1 //===-- SystemZISelLowering.cpp - SystemZ DAG lowering implementation -----===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the SystemZTargetLowering class.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "SystemZISelLowering.h"
15 #include "SystemZCallingConv.h"
16 #include "SystemZConstantPoolValue.h"
17 #include "SystemZMachineFunctionInfo.h"
18 #include "SystemZTargetMachine.h"
19 #include "llvm/CodeGen/CallingConvLower.h"
20 #include "llvm/CodeGen/MachineInstrBuilder.h"
21 #include "llvm/CodeGen/MachineRegisterInfo.h"
22 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
23 #include "llvm/IR/Intrinsics.h"
24 #include "llvm/IR/IntrinsicInst.h"
25 #include "llvm/Support/CommandLine.h"
26 #include "llvm/Support/KnownBits.h"
27 #include <cctype>
28
29 using namespace llvm;
30
31 #define DEBUG_TYPE "systemz-lower"
32
33 namespace {
34 // Represents information about a comparison.
35 struct Comparison {
Comparison__anon1b4e9d4c0111::Comparison36 Comparison(SDValue Op0In, SDValue Op1In)
37 : Op0(Op0In), Op1(Op1In), Opcode(0), ICmpType(0), CCValid(0), CCMask(0) {}
38
39 // The operands to the comparison.
40 SDValue Op0, Op1;
41
42 // The opcode that should be used to compare Op0 and Op1.
43 unsigned Opcode;
44
45 // A SystemZICMP value. Only used for integer comparisons.
46 unsigned ICmpType;
47
48 // The mask of CC values that Opcode can produce.
49 unsigned CCValid;
50
51 // The mask of CC values for which the original condition is true.
52 unsigned CCMask;
53 };
54 } // end anonymous namespace
55
56 // Classify VT as either 32 or 64 bit.
is32Bit(EVT VT)57 static bool is32Bit(EVT VT) {
58 switch (VT.getSimpleVT().SimpleTy) {
59 case MVT::i32:
60 return true;
61 case MVT::i64:
62 return false;
63 default:
64 llvm_unreachable("Unsupported type");
65 }
66 }
67
68 // Return a version of MachineOperand that can be safely used before the
69 // final use.
earlyUseOperand(MachineOperand Op)70 static MachineOperand earlyUseOperand(MachineOperand Op) {
71 if (Op.isReg())
72 Op.setIsKill(false);
73 return Op;
74 }
75
SystemZTargetLowering(const TargetMachine & TM,const SystemZSubtarget & STI)76 SystemZTargetLowering::SystemZTargetLowering(const TargetMachine &TM,
77 const SystemZSubtarget &STI)
78 : TargetLowering(TM), Subtarget(STI) {
79 MVT PtrVT = MVT::getIntegerVT(8 * TM.getPointerSize(0));
80
81 // Set up the register classes.
82 if (Subtarget.hasHighWord())
83 addRegisterClass(MVT::i32, &SystemZ::GRX32BitRegClass);
84 else
85 addRegisterClass(MVT::i32, &SystemZ::GR32BitRegClass);
86 addRegisterClass(MVT::i64, &SystemZ::GR64BitRegClass);
87 if (Subtarget.hasVector()) {
88 addRegisterClass(MVT::f32, &SystemZ::VR32BitRegClass);
89 addRegisterClass(MVT::f64, &SystemZ::VR64BitRegClass);
90 } else {
91 addRegisterClass(MVT::f32, &SystemZ::FP32BitRegClass);
92 addRegisterClass(MVT::f64, &SystemZ::FP64BitRegClass);
93 }
94 if (Subtarget.hasVectorEnhancements1())
95 addRegisterClass(MVT::f128, &SystemZ::VR128BitRegClass);
96 else
97 addRegisterClass(MVT::f128, &SystemZ::FP128BitRegClass);
98
99 if (Subtarget.hasVector()) {
100 addRegisterClass(MVT::v16i8, &SystemZ::VR128BitRegClass);
101 addRegisterClass(MVT::v8i16, &SystemZ::VR128BitRegClass);
102 addRegisterClass(MVT::v4i32, &SystemZ::VR128BitRegClass);
103 addRegisterClass(MVT::v2i64, &SystemZ::VR128BitRegClass);
104 addRegisterClass(MVT::v4f32, &SystemZ::VR128BitRegClass);
105 addRegisterClass(MVT::v2f64, &SystemZ::VR128BitRegClass);
106 }
107
108 // Compute derived properties from the register classes
109 computeRegisterProperties(Subtarget.getRegisterInfo());
110
111 // Set up special registers.
112 setStackPointerRegisterToSaveRestore(SystemZ::R15D);
113
114 // TODO: It may be better to default to latency-oriented scheduling, however
115 // LLVM's current latency-oriented scheduler can't handle physreg definitions
116 // such as SystemZ has with CC, so set this to the register-pressure
117 // scheduler, because it can.
118 setSchedulingPreference(Sched::RegPressure);
119
120 setBooleanContents(ZeroOrOneBooleanContent);
121 setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
122
123 // Instructions are strings of 2-byte aligned 2-byte values.
124 setMinFunctionAlignment(2);
125 // For performance reasons we prefer 16-byte alignment.
126 setPrefFunctionAlignment(4);
127
128 // Handle operations that are handled in a similar way for all types.
129 for (unsigned I = MVT::FIRST_INTEGER_VALUETYPE;
130 I <= MVT::LAST_FP_VALUETYPE;
131 ++I) {
132 MVT VT = MVT::SimpleValueType(I);
133 if (isTypeLegal(VT)) {
134 // Lower SET_CC into an IPM-based sequence.
135 setOperationAction(ISD::SETCC, VT, Custom);
136
137 // Expand SELECT(C, A, B) into SELECT_CC(X, 0, A, B, NE).
138 setOperationAction(ISD::SELECT, VT, Expand);
139
140 // Lower SELECT_CC and BR_CC into separate comparisons and branches.
141 setOperationAction(ISD::SELECT_CC, VT, Custom);
142 setOperationAction(ISD::BR_CC, VT, Custom);
143 }
144 }
145
146 // Expand jump table branches as address arithmetic followed by an
147 // indirect jump.
148 setOperationAction(ISD::BR_JT, MVT::Other, Expand);
149
150 // Expand BRCOND into a BR_CC (see above).
151 setOperationAction(ISD::BRCOND, MVT::Other, Expand);
152
153 // Handle integer types.
154 for (unsigned I = MVT::FIRST_INTEGER_VALUETYPE;
155 I <= MVT::LAST_INTEGER_VALUETYPE;
156 ++I) {
157 MVT VT = MVT::SimpleValueType(I);
158 if (isTypeLegal(VT)) {
159 // Expand individual DIV and REMs into DIVREMs.
160 setOperationAction(ISD::SDIV, VT, Expand);
161 setOperationAction(ISD::UDIV, VT, Expand);
162 setOperationAction(ISD::SREM, VT, Expand);
163 setOperationAction(ISD::UREM, VT, Expand);
164 setOperationAction(ISD::SDIVREM, VT, Custom);
165 setOperationAction(ISD::UDIVREM, VT, Custom);
166
167 // Support addition/subtraction with overflow.
168 setOperationAction(ISD::SADDO, VT, Custom);
169 setOperationAction(ISD::SSUBO, VT, Custom);
170
171 // Support addition/subtraction with carry.
172 setOperationAction(ISD::UADDO, VT, Custom);
173 setOperationAction(ISD::USUBO, VT, Custom);
174
175 // Support carry in as value rather than glue.
176 setOperationAction(ISD::ADDCARRY, VT, Custom);
177 setOperationAction(ISD::SUBCARRY, VT, Custom);
178
179 // Lower ATOMIC_LOAD and ATOMIC_STORE into normal volatile loads and
180 // stores, putting a serialization instruction after the stores.
181 setOperationAction(ISD::ATOMIC_LOAD, VT, Custom);
182 setOperationAction(ISD::ATOMIC_STORE, VT, Custom);
183
184 // Lower ATOMIC_LOAD_SUB into ATOMIC_LOAD_ADD if LAA and LAAG are
185 // available, or if the operand is constant.
186 setOperationAction(ISD::ATOMIC_LOAD_SUB, VT, Custom);
187
188 // Use POPCNT on z196 and above.
189 if (Subtarget.hasPopulationCount())
190 setOperationAction(ISD::CTPOP, VT, Custom);
191 else
192 setOperationAction(ISD::CTPOP, VT, Expand);
193
194 // No special instructions for these.
195 setOperationAction(ISD::CTTZ, VT, Expand);
196 setOperationAction(ISD::ROTR, VT, Expand);
197
198 // Use *MUL_LOHI where possible instead of MULH*.
199 setOperationAction(ISD::MULHS, VT, Expand);
200 setOperationAction(ISD::MULHU, VT, Expand);
201 setOperationAction(ISD::SMUL_LOHI, VT, Custom);
202 setOperationAction(ISD::UMUL_LOHI, VT, Custom);
203
204 // Only z196 and above have native support for conversions to unsigned.
205 // On z10, promoting to i64 doesn't generate an inexact condition for
206 // values that are outside the i32 range but in the i64 range, so use
207 // the default expansion.
208 if (!Subtarget.hasFPExtension())
209 setOperationAction(ISD::FP_TO_UINT, VT, Expand);
210 }
211 }
212
213 // Type legalization will convert 8- and 16-bit atomic operations into
214 // forms that operate on i32s (but still keeping the original memory VT).
215 // Lower them into full i32 operations.
216 setOperationAction(ISD::ATOMIC_SWAP, MVT::i32, Custom);
217 setOperationAction(ISD::ATOMIC_LOAD_ADD, MVT::i32, Custom);
218 setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i32, Custom);
219 setOperationAction(ISD::ATOMIC_LOAD_AND, MVT::i32, Custom);
220 setOperationAction(ISD::ATOMIC_LOAD_OR, MVT::i32, Custom);
221 setOperationAction(ISD::ATOMIC_LOAD_XOR, MVT::i32, Custom);
222 setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i32, Custom);
223 setOperationAction(ISD::ATOMIC_LOAD_MIN, MVT::i32, Custom);
224 setOperationAction(ISD::ATOMIC_LOAD_MAX, MVT::i32, Custom);
225 setOperationAction(ISD::ATOMIC_LOAD_UMIN, MVT::i32, Custom);
226 setOperationAction(ISD::ATOMIC_LOAD_UMAX, MVT::i32, Custom);
227
228 // Even though i128 is not a legal type, we still need to custom lower
229 // the atomic operations in order to exploit SystemZ instructions.
230 setOperationAction(ISD::ATOMIC_LOAD, MVT::i128, Custom);
231 setOperationAction(ISD::ATOMIC_STORE, MVT::i128, Custom);
232
233 // We can use the CC result of compare-and-swap to implement
234 // the "success" result of ATOMIC_CMP_SWAP_WITH_SUCCESS.
235 setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i32, Custom);
236 setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i64, Custom);
237 setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i128, Custom);
238
239 setOperationAction(ISD::ATOMIC_FENCE, MVT::Other, Custom);
240
241 // Traps are legal, as we will convert them to "j .+2".
242 setOperationAction(ISD::TRAP, MVT::Other, Legal);
243
244 // z10 has instructions for signed but not unsigned FP conversion.
245 // Handle unsigned 32-bit types as signed 64-bit types.
246 if (!Subtarget.hasFPExtension()) {
247 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Promote);
248 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand);
249 }
250
251 // We have native support for a 64-bit CTLZ, via FLOGR.
252 setOperationAction(ISD::CTLZ, MVT::i32, Promote);
253 setOperationAction(ISD::CTLZ, MVT::i64, Legal);
254
255 // Give LowerOperation the chance to replace 64-bit ORs with subregs.
256 setOperationAction(ISD::OR, MVT::i64, Custom);
257
258 // FIXME: Can we support these natively?
259 setOperationAction(ISD::SRL_PARTS, MVT::i64, Expand);
260 setOperationAction(ISD::SHL_PARTS, MVT::i64, Expand);
261 setOperationAction(ISD::SRA_PARTS, MVT::i64, Expand);
262
263 // We have native instructions for i8, i16 and i32 extensions, but not i1.
264 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
265 for (MVT VT : MVT::integer_valuetypes()) {
266 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
267 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote);
268 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i1, Promote);
269 }
270
271 // Handle the various types of symbolic address.
272 setOperationAction(ISD::ConstantPool, PtrVT, Custom);
273 setOperationAction(ISD::GlobalAddress, PtrVT, Custom);
274 setOperationAction(ISD::GlobalTLSAddress, PtrVT, Custom);
275 setOperationAction(ISD::BlockAddress, PtrVT, Custom);
276 setOperationAction(ISD::JumpTable, PtrVT, Custom);
277
278 // We need to handle dynamic allocations specially because of the
279 // 160-byte area at the bottom of the stack.
280 setOperationAction(ISD::DYNAMIC_STACKALLOC, PtrVT, Custom);
281 setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, PtrVT, Custom);
282
283 // Use custom expanders so that we can force the function to use
284 // a frame pointer.
285 setOperationAction(ISD::STACKSAVE, MVT::Other, Custom);
286 setOperationAction(ISD::STACKRESTORE, MVT::Other, Custom);
287
288 // Handle prefetches with PFD or PFDRL.
289 setOperationAction(ISD::PREFETCH, MVT::Other, Custom);
290
291 for (MVT VT : MVT::vector_valuetypes()) {
292 // Assume by default that all vector operations need to be expanded.
293 for (unsigned Opcode = 0; Opcode < ISD::BUILTIN_OP_END; ++Opcode)
294 if (getOperationAction(Opcode, VT) == Legal)
295 setOperationAction(Opcode, VT, Expand);
296
297 // Likewise all truncating stores and extending loads.
298 for (MVT InnerVT : MVT::vector_valuetypes()) {
299 setTruncStoreAction(VT, InnerVT, Expand);
300 setLoadExtAction(ISD::SEXTLOAD, VT, InnerVT, Expand);
301 setLoadExtAction(ISD::ZEXTLOAD, VT, InnerVT, Expand);
302 setLoadExtAction(ISD::EXTLOAD, VT, InnerVT, Expand);
303 }
304
305 if (isTypeLegal(VT)) {
306 // These operations are legal for anything that can be stored in a
307 // vector register, even if there is no native support for the format
308 // as such. In particular, we can do these for v4f32 even though there
309 // are no specific instructions for that format.
310 setOperationAction(ISD::LOAD, VT, Legal);
311 setOperationAction(ISD::STORE, VT, Legal);
312 setOperationAction(ISD::VSELECT, VT, Legal);
313 setOperationAction(ISD::BITCAST, VT, Legal);
314 setOperationAction(ISD::UNDEF, VT, Legal);
315
316 // Likewise, except that we need to replace the nodes with something
317 // more specific.
318 setOperationAction(ISD::BUILD_VECTOR, VT, Custom);
319 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom);
320 }
321 }
322
323 // Handle integer vector types.
324 for (MVT VT : MVT::integer_vector_valuetypes()) {
325 if (isTypeLegal(VT)) {
326 // These operations have direct equivalents.
327 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Legal);
328 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Legal);
329 setOperationAction(ISD::ADD, VT, Legal);
330 setOperationAction(ISD::SUB, VT, Legal);
331 if (VT != MVT::v2i64)
332 setOperationAction(ISD::MUL, VT, Legal);
333 setOperationAction(ISD::AND, VT, Legal);
334 setOperationAction(ISD::OR, VT, Legal);
335 setOperationAction(ISD::XOR, VT, Legal);
336 if (Subtarget.hasVectorEnhancements1())
337 setOperationAction(ISD::CTPOP, VT, Legal);
338 else
339 setOperationAction(ISD::CTPOP, VT, Custom);
340 setOperationAction(ISD::CTTZ, VT, Legal);
341 setOperationAction(ISD::CTLZ, VT, Legal);
342
343 // Convert a GPR scalar to a vector by inserting it into element 0.
344 setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Custom);
345
346 // Use a series of unpacks for extensions.
347 setOperationAction(ISD::SIGN_EXTEND_VECTOR_INREG, VT, Custom);
348 setOperationAction(ISD::ZERO_EXTEND_VECTOR_INREG, VT, Custom);
349
350 // Detect shifts by a scalar amount and convert them into
351 // V*_BY_SCALAR.
352 setOperationAction(ISD::SHL, VT, Custom);
353 setOperationAction(ISD::SRA, VT, Custom);
354 setOperationAction(ISD::SRL, VT, Custom);
355
356 // At present ROTL isn't matched by DAGCombiner. ROTR should be
357 // converted into ROTL.
358 setOperationAction(ISD::ROTL, VT, Expand);
359 setOperationAction(ISD::ROTR, VT, Expand);
360
361 // Map SETCCs onto one of VCE, VCH or VCHL, swapping the operands
362 // and inverting the result as necessary.
363 setOperationAction(ISD::SETCC, VT, Custom);
364 }
365 }
366
367 if (Subtarget.hasVector()) {
368 // There should be no need to check for float types other than v2f64
369 // since <2 x f32> isn't a legal type.
370 setOperationAction(ISD::FP_TO_SINT, MVT::v2i64, Legal);
371 setOperationAction(ISD::FP_TO_SINT, MVT::v2f64, Legal);
372 setOperationAction(ISD::FP_TO_UINT, MVT::v2i64, Legal);
373 setOperationAction(ISD::FP_TO_UINT, MVT::v2f64, Legal);
374 setOperationAction(ISD::SINT_TO_FP, MVT::v2i64, Legal);
375 setOperationAction(ISD::SINT_TO_FP, MVT::v2f64, Legal);
376 setOperationAction(ISD::UINT_TO_FP, MVT::v2i64, Legal);
377 setOperationAction(ISD::UINT_TO_FP, MVT::v2f64, Legal);
378 }
379
380 // Handle floating-point types.
381 for (unsigned I = MVT::FIRST_FP_VALUETYPE;
382 I <= MVT::LAST_FP_VALUETYPE;
383 ++I) {
384 MVT VT = MVT::SimpleValueType(I);
385 if (isTypeLegal(VT)) {
386 // We can use FI for FRINT.
387 setOperationAction(ISD::FRINT, VT, Legal);
388
389 // We can use the extended form of FI for other rounding operations.
390 if (Subtarget.hasFPExtension()) {
391 setOperationAction(ISD::FNEARBYINT, VT, Legal);
392 setOperationAction(ISD::FFLOOR, VT, Legal);
393 setOperationAction(ISD::FCEIL, VT, Legal);
394 setOperationAction(ISD::FTRUNC, VT, Legal);
395 setOperationAction(ISD::FROUND, VT, Legal);
396 }
397
398 // No special instructions for these.
399 setOperationAction(ISD::FSIN, VT, Expand);
400 setOperationAction(ISD::FCOS, VT, Expand);
401 setOperationAction(ISD::FSINCOS, VT, Expand);
402 setOperationAction(ISD::FREM, VT, Expand);
403 setOperationAction(ISD::FPOW, VT, Expand);
404 }
405 }
406
407 // Handle floating-point vector types.
408 if (Subtarget.hasVector()) {
409 // Scalar-to-vector conversion is just a subreg.
410 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal);
411 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2f64, Legal);
412
413 // Some insertions and extractions can be done directly but others
414 // need to go via integers.
415 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom);
416 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2f64, Custom);
417 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
418 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom);
419
420 // These operations have direct equivalents.
421 setOperationAction(ISD::FADD, MVT::v2f64, Legal);
422 setOperationAction(ISD::FNEG, MVT::v2f64, Legal);
423 setOperationAction(ISD::FSUB, MVT::v2f64, Legal);
424 setOperationAction(ISD::FMUL, MVT::v2f64, Legal);
425 setOperationAction(ISD::FMA, MVT::v2f64, Legal);
426 setOperationAction(ISD::FDIV, MVT::v2f64, Legal);
427 setOperationAction(ISD::FABS, MVT::v2f64, Legal);
428 setOperationAction(ISD::FSQRT, MVT::v2f64, Legal);
429 setOperationAction(ISD::FRINT, MVT::v2f64, Legal);
430 setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Legal);
431 setOperationAction(ISD::FFLOOR, MVT::v2f64, Legal);
432 setOperationAction(ISD::FCEIL, MVT::v2f64, Legal);
433 setOperationAction(ISD::FTRUNC, MVT::v2f64, Legal);
434 setOperationAction(ISD::FROUND, MVT::v2f64, Legal);
435 }
436
437 // The vector enhancements facility 1 has instructions for these.
438 if (Subtarget.hasVectorEnhancements1()) {
439 setOperationAction(ISD::FADD, MVT::v4f32, Legal);
440 setOperationAction(ISD::FNEG, MVT::v4f32, Legal);
441 setOperationAction(ISD::FSUB, MVT::v4f32, Legal);
442 setOperationAction(ISD::FMUL, MVT::v4f32, Legal);
443 setOperationAction(ISD::FMA, MVT::v4f32, Legal);
444 setOperationAction(ISD::FDIV, MVT::v4f32, Legal);
445 setOperationAction(ISD::FABS, MVT::v4f32, Legal);
446 setOperationAction(ISD::FSQRT, MVT::v4f32, Legal);
447 setOperationAction(ISD::FRINT, MVT::v4f32, Legal);
448 setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal);
449 setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal);
450 setOperationAction(ISD::FCEIL, MVT::v4f32, Legal);
451 setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal);
452 setOperationAction(ISD::FROUND, MVT::v4f32, Legal);
453
454 setOperationAction(ISD::FMAXNUM, MVT::f64, Legal);
455 setOperationAction(ISD::FMAXIMUM, MVT::f64, Legal);
456 setOperationAction(ISD::FMINNUM, MVT::f64, Legal);
457 setOperationAction(ISD::FMINIMUM, MVT::f64, Legal);
458
459 setOperationAction(ISD::FMAXNUM, MVT::v2f64, Legal);
460 setOperationAction(ISD::FMAXIMUM, MVT::v2f64, Legal);
461 setOperationAction(ISD::FMINNUM, MVT::v2f64, Legal);
462 setOperationAction(ISD::FMINIMUM, MVT::v2f64, Legal);
463
464 setOperationAction(ISD::FMAXNUM, MVT::f32, Legal);
465 setOperationAction(ISD::FMAXIMUM, MVT::f32, Legal);
466 setOperationAction(ISD::FMINNUM, MVT::f32, Legal);
467 setOperationAction(ISD::FMINIMUM, MVT::f32, Legal);
468
469 setOperationAction(ISD::FMAXNUM, MVT::v4f32, Legal);
470 setOperationAction(ISD::FMAXIMUM, MVT::v4f32, Legal);
471 setOperationAction(ISD::FMINNUM, MVT::v4f32, Legal);
472 setOperationAction(ISD::FMINIMUM, MVT::v4f32, Legal);
473
474 setOperationAction(ISD::FMAXNUM, MVT::f128, Legal);
475 setOperationAction(ISD::FMAXIMUM, MVT::f128, Legal);
476 setOperationAction(ISD::FMINNUM, MVT::f128, Legal);
477 setOperationAction(ISD::FMINIMUM, MVT::f128, Legal);
478 }
479
480 // We have fused multiply-addition for f32 and f64 but not f128.
481 setOperationAction(ISD::FMA, MVT::f32, Legal);
482 setOperationAction(ISD::FMA, MVT::f64, Legal);
483 if (Subtarget.hasVectorEnhancements1())
484 setOperationAction(ISD::FMA, MVT::f128, Legal);
485 else
486 setOperationAction(ISD::FMA, MVT::f128, Expand);
487
488 // We don't have a copysign instruction on vector registers.
489 if (Subtarget.hasVectorEnhancements1())
490 setOperationAction(ISD::FCOPYSIGN, MVT::f128, Expand);
491
492 // Needed so that we don't try to implement f128 constant loads using
493 // a load-and-extend of a f80 constant (in cases where the constant
494 // would fit in an f80).
495 for (MVT VT : MVT::fp_valuetypes())
496 setLoadExtAction(ISD::EXTLOAD, VT, MVT::f80, Expand);
497
498 // We don't have extending load instruction on vector registers.
499 if (Subtarget.hasVectorEnhancements1()) {
500 setLoadExtAction(ISD::EXTLOAD, MVT::f128, MVT::f32, Expand);
501 setLoadExtAction(ISD::EXTLOAD, MVT::f128, MVT::f64, Expand);
502 }
503
504 // Floating-point truncation and stores need to be done separately.
505 setTruncStoreAction(MVT::f64, MVT::f32, Expand);
506 setTruncStoreAction(MVT::f128, MVT::f32, Expand);
507 setTruncStoreAction(MVT::f128, MVT::f64, Expand);
508
509 // We have 64-bit FPR<->GPR moves, but need special handling for
510 // 32-bit forms.
511 if (!Subtarget.hasVector()) {
512 setOperationAction(ISD::BITCAST, MVT::i32, Custom);
513 setOperationAction(ISD::BITCAST, MVT::f32, Custom);
514 }
515
516 // VASTART and VACOPY need to deal with the SystemZ-specific varargs
517 // structure, but VAEND is a no-op.
518 setOperationAction(ISD::VASTART, MVT::Other, Custom);
519 setOperationAction(ISD::VACOPY, MVT::Other, Custom);
520 setOperationAction(ISD::VAEND, MVT::Other, Expand);
521
522 // Codes for which we want to perform some z-specific combinations.
523 setTargetDAGCombine(ISD::ZERO_EXTEND);
524 setTargetDAGCombine(ISD::SIGN_EXTEND);
525 setTargetDAGCombine(ISD::SIGN_EXTEND_INREG);
526 setTargetDAGCombine(ISD::LOAD);
527 setTargetDAGCombine(ISD::STORE);
528 setTargetDAGCombine(ISD::EXTRACT_VECTOR_ELT);
529 setTargetDAGCombine(ISD::FP_ROUND);
530 setTargetDAGCombine(ISD::FP_EXTEND);
531 setTargetDAGCombine(ISD::BSWAP);
532 setTargetDAGCombine(ISD::SDIV);
533 setTargetDAGCombine(ISD::UDIV);
534 setTargetDAGCombine(ISD::SREM);
535 setTargetDAGCombine(ISD::UREM);
536
537 // Handle intrinsics.
538 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom);
539 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
540
541 // We want to use MVC in preference to even a single load/store pair.
542 MaxStoresPerMemcpy = 0;
543 MaxStoresPerMemcpyOptSize = 0;
544
545 // The main memset sequence is a byte store followed by an MVC.
546 // Two STC or MV..I stores win over that, but the kind of fused stores
547 // generated by target-independent code don't when the byte value is
548 // variable. E.g. "STC <reg>;MHI <reg>,257;STH <reg>" is not better
549 // than "STC;MVC". Handle the choice in target-specific code instead.
550 MaxStoresPerMemset = 0;
551 MaxStoresPerMemsetOptSize = 0;
552 }
553
getSetCCResultType(const DataLayout & DL,LLVMContext &,EVT VT) const554 EVT SystemZTargetLowering::getSetCCResultType(const DataLayout &DL,
555 LLVMContext &, EVT VT) const {
556 if (!VT.isVector())
557 return MVT::i32;
558 return VT.changeVectorElementTypeToInteger();
559 }
560
isFMAFasterThanFMulAndFAdd(EVT VT) const561 bool SystemZTargetLowering::isFMAFasterThanFMulAndFAdd(EVT VT) const {
562 VT = VT.getScalarType();
563
564 if (!VT.isSimple())
565 return false;
566
567 switch (VT.getSimpleVT().SimpleTy) {
568 case MVT::f32:
569 case MVT::f64:
570 return true;
571 case MVT::f128:
572 return Subtarget.hasVectorEnhancements1();
573 default:
574 break;
575 }
576
577 return false;
578 }
579
isFPImmLegal(const APFloat & Imm,EVT VT) const580 bool SystemZTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
581 // We can load zero using LZ?R and negative zero using LZ?R;LC?BR.
582 return Imm.isZero() || Imm.isNegZero();
583 }
584
isLegalICmpImmediate(int64_t Imm) const585 bool SystemZTargetLowering::isLegalICmpImmediate(int64_t Imm) const {
586 // We can use CGFI or CLGFI.
587 return isInt<32>(Imm) || isUInt<32>(Imm);
588 }
589
isLegalAddImmediate(int64_t Imm) const590 bool SystemZTargetLowering::isLegalAddImmediate(int64_t Imm) const {
591 // We can use ALGFI or SLGFI.
592 return isUInt<32>(Imm) || isUInt<32>(-Imm);
593 }
594
allowsMisalignedMemoryAccesses(EVT VT,unsigned,unsigned,bool * Fast) const595 bool SystemZTargetLowering::allowsMisalignedMemoryAccesses(EVT VT,
596 unsigned,
597 unsigned,
598 bool *Fast) const {
599 // Unaligned accesses should never be slower than the expanded version.
600 // We check specifically for aligned accesses in the few cases where
601 // they are required.
602 if (Fast)
603 *Fast = true;
604 return true;
605 }
606
607 // Information about the addressing mode for a memory access.
608 struct AddressingMode {
609 // True if a long displacement is supported.
610 bool LongDisplacement;
611
612 // True if use of index register is supported.
613 bool IndexReg;
614
AddressingModeAddressingMode615 AddressingMode(bool LongDispl, bool IdxReg) :
616 LongDisplacement(LongDispl), IndexReg(IdxReg) {}
617 };
618
619 // Return the desired addressing mode for a Load which has only one use (in
620 // the same block) which is a Store.
getLoadStoreAddrMode(bool HasVector,Type * Ty)621 static AddressingMode getLoadStoreAddrMode(bool HasVector,
622 Type *Ty) {
623 // With vector support a Load->Store combination may be combined to either
624 // an MVC or vector operations and it seems to work best to allow the
625 // vector addressing mode.
626 if (HasVector)
627 return AddressingMode(false/*LongDispl*/, true/*IdxReg*/);
628
629 // Otherwise only the MVC case is special.
630 bool MVC = Ty->isIntegerTy(8);
631 return AddressingMode(!MVC/*LongDispl*/, !MVC/*IdxReg*/);
632 }
633
634 // Return the addressing mode which seems most desirable given an LLVM
635 // Instruction pointer.
636 static AddressingMode
supportedAddressingMode(Instruction * I,bool HasVector)637 supportedAddressingMode(Instruction *I, bool HasVector) {
638 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
639 switch (II->getIntrinsicID()) {
640 default: break;
641 case Intrinsic::memset:
642 case Intrinsic::memmove:
643 case Intrinsic::memcpy:
644 return AddressingMode(false/*LongDispl*/, false/*IdxReg*/);
645 }
646 }
647
648 if (isa<LoadInst>(I) && I->hasOneUse()) {
649 auto *SingleUser = dyn_cast<Instruction>(*I->user_begin());
650 if (SingleUser->getParent() == I->getParent()) {
651 if (isa<ICmpInst>(SingleUser)) {
652 if (auto *C = dyn_cast<ConstantInt>(SingleUser->getOperand(1)))
653 if (C->getBitWidth() <= 64 &&
654 (isInt<16>(C->getSExtValue()) || isUInt<16>(C->getZExtValue())))
655 // Comparison of memory with 16 bit signed / unsigned immediate
656 return AddressingMode(false/*LongDispl*/, false/*IdxReg*/);
657 } else if (isa<StoreInst>(SingleUser))
658 // Load->Store
659 return getLoadStoreAddrMode(HasVector, I->getType());
660 }
661 } else if (auto *StoreI = dyn_cast<StoreInst>(I)) {
662 if (auto *LoadI = dyn_cast<LoadInst>(StoreI->getValueOperand()))
663 if (LoadI->hasOneUse() && LoadI->getParent() == I->getParent())
664 // Load->Store
665 return getLoadStoreAddrMode(HasVector, LoadI->getType());
666 }
667
668 if (HasVector && (isa<LoadInst>(I) || isa<StoreInst>(I))) {
669
670 // * Use LDE instead of LE/LEY for z13 to avoid partial register
671 // dependencies (LDE only supports small offsets).
672 // * Utilize the vector registers to hold floating point
673 // values (vector load / store instructions only support small
674 // offsets).
675
676 Type *MemAccessTy = (isa<LoadInst>(I) ? I->getType() :
677 I->getOperand(0)->getType());
678 bool IsFPAccess = MemAccessTy->isFloatingPointTy();
679 bool IsVectorAccess = MemAccessTy->isVectorTy();
680
681 // A store of an extracted vector element will be combined into a VSTE type
682 // instruction.
683 if (!IsVectorAccess && isa<StoreInst>(I)) {
684 Value *DataOp = I->getOperand(0);
685 if (isa<ExtractElementInst>(DataOp))
686 IsVectorAccess = true;
687 }
688
689 // A load which gets inserted into a vector element will be combined into a
690 // VLE type instruction.
691 if (!IsVectorAccess && isa<LoadInst>(I) && I->hasOneUse()) {
692 User *LoadUser = *I->user_begin();
693 if (isa<InsertElementInst>(LoadUser))
694 IsVectorAccess = true;
695 }
696
697 if (IsFPAccess || IsVectorAccess)
698 return AddressingMode(false/*LongDispl*/, true/*IdxReg*/);
699 }
700
701 return AddressingMode(true/*LongDispl*/, true/*IdxReg*/);
702 }
703
isLegalAddressingMode(const DataLayout & DL,const AddrMode & AM,Type * Ty,unsigned AS,Instruction * I) const704 bool SystemZTargetLowering::isLegalAddressingMode(const DataLayout &DL,
705 const AddrMode &AM, Type *Ty, unsigned AS, Instruction *I) const {
706 // Punt on globals for now, although they can be used in limited
707 // RELATIVE LONG cases.
708 if (AM.BaseGV)
709 return false;
710
711 // Require a 20-bit signed offset.
712 if (!isInt<20>(AM.BaseOffs))
713 return false;
714
715 AddressingMode SupportedAM(true, true);
716 if (I != nullptr)
717 SupportedAM = supportedAddressingMode(I, Subtarget.hasVector());
718
719 if (!SupportedAM.LongDisplacement && !isUInt<12>(AM.BaseOffs))
720 return false;
721
722 if (!SupportedAM.IndexReg)
723 // No indexing allowed.
724 return AM.Scale == 0;
725 else
726 // Indexing is OK but no scale factor can be applied.
727 return AM.Scale == 0 || AM.Scale == 1;
728 }
729
isTruncateFree(Type * FromType,Type * ToType) const730 bool SystemZTargetLowering::isTruncateFree(Type *FromType, Type *ToType) const {
731 if (!FromType->isIntegerTy() || !ToType->isIntegerTy())
732 return false;
733 unsigned FromBits = FromType->getPrimitiveSizeInBits();
734 unsigned ToBits = ToType->getPrimitiveSizeInBits();
735 return FromBits > ToBits;
736 }
737
isTruncateFree(EVT FromVT,EVT ToVT) const738 bool SystemZTargetLowering::isTruncateFree(EVT FromVT, EVT ToVT) const {
739 if (!FromVT.isInteger() || !ToVT.isInteger())
740 return false;
741 unsigned FromBits = FromVT.getSizeInBits();
742 unsigned ToBits = ToVT.getSizeInBits();
743 return FromBits > ToBits;
744 }
745
746 //===----------------------------------------------------------------------===//
747 // Inline asm support
748 //===----------------------------------------------------------------------===//
749
750 TargetLowering::ConstraintType
getConstraintType(StringRef Constraint) const751 SystemZTargetLowering::getConstraintType(StringRef Constraint) const {
752 if (Constraint.size() == 1) {
753 switch (Constraint[0]) {
754 case 'a': // Address register
755 case 'd': // Data register (equivalent to 'r')
756 case 'f': // Floating-point register
757 case 'h': // High-part register
758 case 'r': // General-purpose register
759 case 'v': // Vector register
760 return C_RegisterClass;
761
762 case 'Q': // Memory with base and unsigned 12-bit displacement
763 case 'R': // Likewise, plus an index
764 case 'S': // Memory with base and signed 20-bit displacement
765 case 'T': // Likewise, plus an index
766 case 'm': // Equivalent to 'T'.
767 return C_Memory;
768
769 case 'I': // Unsigned 8-bit constant
770 case 'J': // Unsigned 12-bit constant
771 case 'K': // Signed 16-bit constant
772 case 'L': // Signed 20-bit displacement (on all targets we support)
773 case 'M': // 0x7fffffff
774 return C_Other;
775
776 default:
777 break;
778 }
779 }
780 return TargetLowering::getConstraintType(Constraint);
781 }
782
783 TargetLowering::ConstraintWeight SystemZTargetLowering::
getSingleConstraintMatchWeight(AsmOperandInfo & info,const char * constraint) const784 getSingleConstraintMatchWeight(AsmOperandInfo &info,
785 const char *constraint) const {
786 ConstraintWeight weight = CW_Invalid;
787 Value *CallOperandVal = info.CallOperandVal;
788 // If we don't have a value, we can't do a match,
789 // but allow it at the lowest weight.
790 if (!CallOperandVal)
791 return CW_Default;
792 Type *type = CallOperandVal->getType();
793 // Look at the constraint type.
794 switch (*constraint) {
795 default:
796 weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
797 break;
798
799 case 'a': // Address register
800 case 'd': // Data register (equivalent to 'r')
801 case 'h': // High-part register
802 case 'r': // General-purpose register
803 if (CallOperandVal->getType()->isIntegerTy())
804 weight = CW_Register;
805 break;
806
807 case 'f': // Floating-point register
808 if (type->isFloatingPointTy())
809 weight = CW_Register;
810 break;
811
812 case 'v': // Vector register
813 if ((type->isVectorTy() || type->isFloatingPointTy()) &&
814 Subtarget.hasVector())
815 weight = CW_Register;
816 break;
817
818 case 'I': // Unsigned 8-bit constant
819 if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
820 if (isUInt<8>(C->getZExtValue()))
821 weight = CW_Constant;
822 break;
823
824 case 'J': // Unsigned 12-bit constant
825 if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
826 if (isUInt<12>(C->getZExtValue()))
827 weight = CW_Constant;
828 break;
829
830 case 'K': // Signed 16-bit constant
831 if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
832 if (isInt<16>(C->getSExtValue()))
833 weight = CW_Constant;
834 break;
835
836 case 'L': // Signed 20-bit displacement (on all targets we support)
837 if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
838 if (isInt<20>(C->getSExtValue()))
839 weight = CW_Constant;
840 break;
841
842 case 'M': // 0x7fffffff
843 if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
844 if (C->getZExtValue() == 0x7fffffff)
845 weight = CW_Constant;
846 break;
847 }
848 return weight;
849 }
850
851 // Parse a "{tNNN}" register constraint for which the register type "t"
852 // has already been verified. MC is the class associated with "t" and
853 // Map maps 0-based register numbers to LLVM register numbers.
854 static std::pair<unsigned, const TargetRegisterClass *>
parseRegisterNumber(StringRef Constraint,const TargetRegisterClass * RC,const unsigned * Map,unsigned Size)855 parseRegisterNumber(StringRef Constraint, const TargetRegisterClass *RC,
856 const unsigned *Map, unsigned Size) {
857 assert(*(Constraint.end()-1) == '}' && "Missing '}'");
858 if (isdigit(Constraint[2])) {
859 unsigned Index;
860 bool Failed =
861 Constraint.slice(2, Constraint.size() - 1).getAsInteger(10, Index);
862 if (!Failed && Index < Size && Map[Index])
863 return std::make_pair(Map[Index], RC);
864 }
865 return std::make_pair(0U, nullptr);
866 }
867
868 std::pair<unsigned, const TargetRegisterClass *>
getRegForInlineAsmConstraint(const TargetRegisterInfo * TRI,StringRef Constraint,MVT VT) const869 SystemZTargetLowering::getRegForInlineAsmConstraint(
870 const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const {
871 if (Constraint.size() == 1) {
872 // GCC Constraint Letters
873 switch (Constraint[0]) {
874 default: break;
875 case 'd': // Data register (equivalent to 'r')
876 case 'r': // General-purpose register
877 if (VT == MVT::i64)
878 return std::make_pair(0U, &SystemZ::GR64BitRegClass);
879 else if (VT == MVT::i128)
880 return std::make_pair(0U, &SystemZ::GR128BitRegClass);
881 return std::make_pair(0U, &SystemZ::GR32BitRegClass);
882
883 case 'a': // Address register
884 if (VT == MVT::i64)
885 return std::make_pair(0U, &SystemZ::ADDR64BitRegClass);
886 else if (VT == MVT::i128)
887 return std::make_pair(0U, &SystemZ::ADDR128BitRegClass);
888 return std::make_pair(0U, &SystemZ::ADDR32BitRegClass);
889
890 case 'h': // High-part register (an LLVM extension)
891 return std::make_pair(0U, &SystemZ::GRH32BitRegClass);
892
893 case 'f': // Floating-point register
894 if (VT == MVT::f64)
895 return std::make_pair(0U, &SystemZ::FP64BitRegClass);
896 else if (VT == MVT::f128)
897 return std::make_pair(0U, &SystemZ::FP128BitRegClass);
898 return std::make_pair(0U, &SystemZ::FP32BitRegClass);
899
900 case 'v': // Vector register
901 if (Subtarget.hasVector()) {
902 if (VT == MVT::f32)
903 return std::make_pair(0U, &SystemZ::VR32BitRegClass);
904 if (VT == MVT::f64)
905 return std::make_pair(0U, &SystemZ::VR64BitRegClass);
906 return std::make_pair(0U, &SystemZ::VR128BitRegClass);
907 }
908 break;
909 }
910 }
911 if (Constraint.size() > 0 && Constraint[0] == '{') {
912 // We need to override the default register parsing for GPRs and FPRs
913 // because the interpretation depends on VT. The internal names of
914 // the registers are also different from the external names
915 // (F0D and F0S instead of F0, etc.).
916 if (Constraint[1] == 'r') {
917 if (VT == MVT::i32)
918 return parseRegisterNumber(Constraint, &SystemZ::GR32BitRegClass,
919 SystemZMC::GR32Regs, 16);
920 if (VT == MVT::i128)
921 return parseRegisterNumber(Constraint, &SystemZ::GR128BitRegClass,
922 SystemZMC::GR128Regs, 16);
923 return parseRegisterNumber(Constraint, &SystemZ::GR64BitRegClass,
924 SystemZMC::GR64Regs, 16);
925 }
926 if (Constraint[1] == 'f') {
927 if (VT == MVT::f32)
928 return parseRegisterNumber(Constraint, &SystemZ::FP32BitRegClass,
929 SystemZMC::FP32Regs, 16);
930 if (VT == MVT::f128)
931 return parseRegisterNumber(Constraint, &SystemZ::FP128BitRegClass,
932 SystemZMC::FP128Regs, 16);
933 return parseRegisterNumber(Constraint, &SystemZ::FP64BitRegClass,
934 SystemZMC::FP64Regs, 16);
935 }
936 if (Constraint[1] == 'v') {
937 if (VT == MVT::f32)
938 return parseRegisterNumber(Constraint, &SystemZ::VR32BitRegClass,
939 SystemZMC::VR32Regs, 32);
940 if (VT == MVT::f64)
941 return parseRegisterNumber(Constraint, &SystemZ::VR64BitRegClass,
942 SystemZMC::VR64Regs, 32);
943 return parseRegisterNumber(Constraint, &SystemZ::VR128BitRegClass,
944 SystemZMC::VR128Regs, 32);
945 }
946 }
947 return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
948 }
949
950 void SystemZTargetLowering::
LowerAsmOperandForConstraint(SDValue Op,std::string & Constraint,std::vector<SDValue> & Ops,SelectionDAG & DAG) const951 LowerAsmOperandForConstraint(SDValue Op, std::string &Constraint,
952 std::vector<SDValue> &Ops,
953 SelectionDAG &DAG) const {
954 // Only support length 1 constraints for now.
955 if (Constraint.length() == 1) {
956 switch (Constraint[0]) {
957 case 'I': // Unsigned 8-bit constant
958 if (auto *C = dyn_cast<ConstantSDNode>(Op))
959 if (isUInt<8>(C->getZExtValue()))
960 Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op),
961 Op.getValueType()));
962 return;
963
964 case 'J': // Unsigned 12-bit constant
965 if (auto *C = dyn_cast<ConstantSDNode>(Op))
966 if (isUInt<12>(C->getZExtValue()))
967 Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op),
968 Op.getValueType()));
969 return;
970
971 case 'K': // Signed 16-bit constant
972 if (auto *C = dyn_cast<ConstantSDNode>(Op))
973 if (isInt<16>(C->getSExtValue()))
974 Ops.push_back(DAG.getTargetConstant(C->getSExtValue(), SDLoc(Op),
975 Op.getValueType()));
976 return;
977
978 case 'L': // Signed 20-bit displacement (on all targets we support)
979 if (auto *C = dyn_cast<ConstantSDNode>(Op))
980 if (isInt<20>(C->getSExtValue()))
981 Ops.push_back(DAG.getTargetConstant(C->getSExtValue(), SDLoc(Op),
982 Op.getValueType()));
983 return;
984
985 case 'M': // 0x7fffffff
986 if (auto *C = dyn_cast<ConstantSDNode>(Op))
987 if (C->getZExtValue() == 0x7fffffff)
988 Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op),
989 Op.getValueType()));
990 return;
991 }
992 }
993 TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
994 }
995
996 //===----------------------------------------------------------------------===//
997 // Calling conventions
998 //===----------------------------------------------------------------------===//
999
1000 #include "SystemZGenCallingConv.inc"
1001
getScratchRegisters(CallingConv::ID) const1002 const MCPhysReg *SystemZTargetLowering::getScratchRegisters(
1003 CallingConv::ID) const {
1004 static const MCPhysReg ScratchRegs[] = { SystemZ::R0D, SystemZ::R1D,
1005 SystemZ::R14D, 0 };
1006 return ScratchRegs;
1007 }
1008
allowTruncateForTailCall(Type * FromType,Type * ToType) const1009 bool SystemZTargetLowering::allowTruncateForTailCall(Type *FromType,
1010 Type *ToType) const {
1011 return isTruncateFree(FromType, ToType);
1012 }
1013
mayBeEmittedAsTailCall(const CallInst * CI) const1014 bool SystemZTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const {
1015 return CI->isTailCall();
1016 }
1017
1018 // We do not yet support 128-bit single-element vector types. If the user
1019 // attempts to use such types as function argument or return type, prefer
1020 // to error out instead of emitting code violating the ABI.
VerifyVectorType(MVT VT,EVT ArgVT)1021 static void VerifyVectorType(MVT VT, EVT ArgVT) {
1022 if (ArgVT.isVector() && !VT.isVector())
1023 report_fatal_error("Unsupported vector argument or return type");
1024 }
1025
VerifyVectorTypes(const SmallVectorImpl<ISD::InputArg> & Ins)1026 static void VerifyVectorTypes(const SmallVectorImpl<ISD::InputArg> &Ins) {
1027 for (unsigned i = 0; i < Ins.size(); ++i)
1028 VerifyVectorType(Ins[i].VT, Ins[i].ArgVT);
1029 }
1030
VerifyVectorTypes(const SmallVectorImpl<ISD::OutputArg> & Outs)1031 static void VerifyVectorTypes(const SmallVectorImpl<ISD::OutputArg> &Outs) {
1032 for (unsigned i = 0; i < Outs.size(); ++i)
1033 VerifyVectorType(Outs[i].VT, Outs[i].ArgVT);
1034 }
1035
1036 // Value is a value that has been passed to us in the location described by VA
1037 // (and so has type VA.getLocVT()). Convert Value to VA.getValVT(), chaining
1038 // any loads onto Chain.
convertLocVTToValVT(SelectionDAG & DAG,const SDLoc & DL,CCValAssign & VA,SDValue Chain,SDValue Value)1039 static SDValue convertLocVTToValVT(SelectionDAG &DAG, const SDLoc &DL,
1040 CCValAssign &VA, SDValue Chain,
1041 SDValue Value) {
1042 // If the argument has been promoted from a smaller type, insert an
1043 // assertion to capture this.
1044 if (VA.getLocInfo() == CCValAssign::SExt)
1045 Value = DAG.getNode(ISD::AssertSext, DL, VA.getLocVT(), Value,
1046 DAG.getValueType(VA.getValVT()));
1047 else if (VA.getLocInfo() == CCValAssign::ZExt)
1048 Value = DAG.getNode(ISD::AssertZext, DL, VA.getLocVT(), Value,
1049 DAG.getValueType(VA.getValVT()));
1050
1051 if (VA.isExtInLoc())
1052 Value = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Value);
1053 else if (VA.getLocInfo() == CCValAssign::BCvt) {
1054 // If this is a short vector argument loaded from the stack,
1055 // extend from i64 to full vector size and then bitcast.
1056 assert(VA.getLocVT() == MVT::i64);
1057 assert(VA.getValVT().isVector());
1058 Value = DAG.getBuildVector(MVT::v2i64, DL, {Value, DAG.getUNDEF(MVT::i64)});
1059 Value = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Value);
1060 } else
1061 assert(VA.getLocInfo() == CCValAssign::Full && "Unsupported getLocInfo");
1062 return Value;
1063 }
1064
1065 // Value is a value of type VA.getValVT() that we need to copy into
1066 // the location described by VA. Return a copy of Value converted to
1067 // VA.getValVT(). The caller is responsible for handling indirect values.
convertValVTToLocVT(SelectionDAG & DAG,const SDLoc & DL,CCValAssign & VA,SDValue Value)1068 static SDValue convertValVTToLocVT(SelectionDAG &DAG, const SDLoc &DL,
1069 CCValAssign &VA, SDValue Value) {
1070 switch (VA.getLocInfo()) {
1071 case CCValAssign::SExt:
1072 return DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Value);
1073 case CCValAssign::ZExt:
1074 return DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Value);
1075 case CCValAssign::AExt:
1076 return DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Value);
1077 case CCValAssign::BCvt:
1078 // If this is a short vector argument to be stored to the stack,
1079 // bitcast to v2i64 and then extract first element.
1080 assert(VA.getLocVT() == MVT::i64);
1081 assert(VA.getValVT().isVector());
1082 Value = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Value);
1083 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VA.getLocVT(), Value,
1084 DAG.getConstant(0, DL, MVT::i32));
1085 case CCValAssign::Full:
1086 return Value;
1087 default:
1088 llvm_unreachable("Unhandled getLocInfo()");
1089 }
1090 }
1091
LowerFormalArguments(SDValue Chain,CallingConv::ID CallConv,bool IsVarArg,const SmallVectorImpl<ISD::InputArg> & Ins,const SDLoc & DL,SelectionDAG & DAG,SmallVectorImpl<SDValue> & InVals) const1092 SDValue SystemZTargetLowering::LowerFormalArguments(
1093 SDValue Chain, CallingConv::ID CallConv, bool IsVarArg,
1094 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
1095 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
1096 MachineFunction &MF = DAG.getMachineFunction();
1097 MachineFrameInfo &MFI = MF.getFrameInfo();
1098 MachineRegisterInfo &MRI = MF.getRegInfo();
1099 SystemZMachineFunctionInfo *FuncInfo =
1100 MF.getInfo<SystemZMachineFunctionInfo>();
1101 auto *TFL =
1102 static_cast<const SystemZFrameLowering *>(Subtarget.getFrameLowering());
1103 EVT PtrVT = getPointerTy(DAG.getDataLayout());
1104
1105 // Detect unsupported vector argument types.
1106 if (Subtarget.hasVector())
1107 VerifyVectorTypes(Ins);
1108
1109 // Assign locations to all of the incoming arguments.
1110 SmallVector<CCValAssign, 16> ArgLocs;
1111 SystemZCCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
1112 CCInfo.AnalyzeFormalArguments(Ins, CC_SystemZ);
1113
1114 unsigned NumFixedGPRs = 0;
1115 unsigned NumFixedFPRs = 0;
1116 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
1117 SDValue ArgValue;
1118 CCValAssign &VA = ArgLocs[I];
1119 EVT LocVT = VA.getLocVT();
1120 if (VA.isRegLoc()) {
1121 // Arguments passed in registers
1122 const TargetRegisterClass *RC;
1123 switch (LocVT.getSimpleVT().SimpleTy) {
1124 default:
1125 // Integers smaller than i64 should be promoted to i64.
1126 llvm_unreachable("Unexpected argument type");
1127 case MVT::i32:
1128 NumFixedGPRs += 1;
1129 RC = &SystemZ::GR32BitRegClass;
1130 break;
1131 case MVT::i64:
1132 NumFixedGPRs += 1;
1133 RC = &SystemZ::GR64BitRegClass;
1134 break;
1135 case MVT::f32:
1136 NumFixedFPRs += 1;
1137 RC = &SystemZ::FP32BitRegClass;
1138 break;
1139 case MVT::f64:
1140 NumFixedFPRs += 1;
1141 RC = &SystemZ::FP64BitRegClass;
1142 break;
1143 case MVT::v16i8:
1144 case MVT::v8i16:
1145 case MVT::v4i32:
1146 case MVT::v2i64:
1147 case MVT::v4f32:
1148 case MVT::v2f64:
1149 RC = &SystemZ::VR128BitRegClass;
1150 break;
1151 }
1152
1153 unsigned VReg = MRI.createVirtualRegister(RC);
1154 MRI.addLiveIn(VA.getLocReg(), VReg);
1155 ArgValue = DAG.getCopyFromReg(Chain, DL, VReg, LocVT);
1156 } else {
1157 assert(VA.isMemLoc() && "Argument not register or memory");
1158
1159 // Create the frame index object for this incoming parameter.
1160 int FI = MFI.CreateFixedObject(LocVT.getSizeInBits() / 8,
1161 VA.getLocMemOffset(), true);
1162
1163 // Create the SelectionDAG nodes corresponding to a load
1164 // from this parameter. Unpromoted ints and floats are
1165 // passed as right-justified 8-byte values.
1166 SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
1167 if (VA.getLocVT() == MVT::i32 || VA.getLocVT() == MVT::f32)
1168 FIN = DAG.getNode(ISD::ADD, DL, PtrVT, FIN,
1169 DAG.getIntPtrConstant(4, DL));
1170 ArgValue = DAG.getLoad(LocVT, DL, Chain, FIN,
1171 MachinePointerInfo::getFixedStack(MF, FI));
1172 }
1173
1174 // Convert the value of the argument register into the value that's
1175 // being passed.
1176 if (VA.getLocInfo() == CCValAssign::Indirect) {
1177 InVals.push_back(DAG.getLoad(VA.getValVT(), DL, Chain, ArgValue,
1178 MachinePointerInfo()));
1179 // If the original argument was split (e.g. i128), we need
1180 // to load all parts of it here (using the same address).
1181 unsigned ArgIndex = Ins[I].OrigArgIndex;
1182 assert (Ins[I].PartOffset == 0);
1183 while (I + 1 != E && Ins[I + 1].OrigArgIndex == ArgIndex) {
1184 CCValAssign &PartVA = ArgLocs[I + 1];
1185 unsigned PartOffset = Ins[I + 1].PartOffset;
1186 SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, ArgValue,
1187 DAG.getIntPtrConstant(PartOffset, DL));
1188 InVals.push_back(DAG.getLoad(PartVA.getValVT(), DL, Chain, Address,
1189 MachinePointerInfo()));
1190 ++I;
1191 }
1192 } else
1193 InVals.push_back(convertLocVTToValVT(DAG, DL, VA, Chain, ArgValue));
1194 }
1195
1196 if (IsVarArg) {
1197 // Save the number of non-varargs registers for later use by va_start, etc.
1198 FuncInfo->setVarArgsFirstGPR(NumFixedGPRs);
1199 FuncInfo->setVarArgsFirstFPR(NumFixedFPRs);
1200
1201 // Likewise the address (in the form of a frame index) of where the
1202 // first stack vararg would be. The 1-byte size here is arbitrary.
1203 int64_t StackSize = CCInfo.getNextStackOffset();
1204 FuncInfo->setVarArgsFrameIndex(MFI.CreateFixedObject(1, StackSize, true));
1205
1206 // ...and a similar frame index for the caller-allocated save area
1207 // that will be used to store the incoming registers.
1208 int64_t RegSaveOffset = TFL->getOffsetOfLocalArea();
1209 unsigned RegSaveIndex = MFI.CreateFixedObject(1, RegSaveOffset, true);
1210 FuncInfo->setRegSaveFrameIndex(RegSaveIndex);
1211
1212 // Store the FPR varargs in the reserved frame slots. (We store the
1213 // GPRs as part of the prologue.)
1214 if (NumFixedFPRs < SystemZ::NumArgFPRs) {
1215 SDValue MemOps[SystemZ::NumArgFPRs];
1216 for (unsigned I = NumFixedFPRs; I < SystemZ::NumArgFPRs; ++I) {
1217 unsigned Offset = TFL->getRegSpillOffset(SystemZ::ArgFPRs[I]);
1218 int FI = MFI.CreateFixedObject(8, RegSaveOffset + Offset, true);
1219 SDValue FIN = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
1220 unsigned VReg = MF.addLiveIn(SystemZ::ArgFPRs[I],
1221 &SystemZ::FP64BitRegClass);
1222 SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, VReg, MVT::f64);
1223 MemOps[I] = DAG.getStore(ArgValue.getValue(1), DL, ArgValue, FIN,
1224 MachinePointerInfo::getFixedStack(MF, FI));
1225 }
1226 // Join the stores, which are independent of one another.
1227 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
1228 makeArrayRef(&MemOps[NumFixedFPRs],
1229 SystemZ::NumArgFPRs-NumFixedFPRs));
1230 }
1231 }
1232
1233 return Chain;
1234 }
1235
canUseSiblingCall(const CCState & ArgCCInfo,SmallVectorImpl<CCValAssign> & ArgLocs,SmallVectorImpl<ISD::OutputArg> & Outs)1236 static bool canUseSiblingCall(const CCState &ArgCCInfo,
1237 SmallVectorImpl<CCValAssign> &ArgLocs,
1238 SmallVectorImpl<ISD::OutputArg> &Outs) {
1239 // Punt if there are any indirect or stack arguments, or if the call
1240 // needs the callee-saved argument register R6, or if the call uses
1241 // the callee-saved register arguments SwiftSelf and SwiftError.
1242 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
1243 CCValAssign &VA = ArgLocs[I];
1244 if (VA.getLocInfo() == CCValAssign::Indirect)
1245 return false;
1246 if (!VA.isRegLoc())
1247 return false;
1248 unsigned Reg = VA.getLocReg();
1249 if (Reg == SystemZ::R6H || Reg == SystemZ::R6L || Reg == SystemZ::R6D)
1250 return false;
1251 if (Outs[I].Flags.isSwiftSelf() || Outs[I].Flags.isSwiftError())
1252 return false;
1253 }
1254 return true;
1255 }
1256
1257 SDValue
LowerCall(CallLoweringInfo & CLI,SmallVectorImpl<SDValue> & InVals) const1258 SystemZTargetLowering::LowerCall(CallLoweringInfo &CLI,
1259 SmallVectorImpl<SDValue> &InVals) const {
1260 SelectionDAG &DAG = CLI.DAG;
1261 SDLoc &DL = CLI.DL;
1262 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
1263 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals;
1264 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins;
1265 SDValue Chain = CLI.Chain;
1266 SDValue Callee = CLI.Callee;
1267 bool &IsTailCall = CLI.IsTailCall;
1268 CallingConv::ID CallConv = CLI.CallConv;
1269 bool IsVarArg = CLI.IsVarArg;
1270 MachineFunction &MF = DAG.getMachineFunction();
1271 EVT PtrVT = getPointerTy(MF.getDataLayout());
1272
1273 // Detect unsupported vector argument and return types.
1274 if (Subtarget.hasVector()) {
1275 VerifyVectorTypes(Outs);
1276 VerifyVectorTypes(Ins);
1277 }
1278
1279 // Analyze the operands of the call, assigning locations to each operand.
1280 SmallVector<CCValAssign, 16> ArgLocs;
1281 SystemZCCState ArgCCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
1282 ArgCCInfo.AnalyzeCallOperands(Outs, CC_SystemZ);
1283
1284 // We don't support GuaranteedTailCallOpt, only automatically-detected
1285 // sibling calls.
1286 if (IsTailCall && !canUseSiblingCall(ArgCCInfo, ArgLocs, Outs))
1287 IsTailCall = false;
1288
1289 // Get a count of how many bytes are to be pushed on the stack.
1290 unsigned NumBytes = ArgCCInfo.getNextStackOffset();
1291
1292 // Mark the start of the call.
1293 if (!IsTailCall)
1294 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, DL);
1295
1296 // Copy argument values to their designated locations.
1297 SmallVector<std::pair<unsigned, SDValue>, 9> RegsToPass;
1298 SmallVector<SDValue, 8> MemOpChains;
1299 SDValue StackPtr;
1300 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
1301 CCValAssign &VA = ArgLocs[I];
1302 SDValue ArgValue = OutVals[I];
1303
1304 if (VA.getLocInfo() == CCValAssign::Indirect) {
1305 // Store the argument in a stack slot and pass its address.
1306 SDValue SpillSlot = DAG.CreateStackTemporary(Outs[I].ArgVT);
1307 int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
1308 MemOpChains.push_back(
1309 DAG.getStore(Chain, DL, ArgValue, SpillSlot,
1310 MachinePointerInfo::getFixedStack(MF, FI)));
1311 // If the original argument was split (e.g. i128), we need
1312 // to store all parts of it here (and pass just one address).
1313 unsigned ArgIndex = Outs[I].OrigArgIndex;
1314 assert (Outs[I].PartOffset == 0);
1315 while (I + 1 != E && Outs[I + 1].OrigArgIndex == ArgIndex) {
1316 SDValue PartValue = OutVals[I + 1];
1317 unsigned PartOffset = Outs[I + 1].PartOffset;
1318 SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, SpillSlot,
1319 DAG.getIntPtrConstant(PartOffset, DL));
1320 MemOpChains.push_back(
1321 DAG.getStore(Chain, DL, PartValue, Address,
1322 MachinePointerInfo::getFixedStack(MF, FI)));
1323 ++I;
1324 }
1325 ArgValue = SpillSlot;
1326 } else
1327 ArgValue = convertValVTToLocVT(DAG, DL, VA, ArgValue);
1328
1329 if (VA.isRegLoc())
1330 // Queue up the argument copies and emit them at the end.
1331 RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgValue));
1332 else {
1333 assert(VA.isMemLoc() && "Argument not register or memory");
1334
1335 // Work out the address of the stack slot. Unpromoted ints and
1336 // floats are passed as right-justified 8-byte values.
1337 if (!StackPtr.getNode())
1338 StackPtr = DAG.getCopyFromReg(Chain, DL, SystemZ::R15D, PtrVT);
1339 unsigned Offset = SystemZMC::CallFrameSize + VA.getLocMemOffset();
1340 if (VA.getLocVT() == MVT::i32 || VA.getLocVT() == MVT::f32)
1341 Offset += 4;
1342 SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr,
1343 DAG.getIntPtrConstant(Offset, DL));
1344
1345 // Emit the store.
1346 MemOpChains.push_back(
1347 DAG.getStore(Chain, DL, ArgValue, Address, MachinePointerInfo()));
1348 }
1349 }
1350
1351 // Join the stores, which are independent of one another.
1352 if (!MemOpChains.empty())
1353 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains);
1354
1355 // Accept direct calls by converting symbolic call addresses to the
1356 // associated Target* opcodes. Force %r1 to be used for indirect
1357 // tail calls.
1358 SDValue Glue;
1359 if (auto *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
1360 Callee = DAG.getTargetGlobalAddress(G->getGlobal(), DL, PtrVT);
1361 Callee = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Callee);
1362 } else if (auto *E = dyn_cast<ExternalSymbolSDNode>(Callee)) {
1363 Callee = DAG.getTargetExternalSymbol(E->getSymbol(), PtrVT);
1364 Callee = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Callee);
1365 } else if (IsTailCall) {
1366 Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R1D, Callee, Glue);
1367 Glue = Chain.getValue(1);
1368 Callee = DAG.getRegister(SystemZ::R1D, Callee.getValueType());
1369 }
1370
1371 // Build a sequence of copy-to-reg nodes, chained and glued together.
1372 for (unsigned I = 0, E = RegsToPass.size(); I != E; ++I) {
1373 Chain = DAG.getCopyToReg(Chain, DL, RegsToPass[I].first,
1374 RegsToPass[I].second, Glue);
1375 Glue = Chain.getValue(1);
1376 }
1377
1378 // The first call operand is the chain and the second is the target address.
1379 SmallVector<SDValue, 8> Ops;
1380 Ops.push_back(Chain);
1381 Ops.push_back(Callee);
1382
1383 // Add argument registers to the end of the list so that they are
1384 // known live into the call.
1385 for (unsigned I = 0, E = RegsToPass.size(); I != E; ++I)
1386 Ops.push_back(DAG.getRegister(RegsToPass[I].first,
1387 RegsToPass[I].second.getValueType()));
1388
1389 // Add a register mask operand representing the call-preserved registers.
1390 const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
1391 const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv);
1392 assert(Mask && "Missing call preserved mask for calling convention");
1393 Ops.push_back(DAG.getRegisterMask(Mask));
1394
1395 // Glue the call to the argument copies, if any.
1396 if (Glue.getNode())
1397 Ops.push_back(Glue);
1398
1399 // Emit the call.
1400 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
1401 if (IsTailCall)
1402 return DAG.getNode(SystemZISD::SIBCALL, DL, NodeTys, Ops);
1403 Chain = DAG.getNode(SystemZISD::CALL, DL, NodeTys, Ops);
1404 Glue = Chain.getValue(1);
1405
1406 // Mark the end of the call, which is glued to the call itself.
1407 Chain = DAG.getCALLSEQ_END(Chain,
1408 DAG.getConstant(NumBytes, DL, PtrVT, true),
1409 DAG.getConstant(0, DL, PtrVT, true),
1410 Glue, DL);
1411 Glue = Chain.getValue(1);
1412
1413 // Assign locations to each value returned by this call.
1414 SmallVector<CCValAssign, 16> RetLocs;
1415 CCState RetCCInfo(CallConv, IsVarArg, MF, RetLocs, *DAG.getContext());
1416 RetCCInfo.AnalyzeCallResult(Ins, RetCC_SystemZ);
1417
1418 // Copy all of the result registers out of their specified physreg.
1419 for (unsigned I = 0, E = RetLocs.size(); I != E; ++I) {
1420 CCValAssign &VA = RetLocs[I];
1421
1422 // Copy the value out, gluing the copy to the end of the call sequence.
1423 SDValue RetValue = DAG.getCopyFromReg(Chain, DL, VA.getLocReg(),
1424 VA.getLocVT(), Glue);
1425 Chain = RetValue.getValue(1);
1426 Glue = RetValue.getValue(2);
1427
1428 // Convert the value of the return register into the value that's
1429 // being returned.
1430 InVals.push_back(convertLocVTToValVT(DAG, DL, VA, Chain, RetValue));
1431 }
1432
1433 return Chain;
1434 }
1435
1436 bool SystemZTargetLowering::
CanLowerReturn(CallingConv::ID CallConv,MachineFunction & MF,bool isVarArg,const SmallVectorImpl<ISD::OutputArg> & Outs,LLVMContext & Context) const1437 CanLowerReturn(CallingConv::ID CallConv,
1438 MachineFunction &MF, bool isVarArg,
1439 const SmallVectorImpl<ISD::OutputArg> &Outs,
1440 LLVMContext &Context) const {
1441 // Detect unsupported vector return types.
1442 if (Subtarget.hasVector())
1443 VerifyVectorTypes(Outs);
1444
1445 // Special case that we cannot easily detect in RetCC_SystemZ since
1446 // i128 is not a legal type.
1447 for (auto &Out : Outs)
1448 if (Out.ArgVT == MVT::i128)
1449 return false;
1450
1451 SmallVector<CCValAssign, 16> RetLocs;
1452 CCState RetCCInfo(CallConv, isVarArg, MF, RetLocs, Context);
1453 return RetCCInfo.CheckReturn(Outs, RetCC_SystemZ);
1454 }
1455
1456 SDValue
LowerReturn(SDValue Chain,CallingConv::ID CallConv,bool IsVarArg,const SmallVectorImpl<ISD::OutputArg> & Outs,const SmallVectorImpl<SDValue> & OutVals,const SDLoc & DL,SelectionDAG & DAG) const1457 SystemZTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
1458 bool IsVarArg,
1459 const SmallVectorImpl<ISD::OutputArg> &Outs,
1460 const SmallVectorImpl<SDValue> &OutVals,
1461 const SDLoc &DL, SelectionDAG &DAG) const {
1462 MachineFunction &MF = DAG.getMachineFunction();
1463
1464 // Detect unsupported vector return types.
1465 if (Subtarget.hasVector())
1466 VerifyVectorTypes(Outs);
1467
1468 // Assign locations to each returned value.
1469 SmallVector<CCValAssign, 16> RetLocs;
1470 CCState RetCCInfo(CallConv, IsVarArg, MF, RetLocs, *DAG.getContext());
1471 RetCCInfo.AnalyzeReturn(Outs, RetCC_SystemZ);
1472
1473 // Quick exit for void returns
1474 if (RetLocs.empty())
1475 return DAG.getNode(SystemZISD::RET_FLAG, DL, MVT::Other, Chain);
1476
1477 // Copy the result values into the output registers.
1478 SDValue Glue;
1479 SmallVector<SDValue, 4> RetOps;
1480 RetOps.push_back(Chain);
1481 for (unsigned I = 0, E = RetLocs.size(); I != E; ++I) {
1482 CCValAssign &VA = RetLocs[I];
1483 SDValue RetValue = OutVals[I];
1484
1485 // Make the return register live on exit.
1486 assert(VA.isRegLoc() && "Can only return in registers!");
1487
1488 // Promote the value as required.
1489 RetValue = convertValVTToLocVT(DAG, DL, VA, RetValue);
1490
1491 // Chain and glue the copies together.
1492 unsigned Reg = VA.getLocReg();
1493 Chain = DAG.getCopyToReg(Chain, DL, Reg, RetValue, Glue);
1494 Glue = Chain.getValue(1);
1495 RetOps.push_back(DAG.getRegister(Reg, VA.getLocVT()));
1496 }
1497
1498 // Update chain and glue.
1499 RetOps[0] = Chain;
1500 if (Glue.getNode())
1501 RetOps.push_back(Glue);
1502
1503 return DAG.getNode(SystemZISD::RET_FLAG, DL, MVT::Other, RetOps);
1504 }
1505
1506 // Return true if Op is an intrinsic node with chain that returns the CC value
1507 // as its only (other) argument. Provide the associated SystemZISD opcode and
1508 // the mask of valid CC values if so.
isIntrinsicWithCCAndChain(SDValue Op,unsigned & Opcode,unsigned & CCValid)1509 static bool isIntrinsicWithCCAndChain(SDValue Op, unsigned &Opcode,
1510 unsigned &CCValid) {
1511 unsigned Id = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
1512 switch (Id) {
1513 case Intrinsic::s390_tbegin:
1514 Opcode = SystemZISD::TBEGIN;
1515 CCValid = SystemZ::CCMASK_TBEGIN;
1516 return true;
1517
1518 case Intrinsic::s390_tbegin_nofloat:
1519 Opcode = SystemZISD::TBEGIN_NOFLOAT;
1520 CCValid = SystemZ::CCMASK_TBEGIN;
1521 return true;
1522
1523 case Intrinsic::s390_tend:
1524 Opcode = SystemZISD::TEND;
1525 CCValid = SystemZ::CCMASK_TEND;
1526 return true;
1527
1528 default:
1529 return false;
1530 }
1531 }
1532
1533 // Return true if Op is an intrinsic node without chain that returns the
1534 // CC value as its final argument. Provide the associated SystemZISD
1535 // opcode and the mask of valid CC values if so.
isIntrinsicWithCC(SDValue Op,unsigned & Opcode,unsigned & CCValid)1536 static bool isIntrinsicWithCC(SDValue Op, unsigned &Opcode, unsigned &CCValid) {
1537 unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
1538 switch (Id) {
1539 case Intrinsic::s390_vpkshs:
1540 case Intrinsic::s390_vpksfs:
1541 case Intrinsic::s390_vpksgs:
1542 Opcode = SystemZISD::PACKS_CC;
1543 CCValid = SystemZ::CCMASK_VCMP;
1544 return true;
1545
1546 case Intrinsic::s390_vpklshs:
1547 case Intrinsic::s390_vpklsfs:
1548 case Intrinsic::s390_vpklsgs:
1549 Opcode = SystemZISD::PACKLS_CC;
1550 CCValid = SystemZ::CCMASK_VCMP;
1551 return true;
1552
1553 case Intrinsic::s390_vceqbs:
1554 case Intrinsic::s390_vceqhs:
1555 case Intrinsic::s390_vceqfs:
1556 case Intrinsic::s390_vceqgs:
1557 Opcode = SystemZISD::VICMPES;
1558 CCValid = SystemZ::CCMASK_VCMP;
1559 return true;
1560
1561 case Intrinsic::s390_vchbs:
1562 case Intrinsic::s390_vchhs:
1563 case Intrinsic::s390_vchfs:
1564 case Intrinsic::s390_vchgs:
1565 Opcode = SystemZISD::VICMPHS;
1566 CCValid = SystemZ::CCMASK_VCMP;
1567 return true;
1568
1569 case Intrinsic::s390_vchlbs:
1570 case Intrinsic::s390_vchlhs:
1571 case Intrinsic::s390_vchlfs:
1572 case Intrinsic::s390_vchlgs:
1573 Opcode = SystemZISD::VICMPHLS;
1574 CCValid = SystemZ::CCMASK_VCMP;
1575 return true;
1576
1577 case Intrinsic::s390_vtm:
1578 Opcode = SystemZISD::VTM;
1579 CCValid = SystemZ::CCMASK_VCMP;
1580 return true;
1581
1582 case Intrinsic::s390_vfaebs:
1583 case Intrinsic::s390_vfaehs:
1584 case Intrinsic::s390_vfaefs:
1585 Opcode = SystemZISD::VFAE_CC;
1586 CCValid = SystemZ::CCMASK_ANY;
1587 return true;
1588
1589 case Intrinsic::s390_vfaezbs:
1590 case Intrinsic::s390_vfaezhs:
1591 case Intrinsic::s390_vfaezfs:
1592 Opcode = SystemZISD::VFAEZ_CC;
1593 CCValid = SystemZ::CCMASK_ANY;
1594 return true;
1595
1596 case Intrinsic::s390_vfeebs:
1597 case Intrinsic::s390_vfeehs:
1598 case Intrinsic::s390_vfeefs:
1599 Opcode = SystemZISD::VFEE_CC;
1600 CCValid = SystemZ::CCMASK_ANY;
1601 return true;
1602
1603 case Intrinsic::s390_vfeezbs:
1604 case Intrinsic::s390_vfeezhs:
1605 case Intrinsic::s390_vfeezfs:
1606 Opcode = SystemZISD::VFEEZ_CC;
1607 CCValid = SystemZ::CCMASK_ANY;
1608 return true;
1609
1610 case Intrinsic::s390_vfenebs:
1611 case Intrinsic::s390_vfenehs:
1612 case Intrinsic::s390_vfenefs:
1613 Opcode = SystemZISD::VFENE_CC;
1614 CCValid = SystemZ::CCMASK_ANY;
1615 return true;
1616
1617 case Intrinsic::s390_vfenezbs:
1618 case Intrinsic::s390_vfenezhs:
1619 case Intrinsic::s390_vfenezfs:
1620 Opcode = SystemZISD::VFENEZ_CC;
1621 CCValid = SystemZ::CCMASK_ANY;
1622 return true;
1623
1624 case Intrinsic::s390_vistrbs:
1625 case Intrinsic::s390_vistrhs:
1626 case Intrinsic::s390_vistrfs:
1627 Opcode = SystemZISD::VISTR_CC;
1628 CCValid = SystemZ::CCMASK_0 | SystemZ::CCMASK_3;
1629 return true;
1630
1631 case Intrinsic::s390_vstrcbs:
1632 case Intrinsic::s390_vstrchs:
1633 case Intrinsic::s390_vstrcfs:
1634 Opcode = SystemZISD::VSTRC_CC;
1635 CCValid = SystemZ::CCMASK_ANY;
1636 return true;
1637
1638 case Intrinsic::s390_vstrczbs:
1639 case Intrinsic::s390_vstrczhs:
1640 case Intrinsic::s390_vstrczfs:
1641 Opcode = SystemZISD::VSTRCZ_CC;
1642 CCValid = SystemZ::CCMASK_ANY;
1643 return true;
1644
1645 case Intrinsic::s390_vfcedbs:
1646 case Intrinsic::s390_vfcesbs:
1647 Opcode = SystemZISD::VFCMPES;
1648 CCValid = SystemZ::CCMASK_VCMP;
1649 return true;
1650
1651 case Intrinsic::s390_vfchdbs:
1652 case Intrinsic::s390_vfchsbs:
1653 Opcode = SystemZISD::VFCMPHS;
1654 CCValid = SystemZ::CCMASK_VCMP;
1655 return true;
1656
1657 case Intrinsic::s390_vfchedbs:
1658 case Intrinsic::s390_vfchesbs:
1659 Opcode = SystemZISD::VFCMPHES;
1660 CCValid = SystemZ::CCMASK_VCMP;
1661 return true;
1662
1663 case Intrinsic::s390_vftcidb:
1664 case Intrinsic::s390_vftcisb:
1665 Opcode = SystemZISD::VFTCI;
1666 CCValid = SystemZ::CCMASK_VCMP;
1667 return true;
1668
1669 case Intrinsic::s390_tdc:
1670 Opcode = SystemZISD::TDC;
1671 CCValid = SystemZ::CCMASK_TDC;
1672 return true;
1673
1674 default:
1675 return false;
1676 }
1677 }
1678
1679 // Emit an intrinsic with chain and an explicit CC register result.
emitIntrinsicWithCCAndChain(SelectionDAG & DAG,SDValue Op,unsigned Opcode)1680 static SDNode *emitIntrinsicWithCCAndChain(SelectionDAG &DAG, SDValue Op,
1681 unsigned Opcode) {
1682 // Copy all operands except the intrinsic ID.
1683 unsigned NumOps = Op.getNumOperands();
1684 SmallVector<SDValue, 6> Ops;
1685 Ops.reserve(NumOps - 1);
1686 Ops.push_back(Op.getOperand(0));
1687 for (unsigned I = 2; I < NumOps; ++I)
1688 Ops.push_back(Op.getOperand(I));
1689
1690 assert(Op->getNumValues() == 2 && "Expected only CC result and chain");
1691 SDVTList RawVTs = DAG.getVTList(MVT::i32, MVT::Other);
1692 SDValue Intr = DAG.getNode(Opcode, SDLoc(Op), RawVTs, Ops);
1693 SDValue OldChain = SDValue(Op.getNode(), 1);
1694 SDValue NewChain = SDValue(Intr.getNode(), 1);
1695 DAG.ReplaceAllUsesOfValueWith(OldChain, NewChain);
1696 return Intr.getNode();
1697 }
1698
1699 // Emit an intrinsic with an explicit CC register result.
emitIntrinsicWithCC(SelectionDAG & DAG,SDValue Op,unsigned Opcode)1700 static SDNode *emitIntrinsicWithCC(SelectionDAG &DAG, SDValue Op,
1701 unsigned Opcode) {
1702 // Copy all operands except the intrinsic ID.
1703 unsigned NumOps = Op.getNumOperands();
1704 SmallVector<SDValue, 6> Ops;
1705 Ops.reserve(NumOps - 1);
1706 for (unsigned I = 1; I < NumOps; ++I)
1707 Ops.push_back(Op.getOperand(I));
1708
1709 SDValue Intr = DAG.getNode(Opcode, SDLoc(Op), Op->getVTList(), Ops);
1710 return Intr.getNode();
1711 }
1712
1713 // CC is a comparison that will be implemented using an integer or
1714 // floating-point comparison. Return the condition code mask for
1715 // a branch on true. In the integer case, CCMASK_CMP_UO is set for
1716 // unsigned comparisons and clear for signed ones. In the floating-point
1717 // case, CCMASK_CMP_UO has its normal mask meaning (unordered).
CCMaskForCondCode(ISD::CondCode CC)1718 static unsigned CCMaskForCondCode(ISD::CondCode CC) {
1719 #define CONV(X) \
1720 case ISD::SET##X: return SystemZ::CCMASK_CMP_##X; \
1721 case ISD::SETO##X: return SystemZ::CCMASK_CMP_##X; \
1722 case ISD::SETU##X: return SystemZ::CCMASK_CMP_UO | SystemZ::CCMASK_CMP_##X
1723
1724 switch (CC) {
1725 default:
1726 llvm_unreachable("Invalid integer condition!");
1727
1728 CONV(EQ);
1729 CONV(NE);
1730 CONV(GT);
1731 CONV(GE);
1732 CONV(LT);
1733 CONV(LE);
1734
1735 case ISD::SETO: return SystemZ::CCMASK_CMP_O;
1736 case ISD::SETUO: return SystemZ::CCMASK_CMP_UO;
1737 }
1738 #undef CONV
1739 }
1740
1741 // If C can be converted to a comparison against zero, adjust the operands
1742 // as necessary.
adjustZeroCmp(SelectionDAG & DAG,const SDLoc & DL,Comparison & C)1743 static void adjustZeroCmp(SelectionDAG &DAG, const SDLoc &DL, Comparison &C) {
1744 if (C.ICmpType == SystemZICMP::UnsignedOnly)
1745 return;
1746
1747 auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1.getNode());
1748 if (!ConstOp1)
1749 return;
1750
1751 int64_t Value = ConstOp1->getSExtValue();
1752 if ((Value == -1 && C.CCMask == SystemZ::CCMASK_CMP_GT) ||
1753 (Value == -1 && C.CCMask == SystemZ::CCMASK_CMP_LE) ||
1754 (Value == 1 && C.CCMask == SystemZ::CCMASK_CMP_LT) ||
1755 (Value == 1 && C.CCMask == SystemZ::CCMASK_CMP_GE)) {
1756 C.CCMask ^= SystemZ::CCMASK_CMP_EQ;
1757 C.Op1 = DAG.getConstant(0, DL, C.Op1.getValueType());
1758 }
1759 }
1760
1761 // If a comparison described by C is suitable for CLI(Y), CHHSI or CLHHSI,
1762 // adjust the operands as necessary.
adjustSubwordCmp(SelectionDAG & DAG,const SDLoc & DL,Comparison & C)1763 static void adjustSubwordCmp(SelectionDAG &DAG, const SDLoc &DL,
1764 Comparison &C) {
1765 // For us to make any changes, it must a comparison between a single-use
1766 // load and a constant.
1767 if (!C.Op0.hasOneUse() ||
1768 C.Op0.getOpcode() != ISD::LOAD ||
1769 C.Op1.getOpcode() != ISD::Constant)
1770 return;
1771
1772 // We must have an 8- or 16-bit load.
1773 auto *Load = cast<LoadSDNode>(C.Op0);
1774 unsigned NumBits = Load->getMemoryVT().getStoreSizeInBits();
1775 if (NumBits != 8 && NumBits != 16)
1776 return;
1777
1778 // The load must be an extending one and the constant must be within the
1779 // range of the unextended value.
1780 auto *ConstOp1 = cast<ConstantSDNode>(C.Op1);
1781 uint64_t Value = ConstOp1->getZExtValue();
1782 uint64_t Mask = (1 << NumBits) - 1;
1783 if (Load->getExtensionType() == ISD::SEXTLOAD) {
1784 // Make sure that ConstOp1 is in range of C.Op0.
1785 int64_t SignedValue = ConstOp1->getSExtValue();
1786 if (uint64_t(SignedValue) + (uint64_t(1) << (NumBits - 1)) > Mask)
1787 return;
1788 if (C.ICmpType != SystemZICMP::SignedOnly) {
1789 // Unsigned comparison between two sign-extended values is equivalent
1790 // to unsigned comparison between two zero-extended values.
1791 Value &= Mask;
1792 } else if (NumBits == 8) {
1793 // Try to treat the comparison as unsigned, so that we can use CLI.
1794 // Adjust CCMask and Value as necessary.
1795 if (Value == 0 && C.CCMask == SystemZ::CCMASK_CMP_LT)
1796 // Test whether the high bit of the byte is set.
1797 Value = 127, C.CCMask = SystemZ::CCMASK_CMP_GT;
1798 else if (Value == 0 && C.CCMask == SystemZ::CCMASK_CMP_GE)
1799 // Test whether the high bit of the byte is clear.
1800 Value = 128, C.CCMask = SystemZ::CCMASK_CMP_LT;
1801 else
1802 // No instruction exists for this combination.
1803 return;
1804 C.ICmpType = SystemZICMP::UnsignedOnly;
1805 }
1806 } else if (Load->getExtensionType() == ISD::ZEXTLOAD) {
1807 if (Value > Mask)
1808 return;
1809 // If the constant is in range, we can use any comparison.
1810 C.ICmpType = SystemZICMP::Any;
1811 } else
1812 return;
1813
1814 // Make sure that the first operand is an i32 of the right extension type.
1815 ISD::LoadExtType ExtType = (C.ICmpType == SystemZICMP::SignedOnly ?
1816 ISD::SEXTLOAD :
1817 ISD::ZEXTLOAD);
1818 if (C.Op0.getValueType() != MVT::i32 ||
1819 Load->getExtensionType() != ExtType) {
1820 C.Op0 = DAG.getExtLoad(ExtType, SDLoc(Load), MVT::i32, Load->getChain(),
1821 Load->getBasePtr(), Load->getPointerInfo(),
1822 Load->getMemoryVT(), Load->getAlignment(),
1823 Load->getMemOperand()->getFlags());
1824 // Update the chain uses.
1825 DAG.ReplaceAllUsesOfValueWith(SDValue(Load, 1), C.Op0.getValue(1));
1826 }
1827
1828 // Make sure that the second operand is an i32 with the right value.
1829 if (C.Op1.getValueType() != MVT::i32 ||
1830 Value != ConstOp1->getZExtValue())
1831 C.Op1 = DAG.getConstant(Value, DL, MVT::i32);
1832 }
1833
1834 // Return true if Op is either an unextended load, or a load suitable
1835 // for integer register-memory comparisons of type ICmpType.
isNaturalMemoryOperand(SDValue Op,unsigned ICmpType)1836 static bool isNaturalMemoryOperand(SDValue Op, unsigned ICmpType) {
1837 auto *Load = dyn_cast<LoadSDNode>(Op.getNode());
1838 if (Load) {
1839 // There are no instructions to compare a register with a memory byte.
1840 if (Load->getMemoryVT() == MVT::i8)
1841 return false;
1842 // Otherwise decide on extension type.
1843 switch (Load->getExtensionType()) {
1844 case ISD::NON_EXTLOAD:
1845 return true;
1846 case ISD::SEXTLOAD:
1847 return ICmpType != SystemZICMP::UnsignedOnly;
1848 case ISD::ZEXTLOAD:
1849 return ICmpType != SystemZICMP::SignedOnly;
1850 default:
1851 break;
1852 }
1853 }
1854 return false;
1855 }
1856
1857 // Return true if it is better to swap the operands of C.
shouldSwapCmpOperands(const Comparison & C)1858 static bool shouldSwapCmpOperands(const Comparison &C) {
1859 // Leave f128 comparisons alone, since they have no memory forms.
1860 if (C.Op0.getValueType() == MVT::f128)
1861 return false;
1862
1863 // Always keep a floating-point constant second, since comparisons with
1864 // zero can use LOAD TEST and comparisons with other constants make a
1865 // natural memory operand.
1866 if (isa<ConstantFPSDNode>(C.Op1))
1867 return false;
1868
1869 // Never swap comparisons with zero since there are many ways to optimize
1870 // those later.
1871 auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1);
1872 if (ConstOp1 && ConstOp1->getZExtValue() == 0)
1873 return false;
1874
1875 // Also keep natural memory operands second if the loaded value is
1876 // only used here. Several comparisons have memory forms.
1877 if (isNaturalMemoryOperand(C.Op1, C.ICmpType) && C.Op1.hasOneUse())
1878 return false;
1879
1880 // Look for cases where Cmp0 is a single-use load and Cmp1 isn't.
1881 // In that case we generally prefer the memory to be second.
1882 if (isNaturalMemoryOperand(C.Op0, C.ICmpType) && C.Op0.hasOneUse()) {
1883 // The only exceptions are when the second operand is a constant and
1884 // we can use things like CHHSI.
1885 if (!ConstOp1)
1886 return true;
1887 // The unsigned memory-immediate instructions can handle 16-bit
1888 // unsigned integers.
1889 if (C.ICmpType != SystemZICMP::SignedOnly &&
1890 isUInt<16>(ConstOp1->getZExtValue()))
1891 return false;
1892 // The signed memory-immediate instructions can handle 16-bit
1893 // signed integers.
1894 if (C.ICmpType != SystemZICMP::UnsignedOnly &&
1895 isInt<16>(ConstOp1->getSExtValue()))
1896 return false;
1897 return true;
1898 }
1899
1900 // Try to promote the use of CGFR and CLGFR.
1901 unsigned Opcode0 = C.Op0.getOpcode();
1902 if (C.ICmpType != SystemZICMP::UnsignedOnly && Opcode0 == ISD::SIGN_EXTEND)
1903 return true;
1904 if (C.ICmpType != SystemZICMP::SignedOnly && Opcode0 == ISD::ZERO_EXTEND)
1905 return true;
1906 if (C.ICmpType != SystemZICMP::SignedOnly &&
1907 Opcode0 == ISD::AND &&
1908 C.Op0.getOperand(1).getOpcode() == ISD::Constant &&
1909 cast<ConstantSDNode>(C.Op0.getOperand(1))->getZExtValue() == 0xffffffff)
1910 return true;
1911
1912 return false;
1913 }
1914
1915 // Return a version of comparison CC mask CCMask in which the LT and GT
1916 // actions are swapped.
reverseCCMask(unsigned CCMask)1917 static unsigned reverseCCMask(unsigned CCMask) {
1918 return ((CCMask & SystemZ::CCMASK_CMP_EQ) |
1919 (CCMask & SystemZ::CCMASK_CMP_GT ? SystemZ::CCMASK_CMP_LT : 0) |
1920 (CCMask & SystemZ::CCMASK_CMP_LT ? SystemZ::CCMASK_CMP_GT : 0) |
1921 (CCMask & SystemZ::CCMASK_CMP_UO));
1922 }
1923
1924 // Check whether C tests for equality between X and Y and whether X - Y
1925 // or Y - X is also computed. In that case it's better to compare the
1926 // result of the subtraction against zero.
adjustForSubtraction(SelectionDAG & DAG,const SDLoc & DL,Comparison & C)1927 static void adjustForSubtraction(SelectionDAG &DAG, const SDLoc &DL,
1928 Comparison &C) {
1929 if (C.CCMask == SystemZ::CCMASK_CMP_EQ ||
1930 C.CCMask == SystemZ::CCMASK_CMP_NE) {
1931 for (auto I = C.Op0->use_begin(), E = C.Op0->use_end(); I != E; ++I) {
1932 SDNode *N = *I;
1933 if (N->getOpcode() == ISD::SUB &&
1934 ((N->getOperand(0) == C.Op0 && N->getOperand(1) == C.Op1) ||
1935 (N->getOperand(0) == C.Op1 && N->getOperand(1) == C.Op0))) {
1936 C.Op0 = SDValue(N, 0);
1937 C.Op1 = DAG.getConstant(0, DL, N->getValueType(0));
1938 return;
1939 }
1940 }
1941 }
1942 }
1943
1944 // Check whether C compares a floating-point value with zero and if that
1945 // floating-point value is also negated. In this case we can use the
1946 // negation to set CC, so avoiding separate LOAD AND TEST and
1947 // LOAD (NEGATIVE/COMPLEMENT) instructions.
adjustForFNeg(Comparison & C)1948 static void adjustForFNeg(Comparison &C) {
1949 auto *C1 = dyn_cast<ConstantFPSDNode>(C.Op1);
1950 if (C1 && C1->isZero()) {
1951 for (auto I = C.Op0->use_begin(), E = C.Op0->use_end(); I != E; ++I) {
1952 SDNode *N = *I;
1953 if (N->getOpcode() == ISD::FNEG) {
1954 C.Op0 = SDValue(N, 0);
1955 C.CCMask = reverseCCMask(C.CCMask);
1956 return;
1957 }
1958 }
1959 }
1960 }
1961
1962 // Check whether C compares (shl X, 32) with 0 and whether X is
1963 // also sign-extended. In that case it is better to test the result
1964 // of the sign extension using LTGFR.
1965 //
1966 // This case is important because InstCombine transforms a comparison
1967 // with (sext (trunc X)) into a comparison with (shl X, 32).
adjustForLTGFR(Comparison & C)1968 static void adjustForLTGFR(Comparison &C) {
1969 // Check for a comparison between (shl X, 32) and 0.
1970 if (C.Op0.getOpcode() == ISD::SHL &&
1971 C.Op0.getValueType() == MVT::i64 &&
1972 C.Op1.getOpcode() == ISD::Constant &&
1973 cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) {
1974 auto *C1 = dyn_cast<ConstantSDNode>(C.Op0.getOperand(1));
1975 if (C1 && C1->getZExtValue() == 32) {
1976 SDValue ShlOp0 = C.Op0.getOperand(0);
1977 // See whether X has any SIGN_EXTEND_INREG uses.
1978 for (auto I = ShlOp0->use_begin(), E = ShlOp0->use_end(); I != E; ++I) {
1979 SDNode *N = *I;
1980 if (N->getOpcode() == ISD::SIGN_EXTEND_INREG &&
1981 cast<VTSDNode>(N->getOperand(1))->getVT() == MVT::i32) {
1982 C.Op0 = SDValue(N, 0);
1983 return;
1984 }
1985 }
1986 }
1987 }
1988 }
1989
1990 // If C compares the truncation of an extending load, try to compare
1991 // the untruncated value instead. This exposes more opportunities to
1992 // reuse CC.
adjustICmpTruncate(SelectionDAG & DAG,const SDLoc & DL,Comparison & C)1993 static void adjustICmpTruncate(SelectionDAG &DAG, const SDLoc &DL,
1994 Comparison &C) {
1995 if (C.Op0.getOpcode() == ISD::TRUNCATE &&
1996 C.Op0.getOperand(0).getOpcode() == ISD::LOAD &&
1997 C.Op1.getOpcode() == ISD::Constant &&
1998 cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) {
1999 auto *L = cast<LoadSDNode>(C.Op0.getOperand(0));
2000 if (L->getMemoryVT().getStoreSizeInBits() <= C.Op0.getValueSizeInBits()) {
2001 unsigned Type = L->getExtensionType();
2002 if ((Type == ISD::ZEXTLOAD && C.ICmpType != SystemZICMP::SignedOnly) ||
2003 (Type == ISD::SEXTLOAD && C.ICmpType != SystemZICMP::UnsignedOnly)) {
2004 C.Op0 = C.Op0.getOperand(0);
2005 C.Op1 = DAG.getConstant(0, DL, C.Op0.getValueType());
2006 }
2007 }
2008 }
2009 }
2010
2011 // Return true if shift operation N has an in-range constant shift value.
2012 // Store it in ShiftVal if so.
isSimpleShift(SDValue N,unsigned & ShiftVal)2013 static bool isSimpleShift(SDValue N, unsigned &ShiftVal) {
2014 auto *Shift = dyn_cast<ConstantSDNode>(N.getOperand(1));
2015 if (!Shift)
2016 return false;
2017
2018 uint64_t Amount = Shift->getZExtValue();
2019 if (Amount >= N.getValueSizeInBits())
2020 return false;
2021
2022 ShiftVal = Amount;
2023 return true;
2024 }
2025
2026 // Check whether an AND with Mask is suitable for a TEST UNDER MASK
2027 // instruction and whether the CC value is descriptive enough to handle
2028 // a comparison of type Opcode between the AND result and CmpVal.
2029 // CCMask says which comparison result is being tested and BitSize is
2030 // the number of bits in the operands. If TEST UNDER MASK can be used,
2031 // return the corresponding CC mask, otherwise return 0.
getTestUnderMaskCond(unsigned BitSize,unsigned CCMask,uint64_t Mask,uint64_t CmpVal,unsigned ICmpType)2032 static unsigned getTestUnderMaskCond(unsigned BitSize, unsigned CCMask,
2033 uint64_t Mask, uint64_t CmpVal,
2034 unsigned ICmpType) {
2035 assert(Mask != 0 && "ANDs with zero should have been removed by now");
2036
2037 // Check whether the mask is suitable for TMHH, TMHL, TMLH or TMLL.
2038 if (!SystemZ::isImmLL(Mask) && !SystemZ::isImmLH(Mask) &&
2039 !SystemZ::isImmHL(Mask) && !SystemZ::isImmHH(Mask))
2040 return 0;
2041
2042 // Work out the masks for the lowest and highest bits.
2043 unsigned HighShift = 63 - countLeadingZeros(Mask);
2044 uint64_t High = uint64_t(1) << HighShift;
2045 uint64_t Low = uint64_t(1) << countTrailingZeros(Mask);
2046
2047 // Signed ordered comparisons are effectively unsigned if the sign
2048 // bit is dropped.
2049 bool EffectivelyUnsigned = (ICmpType != SystemZICMP::SignedOnly);
2050
2051 // Check for equality comparisons with 0, or the equivalent.
2052 if (CmpVal == 0) {
2053 if (CCMask == SystemZ::CCMASK_CMP_EQ)
2054 return SystemZ::CCMASK_TM_ALL_0;
2055 if (CCMask == SystemZ::CCMASK_CMP_NE)
2056 return SystemZ::CCMASK_TM_SOME_1;
2057 }
2058 if (EffectivelyUnsigned && CmpVal > 0 && CmpVal <= Low) {
2059 if (CCMask == SystemZ::CCMASK_CMP_LT)
2060 return SystemZ::CCMASK_TM_ALL_0;
2061 if (CCMask == SystemZ::CCMASK_CMP_GE)
2062 return SystemZ::CCMASK_TM_SOME_1;
2063 }
2064 if (EffectivelyUnsigned && CmpVal < Low) {
2065 if (CCMask == SystemZ::CCMASK_CMP_LE)
2066 return SystemZ::CCMASK_TM_ALL_0;
2067 if (CCMask == SystemZ::CCMASK_CMP_GT)
2068 return SystemZ::CCMASK_TM_SOME_1;
2069 }
2070
2071 // Check for equality comparisons with the mask, or the equivalent.
2072 if (CmpVal == Mask) {
2073 if (CCMask == SystemZ::CCMASK_CMP_EQ)
2074 return SystemZ::CCMASK_TM_ALL_1;
2075 if (CCMask == SystemZ::CCMASK_CMP_NE)
2076 return SystemZ::CCMASK_TM_SOME_0;
2077 }
2078 if (EffectivelyUnsigned && CmpVal >= Mask - Low && CmpVal < Mask) {
2079 if (CCMask == SystemZ::CCMASK_CMP_GT)
2080 return SystemZ::CCMASK_TM_ALL_1;
2081 if (CCMask == SystemZ::CCMASK_CMP_LE)
2082 return SystemZ::CCMASK_TM_SOME_0;
2083 }
2084 if (EffectivelyUnsigned && CmpVal > Mask - Low && CmpVal <= Mask) {
2085 if (CCMask == SystemZ::CCMASK_CMP_GE)
2086 return SystemZ::CCMASK_TM_ALL_1;
2087 if (CCMask == SystemZ::CCMASK_CMP_LT)
2088 return SystemZ::CCMASK_TM_SOME_0;
2089 }
2090
2091 // Check for ordered comparisons with the top bit.
2092 if (EffectivelyUnsigned && CmpVal >= Mask - High && CmpVal < High) {
2093 if (CCMask == SystemZ::CCMASK_CMP_LE)
2094 return SystemZ::CCMASK_TM_MSB_0;
2095 if (CCMask == SystemZ::CCMASK_CMP_GT)
2096 return SystemZ::CCMASK_TM_MSB_1;
2097 }
2098 if (EffectivelyUnsigned && CmpVal > Mask - High && CmpVal <= High) {
2099 if (CCMask == SystemZ::CCMASK_CMP_LT)
2100 return SystemZ::CCMASK_TM_MSB_0;
2101 if (CCMask == SystemZ::CCMASK_CMP_GE)
2102 return SystemZ::CCMASK_TM_MSB_1;
2103 }
2104
2105 // If there are just two bits, we can do equality checks for Low and High
2106 // as well.
2107 if (Mask == Low + High) {
2108 if (CCMask == SystemZ::CCMASK_CMP_EQ && CmpVal == Low)
2109 return SystemZ::CCMASK_TM_MIXED_MSB_0;
2110 if (CCMask == SystemZ::CCMASK_CMP_NE && CmpVal == Low)
2111 return SystemZ::CCMASK_TM_MIXED_MSB_0 ^ SystemZ::CCMASK_ANY;
2112 if (CCMask == SystemZ::CCMASK_CMP_EQ && CmpVal == High)
2113 return SystemZ::CCMASK_TM_MIXED_MSB_1;
2114 if (CCMask == SystemZ::CCMASK_CMP_NE && CmpVal == High)
2115 return SystemZ::CCMASK_TM_MIXED_MSB_1 ^ SystemZ::CCMASK_ANY;
2116 }
2117
2118 // Looks like we've exhausted our options.
2119 return 0;
2120 }
2121
2122 // See whether C can be implemented as a TEST UNDER MASK instruction.
2123 // Update the arguments with the TM version if so.
adjustForTestUnderMask(SelectionDAG & DAG,const SDLoc & DL,Comparison & C)2124 static void adjustForTestUnderMask(SelectionDAG &DAG, const SDLoc &DL,
2125 Comparison &C) {
2126 // Check that we have a comparison with a constant.
2127 auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1);
2128 if (!ConstOp1)
2129 return;
2130 uint64_t CmpVal = ConstOp1->getZExtValue();
2131
2132 // Check whether the nonconstant input is an AND with a constant mask.
2133 Comparison NewC(C);
2134 uint64_t MaskVal;
2135 ConstantSDNode *Mask = nullptr;
2136 if (C.Op0.getOpcode() == ISD::AND) {
2137 NewC.Op0 = C.Op0.getOperand(0);
2138 NewC.Op1 = C.Op0.getOperand(1);
2139 Mask = dyn_cast<ConstantSDNode>(NewC.Op1);
2140 if (!Mask)
2141 return;
2142 MaskVal = Mask->getZExtValue();
2143 } else {
2144 // There is no instruction to compare with a 64-bit immediate
2145 // so use TMHH instead if possible. We need an unsigned ordered
2146 // comparison with an i64 immediate.
2147 if (NewC.Op0.getValueType() != MVT::i64 ||
2148 NewC.CCMask == SystemZ::CCMASK_CMP_EQ ||
2149 NewC.CCMask == SystemZ::CCMASK_CMP_NE ||
2150 NewC.ICmpType == SystemZICMP::SignedOnly)
2151 return;
2152 // Convert LE and GT comparisons into LT and GE.
2153 if (NewC.CCMask == SystemZ::CCMASK_CMP_LE ||
2154 NewC.CCMask == SystemZ::CCMASK_CMP_GT) {
2155 if (CmpVal == uint64_t(-1))
2156 return;
2157 CmpVal += 1;
2158 NewC.CCMask ^= SystemZ::CCMASK_CMP_EQ;
2159 }
2160 // If the low N bits of Op1 are zero than the low N bits of Op0 can
2161 // be masked off without changing the result.
2162 MaskVal = -(CmpVal & -CmpVal);
2163 NewC.ICmpType = SystemZICMP::UnsignedOnly;
2164 }
2165 if (!MaskVal)
2166 return;
2167
2168 // Check whether the combination of mask, comparison value and comparison
2169 // type are suitable.
2170 unsigned BitSize = NewC.Op0.getValueSizeInBits();
2171 unsigned NewCCMask, ShiftVal;
2172 if (NewC.ICmpType != SystemZICMP::SignedOnly &&
2173 NewC.Op0.getOpcode() == ISD::SHL &&
2174 isSimpleShift(NewC.Op0, ShiftVal) &&
2175 (MaskVal >> ShiftVal != 0) &&
2176 ((CmpVal >> ShiftVal) << ShiftVal) == CmpVal &&
2177 (NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask,
2178 MaskVal >> ShiftVal,
2179 CmpVal >> ShiftVal,
2180 SystemZICMP::Any))) {
2181 NewC.Op0 = NewC.Op0.getOperand(0);
2182 MaskVal >>= ShiftVal;
2183 } else if (NewC.ICmpType != SystemZICMP::SignedOnly &&
2184 NewC.Op0.getOpcode() == ISD::SRL &&
2185 isSimpleShift(NewC.Op0, ShiftVal) &&
2186 (MaskVal << ShiftVal != 0) &&
2187 ((CmpVal << ShiftVal) >> ShiftVal) == CmpVal &&
2188 (NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask,
2189 MaskVal << ShiftVal,
2190 CmpVal << ShiftVal,
2191 SystemZICMP::UnsignedOnly))) {
2192 NewC.Op0 = NewC.Op0.getOperand(0);
2193 MaskVal <<= ShiftVal;
2194 } else {
2195 NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask, MaskVal, CmpVal,
2196 NewC.ICmpType);
2197 if (!NewCCMask)
2198 return;
2199 }
2200
2201 // Go ahead and make the change.
2202 C.Opcode = SystemZISD::TM;
2203 C.Op0 = NewC.Op0;
2204 if (Mask && Mask->getZExtValue() == MaskVal)
2205 C.Op1 = SDValue(Mask, 0);
2206 else
2207 C.Op1 = DAG.getConstant(MaskVal, DL, C.Op0.getValueType());
2208 C.CCValid = SystemZ::CCMASK_TM;
2209 C.CCMask = NewCCMask;
2210 }
2211
2212 // See whether the comparison argument contains a redundant AND
2213 // and remove it if so. This sometimes happens due to the generic
2214 // BRCOND expansion.
adjustForRedundantAnd(SelectionDAG & DAG,const SDLoc & DL,Comparison & C)2215 static void adjustForRedundantAnd(SelectionDAG &DAG, const SDLoc &DL,
2216 Comparison &C) {
2217 if (C.Op0.getOpcode() != ISD::AND)
2218 return;
2219 auto *Mask = dyn_cast<ConstantSDNode>(C.Op0.getOperand(1));
2220 if (!Mask)
2221 return;
2222 KnownBits Known = DAG.computeKnownBits(C.Op0.getOperand(0));
2223 if ((~Known.Zero).getZExtValue() & ~Mask->getZExtValue())
2224 return;
2225
2226 C.Op0 = C.Op0.getOperand(0);
2227 }
2228
2229 // Return a Comparison that tests the condition-code result of intrinsic
2230 // node Call against constant integer CC using comparison code Cond.
2231 // Opcode is the opcode of the SystemZISD operation for the intrinsic
2232 // and CCValid is the set of possible condition-code results.
getIntrinsicCmp(SelectionDAG & DAG,unsigned Opcode,SDValue Call,unsigned CCValid,uint64_t CC,ISD::CondCode Cond)2233 static Comparison getIntrinsicCmp(SelectionDAG &DAG, unsigned Opcode,
2234 SDValue Call, unsigned CCValid, uint64_t CC,
2235 ISD::CondCode Cond) {
2236 Comparison C(Call, SDValue());
2237 C.Opcode = Opcode;
2238 C.CCValid = CCValid;
2239 if (Cond == ISD::SETEQ)
2240 // bit 3 for CC==0, bit 0 for CC==3, always false for CC>3.
2241 C.CCMask = CC < 4 ? 1 << (3 - CC) : 0;
2242 else if (Cond == ISD::SETNE)
2243 // ...and the inverse of that.
2244 C.CCMask = CC < 4 ? ~(1 << (3 - CC)) : -1;
2245 else if (Cond == ISD::SETLT || Cond == ISD::SETULT)
2246 // bits above bit 3 for CC==0 (always false), bits above bit 0 for CC==3,
2247 // always true for CC>3.
2248 C.CCMask = CC < 4 ? ~0U << (4 - CC) : -1;
2249 else if (Cond == ISD::SETGE || Cond == ISD::SETUGE)
2250 // ...and the inverse of that.
2251 C.CCMask = CC < 4 ? ~(~0U << (4 - CC)) : 0;
2252 else if (Cond == ISD::SETLE || Cond == ISD::SETULE)
2253 // bit 3 and above for CC==0, bit 0 and above for CC==3 (always true),
2254 // always true for CC>3.
2255 C.CCMask = CC < 4 ? ~0U << (3 - CC) : -1;
2256 else if (Cond == ISD::SETGT || Cond == ISD::SETUGT)
2257 // ...and the inverse of that.
2258 C.CCMask = CC < 4 ? ~(~0U << (3 - CC)) : 0;
2259 else
2260 llvm_unreachable("Unexpected integer comparison type");
2261 C.CCMask &= CCValid;
2262 return C;
2263 }
2264
2265 // Decide how to implement a comparison of type Cond between CmpOp0 with CmpOp1.
getCmp(SelectionDAG & DAG,SDValue CmpOp0,SDValue CmpOp1,ISD::CondCode Cond,const SDLoc & DL)2266 static Comparison getCmp(SelectionDAG &DAG, SDValue CmpOp0, SDValue CmpOp1,
2267 ISD::CondCode Cond, const SDLoc &DL) {
2268 if (CmpOp1.getOpcode() == ISD::Constant) {
2269 uint64_t Constant = cast<ConstantSDNode>(CmpOp1)->getZExtValue();
2270 unsigned Opcode, CCValid;
2271 if (CmpOp0.getOpcode() == ISD::INTRINSIC_W_CHAIN &&
2272 CmpOp0.getResNo() == 0 && CmpOp0->hasNUsesOfValue(1, 0) &&
2273 isIntrinsicWithCCAndChain(CmpOp0, Opcode, CCValid))
2274 return getIntrinsicCmp(DAG, Opcode, CmpOp0, CCValid, Constant, Cond);
2275 if (CmpOp0.getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
2276 CmpOp0.getResNo() == CmpOp0->getNumValues() - 1 &&
2277 isIntrinsicWithCC(CmpOp0, Opcode, CCValid))
2278 return getIntrinsicCmp(DAG, Opcode, CmpOp0, CCValid, Constant, Cond);
2279 }
2280 Comparison C(CmpOp0, CmpOp1);
2281 C.CCMask = CCMaskForCondCode(Cond);
2282 if (C.Op0.getValueType().isFloatingPoint()) {
2283 C.CCValid = SystemZ::CCMASK_FCMP;
2284 C.Opcode = SystemZISD::FCMP;
2285 adjustForFNeg(C);
2286 } else {
2287 C.CCValid = SystemZ::CCMASK_ICMP;
2288 C.Opcode = SystemZISD::ICMP;
2289 // Choose the type of comparison. Equality and inequality tests can
2290 // use either signed or unsigned comparisons. The choice also doesn't
2291 // matter if both sign bits are known to be clear. In those cases we
2292 // want to give the main isel code the freedom to choose whichever
2293 // form fits best.
2294 if (C.CCMask == SystemZ::CCMASK_CMP_EQ ||
2295 C.CCMask == SystemZ::CCMASK_CMP_NE ||
2296 (DAG.SignBitIsZero(C.Op0) && DAG.SignBitIsZero(C.Op1)))
2297 C.ICmpType = SystemZICMP::Any;
2298 else if (C.CCMask & SystemZ::CCMASK_CMP_UO)
2299 C.ICmpType = SystemZICMP::UnsignedOnly;
2300 else
2301 C.ICmpType = SystemZICMP::SignedOnly;
2302 C.CCMask &= ~SystemZ::CCMASK_CMP_UO;
2303 adjustForRedundantAnd(DAG, DL, C);
2304 adjustZeroCmp(DAG, DL, C);
2305 adjustSubwordCmp(DAG, DL, C);
2306 adjustForSubtraction(DAG, DL, C);
2307 adjustForLTGFR(C);
2308 adjustICmpTruncate(DAG, DL, C);
2309 }
2310
2311 if (shouldSwapCmpOperands(C)) {
2312 std::swap(C.Op0, C.Op1);
2313 C.CCMask = reverseCCMask(C.CCMask);
2314 }
2315
2316 adjustForTestUnderMask(DAG, DL, C);
2317 return C;
2318 }
2319
2320 // Emit the comparison instruction described by C.
emitCmp(SelectionDAG & DAG,const SDLoc & DL,Comparison & C)2321 static SDValue emitCmp(SelectionDAG &DAG, const SDLoc &DL, Comparison &C) {
2322 if (!C.Op1.getNode()) {
2323 SDNode *Node;
2324 switch (C.Op0.getOpcode()) {
2325 case ISD::INTRINSIC_W_CHAIN:
2326 Node = emitIntrinsicWithCCAndChain(DAG, C.Op0, C.Opcode);
2327 return SDValue(Node, 0);
2328 case ISD::INTRINSIC_WO_CHAIN:
2329 Node = emitIntrinsicWithCC(DAG, C.Op0, C.Opcode);
2330 return SDValue(Node, Node->getNumValues() - 1);
2331 default:
2332 llvm_unreachable("Invalid comparison operands");
2333 }
2334 }
2335 if (C.Opcode == SystemZISD::ICMP)
2336 return DAG.getNode(SystemZISD::ICMP, DL, MVT::i32, C.Op0, C.Op1,
2337 DAG.getConstant(C.ICmpType, DL, MVT::i32));
2338 if (C.Opcode == SystemZISD::TM) {
2339 bool RegisterOnly = (bool(C.CCMask & SystemZ::CCMASK_TM_MIXED_MSB_0) !=
2340 bool(C.CCMask & SystemZ::CCMASK_TM_MIXED_MSB_1));
2341 return DAG.getNode(SystemZISD::TM, DL, MVT::i32, C.Op0, C.Op1,
2342 DAG.getConstant(RegisterOnly, DL, MVT::i32));
2343 }
2344 return DAG.getNode(C.Opcode, DL, MVT::i32, C.Op0, C.Op1);
2345 }
2346
2347 // Implement a 32-bit *MUL_LOHI operation by extending both operands to
2348 // 64 bits. Extend is the extension type to use. Store the high part
2349 // in Hi and the low part in Lo.
lowerMUL_LOHI32(SelectionDAG & DAG,const SDLoc & DL,unsigned Extend,SDValue Op0,SDValue Op1,SDValue & Hi,SDValue & Lo)2350 static void lowerMUL_LOHI32(SelectionDAG &DAG, const SDLoc &DL, unsigned Extend,
2351 SDValue Op0, SDValue Op1, SDValue &Hi,
2352 SDValue &Lo) {
2353 Op0 = DAG.getNode(Extend, DL, MVT::i64, Op0);
2354 Op1 = DAG.getNode(Extend, DL, MVT::i64, Op1);
2355 SDValue Mul = DAG.getNode(ISD::MUL, DL, MVT::i64, Op0, Op1);
2356 Hi = DAG.getNode(ISD::SRL, DL, MVT::i64, Mul,
2357 DAG.getConstant(32, DL, MVT::i64));
2358 Hi = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Hi);
2359 Lo = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Mul);
2360 }
2361
2362 // Lower a binary operation that produces two VT results, one in each
2363 // half of a GR128 pair. Op0 and Op1 are the VT operands to the operation,
2364 // and Opcode performs the GR128 operation. Store the even register result
2365 // in Even and the odd register result in Odd.
lowerGR128Binary(SelectionDAG & DAG,const SDLoc & DL,EVT VT,unsigned Opcode,SDValue Op0,SDValue Op1,SDValue & Even,SDValue & Odd)2366 static void lowerGR128Binary(SelectionDAG &DAG, const SDLoc &DL, EVT VT,
2367 unsigned Opcode, SDValue Op0, SDValue Op1,
2368 SDValue &Even, SDValue &Odd) {
2369 SDValue Result = DAG.getNode(Opcode, DL, MVT::Untyped, Op0, Op1);
2370 bool Is32Bit = is32Bit(VT);
2371 Even = DAG.getTargetExtractSubreg(SystemZ::even128(Is32Bit), DL, VT, Result);
2372 Odd = DAG.getTargetExtractSubreg(SystemZ::odd128(Is32Bit), DL, VT, Result);
2373 }
2374
2375 // Return an i32 value that is 1 if the CC value produced by CCReg is
2376 // in the mask CCMask and 0 otherwise. CC is known to have a value
2377 // in CCValid, so other values can be ignored.
emitSETCC(SelectionDAG & DAG,const SDLoc & DL,SDValue CCReg,unsigned CCValid,unsigned CCMask)2378 static SDValue emitSETCC(SelectionDAG &DAG, const SDLoc &DL, SDValue CCReg,
2379 unsigned CCValid, unsigned CCMask) {
2380 SDValue Ops[] = { DAG.getConstant(1, DL, MVT::i32),
2381 DAG.getConstant(0, DL, MVT::i32),
2382 DAG.getConstant(CCValid, DL, MVT::i32),
2383 DAG.getConstant(CCMask, DL, MVT::i32), CCReg };
2384 return DAG.getNode(SystemZISD::SELECT_CCMASK, DL, MVT::i32, Ops);
2385 }
2386
2387 // Return the SystemISD vector comparison operation for CC, or 0 if it cannot
2388 // be done directly. IsFP is true if CC is for a floating-point rather than
2389 // integer comparison.
getVectorComparison(ISD::CondCode CC,bool IsFP)2390 static unsigned getVectorComparison(ISD::CondCode CC, bool IsFP) {
2391 switch (CC) {
2392 case ISD::SETOEQ:
2393 case ISD::SETEQ:
2394 return IsFP ? SystemZISD::VFCMPE : SystemZISD::VICMPE;
2395
2396 case ISD::SETOGE:
2397 case ISD::SETGE:
2398 return IsFP ? SystemZISD::VFCMPHE : static_cast<SystemZISD::NodeType>(0);
2399
2400 case ISD::SETOGT:
2401 case ISD::SETGT:
2402 return IsFP ? SystemZISD::VFCMPH : SystemZISD::VICMPH;
2403
2404 case ISD::SETUGT:
2405 return IsFP ? static_cast<SystemZISD::NodeType>(0) : SystemZISD::VICMPHL;
2406
2407 default:
2408 return 0;
2409 }
2410 }
2411
2412 // Return the SystemZISD vector comparison operation for CC or its inverse,
2413 // or 0 if neither can be done directly. Indicate in Invert whether the
2414 // result is for the inverse of CC. IsFP is true if CC is for a
2415 // floating-point rather than integer comparison.
getVectorComparisonOrInvert(ISD::CondCode CC,bool IsFP,bool & Invert)2416 static unsigned getVectorComparisonOrInvert(ISD::CondCode CC, bool IsFP,
2417 bool &Invert) {
2418 if (unsigned Opcode = getVectorComparison(CC, IsFP)) {
2419 Invert = false;
2420 return Opcode;
2421 }
2422
2423 CC = ISD::getSetCCInverse(CC, !IsFP);
2424 if (unsigned Opcode = getVectorComparison(CC, IsFP)) {
2425 Invert = true;
2426 return Opcode;
2427 }
2428
2429 return 0;
2430 }
2431
2432 // Return a v2f64 that contains the extended form of elements Start and Start+1
2433 // of v4f32 value Op.
expandV4F32ToV2F64(SelectionDAG & DAG,int Start,const SDLoc & DL,SDValue Op)2434 static SDValue expandV4F32ToV2F64(SelectionDAG &DAG, int Start, const SDLoc &DL,
2435 SDValue Op) {
2436 int Mask[] = { Start, -1, Start + 1, -1 };
2437 Op = DAG.getVectorShuffle(MVT::v4f32, DL, Op, DAG.getUNDEF(MVT::v4f32), Mask);
2438 return DAG.getNode(SystemZISD::VEXTEND, DL, MVT::v2f64, Op);
2439 }
2440
2441 // Build a comparison of vectors CmpOp0 and CmpOp1 using opcode Opcode,
2442 // producing a result of type VT.
getVectorCmp(SelectionDAG & DAG,unsigned Opcode,const SDLoc & DL,EVT VT,SDValue CmpOp0,SDValue CmpOp1) const2443 SDValue SystemZTargetLowering::getVectorCmp(SelectionDAG &DAG, unsigned Opcode,
2444 const SDLoc &DL, EVT VT,
2445 SDValue CmpOp0,
2446 SDValue CmpOp1) const {
2447 // There is no hardware support for v4f32 (unless we have the vector
2448 // enhancements facility 1), so extend the vector into two v2f64s
2449 // and compare those.
2450 if (CmpOp0.getValueType() == MVT::v4f32 &&
2451 !Subtarget.hasVectorEnhancements1()) {
2452 SDValue H0 = expandV4F32ToV2F64(DAG, 0, DL, CmpOp0);
2453 SDValue L0 = expandV4F32ToV2F64(DAG, 2, DL, CmpOp0);
2454 SDValue H1 = expandV4F32ToV2F64(DAG, 0, DL, CmpOp1);
2455 SDValue L1 = expandV4F32ToV2F64(DAG, 2, DL, CmpOp1);
2456 SDValue HRes = DAG.getNode(Opcode, DL, MVT::v2i64, H0, H1);
2457 SDValue LRes = DAG.getNode(Opcode, DL, MVT::v2i64, L0, L1);
2458 return DAG.getNode(SystemZISD::PACK, DL, VT, HRes, LRes);
2459 }
2460 return DAG.getNode(Opcode, DL, VT, CmpOp0, CmpOp1);
2461 }
2462
2463 // Lower a vector comparison of type CC between CmpOp0 and CmpOp1, producing
2464 // an integer mask of type VT.
lowerVectorSETCC(SelectionDAG & DAG,const SDLoc & DL,EVT VT,ISD::CondCode CC,SDValue CmpOp0,SDValue CmpOp1) const2465 SDValue SystemZTargetLowering::lowerVectorSETCC(SelectionDAG &DAG,
2466 const SDLoc &DL, EVT VT,
2467 ISD::CondCode CC,
2468 SDValue CmpOp0,
2469 SDValue CmpOp1) const {
2470 bool IsFP = CmpOp0.getValueType().isFloatingPoint();
2471 bool Invert = false;
2472 SDValue Cmp;
2473 switch (CC) {
2474 // Handle tests for order using (or (ogt y x) (oge x y)).
2475 case ISD::SETUO:
2476 Invert = true;
2477 LLVM_FALLTHROUGH;
2478 case ISD::SETO: {
2479 assert(IsFP && "Unexpected integer comparison");
2480 SDValue LT = getVectorCmp(DAG, SystemZISD::VFCMPH, DL, VT, CmpOp1, CmpOp0);
2481 SDValue GE = getVectorCmp(DAG, SystemZISD::VFCMPHE, DL, VT, CmpOp0, CmpOp1);
2482 Cmp = DAG.getNode(ISD::OR, DL, VT, LT, GE);
2483 break;
2484 }
2485
2486 // Handle <> tests using (or (ogt y x) (ogt x y)).
2487 case ISD::SETUEQ:
2488 Invert = true;
2489 LLVM_FALLTHROUGH;
2490 case ISD::SETONE: {
2491 assert(IsFP && "Unexpected integer comparison");
2492 SDValue LT = getVectorCmp(DAG, SystemZISD::VFCMPH, DL, VT, CmpOp1, CmpOp0);
2493 SDValue GT = getVectorCmp(DAG, SystemZISD::VFCMPH, DL, VT, CmpOp0, CmpOp1);
2494 Cmp = DAG.getNode(ISD::OR, DL, VT, LT, GT);
2495 break;
2496 }
2497
2498 // Otherwise a single comparison is enough. It doesn't really
2499 // matter whether we try the inversion or the swap first, since
2500 // there are no cases where both work.
2501 default:
2502 if (unsigned Opcode = getVectorComparisonOrInvert(CC, IsFP, Invert))
2503 Cmp = getVectorCmp(DAG, Opcode, DL, VT, CmpOp0, CmpOp1);
2504 else {
2505 CC = ISD::getSetCCSwappedOperands(CC);
2506 if (unsigned Opcode = getVectorComparisonOrInvert(CC, IsFP, Invert))
2507 Cmp = getVectorCmp(DAG, Opcode, DL, VT, CmpOp1, CmpOp0);
2508 else
2509 llvm_unreachable("Unhandled comparison");
2510 }
2511 break;
2512 }
2513 if (Invert) {
2514 SDValue Mask = DAG.getNode(SystemZISD::BYTE_MASK, DL, MVT::v16i8,
2515 DAG.getConstant(65535, DL, MVT::i32));
2516 Mask = DAG.getNode(ISD::BITCAST, DL, VT, Mask);
2517 Cmp = DAG.getNode(ISD::XOR, DL, VT, Cmp, Mask);
2518 }
2519 return Cmp;
2520 }
2521
lowerSETCC(SDValue Op,SelectionDAG & DAG) const2522 SDValue SystemZTargetLowering::lowerSETCC(SDValue Op,
2523 SelectionDAG &DAG) const {
2524 SDValue CmpOp0 = Op.getOperand(0);
2525 SDValue CmpOp1 = Op.getOperand(1);
2526 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
2527 SDLoc DL(Op);
2528 EVT VT = Op.getValueType();
2529 if (VT.isVector())
2530 return lowerVectorSETCC(DAG, DL, VT, CC, CmpOp0, CmpOp1);
2531
2532 Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL));
2533 SDValue CCReg = emitCmp(DAG, DL, C);
2534 return emitSETCC(DAG, DL, CCReg, C.CCValid, C.CCMask);
2535 }
2536
lowerBR_CC(SDValue Op,SelectionDAG & DAG) const2537 SDValue SystemZTargetLowering::lowerBR_CC(SDValue Op, SelectionDAG &DAG) const {
2538 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
2539 SDValue CmpOp0 = Op.getOperand(2);
2540 SDValue CmpOp1 = Op.getOperand(3);
2541 SDValue Dest = Op.getOperand(4);
2542 SDLoc DL(Op);
2543
2544 Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL));
2545 SDValue CCReg = emitCmp(DAG, DL, C);
2546 return DAG.getNode(SystemZISD::BR_CCMASK, DL, Op.getValueType(),
2547 Op.getOperand(0), DAG.getConstant(C.CCValid, DL, MVT::i32),
2548 DAG.getConstant(C.CCMask, DL, MVT::i32), Dest, CCReg);
2549 }
2550
2551 // Return true if Pos is CmpOp and Neg is the negative of CmpOp,
2552 // allowing Pos and Neg to be wider than CmpOp.
isAbsolute(SDValue CmpOp,SDValue Pos,SDValue Neg)2553 static bool isAbsolute(SDValue CmpOp, SDValue Pos, SDValue Neg) {
2554 return (Neg.getOpcode() == ISD::SUB &&
2555 Neg.getOperand(0).getOpcode() == ISD::Constant &&
2556 cast<ConstantSDNode>(Neg.getOperand(0))->getZExtValue() == 0 &&
2557 Neg.getOperand(1) == Pos &&
2558 (Pos == CmpOp ||
2559 (Pos.getOpcode() == ISD::SIGN_EXTEND &&
2560 Pos.getOperand(0) == CmpOp)));
2561 }
2562
2563 // Return the absolute or negative absolute of Op; IsNegative decides which.
getAbsolute(SelectionDAG & DAG,const SDLoc & DL,SDValue Op,bool IsNegative)2564 static SDValue getAbsolute(SelectionDAG &DAG, const SDLoc &DL, SDValue Op,
2565 bool IsNegative) {
2566 Op = DAG.getNode(SystemZISD::IABS, DL, Op.getValueType(), Op);
2567 if (IsNegative)
2568 Op = DAG.getNode(ISD::SUB, DL, Op.getValueType(),
2569 DAG.getConstant(0, DL, Op.getValueType()), Op);
2570 return Op;
2571 }
2572
lowerSELECT_CC(SDValue Op,SelectionDAG & DAG) const2573 SDValue SystemZTargetLowering::lowerSELECT_CC(SDValue Op,
2574 SelectionDAG &DAG) const {
2575 SDValue CmpOp0 = Op.getOperand(0);
2576 SDValue CmpOp1 = Op.getOperand(1);
2577 SDValue TrueOp = Op.getOperand(2);
2578 SDValue FalseOp = Op.getOperand(3);
2579 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
2580 SDLoc DL(Op);
2581
2582 Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL));
2583
2584 // Check for absolute and negative-absolute selections, including those
2585 // where the comparison value is sign-extended (for LPGFR and LNGFR).
2586 // This check supplements the one in DAGCombiner.
2587 if (C.Opcode == SystemZISD::ICMP &&
2588 C.CCMask != SystemZ::CCMASK_CMP_EQ &&
2589 C.CCMask != SystemZ::CCMASK_CMP_NE &&
2590 C.Op1.getOpcode() == ISD::Constant &&
2591 cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) {
2592 if (isAbsolute(C.Op0, TrueOp, FalseOp))
2593 return getAbsolute(DAG, DL, TrueOp, C.CCMask & SystemZ::CCMASK_CMP_LT);
2594 if (isAbsolute(C.Op0, FalseOp, TrueOp))
2595 return getAbsolute(DAG, DL, FalseOp, C.CCMask & SystemZ::CCMASK_CMP_GT);
2596 }
2597
2598 SDValue CCReg = emitCmp(DAG, DL, C);
2599 SDValue Ops[] = {TrueOp, FalseOp, DAG.getConstant(C.CCValid, DL, MVT::i32),
2600 DAG.getConstant(C.CCMask, DL, MVT::i32), CCReg};
2601
2602 return DAG.getNode(SystemZISD::SELECT_CCMASK, DL, Op.getValueType(), Ops);
2603 }
2604
lowerGlobalAddress(GlobalAddressSDNode * Node,SelectionDAG & DAG) const2605 SDValue SystemZTargetLowering::lowerGlobalAddress(GlobalAddressSDNode *Node,
2606 SelectionDAG &DAG) const {
2607 SDLoc DL(Node);
2608 const GlobalValue *GV = Node->getGlobal();
2609 int64_t Offset = Node->getOffset();
2610 EVT PtrVT = getPointerTy(DAG.getDataLayout());
2611 CodeModel::Model CM = DAG.getTarget().getCodeModel();
2612
2613 SDValue Result;
2614 if (Subtarget.isPC32DBLSymbol(GV, CM)) {
2615 // Assign anchors at 1<<12 byte boundaries.
2616 uint64_t Anchor = Offset & ~uint64_t(0xfff);
2617 Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT, Anchor);
2618 Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
2619
2620 // The offset can be folded into the address if it is aligned to a halfword.
2621 Offset -= Anchor;
2622 if (Offset != 0 && (Offset & 1) == 0) {
2623 SDValue Full = DAG.getTargetGlobalAddress(GV, DL, PtrVT, Anchor + Offset);
2624 Result = DAG.getNode(SystemZISD::PCREL_OFFSET, DL, PtrVT, Full, Result);
2625 Offset = 0;
2626 }
2627 } else {
2628 Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, SystemZII::MO_GOT);
2629 Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
2630 Result = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Result,
2631 MachinePointerInfo::getGOT(DAG.getMachineFunction()));
2632 }
2633
2634 // If there was a non-zero offset that we didn't fold, create an explicit
2635 // addition for it.
2636 if (Offset != 0)
2637 Result = DAG.getNode(ISD::ADD, DL, PtrVT, Result,
2638 DAG.getConstant(Offset, DL, PtrVT));
2639
2640 return Result;
2641 }
2642
lowerTLSGetOffset(GlobalAddressSDNode * Node,SelectionDAG & DAG,unsigned Opcode,SDValue GOTOffset) const2643 SDValue SystemZTargetLowering::lowerTLSGetOffset(GlobalAddressSDNode *Node,
2644 SelectionDAG &DAG,
2645 unsigned Opcode,
2646 SDValue GOTOffset) const {
2647 SDLoc DL(Node);
2648 EVT PtrVT = getPointerTy(DAG.getDataLayout());
2649 SDValue Chain = DAG.getEntryNode();
2650 SDValue Glue;
2651
2652 // __tls_get_offset takes the GOT offset in %r2 and the GOT in %r12.
2653 SDValue GOT = DAG.getGLOBAL_OFFSET_TABLE(PtrVT);
2654 Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R12D, GOT, Glue);
2655 Glue = Chain.getValue(1);
2656 Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R2D, GOTOffset, Glue);
2657 Glue = Chain.getValue(1);
2658
2659 // The first call operand is the chain and the second is the TLS symbol.
2660 SmallVector<SDValue, 8> Ops;
2661 Ops.push_back(Chain);
2662 Ops.push_back(DAG.getTargetGlobalAddress(Node->getGlobal(), DL,
2663 Node->getValueType(0),
2664 0, 0));
2665
2666 // Add argument registers to the end of the list so that they are
2667 // known live into the call.
2668 Ops.push_back(DAG.getRegister(SystemZ::R2D, PtrVT));
2669 Ops.push_back(DAG.getRegister(SystemZ::R12D, PtrVT));
2670
2671 // Add a register mask operand representing the call-preserved registers.
2672 const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
2673 const uint32_t *Mask =
2674 TRI->getCallPreservedMask(DAG.getMachineFunction(), CallingConv::C);
2675 assert(Mask && "Missing call preserved mask for calling convention");
2676 Ops.push_back(DAG.getRegisterMask(Mask));
2677
2678 // Glue the call to the argument copies.
2679 Ops.push_back(Glue);
2680
2681 // Emit the call.
2682 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
2683 Chain = DAG.getNode(Opcode, DL, NodeTys, Ops);
2684 Glue = Chain.getValue(1);
2685
2686 // Copy the return value from %r2.
2687 return DAG.getCopyFromReg(Chain, DL, SystemZ::R2D, PtrVT, Glue);
2688 }
2689
lowerThreadPointer(const SDLoc & DL,SelectionDAG & DAG) const2690 SDValue SystemZTargetLowering::lowerThreadPointer(const SDLoc &DL,
2691 SelectionDAG &DAG) const {
2692 SDValue Chain = DAG.getEntryNode();
2693 EVT PtrVT = getPointerTy(DAG.getDataLayout());
2694
2695 // The high part of the thread pointer is in access register 0.
2696 SDValue TPHi = DAG.getCopyFromReg(Chain, DL, SystemZ::A0, MVT::i32);
2697 TPHi = DAG.getNode(ISD::ANY_EXTEND, DL, PtrVT, TPHi);
2698
2699 // The low part of the thread pointer is in access register 1.
2700 SDValue TPLo = DAG.getCopyFromReg(Chain, DL, SystemZ::A1, MVT::i32);
2701 TPLo = DAG.getNode(ISD::ZERO_EXTEND, DL, PtrVT, TPLo);
2702
2703 // Merge them into a single 64-bit address.
2704 SDValue TPHiShifted = DAG.getNode(ISD::SHL, DL, PtrVT, TPHi,
2705 DAG.getConstant(32, DL, PtrVT));
2706 return DAG.getNode(ISD::OR, DL, PtrVT, TPHiShifted, TPLo);
2707 }
2708
lowerGlobalTLSAddress(GlobalAddressSDNode * Node,SelectionDAG & DAG) const2709 SDValue SystemZTargetLowering::lowerGlobalTLSAddress(GlobalAddressSDNode *Node,
2710 SelectionDAG &DAG) const {
2711 if (DAG.getTarget().useEmulatedTLS())
2712 return LowerToTLSEmulatedModel(Node, DAG);
2713 SDLoc DL(Node);
2714 const GlobalValue *GV = Node->getGlobal();
2715 EVT PtrVT = getPointerTy(DAG.getDataLayout());
2716 TLSModel::Model model = DAG.getTarget().getTLSModel(GV);
2717
2718 SDValue TP = lowerThreadPointer(DL, DAG);
2719
2720 // Get the offset of GA from the thread pointer, based on the TLS model.
2721 SDValue Offset;
2722 switch (model) {
2723 case TLSModel::GeneralDynamic: {
2724 // Load the GOT offset of the tls_index (module ID / per-symbol offset).
2725 SystemZConstantPoolValue *CPV =
2726 SystemZConstantPoolValue::Create(GV, SystemZCP::TLSGD);
2727
2728 Offset = DAG.getConstantPool(CPV, PtrVT, 8);
2729 Offset = DAG.getLoad(
2730 PtrVT, DL, DAG.getEntryNode(), Offset,
2731 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
2732
2733 // Call __tls_get_offset to retrieve the offset.
2734 Offset = lowerTLSGetOffset(Node, DAG, SystemZISD::TLS_GDCALL, Offset);
2735 break;
2736 }
2737
2738 case TLSModel::LocalDynamic: {
2739 // Load the GOT offset of the module ID.
2740 SystemZConstantPoolValue *CPV =
2741 SystemZConstantPoolValue::Create(GV, SystemZCP::TLSLDM);
2742
2743 Offset = DAG.getConstantPool(CPV, PtrVT, 8);
2744 Offset = DAG.getLoad(
2745 PtrVT, DL, DAG.getEntryNode(), Offset,
2746 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
2747
2748 // Call __tls_get_offset to retrieve the module base offset.
2749 Offset = lowerTLSGetOffset(Node, DAG, SystemZISD::TLS_LDCALL, Offset);
2750
2751 // Note: The SystemZLDCleanupPass will remove redundant computations
2752 // of the module base offset. Count total number of local-dynamic
2753 // accesses to trigger execution of that pass.
2754 SystemZMachineFunctionInfo* MFI =
2755 DAG.getMachineFunction().getInfo<SystemZMachineFunctionInfo>();
2756 MFI->incNumLocalDynamicTLSAccesses();
2757
2758 // Add the per-symbol offset.
2759 CPV = SystemZConstantPoolValue::Create(GV, SystemZCP::DTPOFF);
2760
2761 SDValue DTPOffset = DAG.getConstantPool(CPV, PtrVT, 8);
2762 DTPOffset = DAG.getLoad(
2763 PtrVT, DL, DAG.getEntryNode(), DTPOffset,
2764 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
2765
2766 Offset = DAG.getNode(ISD::ADD, DL, PtrVT, Offset, DTPOffset);
2767 break;
2768 }
2769
2770 case TLSModel::InitialExec: {
2771 // Load the offset from the GOT.
2772 Offset = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
2773 SystemZII::MO_INDNTPOFF);
2774 Offset = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Offset);
2775 Offset =
2776 DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Offset,
2777 MachinePointerInfo::getGOT(DAG.getMachineFunction()));
2778 break;
2779 }
2780
2781 case TLSModel::LocalExec: {
2782 // Force the offset into the constant pool and load it from there.
2783 SystemZConstantPoolValue *CPV =
2784 SystemZConstantPoolValue::Create(GV, SystemZCP::NTPOFF);
2785
2786 Offset = DAG.getConstantPool(CPV, PtrVT, 8);
2787 Offset = DAG.getLoad(
2788 PtrVT, DL, DAG.getEntryNode(), Offset,
2789 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
2790 break;
2791 }
2792 }
2793
2794 // Add the base and offset together.
2795 return DAG.getNode(ISD::ADD, DL, PtrVT, TP, Offset);
2796 }
2797
lowerBlockAddress(BlockAddressSDNode * Node,SelectionDAG & DAG) const2798 SDValue SystemZTargetLowering::lowerBlockAddress(BlockAddressSDNode *Node,
2799 SelectionDAG &DAG) const {
2800 SDLoc DL(Node);
2801 const BlockAddress *BA = Node->getBlockAddress();
2802 int64_t Offset = Node->getOffset();
2803 EVT PtrVT = getPointerTy(DAG.getDataLayout());
2804
2805 SDValue Result = DAG.getTargetBlockAddress(BA, PtrVT, Offset);
2806 Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
2807 return Result;
2808 }
2809
lowerJumpTable(JumpTableSDNode * JT,SelectionDAG & DAG) const2810 SDValue SystemZTargetLowering::lowerJumpTable(JumpTableSDNode *JT,
2811 SelectionDAG &DAG) const {
2812 SDLoc DL(JT);
2813 EVT PtrVT = getPointerTy(DAG.getDataLayout());
2814 SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), PtrVT);
2815
2816 // Use LARL to load the address of the table.
2817 return DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
2818 }
2819
lowerConstantPool(ConstantPoolSDNode * CP,SelectionDAG & DAG) const2820 SDValue SystemZTargetLowering::lowerConstantPool(ConstantPoolSDNode *CP,
2821 SelectionDAG &DAG) const {
2822 SDLoc DL(CP);
2823 EVT PtrVT = getPointerTy(DAG.getDataLayout());
2824
2825 SDValue Result;
2826 if (CP->isMachineConstantPoolEntry())
2827 Result = DAG.getTargetConstantPool(CP->getMachineCPVal(), PtrVT,
2828 CP->getAlignment());
2829 else
2830 Result = DAG.getTargetConstantPool(CP->getConstVal(), PtrVT,
2831 CP->getAlignment(), CP->getOffset());
2832
2833 // Use LARL to load the address of the constant pool entry.
2834 return DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
2835 }
2836
lowerFRAMEADDR(SDValue Op,SelectionDAG & DAG) const2837 SDValue SystemZTargetLowering::lowerFRAMEADDR(SDValue Op,
2838 SelectionDAG &DAG) const {
2839 MachineFunction &MF = DAG.getMachineFunction();
2840 MachineFrameInfo &MFI = MF.getFrameInfo();
2841 MFI.setFrameAddressIsTaken(true);
2842
2843 SDLoc DL(Op);
2844 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
2845 EVT PtrVT = getPointerTy(DAG.getDataLayout());
2846
2847 // If the back chain frame index has not been allocated yet, do so.
2848 SystemZMachineFunctionInfo *FI = MF.getInfo<SystemZMachineFunctionInfo>();
2849 int BackChainIdx = FI->getFramePointerSaveIndex();
2850 if (!BackChainIdx) {
2851 // By definition, the frame address is the address of the back chain.
2852 BackChainIdx = MFI.CreateFixedObject(8, -SystemZMC::CallFrameSize, false);
2853 FI->setFramePointerSaveIndex(BackChainIdx);
2854 }
2855 SDValue BackChain = DAG.getFrameIndex(BackChainIdx, PtrVT);
2856
2857 // FIXME The frontend should detect this case.
2858 if (Depth > 0) {
2859 report_fatal_error("Unsupported stack frame traversal count");
2860 }
2861
2862 return BackChain;
2863 }
2864
lowerRETURNADDR(SDValue Op,SelectionDAG & DAG) const2865 SDValue SystemZTargetLowering::lowerRETURNADDR(SDValue Op,
2866 SelectionDAG &DAG) const {
2867 MachineFunction &MF = DAG.getMachineFunction();
2868 MachineFrameInfo &MFI = MF.getFrameInfo();
2869 MFI.setReturnAddressIsTaken(true);
2870
2871 if (verifyReturnAddressArgumentIsConstant(Op, DAG))
2872 return SDValue();
2873
2874 SDLoc DL(Op);
2875 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
2876 EVT PtrVT = getPointerTy(DAG.getDataLayout());
2877
2878 // FIXME The frontend should detect this case.
2879 if (Depth > 0) {
2880 report_fatal_error("Unsupported stack frame traversal count");
2881 }
2882
2883 // Return R14D, which has the return address. Mark it an implicit live-in.
2884 unsigned LinkReg = MF.addLiveIn(SystemZ::R14D, &SystemZ::GR64BitRegClass);
2885 return DAG.getCopyFromReg(DAG.getEntryNode(), DL, LinkReg, PtrVT);
2886 }
2887
lowerBITCAST(SDValue Op,SelectionDAG & DAG) const2888 SDValue SystemZTargetLowering::lowerBITCAST(SDValue Op,
2889 SelectionDAG &DAG) const {
2890 SDLoc DL(Op);
2891 SDValue In = Op.getOperand(0);
2892 EVT InVT = In.getValueType();
2893 EVT ResVT = Op.getValueType();
2894
2895 // Convert loads directly. This is normally done by DAGCombiner,
2896 // but we need this case for bitcasts that are created during lowering
2897 // and which are then lowered themselves.
2898 if (auto *LoadN = dyn_cast<LoadSDNode>(In))
2899 if (ISD::isNormalLoad(LoadN)) {
2900 SDValue NewLoad = DAG.getLoad(ResVT, DL, LoadN->getChain(),
2901 LoadN->getBasePtr(), LoadN->getMemOperand());
2902 // Update the chain uses.
2903 DAG.ReplaceAllUsesOfValueWith(SDValue(LoadN, 1), NewLoad.getValue(1));
2904 return NewLoad;
2905 }
2906
2907 if (InVT == MVT::i32 && ResVT == MVT::f32) {
2908 SDValue In64;
2909 if (Subtarget.hasHighWord()) {
2910 SDNode *U64 = DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL,
2911 MVT::i64);
2912 In64 = DAG.getTargetInsertSubreg(SystemZ::subreg_h32, DL,
2913 MVT::i64, SDValue(U64, 0), In);
2914 } else {
2915 In64 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, In);
2916 In64 = DAG.getNode(ISD::SHL, DL, MVT::i64, In64,
2917 DAG.getConstant(32, DL, MVT::i64));
2918 }
2919 SDValue Out64 = DAG.getNode(ISD::BITCAST, DL, MVT::f64, In64);
2920 return DAG.getTargetExtractSubreg(SystemZ::subreg_h32,
2921 DL, MVT::f32, Out64);
2922 }
2923 if (InVT == MVT::f32 && ResVT == MVT::i32) {
2924 SDNode *U64 = DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL, MVT::f64);
2925 SDValue In64 = DAG.getTargetInsertSubreg(SystemZ::subreg_h32, DL,
2926 MVT::f64, SDValue(U64, 0), In);
2927 SDValue Out64 = DAG.getNode(ISD::BITCAST, DL, MVT::i64, In64);
2928 if (Subtarget.hasHighWord())
2929 return DAG.getTargetExtractSubreg(SystemZ::subreg_h32, DL,
2930 MVT::i32, Out64);
2931 SDValue Shift = DAG.getNode(ISD::SRL, DL, MVT::i64, Out64,
2932 DAG.getConstant(32, DL, MVT::i64));
2933 return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Shift);
2934 }
2935 llvm_unreachable("Unexpected bitcast combination");
2936 }
2937
lowerVASTART(SDValue Op,SelectionDAG & DAG) const2938 SDValue SystemZTargetLowering::lowerVASTART(SDValue Op,
2939 SelectionDAG &DAG) const {
2940 MachineFunction &MF = DAG.getMachineFunction();
2941 SystemZMachineFunctionInfo *FuncInfo =
2942 MF.getInfo<SystemZMachineFunctionInfo>();
2943 EVT PtrVT = getPointerTy(DAG.getDataLayout());
2944
2945 SDValue Chain = Op.getOperand(0);
2946 SDValue Addr = Op.getOperand(1);
2947 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
2948 SDLoc DL(Op);
2949
2950 // The initial values of each field.
2951 const unsigned NumFields = 4;
2952 SDValue Fields[NumFields] = {
2953 DAG.getConstant(FuncInfo->getVarArgsFirstGPR(), DL, PtrVT),
2954 DAG.getConstant(FuncInfo->getVarArgsFirstFPR(), DL, PtrVT),
2955 DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT),
2956 DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(), PtrVT)
2957 };
2958
2959 // Store each field into its respective slot.
2960 SDValue MemOps[NumFields];
2961 unsigned Offset = 0;
2962 for (unsigned I = 0; I < NumFields; ++I) {
2963 SDValue FieldAddr = Addr;
2964 if (Offset != 0)
2965 FieldAddr = DAG.getNode(ISD::ADD, DL, PtrVT, FieldAddr,
2966 DAG.getIntPtrConstant(Offset, DL));
2967 MemOps[I] = DAG.getStore(Chain, DL, Fields[I], FieldAddr,
2968 MachinePointerInfo(SV, Offset));
2969 Offset += 8;
2970 }
2971 return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOps);
2972 }
2973
lowerVACOPY(SDValue Op,SelectionDAG & DAG) const2974 SDValue SystemZTargetLowering::lowerVACOPY(SDValue Op,
2975 SelectionDAG &DAG) const {
2976 SDValue Chain = Op.getOperand(0);
2977 SDValue DstPtr = Op.getOperand(1);
2978 SDValue SrcPtr = Op.getOperand(2);
2979 const Value *DstSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue();
2980 const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
2981 SDLoc DL(Op);
2982
2983 return DAG.getMemcpy(Chain, DL, DstPtr, SrcPtr, DAG.getIntPtrConstant(32, DL),
2984 /*Align*/8, /*isVolatile*/false, /*AlwaysInline*/false,
2985 /*isTailCall*/false,
2986 MachinePointerInfo(DstSV), MachinePointerInfo(SrcSV));
2987 }
2988
2989 SDValue SystemZTargetLowering::
lowerDYNAMIC_STACKALLOC(SDValue Op,SelectionDAG & DAG) const2990 lowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG) const {
2991 const TargetFrameLowering *TFI = Subtarget.getFrameLowering();
2992 MachineFunction &MF = DAG.getMachineFunction();
2993 bool RealignOpt = !MF.getFunction().hasFnAttribute("no-realign-stack");
2994 bool StoreBackchain = MF.getFunction().hasFnAttribute("backchain");
2995
2996 SDValue Chain = Op.getOperand(0);
2997 SDValue Size = Op.getOperand(1);
2998 SDValue Align = Op.getOperand(2);
2999 SDLoc DL(Op);
3000
3001 // If user has set the no alignment function attribute, ignore
3002 // alloca alignments.
3003 uint64_t AlignVal = (RealignOpt ?
3004 dyn_cast<ConstantSDNode>(Align)->getZExtValue() : 0);
3005
3006 uint64_t StackAlign = TFI->getStackAlignment();
3007 uint64_t RequiredAlign = std::max(AlignVal, StackAlign);
3008 uint64_t ExtraAlignSpace = RequiredAlign - StackAlign;
3009
3010 unsigned SPReg = getStackPointerRegisterToSaveRestore();
3011 SDValue NeededSpace = Size;
3012
3013 // Get a reference to the stack pointer.
3014 SDValue OldSP = DAG.getCopyFromReg(Chain, DL, SPReg, MVT::i64);
3015
3016 // If we need a backchain, save it now.
3017 SDValue Backchain;
3018 if (StoreBackchain)
3019 Backchain = DAG.getLoad(MVT::i64, DL, Chain, OldSP, MachinePointerInfo());
3020
3021 // Add extra space for alignment if needed.
3022 if (ExtraAlignSpace)
3023 NeededSpace = DAG.getNode(ISD::ADD, DL, MVT::i64, NeededSpace,
3024 DAG.getConstant(ExtraAlignSpace, DL, MVT::i64));
3025
3026 // Get the new stack pointer value.
3027 SDValue NewSP = DAG.getNode(ISD::SUB, DL, MVT::i64, OldSP, NeededSpace);
3028
3029 // Copy the new stack pointer back.
3030 Chain = DAG.getCopyToReg(Chain, DL, SPReg, NewSP);
3031
3032 // The allocated data lives above the 160 bytes allocated for the standard
3033 // frame, plus any outgoing stack arguments. We don't know how much that
3034 // amounts to yet, so emit a special ADJDYNALLOC placeholder.
3035 SDValue ArgAdjust = DAG.getNode(SystemZISD::ADJDYNALLOC, DL, MVT::i64);
3036 SDValue Result = DAG.getNode(ISD::ADD, DL, MVT::i64, NewSP, ArgAdjust);
3037
3038 // Dynamically realign if needed.
3039 if (RequiredAlign > StackAlign) {
3040 Result =
3041 DAG.getNode(ISD::ADD, DL, MVT::i64, Result,
3042 DAG.getConstant(ExtraAlignSpace, DL, MVT::i64));
3043 Result =
3044 DAG.getNode(ISD::AND, DL, MVT::i64, Result,
3045 DAG.getConstant(~(RequiredAlign - 1), DL, MVT::i64));
3046 }
3047
3048 if (StoreBackchain)
3049 Chain = DAG.getStore(Chain, DL, Backchain, NewSP, MachinePointerInfo());
3050
3051 SDValue Ops[2] = { Result, Chain };
3052 return DAG.getMergeValues(Ops, DL);
3053 }
3054
lowerGET_DYNAMIC_AREA_OFFSET(SDValue Op,SelectionDAG & DAG) const3055 SDValue SystemZTargetLowering::lowerGET_DYNAMIC_AREA_OFFSET(
3056 SDValue Op, SelectionDAG &DAG) const {
3057 SDLoc DL(Op);
3058
3059 return DAG.getNode(SystemZISD::ADJDYNALLOC, DL, MVT::i64);
3060 }
3061
lowerSMUL_LOHI(SDValue Op,SelectionDAG & DAG) const3062 SDValue SystemZTargetLowering::lowerSMUL_LOHI(SDValue Op,
3063 SelectionDAG &DAG) const {
3064 EVT VT = Op.getValueType();
3065 SDLoc DL(Op);
3066 SDValue Ops[2];
3067 if (is32Bit(VT))
3068 // Just do a normal 64-bit multiplication and extract the results.
3069 // We define this so that it can be used for constant division.
3070 lowerMUL_LOHI32(DAG, DL, ISD::SIGN_EXTEND, Op.getOperand(0),
3071 Op.getOperand(1), Ops[1], Ops[0]);
3072 else if (Subtarget.hasMiscellaneousExtensions2())
3073 // SystemZISD::SMUL_LOHI returns the low result in the odd register and
3074 // the high result in the even register. ISD::SMUL_LOHI is defined to
3075 // return the low half first, so the results are in reverse order.
3076 lowerGR128Binary(DAG, DL, VT, SystemZISD::SMUL_LOHI,
3077 Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]);
3078 else {
3079 // Do a full 128-bit multiplication based on SystemZISD::UMUL_LOHI:
3080 //
3081 // (ll * rl) + ((lh * rl) << 64) + ((ll * rh) << 64)
3082 //
3083 // but using the fact that the upper halves are either all zeros
3084 // or all ones:
3085 //
3086 // (ll * rl) - ((lh & rl) << 64) - ((ll & rh) << 64)
3087 //
3088 // and grouping the right terms together since they are quicker than the
3089 // multiplication:
3090 //
3091 // (ll * rl) - (((lh & rl) + (ll & rh)) << 64)
3092 SDValue C63 = DAG.getConstant(63, DL, MVT::i64);
3093 SDValue LL = Op.getOperand(0);
3094 SDValue RL = Op.getOperand(1);
3095 SDValue LH = DAG.getNode(ISD::SRA, DL, VT, LL, C63);
3096 SDValue RH = DAG.getNode(ISD::SRA, DL, VT, RL, C63);
3097 // SystemZISD::UMUL_LOHI returns the low result in the odd register and
3098 // the high result in the even register. ISD::SMUL_LOHI is defined to
3099 // return the low half first, so the results are in reverse order.
3100 lowerGR128Binary(DAG, DL, VT, SystemZISD::UMUL_LOHI,
3101 LL, RL, Ops[1], Ops[0]);
3102 SDValue NegLLTimesRH = DAG.getNode(ISD::AND, DL, VT, LL, RH);
3103 SDValue NegLHTimesRL = DAG.getNode(ISD::AND, DL, VT, LH, RL);
3104 SDValue NegSum = DAG.getNode(ISD::ADD, DL, VT, NegLLTimesRH, NegLHTimesRL);
3105 Ops[1] = DAG.getNode(ISD::SUB, DL, VT, Ops[1], NegSum);
3106 }
3107 return DAG.getMergeValues(Ops, DL);
3108 }
3109
lowerUMUL_LOHI(SDValue Op,SelectionDAG & DAG) const3110 SDValue SystemZTargetLowering::lowerUMUL_LOHI(SDValue Op,
3111 SelectionDAG &DAG) const {
3112 EVT VT = Op.getValueType();
3113 SDLoc DL(Op);
3114 SDValue Ops[2];
3115 if (is32Bit(VT))
3116 // Just do a normal 64-bit multiplication and extract the results.
3117 // We define this so that it can be used for constant division.
3118 lowerMUL_LOHI32(DAG, DL, ISD::ZERO_EXTEND, Op.getOperand(0),
3119 Op.getOperand(1), Ops[1], Ops[0]);
3120 else
3121 // SystemZISD::UMUL_LOHI returns the low result in the odd register and
3122 // the high result in the even register. ISD::UMUL_LOHI is defined to
3123 // return the low half first, so the results are in reverse order.
3124 lowerGR128Binary(DAG, DL, VT, SystemZISD::UMUL_LOHI,
3125 Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]);
3126 return DAG.getMergeValues(Ops, DL);
3127 }
3128
lowerSDIVREM(SDValue Op,SelectionDAG & DAG) const3129 SDValue SystemZTargetLowering::lowerSDIVREM(SDValue Op,
3130 SelectionDAG &DAG) const {
3131 SDValue Op0 = Op.getOperand(0);
3132 SDValue Op1 = Op.getOperand(1);
3133 EVT VT = Op.getValueType();
3134 SDLoc DL(Op);
3135
3136 // We use DSGF for 32-bit division. This means the first operand must
3137 // always be 64-bit, and the second operand should be 32-bit whenever
3138 // that is possible, to improve performance.
3139 if (is32Bit(VT))
3140 Op0 = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, Op0);
3141 else if (DAG.ComputeNumSignBits(Op1) > 32)
3142 Op1 = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Op1);
3143
3144 // DSG(F) returns the remainder in the even register and the
3145 // quotient in the odd register.
3146 SDValue Ops[2];
3147 lowerGR128Binary(DAG, DL, VT, SystemZISD::SDIVREM, Op0, Op1, Ops[1], Ops[0]);
3148 return DAG.getMergeValues(Ops, DL);
3149 }
3150
lowerUDIVREM(SDValue Op,SelectionDAG & DAG) const3151 SDValue SystemZTargetLowering::lowerUDIVREM(SDValue Op,
3152 SelectionDAG &DAG) const {
3153 EVT VT = Op.getValueType();
3154 SDLoc DL(Op);
3155
3156 // DL(G) returns the remainder in the even register and the
3157 // quotient in the odd register.
3158 SDValue Ops[2];
3159 lowerGR128Binary(DAG, DL, VT, SystemZISD::UDIVREM,
3160 Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]);
3161 return DAG.getMergeValues(Ops, DL);
3162 }
3163
lowerOR(SDValue Op,SelectionDAG & DAG) const3164 SDValue SystemZTargetLowering::lowerOR(SDValue Op, SelectionDAG &DAG) const {
3165 assert(Op.getValueType() == MVT::i64 && "Should be 64-bit operation");
3166
3167 // Get the known-zero masks for each operand.
3168 SDValue Ops[] = {Op.getOperand(0), Op.getOperand(1)};
3169 KnownBits Known[2] = {DAG.computeKnownBits(Ops[0]),
3170 DAG.computeKnownBits(Ops[1])};
3171
3172 // See if the upper 32 bits of one operand and the lower 32 bits of the
3173 // other are known zero. They are the low and high operands respectively.
3174 uint64_t Masks[] = { Known[0].Zero.getZExtValue(),
3175 Known[1].Zero.getZExtValue() };
3176 unsigned High, Low;
3177 if ((Masks[0] >> 32) == 0xffffffff && uint32_t(Masks[1]) == 0xffffffff)
3178 High = 1, Low = 0;
3179 else if ((Masks[1] >> 32) == 0xffffffff && uint32_t(Masks[0]) == 0xffffffff)
3180 High = 0, Low = 1;
3181 else
3182 return Op;
3183
3184 SDValue LowOp = Ops[Low];
3185 SDValue HighOp = Ops[High];
3186
3187 // If the high part is a constant, we're better off using IILH.
3188 if (HighOp.getOpcode() == ISD::Constant)
3189 return Op;
3190
3191 // If the low part is a constant that is outside the range of LHI,
3192 // then we're better off using IILF.
3193 if (LowOp.getOpcode() == ISD::Constant) {
3194 int64_t Value = int32_t(cast<ConstantSDNode>(LowOp)->getZExtValue());
3195 if (!isInt<16>(Value))
3196 return Op;
3197 }
3198
3199 // Check whether the high part is an AND that doesn't change the
3200 // high 32 bits and just masks out low bits. We can skip it if so.
3201 if (HighOp.getOpcode() == ISD::AND &&
3202 HighOp.getOperand(1).getOpcode() == ISD::Constant) {
3203 SDValue HighOp0 = HighOp.getOperand(0);
3204 uint64_t Mask = cast<ConstantSDNode>(HighOp.getOperand(1))->getZExtValue();
3205 if (DAG.MaskedValueIsZero(HighOp0, APInt(64, ~(Mask | 0xffffffff))))
3206 HighOp = HighOp0;
3207 }
3208
3209 // Take advantage of the fact that all GR32 operations only change the
3210 // low 32 bits by truncating Low to an i32 and inserting it directly
3211 // using a subreg. The interesting cases are those where the truncation
3212 // can be folded.
3213 SDLoc DL(Op);
3214 SDValue Low32 = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, LowOp);
3215 return DAG.getTargetInsertSubreg(SystemZ::subreg_l32, DL,
3216 MVT::i64, HighOp, Low32);
3217 }
3218
3219 // Lower SADDO/SSUBO/UADDO/USUBO nodes.
lowerXALUO(SDValue Op,SelectionDAG & DAG) const3220 SDValue SystemZTargetLowering::lowerXALUO(SDValue Op,
3221 SelectionDAG &DAG) const {
3222 SDNode *N = Op.getNode();
3223 SDValue LHS = N->getOperand(0);
3224 SDValue RHS = N->getOperand(1);
3225 SDLoc DL(N);
3226 unsigned BaseOp = 0;
3227 unsigned CCValid = 0;
3228 unsigned CCMask = 0;
3229
3230 switch (Op.getOpcode()) {
3231 default: llvm_unreachable("Unknown instruction!");
3232 case ISD::SADDO:
3233 BaseOp = SystemZISD::SADDO;
3234 CCValid = SystemZ::CCMASK_ARITH;
3235 CCMask = SystemZ::CCMASK_ARITH_OVERFLOW;
3236 break;
3237 case ISD::SSUBO:
3238 BaseOp = SystemZISD::SSUBO;
3239 CCValid = SystemZ::CCMASK_ARITH;
3240 CCMask = SystemZ::CCMASK_ARITH_OVERFLOW;
3241 break;
3242 case ISD::UADDO:
3243 BaseOp = SystemZISD::UADDO;
3244 CCValid = SystemZ::CCMASK_LOGICAL;
3245 CCMask = SystemZ::CCMASK_LOGICAL_CARRY;
3246 break;
3247 case ISD::USUBO:
3248 BaseOp = SystemZISD::USUBO;
3249 CCValid = SystemZ::CCMASK_LOGICAL;
3250 CCMask = SystemZ::CCMASK_LOGICAL_BORROW;
3251 break;
3252 }
3253
3254 SDVTList VTs = DAG.getVTList(N->getValueType(0), MVT::i32);
3255 SDValue Result = DAG.getNode(BaseOp, DL, VTs, LHS, RHS);
3256
3257 SDValue SetCC = emitSETCC(DAG, DL, Result.getValue(1), CCValid, CCMask);
3258 if (N->getValueType(1) == MVT::i1)
3259 SetCC = DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, SetCC);
3260
3261 return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Result, SetCC);
3262 }
3263
3264 // Lower ADDCARRY/SUBCARRY nodes.
lowerADDSUBCARRY(SDValue Op,SelectionDAG & DAG) const3265 SDValue SystemZTargetLowering::lowerADDSUBCARRY(SDValue Op,
3266 SelectionDAG &DAG) const {
3267
3268 SDNode *N = Op.getNode();
3269 MVT VT = N->getSimpleValueType(0);
3270
3271 // Let legalize expand this if it isn't a legal type yet.
3272 if (!DAG.getTargetLoweringInfo().isTypeLegal(VT))
3273 return SDValue();
3274
3275 SDValue LHS = N->getOperand(0);
3276 SDValue RHS = N->getOperand(1);
3277 SDValue Carry = Op.getOperand(2);
3278 SDLoc DL(N);
3279 unsigned BaseOp = 0;
3280 unsigned CCValid = 0;
3281 unsigned CCMask = 0;
3282
3283 switch (Op.getOpcode()) {
3284 default: llvm_unreachable("Unknown instruction!");
3285 case ISD::ADDCARRY:
3286 BaseOp = SystemZISD::ADDCARRY;
3287 CCValid = SystemZ::CCMASK_LOGICAL;
3288 CCMask = SystemZ::CCMASK_LOGICAL_CARRY;
3289 break;
3290 case ISD::SUBCARRY:
3291 BaseOp = SystemZISD::SUBCARRY;
3292 CCValid = SystemZ::CCMASK_LOGICAL;
3293 CCMask = SystemZ::CCMASK_LOGICAL_BORROW;
3294 break;
3295 }
3296
3297 // Set the condition code from the carry flag.
3298 Carry = DAG.getNode(SystemZISD::GET_CCMASK, DL, MVT::i32, Carry,
3299 DAG.getConstant(CCValid, DL, MVT::i32),
3300 DAG.getConstant(CCMask, DL, MVT::i32));
3301
3302 SDVTList VTs = DAG.getVTList(VT, MVT::i32);
3303 SDValue Result = DAG.getNode(BaseOp, DL, VTs, LHS, RHS, Carry);
3304
3305 SDValue SetCC = emitSETCC(DAG, DL, Result.getValue(1), CCValid, CCMask);
3306 if (N->getValueType(1) == MVT::i1)
3307 SetCC = DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, SetCC);
3308
3309 return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Result, SetCC);
3310 }
3311
lowerCTPOP(SDValue Op,SelectionDAG & DAG) const3312 SDValue SystemZTargetLowering::lowerCTPOP(SDValue Op,
3313 SelectionDAG &DAG) const {
3314 EVT VT = Op.getValueType();
3315 SDLoc DL(Op);
3316 Op = Op.getOperand(0);
3317
3318 // Handle vector types via VPOPCT.
3319 if (VT.isVector()) {
3320 Op = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, Op);
3321 Op = DAG.getNode(SystemZISD::POPCNT, DL, MVT::v16i8, Op);
3322 switch (VT.getScalarSizeInBits()) {
3323 case 8:
3324 break;
3325 case 16: {
3326 Op = DAG.getNode(ISD::BITCAST, DL, VT, Op);
3327 SDValue Shift = DAG.getConstant(8, DL, MVT::i32);
3328 SDValue Tmp = DAG.getNode(SystemZISD::VSHL_BY_SCALAR, DL, VT, Op, Shift);
3329 Op = DAG.getNode(ISD::ADD, DL, VT, Op, Tmp);
3330 Op = DAG.getNode(SystemZISD::VSRL_BY_SCALAR, DL, VT, Op, Shift);
3331 break;
3332 }
3333 case 32: {
3334 SDValue Tmp = DAG.getNode(SystemZISD::BYTE_MASK, DL, MVT::v16i8,
3335 DAG.getConstant(0, DL, MVT::i32));
3336 Op = DAG.getNode(SystemZISD::VSUM, DL, VT, Op, Tmp);
3337 break;
3338 }
3339 case 64: {
3340 SDValue Tmp = DAG.getNode(SystemZISD::BYTE_MASK, DL, MVT::v16i8,
3341 DAG.getConstant(0, DL, MVT::i32));
3342 Op = DAG.getNode(SystemZISD::VSUM, DL, MVT::v4i32, Op, Tmp);
3343 Op = DAG.getNode(SystemZISD::VSUM, DL, VT, Op, Tmp);
3344 break;
3345 }
3346 default:
3347 llvm_unreachable("Unexpected type");
3348 }
3349 return Op;
3350 }
3351
3352 // Get the known-zero mask for the operand.
3353 KnownBits Known = DAG.computeKnownBits(Op);
3354 unsigned NumSignificantBits = (~Known.Zero).getActiveBits();
3355 if (NumSignificantBits == 0)
3356 return DAG.getConstant(0, DL, VT);
3357
3358 // Skip known-zero high parts of the operand.
3359 int64_t OrigBitSize = VT.getSizeInBits();
3360 int64_t BitSize = (int64_t)1 << Log2_32_Ceil(NumSignificantBits);
3361 BitSize = std::min(BitSize, OrigBitSize);
3362
3363 // The POPCNT instruction counts the number of bits in each byte.
3364 Op = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op);
3365 Op = DAG.getNode(SystemZISD::POPCNT, DL, MVT::i64, Op);
3366 Op = DAG.getNode(ISD::TRUNCATE, DL, VT, Op);
3367
3368 // Add up per-byte counts in a binary tree. All bits of Op at
3369 // position larger than BitSize remain zero throughout.
3370 for (int64_t I = BitSize / 2; I >= 8; I = I / 2) {
3371 SDValue Tmp = DAG.getNode(ISD::SHL, DL, VT, Op, DAG.getConstant(I, DL, VT));
3372 if (BitSize != OrigBitSize)
3373 Tmp = DAG.getNode(ISD::AND, DL, VT, Tmp,
3374 DAG.getConstant(((uint64_t)1 << BitSize) - 1, DL, VT));
3375 Op = DAG.getNode(ISD::ADD, DL, VT, Op, Tmp);
3376 }
3377
3378 // Extract overall result from high byte.
3379 if (BitSize > 8)
3380 Op = DAG.getNode(ISD::SRL, DL, VT, Op,
3381 DAG.getConstant(BitSize - 8, DL, VT));
3382
3383 return Op;
3384 }
3385
lowerATOMIC_FENCE(SDValue Op,SelectionDAG & DAG) const3386 SDValue SystemZTargetLowering::lowerATOMIC_FENCE(SDValue Op,
3387 SelectionDAG &DAG) const {
3388 SDLoc DL(Op);
3389 AtomicOrdering FenceOrdering = static_cast<AtomicOrdering>(
3390 cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue());
3391 SyncScope::ID FenceSSID = static_cast<SyncScope::ID>(
3392 cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue());
3393
3394 // The only fence that needs an instruction is a sequentially-consistent
3395 // cross-thread fence.
3396 if (FenceOrdering == AtomicOrdering::SequentiallyConsistent &&
3397 FenceSSID == SyncScope::System) {
3398 return SDValue(DAG.getMachineNode(SystemZ::Serialize, DL, MVT::Other,
3399 Op.getOperand(0)),
3400 0);
3401 }
3402
3403 // MEMBARRIER is a compiler barrier; it codegens to a no-op.
3404 return DAG.getNode(SystemZISD::MEMBARRIER, DL, MVT::Other, Op.getOperand(0));
3405 }
3406
3407 // Op is an atomic load. Lower it into a normal volatile load.
lowerATOMIC_LOAD(SDValue Op,SelectionDAG & DAG) const3408 SDValue SystemZTargetLowering::lowerATOMIC_LOAD(SDValue Op,
3409 SelectionDAG &DAG) const {
3410 auto *Node = cast<AtomicSDNode>(Op.getNode());
3411 return DAG.getExtLoad(ISD::EXTLOAD, SDLoc(Op), Op.getValueType(),
3412 Node->getChain(), Node->getBasePtr(),
3413 Node->getMemoryVT(), Node->getMemOperand());
3414 }
3415
3416 // Op is an atomic store. Lower it into a normal volatile store.
lowerATOMIC_STORE(SDValue Op,SelectionDAG & DAG) const3417 SDValue SystemZTargetLowering::lowerATOMIC_STORE(SDValue Op,
3418 SelectionDAG &DAG) const {
3419 auto *Node = cast<AtomicSDNode>(Op.getNode());
3420 SDValue Chain = DAG.getTruncStore(Node->getChain(), SDLoc(Op), Node->getVal(),
3421 Node->getBasePtr(), Node->getMemoryVT(),
3422 Node->getMemOperand());
3423 // We have to enforce sequential consistency by performing a
3424 // serialization operation after the store.
3425 if (Node->getOrdering() == AtomicOrdering::SequentiallyConsistent)
3426 Chain = SDValue(DAG.getMachineNode(SystemZ::Serialize, SDLoc(Op),
3427 MVT::Other, Chain), 0);
3428 return Chain;
3429 }
3430
3431 // Op is an 8-, 16-bit or 32-bit ATOMIC_LOAD_* operation. Lower the first
3432 // two into the fullword ATOMIC_LOADW_* operation given by Opcode.
lowerATOMIC_LOAD_OP(SDValue Op,SelectionDAG & DAG,unsigned Opcode) const3433 SDValue SystemZTargetLowering::lowerATOMIC_LOAD_OP(SDValue Op,
3434 SelectionDAG &DAG,
3435 unsigned Opcode) const {
3436 auto *Node = cast<AtomicSDNode>(Op.getNode());
3437
3438 // 32-bit operations need no code outside the main loop.
3439 EVT NarrowVT = Node->getMemoryVT();
3440 EVT WideVT = MVT::i32;
3441 if (NarrowVT == WideVT)
3442 return Op;
3443
3444 int64_t BitSize = NarrowVT.getSizeInBits();
3445 SDValue ChainIn = Node->getChain();
3446 SDValue Addr = Node->getBasePtr();
3447 SDValue Src2 = Node->getVal();
3448 MachineMemOperand *MMO = Node->getMemOperand();
3449 SDLoc DL(Node);
3450 EVT PtrVT = Addr.getValueType();
3451
3452 // Convert atomic subtracts of constants into additions.
3453 if (Opcode == SystemZISD::ATOMIC_LOADW_SUB)
3454 if (auto *Const = dyn_cast<ConstantSDNode>(Src2)) {
3455 Opcode = SystemZISD::ATOMIC_LOADW_ADD;
3456 Src2 = DAG.getConstant(-Const->getSExtValue(), DL, Src2.getValueType());
3457 }
3458
3459 // Get the address of the containing word.
3460 SDValue AlignedAddr = DAG.getNode(ISD::AND, DL, PtrVT, Addr,
3461 DAG.getConstant(-4, DL, PtrVT));
3462
3463 // Get the number of bits that the word must be rotated left in order
3464 // to bring the field to the top bits of a GR32.
3465 SDValue BitShift = DAG.getNode(ISD::SHL, DL, PtrVT, Addr,
3466 DAG.getConstant(3, DL, PtrVT));
3467 BitShift = DAG.getNode(ISD::TRUNCATE, DL, WideVT, BitShift);
3468
3469 // Get the complementing shift amount, for rotating a field in the top
3470 // bits back to its proper position.
3471 SDValue NegBitShift = DAG.getNode(ISD::SUB, DL, WideVT,
3472 DAG.getConstant(0, DL, WideVT), BitShift);
3473
3474 // Extend the source operand to 32 bits and prepare it for the inner loop.
3475 // ATOMIC_SWAPW uses RISBG to rotate the field left, but all other
3476 // operations require the source to be shifted in advance. (This shift
3477 // can be folded if the source is constant.) For AND and NAND, the lower
3478 // bits must be set, while for other opcodes they should be left clear.
3479 if (Opcode != SystemZISD::ATOMIC_SWAPW)
3480 Src2 = DAG.getNode(ISD::SHL, DL, WideVT, Src2,
3481 DAG.getConstant(32 - BitSize, DL, WideVT));
3482 if (Opcode == SystemZISD::ATOMIC_LOADW_AND ||
3483 Opcode == SystemZISD::ATOMIC_LOADW_NAND)
3484 Src2 = DAG.getNode(ISD::OR, DL, WideVT, Src2,
3485 DAG.getConstant(uint32_t(-1) >> BitSize, DL, WideVT));
3486
3487 // Construct the ATOMIC_LOADW_* node.
3488 SDVTList VTList = DAG.getVTList(WideVT, MVT::Other);
3489 SDValue Ops[] = { ChainIn, AlignedAddr, Src2, BitShift, NegBitShift,
3490 DAG.getConstant(BitSize, DL, WideVT) };
3491 SDValue AtomicOp = DAG.getMemIntrinsicNode(Opcode, DL, VTList, Ops,
3492 NarrowVT, MMO);
3493
3494 // Rotate the result of the final CS so that the field is in the lower
3495 // bits of a GR32, then truncate it.
3496 SDValue ResultShift = DAG.getNode(ISD::ADD, DL, WideVT, BitShift,
3497 DAG.getConstant(BitSize, DL, WideVT));
3498 SDValue Result = DAG.getNode(ISD::ROTL, DL, WideVT, AtomicOp, ResultShift);
3499
3500 SDValue RetOps[2] = { Result, AtomicOp.getValue(1) };
3501 return DAG.getMergeValues(RetOps, DL);
3502 }
3503
3504 // Op is an ATOMIC_LOAD_SUB operation. Lower 8- and 16-bit operations
3505 // into ATOMIC_LOADW_SUBs and decide whether to convert 32- and 64-bit
3506 // operations into additions.
lowerATOMIC_LOAD_SUB(SDValue Op,SelectionDAG & DAG) const3507 SDValue SystemZTargetLowering::lowerATOMIC_LOAD_SUB(SDValue Op,
3508 SelectionDAG &DAG) const {
3509 auto *Node = cast<AtomicSDNode>(Op.getNode());
3510 EVT MemVT = Node->getMemoryVT();
3511 if (MemVT == MVT::i32 || MemVT == MVT::i64) {
3512 // A full-width operation.
3513 assert(Op.getValueType() == MemVT && "Mismatched VTs");
3514 SDValue Src2 = Node->getVal();
3515 SDValue NegSrc2;
3516 SDLoc DL(Src2);
3517
3518 if (auto *Op2 = dyn_cast<ConstantSDNode>(Src2)) {
3519 // Use an addition if the operand is constant and either LAA(G) is
3520 // available or the negative value is in the range of A(G)FHI.
3521 int64_t Value = (-Op2->getAPIntValue()).getSExtValue();
3522 if (isInt<32>(Value) || Subtarget.hasInterlockedAccess1())
3523 NegSrc2 = DAG.getConstant(Value, DL, MemVT);
3524 } else if (Subtarget.hasInterlockedAccess1())
3525 // Use LAA(G) if available.
3526 NegSrc2 = DAG.getNode(ISD::SUB, DL, MemVT, DAG.getConstant(0, DL, MemVT),
3527 Src2);
3528
3529 if (NegSrc2.getNode())
3530 return DAG.getAtomic(ISD::ATOMIC_LOAD_ADD, DL, MemVT,
3531 Node->getChain(), Node->getBasePtr(), NegSrc2,
3532 Node->getMemOperand());
3533
3534 // Use the node as-is.
3535 return Op;
3536 }
3537
3538 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_SUB);
3539 }
3540
3541 // Lower 8/16/32/64-bit ATOMIC_CMP_SWAP_WITH_SUCCESS node.
lowerATOMIC_CMP_SWAP(SDValue Op,SelectionDAG & DAG) const3542 SDValue SystemZTargetLowering::lowerATOMIC_CMP_SWAP(SDValue Op,
3543 SelectionDAG &DAG) const {
3544 auto *Node = cast<AtomicSDNode>(Op.getNode());
3545 SDValue ChainIn = Node->getOperand(0);
3546 SDValue Addr = Node->getOperand(1);
3547 SDValue CmpVal = Node->getOperand(2);
3548 SDValue SwapVal = Node->getOperand(3);
3549 MachineMemOperand *MMO = Node->getMemOperand();
3550 SDLoc DL(Node);
3551
3552 // We have native support for 32-bit and 64-bit compare and swap, but we
3553 // still need to expand extracting the "success" result from the CC.
3554 EVT NarrowVT = Node->getMemoryVT();
3555 EVT WideVT = NarrowVT == MVT::i64 ? MVT::i64 : MVT::i32;
3556 if (NarrowVT == WideVT) {
3557 SDVTList Tys = DAG.getVTList(WideVT, MVT::i32, MVT::Other);
3558 SDValue Ops[] = { ChainIn, Addr, CmpVal, SwapVal };
3559 SDValue AtomicOp = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_CMP_SWAP,
3560 DL, Tys, Ops, NarrowVT, MMO);
3561 SDValue Success = emitSETCC(DAG, DL, AtomicOp.getValue(1),
3562 SystemZ::CCMASK_CS, SystemZ::CCMASK_CS_EQ);
3563
3564 DAG.ReplaceAllUsesOfValueWith(Op.getValue(0), AtomicOp.getValue(0));
3565 DAG.ReplaceAllUsesOfValueWith(Op.getValue(1), Success);
3566 DAG.ReplaceAllUsesOfValueWith(Op.getValue(2), AtomicOp.getValue(2));
3567 return SDValue();
3568 }
3569
3570 // Convert 8-bit and 16-bit compare and swap to a loop, implemented
3571 // via a fullword ATOMIC_CMP_SWAPW operation.
3572 int64_t BitSize = NarrowVT.getSizeInBits();
3573 EVT PtrVT = Addr.getValueType();
3574
3575 // Get the address of the containing word.
3576 SDValue AlignedAddr = DAG.getNode(ISD::AND, DL, PtrVT, Addr,
3577 DAG.getConstant(-4, DL, PtrVT));
3578
3579 // Get the number of bits that the word must be rotated left in order
3580 // to bring the field to the top bits of a GR32.
3581 SDValue BitShift = DAG.getNode(ISD::SHL, DL, PtrVT, Addr,
3582 DAG.getConstant(3, DL, PtrVT));
3583 BitShift = DAG.getNode(ISD::TRUNCATE, DL, WideVT, BitShift);
3584
3585 // Get the complementing shift amount, for rotating a field in the top
3586 // bits back to its proper position.
3587 SDValue NegBitShift = DAG.getNode(ISD::SUB, DL, WideVT,
3588 DAG.getConstant(0, DL, WideVT), BitShift);
3589
3590 // Construct the ATOMIC_CMP_SWAPW node.
3591 SDVTList VTList = DAG.getVTList(WideVT, MVT::i32, MVT::Other);
3592 SDValue Ops[] = { ChainIn, AlignedAddr, CmpVal, SwapVal, BitShift,
3593 NegBitShift, DAG.getConstant(BitSize, DL, WideVT) };
3594 SDValue AtomicOp = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_CMP_SWAPW, DL,
3595 VTList, Ops, NarrowVT, MMO);
3596 SDValue Success = emitSETCC(DAG, DL, AtomicOp.getValue(1),
3597 SystemZ::CCMASK_ICMP, SystemZ::CCMASK_CMP_EQ);
3598
3599 DAG.ReplaceAllUsesOfValueWith(Op.getValue(0), AtomicOp.getValue(0));
3600 DAG.ReplaceAllUsesOfValueWith(Op.getValue(1), Success);
3601 DAG.ReplaceAllUsesOfValueWith(Op.getValue(2), AtomicOp.getValue(2));
3602 return SDValue();
3603 }
3604
lowerSTACKSAVE(SDValue Op,SelectionDAG & DAG) const3605 SDValue SystemZTargetLowering::lowerSTACKSAVE(SDValue Op,
3606 SelectionDAG &DAG) const {
3607 MachineFunction &MF = DAG.getMachineFunction();
3608 MF.getInfo<SystemZMachineFunctionInfo>()->setManipulatesSP(true);
3609 return DAG.getCopyFromReg(Op.getOperand(0), SDLoc(Op),
3610 SystemZ::R15D, Op.getValueType());
3611 }
3612
lowerSTACKRESTORE(SDValue Op,SelectionDAG & DAG) const3613 SDValue SystemZTargetLowering::lowerSTACKRESTORE(SDValue Op,
3614 SelectionDAG &DAG) const {
3615 MachineFunction &MF = DAG.getMachineFunction();
3616 MF.getInfo<SystemZMachineFunctionInfo>()->setManipulatesSP(true);
3617 bool StoreBackchain = MF.getFunction().hasFnAttribute("backchain");
3618
3619 SDValue Chain = Op.getOperand(0);
3620 SDValue NewSP = Op.getOperand(1);
3621 SDValue Backchain;
3622 SDLoc DL(Op);
3623
3624 if (StoreBackchain) {
3625 SDValue OldSP = DAG.getCopyFromReg(Chain, DL, SystemZ::R15D, MVT::i64);
3626 Backchain = DAG.getLoad(MVT::i64, DL, Chain, OldSP, MachinePointerInfo());
3627 }
3628
3629 Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R15D, NewSP);
3630
3631 if (StoreBackchain)
3632 Chain = DAG.getStore(Chain, DL, Backchain, NewSP, MachinePointerInfo());
3633
3634 return Chain;
3635 }
3636
lowerPREFETCH(SDValue Op,SelectionDAG & DAG) const3637 SDValue SystemZTargetLowering::lowerPREFETCH(SDValue Op,
3638 SelectionDAG &DAG) const {
3639 bool IsData = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue();
3640 if (!IsData)
3641 // Just preserve the chain.
3642 return Op.getOperand(0);
3643
3644 SDLoc DL(Op);
3645 bool IsWrite = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue();
3646 unsigned Code = IsWrite ? SystemZ::PFD_WRITE : SystemZ::PFD_READ;
3647 auto *Node = cast<MemIntrinsicSDNode>(Op.getNode());
3648 SDValue Ops[] = {
3649 Op.getOperand(0),
3650 DAG.getConstant(Code, DL, MVT::i32),
3651 Op.getOperand(1)
3652 };
3653 return DAG.getMemIntrinsicNode(SystemZISD::PREFETCH, DL,
3654 Node->getVTList(), Ops,
3655 Node->getMemoryVT(), Node->getMemOperand());
3656 }
3657
3658 // Convert condition code in CCReg to an i32 value.
getCCResult(SelectionDAG & DAG,SDValue CCReg)3659 static SDValue getCCResult(SelectionDAG &DAG, SDValue CCReg) {
3660 SDLoc DL(CCReg);
3661 SDValue IPM = DAG.getNode(SystemZISD::IPM, DL, MVT::i32, CCReg);
3662 return DAG.getNode(ISD::SRL, DL, MVT::i32, IPM,
3663 DAG.getConstant(SystemZ::IPM_CC, DL, MVT::i32));
3664 }
3665
3666 SDValue
lowerINTRINSIC_W_CHAIN(SDValue Op,SelectionDAG & DAG) const3667 SystemZTargetLowering::lowerINTRINSIC_W_CHAIN(SDValue Op,
3668 SelectionDAG &DAG) const {
3669 unsigned Opcode, CCValid;
3670 if (isIntrinsicWithCCAndChain(Op, Opcode, CCValid)) {
3671 assert(Op->getNumValues() == 2 && "Expected only CC result and chain");
3672 SDNode *Node = emitIntrinsicWithCCAndChain(DAG, Op, Opcode);
3673 SDValue CC = getCCResult(DAG, SDValue(Node, 0));
3674 DAG.ReplaceAllUsesOfValueWith(SDValue(Op.getNode(), 0), CC);
3675 return SDValue();
3676 }
3677
3678 return SDValue();
3679 }
3680
3681 SDValue
lowerINTRINSIC_WO_CHAIN(SDValue Op,SelectionDAG & DAG) const3682 SystemZTargetLowering::lowerINTRINSIC_WO_CHAIN(SDValue Op,
3683 SelectionDAG &DAG) const {
3684 unsigned Opcode, CCValid;
3685 if (isIntrinsicWithCC(Op, Opcode, CCValid)) {
3686 SDNode *Node = emitIntrinsicWithCC(DAG, Op, Opcode);
3687 if (Op->getNumValues() == 1)
3688 return getCCResult(DAG, SDValue(Node, 0));
3689 assert(Op->getNumValues() == 2 && "Expected a CC and non-CC result");
3690 return DAG.getNode(ISD::MERGE_VALUES, SDLoc(Op), Op->getVTList(),
3691 SDValue(Node, 0), getCCResult(DAG, SDValue(Node, 1)));
3692 }
3693
3694 unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
3695 switch (Id) {
3696 case Intrinsic::thread_pointer:
3697 return lowerThreadPointer(SDLoc(Op), DAG);
3698
3699 case Intrinsic::s390_vpdi:
3700 return DAG.getNode(SystemZISD::PERMUTE_DWORDS, SDLoc(Op), Op.getValueType(),
3701 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
3702
3703 case Intrinsic::s390_vperm:
3704 return DAG.getNode(SystemZISD::PERMUTE, SDLoc(Op), Op.getValueType(),
3705 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
3706
3707 case Intrinsic::s390_vuphb:
3708 case Intrinsic::s390_vuphh:
3709 case Intrinsic::s390_vuphf:
3710 return DAG.getNode(SystemZISD::UNPACK_HIGH, SDLoc(Op), Op.getValueType(),
3711 Op.getOperand(1));
3712
3713 case Intrinsic::s390_vuplhb:
3714 case Intrinsic::s390_vuplhh:
3715 case Intrinsic::s390_vuplhf:
3716 return DAG.getNode(SystemZISD::UNPACKL_HIGH, SDLoc(Op), Op.getValueType(),
3717 Op.getOperand(1));
3718
3719 case Intrinsic::s390_vuplb:
3720 case Intrinsic::s390_vuplhw:
3721 case Intrinsic::s390_vuplf:
3722 return DAG.getNode(SystemZISD::UNPACK_LOW, SDLoc(Op), Op.getValueType(),
3723 Op.getOperand(1));
3724
3725 case Intrinsic::s390_vupllb:
3726 case Intrinsic::s390_vupllh:
3727 case Intrinsic::s390_vupllf:
3728 return DAG.getNode(SystemZISD::UNPACKL_LOW, SDLoc(Op), Op.getValueType(),
3729 Op.getOperand(1));
3730
3731 case Intrinsic::s390_vsumb:
3732 case Intrinsic::s390_vsumh:
3733 case Intrinsic::s390_vsumgh:
3734 case Intrinsic::s390_vsumgf:
3735 case Intrinsic::s390_vsumqf:
3736 case Intrinsic::s390_vsumqg:
3737 return DAG.getNode(SystemZISD::VSUM, SDLoc(Op), Op.getValueType(),
3738 Op.getOperand(1), Op.getOperand(2));
3739 }
3740
3741 return SDValue();
3742 }
3743
3744 namespace {
3745 // Says that SystemZISD operation Opcode can be used to perform the equivalent
3746 // of a VPERM with permute vector Bytes. If Opcode takes three operands,
3747 // Operand is the constant third operand, otherwise it is the number of
3748 // bytes in each element of the result.
3749 struct Permute {
3750 unsigned Opcode;
3751 unsigned Operand;
3752 unsigned char Bytes[SystemZ::VectorBytes];
3753 };
3754 }
3755
3756 static const Permute PermuteForms[] = {
3757 // VMRHG
3758 { SystemZISD::MERGE_HIGH, 8,
3759 { 0, 1, 2, 3, 4, 5, 6, 7, 16, 17, 18, 19, 20, 21, 22, 23 } },
3760 // VMRHF
3761 { SystemZISD::MERGE_HIGH, 4,
3762 { 0, 1, 2, 3, 16, 17, 18, 19, 4, 5, 6, 7, 20, 21, 22, 23 } },
3763 // VMRHH
3764 { SystemZISD::MERGE_HIGH, 2,
3765 { 0, 1, 16, 17, 2, 3, 18, 19, 4, 5, 20, 21, 6, 7, 22, 23 } },
3766 // VMRHB
3767 { SystemZISD::MERGE_HIGH, 1,
3768 { 0, 16, 1, 17, 2, 18, 3, 19, 4, 20, 5, 21, 6, 22, 7, 23 } },
3769 // VMRLG
3770 { SystemZISD::MERGE_LOW, 8,
3771 { 8, 9, 10, 11, 12, 13, 14, 15, 24, 25, 26, 27, 28, 29, 30, 31 } },
3772 // VMRLF
3773 { SystemZISD::MERGE_LOW, 4,
3774 { 8, 9, 10, 11, 24, 25, 26, 27, 12, 13, 14, 15, 28, 29, 30, 31 } },
3775 // VMRLH
3776 { SystemZISD::MERGE_LOW, 2,
3777 { 8, 9, 24, 25, 10, 11, 26, 27, 12, 13, 28, 29, 14, 15, 30, 31 } },
3778 // VMRLB
3779 { SystemZISD::MERGE_LOW, 1,
3780 { 8, 24, 9, 25, 10, 26, 11, 27, 12, 28, 13, 29, 14, 30, 15, 31 } },
3781 // VPKG
3782 { SystemZISD::PACK, 4,
3783 { 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31 } },
3784 // VPKF
3785 { SystemZISD::PACK, 2,
3786 { 2, 3, 6, 7, 10, 11, 14, 15, 18, 19, 22, 23, 26, 27, 30, 31 } },
3787 // VPKH
3788 { SystemZISD::PACK, 1,
3789 { 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31 } },
3790 // VPDI V1, V2, 4 (low half of V1, high half of V2)
3791 { SystemZISD::PERMUTE_DWORDS, 4,
3792 { 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23 } },
3793 // VPDI V1, V2, 1 (high half of V1, low half of V2)
3794 { SystemZISD::PERMUTE_DWORDS, 1,
3795 { 0, 1, 2, 3, 4, 5, 6, 7, 24, 25, 26, 27, 28, 29, 30, 31 } }
3796 };
3797
3798 // Called after matching a vector shuffle against a particular pattern.
3799 // Both the original shuffle and the pattern have two vector operands.
3800 // OpNos[0] is the operand of the original shuffle that should be used for
3801 // operand 0 of the pattern, or -1 if operand 0 of the pattern can be anything.
3802 // OpNos[1] is the same for operand 1 of the pattern. Resolve these -1s and
3803 // set OpNo0 and OpNo1 to the shuffle operands that should actually be used
3804 // for operands 0 and 1 of the pattern.
chooseShuffleOpNos(int * OpNos,unsigned & OpNo0,unsigned & OpNo1)3805 static bool chooseShuffleOpNos(int *OpNos, unsigned &OpNo0, unsigned &OpNo1) {
3806 if (OpNos[0] < 0) {
3807 if (OpNos[1] < 0)
3808 return false;
3809 OpNo0 = OpNo1 = OpNos[1];
3810 } else if (OpNos[1] < 0) {
3811 OpNo0 = OpNo1 = OpNos[0];
3812 } else {
3813 OpNo0 = OpNos[0];
3814 OpNo1 = OpNos[1];
3815 }
3816 return true;
3817 }
3818
3819 // Bytes is a VPERM-like permute vector, except that -1 is used for
3820 // undefined bytes. Return true if the VPERM can be implemented using P.
3821 // When returning true set OpNo0 to the VPERM operand that should be
3822 // used for operand 0 of P and likewise OpNo1 for operand 1 of P.
3823 //
3824 // For example, if swapping the VPERM operands allows P to match, OpNo0
3825 // will be 1 and OpNo1 will be 0. If instead Bytes only refers to one
3826 // operand, but rewriting it to use two duplicated operands allows it to
3827 // match P, then OpNo0 and OpNo1 will be the same.
matchPermute(const SmallVectorImpl<int> & Bytes,const Permute & P,unsigned & OpNo0,unsigned & OpNo1)3828 static bool matchPermute(const SmallVectorImpl<int> &Bytes, const Permute &P,
3829 unsigned &OpNo0, unsigned &OpNo1) {
3830 int OpNos[] = { -1, -1 };
3831 for (unsigned I = 0; I < SystemZ::VectorBytes; ++I) {
3832 int Elt = Bytes[I];
3833 if (Elt >= 0) {
3834 // Make sure that the two permute vectors use the same suboperand
3835 // byte number. Only the operand numbers (the high bits) are
3836 // allowed to differ.
3837 if ((Elt ^ P.Bytes[I]) & (SystemZ::VectorBytes - 1))
3838 return false;
3839 int ModelOpNo = P.Bytes[I] / SystemZ::VectorBytes;
3840 int RealOpNo = unsigned(Elt) / SystemZ::VectorBytes;
3841 // Make sure that the operand mappings are consistent with previous
3842 // elements.
3843 if (OpNos[ModelOpNo] == 1 - RealOpNo)
3844 return false;
3845 OpNos[ModelOpNo] = RealOpNo;
3846 }
3847 }
3848 return chooseShuffleOpNos(OpNos, OpNo0, OpNo1);
3849 }
3850
3851 // As above, but search for a matching permute.
matchPermute(const SmallVectorImpl<int> & Bytes,unsigned & OpNo0,unsigned & OpNo1)3852 static const Permute *matchPermute(const SmallVectorImpl<int> &Bytes,
3853 unsigned &OpNo0, unsigned &OpNo1) {
3854 for (auto &P : PermuteForms)
3855 if (matchPermute(Bytes, P, OpNo0, OpNo1))
3856 return &P;
3857 return nullptr;
3858 }
3859
3860 // Bytes is a VPERM-like permute vector, except that -1 is used for
3861 // undefined bytes. This permute is an operand of an outer permute.
3862 // See whether redistributing the -1 bytes gives a shuffle that can be
3863 // implemented using P. If so, set Transform to a VPERM-like permute vector
3864 // that, when applied to the result of P, gives the original permute in Bytes.
matchDoublePermute(const SmallVectorImpl<int> & Bytes,const Permute & P,SmallVectorImpl<int> & Transform)3865 static bool matchDoublePermute(const SmallVectorImpl<int> &Bytes,
3866 const Permute &P,
3867 SmallVectorImpl<int> &Transform) {
3868 unsigned To = 0;
3869 for (unsigned From = 0; From < SystemZ::VectorBytes; ++From) {
3870 int Elt = Bytes[From];
3871 if (Elt < 0)
3872 // Byte number From of the result is undefined.
3873 Transform[From] = -1;
3874 else {
3875 while (P.Bytes[To] != Elt) {
3876 To += 1;
3877 if (To == SystemZ::VectorBytes)
3878 return false;
3879 }
3880 Transform[From] = To;
3881 }
3882 }
3883 return true;
3884 }
3885
3886 // As above, but search for a matching permute.
matchDoublePermute(const SmallVectorImpl<int> & Bytes,SmallVectorImpl<int> & Transform)3887 static const Permute *matchDoublePermute(const SmallVectorImpl<int> &Bytes,
3888 SmallVectorImpl<int> &Transform) {
3889 for (auto &P : PermuteForms)
3890 if (matchDoublePermute(Bytes, P, Transform))
3891 return &P;
3892 return nullptr;
3893 }
3894
3895 // Convert the mask of the given shuffle op into a byte-level mask,
3896 // as if it had type vNi8.
getVPermMask(SDValue ShuffleOp,SmallVectorImpl<int> & Bytes)3897 static bool getVPermMask(SDValue ShuffleOp,
3898 SmallVectorImpl<int> &Bytes) {
3899 EVT VT = ShuffleOp.getValueType();
3900 unsigned NumElements = VT.getVectorNumElements();
3901 unsigned BytesPerElement = VT.getVectorElementType().getStoreSize();
3902
3903 if (auto *VSN = dyn_cast<ShuffleVectorSDNode>(ShuffleOp)) {
3904 Bytes.resize(NumElements * BytesPerElement, -1);
3905 for (unsigned I = 0; I < NumElements; ++I) {
3906 int Index = VSN->getMaskElt(I);
3907 if (Index >= 0)
3908 for (unsigned J = 0; J < BytesPerElement; ++J)
3909 Bytes[I * BytesPerElement + J] = Index * BytesPerElement + J;
3910 }
3911 return true;
3912 }
3913 if (SystemZISD::SPLAT == ShuffleOp.getOpcode() &&
3914 isa<ConstantSDNode>(ShuffleOp.getOperand(1))) {
3915 unsigned Index = ShuffleOp.getConstantOperandVal(1);
3916 Bytes.resize(NumElements * BytesPerElement, -1);
3917 for (unsigned I = 0; I < NumElements; ++I)
3918 for (unsigned J = 0; J < BytesPerElement; ++J)
3919 Bytes[I * BytesPerElement + J] = Index * BytesPerElement + J;
3920 return true;
3921 }
3922 return false;
3923 }
3924
3925 // Bytes is a VPERM-like permute vector, except that -1 is used for
3926 // undefined bytes. See whether bytes [Start, Start + BytesPerElement) of
3927 // the result come from a contiguous sequence of bytes from one input.
3928 // Set Base to the selector for the first byte if so.
getShuffleInput(const SmallVectorImpl<int> & Bytes,unsigned Start,unsigned BytesPerElement,int & Base)3929 static bool getShuffleInput(const SmallVectorImpl<int> &Bytes, unsigned Start,
3930 unsigned BytesPerElement, int &Base) {
3931 Base = -1;
3932 for (unsigned I = 0; I < BytesPerElement; ++I) {
3933 if (Bytes[Start + I] >= 0) {
3934 unsigned Elem = Bytes[Start + I];
3935 if (Base < 0) {
3936 Base = Elem - I;
3937 // Make sure the bytes would come from one input operand.
3938 if (unsigned(Base) % Bytes.size() + BytesPerElement > Bytes.size())
3939 return false;
3940 } else if (unsigned(Base) != Elem - I)
3941 return false;
3942 }
3943 }
3944 return true;
3945 }
3946
3947 // Bytes is a VPERM-like permute vector, except that -1 is used for
3948 // undefined bytes. Return true if it can be performed using VSLDI.
3949 // When returning true, set StartIndex to the shift amount and OpNo0
3950 // and OpNo1 to the VPERM operands that should be used as the first
3951 // and second shift operand respectively.
isShlDoublePermute(const SmallVectorImpl<int> & Bytes,unsigned & StartIndex,unsigned & OpNo0,unsigned & OpNo1)3952 static bool isShlDoublePermute(const SmallVectorImpl<int> &Bytes,
3953 unsigned &StartIndex, unsigned &OpNo0,
3954 unsigned &OpNo1) {
3955 int OpNos[] = { -1, -1 };
3956 int Shift = -1;
3957 for (unsigned I = 0; I < 16; ++I) {
3958 int Index = Bytes[I];
3959 if (Index >= 0) {
3960 int ExpectedShift = (Index - I) % SystemZ::VectorBytes;
3961 int ModelOpNo = unsigned(ExpectedShift + I) / SystemZ::VectorBytes;
3962 int RealOpNo = unsigned(Index) / SystemZ::VectorBytes;
3963 if (Shift < 0)
3964 Shift = ExpectedShift;
3965 else if (Shift != ExpectedShift)
3966 return false;
3967 // Make sure that the operand mappings are consistent with previous
3968 // elements.
3969 if (OpNos[ModelOpNo] == 1 - RealOpNo)
3970 return false;
3971 OpNos[ModelOpNo] = RealOpNo;
3972 }
3973 }
3974 StartIndex = Shift;
3975 return chooseShuffleOpNos(OpNos, OpNo0, OpNo1);
3976 }
3977
3978 // Create a node that performs P on operands Op0 and Op1, casting the
3979 // operands to the appropriate type. The type of the result is determined by P.
getPermuteNode(SelectionDAG & DAG,const SDLoc & DL,const Permute & P,SDValue Op0,SDValue Op1)3980 static SDValue getPermuteNode(SelectionDAG &DAG, const SDLoc &DL,
3981 const Permute &P, SDValue Op0, SDValue Op1) {
3982 // VPDI (PERMUTE_DWORDS) always operates on v2i64s. The input
3983 // elements of a PACK are twice as wide as the outputs.
3984 unsigned InBytes = (P.Opcode == SystemZISD::PERMUTE_DWORDS ? 8 :
3985 P.Opcode == SystemZISD::PACK ? P.Operand * 2 :
3986 P.Operand);
3987 // Cast both operands to the appropriate type.
3988 MVT InVT = MVT::getVectorVT(MVT::getIntegerVT(InBytes * 8),
3989 SystemZ::VectorBytes / InBytes);
3990 Op0 = DAG.getNode(ISD::BITCAST, DL, InVT, Op0);
3991 Op1 = DAG.getNode(ISD::BITCAST, DL, InVT, Op1);
3992 SDValue Op;
3993 if (P.Opcode == SystemZISD::PERMUTE_DWORDS) {
3994 SDValue Op2 = DAG.getConstant(P.Operand, DL, MVT::i32);
3995 Op = DAG.getNode(SystemZISD::PERMUTE_DWORDS, DL, InVT, Op0, Op1, Op2);
3996 } else if (P.Opcode == SystemZISD::PACK) {
3997 MVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(P.Operand * 8),
3998 SystemZ::VectorBytes / P.Operand);
3999 Op = DAG.getNode(SystemZISD::PACK, DL, OutVT, Op0, Op1);
4000 } else {
4001 Op = DAG.getNode(P.Opcode, DL, InVT, Op0, Op1);
4002 }
4003 return Op;
4004 }
4005
4006 // Bytes is a VPERM-like permute vector, except that -1 is used for
4007 // undefined bytes. Implement it on operands Ops[0] and Ops[1] using
4008 // VSLDI or VPERM.
getGeneralPermuteNode(SelectionDAG & DAG,const SDLoc & DL,SDValue * Ops,const SmallVectorImpl<int> & Bytes)4009 static SDValue getGeneralPermuteNode(SelectionDAG &DAG, const SDLoc &DL,
4010 SDValue *Ops,
4011 const SmallVectorImpl<int> &Bytes) {
4012 for (unsigned I = 0; I < 2; ++I)
4013 Ops[I] = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, Ops[I]);
4014
4015 // First see whether VSLDI can be used.
4016 unsigned StartIndex, OpNo0, OpNo1;
4017 if (isShlDoublePermute(Bytes, StartIndex, OpNo0, OpNo1))
4018 return DAG.getNode(SystemZISD::SHL_DOUBLE, DL, MVT::v16i8, Ops[OpNo0],
4019 Ops[OpNo1], DAG.getConstant(StartIndex, DL, MVT::i32));
4020
4021 // Fall back on VPERM. Construct an SDNode for the permute vector.
4022 SDValue IndexNodes[SystemZ::VectorBytes];
4023 for (unsigned I = 0; I < SystemZ::VectorBytes; ++I)
4024 if (Bytes[I] >= 0)
4025 IndexNodes[I] = DAG.getConstant(Bytes[I], DL, MVT::i32);
4026 else
4027 IndexNodes[I] = DAG.getUNDEF(MVT::i32);
4028 SDValue Op2 = DAG.getBuildVector(MVT::v16i8, DL, IndexNodes);
4029 return DAG.getNode(SystemZISD::PERMUTE, DL, MVT::v16i8, Ops[0], Ops[1], Op2);
4030 }
4031
4032 namespace {
4033 // Describes a general N-operand vector shuffle.
4034 struct GeneralShuffle {
GeneralShuffle__anon1b4e9d4c0311::GeneralShuffle4035 GeneralShuffle(EVT vt) : VT(vt) {}
4036 void addUndef();
4037 bool add(SDValue, unsigned);
4038 SDValue getNode(SelectionDAG &, const SDLoc &);
4039
4040 // The operands of the shuffle.
4041 SmallVector<SDValue, SystemZ::VectorBytes> Ops;
4042
4043 // Index I is -1 if byte I of the result is undefined. Otherwise the
4044 // result comes from byte Bytes[I] % SystemZ::VectorBytes of operand
4045 // Bytes[I] / SystemZ::VectorBytes.
4046 SmallVector<int, SystemZ::VectorBytes> Bytes;
4047
4048 // The type of the shuffle result.
4049 EVT VT;
4050 };
4051 }
4052
4053 // Add an extra undefined element to the shuffle.
addUndef()4054 void GeneralShuffle::addUndef() {
4055 unsigned BytesPerElement = VT.getVectorElementType().getStoreSize();
4056 for (unsigned I = 0; I < BytesPerElement; ++I)
4057 Bytes.push_back(-1);
4058 }
4059
4060 // Add an extra element to the shuffle, taking it from element Elem of Op.
4061 // A null Op indicates a vector input whose value will be calculated later;
4062 // there is at most one such input per shuffle and it always has the same
4063 // type as the result. Aborts and returns false if the source vector elements
4064 // of an EXTRACT_VECTOR_ELT are smaller than the destination elements. Per
4065 // LLVM they become implicitly extended, but this is rare and not optimized.
add(SDValue Op,unsigned Elem)4066 bool GeneralShuffle::add(SDValue Op, unsigned Elem) {
4067 unsigned BytesPerElement = VT.getVectorElementType().getStoreSize();
4068
4069 // The source vector can have wider elements than the result,
4070 // either through an explicit TRUNCATE or because of type legalization.
4071 // We want the least significant part.
4072 EVT FromVT = Op.getNode() ? Op.getValueType() : VT;
4073 unsigned FromBytesPerElement = FromVT.getVectorElementType().getStoreSize();
4074
4075 // Return false if the source elements are smaller than their destination
4076 // elements.
4077 if (FromBytesPerElement < BytesPerElement)
4078 return false;
4079
4080 unsigned Byte = ((Elem * FromBytesPerElement) % SystemZ::VectorBytes +
4081 (FromBytesPerElement - BytesPerElement));
4082
4083 // Look through things like shuffles and bitcasts.
4084 while (Op.getNode()) {
4085 if (Op.getOpcode() == ISD::BITCAST)
4086 Op = Op.getOperand(0);
4087 else if (Op.getOpcode() == ISD::VECTOR_SHUFFLE && Op.hasOneUse()) {
4088 // See whether the bytes we need come from a contiguous part of one
4089 // operand.
4090 SmallVector<int, SystemZ::VectorBytes> OpBytes;
4091 if (!getVPermMask(Op, OpBytes))
4092 break;
4093 int NewByte;
4094 if (!getShuffleInput(OpBytes, Byte, BytesPerElement, NewByte))
4095 break;
4096 if (NewByte < 0) {
4097 addUndef();
4098 return true;
4099 }
4100 Op = Op.getOperand(unsigned(NewByte) / SystemZ::VectorBytes);
4101 Byte = unsigned(NewByte) % SystemZ::VectorBytes;
4102 } else if (Op.isUndef()) {
4103 addUndef();
4104 return true;
4105 } else
4106 break;
4107 }
4108
4109 // Make sure that the source of the extraction is in Ops.
4110 unsigned OpNo = 0;
4111 for (; OpNo < Ops.size(); ++OpNo)
4112 if (Ops[OpNo] == Op)
4113 break;
4114 if (OpNo == Ops.size())
4115 Ops.push_back(Op);
4116
4117 // Add the element to Bytes.
4118 unsigned Base = OpNo * SystemZ::VectorBytes + Byte;
4119 for (unsigned I = 0; I < BytesPerElement; ++I)
4120 Bytes.push_back(Base + I);
4121
4122 return true;
4123 }
4124
4125 // Return SDNodes for the completed shuffle.
getNode(SelectionDAG & DAG,const SDLoc & DL)4126 SDValue GeneralShuffle::getNode(SelectionDAG &DAG, const SDLoc &DL) {
4127 assert(Bytes.size() == SystemZ::VectorBytes && "Incomplete vector");
4128
4129 if (Ops.size() == 0)
4130 return DAG.getUNDEF(VT);
4131
4132 // Make sure that there are at least two shuffle operands.
4133 if (Ops.size() == 1)
4134 Ops.push_back(DAG.getUNDEF(MVT::v16i8));
4135
4136 // Create a tree of shuffles, deferring root node until after the loop.
4137 // Try to redistribute the undefined elements of non-root nodes so that
4138 // the non-root shuffles match something like a pack or merge, then adjust
4139 // the parent node's permute vector to compensate for the new order.
4140 // Among other things, this copes with vectors like <2 x i16> that were
4141 // padded with undefined elements during type legalization.
4142 //
4143 // In the best case this redistribution will lead to the whole tree
4144 // using packs and merges. It should rarely be a loss in other cases.
4145 unsigned Stride = 1;
4146 for (; Stride * 2 < Ops.size(); Stride *= 2) {
4147 for (unsigned I = 0; I < Ops.size() - Stride; I += Stride * 2) {
4148 SDValue SubOps[] = { Ops[I], Ops[I + Stride] };
4149
4150 // Create a mask for just these two operands.
4151 SmallVector<int, SystemZ::VectorBytes> NewBytes(SystemZ::VectorBytes);
4152 for (unsigned J = 0; J < SystemZ::VectorBytes; ++J) {
4153 unsigned OpNo = unsigned(Bytes[J]) / SystemZ::VectorBytes;
4154 unsigned Byte = unsigned(Bytes[J]) % SystemZ::VectorBytes;
4155 if (OpNo == I)
4156 NewBytes[J] = Byte;
4157 else if (OpNo == I + Stride)
4158 NewBytes[J] = SystemZ::VectorBytes + Byte;
4159 else
4160 NewBytes[J] = -1;
4161 }
4162 // See if it would be better to reorganize NewMask to avoid using VPERM.
4163 SmallVector<int, SystemZ::VectorBytes> NewBytesMap(SystemZ::VectorBytes);
4164 if (const Permute *P = matchDoublePermute(NewBytes, NewBytesMap)) {
4165 Ops[I] = getPermuteNode(DAG, DL, *P, SubOps[0], SubOps[1]);
4166 // Applying NewBytesMap to Ops[I] gets back to NewBytes.
4167 for (unsigned J = 0; J < SystemZ::VectorBytes; ++J) {
4168 if (NewBytes[J] >= 0) {
4169 assert(unsigned(NewBytesMap[J]) < SystemZ::VectorBytes &&
4170 "Invalid double permute");
4171 Bytes[J] = I * SystemZ::VectorBytes + NewBytesMap[J];
4172 } else
4173 assert(NewBytesMap[J] < 0 && "Invalid double permute");
4174 }
4175 } else {
4176 // Just use NewBytes on the operands.
4177 Ops[I] = getGeneralPermuteNode(DAG, DL, SubOps, NewBytes);
4178 for (unsigned J = 0; J < SystemZ::VectorBytes; ++J)
4179 if (NewBytes[J] >= 0)
4180 Bytes[J] = I * SystemZ::VectorBytes + J;
4181 }
4182 }
4183 }
4184
4185 // Now we just have 2 inputs. Put the second operand in Ops[1].
4186 if (Stride > 1) {
4187 Ops[1] = Ops[Stride];
4188 for (unsigned I = 0; I < SystemZ::VectorBytes; ++I)
4189 if (Bytes[I] >= int(SystemZ::VectorBytes))
4190 Bytes[I] -= (Stride - 1) * SystemZ::VectorBytes;
4191 }
4192
4193 // Look for an instruction that can do the permute without resorting
4194 // to VPERM.
4195 unsigned OpNo0, OpNo1;
4196 SDValue Op;
4197 if (const Permute *P = matchPermute(Bytes, OpNo0, OpNo1))
4198 Op = getPermuteNode(DAG, DL, *P, Ops[OpNo0], Ops[OpNo1]);
4199 else
4200 Op = getGeneralPermuteNode(DAG, DL, &Ops[0], Bytes);
4201 return DAG.getNode(ISD::BITCAST, DL, VT, Op);
4202 }
4203
4204 // Return true if the given BUILD_VECTOR is a scalar-to-vector conversion.
isScalarToVector(SDValue Op)4205 static bool isScalarToVector(SDValue Op) {
4206 for (unsigned I = 1, E = Op.getNumOperands(); I != E; ++I)
4207 if (!Op.getOperand(I).isUndef())
4208 return false;
4209 return true;
4210 }
4211
4212 // Return a vector of type VT that contains Value in the first element.
4213 // The other elements don't matter.
buildScalarToVector(SelectionDAG & DAG,const SDLoc & DL,EVT VT,SDValue Value)4214 static SDValue buildScalarToVector(SelectionDAG &DAG, const SDLoc &DL, EVT VT,
4215 SDValue Value) {
4216 // If we have a constant, replicate it to all elements and let the
4217 // BUILD_VECTOR lowering take care of it.
4218 if (Value.getOpcode() == ISD::Constant ||
4219 Value.getOpcode() == ISD::ConstantFP) {
4220 SmallVector<SDValue, 16> Ops(VT.getVectorNumElements(), Value);
4221 return DAG.getBuildVector(VT, DL, Ops);
4222 }
4223 if (Value.isUndef())
4224 return DAG.getUNDEF(VT);
4225 return DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, VT, Value);
4226 }
4227
4228 // Return a vector of type VT in which Op0 is in element 0 and Op1 is in
4229 // element 1. Used for cases in which replication is cheap.
buildMergeScalars(SelectionDAG & DAG,const SDLoc & DL,EVT VT,SDValue Op0,SDValue Op1)4230 static SDValue buildMergeScalars(SelectionDAG &DAG, const SDLoc &DL, EVT VT,
4231 SDValue Op0, SDValue Op1) {
4232 if (Op0.isUndef()) {
4233 if (Op1.isUndef())
4234 return DAG.getUNDEF(VT);
4235 return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Op1);
4236 }
4237 if (Op1.isUndef())
4238 return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Op0);
4239 return DAG.getNode(SystemZISD::MERGE_HIGH, DL, VT,
4240 buildScalarToVector(DAG, DL, VT, Op0),
4241 buildScalarToVector(DAG, DL, VT, Op1));
4242 }
4243
4244 // Extend GPR scalars Op0 and Op1 to doublewords and return a v2i64
4245 // vector for them.
joinDwords(SelectionDAG & DAG,const SDLoc & DL,SDValue Op0,SDValue Op1)4246 static SDValue joinDwords(SelectionDAG &DAG, const SDLoc &DL, SDValue Op0,
4247 SDValue Op1) {
4248 if (Op0.isUndef() && Op1.isUndef())
4249 return DAG.getUNDEF(MVT::v2i64);
4250 // If one of the two inputs is undefined then replicate the other one,
4251 // in order to avoid using another register unnecessarily.
4252 if (Op0.isUndef())
4253 Op0 = Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op1);
4254 else if (Op1.isUndef())
4255 Op0 = Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0);
4256 else {
4257 Op0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0);
4258 Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op1);
4259 }
4260 return DAG.getNode(SystemZISD::JOIN_DWORDS, DL, MVT::v2i64, Op0, Op1);
4261 }
4262
4263 // Try to represent constant BUILD_VECTOR node BVN using a
4264 // SystemZISD::BYTE_MASK-style mask. Store the mask value in Mask
4265 // on success.
tryBuildVectorByteMask(BuildVectorSDNode * BVN,uint64_t & Mask)4266 static bool tryBuildVectorByteMask(BuildVectorSDNode *BVN, uint64_t &Mask) {
4267 EVT ElemVT = BVN->getValueType(0).getVectorElementType();
4268 unsigned BytesPerElement = ElemVT.getStoreSize();
4269 for (unsigned I = 0, E = BVN->getNumOperands(); I != E; ++I) {
4270 SDValue Op = BVN->getOperand(I);
4271 if (!Op.isUndef()) {
4272 uint64_t Value;
4273 if (Op.getOpcode() == ISD::Constant)
4274 Value = cast<ConstantSDNode>(Op)->getZExtValue();
4275 else if (Op.getOpcode() == ISD::ConstantFP)
4276 Value = (cast<ConstantFPSDNode>(Op)->getValueAPF().bitcastToAPInt()
4277 .getZExtValue());
4278 else
4279 return false;
4280 for (unsigned J = 0; J < BytesPerElement; ++J) {
4281 uint64_t Byte = (Value >> (J * 8)) & 0xff;
4282 if (Byte == 0xff)
4283 Mask |= 1ULL << ((E - I - 1) * BytesPerElement + J);
4284 else if (Byte != 0)
4285 return false;
4286 }
4287 }
4288 }
4289 return true;
4290 }
4291
4292 // Try to load a vector constant in which BitsPerElement-bit value Value
4293 // is replicated to fill the vector. VT is the type of the resulting
4294 // constant, which may have elements of a different size from BitsPerElement.
4295 // Return the SDValue of the constant on success, otherwise return
4296 // an empty value.
tryBuildVectorReplicate(SelectionDAG & DAG,const SystemZInstrInfo * TII,const SDLoc & DL,EVT VT,uint64_t Value,unsigned BitsPerElement)4297 static SDValue tryBuildVectorReplicate(SelectionDAG &DAG,
4298 const SystemZInstrInfo *TII,
4299 const SDLoc &DL, EVT VT, uint64_t Value,
4300 unsigned BitsPerElement) {
4301 // Signed 16-bit values can be replicated using VREPI.
4302 // Mark the constants as opaque or DAGCombiner will convert back to
4303 // BUILD_VECTOR.
4304 int64_t SignedValue = SignExtend64(Value, BitsPerElement);
4305 if (isInt<16>(SignedValue)) {
4306 MVT VecVT = MVT::getVectorVT(MVT::getIntegerVT(BitsPerElement),
4307 SystemZ::VectorBits / BitsPerElement);
4308 SDValue Op = DAG.getNode(
4309 SystemZISD::REPLICATE, DL, VecVT,
4310 DAG.getConstant(SignedValue, DL, MVT::i32, false, true /*isOpaque*/));
4311 return DAG.getNode(ISD::BITCAST, DL, VT, Op);
4312 }
4313 // See whether rotating the constant left some N places gives a value that
4314 // is one less than a power of 2 (i.e. all zeros followed by all ones).
4315 // If so we can use VGM.
4316 unsigned Start, End;
4317 if (TII->isRxSBGMask(Value, BitsPerElement, Start, End)) {
4318 // isRxSBGMask returns the bit numbers for a full 64-bit value,
4319 // with 0 denoting 1 << 63 and 63 denoting 1. Convert them to
4320 // bit numbers for an BitsPerElement value, so that 0 denotes
4321 // 1 << (BitsPerElement-1).
4322 Start -= 64 - BitsPerElement;
4323 End -= 64 - BitsPerElement;
4324 MVT VecVT = MVT::getVectorVT(MVT::getIntegerVT(BitsPerElement),
4325 SystemZ::VectorBits / BitsPerElement);
4326 SDValue Op = DAG.getNode(
4327 SystemZISD::ROTATE_MASK, DL, VecVT,
4328 DAG.getConstant(Start, DL, MVT::i32, false, true /*isOpaque*/),
4329 DAG.getConstant(End, DL, MVT::i32, false, true /*isOpaque*/));
4330 return DAG.getNode(ISD::BITCAST, DL, VT, Op);
4331 }
4332 return SDValue();
4333 }
4334
4335 // If a BUILD_VECTOR contains some EXTRACT_VECTOR_ELTs, it's usually
4336 // better to use VECTOR_SHUFFLEs on them, only using BUILD_VECTOR for
4337 // the non-EXTRACT_VECTOR_ELT elements. See if the given BUILD_VECTOR
4338 // would benefit from this representation and return it if so.
tryBuildVectorShuffle(SelectionDAG & DAG,BuildVectorSDNode * BVN)4339 static SDValue tryBuildVectorShuffle(SelectionDAG &DAG,
4340 BuildVectorSDNode *BVN) {
4341 EVT VT = BVN->getValueType(0);
4342 unsigned NumElements = VT.getVectorNumElements();
4343
4344 // Represent the BUILD_VECTOR as an N-operand VECTOR_SHUFFLE-like operation
4345 // on byte vectors. If there are non-EXTRACT_VECTOR_ELT elements that still
4346 // need a BUILD_VECTOR, add an additional placeholder operand for that
4347 // BUILD_VECTOR and store its operands in ResidueOps.
4348 GeneralShuffle GS(VT);
4349 SmallVector<SDValue, SystemZ::VectorBytes> ResidueOps;
4350 bool FoundOne = false;
4351 for (unsigned I = 0; I < NumElements; ++I) {
4352 SDValue Op = BVN->getOperand(I);
4353 if (Op.getOpcode() == ISD::TRUNCATE)
4354 Op = Op.getOperand(0);
4355 if (Op.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
4356 Op.getOperand(1).getOpcode() == ISD::Constant) {
4357 unsigned Elem = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
4358 if (!GS.add(Op.getOperand(0), Elem))
4359 return SDValue();
4360 FoundOne = true;
4361 } else if (Op.isUndef()) {
4362 GS.addUndef();
4363 } else {
4364 if (!GS.add(SDValue(), ResidueOps.size()))
4365 return SDValue();
4366 ResidueOps.push_back(BVN->getOperand(I));
4367 }
4368 }
4369
4370 // Nothing to do if there are no EXTRACT_VECTOR_ELTs.
4371 if (!FoundOne)
4372 return SDValue();
4373
4374 // Create the BUILD_VECTOR for the remaining elements, if any.
4375 if (!ResidueOps.empty()) {
4376 while (ResidueOps.size() < NumElements)
4377 ResidueOps.push_back(DAG.getUNDEF(ResidueOps[0].getValueType()));
4378 for (auto &Op : GS.Ops) {
4379 if (!Op.getNode()) {
4380 Op = DAG.getBuildVector(VT, SDLoc(BVN), ResidueOps);
4381 break;
4382 }
4383 }
4384 }
4385 return GS.getNode(DAG, SDLoc(BVN));
4386 }
4387
4388 // Combine GPR scalar values Elems into a vector of type VT.
buildVector(SelectionDAG & DAG,const SDLoc & DL,EVT VT,SmallVectorImpl<SDValue> & Elems)4389 static SDValue buildVector(SelectionDAG &DAG, const SDLoc &DL, EVT VT,
4390 SmallVectorImpl<SDValue> &Elems) {
4391 // See whether there is a single replicated value.
4392 SDValue Single;
4393 unsigned int NumElements = Elems.size();
4394 unsigned int Count = 0;
4395 for (auto Elem : Elems) {
4396 if (!Elem.isUndef()) {
4397 if (!Single.getNode())
4398 Single = Elem;
4399 else if (Elem != Single) {
4400 Single = SDValue();
4401 break;
4402 }
4403 Count += 1;
4404 }
4405 }
4406 // There are three cases here:
4407 //
4408 // - if the only defined element is a loaded one, the best sequence
4409 // is a replicating load.
4410 //
4411 // - otherwise, if the only defined element is an i64 value, we will
4412 // end up with the same VLVGP sequence regardless of whether we short-cut
4413 // for replication or fall through to the later code.
4414 //
4415 // - otherwise, if the only defined element is an i32 or smaller value,
4416 // we would need 2 instructions to replicate it: VLVGP followed by VREPx.
4417 // This is only a win if the single defined element is used more than once.
4418 // In other cases we're better off using a single VLVGx.
4419 if (Single.getNode() && (Count > 1 || Single.getOpcode() == ISD::LOAD))
4420 return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Single);
4421
4422 // If all elements are loads, use VLREP/VLEs (below).
4423 bool AllLoads = true;
4424 for (auto Elem : Elems)
4425 if (Elem.getOpcode() != ISD::LOAD || cast<LoadSDNode>(Elem)->isIndexed()) {
4426 AllLoads = false;
4427 break;
4428 }
4429
4430 // The best way of building a v2i64 from two i64s is to use VLVGP.
4431 if (VT == MVT::v2i64 && !AllLoads)
4432 return joinDwords(DAG, DL, Elems[0], Elems[1]);
4433
4434 // Use a 64-bit merge high to combine two doubles.
4435 if (VT == MVT::v2f64 && !AllLoads)
4436 return buildMergeScalars(DAG, DL, VT, Elems[0], Elems[1]);
4437
4438 // Build v4f32 values directly from the FPRs:
4439 //
4440 // <Axxx> <Bxxx> <Cxxxx> <Dxxx>
4441 // V V VMRHF
4442 // <ABxx> <CDxx>
4443 // V VMRHG
4444 // <ABCD>
4445 if (VT == MVT::v4f32 && !AllLoads) {
4446 SDValue Op01 = buildMergeScalars(DAG, DL, VT, Elems[0], Elems[1]);
4447 SDValue Op23 = buildMergeScalars(DAG, DL, VT, Elems[2], Elems[3]);
4448 // Avoid unnecessary undefs by reusing the other operand.
4449 if (Op01.isUndef())
4450 Op01 = Op23;
4451 else if (Op23.isUndef())
4452 Op23 = Op01;
4453 // Merging identical replications is a no-op.
4454 if (Op01.getOpcode() == SystemZISD::REPLICATE && Op01 == Op23)
4455 return Op01;
4456 Op01 = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Op01);
4457 Op23 = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Op23);
4458 SDValue Op = DAG.getNode(SystemZISD::MERGE_HIGH,
4459 DL, MVT::v2i64, Op01, Op23);
4460 return DAG.getNode(ISD::BITCAST, DL, VT, Op);
4461 }
4462
4463 // Collect the constant terms.
4464 SmallVector<SDValue, SystemZ::VectorBytes> Constants(NumElements, SDValue());
4465 SmallVector<bool, SystemZ::VectorBytes> Done(NumElements, false);
4466
4467 unsigned NumConstants = 0;
4468 for (unsigned I = 0; I < NumElements; ++I) {
4469 SDValue Elem = Elems[I];
4470 if (Elem.getOpcode() == ISD::Constant ||
4471 Elem.getOpcode() == ISD::ConstantFP) {
4472 NumConstants += 1;
4473 Constants[I] = Elem;
4474 Done[I] = true;
4475 }
4476 }
4477 // If there was at least one constant, fill in the other elements of
4478 // Constants with undefs to get a full vector constant and use that
4479 // as the starting point.
4480 SDValue Result;
4481 SDValue ReplicatedVal;
4482 if (NumConstants > 0) {
4483 for (unsigned I = 0; I < NumElements; ++I)
4484 if (!Constants[I].getNode())
4485 Constants[I] = DAG.getUNDEF(Elems[I].getValueType());
4486 Result = DAG.getBuildVector(VT, DL, Constants);
4487 } else {
4488 // Otherwise try to use VLREP or VLVGP to start the sequence in order to
4489 // avoid a false dependency on any previous contents of the vector
4490 // register.
4491
4492 // Use a VLREP if at least one element is a load. Make sure to replicate
4493 // the load with the most elements having its value.
4494 std::map<const SDNode*, unsigned> UseCounts;
4495 SDNode *LoadMaxUses = nullptr;
4496 for (unsigned I = 0; I < NumElements; ++I)
4497 if (Elems[I].getOpcode() == ISD::LOAD &&
4498 cast<LoadSDNode>(Elems[I])->isUnindexed()) {
4499 SDNode *Ld = Elems[I].getNode();
4500 UseCounts[Ld]++;
4501 if (LoadMaxUses == nullptr || UseCounts[LoadMaxUses] < UseCounts[Ld])
4502 LoadMaxUses = Ld;
4503 }
4504 if (LoadMaxUses != nullptr) {
4505 ReplicatedVal = SDValue(LoadMaxUses, 0);
4506 Result = DAG.getNode(SystemZISD::REPLICATE, DL, VT, ReplicatedVal);
4507 } else {
4508 // Try to use VLVGP.
4509 unsigned I1 = NumElements / 2 - 1;
4510 unsigned I2 = NumElements - 1;
4511 bool Def1 = !Elems[I1].isUndef();
4512 bool Def2 = !Elems[I2].isUndef();
4513 if (Def1 || Def2) {
4514 SDValue Elem1 = Elems[Def1 ? I1 : I2];
4515 SDValue Elem2 = Elems[Def2 ? I2 : I1];
4516 Result = DAG.getNode(ISD::BITCAST, DL, VT,
4517 joinDwords(DAG, DL, Elem1, Elem2));
4518 Done[I1] = true;
4519 Done[I2] = true;
4520 } else
4521 Result = DAG.getUNDEF(VT);
4522 }
4523 }
4524
4525 // Use VLVGx to insert the other elements.
4526 for (unsigned I = 0; I < NumElements; ++I)
4527 if (!Done[I] && !Elems[I].isUndef() && Elems[I] != ReplicatedVal)
4528 Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VT, Result, Elems[I],
4529 DAG.getConstant(I, DL, MVT::i32));
4530 return Result;
4531 }
4532
lowerBUILD_VECTOR(SDValue Op,SelectionDAG & DAG) const4533 SDValue SystemZTargetLowering::lowerBUILD_VECTOR(SDValue Op,
4534 SelectionDAG &DAG) const {
4535 const SystemZInstrInfo *TII =
4536 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
4537 auto *BVN = cast<BuildVectorSDNode>(Op.getNode());
4538 SDLoc DL(Op);
4539 EVT VT = Op.getValueType();
4540
4541 if (BVN->isConstant()) {
4542 // Try using VECTOR GENERATE BYTE MASK. This is the architecturally-
4543 // preferred way of creating all-zero and all-one vectors so give it
4544 // priority over other methods below.
4545 uint64_t Mask = 0;
4546 if (tryBuildVectorByteMask(BVN, Mask)) {
4547 SDValue Op = DAG.getNode(
4548 SystemZISD::BYTE_MASK, DL, MVT::v16i8,
4549 DAG.getConstant(Mask, DL, MVT::i32, false, true /*isOpaque*/));
4550 return DAG.getNode(ISD::BITCAST, DL, VT, Op);
4551 }
4552
4553 // Try using some form of replication.
4554 APInt SplatBits, SplatUndef;
4555 unsigned SplatBitSize;
4556 bool HasAnyUndefs;
4557 if (BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs,
4558 8, true) &&
4559 SplatBitSize <= 64) {
4560 // First try assuming that any undefined bits above the highest set bit
4561 // and below the lowest set bit are 1s. This increases the likelihood of
4562 // being able to use a sign-extended element value in VECTOR REPLICATE
4563 // IMMEDIATE or a wraparound mask in VECTOR GENERATE MASK.
4564 uint64_t SplatBitsZ = SplatBits.getZExtValue();
4565 uint64_t SplatUndefZ = SplatUndef.getZExtValue();
4566 uint64_t Lower = (SplatUndefZ
4567 & ((uint64_t(1) << findFirstSet(SplatBitsZ)) - 1));
4568 uint64_t Upper = (SplatUndefZ
4569 & ~((uint64_t(1) << findLastSet(SplatBitsZ)) - 1));
4570 uint64_t Value = SplatBitsZ | Upper | Lower;
4571 SDValue Op = tryBuildVectorReplicate(DAG, TII, DL, VT, Value,
4572 SplatBitSize);
4573 if (Op.getNode())
4574 return Op;
4575
4576 // Now try assuming that any undefined bits between the first and
4577 // last defined set bits are set. This increases the chances of
4578 // using a non-wraparound mask.
4579 uint64_t Middle = SplatUndefZ & ~Upper & ~Lower;
4580 Value = SplatBitsZ | Middle;
4581 Op = tryBuildVectorReplicate(DAG, TII, DL, VT, Value, SplatBitSize);
4582 if (Op.getNode())
4583 return Op;
4584 }
4585
4586 // Fall back to loading it from memory.
4587 return SDValue();
4588 }
4589
4590 // See if we should use shuffles to construct the vector from other vectors.
4591 if (SDValue Res = tryBuildVectorShuffle(DAG, BVN))
4592 return Res;
4593
4594 // Detect SCALAR_TO_VECTOR conversions.
4595 if (isOperationLegal(ISD::SCALAR_TO_VECTOR, VT) && isScalarToVector(Op))
4596 return buildScalarToVector(DAG, DL, VT, Op.getOperand(0));
4597
4598 // Otherwise use buildVector to build the vector up from GPRs.
4599 unsigned NumElements = Op.getNumOperands();
4600 SmallVector<SDValue, SystemZ::VectorBytes> Ops(NumElements);
4601 for (unsigned I = 0; I < NumElements; ++I)
4602 Ops[I] = Op.getOperand(I);
4603 return buildVector(DAG, DL, VT, Ops);
4604 }
4605
lowerVECTOR_SHUFFLE(SDValue Op,SelectionDAG & DAG) const4606 SDValue SystemZTargetLowering::lowerVECTOR_SHUFFLE(SDValue Op,
4607 SelectionDAG &DAG) const {
4608 auto *VSN = cast<ShuffleVectorSDNode>(Op.getNode());
4609 SDLoc DL(Op);
4610 EVT VT = Op.getValueType();
4611 unsigned NumElements = VT.getVectorNumElements();
4612
4613 if (VSN->isSplat()) {
4614 SDValue Op0 = Op.getOperand(0);
4615 unsigned Index = VSN->getSplatIndex();
4616 assert(Index < VT.getVectorNumElements() &&
4617 "Splat index should be defined and in first operand");
4618 // See whether the value we're splatting is directly available as a scalar.
4619 if ((Index == 0 && Op0.getOpcode() == ISD::SCALAR_TO_VECTOR) ||
4620 Op0.getOpcode() == ISD::BUILD_VECTOR)
4621 return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Op0.getOperand(Index));
4622 // Otherwise keep it as a vector-to-vector operation.
4623 return DAG.getNode(SystemZISD::SPLAT, DL, VT, Op.getOperand(0),
4624 DAG.getConstant(Index, DL, MVT::i32));
4625 }
4626
4627 GeneralShuffle GS(VT);
4628 for (unsigned I = 0; I < NumElements; ++I) {
4629 int Elt = VSN->getMaskElt(I);
4630 if (Elt < 0)
4631 GS.addUndef();
4632 else if (!GS.add(Op.getOperand(unsigned(Elt) / NumElements),
4633 unsigned(Elt) % NumElements))
4634 return SDValue();
4635 }
4636 return GS.getNode(DAG, SDLoc(VSN));
4637 }
4638
lowerSCALAR_TO_VECTOR(SDValue Op,SelectionDAG & DAG) const4639 SDValue SystemZTargetLowering::lowerSCALAR_TO_VECTOR(SDValue Op,
4640 SelectionDAG &DAG) const {
4641 SDLoc DL(Op);
4642 // Just insert the scalar into element 0 of an undefined vector.
4643 return DAG.getNode(ISD::INSERT_VECTOR_ELT, DL,
4644 Op.getValueType(), DAG.getUNDEF(Op.getValueType()),
4645 Op.getOperand(0), DAG.getConstant(0, DL, MVT::i32));
4646 }
4647
lowerINSERT_VECTOR_ELT(SDValue Op,SelectionDAG & DAG) const4648 SDValue SystemZTargetLowering::lowerINSERT_VECTOR_ELT(SDValue Op,
4649 SelectionDAG &DAG) const {
4650 // Handle insertions of floating-point values.
4651 SDLoc DL(Op);
4652 SDValue Op0 = Op.getOperand(0);
4653 SDValue Op1 = Op.getOperand(1);
4654 SDValue Op2 = Op.getOperand(2);
4655 EVT VT = Op.getValueType();
4656
4657 // Insertions into constant indices of a v2f64 can be done using VPDI.
4658 // However, if the inserted value is a bitcast or a constant then it's
4659 // better to use GPRs, as below.
4660 if (VT == MVT::v2f64 &&
4661 Op1.getOpcode() != ISD::BITCAST &&
4662 Op1.getOpcode() != ISD::ConstantFP &&
4663 Op2.getOpcode() == ISD::Constant) {
4664 uint64_t Index = cast<ConstantSDNode>(Op2)->getZExtValue();
4665 unsigned Mask = VT.getVectorNumElements() - 1;
4666 if (Index <= Mask)
4667 return Op;
4668 }
4669
4670 // Otherwise bitcast to the equivalent integer form and insert via a GPR.
4671 MVT IntVT = MVT::getIntegerVT(VT.getScalarSizeInBits());
4672 MVT IntVecVT = MVT::getVectorVT(IntVT, VT.getVectorNumElements());
4673 SDValue Res = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, IntVecVT,
4674 DAG.getNode(ISD::BITCAST, DL, IntVecVT, Op0),
4675 DAG.getNode(ISD::BITCAST, DL, IntVT, Op1), Op2);
4676 return DAG.getNode(ISD::BITCAST, DL, VT, Res);
4677 }
4678
4679 SDValue
lowerEXTRACT_VECTOR_ELT(SDValue Op,SelectionDAG & DAG) const4680 SystemZTargetLowering::lowerEXTRACT_VECTOR_ELT(SDValue Op,
4681 SelectionDAG &DAG) const {
4682 // Handle extractions of floating-point values.
4683 SDLoc DL(Op);
4684 SDValue Op0 = Op.getOperand(0);
4685 SDValue Op1 = Op.getOperand(1);
4686 EVT VT = Op.getValueType();
4687 EVT VecVT = Op0.getValueType();
4688
4689 // Extractions of constant indices can be done directly.
4690 if (auto *CIndexN = dyn_cast<ConstantSDNode>(Op1)) {
4691 uint64_t Index = CIndexN->getZExtValue();
4692 unsigned Mask = VecVT.getVectorNumElements() - 1;
4693 if (Index <= Mask)
4694 return Op;
4695 }
4696
4697 // Otherwise bitcast to the equivalent integer form and extract via a GPR.
4698 MVT IntVT = MVT::getIntegerVT(VT.getSizeInBits());
4699 MVT IntVecVT = MVT::getVectorVT(IntVT, VecVT.getVectorNumElements());
4700 SDValue Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, IntVT,
4701 DAG.getNode(ISD::BITCAST, DL, IntVecVT, Op0), Op1);
4702 return DAG.getNode(ISD::BITCAST, DL, VT, Res);
4703 }
4704
4705 SDValue
lowerExtendVectorInreg(SDValue Op,SelectionDAG & DAG,unsigned UnpackHigh) const4706 SystemZTargetLowering::lowerExtendVectorInreg(SDValue Op, SelectionDAG &DAG,
4707 unsigned UnpackHigh) const {
4708 SDValue PackedOp = Op.getOperand(0);
4709 EVT OutVT = Op.getValueType();
4710 EVT InVT = PackedOp.getValueType();
4711 unsigned ToBits = OutVT.getScalarSizeInBits();
4712 unsigned FromBits = InVT.getScalarSizeInBits();
4713 do {
4714 FromBits *= 2;
4715 EVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(FromBits),
4716 SystemZ::VectorBits / FromBits);
4717 PackedOp = DAG.getNode(UnpackHigh, SDLoc(PackedOp), OutVT, PackedOp);
4718 } while (FromBits != ToBits);
4719 return PackedOp;
4720 }
4721
lowerShift(SDValue Op,SelectionDAG & DAG,unsigned ByScalar) const4722 SDValue SystemZTargetLowering::lowerShift(SDValue Op, SelectionDAG &DAG,
4723 unsigned ByScalar) const {
4724 // Look for cases where a vector shift can use the *_BY_SCALAR form.
4725 SDValue Op0 = Op.getOperand(0);
4726 SDValue Op1 = Op.getOperand(1);
4727 SDLoc DL(Op);
4728 EVT VT = Op.getValueType();
4729 unsigned ElemBitSize = VT.getScalarSizeInBits();
4730
4731 // See whether the shift vector is a splat represented as BUILD_VECTOR.
4732 if (auto *BVN = dyn_cast<BuildVectorSDNode>(Op1)) {
4733 APInt SplatBits, SplatUndef;
4734 unsigned SplatBitSize;
4735 bool HasAnyUndefs;
4736 // Check for constant splats. Use ElemBitSize as the minimum element
4737 // width and reject splats that need wider elements.
4738 if (BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs,
4739 ElemBitSize, true) &&
4740 SplatBitSize == ElemBitSize) {
4741 SDValue Shift = DAG.getConstant(SplatBits.getZExtValue() & 0xfff,
4742 DL, MVT::i32);
4743 return DAG.getNode(ByScalar, DL, VT, Op0, Shift);
4744 }
4745 // Check for variable splats.
4746 BitVector UndefElements;
4747 SDValue Splat = BVN->getSplatValue(&UndefElements);
4748 if (Splat) {
4749 // Since i32 is the smallest legal type, we either need a no-op
4750 // or a truncation.
4751 SDValue Shift = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Splat);
4752 return DAG.getNode(ByScalar, DL, VT, Op0, Shift);
4753 }
4754 }
4755
4756 // See whether the shift vector is a splat represented as SHUFFLE_VECTOR,
4757 // and the shift amount is directly available in a GPR.
4758 if (auto *VSN = dyn_cast<ShuffleVectorSDNode>(Op1)) {
4759 if (VSN->isSplat()) {
4760 SDValue VSNOp0 = VSN->getOperand(0);
4761 unsigned Index = VSN->getSplatIndex();
4762 assert(Index < VT.getVectorNumElements() &&
4763 "Splat index should be defined and in first operand");
4764 if ((Index == 0 && VSNOp0.getOpcode() == ISD::SCALAR_TO_VECTOR) ||
4765 VSNOp0.getOpcode() == ISD::BUILD_VECTOR) {
4766 // Since i32 is the smallest legal type, we either need a no-op
4767 // or a truncation.
4768 SDValue Shift = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32,
4769 VSNOp0.getOperand(Index));
4770 return DAG.getNode(ByScalar, DL, VT, Op0, Shift);
4771 }
4772 }
4773 }
4774
4775 // Otherwise just treat the current form as legal.
4776 return Op;
4777 }
4778
LowerOperation(SDValue Op,SelectionDAG & DAG) const4779 SDValue SystemZTargetLowering::LowerOperation(SDValue Op,
4780 SelectionDAG &DAG) const {
4781 switch (Op.getOpcode()) {
4782 case ISD::FRAMEADDR:
4783 return lowerFRAMEADDR(Op, DAG);
4784 case ISD::RETURNADDR:
4785 return lowerRETURNADDR(Op, DAG);
4786 case ISD::BR_CC:
4787 return lowerBR_CC(Op, DAG);
4788 case ISD::SELECT_CC:
4789 return lowerSELECT_CC(Op, DAG);
4790 case ISD::SETCC:
4791 return lowerSETCC(Op, DAG);
4792 case ISD::GlobalAddress:
4793 return lowerGlobalAddress(cast<GlobalAddressSDNode>(Op), DAG);
4794 case ISD::GlobalTLSAddress:
4795 return lowerGlobalTLSAddress(cast<GlobalAddressSDNode>(Op), DAG);
4796 case ISD::BlockAddress:
4797 return lowerBlockAddress(cast<BlockAddressSDNode>(Op), DAG);
4798 case ISD::JumpTable:
4799 return lowerJumpTable(cast<JumpTableSDNode>(Op), DAG);
4800 case ISD::ConstantPool:
4801 return lowerConstantPool(cast<ConstantPoolSDNode>(Op), DAG);
4802 case ISD::BITCAST:
4803 return lowerBITCAST(Op, DAG);
4804 case ISD::VASTART:
4805 return lowerVASTART(Op, DAG);
4806 case ISD::VACOPY:
4807 return lowerVACOPY(Op, DAG);
4808 case ISD::DYNAMIC_STACKALLOC:
4809 return lowerDYNAMIC_STACKALLOC(Op, DAG);
4810 case ISD::GET_DYNAMIC_AREA_OFFSET:
4811 return lowerGET_DYNAMIC_AREA_OFFSET(Op, DAG);
4812 case ISD::SMUL_LOHI:
4813 return lowerSMUL_LOHI(Op, DAG);
4814 case ISD::UMUL_LOHI:
4815 return lowerUMUL_LOHI(Op, DAG);
4816 case ISD::SDIVREM:
4817 return lowerSDIVREM(Op, DAG);
4818 case ISD::UDIVREM:
4819 return lowerUDIVREM(Op, DAG);
4820 case ISD::SADDO:
4821 case ISD::SSUBO:
4822 case ISD::UADDO:
4823 case ISD::USUBO:
4824 return lowerXALUO(Op, DAG);
4825 case ISD::ADDCARRY:
4826 case ISD::SUBCARRY:
4827 return lowerADDSUBCARRY(Op, DAG);
4828 case ISD::OR:
4829 return lowerOR(Op, DAG);
4830 case ISD::CTPOP:
4831 return lowerCTPOP(Op, DAG);
4832 case ISD::ATOMIC_FENCE:
4833 return lowerATOMIC_FENCE(Op, DAG);
4834 case ISD::ATOMIC_SWAP:
4835 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_SWAPW);
4836 case ISD::ATOMIC_STORE:
4837 return lowerATOMIC_STORE(Op, DAG);
4838 case ISD::ATOMIC_LOAD:
4839 return lowerATOMIC_LOAD(Op, DAG);
4840 case ISD::ATOMIC_LOAD_ADD:
4841 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_ADD);
4842 case ISD::ATOMIC_LOAD_SUB:
4843 return lowerATOMIC_LOAD_SUB(Op, DAG);
4844 case ISD::ATOMIC_LOAD_AND:
4845 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_AND);
4846 case ISD::ATOMIC_LOAD_OR:
4847 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_OR);
4848 case ISD::ATOMIC_LOAD_XOR:
4849 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_XOR);
4850 case ISD::ATOMIC_LOAD_NAND:
4851 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_NAND);
4852 case ISD::ATOMIC_LOAD_MIN:
4853 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_MIN);
4854 case ISD::ATOMIC_LOAD_MAX:
4855 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_MAX);
4856 case ISD::ATOMIC_LOAD_UMIN:
4857 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_UMIN);
4858 case ISD::ATOMIC_LOAD_UMAX:
4859 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_UMAX);
4860 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
4861 return lowerATOMIC_CMP_SWAP(Op, DAG);
4862 case ISD::STACKSAVE:
4863 return lowerSTACKSAVE(Op, DAG);
4864 case ISD::STACKRESTORE:
4865 return lowerSTACKRESTORE(Op, DAG);
4866 case ISD::PREFETCH:
4867 return lowerPREFETCH(Op, DAG);
4868 case ISD::INTRINSIC_W_CHAIN:
4869 return lowerINTRINSIC_W_CHAIN(Op, DAG);
4870 case ISD::INTRINSIC_WO_CHAIN:
4871 return lowerINTRINSIC_WO_CHAIN(Op, DAG);
4872 case ISD::BUILD_VECTOR:
4873 return lowerBUILD_VECTOR(Op, DAG);
4874 case ISD::VECTOR_SHUFFLE:
4875 return lowerVECTOR_SHUFFLE(Op, DAG);
4876 case ISD::SCALAR_TO_VECTOR:
4877 return lowerSCALAR_TO_VECTOR(Op, DAG);
4878 case ISD::INSERT_VECTOR_ELT:
4879 return lowerINSERT_VECTOR_ELT(Op, DAG);
4880 case ISD::EXTRACT_VECTOR_ELT:
4881 return lowerEXTRACT_VECTOR_ELT(Op, DAG);
4882 case ISD::SIGN_EXTEND_VECTOR_INREG:
4883 return lowerExtendVectorInreg(Op, DAG, SystemZISD::UNPACK_HIGH);
4884 case ISD::ZERO_EXTEND_VECTOR_INREG:
4885 return lowerExtendVectorInreg(Op, DAG, SystemZISD::UNPACKL_HIGH);
4886 case ISD::SHL:
4887 return lowerShift(Op, DAG, SystemZISD::VSHL_BY_SCALAR);
4888 case ISD::SRL:
4889 return lowerShift(Op, DAG, SystemZISD::VSRL_BY_SCALAR);
4890 case ISD::SRA:
4891 return lowerShift(Op, DAG, SystemZISD::VSRA_BY_SCALAR);
4892 default:
4893 llvm_unreachable("Unexpected node to lower");
4894 }
4895 }
4896
4897 // Lower operations with invalid operand or result types (currently used
4898 // only for 128-bit integer types).
4899
lowerI128ToGR128(SelectionDAG & DAG,SDValue In)4900 static SDValue lowerI128ToGR128(SelectionDAG &DAG, SDValue In) {
4901 SDLoc DL(In);
4902 SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i64, In,
4903 DAG.getIntPtrConstant(0, DL));
4904 SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i64, In,
4905 DAG.getIntPtrConstant(1, DL));
4906 SDNode *Pair = DAG.getMachineNode(SystemZ::PAIR128, DL,
4907 MVT::Untyped, Hi, Lo);
4908 return SDValue(Pair, 0);
4909 }
4910
lowerGR128ToI128(SelectionDAG & DAG,SDValue In)4911 static SDValue lowerGR128ToI128(SelectionDAG &DAG, SDValue In) {
4912 SDLoc DL(In);
4913 SDValue Hi = DAG.getTargetExtractSubreg(SystemZ::subreg_h64,
4914 DL, MVT::i64, In);
4915 SDValue Lo = DAG.getTargetExtractSubreg(SystemZ::subreg_l64,
4916 DL, MVT::i64, In);
4917 return DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i128, Lo, Hi);
4918 }
4919
4920 void
LowerOperationWrapper(SDNode * N,SmallVectorImpl<SDValue> & Results,SelectionDAG & DAG) const4921 SystemZTargetLowering::LowerOperationWrapper(SDNode *N,
4922 SmallVectorImpl<SDValue> &Results,
4923 SelectionDAG &DAG) const {
4924 switch (N->getOpcode()) {
4925 case ISD::ATOMIC_LOAD: {
4926 SDLoc DL(N);
4927 SDVTList Tys = DAG.getVTList(MVT::Untyped, MVT::Other);
4928 SDValue Ops[] = { N->getOperand(0), N->getOperand(1) };
4929 MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand();
4930 SDValue Res = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_LOAD_128,
4931 DL, Tys, Ops, MVT::i128, MMO);
4932 Results.push_back(lowerGR128ToI128(DAG, Res));
4933 Results.push_back(Res.getValue(1));
4934 break;
4935 }
4936 case ISD::ATOMIC_STORE: {
4937 SDLoc DL(N);
4938 SDVTList Tys = DAG.getVTList(MVT::Other);
4939 SDValue Ops[] = { N->getOperand(0),
4940 lowerI128ToGR128(DAG, N->getOperand(2)),
4941 N->getOperand(1) };
4942 MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand();
4943 SDValue Res = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_STORE_128,
4944 DL, Tys, Ops, MVT::i128, MMO);
4945 // We have to enforce sequential consistency by performing a
4946 // serialization operation after the store.
4947 if (cast<AtomicSDNode>(N)->getOrdering() ==
4948 AtomicOrdering::SequentiallyConsistent)
4949 Res = SDValue(DAG.getMachineNode(SystemZ::Serialize, DL,
4950 MVT::Other, Res), 0);
4951 Results.push_back(Res);
4952 break;
4953 }
4954 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: {
4955 SDLoc DL(N);
4956 SDVTList Tys = DAG.getVTList(MVT::Untyped, MVT::i32, MVT::Other);
4957 SDValue Ops[] = { N->getOperand(0), N->getOperand(1),
4958 lowerI128ToGR128(DAG, N->getOperand(2)),
4959 lowerI128ToGR128(DAG, N->getOperand(3)) };
4960 MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand();
4961 SDValue Res = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_CMP_SWAP_128,
4962 DL, Tys, Ops, MVT::i128, MMO);
4963 SDValue Success = emitSETCC(DAG, DL, Res.getValue(1),
4964 SystemZ::CCMASK_CS, SystemZ::CCMASK_CS_EQ);
4965 Success = DAG.getZExtOrTrunc(Success, DL, N->getValueType(1));
4966 Results.push_back(lowerGR128ToI128(DAG, Res));
4967 Results.push_back(Success);
4968 Results.push_back(Res.getValue(2));
4969 break;
4970 }
4971 default:
4972 llvm_unreachable("Unexpected node to lower");
4973 }
4974 }
4975
4976 void
ReplaceNodeResults(SDNode * N,SmallVectorImpl<SDValue> & Results,SelectionDAG & DAG) const4977 SystemZTargetLowering::ReplaceNodeResults(SDNode *N,
4978 SmallVectorImpl<SDValue> &Results,
4979 SelectionDAG &DAG) const {
4980 return LowerOperationWrapper(N, Results, DAG);
4981 }
4982
getTargetNodeName(unsigned Opcode) const4983 const char *SystemZTargetLowering::getTargetNodeName(unsigned Opcode) const {
4984 #define OPCODE(NAME) case SystemZISD::NAME: return "SystemZISD::" #NAME
4985 switch ((SystemZISD::NodeType)Opcode) {
4986 case SystemZISD::FIRST_NUMBER: break;
4987 OPCODE(RET_FLAG);
4988 OPCODE(CALL);
4989 OPCODE(SIBCALL);
4990 OPCODE(TLS_GDCALL);
4991 OPCODE(TLS_LDCALL);
4992 OPCODE(PCREL_WRAPPER);
4993 OPCODE(PCREL_OFFSET);
4994 OPCODE(IABS);
4995 OPCODE(ICMP);
4996 OPCODE(FCMP);
4997 OPCODE(TM);
4998 OPCODE(BR_CCMASK);
4999 OPCODE(SELECT_CCMASK);
5000 OPCODE(ADJDYNALLOC);
5001 OPCODE(POPCNT);
5002 OPCODE(SMUL_LOHI);
5003 OPCODE(UMUL_LOHI);
5004 OPCODE(SDIVREM);
5005 OPCODE(UDIVREM);
5006 OPCODE(SADDO);
5007 OPCODE(SSUBO);
5008 OPCODE(UADDO);
5009 OPCODE(USUBO);
5010 OPCODE(ADDCARRY);
5011 OPCODE(SUBCARRY);
5012 OPCODE(GET_CCMASK);
5013 OPCODE(MVC);
5014 OPCODE(MVC_LOOP);
5015 OPCODE(NC);
5016 OPCODE(NC_LOOP);
5017 OPCODE(OC);
5018 OPCODE(OC_LOOP);
5019 OPCODE(XC);
5020 OPCODE(XC_LOOP);
5021 OPCODE(CLC);
5022 OPCODE(CLC_LOOP);
5023 OPCODE(STPCPY);
5024 OPCODE(STRCMP);
5025 OPCODE(SEARCH_STRING);
5026 OPCODE(IPM);
5027 OPCODE(MEMBARRIER);
5028 OPCODE(TBEGIN);
5029 OPCODE(TBEGIN_NOFLOAT);
5030 OPCODE(TEND);
5031 OPCODE(BYTE_MASK);
5032 OPCODE(ROTATE_MASK);
5033 OPCODE(REPLICATE);
5034 OPCODE(JOIN_DWORDS);
5035 OPCODE(SPLAT);
5036 OPCODE(MERGE_HIGH);
5037 OPCODE(MERGE_LOW);
5038 OPCODE(SHL_DOUBLE);
5039 OPCODE(PERMUTE_DWORDS);
5040 OPCODE(PERMUTE);
5041 OPCODE(PACK);
5042 OPCODE(PACKS_CC);
5043 OPCODE(PACKLS_CC);
5044 OPCODE(UNPACK_HIGH);
5045 OPCODE(UNPACKL_HIGH);
5046 OPCODE(UNPACK_LOW);
5047 OPCODE(UNPACKL_LOW);
5048 OPCODE(VSHL_BY_SCALAR);
5049 OPCODE(VSRL_BY_SCALAR);
5050 OPCODE(VSRA_BY_SCALAR);
5051 OPCODE(VSUM);
5052 OPCODE(VICMPE);
5053 OPCODE(VICMPH);
5054 OPCODE(VICMPHL);
5055 OPCODE(VICMPES);
5056 OPCODE(VICMPHS);
5057 OPCODE(VICMPHLS);
5058 OPCODE(VFCMPE);
5059 OPCODE(VFCMPH);
5060 OPCODE(VFCMPHE);
5061 OPCODE(VFCMPES);
5062 OPCODE(VFCMPHS);
5063 OPCODE(VFCMPHES);
5064 OPCODE(VFTCI);
5065 OPCODE(VEXTEND);
5066 OPCODE(VROUND);
5067 OPCODE(VTM);
5068 OPCODE(VFAE_CC);
5069 OPCODE(VFAEZ_CC);
5070 OPCODE(VFEE_CC);
5071 OPCODE(VFEEZ_CC);
5072 OPCODE(VFENE_CC);
5073 OPCODE(VFENEZ_CC);
5074 OPCODE(VISTR_CC);
5075 OPCODE(VSTRC_CC);
5076 OPCODE(VSTRCZ_CC);
5077 OPCODE(TDC);
5078 OPCODE(ATOMIC_SWAPW);
5079 OPCODE(ATOMIC_LOADW_ADD);
5080 OPCODE(ATOMIC_LOADW_SUB);
5081 OPCODE(ATOMIC_LOADW_AND);
5082 OPCODE(ATOMIC_LOADW_OR);
5083 OPCODE(ATOMIC_LOADW_XOR);
5084 OPCODE(ATOMIC_LOADW_NAND);
5085 OPCODE(ATOMIC_LOADW_MIN);
5086 OPCODE(ATOMIC_LOADW_MAX);
5087 OPCODE(ATOMIC_LOADW_UMIN);
5088 OPCODE(ATOMIC_LOADW_UMAX);
5089 OPCODE(ATOMIC_CMP_SWAPW);
5090 OPCODE(ATOMIC_CMP_SWAP);
5091 OPCODE(ATOMIC_LOAD_128);
5092 OPCODE(ATOMIC_STORE_128);
5093 OPCODE(ATOMIC_CMP_SWAP_128);
5094 OPCODE(LRV);
5095 OPCODE(STRV);
5096 OPCODE(PREFETCH);
5097 }
5098 return nullptr;
5099 #undef OPCODE
5100 }
5101
5102 // Return true if VT is a vector whose elements are a whole number of bytes
5103 // in width. Also check for presence of vector support.
canTreatAsByteVector(EVT VT) const5104 bool SystemZTargetLowering::canTreatAsByteVector(EVT VT) const {
5105 if (!Subtarget.hasVector())
5106 return false;
5107
5108 return VT.isVector() && VT.getScalarSizeInBits() % 8 == 0 && VT.isSimple();
5109 }
5110
5111 // Try to simplify an EXTRACT_VECTOR_ELT from a vector of type VecVT
5112 // producing a result of type ResVT. Op is a possibly bitcast version
5113 // of the input vector and Index is the index (based on type VecVT) that
5114 // should be extracted. Return the new extraction if a simplification
5115 // was possible or if Force is true.
combineExtract(const SDLoc & DL,EVT ResVT,EVT VecVT,SDValue Op,unsigned Index,DAGCombinerInfo & DCI,bool Force) const5116 SDValue SystemZTargetLowering::combineExtract(const SDLoc &DL, EVT ResVT,
5117 EVT VecVT, SDValue Op,
5118 unsigned Index,
5119 DAGCombinerInfo &DCI,
5120 bool Force) const {
5121 SelectionDAG &DAG = DCI.DAG;
5122
5123 // The number of bytes being extracted.
5124 unsigned BytesPerElement = VecVT.getVectorElementType().getStoreSize();
5125
5126 for (;;) {
5127 unsigned Opcode = Op.getOpcode();
5128 if (Opcode == ISD::BITCAST)
5129 // Look through bitcasts.
5130 Op = Op.getOperand(0);
5131 else if ((Opcode == ISD::VECTOR_SHUFFLE || Opcode == SystemZISD::SPLAT) &&
5132 canTreatAsByteVector(Op.getValueType())) {
5133 // Get a VPERM-like permute mask and see whether the bytes covered
5134 // by the extracted element are a contiguous sequence from one
5135 // source operand.
5136 SmallVector<int, SystemZ::VectorBytes> Bytes;
5137 if (!getVPermMask(Op, Bytes))
5138 break;
5139 int First;
5140 if (!getShuffleInput(Bytes, Index * BytesPerElement,
5141 BytesPerElement, First))
5142 break;
5143 if (First < 0)
5144 return DAG.getUNDEF(ResVT);
5145 // Make sure the contiguous sequence starts at a multiple of the
5146 // original element size.
5147 unsigned Byte = unsigned(First) % Bytes.size();
5148 if (Byte % BytesPerElement != 0)
5149 break;
5150 // We can get the extracted value directly from an input.
5151 Index = Byte / BytesPerElement;
5152 Op = Op.getOperand(unsigned(First) / Bytes.size());
5153 Force = true;
5154 } else if (Opcode == ISD::BUILD_VECTOR &&
5155 canTreatAsByteVector(Op.getValueType())) {
5156 // We can only optimize this case if the BUILD_VECTOR elements are
5157 // at least as wide as the extracted value.
5158 EVT OpVT = Op.getValueType();
5159 unsigned OpBytesPerElement = OpVT.getVectorElementType().getStoreSize();
5160 if (OpBytesPerElement < BytesPerElement)
5161 break;
5162 // Make sure that the least-significant bit of the extracted value
5163 // is the least significant bit of an input.
5164 unsigned End = (Index + 1) * BytesPerElement;
5165 if (End % OpBytesPerElement != 0)
5166 break;
5167 // We're extracting the low part of one operand of the BUILD_VECTOR.
5168 Op = Op.getOperand(End / OpBytesPerElement - 1);
5169 if (!Op.getValueType().isInteger()) {
5170 EVT VT = MVT::getIntegerVT(Op.getValueSizeInBits());
5171 Op = DAG.getNode(ISD::BITCAST, DL, VT, Op);
5172 DCI.AddToWorklist(Op.getNode());
5173 }
5174 EVT VT = MVT::getIntegerVT(ResVT.getSizeInBits());
5175 Op = DAG.getNode(ISD::TRUNCATE, DL, VT, Op);
5176 if (VT != ResVT) {
5177 DCI.AddToWorklist(Op.getNode());
5178 Op = DAG.getNode(ISD::BITCAST, DL, ResVT, Op);
5179 }
5180 return Op;
5181 } else if ((Opcode == ISD::SIGN_EXTEND_VECTOR_INREG ||
5182 Opcode == ISD::ZERO_EXTEND_VECTOR_INREG ||
5183 Opcode == ISD::ANY_EXTEND_VECTOR_INREG) &&
5184 canTreatAsByteVector(Op.getValueType()) &&
5185 canTreatAsByteVector(Op.getOperand(0).getValueType())) {
5186 // Make sure that only the unextended bits are significant.
5187 EVT ExtVT = Op.getValueType();
5188 EVT OpVT = Op.getOperand(0).getValueType();
5189 unsigned ExtBytesPerElement = ExtVT.getVectorElementType().getStoreSize();
5190 unsigned OpBytesPerElement = OpVT.getVectorElementType().getStoreSize();
5191 unsigned Byte = Index * BytesPerElement;
5192 unsigned SubByte = Byte % ExtBytesPerElement;
5193 unsigned MinSubByte = ExtBytesPerElement - OpBytesPerElement;
5194 if (SubByte < MinSubByte ||
5195 SubByte + BytesPerElement > ExtBytesPerElement)
5196 break;
5197 // Get the byte offset of the unextended element
5198 Byte = Byte / ExtBytesPerElement * OpBytesPerElement;
5199 // ...then add the byte offset relative to that element.
5200 Byte += SubByte - MinSubByte;
5201 if (Byte % BytesPerElement != 0)
5202 break;
5203 Op = Op.getOperand(0);
5204 Index = Byte / BytesPerElement;
5205 Force = true;
5206 } else
5207 break;
5208 }
5209 if (Force) {
5210 if (Op.getValueType() != VecVT) {
5211 Op = DAG.getNode(ISD::BITCAST, DL, VecVT, Op);
5212 DCI.AddToWorklist(Op.getNode());
5213 }
5214 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ResVT, Op,
5215 DAG.getConstant(Index, DL, MVT::i32));
5216 }
5217 return SDValue();
5218 }
5219
5220 // Optimize vector operations in scalar value Op on the basis that Op
5221 // is truncated to TruncVT.
combineTruncateExtract(const SDLoc & DL,EVT TruncVT,SDValue Op,DAGCombinerInfo & DCI) const5222 SDValue SystemZTargetLowering::combineTruncateExtract(
5223 const SDLoc &DL, EVT TruncVT, SDValue Op, DAGCombinerInfo &DCI) const {
5224 // If we have (trunc (extract_vector_elt X, Y)), try to turn it into
5225 // (extract_vector_elt (bitcast X), Y'), where (bitcast X) has elements
5226 // of type TruncVT.
5227 if (Op.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
5228 TruncVT.getSizeInBits() % 8 == 0) {
5229 SDValue Vec = Op.getOperand(0);
5230 EVT VecVT = Vec.getValueType();
5231 if (canTreatAsByteVector(VecVT)) {
5232 if (auto *IndexN = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
5233 unsigned BytesPerElement = VecVT.getVectorElementType().getStoreSize();
5234 unsigned TruncBytes = TruncVT.getStoreSize();
5235 if (BytesPerElement % TruncBytes == 0) {
5236 // Calculate the value of Y' in the above description. We are
5237 // splitting the original elements into Scale equal-sized pieces
5238 // and for truncation purposes want the last (least-significant)
5239 // of these pieces for IndexN. This is easiest to do by calculating
5240 // the start index of the following element and then subtracting 1.
5241 unsigned Scale = BytesPerElement / TruncBytes;
5242 unsigned NewIndex = (IndexN->getZExtValue() + 1) * Scale - 1;
5243
5244 // Defer the creation of the bitcast from X to combineExtract,
5245 // which might be able to optimize the extraction.
5246 VecVT = MVT::getVectorVT(MVT::getIntegerVT(TruncBytes * 8),
5247 VecVT.getStoreSize() / TruncBytes);
5248 EVT ResVT = (TruncBytes < 4 ? MVT::i32 : TruncVT);
5249 return combineExtract(DL, ResVT, VecVT, Vec, NewIndex, DCI, true);
5250 }
5251 }
5252 }
5253 }
5254 return SDValue();
5255 }
5256
combineZERO_EXTEND(SDNode * N,DAGCombinerInfo & DCI) const5257 SDValue SystemZTargetLowering::combineZERO_EXTEND(
5258 SDNode *N, DAGCombinerInfo &DCI) const {
5259 // Convert (zext (select_ccmask C1, C2)) into (select_ccmask C1', C2')
5260 SelectionDAG &DAG = DCI.DAG;
5261 SDValue N0 = N->getOperand(0);
5262 EVT VT = N->getValueType(0);
5263 if (N0.getOpcode() == SystemZISD::SELECT_CCMASK) {
5264 auto *TrueOp = dyn_cast<ConstantSDNode>(N0.getOperand(0));
5265 auto *FalseOp = dyn_cast<ConstantSDNode>(N0.getOperand(1));
5266 if (TrueOp && FalseOp) {
5267 SDLoc DL(N0);
5268 SDValue Ops[] = { DAG.getConstant(TrueOp->getZExtValue(), DL, VT),
5269 DAG.getConstant(FalseOp->getZExtValue(), DL, VT),
5270 N0.getOperand(2), N0.getOperand(3), N0.getOperand(4) };
5271 SDValue NewSelect = DAG.getNode(SystemZISD::SELECT_CCMASK, DL, VT, Ops);
5272 // If N0 has multiple uses, change other uses as well.
5273 if (!N0.hasOneUse()) {
5274 SDValue TruncSelect =
5275 DAG.getNode(ISD::TRUNCATE, DL, N0.getValueType(), NewSelect);
5276 DCI.CombineTo(N0.getNode(), TruncSelect);
5277 }
5278 return NewSelect;
5279 }
5280 }
5281 return SDValue();
5282 }
5283
combineSIGN_EXTEND_INREG(SDNode * N,DAGCombinerInfo & DCI) const5284 SDValue SystemZTargetLowering::combineSIGN_EXTEND_INREG(
5285 SDNode *N, DAGCombinerInfo &DCI) const {
5286 // Convert (sext_in_reg (setcc LHS, RHS, COND), i1)
5287 // and (sext_in_reg (any_extend (setcc LHS, RHS, COND)), i1)
5288 // into (select_cc LHS, RHS, -1, 0, COND)
5289 SelectionDAG &DAG = DCI.DAG;
5290 SDValue N0 = N->getOperand(0);
5291 EVT VT = N->getValueType(0);
5292 EVT EVT = cast<VTSDNode>(N->getOperand(1))->getVT();
5293 if (N0.hasOneUse() && N0.getOpcode() == ISD::ANY_EXTEND)
5294 N0 = N0.getOperand(0);
5295 if (EVT == MVT::i1 && N0.hasOneUse() && N0.getOpcode() == ISD::SETCC) {
5296 SDLoc DL(N0);
5297 SDValue Ops[] = { N0.getOperand(0), N0.getOperand(1),
5298 DAG.getConstant(-1, DL, VT), DAG.getConstant(0, DL, VT),
5299 N0.getOperand(2) };
5300 return DAG.getNode(ISD::SELECT_CC, DL, VT, Ops);
5301 }
5302 return SDValue();
5303 }
5304
combineSIGN_EXTEND(SDNode * N,DAGCombinerInfo & DCI) const5305 SDValue SystemZTargetLowering::combineSIGN_EXTEND(
5306 SDNode *N, DAGCombinerInfo &DCI) const {
5307 // Convert (sext (ashr (shl X, C1), C2)) to
5308 // (ashr (shl (anyext X), C1'), C2')), since wider shifts are as
5309 // cheap as narrower ones.
5310 SelectionDAG &DAG = DCI.DAG;
5311 SDValue N0 = N->getOperand(0);
5312 EVT VT = N->getValueType(0);
5313 if (N0.hasOneUse() && N0.getOpcode() == ISD::SRA) {
5314 auto *SraAmt = dyn_cast<ConstantSDNode>(N0.getOperand(1));
5315 SDValue Inner = N0.getOperand(0);
5316 if (SraAmt && Inner.hasOneUse() && Inner.getOpcode() == ISD::SHL) {
5317 if (auto *ShlAmt = dyn_cast<ConstantSDNode>(Inner.getOperand(1))) {
5318 unsigned Extra = (VT.getSizeInBits() - N0.getValueSizeInBits());
5319 unsigned NewShlAmt = ShlAmt->getZExtValue() + Extra;
5320 unsigned NewSraAmt = SraAmt->getZExtValue() + Extra;
5321 EVT ShiftVT = N0.getOperand(1).getValueType();
5322 SDValue Ext = DAG.getNode(ISD::ANY_EXTEND, SDLoc(Inner), VT,
5323 Inner.getOperand(0));
5324 SDValue Shl = DAG.getNode(ISD::SHL, SDLoc(Inner), VT, Ext,
5325 DAG.getConstant(NewShlAmt, SDLoc(Inner),
5326 ShiftVT));
5327 return DAG.getNode(ISD::SRA, SDLoc(N0), VT, Shl,
5328 DAG.getConstant(NewSraAmt, SDLoc(N0), ShiftVT));
5329 }
5330 }
5331 }
5332 return SDValue();
5333 }
5334
combineMERGE(SDNode * N,DAGCombinerInfo & DCI) const5335 SDValue SystemZTargetLowering::combineMERGE(
5336 SDNode *N, DAGCombinerInfo &DCI) const {
5337 SelectionDAG &DAG = DCI.DAG;
5338 unsigned Opcode = N->getOpcode();
5339 SDValue Op0 = N->getOperand(0);
5340 SDValue Op1 = N->getOperand(1);
5341 if (Op0.getOpcode() == ISD::BITCAST)
5342 Op0 = Op0.getOperand(0);
5343 if (Op0.getOpcode() == SystemZISD::BYTE_MASK &&
5344 cast<ConstantSDNode>(Op0.getOperand(0))->getZExtValue() == 0) {
5345 // (z_merge_* 0, 0) -> 0. This is mostly useful for using VLLEZF
5346 // for v4f32.
5347 if (Op1 == N->getOperand(0))
5348 return Op1;
5349 // (z_merge_? 0, X) -> (z_unpackl_? 0, X).
5350 EVT VT = Op1.getValueType();
5351 unsigned ElemBytes = VT.getVectorElementType().getStoreSize();
5352 if (ElemBytes <= 4) {
5353 Opcode = (Opcode == SystemZISD::MERGE_HIGH ?
5354 SystemZISD::UNPACKL_HIGH : SystemZISD::UNPACKL_LOW);
5355 EVT InVT = VT.changeVectorElementTypeToInteger();
5356 EVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(ElemBytes * 16),
5357 SystemZ::VectorBytes / ElemBytes / 2);
5358 if (VT != InVT) {
5359 Op1 = DAG.getNode(ISD::BITCAST, SDLoc(N), InVT, Op1);
5360 DCI.AddToWorklist(Op1.getNode());
5361 }
5362 SDValue Op = DAG.getNode(Opcode, SDLoc(N), OutVT, Op1);
5363 DCI.AddToWorklist(Op.getNode());
5364 return DAG.getNode(ISD::BITCAST, SDLoc(N), VT, Op);
5365 }
5366 }
5367 return SDValue();
5368 }
5369
combineLOAD(SDNode * N,DAGCombinerInfo & DCI) const5370 SDValue SystemZTargetLowering::combineLOAD(
5371 SDNode *N, DAGCombinerInfo &DCI) const {
5372 SelectionDAG &DAG = DCI.DAG;
5373 EVT LdVT = N->getValueType(0);
5374 if (LdVT.isVector() || LdVT.isInteger())
5375 return SDValue();
5376 // Transform a scalar load that is REPLICATEd as well as having other
5377 // use(s) to the form where the other use(s) use the first element of the
5378 // REPLICATE instead of the load. Otherwise instruction selection will not
5379 // produce a VLREP. Avoid extracting to a GPR, so only do this for floating
5380 // point loads.
5381
5382 SDValue Replicate;
5383 SmallVector<SDNode*, 8> OtherUses;
5384 for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
5385 UI != UE; ++UI) {
5386 if (UI->getOpcode() == SystemZISD::REPLICATE) {
5387 if (Replicate)
5388 return SDValue(); // Should never happen
5389 Replicate = SDValue(*UI, 0);
5390 }
5391 else if (UI.getUse().getResNo() == 0)
5392 OtherUses.push_back(*UI);
5393 }
5394 if (!Replicate || OtherUses.empty())
5395 return SDValue();
5396
5397 SDLoc DL(N);
5398 SDValue Extract0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, LdVT,
5399 Replicate, DAG.getConstant(0, DL, MVT::i32));
5400 // Update uses of the loaded Value while preserving old chains.
5401 for (SDNode *U : OtherUses) {
5402 SmallVector<SDValue, 8> Ops;
5403 for (SDValue Op : U->ops())
5404 Ops.push_back((Op.getNode() == N && Op.getResNo() == 0) ? Extract0 : Op);
5405 DAG.UpdateNodeOperands(U, Ops);
5406 }
5407 return SDValue(N, 0);
5408 }
5409
combineSTORE(SDNode * N,DAGCombinerInfo & DCI) const5410 SDValue SystemZTargetLowering::combineSTORE(
5411 SDNode *N, DAGCombinerInfo &DCI) const {
5412 SelectionDAG &DAG = DCI.DAG;
5413 auto *SN = cast<StoreSDNode>(N);
5414 auto &Op1 = N->getOperand(1);
5415 EVT MemVT = SN->getMemoryVT();
5416 // If we have (truncstoreiN (extract_vector_elt X, Y), Z) then it is better
5417 // for the extraction to be done on a vMiN value, so that we can use VSTE.
5418 // If X has wider elements then convert it to:
5419 // (truncstoreiN (extract_vector_elt (bitcast X), Y2), Z).
5420 if (MemVT.isInteger() && SN->isTruncatingStore()) {
5421 if (SDValue Value =
5422 combineTruncateExtract(SDLoc(N), MemVT, SN->getValue(), DCI)) {
5423 DCI.AddToWorklist(Value.getNode());
5424
5425 // Rewrite the store with the new form of stored value.
5426 return DAG.getTruncStore(SN->getChain(), SDLoc(SN), Value,
5427 SN->getBasePtr(), SN->getMemoryVT(),
5428 SN->getMemOperand());
5429 }
5430 }
5431 // Combine STORE (BSWAP) into STRVH/STRV/STRVG
5432 if (!SN->isTruncatingStore() &&
5433 Op1.getOpcode() == ISD::BSWAP &&
5434 Op1.getNode()->hasOneUse() &&
5435 (Op1.getValueType() == MVT::i16 ||
5436 Op1.getValueType() == MVT::i32 ||
5437 Op1.getValueType() == MVT::i64)) {
5438
5439 SDValue BSwapOp = Op1.getOperand(0);
5440
5441 if (BSwapOp.getValueType() == MVT::i16)
5442 BSwapOp = DAG.getNode(ISD::ANY_EXTEND, SDLoc(N), MVT::i32, BSwapOp);
5443
5444 SDValue Ops[] = {
5445 N->getOperand(0), BSwapOp, N->getOperand(2)
5446 };
5447
5448 return
5449 DAG.getMemIntrinsicNode(SystemZISD::STRV, SDLoc(N), DAG.getVTList(MVT::Other),
5450 Ops, MemVT, SN->getMemOperand());
5451 }
5452 return SDValue();
5453 }
5454
combineEXTRACT_VECTOR_ELT(SDNode * N,DAGCombinerInfo & DCI) const5455 SDValue SystemZTargetLowering::combineEXTRACT_VECTOR_ELT(
5456 SDNode *N, DAGCombinerInfo &DCI) const {
5457
5458 if (!Subtarget.hasVector())
5459 return SDValue();
5460
5461 // Try to simplify a vector extraction.
5462 if (auto *IndexN = dyn_cast<ConstantSDNode>(N->getOperand(1))) {
5463 SDValue Op0 = N->getOperand(0);
5464 EVT VecVT = Op0.getValueType();
5465 return combineExtract(SDLoc(N), N->getValueType(0), VecVT, Op0,
5466 IndexN->getZExtValue(), DCI, false);
5467 }
5468 return SDValue();
5469 }
5470
combineJOIN_DWORDS(SDNode * N,DAGCombinerInfo & DCI) const5471 SDValue SystemZTargetLowering::combineJOIN_DWORDS(
5472 SDNode *N, DAGCombinerInfo &DCI) const {
5473 SelectionDAG &DAG = DCI.DAG;
5474 // (join_dwords X, X) == (replicate X)
5475 if (N->getOperand(0) == N->getOperand(1))
5476 return DAG.getNode(SystemZISD::REPLICATE, SDLoc(N), N->getValueType(0),
5477 N->getOperand(0));
5478 return SDValue();
5479 }
5480
combineFP_ROUND(SDNode * N,DAGCombinerInfo & DCI) const5481 SDValue SystemZTargetLowering::combineFP_ROUND(
5482 SDNode *N, DAGCombinerInfo &DCI) const {
5483 // (fpround (extract_vector_elt X 0))
5484 // (fpround (extract_vector_elt X 1)) ->
5485 // (extract_vector_elt (VROUND X) 0)
5486 // (extract_vector_elt (VROUND X) 2)
5487 //
5488 // This is a special case since the target doesn't really support v2f32s.
5489 SelectionDAG &DAG = DCI.DAG;
5490 SDValue Op0 = N->getOperand(0);
5491 if (N->getValueType(0) == MVT::f32 &&
5492 Op0.hasOneUse() &&
5493 Op0.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
5494 Op0.getOperand(0).getValueType() == MVT::v2f64 &&
5495 Op0.getOperand(1).getOpcode() == ISD::Constant &&
5496 cast<ConstantSDNode>(Op0.getOperand(1))->getZExtValue() == 0) {
5497 SDValue Vec = Op0.getOperand(0);
5498 for (auto *U : Vec->uses()) {
5499 if (U != Op0.getNode() &&
5500 U->hasOneUse() &&
5501 U->getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
5502 U->getOperand(0) == Vec &&
5503 U->getOperand(1).getOpcode() == ISD::Constant &&
5504 cast<ConstantSDNode>(U->getOperand(1))->getZExtValue() == 1) {
5505 SDValue OtherRound = SDValue(*U->use_begin(), 0);
5506 if (OtherRound.getOpcode() == ISD::FP_ROUND &&
5507 OtherRound.getOperand(0) == SDValue(U, 0) &&
5508 OtherRound.getValueType() == MVT::f32) {
5509 SDValue VRound = DAG.getNode(SystemZISD::VROUND, SDLoc(N),
5510 MVT::v4f32, Vec);
5511 DCI.AddToWorklist(VRound.getNode());
5512 SDValue Extract1 =
5513 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(U), MVT::f32,
5514 VRound, DAG.getConstant(2, SDLoc(U), MVT::i32));
5515 DCI.AddToWorklist(Extract1.getNode());
5516 DAG.ReplaceAllUsesOfValueWith(OtherRound, Extract1);
5517 SDValue Extract0 =
5518 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(Op0), MVT::f32,
5519 VRound, DAG.getConstant(0, SDLoc(Op0), MVT::i32));
5520 return Extract0;
5521 }
5522 }
5523 }
5524 }
5525 return SDValue();
5526 }
5527
combineFP_EXTEND(SDNode * N,DAGCombinerInfo & DCI) const5528 SDValue SystemZTargetLowering::combineFP_EXTEND(
5529 SDNode *N, DAGCombinerInfo &DCI) const {
5530 // (fpextend (extract_vector_elt X 0))
5531 // (fpextend (extract_vector_elt X 2)) ->
5532 // (extract_vector_elt (VEXTEND X) 0)
5533 // (extract_vector_elt (VEXTEND X) 1)
5534 //
5535 // This is a special case since the target doesn't really support v2f32s.
5536 SelectionDAG &DAG = DCI.DAG;
5537 SDValue Op0 = N->getOperand(0);
5538 if (N->getValueType(0) == MVT::f64 &&
5539 Op0.hasOneUse() &&
5540 Op0.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
5541 Op0.getOperand(0).getValueType() == MVT::v4f32 &&
5542 Op0.getOperand(1).getOpcode() == ISD::Constant &&
5543 cast<ConstantSDNode>(Op0.getOperand(1))->getZExtValue() == 0) {
5544 SDValue Vec = Op0.getOperand(0);
5545 for (auto *U : Vec->uses()) {
5546 if (U != Op0.getNode() &&
5547 U->hasOneUse() &&
5548 U->getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
5549 U->getOperand(0) == Vec &&
5550 U->getOperand(1).getOpcode() == ISD::Constant &&
5551 cast<ConstantSDNode>(U->getOperand(1))->getZExtValue() == 2) {
5552 SDValue OtherExtend = SDValue(*U->use_begin(), 0);
5553 if (OtherExtend.getOpcode() == ISD::FP_EXTEND &&
5554 OtherExtend.getOperand(0) == SDValue(U, 0) &&
5555 OtherExtend.getValueType() == MVT::f64) {
5556 SDValue VExtend = DAG.getNode(SystemZISD::VEXTEND, SDLoc(N),
5557 MVT::v2f64, Vec);
5558 DCI.AddToWorklist(VExtend.getNode());
5559 SDValue Extract1 =
5560 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(U), MVT::f64,
5561 VExtend, DAG.getConstant(1, SDLoc(U), MVT::i32));
5562 DCI.AddToWorklist(Extract1.getNode());
5563 DAG.ReplaceAllUsesOfValueWith(OtherExtend, Extract1);
5564 SDValue Extract0 =
5565 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(Op0), MVT::f64,
5566 VExtend, DAG.getConstant(0, SDLoc(Op0), MVT::i32));
5567 return Extract0;
5568 }
5569 }
5570 }
5571 }
5572 return SDValue();
5573 }
5574
combineBSWAP(SDNode * N,DAGCombinerInfo & DCI) const5575 SDValue SystemZTargetLowering::combineBSWAP(
5576 SDNode *N, DAGCombinerInfo &DCI) const {
5577 SelectionDAG &DAG = DCI.DAG;
5578 // Combine BSWAP (LOAD) into LRVH/LRV/LRVG
5579 if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) &&
5580 N->getOperand(0).hasOneUse() &&
5581 (N->getValueType(0) == MVT::i16 || N->getValueType(0) == MVT::i32 ||
5582 N->getValueType(0) == MVT::i64)) {
5583 SDValue Load = N->getOperand(0);
5584 LoadSDNode *LD = cast<LoadSDNode>(Load);
5585
5586 // Create the byte-swapping load.
5587 SDValue Ops[] = {
5588 LD->getChain(), // Chain
5589 LD->getBasePtr() // Ptr
5590 };
5591 EVT LoadVT = N->getValueType(0);
5592 if (LoadVT == MVT::i16)
5593 LoadVT = MVT::i32;
5594 SDValue BSLoad =
5595 DAG.getMemIntrinsicNode(SystemZISD::LRV, SDLoc(N),
5596 DAG.getVTList(LoadVT, MVT::Other),
5597 Ops, LD->getMemoryVT(), LD->getMemOperand());
5598
5599 // If this is an i16 load, insert the truncate.
5600 SDValue ResVal = BSLoad;
5601 if (N->getValueType(0) == MVT::i16)
5602 ResVal = DAG.getNode(ISD::TRUNCATE, SDLoc(N), MVT::i16, BSLoad);
5603
5604 // First, combine the bswap away. This makes the value produced by the
5605 // load dead.
5606 DCI.CombineTo(N, ResVal);
5607
5608 // Next, combine the load away, we give it a bogus result value but a real
5609 // chain result. The result value is dead because the bswap is dead.
5610 DCI.CombineTo(Load.getNode(), ResVal, BSLoad.getValue(1));
5611
5612 // Return N so it doesn't get rechecked!
5613 return SDValue(N, 0);
5614 }
5615 return SDValue();
5616 }
5617
combineCCMask(SDValue & CCReg,int & CCValid,int & CCMask)5618 static bool combineCCMask(SDValue &CCReg, int &CCValid, int &CCMask) {
5619 // We have a SELECT_CCMASK or BR_CCMASK comparing the condition code
5620 // set by the CCReg instruction using the CCValid / CCMask masks,
5621 // If the CCReg instruction is itself a ICMP testing the condition
5622 // code set by some other instruction, see whether we can directly
5623 // use that condition code.
5624
5625 // Verify that we have an ICMP against some constant.
5626 if (CCValid != SystemZ::CCMASK_ICMP)
5627 return false;
5628 auto *ICmp = CCReg.getNode();
5629 if (ICmp->getOpcode() != SystemZISD::ICMP)
5630 return false;
5631 auto *CompareLHS = ICmp->getOperand(0).getNode();
5632 auto *CompareRHS = dyn_cast<ConstantSDNode>(ICmp->getOperand(1));
5633 if (!CompareRHS)
5634 return false;
5635
5636 // Optimize the case where CompareLHS is a SELECT_CCMASK.
5637 if (CompareLHS->getOpcode() == SystemZISD::SELECT_CCMASK) {
5638 // Verify that we have an appropriate mask for a EQ or NE comparison.
5639 bool Invert = false;
5640 if (CCMask == SystemZ::CCMASK_CMP_NE)
5641 Invert = !Invert;
5642 else if (CCMask != SystemZ::CCMASK_CMP_EQ)
5643 return false;
5644
5645 // Verify that the ICMP compares against one of select values.
5646 auto *TrueVal = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(0));
5647 if (!TrueVal)
5648 return false;
5649 auto *FalseVal = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(1));
5650 if (!FalseVal)
5651 return false;
5652 if (CompareRHS->getZExtValue() == FalseVal->getZExtValue())
5653 Invert = !Invert;
5654 else if (CompareRHS->getZExtValue() != TrueVal->getZExtValue())
5655 return false;
5656
5657 // Compute the effective CC mask for the new branch or select.
5658 auto *NewCCValid = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(2));
5659 auto *NewCCMask = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(3));
5660 if (!NewCCValid || !NewCCMask)
5661 return false;
5662 CCValid = NewCCValid->getZExtValue();
5663 CCMask = NewCCMask->getZExtValue();
5664 if (Invert)
5665 CCMask ^= CCValid;
5666
5667 // Return the updated CCReg link.
5668 CCReg = CompareLHS->getOperand(4);
5669 return true;
5670 }
5671
5672 // Optimize the case where CompareRHS is (SRA (SHL (IPM))).
5673 if (CompareLHS->getOpcode() == ISD::SRA) {
5674 auto *SRACount = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(1));
5675 if (!SRACount || SRACount->getZExtValue() != 30)
5676 return false;
5677 auto *SHL = CompareLHS->getOperand(0).getNode();
5678 if (SHL->getOpcode() != ISD::SHL)
5679 return false;
5680 auto *SHLCount = dyn_cast<ConstantSDNode>(SHL->getOperand(1));
5681 if (!SHLCount || SHLCount->getZExtValue() != 30 - SystemZ::IPM_CC)
5682 return false;
5683 auto *IPM = SHL->getOperand(0).getNode();
5684 if (IPM->getOpcode() != SystemZISD::IPM)
5685 return false;
5686
5687 // Avoid introducing CC spills (because SRA would clobber CC).
5688 if (!CompareLHS->hasOneUse())
5689 return false;
5690 // Verify that the ICMP compares against zero.
5691 if (CompareRHS->getZExtValue() != 0)
5692 return false;
5693
5694 // Compute the effective CC mask for the new branch or select.
5695 switch (CCMask) {
5696 case SystemZ::CCMASK_CMP_EQ: break;
5697 case SystemZ::CCMASK_CMP_NE: break;
5698 case SystemZ::CCMASK_CMP_LT: CCMask = SystemZ::CCMASK_CMP_GT; break;
5699 case SystemZ::CCMASK_CMP_GT: CCMask = SystemZ::CCMASK_CMP_LT; break;
5700 case SystemZ::CCMASK_CMP_LE: CCMask = SystemZ::CCMASK_CMP_GE; break;
5701 case SystemZ::CCMASK_CMP_GE: CCMask = SystemZ::CCMASK_CMP_LE; break;
5702 default: return false;
5703 }
5704
5705 // Return the updated CCReg link.
5706 CCReg = IPM->getOperand(0);
5707 return true;
5708 }
5709
5710 return false;
5711 }
5712
combineBR_CCMASK(SDNode * N,DAGCombinerInfo & DCI) const5713 SDValue SystemZTargetLowering::combineBR_CCMASK(
5714 SDNode *N, DAGCombinerInfo &DCI) const {
5715 SelectionDAG &DAG = DCI.DAG;
5716
5717 // Combine BR_CCMASK (ICMP (SELECT_CCMASK)) into a single BR_CCMASK.
5718 auto *CCValid = dyn_cast<ConstantSDNode>(N->getOperand(1));
5719 auto *CCMask = dyn_cast<ConstantSDNode>(N->getOperand(2));
5720 if (!CCValid || !CCMask)
5721 return SDValue();
5722
5723 int CCValidVal = CCValid->getZExtValue();
5724 int CCMaskVal = CCMask->getZExtValue();
5725 SDValue Chain = N->getOperand(0);
5726 SDValue CCReg = N->getOperand(4);
5727
5728 if (combineCCMask(CCReg, CCValidVal, CCMaskVal))
5729 return DAG.getNode(SystemZISD::BR_CCMASK, SDLoc(N), N->getValueType(0),
5730 Chain,
5731 DAG.getConstant(CCValidVal, SDLoc(N), MVT::i32),
5732 DAG.getConstant(CCMaskVal, SDLoc(N), MVT::i32),
5733 N->getOperand(3), CCReg);
5734 return SDValue();
5735 }
5736
combineSELECT_CCMASK(SDNode * N,DAGCombinerInfo & DCI) const5737 SDValue SystemZTargetLowering::combineSELECT_CCMASK(
5738 SDNode *N, DAGCombinerInfo &DCI) const {
5739 SelectionDAG &DAG = DCI.DAG;
5740
5741 // Combine SELECT_CCMASK (ICMP (SELECT_CCMASK)) into a single SELECT_CCMASK.
5742 auto *CCValid = dyn_cast<ConstantSDNode>(N->getOperand(2));
5743 auto *CCMask = dyn_cast<ConstantSDNode>(N->getOperand(3));
5744 if (!CCValid || !CCMask)
5745 return SDValue();
5746
5747 int CCValidVal = CCValid->getZExtValue();
5748 int CCMaskVal = CCMask->getZExtValue();
5749 SDValue CCReg = N->getOperand(4);
5750
5751 if (combineCCMask(CCReg, CCValidVal, CCMaskVal))
5752 return DAG.getNode(SystemZISD::SELECT_CCMASK, SDLoc(N), N->getValueType(0),
5753 N->getOperand(0),
5754 N->getOperand(1),
5755 DAG.getConstant(CCValidVal, SDLoc(N), MVT::i32),
5756 DAG.getConstant(CCMaskVal, SDLoc(N), MVT::i32),
5757 CCReg);
5758 return SDValue();
5759 }
5760
5761
combineGET_CCMASK(SDNode * N,DAGCombinerInfo & DCI) const5762 SDValue SystemZTargetLowering::combineGET_CCMASK(
5763 SDNode *N, DAGCombinerInfo &DCI) const {
5764
5765 // Optimize away GET_CCMASK (SELECT_CCMASK) if the CC masks are compatible
5766 auto *CCValid = dyn_cast<ConstantSDNode>(N->getOperand(1));
5767 auto *CCMask = dyn_cast<ConstantSDNode>(N->getOperand(2));
5768 if (!CCValid || !CCMask)
5769 return SDValue();
5770 int CCValidVal = CCValid->getZExtValue();
5771 int CCMaskVal = CCMask->getZExtValue();
5772
5773 SDValue Select = N->getOperand(0);
5774 if (Select->getOpcode() != SystemZISD::SELECT_CCMASK)
5775 return SDValue();
5776
5777 auto *SelectCCValid = dyn_cast<ConstantSDNode>(Select->getOperand(2));
5778 auto *SelectCCMask = dyn_cast<ConstantSDNode>(Select->getOperand(3));
5779 if (!SelectCCValid || !SelectCCMask)
5780 return SDValue();
5781 int SelectCCValidVal = SelectCCValid->getZExtValue();
5782 int SelectCCMaskVal = SelectCCMask->getZExtValue();
5783
5784 auto *TrueVal = dyn_cast<ConstantSDNode>(Select->getOperand(0));
5785 auto *FalseVal = dyn_cast<ConstantSDNode>(Select->getOperand(1));
5786 if (!TrueVal || !FalseVal)
5787 return SDValue();
5788 if (TrueVal->getZExtValue() != 0 && FalseVal->getZExtValue() == 0)
5789 ;
5790 else if (TrueVal->getZExtValue() == 0 && FalseVal->getZExtValue() != 0)
5791 SelectCCMaskVal ^= SelectCCValidVal;
5792 else
5793 return SDValue();
5794
5795 if (SelectCCValidVal & ~CCValidVal)
5796 return SDValue();
5797 if (SelectCCMaskVal != (CCMaskVal & SelectCCValidVal))
5798 return SDValue();
5799
5800 return Select->getOperand(4);
5801 }
5802
combineIntDIVREM(SDNode * N,DAGCombinerInfo & DCI) const5803 SDValue SystemZTargetLowering::combineIntDIVREM(
5804 SDNode *N, DAGCombinerInfo &DCI) const {
5805 SelectionDAG &DAG = DCI.DAG;
5806 EVT VT = N->getValueType(0);
5807 // In the case where the divisor is a vector of constants a cheaper
5808 // sequence of instructions can replace the divide. BuildSDIV is called to
5809 // do this during DAG combining, but it only succeeds when it can build a
5810 // multiplication node. The only option for SystemZ is ISD::SMUL_LOHI, and
5811 // since it is not Legal but Custom it can only happen before
5812 // legalization. Therefore we must scalarize this early before Combine
5813 // 1. For widened vectors, this is already the result of type legalization.
5814 if (VT.isVector() && isTypeLegal(VT) &&
5815 DAG.isConstantIntBuildVectorOrConstantInt(N->getOperand(1)))
5816 return DAG.UnrollVectorOp(N);
5817 return SDValue();
5818 }
5819
PerformDAGCombine(SDNode * N,DAGCombinerInfo & DCI) const5820 SDValue SystemZTargetLowering::PerformDAGCombine(SDNode *N,
5821 DAGCombinerInfo &DCI) const {
5822 switch(N->getOpcode()) {
5823 default: break;
5824 case ISD::ZERO_EXTEND: return combineZERO_EXTEND(N, DCI);
5825 case ISD::SIGN_EXTEND: return combineSIGN_EXTEND(N, DCI);
5826 case ISD::SIGN_EXTEND_INREG: return combineSIGN_EXTEND_INREG(N, DCI);
5827 case SystemZISD::MERGE_HIGH:
5828 case SystemZISD::MERGE_LOW: return combineMERGE(N, DCI);
5829 case ISD::LOAD: return combineLOAD(N, DCI);
5830 case ISD::STORE: return combineSTORE(N, DCI);
5831 case ISD::EXTRACT_VECTOR_ELT: return combineEXTRACT_VECTOR_ELT(N, DCI);
5832 case SystemZISD::JOIN_DWORDS: return combineJOIN_DWORDS(N, DCI);
5833 case ISD::FP_ROUND: return combineFP_ROUND(N, DCI);
5834 case ISD::FP_EXTEND: return combineFP_EXTEND(N, DCI);
5835 case ISD::BSWAP: return combineBSWAP(N, DCI);
5836 case SystemZISD::BR_CCMASK: return combineBR_CCMASK(N, DCI);
5837 case SystemZISD::SELECT_CCMASK: return combineSELECT_CCMASK(N, DCI);
5838 case SystemZISD::GET_CCMASK: return combineGET_CCMASK(N, DCI);
5839 case ISD::SDIV:
5840 case ISD::UDIV:
5841 case ISD::SREM:
5842 case ISD::UREM: return combineIntDIVREM(N, DCI);
5843 }
5844
5845 return SDValue();
5846 }
5847
5848 // Return the demanded elements for the OpNo source operand of Op. DemandedElts
5849 // are for Op.
getDemandedSrcElements(SDValue Op,const APInt & DemandedElts,unsigned OpNo)5850 static APInt getDemandedSrcElements(SDValue Op, const APInt &DemandedElts,
5851 unsigned OpNo) {
5852 EVT VT = Op.getValueType();
5853 unsigned NumElts = (VT.isVector() ? VT.getVectorNumElements() : 1);
5854 APInt SrcDemE;
5855 unsigned Opcode = Op.getOpcode();
5856 if (Opcode == ISD::INTRINSIC_WO_CHAIN) {
5857 unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
5858 switch (Id) {
5859 case Intrinsic::s390_vpksh: // PACKS
5860 case Intrinsic::s390_vpksf:
5861 case Intrinsic::s390_vpksg:
5862 case Intrinsic::s390_vpkshs: // PACKS_CC
5863 case Intrinsic::s390_vpksfs:
5864 case Intrinsic::s390_vpksgs:
5865 case Intrinsic::s390_vpklsh: // PACKLS
5866 case Intrinsic::s390_vpklsf:
5867 case Intrinsic::s390_vpklsg:
5868 case Intrinsic::s390_vpklshs: // PACKLS_CC
5869 case Intrinsic::s390_vpklsfs:
5870 case Intrinsic::s390_vpklsgs:
5871 // VECTOR PACK truncates the elements of two source vectors into one.
5872 SrcDemE = DemandedElts;
5873 if (OpNo == 2)
5874 SrcDemE.lshrInPlace(NumElts / 2);
5875 SrcDemE = SrcDemE.trunc(NumElts / 2);
5876 break;
5877 // VECTOR UNPACK extends half the elements of the source vector.
5878 case Intrinsic::s390_vuphb: // VECTOR UNPACK HIGH
5879 case Intrinsic::s390_vuphh:
5880 case Intrinsic::s390_vuphf:
5881 case Intrinsic::s390_vuplhb: // VECTOR UNPACK LOGICAL HIGH
5882 case Intrinsic::s390_vuplhh:
5883 case Intrinsic::s390_vuplhf:
5884 SrcDemE = APInt(NumElts * 2, 0);
5885 SrcDemE.insertBits(DemandedElts, 0);
5886 break;
5887 case Intrinsic::s390_vuplb: // VECTOR UNPACK LOW
5888 case Intrinsic::s390_vuplhw:
5889 case Intrinsic::s390_vuplf:
5890 case Intrinsic::s390_vupllb: // VECTOR UNPACK LOGICAL LOW
5891 case Intrinsic::s390_vupllh:
5892 case Intrinsic::s390_vupllf:
5893 SrcDemE = APInt(NumElts * 2, 0);
5894 SrcDemE.insertBits(DemandedElts, NumElts);
5895 break;
5896 case Intrinsic::s390_vpdi: {
5897 // VECTOR PERMUTE DWORD IMMEDIATE selects one element from each source.
5898 SrcDemE = APInt(NumElts, 0);
5899 if (!DemandedElts[OpNo - 1])
5900 break;
5901 unsigned Mask = cast<ConstantSDNode>(Op.getOperand(3))->getZExtValue();
5902 unsigned MaskBit = ((OpNo - 1) ? 1 : 4);
5903 // Demand input element 0 or 1, given by the mask bit value.
5904 SrcDemE.setBit((Mask & MaskBit)? 1 : 0);
5905 break;
5906 }
5907 case Intrinsic::s390_vsldb: {
5908 // VECTOR SHIFT LEFT DOUBLE BY BYTE
5909 assert(VT == MVT::v16i8 && "Unexpected type.");
5910 unsigned FirstIdx = cast<ConstantSDNode>(Op.getOperand(3))->getZExtValue();
5911 assert (FirstIdx > 0 && FirstIdx < 16 && "Unused operand.");
5912 unsigned NumSrc0Els = 16 - FirstIdx;
5913 SrcDemE = APInt(NumElts, 0);
5914 if (OpNo == 1) {
5915 APInt DemEls = DemandedElts.trunc(NumSrc0Els);
5916 SrcDemE.insertBits(DemEls, FirstIdx);
5917 } else {
5918 APInt DemEls = DemandedElts.lshr(NumSrc0Els);
5919 SrcDemE.insertBits(DemEls, 0);
5920 }
5921 break;
5922 }
5923 case Intrinsic::s390_vperm:
5924 SrcDemE = APInt(NumElts, 1);
5925 break;
5926 default:
5927 llvm_unreachable("Unhandled intrinsic.");
5928 break;
5929 }
5930 } else {
5931 switch (Opcode) {
5932 case SystemZISD::JOIN_DWORDS:
5933 // Scalar operand.
5934 SrcDemE = APInt(1, 1);
5935 break;
5936 case SystemZISD::SELECT_CCMASK:
5937 SrcDemE = DemandedElts;
5938 break;
5939 default:
5940 llvm_unreachable("Unhandled opcode.");
5941 break;
5942 }
5943 }
5944 return SrcDemE;
5945 }
5946
computeKnownBitsBinOp(const SDValue Op,KnownBits & Known,const APInt & DemandedElts,const SelectionDAG & DAG,unsigned Depth,unsigned OpNo)5947 static void computeKnownBitsBinOp(const SDValue Op, KnownBits &Known,
5948 const APInt &DemandedElts,
5949 const SelectionDAG &DAG, unsigned Depth,
5950 unsigned OpNo) {
5951 APInt Src0DemE = getDemandedSrcElements(Op, DemandedElts, OpNo);
5952 APInt Src1DemE = getDemandedSrcElements(Op, DemandedElts, OpNo + 1);
5953 KnownBits LHSKnown =
5954 DAG.computeKnownBits(Op.getOperand(OpNo), Src0DemE, Depth + 1);
5955 KnownBits RHSKnown =
5956 DAG.computeKnownBits(Op.getOperand(OpNo + 1), Src1DemE, Depth + 1);
5957 Known.Zero = LHSKnown.Zero & RHSKnown.Zero;
5958 Known.One = LHSKnown.One & RHSKnown.One;
5959 }
5960
5961 void
computeKnownBitsForTargetNode(const SDValue Op,KnownBits & Known,const APInt & DemandedElts,const SelectionDAG & DAG,unsigned Depth) const5962 SystemZTargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
5963 KnownBits &Known,
5964 const APInt &DemandedElts,
5965 const SelectionDAG &DAG,
5966 unsigned Depth) const {
5967 Known.resetAll();
5968
5969 // Intrinsic CC result is returned in the two low bits.
5970 unsigned tmp0, tmp1; // not used
5971 if (Op.getResNo() == 1 && isIntrinsicWithCC(Op, tmp0, tmp1)) {
5972 Known.Zero.setBitsFrom(2);
5973 return;
5974 }
5975 EVT VT = Op.getValueType();
5976 if (Op.getResNo() != 0 || VT == MVT::Untyped)
5977 return;
5978 assert (Known.getBitWidth() == VT.getScalarSizeInBits() &&
5979 "KnownBits does not match VT in bitwidth");
5980 assert ((!VT.isVector() ||
5981 (DemandedElts.getBitWidth() == VT.getVectorNumElements())) &&
5982 "DemandedElts does not match VT number of elements");
5983 unsigned BitWidth = Known.getBitWidth();
5984 unsigned Opcode = Op.getOpcode();
5985 if (Opcode == ISD::INTRINSIC_WO_CHAIN) {
5986 bool IsLogical = false;
5987 unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
5988 switch (Id) {
5989 case Intrinsic::s390_vpksh: // PACKS
5990 case Intrinsic::s390_vpksf:
5991 case Intrinsic::s390_vpksg:
5992 case Intrinsic::s390_vpkshs: // PACKS_CC
5993 case Intrinsic::s390_vpksfs:
5994 case Intrinsic::s390_vpksgs:
5995 case Intrinsic::s390_vpklsh: // PACKLS
5996 case Intrinsic::s390_vpklsf:
5997 case Intrinsic::s390_vpklsg:
5998 case Intrinsic::s390_vpklshs: // PACKLS_CC
5999 case Intrinsic::s390_vpklsfs:
6000 case Intrinsic::s390_vpklsgs:
6001 case Intrinsic::s390_vpdi:
6002 case Intrinsic::s390_vsldb:
6003 case Intrinsic::s390_vperm:
6004 computeKnownBitsBinOp(Op, Known, DemandedElts, DAG, Depth, 1);
6005 break;
6006 case Intrinsic::s390_vuplhb: // VECTOR UNPACK LOGICAL HIGH
6007 case Intrinsic::s390_vuplhh:
6008 case Intrinsic::s390_vuplhf:
6009 case Intrinsic::s390_vupllb: // VECTOR UNPACK LOGICAL LOW
6010 case Intrinsic::s390_vupllh:
6011 case Intrinsic::s390_vupllf:
6012 IsLogical = true;
6013 LLVM_FALLTHROUGH;
6014 case Intrinsic::s390_vuphb: // VECTOR UNPACK HIGH
6015 case Intrinsic::s390_vuphh:
6016 case Intrinsic::s390_vuphf:
6017 case Intrinsic::s390_vuplb: // VECTOR UNPACK LOW
6018 case Intrinsic::s390_vuplhw:
6019 case Intrinsic::s390_vuplf: {
6020 SDValue SrcOp = Op.getOperand(1);
6021 unsigned SrcBitWidth = SrcOp.getScalarValueSizeInBits();
6022 APInt SrcDemE = getDemandedSrcElements(Op, DemandedElts, 0);
6023 Known = DAG.computeKnownBits(SrcOp, SrcDemE, Depth + 1);
6024 if (IsLogical) {
6025 Known = Known.zext(BitWidth);
6026 Known.Zero.setBitsFrom(SrcBitWidth);
6027 } else
6028 Known = Known.sext(BitWidth);
6029 break;
6030 }
6031 default:
6032 break;
6033 }
6034 } else {
6035 switch (Opcode) {
6036 case SystemZISD::JOIN_DWORDS:
6037 case SystemZISD::SELECT_CCMASK:
6038 computeKnownBitsBinOp(Op, Known, DemandedElts, DAG, Depth, 0);
6039 break;
6040 case SystemZISD::REPLICATE: {
6041 SDValue SrcOp = Op.getOperand(0);
6042 Known = DAG.computeKnownBits(SrcOp, Depth + 1);
6043 if (Known.getBitWidth() < BitWidth && isa<ConstantSDNode>(SrcOp))
6044 Known = Known.sext(BitWidth); // VREPI sign extends the immedate.
6045 break;
6046 }
6047 default:
6048 break;
6049 }
6050 }
6051
6052 // Known has the width of the source operand(s). Adjust if needed to match
6053 // the passed bitwidth.
6054 if (Known.getBitWidth() != BitWidth)
6055 Known = Known.zextOrTrunc(BitWidth);
6056 }
6057
computeNumSignBitsBinOp(SDValue Op,const APInt & DemandedElts,const SelectionDAG & DAG,unsigned Depth,unsigned OpNo)6058 static unsigned computeNumSignBitsBinOp(SDValue Op, const APInt &DemandedElts,
6059 const SelectionDAG &DAG, unsigned Depth,
6060 unsigned OpNo) {
6061 APInt Src0DemE = getDemandedSrcElements(Op, DemandedElts, OpNo);
6062 unsigned LHS = DAG.ComputeNumSignBits(Op.getOperand(OpNo), Src0DemE, Depth + 1);
6063 if (LHS == 1) return 1; // Early out.
6064 APInt Src1DemE = getDemandedSrcElements(Op, DemandedElts, OpNo + 1);
6065 unsigned RHS = DAG.ComputeNumSignBits(Op.getOperand(OpNo + 1), Src1DemE, Depth + 1);
6066 if (RHS == 1) return 1; // Early out.
6067 unsigned Common = std::min(LHS, RHS);
6068 unsigned SrcBitWidth = Op.getOperand(OpNo).getScalarValueSizeInBits();
6069 EVT VT = Op.getValueType();
6070 unsigned VTBits = VT.getScalarSizeInBits();
6071 if (SrcBitWidth > VTBits) { // PACK
6072 unsigned SrcExtraBits = SrcBitWidth - VTBits;
6073 if (Common > SrcExtraBits)
6074 return (Common - SrcExtraBits);
6075 return 1;
6076 }
6077 assert (SrcBitWidth == VTBits && "Expected operands of same bitwidth.");
6078 return Common;
6079 }
6080
6081 unsigned
ComputeNumSignBitsForTargetNode(SDValue Op,const APInt & DemandedElts,const SelectionDAG & DAG,unsigned Depth) const6082 SystemZTargetLowering::ComputeNumSignBitsForTargetNode(
6083 SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG,
6084 unsigned Depth) const {
6085 if (Op.getResNo() != 0)
6086 return 1;
6087 unsigned Opcode = Op.getOpcode();
6088 if (Opcode == ISD::INTRINSIC_WO_CHAIN) {
6089 unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
6090 switch (Id) {
6091 case Intrinsic::s390_vpksh: // PACKS
6092 case Intrinsic::s390_vpksf:
6093 case Intrinsic::s390_vpksg:
6094 case Intrinsic::s390_vpkshs: // PACKS_CC
6095 case Intrinsic::s390_vpksfs:
6096 case Intrinsic::s390_vpksgs:
6097 case Intrinsic::s390_vpklsh: // PACKLS
6098 case Intrinsic::s390_vpklsf:
6099 case Intrinsic::s390_vpklsg:
6100 case Intrinsic::s390_vpklshs: // PACKLS_CC
6101 case Intrinsic::s390_vpklsfs:
6102 case Intrinsic::s390_vpklsgs:
6103 case Intrinsic::s390_vpdi:
6104 case Intrinsic::s390_vsldb:
6105 case Intrinsic::s390_vperm:
6106 return computeNumSignBitsBinOp(Op, DemandedElts, DAG, Depth, 1);
6107 case Intrinsic::s390_vuphb: // VECTOR UNPACK HIGH
6108 case Intrinsic::s390_vuphh:
6109 case Intrinsic::s390_vuphf:
6110 case Intrinsic::s390_vuplb: // VECTOR UNPACK LOW
6111 case Intrinsic::s390_vuplhw:
6112 case Intrinsic::s390_vuplf: {
6113 SDValue PackedOp = Op.getOperand(1);
6114 APInt SrcDemE = getDemandedSrcElements(Op, DemandedElts, 1);
6115 unsigned Tmp = DAG.ComputeNumSignBits(PackedOp, SrcDemE, Depth + 1);
6116 EVT VT = Op.getValueType();
6117 unsigned VTBits = VT.getScalarSizeInBits();
6118 Tmp += VTBits - PackedOp.getScalarValueSizeInBits();
6119 return Tmp;
6120 }
6121 default:
6122 break;
6123 }
6124 } else {
6125 switch (Opcode) {
6126 case SystemZISD::SELECT_CCMASK:
6127 return computeNumSignBitsBinOp(Op, DemandedElts, DAG, Depth, 0);
6128 default:
6129 break;
6130 }
6131 }
6132
6133 return 1;
6134 }
6135
6136 //===----------------------------------------------------------------------===//
6137 // Custom insertion
6138 //===----------------------------------------------------------------------===//
6139
6140 // Create a new basic block after MBB.
emitBlockAfter(MachineBasicBlock * MBB)6141 static MachineBasicBlock *emitBlockAfter(MachineBasicBlock *MBB) {
6142 MachineFunction &MF = *MBB->getParent();
6143 MachineBasicBlock *NewMBB = MF.CreateMachineBasicBlock(MBB->getBasicBlock());
6144 MF.insert(std::next(MachineFunction::iterator(MBB)), NewMBB);
6145 return NewMBB;
6146 }
6147
6148 // Split MBB after MI and return the new block (the one that contains
6149 // instructions after MI).
splitBlockAfter(MachineBasicBlock::iterator MI,MachineBasicBlock * MBB)6150 static MachineBasicBlock *splitBlockAfter(MachineBasicBlock::iterator MI,
6151 MachineBasicBlock *MBB) {
6152 MachineBasicBlock *NewMBB = emitBlockAfter(MBB);
6153 NewMBB->splice(NewMBB->begin(), MBB,
6154 std::next(MachineBasicBlock::iterator(MI)), MBB->end());
6155 NewMBB->transferSuccessorsAndUpdatePHIs(MBB);
6156 return NewMBB;
6157 }
6158
6159 // Split MBB before MI and return the new block (the one that contains MI).
splitBlockBefore(MachineBasicBlock::iterator MI,MachineBasicBlock * MBB)6160 static MachineBasicBlock *splitBlockBefore(MachineBasicBlock::iterator MI,
6161 MachineBasicBlock *MBB) {
6162 MachineBasicBlock *NewMBB = emitBlockAfter(MBB);
6163 NewMBB->splice(NewMBB->begin(), MBB, MI, MBB->end());
6164 NewMBB->transferSuccessorsAndUpdatePHIs(MBB);
6165 return NewMBB;
6166 }
6167
6168 // Force base value Base into a register before MI. Return the register.
forceReg(MachineInstr & MI,MachineOperand & Base,const SystemZInstrInfo * TII)6169 static unsigned forceReg(MachineInstr &MI, MachineOperand &Base,
6170 const SystemZInstrInfo *TII) {
6171 if (Base.isReg())
6172 return Base.getReg();
6173
6174 MachineBasicBlock *MBB = MI.getParent();
6175 MachineFunction &MF = *MBB->getParent();
6176 MachineRegisterInfo &MRI = MF.getRegInfo();
6177
6178 unsigned Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass);
6179 BuildMI(*MBB, MI, MI.getDebugLoc(), TII->get(SystemZ::LA), Reg)
6180 .add(Base)
6181 .addImm(0)
6182 .addReg(0);
6183 return Reg;
6184 }
6185
6186 // The CC operand of MI might be missing a kill marker because there
6187 // were multiple uses of CC, and ISel didn't know which to mark.
6188 // Figure out whether MI should have had a kill marker.
checkCCKill(MachineInstr & MI,MachineBasicBlock * MBB)6189 static bool checkCCKill(MachineInstr &MI, MachineBasicBlock *MBB) {
6190 // Scan forward through BB for a use/def of CC.
6191 MachineBasicBlock::iterator miI(std::next(MachineBasicBlock::iterator(MI)));
6192 for (MachineBasicBlock::iterator miE = MBB->end(); miI != miE; ++miI) {
6193 const MachineInstr& mi = *miI;
6194 if (mi.readsRegister(SystemZ::CC))
6195 return false;
6196 if (mi.definesRegister(SystemZ::CC))
6197 break; // Should have kill-flag - update below.
6198 }
6199
6200 // If we hit the end of the block, check whether CC is live into a
6201 // successor.
6202 if (miI == MBB->end()) {
6203 for (auto SI = MBB->succ_begin(), SE = MBB->succ_end(); SI != SE; ++SI)
6204 if ((*SI)->isLiveIn(SystemZ::CC))
6205 return false;
6206 }
6207
6208 return true;
6209 }
6210
6211 // Return true if it is OK for this Select pseudo-opcode to be cascaded
6212 // together with other Select pseudo-opcodes into a single basic-block with
6213 // a conditional jump around it.
isSelectPseudo(MachineInstr & MI)6214 static bool isSelectPseudo(MachineInstr &MI) {
6215 switch (MI.getOpcode()) {
6216 case SystemZ::Select32:
6217 case SystemZ::Select64:
6218 case SystemZ::SelectF32:
6219 case SystemZ::SelectF64:
6220 case SystemZ::SelectF128:
6221 case SystemZ::SelectVR32:
6222 case SystemZ::SelectVR64:
6223 case SystemZ::SelectVR128:
6224 return true;
6225
6226 default:
6227 return false;
6228 }
6229 }
6230
6231 // Helper function, which inserts PHI functions into SinkMBB:
6232 // %Result(i) = phi [ %FalseValue(i), FalseMBB ], [ %TrueValue(i), TrueMBB ],
6233 // where %FalseValue(i) and %TrueValue(i) are taken from the consequent Selects
6234 // in [MIItBegin, MIItEnd) range.
createPHIsForSelects(MachineBasicBlock::iterator MIItBegin,MachineBasicBlock::iterator MIItEnd,MachineBasicBlock * TrueMBB,MachineBasicBlock * FalseMBB,MachineBasicBlock * SinkMBB)6235 static void createPHIsForSelects(MachineBasicBlock::iterator MIItBegin,
6236 MachineBasicBlock::iterator MIItEnd,
6237 MachineBasicBlock *TrueMBB,
6238 MachineBasicBlock *FalseMBB,
6239 MachineBasicBlock *SinkMBB) {
6240 MachineFunction *MF = TrueMBB->getParent();
6241 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
6242
6243 unsigned CCValid = MIItBegin->getOperand(3).getImm();
6244 unsigned CCMask = MIItBegin->getOperand(4).getImm();
6245 DebugLoc DL = MIItBegin->getDebugLoc();
6246
6247 MachineBasicBlock::iterator SinkInsertionPoint = SinkMBB->begin();
6248
6249 // As we are creating the PHIs, we have to be careful if there is more than
6250 // one. Later Selects may reference the results of earlier Selects, but later
6251 // PHIs have to reference the individual true/false inputs from earlier PHIs.
6252 // That also means that PHI construction must work forward from earlier to
6253 // later, and that the code must maintain a mapping from earlier PHI's
6254 // destination registers, and the registers that went into the PHI.
6255 DenseMap<unsigned, std::pair<unsigned, unsigned>> RegRewriteTable;
6256
6257 for (MachineBasicBlock::iterator MIIt = MIItBegin; MIIt != MIItEnd; ++MIIt) {
6258 unsigned DestReg = MIIt->getOperand(0).getReg();
6259 unsigned TrueReg = MIIt->getOperand(1).getReg();
6260 unsigned FalseReg = MIIt->getOperand(2).getReg();
6261
6262 // If this Select we are generating is the opposite condition from
6263 // the jump we generated, then we have to swap the operands for the
6264 // PHI that is going to be generated.
6265 if (MIIt->getOperand(4).getImm() == (CCValid ^ CCMask))
6266 std::swap(TrueReg, FalseReg);
6267
6268 if (RegRewriteTable.find(TrueReg) != RegRewriteTable.end())
6269 TrueReg = RegRewriteTable[TrueReg].first;
6270
6271 if (RegRewriteTable.find(FalseReg) != RegRewriteTable.end())
6272 FalseReg = RegRewriteTable[FalseReg].second;
6273
6274 BuildMI(*SinkMBB, SinkInsertionPoint, DL, TII->get(SystemZ::PHI), DestReg)
6275 .addReg(TrueReg).addMBB(TrueMBB)
6276 .addReg(FalseReg).addMBB(FalseMBB);
6277
6278 // Add this PHI to the rewrite table.
6279 RegRewriteTable[DestReg] = std::make_pair(TrueReg, FalseReg);
6280 }
6281 }
6282
6283 // Implement EmitInstrWithCustomInserter for pseudo Select* instruction MI.
6284 MachineBasicBlock *
emitSelect(MachineInstr & MI,MachineBasicBlock * MBB) const6285 SystemZTargetLowering::emitSelect(MachineInstr &MI,
6286 MachineBasicBlock *MBB) const {
6287 const SystemZInstrInfo *TII =
6288 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
6289
6290 unsigned CCValid = MI.getOperand(3).getImm();
6291 unsigned CCMask = MI.getOperand(4).getImm();
6292 DebugLoc DL = MI.getDebugLoc();
6293
6294 // If we have a sequence of Select* pseudo instructions using the
6295 // same condition code value, we want to expand all of them into
6296 // a single pair of basic blocks using the same condition.
6297 MachineInstr *LastMI = &MI;
6298 MachineBasicBlock::iterator NextMIIt =
6299 std::next(MachineBasicBlock::iterator(MI));
6300
6301 if (isSelectPseudo(MI))
6302 while (NextMIIt != MBB->end() && isSelectPseudo(*NextMIIt) &&
6303 NextMIIt->getOperand(3).getImm() == CCValid &&
6304 (NextMIIt->getOperand(4).getImm() == CCMask ||
6305 NextMIIt->getOperand(4).getImm() == (CCValid ^ CCMask))) {
6306 LastMI = &*NextMIIt;
6307 ++NextMIIt;
6308 }
6309
6310 MachineBasicBlock *StartMBB = MBB;
6311 MachineBasicBlock *JoinMBB = splitBlockBefore(MI, MBB);
6312 MachineBasicBlock *FalseMBB = emitBlockAfter(StartMBB);
6313
6314 // Unless CC was killed in the last Select instruction, mark it as
6315 // live-in to both FalseMBB and JoinMBB.
6316 if (!LastMI->killsRegister(SystemZ::CC) && !checkCCKill(*LastMI, JoinMBB)) {
6317 FalseMBB->addLiveIn(SystemZ::CC);
6318 JoinMBB->addLiveIn(SystemZ::CC);
6319 }
6320
6321 // StartMBB:
6322 // BRC CCMask, JoinMBB
6323 // # fallthrough to FalseMBB
6324 MBB = StartMBB;
6325 BuildMI(MBB, DL, TII->get(SystemZ::BRC))
6326 .addImm(CCValid).addImm(CCMask).addMBB(JoinMBB);
6327 MBB->addSuccessor(JoinMBB);
6328 MBB->addSuccessor(FalseMBB);
6329
6330 // FalseMBB:
6331 // # fallthrough to JoinMBB
6332 MBB = FalseMBB;
6333 MBB->addSuccessor(JoinMBB);
6334
6335 // JoinMBB:
6336 // %Result = phi [ %FalseReg, FalseMBB ], [ %TrueReg, StartMBB ]
6337 // ...
6338 MBB = JoinMBB;
6339 MachineBasicBlock::iterator MIItBegin = MachineBasicBlock::iterator(MI);
6340 MachineBasicBlock::iterator MIItEnd =
6341 std::next(MachineBasicBlock::iterator(LastMI));
6342 createPHIsForSelects(MIItBegin, MIItEnd, StartMBB, FalseMBB, MBB);
6343
6344 StartMBB->erase(MIItBegin, MIItEnd);
6345 return JoinMBB;
6346 }
6347
6348 // Implement EmitInstrWithCustomInserter for pseudo CondStore* instruction MI.
6349 // StoreOpcode is the store to use and Invert says whether the store should
6350 // happen when the condition is false rather than true. If a STORE ON
6351 // CONDITION is available, STOCOpcode is its opcode, otherwise it is 0.
emitCondStore(MachineInstr & MI,MachineBasicBlock * MBB,unsigned StoreOpcode,unsigned STOCOpcode,bool Invert) const6352 MachineBasicBlock *SystemZTargetLowering::emitCondStore(MachineInstr &MI,
6353 MachineBasicBlock *MBB,
6354 unsigned StoreOpcode,
6355 unsigned STOCOpcode,
6356 bool Invert) const {
6357 const SystemZInstrInfo *TII =
6358 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
6359
6360 unsigned SrcReg = MI.getOperand(0).getReg();
6361 MachineOperand Base = MI.getOperand(1);
6362 int64_t Disp = MI.getOperand(2).getImm();
6363 unsigned IndexReg = MI.getOperand(3).getReg();
6364 unsigned CCValid = MI.getOperand(4).getImm();
6365 unsigned CCMask = MI.getOperand(5).getImm();
6366 DebugLoc DL = MI.getDebugLoc();
6367
6368 StoreOpcode = TII->getOpcodeForOffset(StoreOpcode, Disp);
6369
6370 // Use STOCOpcode if possible. We could use different store patterns in
6371 // order to avoid matching the index register, but the performance trade-offs
6372 // might be more complicated in that case.
6373 if (STOCOpcode && !IndexReg && Subtarget.hasLoadStoreOnCond()) {
6374 if (Invert)
6375 CCMask ^= CCValid;
6376
6377 // ISel pattern matching also adds a load memory operand of the same
6378 // address, so take special care to find the storing memory operand.
6379 MachineMemOperand *MMO = nullptr;
6380 for (auto *I : MI.memoperands())
6381 if (I->isStore()) {
6382 MMO = I;
6383 break;
6384 }
6385
6386 BuildMI(*MBB, MI, DL, TII->get(STOCOpcode))
6387 .addReg(SrcReg)
6388 .add(Base)
6389 .addImm(Disp)
6390 .addImm(CCValid)
6391 .addImm(CCMask)
6392 .addMemOperand(MMO);
6393
6394 MI.eraseFromParent();
6395 return MBB;
6396 }
6397
6398 // Get the condition needed to branch around the store.
6399 if (!Invert)
6400 CCMask ^= CCValid;
6401
6402 MachineBasicBlock *StartMBB = MBB;
6403 MachineBasicBlock *JoinMBB = splitBlockBefore(MI, MBB);
6404 MachineBasicBlock *FalseMBB = emitBlockAfter(StartMBB);
6405
6406 // Unless CC was killed in the CondStore instruction, mark it as
6407 // live-in to both FalseMBB and JoinMBB.
6408 if (!MI.killsRegister(SystemZ::CC) && !checkCCKill(MI, JoinMBB)) {
6409 FalseMBB->addLiveIn(SystemZ::CC);
6410 JoinMBB->addLiveIn(SystemZ::CC);
6411 }
6412
6413 // StartMBB:
6414 // BRC CCMask, JoinMBB
6415 // # fallthrough to FalseMBB
6416 MBB = StartMBB;
6417 BuildMI(MBB, DL, TII->get(SystemZ::BRC))
6418 .addImm(CCValid).addImm(CCMask).addMBB(JoinMBB);
6419 MBB->addSuccessor(JoinMBB);
6420 MBB->addSuccessor(FalseMBB);
6421
6422 // FalseMBB:
6423 // store %SrcReg, %Disp(%Index,%Base)
6424 // # fallthrough to JoinMBB
6425 MBB = FalseMBB;
6426 BuildMI(MBB, DL, TII->get(StoreOpcode))
6427 .addReg(SrcReg)
6428 .add(Base)
6429 .addImm(Disp)
6430 .addReg(IndexReg);
6431 MBB->addSuccessor(JoinMBB);
6432
6433 MI.eraseFromParent();
6434 return JoinMBB;
6435 }
6436
6437 // Implement EmitInstrWithCustomInserter for pseudo ATOMIC_LOAD{,W}_*
6438 // or ATOMIC_SWAP{,W} instruction MI. BinOpcode is the instruction that
6439 // performs the binary operation elided by "*", or 0 for ATOMIC_SWAP{,W}.
6440 // BitSize is the width of the field in bits, or 0 if this is a partword
6441 // ATOMIC_LOADW_* or ATOMIC_SWAPW instruction, in which case the bitsize
6442 // is one of the operands. Invert says whether the field should be
6443 // inverted after performing BinOpcode (e.g. for NAND).
emitAtomicLoadBinary(MachineInstr & MI,MachineBasicBlock * MBB,unsigned BinOpcode,unsigned BitSize,bool Invert) const6444 MachineBasicBlock *SystemZTargetLowering::emitAtomicLoadBinary(
6445 MachineInstr &MI, MachineBasicBlock *MBB, unsigned BinOpcode,
6446 unsigned BitSize, bool Invert) const {
6447 MachineFunction &MF = *MBB->getParent();
6448 const SystemZInstrInfo *TII =
6449 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
6450 MachineRegisterInfo &MRI = MF.getRegInfo();
6451 bool IsSubWord = (BitSize < 32);
6452
6453 // Extract the operands. Base can be a register or a frame index.
6454 // Src2 can be a register or immediate.
6455 unsigned Dest = MI.getOperand(0).getReg();
6456 MachineOperand Base = earlyUseOperand(MI.getOperand(1));
6457 int64_t Disp = MI.getOperand(2).getImm();
6458 MachineOperand Src2 = earlyUseOperand(MI.getOperand(3));
6459 unsigned BitShift = (IsSubWord ? MI.getOperand(4).getReg() : 0);
6460 unsigned NegBitShift = (IsSubWord ? MI.getOperand(5).getReg() : 0);
6461 DebugLoc DL = MI.getDebugLoc();
6462 if (IsSubWord)
6463 BitSize = MI.getOperand(6).getImm();
6464
6465 // Subword operations use 32-bit registers.
6466 const TargetRegisterClass *RC = (BitSize <= 32 ?
6467 &SystemZ::GR32BitRegClass :
6468 &SystemZ::GR64BitRegClass);
6469 unsigned LOpcode = BitSize <= 32 ? SystemZ::L : SystemZ::LG;
6470 unsigned CSOpcode = BitSize <= 32 ? SystemZ::CS : SystemZ::CSG;
6471
6472 // Get the right opcodes for the displacement.
6473 LOpcode = TII->getOpcodeForOffset(LOpcode, Disp);
6474 CSOpcode = TII->getOpcodeForOffset(CSOpcode, Disp);
6475 assert(LOpcode && CSOpcode && "Displacement out of range");
6476
6477 // Create virtual registers for temporary results.
6478 unsigned OrigVal = MRI.createVirtualRegister(RC);
6479 unsigned OldVal = MRI.createVirtualRegister(RC);
6480 unsigned NewVal = (BinOpcode || IsSubWord ?
6481 MRI.createVirtualRegister(RC) : Src2.getReg());
6482 unsigned RotatedOldVal = (IsSubWord ? MRI.createVirtualRegister(RC) : OldVal);
6483 unsigned RotatedNewVal = (IsSubWord ? MRI.createVirtualRegister(RC) : NewVal);
6484
6485 // Insert a basic block for the main loop.
6486 MachineBasicBlock *StartMBB = MBB;
6487 MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB);
6488 MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB);
6489
6490 // StartMBB:
6491 // ...
6492 // %OrigVal = L Disp(%Base)
6493 // # fall through to LoopMMB
6494 MBB = StartMBB;
6495 BuildMI(MBB, DL, TII->get(LOpcode), OrigVal).add(Base).addImm(Disp).addReg(0);
6496 MBB->addSuccessor(LoopMBB);
6497
6498 // LoopMBB:
6499 // %OldVal = phi [ %OrigVal, StartMBB ], [ %Dest, LoopMBB ]
6500 // %RotatedOldVal = RLL %OldVal, 0(%BitShift)
6501 // %RotatedNewVal = OP %RotatedOldVal, %Src2
6502 // %NewVal = RLL %RotatedNewVal, 0(%NegBitShift)
6503 // %Dest = CS %OldVal, %NewVal, Disp(%Base)
6504 // JNE LoopMBB
6505 // # fall through to DoneMMB
6506 MBB = LoopMBB;
6507 BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal)
6508 .addReg(OrigVal).addMBB(StartMBB)
6509 .addReg(Dest).addMBB(LoopMBB);
6510 if (IsSubWord)
6511 BuildMI(MBB, DL, TII->get(SystemZ::RLL), RotatedOldVal)
6512 .addReg(OldVal).addReg(BitShift).addImm(0);
6513 if (Invert) {
6514 // Perform the operation normally and then invert every bit of the field.
6515 unsigned Tmp = MRI.createVirtualRegister(RC);
6516 BuildMI(MBB, DL, TII->get(BinOpcode), Tmp).addReg(RotatedOldVal).add(Src2);
6517 if (BitSize <= 32)
6518 // XILF with the upper BitSize bits set.
6519 BuildMI(MBB, DL, TII->get(SystemZ::XILF), RotatedNewVal)
6520 .addReg(Tmp).addImm(-1U << (32 - BitSize));
6521 else {
6522 // Use LCGR and add -1 to the result, which is more compact than
6523 // an XILF, XILH pair.
6524 unsigned Tmp2 = MRI.createVirtualRegister(RC);
6525 BuildMI(MBB, DL, TII->get(SystemZ::LCGR), Tmp2).addReg(Tmp);
6526 BuildMI(MBB, DL, TII->get(SystemZ::AGHI), RotatedNewVal)
6527 .addReg(Tmp2).addImm(-1);
6528 }
6529 } else if (BinOpcode)
6530 // A simply binary operation.
6531 BuildMI(MBB, DL, TII->get(BinOpcode), RotatedNewVal)
6532 .addReg(RotatedOldVal)
6533 .add(Src2);
6534 else if (IsSubWord)
6535 // Use RISBG to rotate Src2 into position and use it to replace the
6536 // field in RotatedOldVal.
6537 BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RotatedNewVal)
6538 .addReg(RotatedOldVal).addReg(Src2.getReg())
6539 .addImm(32).addImm(31 + BitSize).addImm(32 - BitSize);
6540 if (IsSubWord)
6541 BuildMI(MBB, DL, TII->get(SystemZ::RLL), NewVal)
6542 .addReg(RotatedNewVal).addReg(NegBitShift).addImm(0);
6543 BuildMI(MBB, DL, TII->get(CSOpcode), Dest)
6544 .addReg(OldVal)
6545 .addReg(NewVal)
6546 .add(Base)
6547 .addImm(Disp);
6548 BuildMI(MBB, DL, TII->get(SystemZ::BRC))
6549 .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB);
6550 MBB->addSuccessor(LoopMBB);
6551 MBB->addSuccessor(DoneMBB);
6552
6553 MI.eraseFromParent();
6554 return DoneMBB;
6555 }
6556
6557 // Implement EmitInstrWithCustomInserter for pseudo
6558 // ATOMIC_LOAD{,W}_{,U}{MIN,MAX} instruction MI. CompareOpcode is the
6559 // instruction that should be used to compare the current field with the
6560 // minimum or maximum value. KeepOldMask is the BRC condition-code mask
6561 // for when the current field should be kept. BitSize is the width of
6562 // the field in bits, or 0 if this is a partword ATOMIC_LOADW_* instruction.
emitAtomicLoadMinMax(MachineInstr & MI,MachineBasicBlock * MBB,unsigned CompareOpcode,unsigned KeepOldMask,unsigned BitSize) const6563 MachineBasicBlock *SystemZTargetLowering::emitAtomicLoadMinMax(
6564 MachineInstr &MI, MachineBasicBlock *MBB, unsigned CompareOpcode,
6565 unsigned KeepOldMask, unsigned BitSize) const {
6566 MachineFunction &MF = *MBB->getParent();
6567 const SystemZInstrInfo *TII =
6568 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
6569 MachineRegisterInfo &MRI = MF.getRegInfo();
6570 bool IsSubWord = (BitSize < 32);
6571
6572 // Extract the operands. Base can be a register or a frame index.
6573 unsigned Dest = MI.getOperand(0).getReg();
6574 MachineOperand Base = earlyUseOperand(MI.getOperand(1));
6575 int64_t Disp = MI.getOperand(2).getImm();
6576 unsigned Src2 = MI.getOperand(3).getReg();
6577 unsigned BitShift = (IsSubWord ? MI.getOperand(4).getReg() : 0);
6578 unsigned NegBitShift = (IsSubWord ? MI.getOperand(5).getReg() : 0);
6579 DebugLoc DL = MI.getDebugLoc();
6580 if (IsSubWord)
6581 BitSize = MI.getOperand(6).getImm();
6582
6583 // Subword operations use 32-bit registers.
6584 const TargetRegisterClass *RC = (BitSize <= 32 ?
6585 &SystemZ::GR32BitRegClass :
6586 &SystemZ::GR64BitRegClass);
6587 unsigned LOpcode = BitSize <= 32 ? SystemZ::L : SystemZ::LG;
6588 unsigned CSOpcode = BitSize <= 32 ? SystemZ::CS : SystemZ::CSG;
6589
6590 // Get the right opcodes for the displacement.
6591 LOpcode = TII->getOpcodeForOffset(LOpcode, Disp);
6592 CSOpcode = TII->getOpcodeForOffset(CSOpcode, Disp);
6593 assert(LOpcode && CSOpcode && "Displacement out of range");
6594
6595 // Create virtual registers for temporary results.
6596 unsigned OrigVal = MRI.createVirtualRegister(RC);
6597 unsigned OldVal = MRI.createVirtualRegister(RC);
6598 unsigned NewVal = MRI.createVirtualRegister(RC);
6599 unsigned RotatedOldVal = (IsSubWord ? MRI.createVirtualRegister(RC) : OldVal);
6600 unsigned RotatedAltVal = (IsSubWord ? MRI.createVirtualRegister(RC) : Src2);
6601 unsigned RotatedNewVal = (IsSubWord ? MRI.createVirtualRegister(RC) : NewVal);
6602
6603 // Insert 3 basic blocks for the loop.
6604 MachineBasicBlock *StartMBB = MBB;
6605 MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB);
6606 MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB);
6607 MachineBasicBlock *UseAltMBB = emitBlockAfter(LoopMBB);
6608 MachineBasicBlock *UpdateMBB = emitBlockAfter(UseAltMBB);
6609
6610 // StartMBB:
6611 // ...
6612 // %OrigVal = L Disp(%Base)
6613 // # fall through to LoopMMB
6614 MBB = StartMBB;
6615 BuildMI(MBB, DL, TII->get(LOpcode), OrigVal).add(Base).addImm(Disp).addReg(0);
6616 MBB->addSuccessor(LoopMBB);
6617
6618 // LoopMBB:
6619 // %OldVal = phi [ %OrigVal, StartMBB ], [ %Dest, UpdateMBB ]
6620 // %RotatedOldVal = RLL %OldVal, 0(%BitShift)
6621 // CompareOpcode %RotatedOldVal, %Src2
6622 // BRC KeepOldMask, UpdateMBB
6623 MBB = LoopMBB;
6624 BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal)
6625 .addReg(OrigVal).addMBB(StartMBB)
6626 .addReg(Dest).addMBB(UpdateMBB);
6627 if (IsSubWord)
6628 BuildMI(MBB, DL, TII->get(SystemZ::RLL), RotatedOldVal)
6629 .addReg(OldVal).addReg(BitShift).addImm(0);
6630 BuildMI(MBB, DL, TII->get(CompareOpcode))
6631 .addReg(RotatedOldVal).addReg(Src2);
6632 BuildMI(MBB, DL, TII->get(SystemZ::BRC))
6633 .addImm(SystemZ::CCMASK_ICMP).addImm(KeepOldMask).addMBB(UpdateMBB);
6634 MBB->addSuccessor(UpdateMBB);
6635 MBB->addSuccessor(UseAltMBB);
6636
6637 // UseAltMBB:
6638 // %RotatedAltVal = RISBG %RotatedOldVal, %Src2, 32, 31 + BitSize, 0
6639 // # fall through to UpdateMMB
6640 MBB = UseAltMBB;
6641 if (IsSubWord)
6642 BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RotatedAltVal)
6643 .addReg(RotatedOldVal).addReg(Src2)
6644 .addImm(32).addImm(31 + BitSize).addImm(0);
6645 MBB->addSuccessor(UpdateMBB);
6646
6647 // UpdateMBB:
6648 // %RotatedNewVal = PHI [ %RotatedOldVal, LoopMBB ],
6649 // [ %RotatedAltVal, UseAltMBB ]
6650 // %NewVal = RLL %RotatedNewVal, 0(%NegBitShift)
6651 // %Dest = CS %OldVal, %NewVal, Disp(%Base)
6652 // JNE LoopMBB
6653 // # fall through to DoneMMB
6654 MBB = UpdateMBB;
6655 BuildMI(MBB, DL, TII->get(SystemZ::PHI), RotatedNewVal)
6656 .addReg(RotatedOldVal).addMBB(LoopMBB)
6657 .addReg(RotatedAltVal).addMBB(UseAltMBB);
6658 if (IsSubWord)
6659 BuildMI(MBB, DL, TII->get(SystemZ::RLL), NewVal)
6660 .addReg(RotatedNewVal).addReg(NegBitShift).addImm(0);
6661 BuildMI(MBB, DL, TII->get(CSOpcode), Dest)
6662 .addReg(OldVal)
6663 .addReg(NewVal)
6664 .add(Base)
6665 .addImm(Disp);
6666 BuildMI(MBB, DL, TII->get(SystemZ::BRC))
6667 .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB);
6668 MBB->addSuccessor(LoopMBB);
6669 MBB->addSuccessor(DoneMBB);
6670
6671 MI.eraseFromParent();
6672 return DoneMBB;
6673 }
6674
6675 // Implement EmitInstrWithCustomInserter for pseudo ATOMIC_CMP_SWAPW
6676 // instruction MI.
6677 MachineBasicBlock *
emitAtomicCmpSwapW(MachineInstr & MI,MachineBasicBlock * MBB) const6678 SystemZTargetLowering::emitAtomicCmpSwapW(MachineInstr &MI,
6679 MachineBasicBlock *MBB) const {
6680
6681 MachineFunction &MF = *MBB->getParent();
6682 const SystemZInstrInfo *TII =
6683 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
6684 MachineRegisterInfo &MRI = MF.getRegInfo();
6685
6686 // Extract the operands. Base can be a register or a frame index.
6687 unsigned Dest = MI.getOperand(0).getReg();
6688 MachineOperand Base = earlyUseOperand(MI.getOperand(1));
6689 int64_t Disp = MI.getOperand(2).getImm();
6690 unsigned OrigCmpVal = MI.getOperand(3).getReg();
6691 unsigned OrigSwapVal = MI.getOperand(4).getReg();
6692 unsigned BitShift = MI.getOperand(5).getReg();
6693 unsigned NegBitShift = MI.getOperand(6).getReg();
6694 int64_t BitSize = MI.getOperand(7).getImm();
6695 DebugLoc DL = MI.getDebugLoc();
6696
6697 const TargetRegisterClass *RC = &SystemZ::GR32BitRegClass;
6698
6699 // Get the right opcodes for the displacement.
6700 unsigned LOpcode = TII->getOpcodeForOffset(SystemZ::L, Disp);
6701 unsigned CSOpcode = TII->getOpcodeForOffset(SystemZ::CS, Disp);
6702 assert(LOpcode && CSOpcode && "Displacement out of range");
6703
6704 // Create virtual registers for temporary results.
6705 unsigned OrigOldVal = MRI.createVirtualRegister(RC);
6706 unsigned OldVal = MRI.createVirtualRegister(RC);
6707 unsigned CmpVal = MRI.createVirtualRegister(RC);
6708 unsigned SwapVal = MRI.createVirtualRegister(RC);
6709 unsigned StoreVal = MRI.createVirtualRegister(RC);
6710 unsigned RetryOldVal = MRI.createVirtualRegister(RC);
6711 unsigned RetryCmpVal = MRI.createVirtualRegister(RC);
6712 unsigned RetrySwapVal = MRI.createVirtualRegister(RC);
6713
6714 // Insert 2 basic blocks for the loop.
6715 MachineBasicBlock *StartMBB = MBB;
6716 MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB);
6717 MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB);
6718 MachineBasicBlock *SetMBB = emitBlockAfter(LoopMBB);
6719
6720 // StartMBB:
6721 // ...
6722 // %OrigOldVal = L Disp(%Base)
6723 // # fall through to LoopMMB
6724 MBB = StartMBB;
6725 BuildMI(MBB, DL, TII->get(LOpcode), OrigOldVal)
6726 .add(Base)
6727 .addImm(Disp)
6728 .addReg(0);
6729 MBB->addSuccessor(LoopMBB);
6730
6731 // LoopMBB:
6732 // %OldVal = phi [ %OrigOldVal, EntryBB ], [ %RetryOldVal, SetMBB ]
6733 // %CmpVal = phi [ %OrigCmpVal, EntryBB ], [ %RetryCmpVal, SetMBB ]
6734 // %SwapVal = phi [ %OrigSwapVal, EntryBB ], [ %RetrySwapVal, SetMBB ]
6735 // %Dest = RLL %OldVal, BitSize(%BitShift)
6736 // ^^ The low BitSize bits contain the field
6737 // of interest.
6738 // %RetryCmpVal = RISBG32 %CmpVal, %Dest, 32, 63-BitSize, 0
6739 // ^^ Replace the upper 32-BitSize bits of the
6740 // comparison value with those that we loaded,
6741 // so that we can use a full word comparison.
6742 // CR %Dest, %RetryCmpVal
6743 // JNE DoneMBB
6744 // # Fall through to SetMBB
6745 MBB = LoopMBB;
6746 BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal)
6747 .addReg(OrigOldVal).addMBB(StartMBB)
6748 .addReg(RetryOldVal).addMBB(SetMBB);
6749 BuildMI(MBB, DL, TII->get(SystemZ::PHI), CmpVal)
6750 .addReg(OrigCmpVal).addMBB(StartMBB)
6751 .addReg(RetryCmpVal).addMBB(SetMBB);
6752 BuildMI(MBB, DL, TII->get(SystemZ::PHI), SwapVal)
6753 .addReg(OrigSwapVal).addMBB(StartMBB)
6754 .addReg(RetrySwapVal).addMBB(SetMBB);
6755 BuildMI(MBB, DL, TII->get(SystemZ::RLL), Dest)
6756 .addReg(OldVal).addReg(BitShift).addImm(BitSize);
6757 BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RetryCmpVal)
6758 .addReg(CmpVal).addReg(Dest).addImm(32).addImm(63 - BitSize).addImm(0);
6759 BuildMI(MBB, DL, TII->get(SystemZ::CR))
6760 .addReg(Dest).addReg(RetryCmpVal);
6761 BuildMI(MBB, DL, TII->get(SystemZ::BRC))
6762 .addImm(SystemZ::CCMASK_ICMP)
6763 .addImm(SystemZ::CCMASK_CMP_NE).addMBB(DoneMBB);
6764 MBB->addSuccessor(DoneMBB);
6765 MBB->addSuccessor(SetMBB);
6766
6767 // SetMBB:
6768 // %RetrySwapVal = RISBG32 %SwapVal, %Dest, 32, 63-BitSize, 0
6769 // ^^ Replace the upper 32-BitSize bits of the new
6770 // value with those that we loaded.
6771 // %StoreVal = RLL %RetrySwapVal, -BitSize(%NegBitShift)
6772 // ^^ Rotate the new field to its proper position.
6773 // %RetryOldVal = CS %Dest, %StoreVal, Disp(%Base)
6774 // JNE LoopMBB
6775 // # fall through to ExitMMB
6776 MBB = SetMBB;
6777 BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RetrySwapVal)
6778 .addReg(SwapVal).addReg(Dest).addImm(32).addImm(63 - BitSize).addImm(0);
6779 BuildMI(MBB, DL, TII->get(SystemZ::RLL), StoreVal)
6780 .addReg(RetrySwapVal).addReg(NegBitShift).addImm(-BitSize);
6781 BuildMI(MBB, DL, TII->get(CSOpcode), RetryOldVal)
6782 .addReg(OldVal)
6783 .addReg(StoreVal)
6784 .add(Base)
6785 .addImm(Disp);
6786 BuildMI(MBB, DL, TII->get(SystemZ::BRC))
6787 .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB);
6788 MBB->addSuccessor(LoopMBB);
6789 MBB->addSuccessor(DoneMBB);
6790
6791 // If the CC def wasn't dead in the ATOMIC_CMP_SWAPW, mark CC as live-in
6792 // to the block after the loop. At this point, CC may have been defined
6793 // either by the CR in LoopMBB or by the CS in SetMBB.
6794 if (!MI.registerDefIsDead(SystemZ::CC))
6795 DoneMBB->addLiveIn(SystemZ::CC);
6796
6797 MI.eraseFromParent();
6798 return DoneMBB;
6799 }
6800
6801 // Emit a move from two GR64s to a GR128.
6802 MachineBasicBlock *
emitPair128(MachineInstr & MI,MachineBasicBlock * MBB) const6803 SystemZTargetLowering::emitPair128(MachineInstr &MI,
6804 MachineBasicBlock *MBB) const {
6805 MachineFunction &MF = *MBB->getParent();
6806 const SystemZInstrInfo *TII =
6807 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
6808 MachineRegisterInfo &MRI = MF.getRegInfo();
6809 DebugLoc DL = MI.getDebugLoc();
6810
6811 unsigned Dest = MI.getOperand(0).getReg();
6812 unsigned Hi = MI.getOperand(1).getReg();
6813 unsigned Lo = MI.getOperand(2).getReg();
6814 unsigned Tmp1 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass);
6815 unsigned Tmp2 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass);
6816
6817 BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::IMPLICIT_DEF), Tmp1);
6818 BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), Tmp2)
6819 .addReg(Tmp1).addReg(Hi).addImm(SystemZ::subreg_h64);
6820 BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), Dest)
6821 .addReg(Tmp2).addReg(Lo).addImm(SystemZ::subreg_l64);
6822
6823 MI.eraseFromParent();
6824 return MBB;
6825 }
6826
6827 // Emit an extension from a GR64 to a GR128. ClearEven is true
6828 // if the high register of the GR128 value must be cleared or false if
6829 // it's "don't care".
emitExt128(MachineInstr & MI,MachineBasicBlock * MBB,bool ClearEven) const6830 MachineBasicBlock *SystemZTargetLowering::emitExt128(MachineInstr &MI,
6831 MachineBasicBlock *MBB,
6832 bool ClearEven) const {
6833 MachineFunction &MF = *MBB->getParent();
6834 const SystemZInstrInfo *TII =
6835 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
6836 MachineRegisterInfo &MRI = MF.getRegInfo();
6837 DebugLoc DL = MI.getDebugLoc();
6838
6839 unsigned Dest = MI.getOperand(0).getReg();
6840 unsigned Src = MI.getOperand(1).getReg();
6841 unsigned In128 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass);
6842
6843 BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::IMPLICIT_DEF), In128);
6844 if (ClearEven) {
6845 unsigned NewIn128 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass);
6846 unsigned Zero64 = MRI.createVirtualRegister(&SystemZ::GR64BitRegClass);
6847
6848 BuildMI(*MBB, MI, DL, TII->get(SystemZ::LLILL), Zero64)
6849 .addImm(0);
6850 BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), NewIn128)
6851 .addReg(In128).addReg(Zero64).addImm(SystemZ::subreg_h64);
6852 In128 = NewIn128;
6853 }
6854 BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), Dest)
6855 .addReg(In128).addReg(Src).addImm(SystemZ::subreg_l64);
6856
6857 MI.eraseFromParent();
6858 return MBB;
6859 }
6860
emitMemMemWrapper(MachineInstr & MI,MachineBasicBlock * MBB,unsigned Opcode) const6861 MachineBasicBlock *SystemZTargetLowering::emitMemMemWrapper(
6862 MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode) const {
6863 MachineFunction &MF = *MBB->getParent();
6864 const SystemZInstrInfo *TII =
6865 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
6866 MachineRegisterInfo &MRI = MF.getRegInfo();
6867 DebugLoc DL = MI.getDebugLoc();
6868
6869 MachineOperand DestBase = earlyUseOperand(MI.getOperand(0));
6870 uint64_t DestDisp = MI.getOperand(1).getImm();
6871 MachineOperand SrcBase = earlyUseOperand(MI.getOperand(2));
6872 uint64_t SrcDisp = MI.getOperand(3).getImm();
6873 uint64_t Length = MI.getOperand(4).getImm();
6874
6875 // When generating more than one CLC, all but the last will need to
6876 // branch to the end when a difference is found.
6877 MachineBasicBlock *EndMBB = (Length > 256 && Opcode == SystemZ::CLC ?
6878 splitBlockAfter(MI, MBB) : nullptr);
6879
6880 // Check for the loop form, in which operand 5 is the trip count.
6881 if (MI.getNumExplicitOperands() > 5) {
6882 bool HaveSingleBase = DestBase.isIdenticalTo(SrcBase);
6883
6884 uint64_t StartCountReg = MI.getOperand(5).getReg();
6885 uint64_t StartSrcReg = forceReg(MI, SrcBase, TII);
6886 uint64_t StartDestReg = (HaveSingleBase ? StartSrcReg :
6887 forceReg(MI, DestBase, TII));
6888
6889 const TargetRegisterClass *RC = &SystemZ::ADDR64BitRegClass;
6890 uint64_t ThisSrcReg = MRI.createVirtualRegister(RC);
6891 uint64_t ThisDestReg = (HaveSingleBase ? ThisSrcReg :
6892 MRI.createVirtualRegister(RC));
6893 uint64_t NextSrcReg = MRI.createVirtualRegister(RC);
6894 uint64_t NextDestReg = (HaveSingleBase ? NextSrcReg :
6895 MRI.createVirtualRegister(RC));
6896
6897 RC = &SystemZ::GR64BitRegClass;
6898 uint64_t ThisCountReg = MRI.createVirtualRegister(RC);
6899 uint64_t NextCountReg = MRI.createVirtualRegister(RC);
6900
6901 MachineBasicBlock *StartMBB = MBB;
6902 MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB);
6903 MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB);
6904 MachineBasicBlock *NextMBB = (EndMBB ? emitBlockAfter(LoopMBB) : LoopMBB);
6905
6906 // StartMBB:
6907 // # fall through to LoopMMB
6908 MBB->addSuccessor(LoopMBB);
6909
6910 // LoopMBB:
6911 // %ThisDestReg = phi [ %StartDestReg, StartMBB ],
6912 // [ %NextDestReg, NextMBB ]
6913 // %ThisSrcReg = phi [ %StartSrcReg, StartMBB ],
6914 // [ %NextSrcReg, NextMBB ]
6915 // %ThisCountReg = phi [ %StartCountReg, StartMBB ],
6916 // [ %NextCountReg, NextMBB ]
6917 // ( PFD 2, 768+DestDisp(%ThisDestReg) )
6918 // Opcode DestDisp(256,%ThisDestReg), SrcDisp(%ThisSrcReg)
6919 // ( JLH EndMBB )
6920 //
6921 // The prefetch is used only for MVC. The JLH is used only for CLC.
6922 MBB = LoopMBB;
6923
6924 BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisDestReg)
6925 .addReg(StartDestReg).addMBB(StartMBB)
6926 .addReg(NextDestReg).addMBB(NextMBB);
6927 if (!HaveSingleBase)
6928 BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisSrcReg)
6929 .addReg(StartSrcReg).addMBB(StartMBB)
6930 .addReg(NextSrcReg).addMBB(NextMBB);
6931 BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisCountReg)
6932 .addReg(StartCountReg).addMBB(StartMBB)
6933 .addReg(NextCountReg).addMBB(NextMBB);
6934 if (Opcode == SystemZ::MVC)
6935 BuildMI(MBB, DL, TII->get(SystemZ::PFD))
6936 .addImm(SystemZ::PFD_WRITE)
6937 .addReg(ThisDestReg).addImm(DestDisp + 768).addReg(0);
6938 BuildMI(MBB, DL, TII->get(Opcode))
6939 .addReg(ThisDestReg).addImm(DestDisp).addImm(256)
6940 .addReg(ThisSrcReg).addImm(SrcDisp);
6941 if (EndMBB) {
6942 BuildMI(MBB, DL, TII->get(SystemZ::BRC))
6943 .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE)
6944 .addMBB(EndMBB);
6945 MBB->addSuccessor(EndMBB);
6946 MBB->addSuccessor(NextMBB);
6947 }
6948
6949 // NextMBB:
6950 // %NextDestReg = LA 256(%ThisDestReg)
6951 // %NextSrcReg = LA 256(%ThisSrcReg)
6952 // %NextCountReg = AGHI %ThisCountReg, -1
6953 // CGHI %NextCountReg, 0
6954 // JLH LoopMBB
6955 // # fall through to DoneMMB
6956 //
6957 // The AGHI, CGHI and JLH should be converted to BRCTG by later passes.
6958 MBB = NextMBB;
6959
6960 BuildMI(MBB, DL, TII->get(SystemZ::LA), NextDestReg)
6961 .addReg(ThisDestReg).addImm(256).addReg(0);
6962 if (!HaveSingleBase)
6963 BuildMI(MBB, DL, TII->get(SystemZ::LA), NextSrcReg)
6964 .addReg(ThisSrcReg).addImm(256).addReg(0);
6965 BuildMI(MBB, DL, TII->get(SystemZ::AGHI), NextCountReg)
6966 .addReg(ThisCountReg).addImm(-1);
6967 BuildMI(MBB, DL, TII->get(SystemZ::CGHI))
6968 .addReg(NextCountReg).addImm(0);
6969 BuildMI(MBB, DL, TII->get(SystemZ::BRC))
6970 .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE)
6971 .addMBB(LoopMBB);
6972 MBB->addSuccessor(LoopMBB);
6973 MBB->addSuccessor(DoneMBB);
6974
6975 DestBase = MachineOperand::CreateReg(NextDestReg, false);
6976 SrcBase = MachineOperand::CreateReg(NextSrcReg, false);
6977 Length &= 255;
6978 if (EndMBB && !Length)
6979 // If the loop handled the whole CLC range, DoneMBB will be empty with
6980 // CC live-through into EndMBB, so add it as live-in.
6981 DoneMBB->addLiveIn(SystemZ::CC);
6982 MBB = DoneMBB;
6983 }
6984 // Handle any remaining bytes with straight-line code.
6985 while (Length > 0) {
6986 uint64_t ThisLength = std::min(Length, uint64_t(256));
6987 // The previous iteration might have created out-of-range displacements.
6988 // Apply them using LAY if so.
6989 if (!isUInt<12>(DestDisp)) {
6990 unsigned Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass);
6991 BuildMI(*MBB, MI, MI.getDebugLoc(), TII->get(SystemZ::LAY), Reg)
6992 .add(DestBase)
6993 .addImm(DestDisp)
6994 .addReg(0);
6995 DestBase = MachineOperand::CreateReg(Reg, false);
6996 DestDisp = 0;
6997 }
6998 if (!isUInt<12>(SrcDisp)) {
6999 unsigned Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass);
7000 BuildMI(*MBB, MI, MI.getDebugLoc(), TII->get(SystemZ::LAY), Reg)
7001 .add(SrcBase)
7002 .addImm(SrcDisp)
7003 .addReg(0);
7004 SrcBase = MachineOperand::CreateReg(Reg, false);
7005 SrcDisp = 0;
7006 }
7007 BuildMI(*MBB, MI, DL, TII->get(Opcode))
7008 .add(DestBase)
7009 .addImm(DestDisp)
7010 .addImm(ThisLength)
7011 .add(SrcBase)
7012 .addImm(SrcDisp)
7013 .setMemRefs(MI.memoperands());
7014 DestDisp += ThisLength;
7015 SrcDisp += ThisLength;
7016 Length -= ThisLength;
7017 // If there's another CLC to go, branch to the end if a difference
7018 // was found.
7019 if (EndMBB && Length > 0) {
7020 MachineBasicBlock *NextMBB = splitBlockBefore(MI, MBB);
7021 BuildMI(MBB, DL, TII->get(SystemZ::BRC))
7022 .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE)
7023 .addMBB(EndMBB);
7024 MBB->addSuccessor(EndMBB);
7025 MBB->addSuccessor(NextMBB);
7026 MBB = NextMBB;
7027 }
7028 }
7029 if (EndMBB) {
7030 MBB->addSuccessor(EndMBB);
7031 MBB = EndMBB;
7032 MBB->addLiveIn(SystemZ::CC);
7033 }
7034
7035 MI.eraseFromParent();
7036 return MBB;
7037 }
7038
7039 // Decompose string pseudo-instruction MI into a loop that continually performs
7040 // Opcode until CC != 3.
emitStringWrapper(MachineInstr & MI,MachineBasicBlock * MBB,unsigned Opcode) const7041 MachineBasicBlock *SystemZTargetLowering::emitStringWrapper(
7042 MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode) const {
7043 MachineFunction &MF = *MBB->getParent();
7044 const SystemZInstrInfo *TII =
7045 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
7046 MachineRegisterInfo &MRI = MF.getRegInfo();
7047 DebugLoc DL = MI.getDebugLoc();
7048
7049 uint64_t End1Reg = MI.getOperand(0).getReg();
7050 uint64_t Start1Reg = MI.getOperand(1).getReg();
7051 uint64_t Start2Reg = MI.getOperand(2).getReg();
7052 uint64_t CharReg = MI.getOperand(3).getReg();
7053
7054 const TargetRegisterClass *RC = &SystemZ::GR64BitRegClass;
7055 uint64_t This1Reg = MRI.createVirtualRegister(RC);
7056 uint64_t This2Reg = MRI.createVirtualRegister(RC);
7057 uint64_t End2Reg = MRI.createVirtualRegister(RC);
7058
7059 MachineBasicBlock *StartMBB = MBB;
7060 MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB);
7061 MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB);
7062
7063 // StartMBB:
7064 // # fall through to LoopMMB
7065 MBB->addSuccessor(LoopMBB);
7066
7067 // LoopMBB:
7068 // %This1Reg = phi [ %Start1Reg, StartMBB ], [ %End1Reg, LoopMBB ]
7069 // %This2Reg = phi [ %Start2Reg, StartMBB ], [ %End2Reg, LoopMBB ]
7070 // R0L = %CharReg
7071 // %End1Reg, %End2Reg = CLST %This1Reg, %This2Reg -- uses R0L
7072 // JO LoopMBB
7073 // # fall through to DoneMMB
7074 //
7075 // The load of R0L can be hoisted by post-RA LICM.
7076 MBB = LoopMBB;
7077
7078 BuildMI(MBB, DL, TII->get(SystemZ::PHI), This1Reg)
7079 .addReg(Start1Reg).addMBB(StartMBB)
7080 .addReg(End1Reg).addMBB(LoopMBB);
7081 BuildMI(MBB, DL, TII->get(SystemZ::PHI), This2Reg)
7082 .addReg(Start2Reg).addMBB(StartMBB)
7083 .addReg(End2Reg).addMBB(LoopMBB);
7084 BuildMI(MBB, DL, TII->get(TargetOpcode::COPY), SystemZ::R0L).addReg(CharReg);
7085 BuildMI(MBB, DL, TII->get(Opcode))
7086 .addReg(End1Reg, RegState::Define).addReg(End2Reg, RegState::Define)
7087 .addReg(This1Reg).addReg(This2Reg);
7088 BuildMI(MBB, DL, TII->get(SystemZ::BRC))
7089 .addImm(SystemZ::CCMASK_ANY).addImm(SystemZ::CCMASK_3).addMBB(LoopMBB);
7090 MBB->addSuccessor(LoopMBB);
7091 MBB->addSuccessor(DoneMBB);
7092
7093 DoneMBB->addLiveIn(SystemZ::CC);
7094
7095 MI.eraseFromParent();
7096 return DoneMBB;
7097 }
7098
7099 // Update TBEGIN instruction with final opcode and register clobbers.
emitTransactionBegin(MachineInstr & MI,MachineBasicBlock * MBB,unsigned Opcode,bool NoFloat) const7100 MachineBasicBlock *SystemZTargetLowering::emitTransactionBegin(
7101 MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode,
7102 bool NoFloat) const {
7103 MachineFunction &MF = *MBB->getParent();
7104 const TargetFrameLowering *TFI = Subtarget.getFrameLowering();
7105 const SystemZInstrInfo *TII = Subtarget.getInstrInfo();
7106
7107 // Update opcode.
7108 MI.setDesc(TII->get(Opcode));
7109
7110 // We cannot handle a TBEGIN that clobbers the stack or frame pointer.
7111 // Make sure to add the corresponding GRSM bits if they are missing.
7112 uint64_t Control = MI.getOperand(2).getImm();
7113 static const unsigned GPRControlBit[16] = {
7114 0x8000, 0x8000, 0x4000, 0x4000, 0x2000, 0x2000, 0x1000, 0x1000,
7115 0x0800, 0x0800, 0x0400, 0x0400, 0x0200, 0x0200, 0x0100, 0x0100
7116 };
7117 Control |= GPRControlBit[15];
7118 if (TFI->hasFP(MF))
7119 Control |= GPRControlBit[11];
7120 MI.getOperand(2).setImm(Control);
7121
7122 // Add GPR clobbers.
7123 for (int I = 0; I < 16; I++) {
7124 if ((Control & GPRControlBit[I]) == 0) {
7125 unsigned Reg = SystemZMC::GR64Regs[I];
7126 MI.addOperand(MachineOperand::CreateReg(Reg, true, true));
7127 }
7128 }
7129
7130 // Add FPR/VR clobbers.
7131 if (!NoFloat && (Control & 4) != 0) {
7132 if (Subtarget.hasVector()) {
7133 for (int I = 0; I < 32; I++) {
7134 unsigned Reg = SystemZMC::VR128Regs[I];
7135 MI.addOperand(MachineOperand::CreateReg(Reg, true, true));
7136 }
7137 } else {
7138 for (int I = 0; I < 16; I++) {
7139 unsigned Reg = SystemZMC::FP64Regs[I];
7140 MI.addOperand(MachineOperand::CreateReg(Reg, true, true));
7141 }
7142 }
7143 }
7144
7145 return MBB;
7146 }
7147
emitLoadAndTestCmp0(MachineInstr & MI,MachineBasicBlock * MBB,unsigned Opcode) const7148 MachineBasicBlock *SystemZTargetLowering::emitLoadAndTestCmp0(
7149 MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode) const {
7150 MachineFunction &MF = *MBB->getParent();
7151 MachineRegisterInfo *MRI = &MF.getRegInfo();
7152 const SystemZInstrInfo *TII =
7153 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
7154 DebugLoc DL = MI.getDebugLoc();
7155
7156 unsigned SrcReg = MI.getOperand(0).getReg();
7157
7158 // Create new virtual register of the same class as source.
7159 const TargetRegisterClass *RC = MRI->getRegClass(SrcReg);
7160 unsigned DstReg = MRI->createVirtualRegister(RC);
7161
7162 // Replace pseudo with a normal load-and-test that models the def as
7163 // well.
7164 BuildMI(*MBB, MI, DL, TII->get(Opcode), DstReg)
7165 .addReg(SrcReg);
7166 MI.eraseFromParent();
7167
7168 return MBB;
7169 }
7170
EmitInstrWithCustomInserter(MachineInstr & MI,MachineBasicBlock * MBB) const7171 MachineBasicBlock *SystemZTargetLowering::EmitInstrWithCustomInserter(
7172 MachineInstr &MI, MachineBasicBlock *MBB) const {
7173 switch (MI.getOpcode()) {
7174 case SystemZ::Select32:
7175 case SystemZ::Select64:
7176 case SystemZ::SelectF32:
7177 case SystemZ::SelectF64:
7178 case SystemZ::SelectF128:
7179 case SystemZ::SelectVR32:
7180 case SystemZ::SelectVR64:
7181 case SystemZ::SelectVR128:
7182 return emitSelect(MI, MBB);
7183
7184 case SystemZ::CondStore8Mux:
7185 return emitCondStore(MI, MBB, SystemZ::STCMux, 0, false);
7186 case SystemZ::CondStore8MuxInv:
7187 return emitCondStore(MI, MBB, SystemZ::STCMux, 0, true);
7188 case SystemZ::CondStore16Mux:
7189 return emitCondStore(MI, MBB, SystemZ::STHMux, 0, false);
7190 case SystemZ::CondStore16MuxInv:
7191 return emitCondStore(MI, MBB, SystemZ::STHMux, 0, true);
7192 case SystemZ::CondStore32Mux:
7193 return emitCondStore(MI, MBB, SystemZ::STMux, SystemZ::STOCMux, false);
7194 case SystemZ::CondStore32MuxInv:
7195 return emitCondStore(MI, MBB, SystemZ::STMux, SystemZ::STOCMux, true);
7196 case SystemZ::CondStore8:
7197 return emitCondStore(MI, MBB, SystemZ::STC, 0, false);
7198 case SystemZ::CondStore8Inv:
7199 return emitCondStore(MI, MBB, SystemZ::STC, 0, true);
7200 case SystemZ::CondStore16:
7201 return emitCondStore(MI, MBB, SystemZ::STH, 0, false);
7202 case SystemZ::CondStore16Inv:
7203 return emitCondStore(MI, MBB, SystemZ::STH, 0, true);
7204 case SystemZ::CondStore32:
7205 return emitCondStore(MI, MBB, SystemZ::ST, SystemZ::STOC, false);
7206 case SystemZ::CondStore32Inv:
7207 return emitCondStore(MI, MBB, SystemZ::ST, SystemZ::STOC, true);
7208 case SystemZ::CondStore64:
7209 return emitCondStore(MI, MBB, SystemZ::STG, SystemZ::STOCG, false);
7210 case SystemZ::CondStore64Inv:
7211 return emitCondStore(MI, MBB, SystemZ::STG, SystemZ::STOCG, true);
7212 case SystemZ::CondStoreF32:
7213 return emitCondStore(MI, MBB, SystemZ::STE, 0, false);
7214 case SystemZ::CondStoreF32Inv:
7215 return emitCondStore(MI, MBB, SystemZ::STE, 0, true);
7216 case SystemZ::CondStoreF64:
7217 return emitCondStore(MI, MBB, SystemZ::STD, 0, false);
7218 case SystemZ::CondStoreF64Inv:
7219 return emitCondStore(MI, MBB, SystemZ::STD, 0, true);
7220
7221 case SystemZ::PAIR128:
7222 return emitPair128(MI, MBB);
7223 case SystemZ::AEXT128:
7224 return emitExt128(MI, MBB, false);
7225 case SystemZ::ZEXT128:
7226 return emitExt128(MI, MBB, true);
7227
7228 case SystemZ::ATOMIC_SWAPW:
7229 return emitAtomicLoadBinary(MI, MBB, 0, 0);
7230 case SystemZ::ATOMIC_SWAP_32:
7231 return emitAtomicLoadBinary(MI, MBB, 0, 32);
7232 case SystemZ::ATOMIC_SWAP_64:
7233 return emitAtomicLoadBinary(MI, MBB, 0, 64);
7234
7235 case SystemZ::ATOMIC_LOADW_AR:
7236 return emitAtomicLoadBinary(MI, MBB, SystemZ::AR, 0);
7237 case SystemZ::ATOMIC_LOADW_AFI:
7238 return emitAtomicLoadBinary(MI, MBB, SystemZ::AFI, 0);
7239 case SystemZ::ATOMIC_LOAD_AR:
7240 return emitAtomicLoadBinary(MI, MBB, SystemZ::AR, 32);
7241 case SystemZ::ATOMIC_LOAD_AHI:
7242 return emitAtomicLoadBinary(MI, MBB, SystemZ::AHI, 32);
7243 case SystemZ::ATOMIC_LOAD_AFI:
7244 return emitAtomicLoadBinary(MI, MBB, SystemZ::AFI, 32);
7245 case SystemZ::ATOMIC_LOAD_AGR:
7246 return emitAtomicLoadBinary(MI, MBB, SystemZ::AGR, 64);
7247 case SystemZ::ATOMIC_LOAD_AGHI:
7248 return emitAtomicLoadBinary(MI, MBB, SystemZ::AGHI, 64);
7249 case SystemZ::ATOMIC_LOAD_AGFI:
7250 return emitAtomicLoadBinary(MI, MBB, SystemZ::AGFI, 64);
7251
7252 case SystemZ::ATOMIC_LOADW_SR:
7253 return emitAtomicLoadBinary(MI, MBB, SystemZ::SR, 0);
7254 case SystemZ::ATOMIC_LOAD_SR:
7255 return emitAtomicLoadBinary(MI, MBB, SystemZ::SR, 32);
7256 case SystemZ::ATOMIC_LOAD_SGR:
7257 return emitAtomicLoadBinary(MI, MBB, SystemZ::SGR, 64);
7258
7259 case SystemZ::ATOMIC_LOADW_NR:
7260 return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 0);
7261 case SystemZ::ATOMIC_LOADW_NILH:
7262 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 0);
7263 case SystemZ::ATOMIC_LOAD_NR:
7264 return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 32);
7265 case SystemZ::ATOMIC_LOAD_NILL:
7266 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL, 32);
7267 case SystemZ::ATOMIC_LOAD_NILH:
7268 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 32);
7269 case SystemZ::ATOMIC_LOAD_NILF:
7270 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF, 32);
7271 case SystemZ::ATOMIC_LOAD_NGR:
7272 return emitAtomicLoadBinary(MI, MBB, SystemZ::NGR, 64);
7273 case SystemZ::ATOMIC_LOAD_NILL64:
7274 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL64, 64);
7275 case SystemZ::ATOMIC_LOAD_NILH64:
7276 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH64, 64);
7277 case SystemZ::ATOMIC_LOAD_NIHL64:
7278 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHL64, 64);
7279 case SystemZ::ATOMIC_LOAD_NIHH64:
7280 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHH64, 64);
7281 case SystemZ::ATOMIC_LOAD_NILF64:
7282 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF64, 64);
7283 case SystemZ::ATOMIC_LOAD_NIHF64:
7284 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHF64, 64);
7285
7286 case SystemZ::ATOMIC_LOADW_OR:
7287 return emitAtomicLoadBinary(MI, MBB, SystemZ::OR, 0);
7288 case SystemZ::ATOMIC_LOADW_OILH:
7289 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH, 0);
7290 case SystemZ::ATOMIC_LOAD_OR:
7291 return emitAtomicLoadBinary(MI, MBB, SystemZ::OR, 32);
7292 case SystemZ::ATOMIC_LOAD_OILL:
7293 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILL, 32);
7294 case SystemZ::ATOMIC_LOAD_OILH:
7295 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH, 32);
7296 case SystemZ::ATOMIC_LOAD_OILF:
7297 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILF, 32);
7298 case SystemZ::ATOMIC_LOAD_OGR:
7299 return emitAtomicLoadBinary(MI, MBB, SystemZ::OGR, 64);
7300 case SystemZ::ATOMIC_LOAD_OILL64:
7301 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILL64, 64);
7302 case SystemZ::ATOMIC_LOAD_OILH64:
7303 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH64, 64);
7304 case SystemZ::ATOMIC_LOAD_OIHL64:
7305 return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHL64, 64);
7306 case SystemZ::ATOMIC_LOAD_OIHH64:
7307 return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHH64, 64);
7308 case SystemZ::ATOMIC_LOAD_OILF64:
7309 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILF64, 64);
7310 case SystemZ::ATOMIC_LOAD_OIHF64:
7311 return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHF64, 64);
7312
7313 case SystemZ::ATOMIC_LOADW_XR:
7314 return emitAtomicLoadBinary(MI, MBB, SystemZ::XR, 0);
7315 case SystemZ::ATOMIC_LOADW_XILF:
7316 return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF, 0);
7317 case SystemZ::ATOMIC_LOAD_XR:
7318 return emitAtomicLoadBinary(MI, MBB, SystemZ::XR, 32);
7319 case SystemZ::ATOMIC_LOAD_XILF:
7320 return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF, 32);
7321 case SystemZ::ATOMIC_LOAD_XGR:
7322 return emitAtomicLoadBinary(MI, MBB, SystemZ::XGR, 64);
7323 case SystemZ::ATOMIC_LOAD_XILF64:
7324 return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF64, 64);
7325 case SystemZ::ATOMIC_LOAD_XIHF64:
7326 return emitAtomicLoadBinary(MI, MBB, SystemZ::XIHF64, 64);
7327
7328 case SystemZ::ATOMIC_LOADW_NRi:
7329 return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 0, true);
7330 case SystemZ::ATOMIC_LOADW_NILHi:
7331 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 0, true);
7332 case SystemZ::ATOMIC_LOAD_NRi:
7333 return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 32, true);
7334 case SystemZ::ATOMIC_LOAD_NILLi:
7335 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL, 32, true);
7336 case SystemZ::ATOMIC_LOAD_NILHi:
7337 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 32, true);
7338 case SystemZ::ATOMIC_LOAD_NILFi:
7339 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF, 32, true);
7340 case SystemZ::ATOMIC_LOAD_NGRi:
7341 return emitAtomicLoadBinary(MI, MBB, SystemZ::NGR, 64, true);
7342 case SystemZ::ATOMIC_LOAD_NILL64i:
7343 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL64, 64, true);
7344 case SystemZ::ATOMIC_LOAD_NILH64i:
7345 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH64, 64, true);
7346 case SystemZ::ATOMIC_LOAD_NIHL64i:
7347 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHL64, 64, true);
7348 case SystemZ::ATOMIC_LOAD_NIHH64i:
7349 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHH64, 64, true);
7350 case SystemZ::ATOMIC_LOAD_NILF64i:
7351 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF64, 64, true);
7352 case SystemZ::ATOMIC_LOAD_NIHF64i:
7353 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHF64, 64, true);
7354
7355 case SystemZ::ATOMIC_LOADW_MIN:
7356 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR,
7357 SystemZ::CCMASK_CMP_LE, 0);
7358 case SystemZ::ATOMIC_LOAD_MIN_32:
7359 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR,
7360 SystemZ::CCMASK_CMP_LE, 32);
7361 case SystemZ::ATOMIC_LOAD_MIN_64:
7362 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CGR,
7363 SystemZ::CCMASK_CMP_LE, 64);
7364
7365 case SystemZ::ATOMIC_LOADW_MAX:
7366 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR,
7367 SystemZ::CCMASK_CMP_GE, 0);
7368 case SystemZ::ATOMIC_LOAD_MAX_32:
7369 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR,
7370 SystemZ::CCMASK_CMP_GE, 32);
7371 case SystemZ::ATOMIC_LOAD_MAX_64:
7372 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CGR,
7373 SystemZ::CCMASK_CMP_GE, 64);
7374
7375 case SystemZ::ATOMIC_LOADW_UMIN:
7376 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR,
7377 SystemZ::CCMASK_CMP_LE, 0);
7378 case SystemZ::ATOMIC_LOAD_UMIN_32:
7379 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR,
7380 SystemZ::CCMASK_CMP_LE, 32);
7381 case SystemZ::ATOMIC_LOAD_UMIN_64:
7382 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLGR,
7383 SystemZ::CCMASK_CMP_LE, 64);
7384
7385 case SystemZ::ATOMIC_LOADW_UMAX:
7386 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR,
7387 SystemZ::CCMASK_CMP_GE, 0);
7388 case SystemZ::ATOMIC_LOAD_UMAX_32:
7389 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR,
7390 SystemZ::CCMASK_CMP_GE, 32);
7391 case SystemZ::ATOMIC_LOAD_UMAX_64:
7392 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLGR,
7393 SystemZ::CCMASK_CMP_GE, 64);
7394
7395 case SystemZ::ATOMIC_CMP_SWAPW:
7396 return emitAtomicCmpSwapW(MI, MBB);
7397 case SystemZ::MVCSequence:
7398 case SystemZ::MVCLoop:
7399 return emitMemMemWrapper(MI, MBB, SystemZ::MVC);
7400 case SystemZ::NCSequence:
7401 case SystemZ::NCLoop:
7402 return emitMemMemWrapper(MI, MBB, SystemZ::NC);
7403 case SystemZ::OCSequence:
7404 case SystemZ::OCLoop:
7405 return emitMemMemWrapper(MI, MBB, SystemZ::OC);
7406 case SystemZ::XCSequence:
7407 case SystemZ::XCLoop:
7408 return emitMemMemWrapper(MI, MBB, SystemZ::XC);
7409 case SystemZ::CLCSequence:
7410 case SystemZ::CLCLoop:
7411 return emitMemMemWrapper(MI, MBB, SystemZ::CLC);
7412 case SystemZ::CLSTLoop:
7413 return emitStringWrapper(MI, MBB, SystemZ::CLST);
7414 case SystemZ::MVSTLoop:
7415 return emitStringWrapper(MI, MBB, SystemZ::MVST);
7416 case SystemZ::SRSTLoop:
7417 return emitStringWrapper(MI, MBB, SystemZ::SRST);
7418 case SystemZ::TBEGIN:
7419 return emitTransactionBegin(MI, MBB, SystemZ::TBEGIN, false);
7420 case SystemZ::TBEGIN_nofloat:
7421 return emitTransactionBegin(MI, MBB, SystemZ::TBEGIN, true);
7422 case SystemZ::TBEGINC:
7423 return emitTransactionBegin(MI, MBB, SystemZ::TBEGINC, true);
7424 case SystemZ::LTEBRCompare_VecPseudo:
7425 return emitLoadAndTestCmp0(MI, MBB, SystemZ::LTEBR);
7426 case SystemZ::LTDBRCompare_VecPseudo:
7427 return emitLoadAndTestCmp0(MI, MBB, SystemZ::LTDBR);
7428 case SystemZ::LTXBRCompare_VecPseudo:
7429 return emitLoadAndTestCmp0(MI, MBB, SystemZ::LTXBR);
7430
7431 case TargetOpcode::STACKMAP:
7432 case TargetOpcode::PATCHPOINT:
7433 return emitPatchPoint(MI, MBB);
7434
7435 default:
7436 llvm_unreachable("Unexpected instr type to insert");
7437 }
7438 }
7439
7440 // This is only used by the isel schedulers, and is needed only to prevent
7441 // compiler from crashing when list-ilp is used.
7442 const TargetRegisterClass *
getRepRegClassFor(MVT VT) const7443 SystemZTargetLowering::getRepRegClassFor(MVT VT) const {
7444 if (VT == MVT::Untyped)
7445 return &SystemZ::ADDR128BitRegClass;
7446 return TargetLowering::getRepRegClassFor(VT);
7447 }
7448