4371 return lowerEXTRACT_VECTOR_ELT(Op, DAG); 4372 case ISD::SIGN_EXTEND_VECTOR_INREG: 4373 return lowerExtendVectorInreg(Op, DAG, SystemZISD::UNPACK_HIGH); 4374 case ISD::ZERO_EXTEND_VECTOR_INREG: 4375 return lowerExtendVectorInreg(Op, DAG, SystemZISD::UNPACKL_HIGH); 4376 case ISD::SHL: 4377 return lowerShift(Op, DAG, SystemZISD::VSHL_BY_SCALAR); 4378 case ISD::SRL: 4379 return lowerShift(Op, DAG, SystemZISD::VSRL_BY_SCALAR); 4380 case ISD::SRA: 4381 return lowerShift(Op, DAG, SystemZISD::VSRA_BY_SCALAR); 4382 default: 4383 llvm_unreachable("Unexpected node to lower"); 4384 } 4385 } 4386 4387 const char *SystemZTargetLowering::getTargetNodeName(unsigned Opcode) const { 4388 #define OPCODE(NAME) case SystemZISD::NAME: return "SystemZISD::" #NAME 4389 switch ((SystemZISD::NodeType)Opcode) { 4390 case SystemZISD::FIRST_NUMBER: break; 4391 OPCODE(RET_FLAG); 4392 OPCODE(CALL); 4393 OPCODE(SIBCALL); 4394 OPCODE(TLS_GDCALL); 4395 OPCODE(TLS_LDCALL); 4396 OPCODE(PCREL_WRAPPER); 4397 OPCODE(PCREL_OFFSET); 4398 OPCODE(IABS); 4399 OPCODE(ICMP); 4400 OPCODE(FCMP); 4401 OPCODE(TM); 4402 OPCODE(BR_CCMASK); 4403 OPCODE(SELECT_CCMASK); 4404 OPCODE(ADJDYNALLOC); 4405 OPCODE(EXTRACT_ACCESS); 4406 OPCODE(POPCNT); 4407 OPCODE(UMUL_LOHI64); 4408 OPCODE(SDIVREM32); 4409 OPCODE(SDIVREM64); 4410 OPCODE(UDIVREM32); 4411 OPCODE(UDIVREM64); 4412 OPCODE(MVC); 4413 OPCODE(MVC_LOOP); 4414 OPCODE(NC); 4415 OPCODE(NC_LOOP); 4416 OPCODE(OC); 4417 OPCODE(OC_LOOP); 4418 OPCODE(XC); 4419 OPCODE(XC_LOOP); 4420 OPCODE(CLC); 4421 OPCODE(CLC_LOOP); 4422 OPCODE(STPCPY); 4423 OPCODE(STRCMP); 4424 OPCODE(SEARCH_STRING); 4425 OPCODE(IPM); 4426 OPCODE(SERIALIZE); 4427 OPCODE(TBEGIN); 4428 OPCODE(TBEGIN_NOFLOAT); 4429 OPCODE(TEND); 4430 OPCODE(BYTE_MASK); 4431 OPCODE(ROTATE_MASK); 4432 OPCODE(REPLICATE); 4433 OPCODE(JOIN_DWORDS); 4434 OPCODE(SPLAT); 4435 OPCODE(MERGE_HIGH); 4436 OPCODE(MERGE_LOW); 4437 OPCODE(SHL_DOUBLE); 4438 OPCODE(PERMUTE_DWORDS); 4439 OPCODE(PERMUTE); 4440 OPCODE(PACK); 4441 OPCODE(PACKS_CC); 4442 OPCODE(PACKLS_CC); 4443 OPCODE(UNPACK_HIGH); 4444 OPCODE(UNPACKL_HIGH); 4445 OPCODE(UNPACK_LOW); 4446 OPCODE(UNPACKL_LOW); 4447 OPCODE(VSHL_BY_SCALAR); 4448 OPCODE(VSRL_BY_SCALAR); 4449 OPCODE(VSRA_BY_SCALAR); 4450 OPCODE(VSUM); 4451 OPCODE(VICMPE); 4452 OPCODE(VICMPH); 4453 OPCODE(VICMPHL); 4454 OPCODE(VICMPES); 4455 OPCODE(VICMPHS); 4456 OPCODE(VICMPHLS); 4457 OPCODE(VFCMPE); 4458 OPCODE(VFCMPH); 4459 OPCODE(VFCMPHE); 4460 OPCODE(VFCMPES); 4461 OPCODE(VFCMPHS); 4462 OPCODE(VFCMPHES); 4463 OPCODE(VFTCI); 4464 OPCODE(VEXTEND); 4465 OPCODE(VROUND); 4466 OPCODE(VTM); 4467 OPCODE(VFAE_CC); 4468 OPCODE(VFAEZ_CC); 4469 OPCODE(VFEE_CC); 4470 OPCODE(VFEEZ_CC); 4471 OPCODE(VFENE_CC); 4472 OPCODE(VFENEZ_CC); 4473 OPCODE(VISTR_CC); 4474 OPCODE(VSTRC_CC); 4475 OPCODE(VSTRCZ_CC); 4476 OPCODE(ATOMIC_SWAPW); 4477 OPCODE(ATOMIC_LOADW_ADD); 4478 OPCODE(ATOMIC_LOADW_SUB); 4479 OPCODE(ATOMIC_LOADW_AND); 4480 OPCODE(ATOMIC_LOADW_OR); 4481 OPCODE(ATOMIC_LOADW_XOR); 4482 OPCODE(ATOMIC_LOADW_NAND); 4483 OPCODE(ATOMIC_LOADW_MIN); 4484 OPCODE(ATOMIC_LOADW_MAX); 4485 OPCODE(ATOMIC_LOADW_UMIN); 4486 OPCODE(ATOMIC_LOADW_UMAX); 4487 OPCODE(ATOMIC_CMP_SWAPW); 4488 OPCODE(PREFETCH); 4489 } 4490 return nullptr; 4491 #undef OPCODE 4492 } 4493 4494 // Return true if VT is a vector whose elements are a whole number of bytes 4495 // in width. 4496 static bool canTreatAsByteVector(EVT VT) { 4497 return VT.isVector() && VT.getVectorElementType().getSizeInBits() % 8 == 0; 4498 } 4499 4500 // Try to simplify an EXTRACT_VECTOR_ELT from a vector of type VecVT 4501 // producing a result of type ResVT. Op is a possibly bitcast version 4502 // of the input vector and Index is the index (based on type VecVT) that 4503 // should be extracted. Return the new extraction if a simplification 4504 // was possible or if Force is true. 4505 SDValue SystemZTargetLowering::combineExtract(SDLoc DL, EVT ResVT, EVT VecVT, 4506 SDValue Op, unsigned Index, 4507 DAGCombinerInfo &DCI, 4508 bool Force) const { 4509 SelectionDAG &DAG = DCI.DAG; 4510 4511 // The number of bytes being extracted. 4512 unsigned BytesPerElement = VecVT.getVectorElementType().getStoreSize(); 4513 4514 for (;;) { 4515 unsigned Opcode = Op.getOpcode(); 4516 if (Opcode == ISD::BITCAST) 4517 // Look through bitcasts. 4518 Op = Op.getOperand(0); 4519 else if (Opcode == ISD::VECTOR_SHUFFLE && 4520 canTreatAsByteVector(Op.getValueType())) { 4521 // Get a VPERM-like permute mask and see whether the bytes covered 4522 // by the extracted element are a contiguous sequence from one 4523 // source operand. 4524 SmallVector<int, SystemZ::VectorBytes> Bytes; 4525 getVPermMask(cast<ShuffleVectorSDNode>(Op), Bytes); 4526 int First; 4527 if (!getShuffleInput(Bytes, Index * BytesPerElement, 4528 BytesPerElement, First)) 4529 break; 4530 if (First < 0) 4531 return DAG.getUNDEF(ResVT); 4532 // Make sure the contiguous sequence starts at a multiple of the 4533 // original element size. 4534 unsigned Byte = unsigned(First) % Bytes.size(); 4535 if (Byte % BytesPerElement != 0) 4536 break; 4537 // We can get the extracted value directly from an input. 4538 Index = Byte / BytesPerElement; 4539 Op = Op.getOperand(unsigned(First) / Bytes.size()); 4540 Force = true; 4541 } else if (Opcode == ISD::BUILD_VECTOR && 4542 canTreatAsByteVector(Op.getValueType())) { 4543 // We can only optimize this case if the BUILD_VECTOR elements are 4544 // at least as wide as the extracted value. 4545 EVT OpVT = Op.getValueType(); 4546 unsigned OpBytesPerElement = OpVT.getVectorElementType().getStoreSize(); 4547 if (OpBytesPerElement < BytesPerElement) 4548 break; 4549 // Make sure that the least-significant bit of the extracted value 4550 // is the least significant bit of an input. 4551 unsigned End = (Index + 1) * BytesPerElement; 4552 if (End % OpBytesPerElement != 0) 4553 break; 4554 // We're extracting the low part of one operand of the BUILD_VECTOR. 4555 Op = Op.getOperand(End / OpBytesPerElement - 1); 4556 if (!Op.getValueType().isInteger()) { 4557 EVT VT = MVT::getIntegerVT(Op.getValueType().getSizeInBits()); 4558 Op = DAG.getNode(ISD::BITCAST, DL, VT, Op); 4559 DCI.AddToWorklist(Op.getNode()); 4560 } 4561 EVT VT = MVT::getIntegerVT(ResVT.getSizeInBits()); 4562 Op = DAG.getNode(ISD::TRUNCATE, DL, VT, Op); 4563 if (VT != ResVT) { 4564 DCI.AddToWorklist(Op.getNode()); 4565 Op = DAG.getNode(ISD::BITCAST, DL, ResVT, Op); 4566 } 4567 return Op; 4568 } else if ((Opcode == ISD::SIGN_EXTEND_VECTOR_INREG || 4569 Opcode == ISD::ZERO_EXTEND_VECTOR_INREG || 4570 Opcode == ISD::ANY_EXTEND_VECTOR_INREG) && 4571 canTreatAsByteVector(Op.getValueType()) && 4572 canTreatAsByteVector(Op.getOperand(0).getValueType())) { 4573 // Make sure that only the unextended bits are significant. 4574 EVT ExtVT = Op.getValueType(); 4575 EVT OpVT = Op.getOperand(0).getValueType(); 4576 unsigned ExtBytesPerElement = ExtVT.getVectorElementType().getStoreSize(); 4577 unsigned OpBytesPerElement = OpVT.getVectorElementType().getStoreSize(); 4578 unsigned Byte = Index * BytesPerElement; 4579 unsigned SubByte = Byte % ExtBytesPerElement; 4580 unsigned MinSubByte = ExtBytesPerElement - OpBytesPerElement; 4581 if (SubByte < MinSubByte || 4582 SubByte + BytesPerElement > ExtBytesPerElement) 4583 break; 4584 // Get the byte offset of the unextended element 4585 Byte = Byte / ExtBytesPerElement * OpBytesPerElement; 4586 // ...then add the byte offset relative to that element. 4587 Byte += SubByte - MinSubByte; 4588 if (Byte % BytesPerElement != 0) 4589 break; 4590 Op = Op.getOperand(0); 4591 Index = Byte / BytesPerElement; 4592 Force = true; 4593 } else 4594 break; 4595 } 4596 if (Force) { 4597 if (Op.getValueType() != VecVT) { 4598 Op = DAG.getNode(ISD::BITCAST, DL, VecVT, Op); 4599 DCI.AddToWorklist(Op.getNode()); 4600 } 4601 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ResVT, Op, 4602 DAG.getConstant(Index, DL, MVT::i32)); 4603 } 4604 return SDValue(); 4605 } 4606 4607 // Optimize vector operations in scalar value Op on the basis that Op 4608 // is truncated to TruncVT. 4609 SDValue 4610 SystemZTargetLowering::combineTruncateExtract(SDLoc DL, EVT TruncVT, SDValue Op, 4611 DAGCombinerInfo &DCI) const { 4612 // If we have (trunc (extract_vector_elt X, Y)), try to turn it into 4613 // (extract_vector_elt (bitcast X), Y'), where (bitcast X) has elements 4614 // of type TruncVT. 4615 if (Op.getOpcode() == ISD::EXTRACT_VECTOR_ELT && 4616 TruncVT.getSizeInBits() % 8 == 0) { 4617 SDValue Vec = Op.getOperand(0); 4618 EVT VecVT = Vec.getValueType(); 4619 if (canTreatAsByteVector(VecVT)) { 4620 if (auto *IndexN = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 4621 unsigned BytesPerElement = VecVT.getVectorElementType().getStoreSize(); 4622 unsigned TruncBytes = TruncVT.getStoreSize(); 4623 if (BytesPerElement % TruncBytes == 0) { 4624 // Calculate the value of Y' in the above description. We are 4625 // splitting the original elements into Scale equal-sized pieces 4626 // and for truncation purposes want the last (least-significant) 4627 // of these pieces for IndexN. This is easiest to do by calculating 4628 // the start index of the following element and then subtracting 1. 4629 unsigned Scale = BytesPerElement / TruncBytes; 4630 unsigned NewIndex = (IndexN->getZExtValue() + 1) * Scale - 1; 4631 4632 // Defer the creation of the bitcast from X to combineExtract, 4633 // which might be able to optimize the extraction. 4634 VecVT = MVT::getVectorVT(MVT::getIntegerVT(TruncBytes * 8), 4635 VecVT.getStoreSize() / TruncBytes); 4636 EVT ResVT = (TruncBytes < 4 ? MVT::i32 : TruncVT); 4637 return combineExtract(DL, ResVT, VecVT, Vec, NewIndex, DCI, true); 4638 } 4639 } 4640 } 4641 } 4642 return SDValue(); 4643 } 4644 4645 SDValue SystemZTargetLowering::PerformDAGCombine(SDNode *N, 4646 DAGCombinerInfo &DCI) const { 4647 SelectionDAG &DAG = DCI.DAG; 4648 unsigned Opcode = N->getOpcode(); 4649 if (Opcode == ISD::SIGN_EXTEND) { 4650 // Convert (sext (ashr (shl X, C1), C2)) to 4651 // (ashr (shl (anyext X), C1'), C2')), since wider shifts are as 4652 // cheap as narrower ones. 4653 SDValue N0 = N->getOperand(0); 4654 EVT VT = N->getValueType(0); 4655 if (N0.hasOneUse() && N0.getOpcode() == ISD::SRA) { 4656 auto *SraAmt = dyn_cast<ConstantSDNode>(N0.getOperand(1)); 4657 SDValue Inner = N0.getOperand(0); 4658 if (SraAmt && Inner.hasOneUse() && Inner.getOpcode() == ISD::SHL) { 4659 if (auto *ShlAmt = dyn_cast<ConstantSDNode>(Inner.getOperand(1))) { 4660 unsigned Extra = (VT.getSizeInBits() - 4661 N0.getValueType().getSizeInBits()); 4662 unsigned NewShlAmt = ShlAmt->getZExtValue() + Extra; 4663 unsigned NewSraAmt = SraAmt->getZExtValue() + Extra; 4664 EVT ShiftVT = N0.getOperand(1).getValueType(); 4665 SDValue Ext = DAG.getNode(ISD::ANY_EXTEND, SDLoc(Inner), VT, 4666 Inner.getOperand(0)); 4667 SDValue Shl = DAG.getNode(ISD::SHL, SDLoc(Inner), VT, Ext, 4668 DAG.getConstant(NewShlAmt, SDLoc(Inner), 4669 ShiftVT)); 4670 return DAG.getNode(ISD::SRA, SDLoc(N0), VT, Shl, 4671 DAG.getConstant(NewSraAmt, SDLoc(N0), ShiftVT)); 4672 } 4673 } 4674 } 4675 } 4676 if (Opcode == SystemZISD::MERGE_HIGH || 4677 Opcode == SystemZISD::MERGE_LOW) { 4678 SDValue Op0 = N->getOperand(0); 4679 SDValue Op1 = N->getOperand(1); 4680 if (Op0.getOpcode() == ISD::BITCAST) 4681 Op0 = Op0.getOperand(0); 4682 if (Op0.getOpcode() == SystemZISD::BYTE_MASK && 4683 cast<ConstantSDNode>(Op0.getOperand(0))->getZExtValue() == 0) { 4684 // (z_merge_* 0, 0) -> 0. This is mostly useful for using VLLEZF 4685 // for v4f32. 4686 if (Op1 == N->getOperand(0)) 4687 return Op1; 4688 // (z_merge_? 0, X) -> (z_unpackl_? 0, X). 4689 EVT VT = Op1.getValueType(); 4690 unsigned ElemBytes = VT.getVectorElementType().getStoreSize(); 4691 if (ElemBytes <= 4) { 4692 Opcode = (Opcode == SystemZISD::MERGE_HIGH ? 4693 SystemZISD::UNPACKL_HIGH : SystemZISD::UNPACKL_LOW); 4694 EVT InVT = VT.changeVectorElementTypeToInteger(); 4695 EVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(ElemBytes * 16), 4696 SystemZ::VectorBytes / ElemBytes / 2); 4697 if (VT != InVT) { 4698 Op1 = DAG.getNode(ISD::BITCAST, SDLoc(N), InVT, Op1); 4699 DCI.AddToWorklist(Op1.getNode()); 4700 } 4701 SDValue Op = DAG.getNode(Opcode, SDLoc(N), OutVT, Op1); 4702 DCI.AddToWorklist(Op.getNode()); 4703 return DAG.getNode(ISD::BITCAST, SDLoc(N), VT, Op); 4704 } 4705 } 4706 } 4707 // If we have (truncstoreiN (extract_vector_elt X, Y), Z) then it is better 4708 // for the extraction to be done on a vMiN value, so that we can use VSTE. 4709 // If X has wider elements then convert it to: 4710 // (truncstoreiN (extract_vector_elt (bitcast X), Y2), Z). 4711 if (Opcode == ISD::STORE) { 4712 auto *SN = cast<StoreSDNode>(N); 4713 EVT MemVT = SN->getMemoryVT(); 4714 if (MemVT.isInteger()) { 4715 SDValue Value = combineTruncateExtract(SDLoc(N), MemVT, 4716 SN->getValue(), DCI); 4717 if (Value.getNode()) { 4718 DCI.AddToWorklist(Value.getNode()); 4719 4720 // Rewrite the store with the new form of stored value. 4721 return DAG.getTruncStore(SN->getChain(), SDLoc(SN), Value, 4722 SN->getBasePtr(), SN->getMemoryVT(), 4723 SN->getMemOperand()); 4724 } 4725 } 4726 } 4727 // Try to simplify a vector extraction. 4728 if (Opcode == ISD::EXTRACT_VECTOR_ELT) { 4729 if (auto *IndexN = dyn_cast<ConstantSDNode>(N->getOperand(1))) { 4730 SDValue Op0 = N->getOperand(0); 4731 EVT VecVT = Op0.getValueType(); 4732 return combineExtract(SDLoc(N), N->getValueType(0), VecVT, Op0, 4733 IndexN->getZExtValue(), DCI, false); 4734 } 4735 } 4736 // (join_dwords X, X) == (replicate X) 4737 if (Opcode == SystemZISD::JOIN_DWORDS && 4738 N->getOperand(0) == N->getOperand(1)) 4739 return DAG.getNode(SystemZISD::REPLICATE, SDLoc(N), N->getValueType(0), 4740 N->getOperand(0)); 4741 // (fround (extract_vector_elt X 0)) 4742 // (fround (extract_vector_elt X 1)) -> 4743 // (extract_vector_elt (VROUND X) 0) 4744 // (extract_vector_elt (VROUND X) 1) 4745 // 4746 // This is a special case since the target doesn't really support v2f32s. 4747 if (Opcode == ISD::FP_ROUND) { 4748 SDValue Op0 = N->getOperand(0); 4749 if (N->getValueType(0) == MVT::f32 && 4750 Op0.hasOneUse() && 4751 Op0.getOpcode() == ISD::EXTRACT_VECTOR_ELT && 4752 Op0.getOperand(0).getValueType() == MVT::v2f64 && 4753 Op0.getOperand(1).getOpcode() == ISD::Constant && 4754 cast<ConstantSDNode>(Op0.getOperand(1))->getZExtValue() == 0) { 4755 SDValue Vec = Op0.getOperand(0); 4756 for (auto *U : Vec->uses()) { 4757 if (U != Op0.getNode() && 4758 U->hasOneUse() && 4759 U->getOpcode() == ISD::EXTRACT_VECTOR_ELT && 4760 U->getOperand(0) == Vec && 4761 U->getOperand(1).getOpcode() == ISD::Constant && 4762 cast<ConstantSDNode>(U->getOperand(1))->getZExtValue() == 1) { 4763 SDValue OtherRound = SDValue(*U->use_begin(), 0); 4764 if (OtherRound.getOpcode() == ISD::FP_ROUND && 4765 OtherRound.getOperand(0) == SDValue(U, 0) && 4766 OtherRound.getValueType() == MVT::f32) { 4767 SDValue VRound = DAG.getNode(SystemZISD::VROUND, SDLoc(N), 4768 MVT::v4f32, Vec); 4769 DCI.AddToWorklist(VRound.getNode()); 4770 SDValue Extract1 = 4771 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(U), MVT::f32, 4772 VRound, DAG.getConstant(2, SDLoc(U), MVT::i32)); 4773 DCI.AddToWorklist(Extract1.getNode()); 4774 DAG.ReplaceAllUsesOfValueWith(OtherRound, Extract1); 4775 SDValue Extract0 = 4776 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(Op0), MVT::f32, 4777 VRound, DAG.getConstant(0, SDLoc(Op0), MVT::i32)); 4778 return Extract0; 4779 } 4780 } 4781 } 4782 } 4783 } 4784 return SDValue(); 4785 } 4786 4787 //===----------------------------------------------------------------------===// 4788 // Custom insertion 4789 //===----------------------------------------------------------------------===// 4790 4791 // Create a new basic block after MBB. 4792 static MachineBasicBlock *emitBlockAfter(MachineBasicBlock *MBB) { 4793 MachineFunction &MF = *MBB->getParent(); 4794 MachineBasicBlock *NewMBB = MF.CreateMachineBasicBlock(MBB->getBasicBlock()); 4795 MF.insert(std::next(MachineFunction::iterator(MBB)), NewMBB); 4796 return NewMBB; 4797 } 4798 4799 // Split MBB after MI and return the new block (the one that contains 4800 // instructions after MI). 4801 static MachineBasicBlock *splitBlockAfter(MachineInstr *MI, 4802 MachineBasicBlock *MBB) { 4803 MachineBasicBlock *NewMBB = emitBlockAfter(MBB); 4804 NewMBB->splice(NewMBB->begin(), MBB, 4805 std::next(MachineBasicBlock::iterator(MI)), MBB->end()); 4806 NewMBB->transferSuccessorsAndUpdatePHIs(MBB); 4807 return NewMBB; 4808 } 4809 4810 // Split MBB before MI and return the new block (the one that contains MI). 4811 static MachineBasicBlock *splitBlockBefore(MachineInstr *MI, 4812 MachineBasicBlock *MBB) { 4813 MachineBasicBlock *NewMBB = emitBlockAfter(MBB); 4814 NewMBB->splice(NewMBB->begin(), MBB, MI, MBB->end()); 4815 NewMBB->transferSuccessorsAndUpdatePHIs(MBB); 4816 return NewMBB; 4817 } 4818 4819 // Force base value Base into a register before MI. Return the register. 4820 static unsigned forceReg(MachineInstr *MI, MachineOperand &Base, 4821 const SystemZInstrInfo *TII) { 4822 if (Base.isReg()) 4823 return Base.getReg(); 4824 4825 MachineBasicBlock *MBB = MI->getParent(); 4826 MachineFunction &MF = *MBB->getParent(); 4827 MachineRegisterInfo &MRI = MF.getRegInfo(); 4828 4829 unsigned Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass); 4830 BuildMI(*MBB, MI, MI->getDebugLoc(), TII->get(SystemZ::LA), Reg) 4831 .addOperand(Base).addImm(0).addReg(0); 4832 return Reg; 4833 } 4834 4835 // Implement EmitInstrWithCustomInserter for pseudo Select* instruction MI. 4836 MachineBasicBlock * 4837 SystemZTargetLowering::emitSelect(MachineInstr *MI, 4838 MachineBasicBlock *MBB) const { 4839 const SystemZInstrInfo *TII = 4840 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 4841 4842 unsigned DestReg = MI->getOperand(0).getReg(); 4843 unsigned TrueReg = MI->getOperand(1).getReg(); 4844 unsigned FalseReg = MI->getOperand(2).getReg(); 4845 unsigned CCValid = MI->getOperand(3).getImm(); 4846 unsigned CCMask = MI->getOperand(4).getImm(); 4847 DebugLoc DL = MI->getDebugLoc(); 4848 4849 MachineBasicBlock *StartMBB = MBB; 4850 MachineBasicBlock *JoinMBB = splitBlockBefore(MI, MBB); 4851 MachineBasicBlock *FalseMBB = emitBlockAfter(StartMBB); 4852 4853 // StartMBB: 4854 // BRC CCMask, JoinMBB 4855 // # fallthrough to FalseMBB 4856 MBB = StartMBB; 4857 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 4858 .addImm(CCValid).addImm(CCMask).addMBB(JoinMBB); 4859 MBB->addSuccessor(JoinMBB); 4860 MBB->addSuccessor(FalseMBB); 4861 4862 // FalseMBB: 4863 // # fallthrough to JoinMBB 4864 MBB = FalseMBB; 4865 MBB->addSuccessor(JoinMBB); 4866 4867 // JoinMBB: 4868 // %Result = phi [ %FalseReg, FalseMBB ], [ %TrueReg, StartMBB ] 4869 // ... 4870 MBB = JoinMBB; 4871 BuildMI(*MBB, MI, DL, TII->get(SystemZ::PHI), DestReg) 4872 .addReg(TrueReg).addMBB(StartMBB) 4873 .addReg(FalseReg).addMBB(FalseMBB); 4874 4875 MI->eraseFromParent(); 4876 return JoinMBB; 4877 } 4878 4879 // Implement EmitInstrWithCustomInserter for pseudo CondStore* instruction MI. 4880 // StoreOpcode is the store to use and Invert says whether the store should 4881 // happen when the condition is false rather than true. If a STORE ON 4882 // CONDITION is available, STOCOpcode is its opcode, otherwise it is 0. 4883 MachineBasicBlock * 4884 SystemZTargetLowering::emitCondStore(MachineInstr *MI, 4885 MachineBasicBlock *MBB, 4886 unsigned StoreOpcode, unsigned STOCOpcode, 4887 bool Invert) const { 4888 const SystemZInstrInfo *TII = 4889 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 4890 4891 unsigned SrcReg = MI->getOperand(0).getReg(); 4892 MachineOperand Base = MI->getOperand(1); 4893 int64_t Disp = MI->getOperand(2).getImm(); 4894 unsigned IndexReg = MI->getOperand(3).getReg(); 4895 unsigned CCValid = MI->getOperand(4).getImm(); 4896 unsigned CCMask = MI->getOperand(5).getImm(); 4897 DebugLoc DL = MI->getDebugLoc(); 4898 4899 StoreOpcode = TII->getOpcodeForOffset(StoreOpcode, Disp); 4900 4901 // Use STOCOpcode if possible. We could use different store patterns in 4902 // order to avoid matching the index register, but the performance trade-offs 4903 // might be more complicated in that case. 4904 if (STOCOpcode && !IndexReg && Subtarget.hasLoadStoreOnCond()) { 4905 if (Invert) 4906 CCMask ^= CCValid; 4907 BuildMI(*MBB, MI, DL, TII->get(STOCOpcode)) 4908 .addReg(SrcReg).addOperand(Base).addImm(Disp) 4909 .addImm(CCValid).addImm(CCMask); 4910 MI->eraseFromParent(); 4911 return MBB; 4912 } 4913 4914 // Get the condition needed to branch around the store. 4915 if (!Invert) 4916 CCMask ^= CCValid; 4917 4918 MachineBasicBlock *StartMBB = MBB; 4919 MachineBasicBlock *JoinMBB = splitBlockBefore(MI, MBB); 4920 MachineBasicBlock *FalseMBB = emitBlockAfter(StartMBB); 4921 4922 // StartMBB: 4923 // BRC CCMask, JoinMBB 4924 // # fallthrough to FalseMBB 4925 MBB = StartMBB; 4926 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 4927 .addImm(CCValid).addImm(CCMask).addMBB(JoinMBB); 4928 MBB->addSuccessor(JoinMBB); 4929 MBB->addSuccessor(FalseMBB); 4930 4931 // FalseMBB: 4932 // store %SrcReg, %Disp(%Index,%Base) 4933 // # fallthrough to JoinMBB 4934 MBB = FalseMBB; 4935 BuildMI(MBB, DL, TII->get(StoreOpcode)) 4936 .addReg(SrcReg).addOperand(Base).addImm(Disp).addReg(IndexReg); 4937 MBB->addSuccessor(JoinMBB); 4938 4939 MI->eraseFromParent(); 4940 return JoinMBB; 4941 } 4942 4943 // Implement EmitInstrWithCustomInserter for pseudo ATOMIC_LOAD{,W}_* 4944 // or ATOMIC_SWAP{,W} instruction MI. BinOpcode is the instruction that 4945 // performs the binary operation elided by "*", or 0 for ATOMIC_SWAP{,W}. 4946 // BitSize is the width of the field in bits, or 0 if this is a partword 4947 // ATOMIC_LOADW_* or ATOMIC_SWAPW instruction, in which case the bitsize 4948 // is one of the operands. Invert says whether the field should be 4949 // inverted after performing BinOpcode (e.g. for NAND). 4950 MachineBasicBlock * 4951 SystemZTargetLowering::emitAtomicLoadBinary(MachineInstr *MI, 4952 MachineBasicBlock *MBB, 4953 unsigned BinOpcode, 4954 unsigned BitSize, 4955 bool Invert) const { 4956 MachineFunction &MF = *MBB->getParent(); 4957 const SystemZInstrInfo *TII = 4958 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 4959 MachineRegisterInfo &MRI = MF.getRegInfo(); 4960 bool IsSubWord = (BitSize < 32); 4961 4962 // Extract the operands. Base can be a register or a frame index. 4963 // Src2 can be a register or immediate. 4964 unsigned Dest = MI->getOperand(0).getReg(); 4965 MachineOperand Base = earlyUseOperand(MI->getOperand(1)); 4966 int64_t Disp = MI->getOperand(2).getImm(); 4967 MachineOperand Src2 = earlyUseOperand(MI->getOperand(3)); 4968 unsigned BitShift = (IsSubWord ? MI->getOperand(4).getReg() : 0); 4969 unsigned NegBitShift = (IsSubWord ? MI->getOperand(5).getReg() : 0); 4970 DebugLoc DL = MI->getDebugLoc(); 4971 if (IsSubWord) 4972 BitSize = MI->getOperand(6).getImm(); 4973 4974 // Subword operations use 32-bit registers. 4975 const TargetRegisterClass *RC = (BitSize <= 32 ? 4976 &SystemZ::GR32BitRegClass : 4977 &SystemZ::GR64BitRegClass); 4978 unsigned LOpcode = BitSize <= 32 ? SystemZ::L : SystemZ::LG; 4979 unsigned CSOpcode = BitSize <= 32 ? SystemZ::CS : SystemZ::CSG; 4980 4981 // Get the right opcodes for the displacement. 4982 LOpcode = TII->getOpcodeForOffset(LOpcode, Disp); 4983 CSOpcode = TII->getOpcodeForOffset(CSOpcode, Disp); 4984 assert(LOpcode && CSOpcode && "Displacement out of range"); 4985 4986 // Create virtual registers for temporary results. 4987 unsigned OrigVal = MRI.createVirtualRegister(RC); 4988 unsigned OldVal = MRI.createVirtualRegister(RC); 4989 unsigned NewVal = (BinOpcode || IsSubWord ? 4990 MRI.createVirtualRegister(RC) : Src2.getReg()); 4991 unsigned RotatedOldVal = (IsSubWord ? MRI.createVirtualRegister(RC) : OldVal); 4992 unsigned RotatedNewVal = (IsSubWord ? MRI.createVirtualRegister(RC) : NewVal); 4993 4994 // Insert a basic block for the main loop. 4995 MachineBasicBlock *StartMBB = MBB; 4996 MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB); 4997 MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB); 4998 4999 // StartMBB: 5000 // ... 5001 // %OrigVal = L Disp(%Base) 5002 // # fall through to LoopMMB 5003 MBB = StartMBB; 5004 BuildMI(MBB, DL, TII->get(LOpcode), OrigVal) 5005 .addOperand(Base).addImm(Disp).addReg(0); 5006 MBB->addSuccessor(LoopMBB); 5007 5008 // LoopMBB: 5009 // %OldVal = phi [ %OrigVal, StartMBB ], [ %Dest, LoopMBB ] 5010 // %RotatedOldVal = RLL %OldVal, 0(%BitShift) 5011 // %RotatedNewVal = OP %RotatedOldVal, %Src2 5012 // %NewVal = RLL %RotatedNewVal, 0(%NegBitShift) 5013 // %Dest = CS %OldVal, %NewVal, Disp(%Base) 5014 // JNE LoopMBB 5015 // # fall through to DoneMMB 5016 MBB = LoopMBB; 5017 BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal) 5018 .addReg(OrigVal).addMBB(StartMBB) 5019 .addReg(Dest).addMBB(LoopMBB); 5020 if (IsSubWord) 5021 BuildMI(MBB, DL, TII->get(SystemZ::RLL), RotatedOldVal) 5022 .addReg(OldVal).addReg(BitShift).addImm(0); 5023 if (Invert) { 5024 // Perform the operation normally and then invert every bit of the field. 5025 unsigned Tmp = MRI.createVirtualRegister(RC); 5026 BuildMI(MBB, DL, TII->get(BinOpcode), Tmp) 5027 .addReg(RotatedOldVal).addOperand(Src2); 5028 if (BitSize <= 32) 5029 // XILF with the upper BitSize bits set. 5030 BuildMI(MBB, DL, TII->get(SystemZ::XILF), RotatedNewVal) 5031 .addReg(Tmp).addImm(-1U << (32 - BitSize)); 5032 else { 5033 // Use LCGR and add -1 to the result, which is more compact than 5034 // an XILF, XILH pair. 5035 unsigned Tmp2 = MRI.createVirtualRegister(RC); 5036 BuildMI(MBB, DL, TII->get(SystemZ::LCGR), Tmp2).addReg(Tmp); 5037 BuildMI(MBB, DL, TII->get(SystemZ::AGHI), RotatedNewVal) 5038 .addReg(Tmp2).addImm(-1); 5039 } 5040 } else if (BinOpcode) 5041 // A simply binary operation. 5042 BuildMI(MBB, DL, TII->get(BinOpcode), RotatedNewVal) 5043 .addReg(RotatedOldVal).addOperand(Src2); 5044 else if (IsSubWord) 5045 // Use RISBG to rotate Src2 into position and use it to replace the 5046 // field in RotatedOldVal. 5047 BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RotatedNewVal) 5048 .addReg(RotatedOldVal).addReg(Src2.getReg()) 5049 .addImm(32).addImm(31 + BitSize).addImm(32 - BitSize); 5050 if (IsSubWord) 5051 BuildMI(MBB, DL, TII->get(SystemZ::RLL), NewVal) 5052 .addReg(RotatedNewVal).addReg(NegBitShift).addImm(0); 5053 BuildMI(MBB, DL, TII->get(CSOpcode), Dest) 5054 .addReg(OldVal).addReg(NewVal).addOperand(Base).addImm(Disp); 5055 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 5056 .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB); 5057 MBB->addSuccessor(LoopMBB); 5058 MBB->addSuccessor(DoneMBB); 5059 5060 MI->eraseFromParent(); 5061 return DoneMBB; 5062 } 5063 5064 // Implement EmitInstrWithCustomInserter for pseudo 5065 // ATOMIC_LOAD{,W}_{,U}{MIN,MAX} instruction MI. CompareOpcode is the 5066 // instruction that should be used to compare the current field with the 5067 // minimum or maximum value. KeepOldMask is the BRC condition-code mask 5068 // for when the current field should be kept. BitSize is the width of 5069 // the field in bits, or 0 if this is a partword ATOMIC_LOADW_* instruction. 5070 MachineBasicBlock * 5071 SystemZTargetLowering::emitAtomicLoadMinMax(MachineInstr *MI, 5072 MachineBasicBlock *MBB, 5073 unsigned CompareOpcode, 5074 unsigned KeepOldMask, 5075 unsigned BitSize) const { 5076 MachineFunction &MF = *MBB->getParent(); 5077 const SystemZInstrInfo *TII = 5078 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 5079 MachineRegisterInfo &MRI = MF.getRegInfo(); 5080 bool IsSubWord = (BitSize < 32); 5081 5082 // Extract the operands. Base can be a register or a frame index. 5083 unsigned Dest = MI->getOperand(0).getReg(); 5084 MachineOperand Base = earlyUseOperand(MI->getOperand(1)); 5085 int64_t Disp = MI->getOperand(2).getImm(); 5086 unsigned Src2 = MI->getOperand(3).getReg(); 5087 unsigned BitShift = (IsSubWord ? MI->getOperand(4).getReg() : 0); 5088 unsigned NegBitShift = (IsSubWord ? MI->getOperand(5).getReg() : 0); 5089 DebugLoc DL = MI->getDebugLoc(); 5090 if (IsSubWord) 5091 BitSize = MI->getOperand(6).getImm(); 5092 5093 // Subword operations use 32-bit registers. 5094 const TargetRegisterClass *RC = (BitSize <= 32 ? 5095 &SystemZ::GR32BitRegClass : 5096 &SystemZ::GR64BitRegClass); 5097 unsigned LOpcode = BitSize <= 32 ? SystemZ::L : SystemZ::LG; 5098 unsigned CSOpcode = BitSize <= 32 ? SystemZ::CS : SystemZ::CSG; 5099 5100 // Get the right opcodes for the displacement. 5101 LOpcode = TII->getOpcodeForOffset(LOpcode, Disp); 5102 CSOpcode = TII->getOpcodeForOffset(CSOpcode, Disp); 5103 assert(LOpcode && CSOpcode && "Displacement out of range"); 5104 5105 // Create virtual registers for temporary results. 5106 unsigned OrigVal = MRI.createVirtualRegister(RC); 5107 unsigned OldVal = MRI.createVirtualRegister(RC); 5108 unsigned NewVal = MRI.createVirtualRegister(RC); 5109 unsigned RotatedOldVal = (IsSubWord ? MRI.createVirtualRegister(RC) : OldVal); 5110 unsigned RotatedAltVal = (IsSubWord ? MRI.createVirtualRegister(RC) : Src2); 5111 unsigned RotatedNewVal = (IsSubWord ? MRI.createVirtualRegister(RC) : NewVal); 5112 5113 // Insert 3 basic blocks for the loop. 5114 MachineBasicBlock *StartMBB = MBB; 5115 MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB); 5116 MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB); 5117 MachineBasicBlock *UseAltMBB = emitBlockAfter(LoopMBB); 5118 MachineBasicBlock *UpdateMBB = emitBlockAfter(UseAltMBB); 5119 5120 // StartMBB: 5121 // ... 5122 // %OrigVal = L Disp(%Base) 5123 // # fall through to LoopMMB 5124 MBB = StartMBB; 5125 BuildMI(MBB, DL, TII->get(LOpcode), OrigVal) 5126 .addOperand(Base).addImm(Disp).addReg(0); 5127 MBB->addSuccessor(LoopMBB); 5128 5129 // LoopMBB: 5130 // %OldVal = phi [ %OrigVal, StartMBB ], [ %Dest, UpdateMBB ] 5131 // %RotatedOldVal = RLL %OldVal, 0(%BitShift) 5132 // CompareOpcode %RotatedOldVal, %Src2 5133 // BRC KeepOldMask, UpdateMBB 5134 MBB = LoopMBB; 5135 BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal) 5136 .addReg(OrigVal).addMBB(StartMBB) 5137 .addReg(Dest).addMBB(UpdateMBB); 5138 if (IsSubWord) 5139 BuildMI(MBB, DL, TII->get(SystemZ::RLL), RotatedOldVal) 5140 .addReg(OldVal).addReg(BitShift).addImm(0); 5141 BuildMI(MBB, DL, TII->get(CompareOpcode)) 5142 .addReg(RotatedOldVal).addReg(Src2); 5143 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 5144 .addImm(SystemZ::CCMASK_ICMP).addImm(KeepOldMask).addMBB(UpdateMBB); 5145 MBB->addSuccessor(UpdateMBB); 5146 MBB->addSuccessor(UseAltMBB); 5147 5148 // UseAltMBB: 5149 // %RotatedAltVal = RISBG %RotatedOldVal, %Src2, 32, 31 + BitSize, 0 5150 // # fall through to UpdateMMB 5151 MBB = UseAltMBB; 5152 if (IsSubWord) 5153 BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RotatedAltVal) 5154 .addReg(RotatedOldVal).addReg(Src2) 5155 .addImm(32).addImm(31 + BitSize).addImm(0); 5156 MBB->addSuccessor(UpdateMBB); 5157 5158 // UpdateMBB: 5159 // %RotatedNewVal = PHI [ %RotatedOldVal, LoopMBB ], 5160 // [ %RotatedAltVal, UseAltMBB ] 5161 // %NewVal = RLL %RotatedNewVal, 0(%NegBitShift) 5162 // %Dest = CS %OldVal, %NewVal, Disp(%Base) 5163 // JNE LoopMBB 5164 // # fall through to DoneMMB 5165 MBB = UpdateMBB; 5166 BuildMI(MBB, DL, TII->get(SystemZ::PHI), RotatedNewVal) 5167 .addReg(RotatedOldVal).addMBB(LoopMBB) 5168 .addReg(RotatedAltVal).addMBB(UseAltMBB); 5169 if (IsSubWord) 5170 BuildMI(MBB, DL, TII->get(SystemZ::RLL), NewVal) 5171 .addReg(RotatedNewVal).addReg(NegBitShift).addImm(0); 5172 BuildMI(MBB, DL, TII->get(CSOpcode), Dest) 5173 .addReg(OldVal).addReg(NewVal).addOperand(Base).addImm(Disp); 5174 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 5175 .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB); 5176 MBB->addSuccessor(LoopMBB); 5177 MBB->addSuccessor(DoneMBB); 5178 5179 MI->eraseFromParent(); 5180 return DoneMBB; 5181 } 5182 5183 // Implement EmitInstrWithCustomInserter for pseudo ATOMIC_CMP_SWAPW 5184 // instruction MI. 5185 MachineBasicBlock * 5186 SystemZTargetLowering::emitAtomicCmpSwapW(MachineInstr *MI, 5187 MachineBasicBlock *MBB) const { 5188 MachineFunction &MF = *MBB->getParent(); 5189 const SystemZInstrInfo *TII = 5190 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 5191 MachineRegisterInfo &MRI = MF.getRegInfo(); 5192 5193 // Extract the operands. Base can be a register or a frame index. 5194 unsigned Dest = MI->getOperand(0).getReg(); 5195 MachineOperand Base = earlyUseOperand(MI->getOperand(1)); 5196 int64_t Disp = MI->getOperand(2).getImm(); 5197 unsigned OrigCmpVal = MI->getOperand(3).getReg(); 5198 unsigned OrigSwapVal = MI->getOperand(4).getReg(); 5199 unsigned BitShift = MI->getOperand(5).getReg(); 5200 unsigned NegBitShift = MI->getOperand(6).getReg(); 5201 int64_t BitSize = MI->getOperand(7).getImm(); 5202 DebugLoc DL = MI->getDebugLoc(); 5203 5204 const TargetRegisterClass *RC = &SystemZ::GR32BitRegClass; 5205 5206 // Get the right opcodes for the displacement. 5207 unsigned LOpcode = TII->getOpcodeForOffset(SystemZ::L, Disp); 5208 unsigned CSOpcode = TII->getOpcodeForOffset(SystemZ::CS, Disp); 5209 assert(LOpcode && CSOpcode && "Displacement out of range"); 5210 5211 // Create virtual registers for temporary results. 5212 unsigned OrigOldVal = MRI.createVirtualRegister(RC); 5213 unsigned OldVal = MRI.createVirtualRegister(RC); 5214 unsigned CmpVal = MRI.createVirtualRegister(RC); 5215 unsigned SwapVal = MRI.createVirtualRegister(RC); 5216 unsigned StoreVal = MRI.createVirtualRegister(RC); 5217 unsigned RetryOldVal = MRI.createVirtualRegister(RC); 5218 unsigned RetryCmpVal = MRI.createVirtualRegister(RC); 5219 unsigned RetrySwapVal = MRI.createVirtualRegister(RC); 5220 5221 // Insert 2 basic blocks for the loop. 5222 MachineBasicBlock *StartMBB = MBB; 5223 MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB); 5224 MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB); 5225 MachineBasicBlock *SetMBB = emitBlockAfter(LoopMBB); 5226 5227 // StartMBB: 5228 // ... 5229 // %OrigOldVal = L Disp(%Base) 5230 // # fall through to LoopMMB 5231 MBB = StartMBB; 5232 BuildMI(MBB, DL, TII->get(LOpcode), OrigOldVal) 5233 .addOperand(Base).addImm(Disp).addReg(0); 5234 MBB->addSuccessor(LoopMBB); 5235 5236 // LoopMBB: 5237 // %OldVal = phi [ %OrigOldVal, EntryBB ], [ %RetryOldVal, SetMBB ] 5238 // %CmpVal = phi [ %OrigCmpVal, EntryBB ], [ %RetryCmpVal, SetMBB ] 5239 // %SwapVal = phi [ %OrigSwapVal, EntryBB ], [ %RetrySwapVal, SetMBB ] 5240 // %Dest = RLL %OldVal, BitSize(%BitShift) 5241 // ^^ The low BitSize bits contain the field 5242 // of interest. 5243 // %RetryCmpVal = RISBG32 %CmpVal, %Dest, 32, 63-BitSize, 0 5244 // ^^ Replace the upper 32-BitSize bits of the 5245 // comparison value with those that we loaded, 5246 // so that we can use a full word comparison. 5247 // CR %Dest, %RetryCmpVal 5248 // JNE DoneMBB 5249 // # Fall through to SetMBB 5250 MBB = LoopMBB; 5251 BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal) 5252 .addReg(OrigOldVal).addMBB(StartMBB) 5253 .addReg(RetryOldVal).addMBB(SetMBB); 5254 BuildMI(MBB, DL, TII->get(SystemZ::PHI), CmpVal) 5255 .addReg(OrigCmpVal).addMBB(StartMBB) 5256 .addReg(RetryCmpVal).addMBB(SetMBB); 5257 BuildMI(MBB, DL, TII->get(SystemZ::PHI), SwapVal) 5258 .addReg(OrigSwapVal).addMBB(StartMBB) 5259 .addReg(RetrySwapVal).addMBB(SetMBB); 5260 BuildMI(MBB, DL, TII->get(SystemZ::RLL), Dest) 5261 .addReg(OldVal).addReg(BitShift).addImm(BitSize); 5262 BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RetryCmpVal) 5263 .addReg(CmpVal).addReg(Dest).addImm(32).addImm(63 - BitSize).addImm(0); 5264 BuildMI(MBB, DL, TII->get(SystemZ::CR)) 5265 .addReg(Dest).addReg(RetryCmpVal); 5266 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 5267 .addImm(SystemZ::CCMASK_ICMP) 5268 .addImm(SystemZ::CCMASK_CMP_NE).addMBB(DoneMBB); 5269 MBB->addSuccessor(DoneMBB); 5270 MBB->addSuccessor(SetMBB); 5271 5272 // SetMBB: 5273 // %RetrySwapVal = RISBG32 %SwapVal, %Dest, 32, 63-BitSize, 0 5274 // ^^ Replace the upper 32-BitSize bits of the new 5275 // value with those that we loaded. 5276 // %StoreVal = RLL %RetrySwapVal, -BitSize(%NegBitShift) 5277 // ^^ Rotate the new field to its proper position. 5278 // %RetryOldVal = CS %Dest, %StoreVal, Disp(%Base) 5279 // JNE LoopMBB 5280 // # fall through to ExitMMB 5281 MBB = SetMBB; 5282 BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RetrySwapVal) 5283 .addReg(SwapVal).addReg(Dest).addImm(32).addImm(63 - BitSize).addImm(0); 5284 BuildMI(MBB, DL, TII->get(SystemZ::RLL), StoreVal) 5285 .addReg(RetrySwapVal).addReg(NegBitShift).addImm(-BitSize); 5286 BuildMI(MBB, DL, TII->get(CSOpcode), RetryOldVal) 5287 .addReg(OldVal).addReg(StoreVal).addOperand(Base).addImm(Disp); 5288 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 5289 .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB); 5290 MBB->addSuccessor(LoopMBB); 5291 MBB->addSuccessor(DoneMBB); 5292 5293 MI->eraseFromParent(); 5294 return DoneMBB; 5295 } 5296 5297 // Emit an extension from a GR32 or GR64 to a GR128. ClearEven is true 5298 // if the high register of the GR128 value must be cleared or false if 5299 // it's "don't care". SubReg is subreg_l32 when extending a GR32 5300 // and subreg_l64 when extending a GR64. 5301 MachineBasicBlock * 5302 SystemZTargetLowering::emitExt128(MachineInstr *MI, 5303 MachineBasicBlock *MBB, 5304 bool ClearEven, unsigned SubReg) const { 5305 MachineFunction &MF = *MBB->getParent(); 5306 const SystemZInstrInfo *TII = 5307 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 5308 MachineRegisterInfo &MRI = MF.getRegInfo(); 5309 DebugLoc DL = MI->getDebugLoc(); 5310 5311 unsigned Dest = MI->getOperand(0).getReg(); 5312 unsigned Src = MI->getOperand(1).getReg(); 5313 unsigned In128 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass); 5314 5315 BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::IMPLICIT_DEF), In128); 5316 if (ClearEven) { 5317 unsigned NewIn128 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass); 5318 unsigned Zero64 = MRI.createVirtualRegister(&SystemZ::GR64BitRegClass); 5319 5320 BuildMI(*MBB, MI, DL, TII->get(SystemZ::LLILL), Zero64) 5321 .addImm(0); 5322 BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), NewIn128) 5323 .addReg(In128).addReg(Zero64).addImm(SystemZ::subreg_h64); 5324 In128 = NewIn128; 5325 } 5326 BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), Dest) 5327 .addReg(In128).addReg(Src).addImm(SubReg); 5328 5329 MI->eraseFromParent(); 5330 return MBB; 5331 } 5332 5333 MachineBasicBlock * 5334 SystemZTargetLowering::emitMemMemWrapper(MachineInstr *MI, 5335 MachineBasicBlock *MBB, 5336 unsigned Opcode) const { 5337 MachineFunction &MF = *MBB->getParent(); 5338 const SystemZInstrInfo *TII = 5339 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 5340 MachineRegisterInfo &MRI = MF.getRegInfo(); 5341 DebugLoc DL = MI->getDebugLoc(); 5342 5343 MachineOperand DestBase = earlyUseOperand(MI->getOperand(0)); 5344 uint64_t DestDisp = MI->getOperand(1).getImm(); 5345 MachineOperand SrcBase = earlyUseOperand(MI->getOperand(2)); 5346 uint64_t SrcDisp = MI->getOperand(3).getImm(); 5347 uint64_t Length = MI->getOperand(4).getImm(); 5348 5349 // When generating more than one CLC, all but the last will need to 5350 // branch to the end when a difference is found. 5351 MachineBasicBlock *EndMBB = (Length > 256 && Opcode == SystemZ::CLC ? 5352 splitBlockAfter(MI, MBB) : nullptr); 5353 5354 // Check for the loop form, in which operand 5 is the trip count. 5355 if (MI->getNumExplicitOperands() > 5) { 5356 bool HaveSingleBase = DestBase.isIdenticalTo(SrcBase); 5357 5358 uint64_t StartCountReg = MI->getOperand(5).getReg(); 5359 uint64_t StartSrcReg = forceReg(MI, SrcBase, TII); 5360 uint64_t StartDestReg = (HaveSingleBase ? StartSrcReg : 5361 forceReg(MI, DestBase, TII)); 5362 5363 const TargetRegisterClass *RC = &SystemZ::ADDR64BitRegClass; 5364 uint64_t ThisSrcReg = MRI.createVirtualRegister(RC); 5365 uint64_t ThisDestReg = (HaveSingleBase ? ThisSrcReg : 5366 MRI.createVirtualRegister(RC)); 5367 uint64_t NextSrcReg = MRI.createVirtualRegister(RC); 5368 uint64_t NextDestReg = (HaveSingleBase ? NextSrcReg : 5369 MRI.createVirtualRegister(RC)); 5370 5371 RC = &SystemZ::GR64BitRegClass; 5372 uint64_t ThisCountReg = MRI.createVirtualRegister(RC); 5373 uint64_t NextCountReg = MRI.createVirtualRegister(RC); 5374 5375 MachineBasicBlock *StartMBB = MBB; 5376 MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB); 5377 MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB); 5378 MachineBasicBlock *NextMBB = (EndMBB ? emitBlockAfter(LoopMBB) : LoopMBB); 5379 5380 // StartMBB: 5381 // # fall through to LoopMMB 5382 MBB->addSuccessor(LoopMBB); 5383 5384 // LoopMBB: 5385 // %ThisDestReg = phi [ %StartDestReg, StartMBB ], 5386 // [ %NextDestReg, NextMBB ] 5387 // %ThisSrcReg = phi [ %StartSrcReg, StartMBB ], 5388 // [ %NextSrcReg, NextMBB ] 5389 // %ThisCountReg = phi [ %StartCountReg, StartMBB ], 5390 // [ %NextCountReg, NextMBB ] 5391 // ( PFD 2, 768+DestDisp(%ThisDestReg) ) 5392 // Opcode DestDisp(256,%ThisDestReg), SrcDisp(%ThisSrcReg) 5393 // ( JLH EndMBB ) 5394 // 5395 // The prefetch is used only for MVC. The JLH is used only for CLC. 5396 MBB = LoopMBB; 5397 5398 BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisDestReg) 5399 .addReg(StartDestReg).addMBB(StartMBB) 5400 .addReg(NextDestReg).addMBB(NextMBB); 5401 if (!HaveSingleBase) 5402 BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisSrcReg) 5403 .addReg(StartSrcReg).addMBB(StartMBB) 5404 .addReg(NextSrcReg).addMBB(NextMBB); 5405 BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisCountReg) 5406 .addReg(StartCountReg).addMBB(StartMBB) 5407 .addReg(NextCountReg).addMBB(NextMBB); 5408 if (Opcode == SystemZ::MVC) 5409 BuildMI(MBB, DL, TII->get(SystemZ::PFD)) 5410 .addImm(SystemZ::PFD_WRITE) 5411 .addReg(ThisDestReg).addImm(DestDisp + 768).addReg(0); 5412 BuildMI(MBB, DL, TII->get(Opcode)) 5413 .addReg(ThisDestReg).addImm(DestDisp).addImm(256) 5414 .addReg(ThisSrcReg).addImm(SrcDisp); 5415 if (EndMBB) { 5416 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 5417 .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE) 5418 .addMBB(EndMBB); 5419 MBB->addSuccessor(EndMBB); 5420 MBB->addSuccessor(NextMBB); 5421 } 5422 5423 // NextMBB: 5424 // %NextDestReg = LA 256(%ThisDestReg) 5425 // %NextSrcReg = LA 256(%ThisSrcReg) 5426 // %NextCountReg = AGHI %ThisCountReg, -1 5427 // CGHI %NextCountReg, 0 5428 // JLH LoopMBB 5429 // # fall through to DoneMMB 5430 // 5431 // The AGHI, CGHI and JLH should be converted to BRCTG by later passes. 5432 MBB = NextMBB; 5433 5434 BuildMI(MBB, DL, TII->get(SystemZ::LA), NextDestReg) 5435 .addReg(ThisDestReg).addImm(256).addReg(0); 5436 if (!HaveSingleBase) 5437 BuildMI(MBB, DL, TII->get(SystemZ::LA), NextSrcReg) 5438 .addReg(ThisSrcReg).addImm(256).addReg(0); 5439 BuildMI(MBB, DL, TII->get(SystemZ::AGHI), NextCountReg) 5440 .addReg(ThisCountReg).addImm(-1); 5441 BuildMI(MBB, DL, TII->get(SystemZ::CGHI)) 5442 .addReg(NextCountReg).addImm(0); 5443 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 5444 .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE) 5445 .addMBB(LoopMBB); 5446 MBB->addSuccessor(LoopMBB); 5447 MBB->addSuccessor(DoneMBB); 5448 5449 DestBase = MachineOperand::CreateReg(NextDestReg, false); 5450 SrcBase = MachineOperand::CreateReg(NextSrcReg, false); 5451 Length &= 255; 5452 MBB = DoneMBB; 5453 } 5454 // Handle any remaining bytes with straight-line code. 5455 while (Length > 0) { 5456 uint64_t ThisLength = std::min(Length, uint64_t(256)); 5457 // The previous iteration might have created out-of-range displacements. 5458 // Apply them using LAY if so. 5459 if (!isUInt<12>(DestDisp)) { 5460 unsigned Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass); 5461 BuildMI(*MBB, MI, MI->getDebugLoc(), TII->get(SystemZ::LAY), Reg) 5462 .addOperand(DestBase).addImm(DestDisp).addReg(0); 5463 DestBase = MachineOperand::CreateReg(Reg, false); 5464 DestDisp = 0; 5465 } 5466 if (!isUInt<12>(SrcDisp)) { 5467 unsigned Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass); 5468 BuildMI(*MBB, MI, MI->getDebugLoc(), TII->get(SystemZ::LAY), Reg) 5469 .addOperand(SrcBase).addImm(SrcDisp).addReg(0); 5470 SrcBase = MachineOperand::CreateReg(Reg, false); 5471 SrcDisp = 0; 5472 } 5473 BuildMI(*MBB, MI, DL, TII->get(Opcode)) 5474 .addOperand(DestBase).addImm(DestDisp).addImm(ThisLength) 5475 .addOperand(SrcBase).addImm(SrcDisp); 5476 DestDisp += ThisLength; 5477 SrcDisp += ThisLength; 5478 Length -= ThisLength; 5479 // If there's another CLC to go, branch to the end if a difference 5480 // was found. 5481 if (EndMBB && Length > 0) { 5482 MachineBasicBlock *NextMBB = splitBlockBefore(MI, MBB); 5483 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 5484 .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE) 5485 .addMBB(EndMBB); 5486 MBB->addSuccessor(EndMBB); 5487 MBB->addSuccessor(NextMBB); 5488 MBB = NextMBB; 5489 } 5490 } 5491 if (EndMBB) { 5492 MBB->addSuccessor(EndMBB); 5493 MBB = EndMBB; 5494 MBB->addLiveIn(SystemZ::CC); 5495 } 5496 5497 MI->eraseFromParent(); 5498 return MBB; 5499 } 5500 5501 // Decompose string pseudo-instruction MI into a loop that continually performs 5502 // Opcode until CC != 3. 5503 MachineBasicBlock * 5504 SystemZTargetLowering::emitStringWrapper(MachineInstr *MI, 5505 MachineBasicBlock *MBB, 5506 unsigned Opcode) const { 5507 MachineFunction &MF = *MBB->getParent(); 5508 const SystemZInstrInfo *TII = 5509 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 5510 MachineRegisterInfo &MRI = MF.getRegInfo(); 5511 DebugLoc DL = MI->getDebugLoc(); 5512 5513 uint64_t End1Reg = MI->getOperand(0).getReg(); 5514 uint64_t Start1Reg = MI->getOperand(1).getReg(); 5515 uint64_t Start2Reg = MI->getOperand(2).getReg(); 5516 uint64_t CharReg = MI->getOperand(3).getReg(); 5517 5518 const TargetRegisterClass *RC = &SystemZ::GR64BitRegClass; 5519 uint64_t This1Reg = MRI.createVirtualRegister(RC); 5520 uint64_t This2Reg = MRI.createVirtualRegister(RC); 5521 uint64_t End2Reg = MRI.createVirtualRegister(RC); 5522 5523 MachineBasicBlock *StartMBB = MBB; 5524 MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB); 5525 MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB); 5526 5527 // StartMBB: 5528 // # fall through to LoopMMB 5529 MBB->addSuccessor(LoopMBB); 5530 5531 // LoopMBB: 5532 // %This1Reg = phi [ %Start1Reg, StartMBB ], [ %End1Reg, LoopMBB ] 5533 // %This2Reg = phi [ %Start2Reg, StartMBB ], [ %End2Reg, LoopMBB ] 5534 // R0L = %CharReg 5535 // %End1Reg, %End2Reg = CLST %This1Reg, %This2Reg -- uses R0L 5536 // JO LoopMBB 5537 // # fall through to DoneMMB 5538 // 5539 // The load of R0L can be hoisted by post-RA LICM. 5540 MBB = LoopMBB; 5541 5542 BuildMI(MBB, DL, TII->get(SystemZ::PHI), This1Reg) 5543 .addReg(Start1Reg).addMBB(StartMBB) 5544 .addReg(End1Reg).addMBB(LoopMBB); 5545 BuildMI(MBB, DL, TII->get(SystemZ::PHI), This2Reg) 5546 .addReg(Start2Reg).addMBB(StartMBB) 5547 .addReg(End2Reg).addMBB(LoopMBB); 5548 BuildMI(MBB, DL, TII->get(TargetOpcode::COPY), SystemZ::R0L).addReg(CharReg); 5549 BuildMI(MBB, DL, TII->get(Opcode)) 5550 .addReg(End1Reg, RegState::Define).addReg(End2Reg, RegState::Define) 5551 .addReg(This1Reg).addReg(This2Reg); 5552 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 5553 .addImm(SystemZ::CCMASK_ANY).addImm(SystemZ::CCMASK_3).addMBB(LoopMBB); 5554 MBB->addSuccessor(LoopMBB); 5555 MBB->addSuccessor(DoneMBB); 5556 5557 DoneMBB->addLiveIn(SystemZ::CC); 5558 5559 MI->eraseFromParent(); 5560 return DoneMBB; 5561 } 5562 5563 // Update TBEGIN instruction with final opcode and register clobbers. 5564 MachineBasicBlock * 5565 SystemZTargetLowering::emitTransactionBegin(MachineInstr *MI, 5566 MachineBasicBlock *MBB, 5567 unsigned Opcode, 5568 bool NoFloat) const { 5569 MachineFunction &MF = *MBB->getParent(); 5570 const TargetFrameLowering *TFI = Subtarget.getFrameLowering(); 5571 const SystemZInstrInfo *TII = Subtarget.getInstrInfo(); 5572 5573 // Update opcode. 5574 MI->setDesc(TII->get(Opcode)); 5575 5576 // We cannot handle a TBEGIN that clobbers the stack or frame pointer. 5577 // Make sure to add the corresponding GRSM bits if they are missing. 5578 uint64_t Control = MI->getOperand(2).getImm(); 5579 static const unsigned GPRControlBit[16] = { 5580 0x8000, 0x8000, 0x4000, 0x4000, 0x2000, 0x2000, 0x1000, 0x1000, 5581 0x0800, 0x0800, 0x0400, 0x0400, 0x0200, 0x0200, 0x0100, 0x0100 5582 }; 5583 Control |= GPRControlBit[15]; 5584 if (TFI->hasFP(MF)) 5585 Control |= GPRControlBit[11]; 5586 MI->getOperand(2).setImm(Control); 5587 5588 // Add GPR clobbers. 5589 for (int I = 0; I < 16; I++) { 5590 if ((Control & GPRControlBit[I]) == 0) { 5591 unsigned Reg = SystemZMC::GR64Regs[I]; 5592 MI->addOperand(MachineOperand::CreateReg(Reg, true, true)); 5593 } 5594 } 5595 5596 // Add FPR/VR clobbers. 5597 if (!NoFloat && (Control & 4) != 0) { 5598 if (Subtarget.hasVector()) { 5599 for (int I = 0; I < 32; I++) { 5600 unsigned Reg = SystemZMC::VR128Regs[I]; 5601 MI->addOperand(MachineOperand::CreateReg(Reg, true, true)); 5602 } 5603 } else { 5604 for (int I = 0; I < 16; I++) { 5605 unsigned Reg = SystemZMC::FP64Regs[I]; 5606 MI->addOperand(MachineOperand::CreateReg(Reg, true, true)); 5607 } 5608 } 5609 } 5610 5611 return MBB; 5612 } 5613 5614 MachineBasicBlock *SystemZTargetLowering:: 5615 EmitInstrWithCustomInserter(MachineInstr *MI, MachineBasicBlock *MBB) const { 5616 switch (MI->getOpcode()) { 5617 case SystemZ::Select32Mux: 5618 case SystemZ::Select32: 5619 case SystemZ::SelectF32: 5620 case SystemZ::Select64: 5621 case SystemZ::SelectF64: 5622 case SystemZ::SelectF128: 5623 return emitSelect(MI, MBB); 5624 5625 case SystemZ::CondStore8Mux: 5626 return emitCondStore(MI, MBB, SystemZ::STCMux, 0, false); 5627 case SystemZ::CondStore8MuxInv: 5628 return emitCondStore(MI, MBB, SystemZ::STCMux, 0, true); 5629 case SystemZ::CondStore16Mux: 5630 return emitCondStore(MI, MBB, SystemZ::STHMux, 0, false); 5631 case SystemZ::CondStore16MuxInv: 5632 return emitCondStore(MI, MBB, SystemZ::STHMux, 0, true); 5633 case SystemZ::CondStore8: 5634 return emitCondStore(MI, MBB, SystemZ::STC, 0, false); 5635 case SystemZ::CondStore8Inv: 5636 return emitCondStore(MI, MBB, SystemZ::STC, 0, true); 5637 case SystemZ::CondStore16: 5638 return emitCondStore(MI, MBB, SystemZ::STH, 0, false); 5639 case SystemZ::CondStore16Inv: 5640 return emitCondStore(MI, MBB, SystemZ::STH, 0, true); 5641 case SystemZ::CondStore32: 5642 return emitCondStore(MI, MBB, SystemZ::ST, SystemZ::STOC, false); 5643 case SystemZ::CondStore32Inv: 5644 return emitCondStore(MI, MBB, SystemZ::ST, SystemZ::STOC, true); 5645 case SystemZ::CondStore64: 5646 return emitCondStore(MI, MBB, SystemZ::STG, SystemZ::STOCG, false); 5647 case SystemZ::CondStore64Inv: 5648 return emitCondStore(MI, MBB, SystemZ::STG, SystemZ::STOCG, true); 5649 case SystemZ::CondStoreF32: 5650 return emitCondStore(MI, MBB, SystemZ::STE, 0, false); 5651 case SystemZ::CondStoreF32Inv: 5652 return emitCondStore(MI, MBB, SystemZ::STE, 0, true); 5653 case SystemZ::CondStoreF64: 5654 return emitCondStore(MI, MBB, SystemZ::STD, 0, false); 5655 case SystemZ::CondStoreF64Inv: 5656 return emitCondStore(MI, MBB, SystemZ::STD, 0, true); 5657 5658 case SystemZ::AEXT128_64: 5659 return emitExt128(MI, MBB, false, SystemZ::subreg_l64); 5660 case SystemZ::ZEXT128_32: 5661 return emitExt128(MI, MBB, true, SystemZ::subreg_l32); 5662 case SystemZ::ZEXT128_64: 5663 return emitExt128(MI, MBB, true, SystemZ::subreg_l64); 5664 5665 case SystemZ::ATOMIC_SWAPW: 5666 return emitAtomicLoadBinary(MI, MBB, 0, 0); 5667 case SystemZ::ATOMIC_SWAP_32: 5668 return emitAtomicLoadBinary(MI, MBB, 0, 32); 5669 case SystemZ::ATOMIC_SWAP_64: 5670 return emitAtomicLoadBinary(MI, MBB, 0, 64); 5671 5672 case SystemZ::ATOMIC_LOADW_AR: 5673 return emitAtomicLoadBinary(MI, MBB, SystemZ::AR, 0); 5674 case SystemZ::ATOMIC_LOADW_AFI: 5675 return emitAtomicLoadBinary(MI, MBB, SystemZ::AFI, 0); 5676 case SystemZ::ATOMIC_LOAD_AR: 5677 return emitAtomicLoadBinary(MI, MBB, SystemZ::AR, 32); 5678 case SystemZ::ATOMIC_LOAD_AHI: 5679 return emitAtomicLoadBinary(MI, MBB, SystemZ::AHI, 32); 5680 case SystemZ::ATOMIC_LOAD_AFI: 5681 return emitAtomicLoadBinary(MI, MBB, SystemZ::AFI, 32); 5682 case SystemZ::ATOMIC_LOAD_AGR: 5683 return emitAtomicLoadBinary(MI, MBB, SystemZ::AGR, 64); 5684 case SystemZ::ATOMIC_LOAD_AGHI: 5685 return emitAtomicLoadBinary(MI, MBB, SystemZ::AGHI, 64); 5686 case SystemZ::ATOMIC_LOAD_AGFI: 5687 return emitAtomicLoadBinary(MI, MBB, SystemZ::AGFI, 64); 5688 5689 case SystemZ::ATOMIC_LOADW_SR: 5690 return emitAtomicLoadBinary(MI, MBB, SystemZ::SR, 0); 5691 case SystemZ::ATOMIC_LOAD_SR: 5692 return emitAtomicLoadBinary(MI, MBB, SystemZ::SR, 32); 5693 case SystemZ::ATOMIC_LOAD_SGR: 5694 return emitAtomicLoadBinary(MI, MBB, SystemZ::SGR, 64); 5695 5696 case SystemZ::ATOMIC_LOADW_NR: 5697 return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 0); 5698 case SystemZ::ATOMIC_LOADW_NILH: 5699 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 0); 5700 case SystemZ::ATOMIC_LOAD_NR: 5701 return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 32); 5702 case SystemZ::ATOMIC_LOAD_NILL: 5703 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL, 32); 5704 case SystemZ::ATOMIC_LOAD_NILH: 5705 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 32); 5706 case SystemZ::ATOMIC_LOAD_NILF: 5707 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF, 32); 5708 case SystemZ::ATOMIC_LOAD_NGR: 5709 return emitAtomicLoadBinary(MI, MBB, SystemZ::NGR, 64); 5710 case SystemZ::ATOMIC_LOAD_NILL64: 5711 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL64, 64); 5712 case SystemZ::ATOMIC_LOAD_NILH64: 5713 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH64, 64); 5714 case SystemZ::ATOMIC_LOAD_NIHL64: 5715 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHL64, 64); 5716 case SystemZ::ATOMIC_LOAD_NIHH64: 5717 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHH64, 64); 5718 case SystemZ::ATOMIC_LOAD_NILF64: 5719 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF64, 64); 5720 case SystemZ::ATOMIC_LOAD_NIHF64: 5721 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHF64, 64); 5722 5723 case SystemZ::ATOMIC_LOADW_OR: 5724 return emitAtomicLoadBinary(MI, MBB, SystemZ::OR, 0); 5725 case SystemZ::ATOMIC_LOADW_OILH: 5726 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH, 0); 5727 case SystemZ::ATOMIC_LOAD_OR: 5728 return emitAtomicLoadBinary(MI, MBB, SystemZ::OR, 32); 5729 case SystemZ::ATOMIC_LOAD_OILL: 5730 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILL, 32); 5731 case SystemZ::ATOMIC_LOAD_OILH: 5732 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH, 32); 5733 case SystemZ::ATOMIC_LOAD_OILF: 5734 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILF, 32); 5735 case SystemZ::ATOMIC_LOAD_OGR: 5736 return emitAtomicLoadBinary(MI, MBB, SystemZ::OGR, 64); 5737 case SystemZ::ATOMIC_LOAD_OILL64: 5738 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILL64, 64); 5739 case SystemZ::ATOMIC_LOAD_OILH64: 5740 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH64, 64); 5741 case SystemZ::ATOMIC_LOAD_OIHL64: 5742 return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHL64, 64); 5743 case SystemZ::ATOMIC_LOAD_OIHH64: 5744 return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHH64, 64); 5745 case SystemZ::ATOMIC_LOAD_OILF64: 5746 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILF64, 64); 5747 case SystemZ::ATOMIC_LOAD_OIHF64: 5748 return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHF64, 64); 5749 5750 case SystemZ::ATOMIC_LOADW_XR: 5751 return emitAtomicLoadBinary(MI, MBB, SystemZ::XR, 0); 5752 case SystemZ::ATOMIC_LOADW_XILF: 5753 return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF, 0); 5754 case SystemZ::ATOMIC_LOAD_XR: 5755 return emitAtomicLoadBinary(MI, MBB, SystemZ::XR, 32); 5756 case SystemZ::ATOMIC_LOAD_XILF: 5757 return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF, 32); 5758 case SystemZ::ATOMIC_LOAD_XGR: 5759 return emitAtomicLoadBinary(MI, MBB, SystemZ::XGR, 64); 5760 case SystemZ::ATOMIC_LOAD_XILF64: 5761 return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF64, 64); 5762 case SystemZ::ATOMIC_LOAD_XIHF64: 5763 return emitAtomicLoadBinary(MI, MBB, SystemZ::XIHF64, 64); 5764 5765 case SystemZ::ATOMIC_LOADW_NRi: 5766 return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 0, true); 5767 case SystemZ::ATOMIC_LOADW_NILHi: 5768 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 0, true); 5769 case SystemZ::ATOMIC_LOAD_NRi: 5770 return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 32, true); 5771 case SystemZ::ATOMIC_LOAD_NILLi: 5772 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL, 32, true); 5773 case SystemZ::ATOMIC_LOAD_NILHi: 5774 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 32, true); 5775 case SystemZ::ATOMIC_LOAD_NILFi: 5776 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF, 32, true); 5777 case SystemZ::ATOMIC_LOAD_NGRi: 5778 return emitAtomicLoadBinary(MI, MBB, SystemZ::NGR, 64, true); 5779 case SystemZ::ATOMIC_LOAD_NILL64i: 5780 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL64, 64, true); 5781 case SystemZ::ATOMIC_LOAD_NILH64i: 5782 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH64, 64, true); 5783 case SystemZ::ATOMIC_LOAD_NIHL64i: 5784 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHL64, 64, true); 5785 case SystemZ::ATOMIC_LOAD_NIHH64i: 5786 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHH64, 64, true); 5787 case SystemZ::ATOMIC_LOAD_NILF64i: 5788 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF64, 64, true); 5789 case SystemZ::ATOMIC_LOAD_NIHF64i: 5790 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHF64, 64, true); 5791 5792 case SystemZ::ATOMIC_LOADW_MIN: 5793 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR, 5794 SystemZ::CCMASK_CMP_LE, 0); 5795 case SystemZ::ATOMIC_LOAD_MIN_32: 5796 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR, 5797 SystemZ::CCMASK_CMP_LE, 32); 5798 case SystemZ::ATOMIC_LOAD_MIN_64: 5799 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CGR, 5800 SystemZ::CCMASK_CMP_LE, 64); 5801 5802 case SystemZ::ATOMIC_LOADW_MAX: 5803 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR, 5804 SystemZ::CCMASK_CMP_GE, 0); 5805 case SystemZ::ATOMIC_LOAD_MAX_32: 5806 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR, 5807 SystemZ::CCMASK_CMP_GE, 32); 5808 case SystemZ::ATOMIC_LOAD_MAX_64: 5809 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CGR, 5810 SystemZ::CCMASK_CMP_GE, 64); 5811 5812 case SystemZ::ATOMIC_LOADW_UMIN: 5813 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR, 5814 SystemZ::CCMASK_CMP_LE, 0); 5815 case SystemZ::ATOMIC_LOAD_UMIN_32: 5816 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR, 5817 SystemZ::CCMASK_CMP_LE, 32); 5818 case SystemZ::ATOMIC_LOAD_UMIN_64: 5819 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLGR, 5820 SystemZ::CCMASK_CMP_LE, 64); 5821 5822 case SystemZ::ATOMIC_LOADW_UMAX: 5823 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR, 5824 SystemZ::CCMASK_CMP_GE, 0); 5825 case SystemZ::ATOMIC_LOAD_UMAX_32: 5826 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR, 5827 SystemZ::CCMASK_CMP_GE, 32); 5828 case SystemZ::ATOMIC_LOAD_UMAX_64: 5829 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLGR, 5830 SystemZ::CCMASK_CMP_GE, 64); 5831 5832 case SystemZ::ATOMIC_CMP_SWAPW: 5833 return emitAtomicCmpSwapW(MI, MBB); 5834 case SystemZ::MVCSequence: 5835 case SystemZ::MVCLoop: 5836 return emitMemMemWrapper(MI, MBB, SystemZ::MVC); 5837 case SystemZ::NCSequence: 5838 case SystemZ::NCLoop: 5839 return emitMemMemWrapper(MI, MBB, SystemZ::NC); 5840 case SystemZ::OCSequence: 5841 case SystemZ::OCLoop: 5842 return emitMemMemWrapper(MI, MBB, SystemZ::OC); 5843 case SystemZ::XCSequence: 5844 case SystemZ::XCLoop: 5845 return emitMemMemWrapper(MI, MBB, SystemZ::XC); 5846 case SystemZ::CLCSequence: 5847 case SystemZ::CLCLoop: 5848 return emitMemMemWrapper(MI, MBB, SystemZ::CLC); 5849 case SystemZ::CLSTLoop: 5850 return emitStringWrapper(MI, MBB, SystemZ::CLST); 5851 case SystemZ::MVSTLoop: 5852 return emitStringWrapper(MI, MBB, SystemZ::MVST); 5853 case SystemZ::SRSTLoop: 5854 return emitStringWrapper(MI, MBB, SystemZ::SRST); 5855 case SystemZ::TBEGIN: 5856 return emitTransactionBegin(MI, MBB, SystemZ::TBEGIN, false); 5857 case SystemZ::TBEGIN_nofloat: 5858 return emitTransactionBegin(MI, MBB, SystemZ::TBEGIN, true); 5859 case SystemZ::TBEGINC: 5860 return emitTransactionBegin(MI, MBB, SystemZ::TBEGINC, true); 5861 default: 5862 llvm_unreachable("Unexpected instr type to insert"); 5863 } 5864 } 5865