1 //===- MipsFastISel.cpp - Mips FastISel implementation --------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 /// 10 /// \file 11 /// This file defines the MIPS-specific support for the FastISel class. 12 /// Some of the target-specific code is generated by tablegen in the file 13 /// MipsGenFastISel.inc, which is #included here. 14 /// 15 //===----------------------------------------------------------------------===// 16 17 #include "MCTargetDesc/MipsABIInfo.h" 18 #include "MCTargetDesc/MipsBaseInfo.h" 19 #include "MipsCCState.h" 20 #include "MipsISelLowering.h" 21 #include "MipsInstrInfo.h" 22 #include "MipsMachineFunction.h" 23 #include "MipsSubtarget.h" 24 #include "MipsTargetMachine.h" 25 #include "llvm/ADT/APInt.h" 26 #include "llvm/ADT/ArrayRef.h" 27 #include "llvm/ADT/DenseMap.h" 28 #include "llvm/ADT/SmallVector.h" 29 #include "llvm/Analysis/TargetLibraryInfo.h" 30 #include "llvm/CodeGen/CallingConvLower.h" 31 #include "llvm/CodeGen/FastISel.h" 32 #include "llvm/CodeGen/FunctionLoweringInfo.h" 33 #include "llvm/CodeGen/ISDOpcodes.h" 34 #include "llvm/CodeGen/MachineBasicBlock.h" 35 #include "llvm/CodeGen/MachineFrameInfo.h" 36 #include "llvm/CodeGen/MachineInstrBuilder.h" 37 #include "llvm/CodeGen/MachineMemOperand.h" 38 #include "llvm/CodeGen/MachineRegisterInfo.h" 39 #include "llvm/CodeGen/TargetInstrInfo.h" 40 #include "llvm/CodeGen/TargetLowering.h" 41 #include "llvm/CodeGen/ValueTypes.h" 42 #include "llvm/IR/Attributes.h" 43 #include "llvm/IR/CallingConv.h" 44 #include "llvm/IR/Constant.h" 45 #include "llvm/IR/Constants.h" 46 #include "llvm/IR/DataLayout.h" 47 #include "llvm/IR/Function.h" 48 #include "llvm/IR/GetElementPtrTypeIterator.h" 49 #include "llvm/IR/GlobalValue.h" 50 #include "llvm/IR/GlobalVariable.h" 51 #include "llvm/IR/InstrTypes.h" 52 #include "llvm/IR/Instruction.h" 53 #include "llvm/IR/Instructions.h" 54 #include "llvm/IR/IntrinsicInst.h" 55 #include "llvm/IR/Operator.h" 56 #include "llvm/IR/Type.h" 57 #include "llvm/IR/User.h" 58 #include "llvm/IR/Value.h" 59 #include "llvm/MC/MCContext.h" 60 #include "llvm/MC/MCInstrDesc.h" 61 #include "llvm/MC/MCRegisterInfo.h" 62 #include "llvm/MC/MCSymbol.h" 63 #include "llvm/Support/Casting.h" 64 #include "llvm/Support/Compiler.h" 65 #include "llvm/Support/Debug.h" 66 #include "llvm/Support/ErrorHandling.h" 67 #include "llvm/Support/MachineValueType.h" 68 #include "llvm/Support/MathExtras.h" 69 #include "llvm/Support/raw_ostream.h" 70 #include <algorithm> 71 #include <array> 72 #include <cassert> 73 #include <cstdint> 74 75 #define DEBUG_TYPE "mips-fastisel" 76 77 using namespace llvm; 78 79 extern cl::opt<bool> EmitJalrReloc; 80 81 namespace { 82 83 class MipsFastISel final : public FastISel { 84 85 // All possible address modes. 86 class Address { 87 public: 88 using BaseKind = enum { RegBase, FrameIndexBase }; 89 90 private: 91 BaseKind Kind = RegBase; 92 union { 93 unsigned Reg; 94 int FI; 95 } Base; 96 97 int64_t Offset = 0; 98 99 const GlobalValue *GV = nullptr; 100 101 public: 102 // Innocuous defaults for our address. 103 Address() { Base.Reg = 0; } 104 105 void setKind(BaseKind K) { Kind = K; } 106 BaseKind getKind() const { return Kind; } 107 bool isRegBase() const { return Kind == RegBase; } 108 bool isFIBase() const { return Kind == FrameIndexBase; } 109 110 void setReg(unsigned Reg) { 111 assert(isRegBase() && "Invalid base register access!"); 112 Base.Reg = Reg; 113 } 114 115 unsigned getReg() const { 116 assert(isRegBase() && "Invalid base register access!"); 117 return Base.Reg; 118 } 119 120 void setFI(unsigned FI) { 121 assert(isFIBase() && "Invalid base frame index access!"); 122 Base.FI = FI; 123 } 124 125 unsigned getFI() const { 126 assert(isFIBase() && "Invalid base frame index access!"); 127 return Base.FI; 128 } 129 130 void setOffset(int64_t Offset_) { Offset = Offset_; } 131 int64_t getOffset() const { return Offset; } 132 void setGlobalValue(const GlobalValue *G) { GV = G; } 133 const GlobalValue *getGlobalValue() { return GV; } 134 }; 135 136 /// Subtarget - Keep a pointer to the MipsSubtarget around so that we can 137 /// make the right decision when generating code for different targets. 138 const TargetMachine &TM; 139 const MipsSubtarget *Subtarget; 140 const TargetInstrInfo &TII; 141 const TargetLowering &TLI; 142 MipsFunctionInfo *MFI; 143 144 // Convenience variables to avoid some queries. 145 LLVMContext *Context; 146 147 bool fastLowerArguments() override; 148 bool fastLowerCall(CallLoweringInfo &CLI) override; 149 bool fastLowerIntrinsicCall(const IntrinsicInst *II) override; 150 151 bool UnsupportedFPMode; // To allow fast-isel to proceed and just not handle 152 // floating point but not reject doing fast-isel in other 153 // situations 154 155 private: 156 // Selection routines. 157 bool selectLogicalOp(const Instruction *I); 158 bool selectLoad(const Instruction *I); 159 bool selectStore(const Instruction *I); 160 bool selectBranch(const Instruction *I); 161 bool selectSelect(const Instruction *I); 162 bool selectCmp(const Instruction *I); 163 bool selectFPExt(const Instruction *I); 164 bool selectFPTrunc(const Instruction *I); 165 bool selectFPToInt(const Instruction *I, bool IsSigned); 166 bool selectRet(const Instruction *I); 167 bool selectTrunc(const Instruction *I); 168 bool selectIntExt(const Instruction *I); 169 bool selectShift(const Instruction *I); 170 bool selectDivRem(const Instruction *I, unsigned ISDOpcode); 171 172 // Utility helper routines. 173 bool isTypeLegal(Type *Ty, MVT &VT); 174 bool isTypeSupported(Type *Ty, MVT &VT); 175 bool isLoadTypeLegal(Type *Ty, MVT &VT); 176 bool computeAddress(const Value *Obj, Address &Addr); 177 bool computeCallAddress(const Value *V, Address &Addr); 178 void simplifyAddress(Address &Addr); 179 180 // Emit helper routines. 181 bool emitCmp(unsigned DestReg, const CmpInst *CI); 182 bool emitLoad(MVT VT, unsigned &ResultReg, Address &Addr, 183 unsigned Alignment = 0); 184 bool emitStore(MVT VT, unsigned SrcReg, Address Addr, 185 MachineMemOperand *MMO = nullptr); 186 bool emitStore(MVT VT, unsigned SrcReg, Address &Addr, 187 unsigned Alignment = 0); 188 unsigned emitIntExt(MVT SrcVT, unsigned SrcReg, MVT DestVT, bool isZExt); 189 bool emitIntExt(MVT SrcVT, unsigned SrcReg, MVT DestVT, unsigned DestReg, 190 191 bool IsZExt); 192 bool emitIntZExt(MVT SrcVT, unsigned SrcReg, MVT DestVT, unsigned DestReg); 193 194 bool emitIntSExt(MVT SrcVT, unsigned SrcReg, MVT DestVT, unsigned DestReg); 195 bool emitIntSExt32r1(MVT SrcVT, unsigned SrcReg, MVT DestVT, 196 unsigned DestReg); 197 bool emitIntSExt32r2(MVT SrcVT, unsigned SrcReg, MVT DestVT, 198 unsigned DestReg); 199 200 unsigned getRegEnsuringSimpleIntegerWidening(const Value *, bool IsUnsigned); 201 202 unsigned emitLogicalOp(unsigned ISDOpc, MVT RetVT, const Value *LHS, 203 const Value *RHS); 204 205 unsigned materializeFP(const ConstantFP *CFP, MVT VT); 206 unsigned materializeGV(const GlobalValue *GV, MVT VT); 207 unsigned materializeInt(const Constant *C, MVT VT); 208 unsigned materialize32BitInt(int64_t Imm, const TargetRegisterClass *RC); 209 unsigned materializeExternalCallSym(MCSymbol *Syn); 210 211 MachineInstrBuilder emitInst(unsigned Opc) { 212 return BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc)); 213 } 214 215 MachineInstrBuilder emitInst(unsigned Opc, unsigned DstReg) { 216 return BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), 217 DstReg); 218 } 219 220 MachineInstrBuilder emitInstStore(unsigned Opc, unsigned SrcReg, 221 unsigned MemReg, int64_t MemOffset) { 222 return emitInst(Opc).addReg(SrcReg).addReg(MemReg).addImm(MemOffset); 223 } 224 225 MachineInstrBuilder emitInstLoad(unsigned Opc, unsigned DstReg, 226 unsigned MemReg, int64_t MemOffset) { 227 return emitInst(Opc, DstReg).addReg(MemReg).addImm(MemOffset); 228 } 229 230 unsigned fastEmitInst_rr(unsigned MachineInstOpcode, 231 const TargetRegisterClass *RC, 232 unsigned Op0, bool Op0IsKill, 233 unsigned Op1, bool Op1IsKill); 234 235 // for some reason, this default is not generated by tablegen 236 // so we explicitly generate it here. 237 unsigned fastEmitInst_riir(uint64_t inst, const TargetRegisterClass *RC, 238 unsigned Op0, bool Op0IsKill, uint64_t imm1, 239 uint64_t imm2, unsigned Op3, bool Op3IsKill) { 240 return 0; 241 } 242 243 // Call handling routines. 244 private: 245 CCAssignFn *CCAssignFnForCall(CallingConv::ID CC) const; 246 bool processCallArgs(CallLoweringInfo &CLI, SmallVectorImpl<MVT> &ArgVTs, 247 unsigned &NumBytes); 248 bool finishCall(CallLoweringInfo &CLI, MVT RetVT, unsigned NumBytes); 249 250 const MipsABIInfo &getABI() const { 251 return static_cast<const MipsTargetMachine &>(TM).getABI(); 252 } 253 254 public: 255 // Backend specific FastISel code. 256 explicit MipsFastISel(FunctionLoweringInfo &funcInfo, 257 const TargetLibraryInfo *libInfo) 258 : FastISel(funcInfo, libInfo), TM(funcInfo.MF->getTarget()), 259 Subtarget(&funcInfo.MF->getSubtarget<MipsSubtarget>()), 260 TII(*Subtarget->getInstrInfo()), TLI(*Subtarget->getTargetLowering()) { 261 MFI = funcInfo.MF->getInfo<MipsFunctionInfo>(); 262 Context = &funcInfo.Fn->getContext(); 263 UnsupportedFPMode = Subtarget->isFP64bit() || Subtarget->useSoftFloat(); 264 } 265 266 unsigned fastMaterializeAlloca(const AllocaInst *AI) override; 267 unsigned fastMaterializeConstant(const Constant *C) override; 268 bool fastSelectInstruction(const Instruction *I) override; 269 270 #include "MipsGenFastISel.inc" 271 }; 272 273 } // end anonymous namespace 274 275 static bool CC_Mips(unsigned ValNo, MVT ValVT, MVT LocVT, 276 CCValAssign::LocInfo LocInfo, ISD::ArgFlagsTy ArgFlags, 277 CCState &State) LLVM_ATTRIBUTE_UNUSED; 278 279 static bool CC_MipsO32_FP32(unsigned ValNo, MVT ValVT, MVT LocVT, 280 CCValAssign::LocInfo LocInfo, 281 ISD::ArgFlagsTy ArgFlags, CCState &State) { 282 llvm_unreachable("should not be called"); 283 } 284 285 static bool CC_MipsO32_FP64(unsigned ValNo, MVT ValVT, MVT LocVT, 286 CCValAssign::LocInfo LocInfo, 287 ISD::ArgFlagsTy ArgFlags, CCState &State) { 288 llvm_unreachable("should not be called"); 289 } 290 291 #include "MipsGenCallingConv.inc" 292 293 CCAssignFn *MipsFastISel::CCAssignFnForCall(CallingConv::ID CC) const { 294 return CC_MipsO32; 295 } 296 297 unsigned MipsFastISel::emitLogicalOp(unsigned ISDOpc, MVT RetVT, 298 const Value *LHS, const Value *RHS) { 299 // Canonicalize immediates to the RHS first. 300 if (isa<ConstantInt>(LHS) && !isa<ConstantInt>(RHS)) 301 std::swap(LHS, RHS); 302 303 unsigned Opc; 304 switch (ISDOpc) { 305 case ISD::AND: 306 Opc = Mips::AND; 307 break; 308 case ISD::OR: 309 Opc = Mips::OR; 310 break; 311 case ISD::XOR: 312 Opc = Mips::XOR; 313 break; 314 default: 315 llvm_unreachable("unexpected opcode"); 316 } 317 318 unsigned LHSReg = getRegForValue(LHS); 319 if (!LHSReg) 320 return 0; 321 322 unsigned RHSReg; 323 if (const auto *C = dyn_cast<ConstantInt>(RHS)) 324 RHSReg = materializeInt(C, MVT::i32); 325 else 326 RHSReg = getRegForValue(RHS); 327 if (!RHSReg) 328 return 0; 329 330 unsigned ResultReg = createResultReg(&Mips::GPR32RegClass); 331 if (!ResultReg) 332 return 0; 333 334 emitInst(Opc, ResultReg).addReg(LHSReg).addReg(RHSReg); 335 return ResultReg; 336 } 337 338 unsigned MipsFastISel::fastMaterializeAlloca(const AllocaInst *AI) { 339 assert(TLI.getValueType(DL, AI->getType(), true) == MVT::i32 && 340 "Alloca should always return a pointer."); 341 342 DenseMap<const AllocaInst *, int>::iterator SI = 343 FuncInfo.StaticAllocaMap.find(AI); 344 345 if (SI != FuncInfo.StaticAllocaMap.end()) { 346 unsigned ResultReg = createResultReg(&Mips::GPR32RegClass); 347 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Mips::LEA_ADDiu), 348 ResultReg) 349 .addFrameIndex(SI->second) 350 .addImm(0); 351 return ResultReg; 352 } 353 354 return 0; 355 } 356 357 unsigned MipsFastISel::materializeInt(const Constant *C, MVT VT) { 358 if (VT != MVT::i32 && VT != MVT::i16 && VT != MVT::i8 && VT != MVT::i1) 359 return 0; 360 const TargetRegisterClass *RC = &Mips::GPR32RegClass; 361 const ConstantInt *CI = cast<ConstantInt>(C); 362 return materialize32BitInt(CI->getZExtValue(), RC); 363 } 364 365 unsigned MipsFastISel::materialize32BitInt(int64_t Imm, 366 const TargetRegisterClass *RC) { 367 unsigned ResultReg = createResultReg(RC); 368 369 if (isInt<16>(Imm)) { 370 unsigned Opc = Mips::ADDiu; 371 emitInst(Opc, ResultReg).addReg(Mips::ZERO).addImm(Imm); 372 return ResultReg; 373 } else if (isUInt<16>(Imm)) { 374 emitInst(Mips::ORi, ResultReg).addReg(Mips::ZERO).addImm(Imm); 375 return ResultReg; 376 } 377 unsigned Lo = Imm & 0xFFFF; 378 unsigned Hi = (Imm >> 16) & 0xFFFF; 379 if (Lo) { 380 // Both Lo and Hi have nonzero bits. 381 unsigned TmpReg = createResultReg(RC); 382 emitInst(Mips::LUi, TmpReg).addImm(Hi); 383 emitInst(Mips::ORi, ResultReg).addReg(TmpReg).addImm(Lo); 384 } else { 385 emitInst(Mips::LUi, ResultReg).addImm(Hi); 386 } 387 return ResultReg; 388 } 389 390 unsigned MipsFastISel::materializeFP(const ConstantFP *CFP, MVT VT) { 391 if (UnsupportedFPMode) 392 return 0; 393 int64_t Imm = CFP->getValueAPF().bitcastToAPInt().getZExtValue(); 394 if (VT == MVT::f32) { 395 const TargetRegisterClass *RC = &Mips::FGR32RegClass; 396 unsigned DestReg = createResultReg(RC); 397 unsigned TempReg = materialize32BitInt(Imm, &Mips::GPR32RegClass); 398 emitInst(Mips::MTC1, DestReg).addReg(TempReg); 399 return DestReg; 400 } else if (VT == MVT::f64) { 401 const TargetRegisterClass *RC = &Mips::AFGR64RegClass; 402 unsigned DestReg = createResultReg(RC); 403 unsigned TempReg1 = materialize32BitInt(Imm >> 32, &Mips::GPR32RegClass); 404 unsigned TempReg2 = 405 materialize32BitInt(Imm & 0xFFFFFFFF, &Mips::GPR32RegClass); 406 emitInst(Mips::BuildPairF64, DestReg).addReg(TempReg2).addReg(TempReg1); 407 return DestReg; 408 } 409 return 0; 410 } 411 412 unsigned MipsFastISel::materializeGV(const GlobalValue *GV, MVT VT) { 413 // For now 32-bit only. 414 if (VT != MVT::i32) 415 return 0; 416 const TargetRegisterClass *RC = &Mips::GPR32RegClass; 417 unsigned DestReg = createResultReg(RC); 418 const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV); 419 bool IsThreadLocal = GVar && GVar->isThreadLocal(); 420 // TLS not supported at this time. 421 if (IsThreadLocal) 422 return 0; 423 emitInst(Mips::LW, DestReg) 424 .addReg(MFI->getGlobalBaseReg()) 425 .addGlobalAddress(GV, 0, MipsII::MO_GOT); 426 if ((GV->hasInternalLinkage() || 427 (GV->hasLocalLinkage() && !isa<Function>(GV)))) { 428 unsigned TempReg = createResultReg(RC); 429 emitInst(Mips::ADDiu, TempReg) 430 .addReg(DestReg) 431 .addGlobalAddress(GV, 0, MipsII::MO_ABS_LO); 432 DestReg = TempReg; 433 } 434 return DestReg; 435 } 436 437 unsigned MipsFastISel::materializeExternalCallSym(MCSymbol *Sym) { 438 const TargetRegisterClass *RC = &Mips::GPR32RegClass; 439 unsigned DestReg = createResultReg(RC); 440 emitInst(Mips::LW, DestReg) 441 .addReg(MFI->getGlobalBaseReg()) 442 .addSym(Sym, MipsII::MO_GOT); 443 return DestReg; 444 } 445 446 // Materialize a constant into a register, and return the register 447 // number (or zero if we failed to handle it). 448 unsigned MipsFastISel::fastMaterializeConstant(const Constant *C) { 449 EVT CEVT = TLI.getValueType(DL, C->getType(), true); 450 451 // Only handle simple types. 452 if (!CEVT.isSimple()) 453 return 0; 454 MVT VT = CEVT.getSimpleVT(); 455 456 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) 457 return (UnsupportedFPMode) ? 0 : materializeFP(CFP, VT); 458 else if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) 459 return materializeGV(GV, VT); 460 else if (isa<ConstantInt>(C)) 461 return materializeInt(C, VT); 462 463 return 0; 464 } 465 466 bool MipsFastISel::computeAddress(const Value *Obj, Address &Addr) { 467 const User *U = nullptr; 468 unsigned Opcode = Instruction::UserOp1; 469 if (const Instruction *I = dyn_cast<Instruction>(Obj)) { 470 // Don't walk into other basic blocks unless the object is an alloca from 471 // another block, otherwise it may not have a virtual register assigned. 472 if (FuncInfo.StaticAllocaMap.count(static_cast<const AllocaInst *>(Obj)) || 473 FuncInfo.MBBMap[I->getParent()] == FuncInfo.MBB) { 474 Opcode = I->getOpcode(); 475 U = I; 476 } 477 } else if (const ConstantExpr *C = dyn_cast<ConstantExpr>(Obj)) { 478 Opcode = C->getOpcode(); 479 U = C; 480 } 481 switch (Opcode) { 482 default: 483 break; 484 case Instruction::BitCast: 485 // Look through bitcasts. 486 return computeAddress(U->getOperand(0), Addr); 487 case Instruction::GetElementPtr: { 488 Address SavedAddr = Addr; 489 int64_t TmpOffset = Addr.getOffset(); 490 // Iterate through the GEP folding the constants into offsets where 491 // we can. 492 gep_type_iterator GTI = gep_type_begin(U); 493 for (User::const_op_iterator i = U->op_begin() + 1, e = U->op_end(); i != e; 494 ++i, ++GTI) { 495 const Value *Op = *i; 496 if (StructType *STy = GTI.getStructTypeOrNull()) { 497 const StructLayout *SL = DL.getStructLayout(STy); 498 unsigned Idx = cast<ConstantInt>(Op)->getZExtValue(); 499 TmpOffset += SL->getElementOffset(Idx); 500 } else { 501 uint64_t S = DL.getTypeAllocSize(GTI.getIndexedType()); 502 while (true) { 503 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Op)) { 504 // Constant-offset addressing. 505 TmpOffset += CI->getSExtValue() * S; 506 break; 507 } 508 if (canFoldAddIntoGEP(U, Op)) { 509 // A compatible add with a constant operand. Fold the constant. 510 ConstantInt *CI = 511 cast<ConstantInt>(cast<AddOperator>(Op)->getOperand(1)); 512 TmpOffset += CI->getSExtValue() * S; 513 // Iterate on the other operand. 514 Op = cast<AddOperator>(Op)->getOperand(0); 515 continue; 516 } 517 // Unsupported 518 goto unsupported_gep; 519 } 520 } 521 } 522 // Try to grab the base operand now. 523 Addr.setOffset(TmpOffset); 524 if (computeAddress(U->getOperand(0), Addr)) 525 return true; 526 // We failed, restore everything and try the other options. 527 Addr = SavedAddr; 528 unsupported_gep: 529 break; 530 } 531 case Instruction::Alloca: { 532 const AllocaInst *AI = cast<AllocaInst>(Obj); 533 DenseMap<const AllocaInst *, int>::iterator SI = 534 FuncInfo.StaticAllocaMap.find(AI); 535 if (SI != FuncInfo.StaticAllocaMap.end()) { 536 Addr.setKind(Address::FrameIndexBase); 537 Addr.setFI(SI->second); 538 return true; 539 } 540 break; 541 } 542 } 543 Addr.setReg(getRegForValue(Obj)); 544 return Addr.getReg() != 0; 545 } 546 547 bool MipsFastISel::computeCallAddress(const Value *V, Address &Addr) { 548 const User *U = nullptr; 549 unsigned Opcode = Instruction::UserOp1; 550 551 if (const auto *I = dyn_cast<Instruction>(V)) { 552 // Check if the value is defined in the same basic block. This information 553 // is crucial to know whether or not folding an operand is valid. 554 if (I->getParent() == FuncInfo.MBB->getBasicBlock()) { 555 Opcode = I->getOpcode(); 556 U = I; 557 } 558 } else if (const auto *C = dyn_cast<ConstantExpr>(V)) { 559 Opcode = C->getOpcode(); 560 U = C; 561 } 562 563 switch (Opcode) { 564 default: 565 break; 566 case Instruction::BitCast: 567 // Look past bitcasts if its operand is in the same BB. 568 return computeCallAddress(U->getOperand(0), Addr); 569 break; 570 case Instruction::IntToPtr: 571 // Look past no-op inttoptrs if its operand is in the same BB. 572 if (TLI.getValueType(DL, U->getOperand(0)->getType()) == 573 TLI.getPointerTy(DL)) 574 return computeCallAddress(U->getOperand(0), Addr); 575 break; 576 case Instruction::PtrToInt: 577 // Look past no-op ptrtoints if its operand is in the same BB. 578 if (TLI.getValueType(DL, U->getType()) == TLI.getPointerTy(DL)) 579 return computeCallAddress(U->getOperand(0), Addr); 580 break; 581 } 582 583 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) { 584 Addr.setGlobalValue(GV); 585 return true; 586 } 587 588 // If all else fails, try to materialize the value in a register. 589 if (!Addr.getGlobalValue()) { 590 Addr.setReg(getRegForValue(V)); 591 return Addr.getReg() != 0; 592 } 593 594 return false; 595 } 596 597 bool MipsFastISel::isTypeLegal(Type *Ty, MVT &VT) { 598 EVT evt = TLI.getValueType(DL, Ty, true); 599 // Only handle simple types. 600 if (evt == MVT::Other || !evt.isSimple()) 601 return false; 602 VT = evt.getSimpleVT(); 603 604 // Handle all legal types, i.e. a register that will directly hold this 605 // value. 606 return TLI.isTypeLegal(VT); 607 } 608 609 bool MipsFastISel::isTypeSupported(Type *Ty, MVT &VT) { 610 if (Ty->isVectorTy()) 611 return false; 612 613 if (isTypeLegal(Ty, VT)) 614 return true; 615 616 // If this is a type than can be sign or zero-extended to a basic operation 617 // go ahead and accept it now. 618 if (VT == MVT::i1 || VT == MVT::i8 || VT == MVT::i16) 619 return true; 620 621 return false; 622 } 623 624 bool MipsFastISel::isLoadTypeLegal(Type *Ty, MVT &VT) { 625 if (isTypeLegal(Ty, VT)) 626 return true; 627 // We will extend this in a later patch: 628 // If this is a type than can be sign or zero-extended to a basic operation 629 // go ahead and accept it now. 630 if (VT == MVT::i8 || VT == MVT::i16) 631 return true; 632 return false; 633 } 634 635 // Because of how EmitCmp is called with fast-isel, you can 636 // end up with redundant "andi" instructions after the sequences emitted below. 637 // We should try and solve this issue in the future. 638 // 639 bool MipsFastISel::emitCmp(unsigned ResultReg, const CmpInst *CI) { 640 const Value *Left = CI->getOperand(0), *Right = CI->getOperand(1); 641 bool IsUnsigned = CI->isUnsigned(); 642 unsigned LeftReg = getRegEnsuringSimpleIntegerWidening(Left, IsUnsigned); 643 if (LeftReg == 0) 644 return false; 645 unsigned RightReg = getRegEnsuringSimpleIntegerWidening(Right, IsUnsigned); 646 if (RightReg == 0) 647 return false; 648 CmpInst::Predicate P = CI->getPredicate(); 649 650 switch (P) { 651 default: 652 return false; 653 case CmpInst::ICMP_EQ: { 654 unsigned TempReg = createResultReg(&Mips::GPR32RegClass); 655 emitInst(Mips::XOR, TempReg).addReg(LeftReg).addReg(RightReg); 656 emitInst(Mips::SLTiu, ResultReg).addReg(TempReg).addImm(1); 657 break; 658 } 659 case CmpInst::ICMP_NE: { 660 unsigned TempReg = createResultReg(&Mips::GPR32RegClass); 661 emitInst(Mips::XOR, TempReg).addReg(LeftReg).addReg(RightReg); 662 emitInst(Mips::SLTu, ResultReg).addReg(Mips::ZERO).addReg(TempReg); 663 break; 664 } 665 case CmpInst::ICMP_UGT: 666 emitInst(Mips::SLTu, ResultReg).addReg(RightReg).addReg(LeftReg); 667 break; 668 case CmpInst::ICMP_ULT: 669 emitInst(Mips::SLTu, ResultReg).addReg(LeftReg).addReg(RightReg); 670 break; 671 case CmpInst::ICMP_UGE: { 672 unsigned TempReg = createResultReg(&Mips::GPR32RegClass); 673 emitInst(Mips::SLTu, TempReg).addReg(LeftReg).addReg(RightReg); 674 emitInst(Mips::XORi, ResultReg).addReg(TempReg).addImm(1); 675 break; 676 } 677 case CmpInst::ICMP_ULE: { 678 unsigned TempReg = createResultReg(&Mips::GPR32RegClass); 679 emitInst(Mips::SLTu, TempReg).addReg(RightReg).addReg(LeftReg); 680 emitInst(Mips::XORi, ResultReg).addReg(TempReg).addImm(1); 681 break; 682 } 683 case CmpInst::ICMP_SGT: 684 emitInst(Mips::SLT, ResultReg).addReg(RightReg).addReg(LeftReg); 685 break; 686 case CmpInst::ICMP_SLT: 687 emitInst(Mips::SLT, ResultReg).addReg(LeftReg).addReg(RightReg); 688 break; 689 case CmpInst::ICMP_SGE: { 690 unsigned TempReg = createResultReg(&Mips::GPR32RegClass); 691 emitInst(Mips::SLT, TempReg).addReg(LeftReg).addReg(RightReg); 692 emitInst(Mips::XORi, ResultReg).addReg(TempReg).addImm(1); 693 break; 694 } 695 case CmpInst::ICMP_SLE: { 696 unsigned TempReg = createResultReg(&Mips::GPR32RegClass); 697 emitInst(Mips::SLT, TempReg).addReg(RightReg).addReg(LeftReg); 698 emitInst(Mips::XORi, ResultReg).addReg(TempReg).addImm(1); 699 break; 700 } 701 case CmpInst::FCMP_OEQ: 702 case CmpInst::FCMP_UNE: 703 case CmpInst::FCMP_OLT: 704 case CmpInst::FCMP_OLE: 705 case CmpInst::FCMP_OGT: 706 case CmpInst::FCMP_OGE: { 707 if (UnsupportedFPMode) 708 return false; 709 bool IsFloat = Left->getType()->isFloatTy(); 710 bool IsDouble = Left->getType()->isDoubleTy(); 711 if (!IsFloat && !IsDouble) 712 return false; 713 unsigned Opc, CondMovOpc; 714 switch (P) { 715 case CmpInst::FCMP_OEQ: 716 Opc = IsFloat ? Mips::C_EQ_S : Mips::C_EQ_D32; 717 CondMovOpc = Mips::MOVT_I; 718 break; 719 case CmpInst::FCMP_UNE: 720 Opc = IsFloat ? Mips::C_EQ_S : Mips::C_EQ_D32; 721 CondMovOpc = Mips::MOVF_I; 722 break; 723 case CmpInst::FCMP_OLT: 724 Opc = IsFloat ? Mips::C_OLT_S : Mips::C_OLT_D32; 725 CondMovOpc = Mips::MOVT_I; 726 break; 727 case CmpInst::FCMP_OLE: 728 Opc = IsFloat ? Mips::C_OLE_S : Mips::C_OLE_D32; 729 CondMovOpc = Mips::MOVT_I; 730 break; 731 case CmpInst::FCMP_OGT: 732 Opc = IsFloat ? Mips::C_ULE_S : Mips::C_ULE_D32; 733 CondMovOpc = Mips::MOVF_I; 734 break; 735 case CmpInst::FCMP_OGE: 736 Opc = IsFloat ? Mips::C_ULT_S : Mips::C_ULT_D32; 737 CondMovOpc = Mips::MOVF_I; 738 break; 739 default: 740 llvm_unreachable("Only switching of a subset of CCs."); 741 } 742 unsigned RegWithZero = createResultReg(&Mips::GPR32RegClass); 743 unsigned RegWithOne = createResultReg(&Mips::GPR32RegClass); 744 emitInst(Mips::ADDiu, RegWithZero).addReg(Mips::ZERO).addImm(0); 745 emitInst(Mips::ADDiu, RegWithOne).addReg(Mips::ZERO).addImm(1); 746 emitInst(Opc).addReg(Mips::FCC0, RegState::Define).addReg(LeftReg) 747 .addReg(RightReg); 748 emitInst(CondMovOpc, ResultReg) 749 .addReg(RegWithOne) 750 .addReg(Mips::FCC0) 751 .addReg(RegWithZero); 752 break; 753 } 754 } 755 return true; 756 } 757 758 bool MipsFastISel::emitLoad(MVT VT, unsigned &ResultReg, Address &Addr, 759 unsigned Alignment) { 760 // 761 // more cases will be handled here in following patches. 762 // 763 unsigned Opc; 764 switch (VT.SimpleTy) { 765 case MVT::i32: 766 ResultReg = createResultReg(&Mips::GPR32RegClass); 767 Opc = Mips::LW; 768 break; 769 case MVT::i16: 770 ResultReg = createResultReg(&Mips::GPR32RegClass); 771 Opc = Mips::LHu; 772 break; 773 case MVT::i8: 774 ResultReg = createResultReg(&Mips::GPR32RegClass); 775 Opc = Mips::LBu; 776 break; 777 case MVT::f32: 778 if (UnsupportedFPMode) 779 return false; 780 ResultReg = createResultReg(&Mips::FGR32RegClass); 781 Opc = Mips::LWC1; 782 break; 783 case MVT::f64: 784 if (UnsupportedFPMode) 785 return false; 786 ResultReg = createResultReg(&Mips::AFGR64RegClass); 787 Opc = Mips::LDC1; 788 break; 789 default: 790 return false; 791 } 792 if (Addr.isRegBase()) { 793 simplifyAddress(Addr); 794 emitInstLoad(Opc, ResultReg, Addr.getReg(), Addr.getOffset()); 795 return true; 796 } 797 if (Addr.isFIBase()) { 798 unsigned FI = Addr.getFI(); 799 unsigned Align = 4; 800 int64_t Offset = Addr.getOffset(); 801 MachineFrameInfo &MFI = MF->getFrameInfo(); 802 MachineMemOperand *MMO = MF->getMachineMemOperand( 803 MachinePointerInfo::getFixedStack(*MF, FI), MachineMemOperand::MOLoad, 804 MFI.getObjectSize(FI), Align); 805 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg) 806 .addFrameIndex(FI) 807 .addImm(Offset) 808 .addMemOperand(MMO); 809 return true; 810 } 811 return false; 812 } 813 814 bool MipsFastISel::emitStore(MVT VT, unsigned SrcReg, Address &Addr, 815 unsigned Alignment) { 816 // 817 // more cases will be handled here in following patches. 818 // 819 unsigned Opc; 820 switch (VT.SimpleTy) { 821 case MVT::i8: 822 Opc = Mips::SB; 823 break; 824 case MVT::i16: 825 Opc = Mips::SH; 826 break; 827 case MVT::i32: 828 Opc = Mips::SW; 829 break; 830 case MVT::f32: 831 if (UnsupportedFPMode) 832 return false; 833 Opc = Mips::SWC1; 834 break; 835 case MVT::f64: 836 if (UnsupportedFPMode) 837 return false; 838 Opc = Mips::SDC1; 839 break; 840 default: 841 return false; 842 } 843 if (Addr.isRegBase()) { 844 simplifyAddress(Addr); 845 emitInstStore(Opc, SrcReg, Addr.getReg(), Addr.getOffset()); 846 return true; 847 } 848 if (Addr.isFIBase()) { 849 unsigned FI = Addr.getFI(); 850 unsigned Align = 4; 851 int64_t Offset = Addr.getOffset(); 852 MachineFrameInfo &MFI = MF->getFrameInfo(); 853 MachineMemOperand *MMO = MF->getMachineMemOperand( 854 MachinePointerInfo::getFixedStack(*MF, FI), MachineMemOperand::MOStore, 855 MFI.getObjectSize(FI), Align); 856 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc)) 857 .addReg(SrcReg) 858 .addFrameIndex(FI) 859 .addImm(Offset) 860 .addMemOperand(MMO); 861 return true; 862 } 863 return false; 864 } 865 866 bool MipsFastISel::selectLogicalOp(const Instruction *I) { 867 MVT VT; 868 if (!isTypeSupported(I->getType(), VT)) 869 return false; 870 871 unsigned ResultReg; 872 switch (I->getOpcode()) { 873 default: 874 llvm_unreachable("Unexpected instruction."); 875 case Instruction::And: 876 ResultReg = emitLogicalOp(ISD::AND, VT, I->getOperand(0), I->getOperand(1)); 877 break; 878 case Instruction::Or: 879 ResultReg = emitLogicalOp(ISD::OR, VT, I->getOperand(0), I->getOperand(1)); 880 break; 881 case Instruction::Xor: 882 ResultReg = emitLogicalOp(ISD::XOR, VT, I->getOperand(0), I->getOperand(1)); 883 break; 884 } 885 886 if (!ResultReg) 887 return false; 888 889 updateValueMap(I, ResultReg); 890 return true; 891 } 892 893 bool MipsFastISel::selectLoad(const Instruction *I) { 894 // Atomic loads need special handling. 895 if (cast<LoadInst>(I)->isAtomic()) 896 return false; 897 898 // Verify we have a legal type before going any further. 899 MVT VT; 900 if (!isLoadTypeLegal(I->getType(), VT)) 901 return false; 902 903 // See if we can handle this address. 904 Address Addr; 905 if (!computeAddress(I->getOperand(0), Addr)) 906 return false; 907 908 unsigned ResultReg; 909 if (!emitLoad(VT, ResultReg, Addr, cast<LoadInst>(I)->getAlignment())) 910 return false; 911 updateValueMap(I, ResultReg); 912 return true; 913 } 914 915 bool MipsFastISel::selectStore(const Instruction *I) { 916 Value *Op0 = I->getOperand(0); 917 unsigned SrcReg = 0; 918 919 // Atomic stores need special handling. 920 if (cast<StoreInst>(I)->isAtomic()) 921 return false; 922 923 // Verify we have a legal type before going any further. 924 MVT VT; 925 if (!isLoadTypeLegal(I->getOperand(0)->getType(), VT)) 926 return false; 927 928 // Get the value to be stored into a register. 929 SrcReg = getRegForValue(Op0); 930 if (SrcReg == 0) 931 return false; 932 933 // See if we can handle this address. 934 Address Addr; 935 if (!computeAddress(I->getOperand(1), Addr)) 936 return false; 937 938 if (!emitStore(VT, SrcReg, Addr, cast<StoreInst>(I)->getAlignment())) 939 return false; 940 return true; 941 } 942 943 // This can cause a redundant sltiu to be generated. 944 // FIXME: try and eliminate this in a future patch. 945 bool MipsFastISel::selectBranch(const Instruction *I) { 946 const BranchInst *BI = cast<BranchInst>(I); 947 MachineBasicBlock *BrBB = FuncInfo.MBB; 948 // 949 // TBB is the basic block for the case where the comparison is true. 950 // FBB is the basic block for the case where the comparison is false. 951 // if (cond) goto TBB 952 // goto FBB 953 // TBB: 954 // 955 MachineBasicBlock *TBB = FuncInfo.MBBMap[BI->getSuccessor(0)]; 956 MachineBasicBlock *FBB = FuncInfo.MBBMap[BI->getSuccessor(1)]; 957 958 // Fold the common case of a conditional branch with a comparison 959 // in the same block. 960 unsigned ZExtCondReg = 0; 961 if (const CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition())) { 962 if (CI->hasOneUse() && CI->getParent() == I->getParent()) { 963 ZExtCondReg = createResultReg(&Mips::GPR32RegClass); 964 if (!emitCmp(ZExtCondReg, CI)) 965 return false; 966 } 967 } 968 969 // For the general case, we need to mask with 1. 970 if (ZExtCondReg == 0) { 971 unsigned CondReg = getRegForValue(BI->getCondition()); 972 if (CondReg == 0) 973 return false; 974 975 ZExtCondReg = emitIntExt(MVT::i1, CondReg, MVT::i32, true); 976 if (ZExtCondReg == 0) 977 return false; 978 } 979 980 BuildMI(*BrBB, FuncInfo.InsertPt, DbgLoc, TII.get(Mips::BGTZ)) 981 .addReg(ZExtCondReg) 982 .addMBB(TBB); 983 finishCondBranch(BI->getParent(), TBB, FBB); 984 return true; 985 } 986 987 bool MipsFastISel::selectCmp(const Instruction *I) { 988 const CmpInst *CI = cast<CmpInst>(I); 989 unsigned ResultReg = createResultReg(&Mips::GPR32RegClass); 990 if (!emitCmp(ResultReg, CI)) 991 return false; 992 updateValueMap(I, ResultReg); 993 return true; 994 } 995 996 // Attempt to fast-select a floating-point extend instruction. 997 bool MipsFastISel::selectFPExt(const Instruction *I) { 998 if (UnsupportedFPMode) 999 return false; 1000 Value *Src = I->getOperand(0); 1001 EVT SrcVT = TLI.getValueType(DL, Src->getType(), true); 1002 EVT DestVT = TLI.getValueType(DL, I->getType(), true); 1003 1004 if (SrcVT != MVT::f32 || DestVT != MVT::f64) 1005 return false; 1006 1007 unsigned SrcReg = 1008 getRegForValue(Src); // this must be a 32bit floating point register class 1009 // maybe we should handle this differently 1010 if (!SrcReg) 1011 return false; 1012 1013 unsigned DestReg = createResultReg(&Mips::AFGR64RegClass); 1014 emitInst(Mips::CVT_D32_S, DestReg).addReg(SrcReg); 1015 updateValueMap(I, DestReg); 1016 return true; 1017 } 1018 1019 bool MipsFastISel::selectSelect(const Instruction *I) { 1020 assert(isa<SelectInst>(I) && "Expected a select instruction."); 1021 1022 LLVM_DEBUG(dbgs() << "selectSelect\n"); 1023 1024 MVT VT; 1025 if (!isTypeSupported(I->getType(), VT) || UnsupportedFPMode) { 1026 LLVM_DEBUG( 1027 dbgs() << ".. .. gave up (!isTypeSupported || UnsupportedFPMode)\n"); 1028 return false; 1029 } 1030 1031 unsigned CondMovOpc; 1032 const TargetRegisterClass *RC; 1033 1034 if (VT.isInteger() && !VT.isVector() && VT.getSizeInBits() <= 32) { 1035 CondMovOpc = Mips::MOVN_I_I; 1036 RC = &Mips::GPR32RegClass; 1037 } else if (VT == MVT::f32) { 1038 CondMovOpc = Mips::MOVN_I_S; 1039 RC = &Mips::FGR32RegClass; 1040 } else if (VT == MVT::f64) { 1041 CondMovOpc = Mips::MOVN_I_D32; 1042 RC = &Mips::AFGR64RegClass; 1043 } else 1044 return false; 1045 1046 const SelectInst *SI = cast<SelectInst>(I); 1047 const Value *Cond = SI->getCondition(); 1048 unsigned Src1Reg = getRegForValue(SI->getTrueValue()); 1049 unsigned Src2Reg = getRegForValue(SI->getFalseValue()); 1050 unsigned CondReg = getRegForValue(Cond); 1051 1052 if (!Src1Reg || !Src2Reg || !CondReg) 1053 return false; 1054 1055 unsigned ZExtCondReg = createResultReg(&Mips::GPR32RegClass); 1056 if (!ZExtCondReg) 1057 return false; 1058 1059 if (!emitIntExt(MVT::i1, CondReg, MVT::i32, ZExtCondReg, true)) 1060 return false; 1061 1062 unsigned ResultReg = createResultReg(RC); 1063 unsigned TempReg = createResultReg(RC); 1064 1065 if (!ResultReg || !TempReg) 1066 return false; 1067 1068 emitInst(TargetOpcode::COPY, TempReg).addReg(Src2Reg); 1069 emitInst(CondMovOpc, ResultReg) 1070 .addReg(Src1Reg).addReg(ZExtCondReg).addReg(TempReg); 1071 updateValueMap(I, ResultReg); 1072 return true; 1073 } 1074 1075 // Attempt to fast-select a floating-point truncate instruction. 1076 bool MipsFastISel::selectFPTrunc(const Instruction *I) { 1077 if (UnsupportedFPMode) 1078 return false; 1079 Value *Src = I->getOperand(0); 1080 EVT SrcVT = TLI.getValueType(DL, Src->getType(), true); 1081 EVT DestVT = TLI.getValueType(DL, I->getType(), true); 1082 1083 if (SrcVT != MVT::f64 || DestVT != MVT::f32) 1084 return false; 1085 1086 unsigned SrcReg = getRegForValue(Src); 1087 if (!SrcReg) 1088 return false; 1089 1090 unsigned DestReg = createResultReg(&Mips::FGR32RegClass); 1091 if (!DestReg) 1092 return false; 1093 1094 emitInst(Mips::CVT_S_D32, DestReg).addReg(SrcReg); 1095 updateValueMap(I, DestReg); 1096 return true; 1097 } 1098 1099 // Attempt to fast-select a floating-point-to-integer conversion. 1100 bool MipsFastISel::selectFPToInt(const Instruction *I, bool IsSigned) { 1101 if (UnsupportedFPMode) 1102 return false; 1103 MVT DstVT, SrcVT; 1104 if (!IsSigned) 1105 return false; // We don't handle this case yet. There is no native 1106 // instruction for this but it can be synthesized. 1107 Type *DstTy = I->getType(); 1108 if (!isTypeLegal(DstTy, DstVT)) 1109 return false; 1110 1111 if (DstVT != MVT::i32) 1112 return false; 1113 1114 Value *Src = I->getOperand(0); 1115 Type *SrcTy = Src->getType(); 1116 if (!isTypeLegal(SrcTy, SrcVT)) 1117 return false; 1118 1119 if (SrcVT != MVT::f32 && SrcVT != MVT::f64) 1120 return false; 1121 1122 unsigned SrcReg = getRegForValue(Src); 1123 if (SrcReg == 0) 1124 return false; 1125 1126 // Determine the opcode for the conversion, which takes place 1127 // entirely within FPRs. 1128 unsigned DestReg = createResultReg(&Mips::GPR32RegClass); 1129 unsigned TempReg = createResultReg(&Mips::FGR32RegClass); 1130 unsigned Opc = (SrcVT == MVT::f32) ? Mips::TRUNC_W_S : Mips::TRUNC_W_D32; 1131 1132 // Generate the convert. 1133 emitInst(Opc, TempReg).addReg(SrcReg); 1134 emitInst(Mips::MFC1, DestReg).addReg(TempReg); 1135 1136 updateValueMap(I, DestReg); 1137 return true; 1138 } 1139 1140 bool MipsFastISel::processCallArgs(CallLoweringInfo &CLI, 1141 SmallVectorImpl<MVT> &OutVTs, 1142 unsigned &NumBytes) { 1143 CallingConv::ID CC = CLI.CallConv; 1144 SmallVector<CCValAssign, 16> ArgLocs; 1145 CCState CCInfo(CC, false, *FuncInfo.MF, ArgLocs, *Context); 1146 CCInfo.AnalyzeCallOperands(OutVTs, CLI.OutFlags, CCAssignFnForCall(CC)); 1147 // Get a count of how many bytes are to be pushed on the stack. 1148 NumBytes = CCInfo.getNextStackOffset(); 1149 // This is the minimum argument area used for A0-A3. 1150 if (NumBytes < 16) 1151 NumBytes = 16; 1152 1153 emitInst(Mips::ADJCALLSTACKDOWN).addImm(16).addImm(0); 1154 // Process the args. 1155 MVT firstMVT; 1156 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 1157 CCValAssign &VA = ArgLocs[i]; 1158 const Value *ArgVal = CLI.OutVals[VA.getValNo()]; 1159 MVT ArgVT = OutVTs[VA.getValNo()]; 1160 1161 if (i == 0) { 1162 firstMVT = ArgVT; 1163 if (ArgVT == MVT::f32) { 1164 VA.convertToReg(Mips::F12); 1165 } else if (ArgVT == MVT::f64) { 1166 VA.convertToReg(Mips::D6); 1167 } 1168 } else if (i == 1) { 1169 if ((firstMVT == MVT::f32) || (firstMVT == MVT::f64)) { 1170 if (ArgVT == MVT::f32) { 1171 VA.convertToReg(Mips::F14); 1172 } else if (ArgVT == MVT::f64) { 1173 VA.convertToReg(Mips::D7); 1174 } 1175 } 1176 } 1177 if (((ArgVT == MVT::i32) || (ArgVT == MVT::f32) || (ArgVT == MVT::i16) || 1178 (ArgVT == MVT::i8)) && 1179 VA.isMemLoc()) { 1180 switch (VA.getLocMemOffset()) { 1181 case 0: 1182 VA.convertToReg(Mips::A0); 1183 break; 1184 case 4: 1185 VA.convertToReg(Mips::A1); 1186 break; 1187 case 8: 1188 VA.convertToReg(Mips::A2); 1189 break; 1190 case 12: 1191 VA.convertToReg(Mips::A3); 1192 break; 1193 default: 1194 break; 1195 } 1196 } 1197 unsigned ArgReg = getRegForValue(ArgVal); 1198 if (!ArgReg) 1199 return false; 1200 1201 // Handle arg promotion: SExt, ZExt, AExt. 1202 switch (VA.getLocInfo()) { 1203 case CCValAssign::Full: 1204 break; 1205 case CCValAssign::AExt: 1206 case CCValAssign::SExt: { 1207 MVT DestVT = VA.getLocVT(); 1208 MVT SrcVT = ArgVT; 1209 ArgReg = emitIntExt(SrcVT, ArgReg, DestVT, /*isZExt=*/false); 1210 if (!ArgReg) 1211 return false; 1212 break; 1213 } 1214 case CCValAssign::ZExt: { 1215 MVT DestVT = VA.getLocVT(); 1216 MVT SrcVT = ArgVT; 1217 ArgReg = emitIntExt(SrcVT, ArgReg, DestVT, /*isZExt=*/true); 1218 if (!ArgReg) 1219 return false; 1220 break; 1221 } 1222 default: 1223 llvm_unreachable("Unknown arg promotion!"); 1224 } 1225 1226 // Now copy/store arg to correct locations. 1227 if (VA.isRegLoc() && !VA.needsCustom()) { 1228 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1229 TII.get(TargetOpcode::COPY), VA.getLocReg()).addReg(ArgReg); 1230 CLI.OutRegs.push_back(VA.getLocReg()); 1231 } else if (VA.needsCustom()) { 1232 llvm_unreachable("Mips does not use custom args."); 1233 return false; 1234 } else { 1235 // 1236 // FIXME: This path will currently return false. It was copied 1237 // from the AArch64 port and should be essentially fine for Mips too. 1238 // The work to finish up this path will be done in a follow-on patch. 1239 // 1240 assert(VA.isMemLoc() && "Assuming store on stack."); 1241 // Don't emit stores for undef values. 1242 if (isa<UndefValue>(ArgVal)) 1243 continue; 1244 1245 // Need to store on the stack. 1246 // FIXME: This alignment is incorrect but this path is disabled 1247 // for now (will return false). We need to determine the right alignment 1248 // based on the normal alignment for the underlying machine type. 1249 // 1250 unsigned ArgSize = alignTo(ArgVT.getSizeInBits(), 4); 1251 1252 unsigned BEAlign = 0; 1253 if (ArgSize < 8 && !Subtarget->isLittle()) 1254 BEAlign = 8 - ArgSize; 1255 1256 Address Addr; 1257 Addr.setKind(Address::RegBase); 1258 Addr.setReg(Mips::SP); 1259 Addr.setOffset(VA.getLocMemOffset() + BEAlign); 1260 1261 unsigned Alignment = DL.getABITypeAlignment(ArgVal->getType()); 1262 MachineMemOperand *MMO = FuncInfo.MF->getMachineMemOperand( 1263 MachinePointerInfo::getStack(*FuncInfo.MF, Addr.getOffset()), 1264 MachineMemOperand::MOStore, ArgVT.getStoreSize(), Alignment); 1265 (void)(MMO); 1266 // if (!emitStore(ArgVT, ArgReg, Addr, MMO)) 1267 return false; // can't store on the stack yet. 1268 } 1269 } 1270 1271 return true; 1272 } 1273 1274 bool MipsFastISel::finishCall(CallLoweringInfo &CLI, MVT RetVT, 1275 unsigned NumBytes) { 1276 CallingConv::ID CC = CLI.CallConv; 1277 emitInst(Mips::ADJCALLSTACKUP).addImm(16).addImm(0); 1278 if (RetVT != MVT::isVoid) { 1279 SmallVector<CCValAssign, 16> RVLocs; 1280 MipsCCState CCInfo(CC, false, *FuncInfo.MF, RVLocs, *Context); 1281 1282 CCInfo.AnalyzeCallResult(CLI.Ins, RetCC_Mips, CLI.RetTy, 1283 CLI.Symbol ? CLI.Symbol->getName().data() 1284 : nullptr); 1285 1286 // Only handle a single return value. 1287 if (RVLocs.size() != 1) 1288 return false; 1289 // Copy all of the result registers out of their specified physreg. 1290 MVT CopyVT = RVLocs[0].getValVT(); 1291 // Special handling for extended integers. 1292 if (RetVT == MVT::i1 || RetVT == MVT::i8 || RetVT == MVT::i16) 1293 CopyVT = MVT::i32; 1294 1295 unsigned ResultReg = createResultReg(TLI.getRegClassFor(CopyVT)); 1296 if (!ResultReg) 1297 return false; 1298 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1299 TII.get(TargetOpcode::COPY), 1300 ResultReg).addReg(RVLocs[0].getLocReg()); 1301 CLI.InRegs.push_back(RVLocs[0].getLocReg()); 1302 1303 CLI.ResultReg = ResultReg; 1304 CLI.NumResultRegs = 1; 1305 } 1306 return true; 1307 } 1308 1309 bool MipsFastISel::fastLowerArguments() { 1310 LLVM_DEBUG(dbgs() << "fastLowerArguments\n"); 1311 1312 if (!FuncInfo.CanLowerReturn) { 1313 LLVM_DEBUG(dbgs() << ".. gave up (!CanLowerReturn)\n"); 1314 return false; 1315 } 1316 1317 const Function *F = FuncInfo.Fn; 1318 if (F->isVarArg()) { 1319 LLVM_DEBUG(dbgs() << ".. gave up (varargs)\n"); 1320 return false; 1321 } 1322 1323 CallingConv::ID CC = F->getCallingConv(); 1324 if (CC != CallingConv::C) { 1325 LLVM_DEBUG(dbgs() << ".. gave up (calling convention is not C)\n"); 1326 return false; 1327 } 1328 1329 std::array<MCPhysReg, 4> GPR32ArgRegs = {{Mips::A0, Mips::A1, Mips::A2, 1330 Mips::A3}}; 1331 std::array<MCPhysReg, 2> FGR32ArgRegs = {{Mips::F12, Mips::F14}}; 1332 std::array<MCPhysReg, 2> AFGR64ArgRegs = {{Mips::D6, Mips::D7}}; 1333 auto NextGPR32 = GPR32ArgRegs.begin(); 1334 auto NextFGR32 = FGR32ArgRegs.begin(); 1335 auto NextAFGR64 = AFGR64ArgRegs.begin(); 1336 1337 struct AllocatedReg { 1338 const TargetRegisterClass *RC; 1339 unsigned Reg; 1340 AllocatedReg(const TargetRegisterClass *RC, unsigned Reg) 1341 : RC(RC), Reg(Reg) {} 1342 }; 1343 1344 // Only handle simple cases. i.e. All arguments are directly mapped to 1345 // registers of the appropriate type. 1346 SmallVector<AllocatedReg, 4> Allocation; 1347 for (const auto &FormalArg : F->args()) { 1348 if (FormalArg.hasAttribute(Attribute::InReg) || 1349 FormalArg.hasAttribute(Attribute::StructRet) || 1350 FormalArg.hasAttribute(Attribute::ByVal)) { 1351 LLVM_DEBUG(dbgs() << ".. gave up (inreg, structret, byval)\n"); 1352 return false; 1353 } 1354 1355 Type *ArgTy = FormalArg.getType(); 1356 if (ArgTy->isStructTy() || ArgTy->isArrayTy() || ArgTy->isVectorTy()) { 1357 LLVM_DEBUG(dbgs() << ".. gave up (struct, array, or vector)\n"); 1358 return false; 1359 } 1360 1361 EVT ArgVT = TLI.getValueType(DL, ArgTy); 1362 LLVM_DEBUG(dbgs() << ".. " << FormalArg.getArgNo() << ": " 1363 << ArgVT.getEVTString() << "\n"); 1364 if (!ArgVT.isSimple()) { 1365 LLVM_DEBUG(dbgs() << ".. .. gave up (not a simple type)\n"); 1366 return false; 1367 } 1368 1369 switch (ArgVT.getSimpleVT().SimpleTy) { 1370 case MVT::i1: 1371 case MVT::i8: 1372 case MVT::i16: 1373 if (!FormalArg.hasAttribute(Attribute::SExt) && 1374 !FormalArg.hasAttribute(Attribute::ZExt)) { 1375 // It must be any extend, this shouldn't happen for clang-generated IR 1376 // so just fall back on SelectionDAG. 1377 LLVM_DEBUG(dbgs() << ".. .. gave up (i8/i16 arg is not extended)\n"); 1378 return false; 1379 } 1380 1381 if (NextGPR32 == GPR32ArgRegs.end()) { 1382 LLVM_DEBUG(dbgs() << ".. .. gave up (ran out of GPR32 arguments)\n"); 1383 return false; 1384 } 1385 1386 LLVM_DEBUG(dbgs() << ".. .. GPR32(" << *NextGPR32 << ")\n"); 1387 Allocation.emplace_back(&Mips::GPR32RegClass, *NextGPR32++); 1388 1389 // Allocating any GPR32 prohibits further use of floating point arguments. 1390 NextFGR32 = FGR32ArgRegs.end(); 1391 NextAFGR64 = AFGR64ArgRegs.end(); 1392 break; 1393 1394 case MVT::i32: 1395 if (FormalArg.hasAttribute(Attribute::ZExt)) { 1396 // The O32 ABI does not permit a zero-extended i32. 1397 LLVM_DEBUG(dbgs() << ".. .. gave up (i32 arg is zero extended)\n"); 1398 return false; 1399 } 1400 1401 if (NextGPR32 == GPR32ArgRegs.end()) { 1402 LLVM_DEBUG(dbgs() << ".. .. gave up (ran out of GPR32 arguments)\n"); 1403 return false; 1404 } 1405 1406 LLVM_DEBUG(dbgs() << ".. .. GPR32(" << *NextGPR32 << ")\n"); 1407 Allocation.emplace_back(&Mips::GPR32RegClass, *NextGPR32++); 1408 1409 // Allocating any GPR32 prohibits further use of floating point arguments. 1410 NextFGR32 = FGR32ArgRegs.end(); 1411 NextAFGR64 = AFGR64ArgRegs.end(); 1412 break; 1413 1414 case MVT::f32: 1415 if (UnsupportedFPMode) { 1416 LLVM_DEBUG(dbgs() << ".. .. gave up (UnsupportedFPMode)\n"); 1417 return false; 1418 } 1419 if (NextFGR32 == FGR32ArgRegs.end()) { 1420 LLVM_DEBUG(dbgs() << ".. .. gave up (ran out of FGR32 arguments)\n"); 1421 return false; 1422 } 1423 LLVM_DEBUG(dbgs() << ".. .. FGR32(" << *NextFGR32 << ")\n"); 1424 Allocation.emplace_back(&Mips::FGR32RegClass, *NextFGR32++); 1425 // Allocating an FGR32 also allocates the super-register AFGR64, and 1426 // ABI rules require us to skip the corresponding GPR32. 1427 if (NextGPR32 != GPR32ArgRegs.end()) 1428 NextGPR32++; 1429 if (NextAFGR64 != AFGR64ArgRegs.end()) 1430 NextAFGR64++; 1431 break; 1432 1433 case MVT::f64: 1434 if (UnsupportedFPMode) { 1435 LLVM_DEBUG(dbgs() << ".. .. gave up (UnsupportedFPMode)\n"); 1436 return false; 1437 } 1438 if (NextAFGR64 == AFGR64ArgRegs.end()) { 1439 LLVM_DEBUG(dbgs() << ".. .. gave up (ran out of AFGR64 arguments)\n"); 1440 return false; 1441 } 1442 LLVM_DEBUG(dbgs() << ".. .. AFGR64(" << *NextAFGR64 << ")\n"); 1443 Allocation.emplace_back(&Mips::AFGR64RegClass, *NextAFGR64++); 1444 // Allocating an FGR32 also allocates the super-register AFGR64, and 1445 // ABI rules require us to skip the corresponding GPR32 pair. 1446 if (NextGPR32 != GPR32ArgRegs.end()) 1447 NextGPR32++; 1448 if (NextGPR32 != GPR32ArgRegs.end()) 1449 NextGPR32++; 1450 if (NextFGR32 != FGR32ArgRegs.end()) 1451 NextFGR32++; 1452 break; 1453 1454 default: 1455 LLVM_DEBUG(dbgs() << ".. .. gave up (unknown type)\n"); 1456 return false; 1457 } 1458 } 1459 1460 for (const auto &FormalArg : F->args()) { 1461 unsigned ArgNo = FormalArg.getArgNo(); 1462 unsigned SrcReg = Allocation[ArgNo].Reg; 1463 unsigned DstReg = FuncInfo.MF->addLiveIn(SrcReg, Allocation[ArgNo].RC); 1464 // FIXME: Unfortunately it's necessary to emit a copy from the livein copy. 1465 // Without this, EmitLiveInCopies may eliminate the livein if its only 1466 // use is a bitcast (which isn't turned into an instruction). 1467 unsigned ResultReg = createResultReg(Allocation[ArgNo].RC); 1468 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1469 TII.get(TargetOpcode::COPY), ResultReg) 1470 .addReg(DstReg, getKillRegState(true)); 1471 updateValueMap(&FormalArg, ResultReg); 1472 } 1473 1474 // Calculate the size of the incoming arguments area. 1475 // We currently reject all the cases where this would be non-zero. 1476 unsigned IncomingArgSizeInBytes = 0; 1477 1478 // Account for the reserved argument area on ABI's that have one (O32). 1479 // It seems strange to do this on the caller side but it's necessary in 1480 // SelectionDAG's implementation. 1481 IncomingArgSizeInBytes = std::min(getABI().GetCalleeAllocdArgSizeInBytes(CC), 1482 IncomingArgSizeInBytes); 1483 1484 MF->getInfo<MipsFunctionInfo>()->setFormalArgInfo(IncomingArgSizeInBytes, 1485 false); 1486 1487 return true; 1488 } 1489 1490 bool MipsFastISel::fastLowerCall(CallLoweringInfo &CLI) { 1491 CallingConv::ID CC = CLI.CallConv; 1492 bool IsTailCall = CLI.IsTailCall; 1493 bool IsVarArg = CLI.IsVarArg; 1494 const Value *Callee = CLI.Callee; 1495 MCSymbol *Symbol = CLI.Symbol; 1496 1497 // Do not handle FastCC. 1498 if (CC == CallingConv::Fast) 1499 return false; 1500 1501 // Allow SelectionDAG isel to handle tail calls. 1502 if (IsTailCall) 1503 return false; 1504 1505 // Let SDISel handle vararg functions. 1506 if (IsVarArg) 1507 return false; 1508 1509 // FIXME: Only handle *simple* calls for now. 1510 MVT RetVT; 1511 if (CLI.RetTy->isVoidTy()) 1512 RetVT = MVT::isVoid; 1513 else if (!isTypeSupported(CLI.RetTy, RetVT)) 1514 return false; 1515 1516 for (auto Flag : CLI.OutFlags) 1517 if (Flag.isInReg() || Flag.isSRet() || Flag.isNest() || Flag.isByVal()) 1518 return false; 1519 1520 // Set up the argument vectors. 1521 SmallVector<MVT, 16> OutVTs; 1522 OutVTs.reserve(CLI.OutVals.size()); 1523 1524 for (auto *Val : CLI.OutVals) { 1525 MVT VT; 1526 if (!isTypeLegal(Val->getType(), VT) && 1527 !(VT == MVT::i1 || VT == MVT::i8 || VT == MVT::i16)) 1528 return false; 1529 1530 // We don't handle vector parameters yet. 1531 if (VT.isVector() || VT.getSizeInBits() > 64) 1532 return false; 1533 1534 OutVTs.push_back(VT); 1535 } 1536 1537 Address Addr; 1538 if (!computeCallAddress(Callee, Addr)) 1539 return false; 1540 1541 // Handle the arguments now that we've gotten them. 1542 unsigned NumBytes; 1543 if (!processCallArgs(CLI, OutVTs, NumBytes)) 1544 return false; 1545 1546 if (!Addr.getGlobalValue()) 1547 return false; 1548 1549 // Issue the call. 1550 unsigned DestAddress; 1551 if (Symbol) 1552 DestAddress = materializeExternalCallSym(Symbol); 1553 else 1554 DestAddress = materializeGV(Addr.getGlobalValue(), MVT::i32); 1555 emitInst(TargetOpcode::COPY, Mips::T9).addReg(DestAddress); 1556 MachineInstrBuilder MIB = 1557 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Mips::JALR), 1558 Mips::RA).addReg(Mips::T9); 1559 1560 // Add implicit physical register uses to the call. 1561 for (auto Reg : CLI.OutRegs) 1562 MIB.addReg(Reg, RegState::Implicit); 1563 1564 // Add a register mask with the call-preserved registers. 1565 // Proper defs for return values will be added by setPhysRegsDeadExcept(). 1566 MIB.addRegMask(TRI.getCallPreservedMask(*FuncInfo.MF, CC)); 1567 1568 CLI.Call = MIB; 1569 1570 if (EmitJalrReloc && !Subtarget->inMips16Mode()) { 1571 // Attach callee address to the instruction, let asm printer emit 1572 // .reloc R_MIPS_JALR. 1573 if (Symbol) 1574 MIB.addSym(Symbol, MipsII::MO_JALR); 1575 else 1576 MIB.addSym(FuncInfo.MF->getContext().getOrCreateSymbol( 1577 Addr.getGlobalValue()->getName()), MipsII::MO_JALR); 1578 } 1579 1580 // Finish off the call including any return values. 1581 return finishCall(CLI, RetVT, NumBytes); 1582 } 1583 1584 bool MipsFastISel::fastLowerIntrinsicCall(const IntrinsicInst *II) { 1585 switch (II->getIntrinsicID()) { 1586 default: 1587 return false; 1588 case Intrinsic::bswap: { 1589 Type *RetTy = II->getCalledFunction()->getReturnType(); 1590 1591 MVT VT; 1592 if (!isTypeSupported(RetTy, VT)) 1593 return false; 1594 1595 unsigned SrcReg = getRegForValue(II->getOperand(0)); 1596 if (SrcReg == 0) 1597 return false; 1598 unsigned DestReg = createResultReg(&Mips::GPR32RegClass); 1599 if (DestReg == 0) 1600 return false; 1601 if (VT == MVT::i16) { 1602 if (Subtarget->hasMips32r2()) { 1603 emitInst(Mips::WSBH, DestReg).addReg(SrcReg); 1604 updateValueMap(II, DestReg); 1605 return true; 1606 } else { 1607 unsigned TempReg[3]; 1608 for (int i = 0; i < 3; i++) { 1609 TempReg[i] = createResultReg(&Mips::GPR32RegClass); 1610 if (TempReg[i] == 0) 1611 return false; 1612 } 1613 emitInst(Mips::SLL, TempReg[0]).addReg(SrcReg).addImm(8); 1614 emitInst(Mips::SRL, TempReg[1]).addReg(SrcReg).addImm(8); 1615 emitInst(Mips::OR, TempReg[2]).addReg(TempReg[0]).addReg(TempReg[1]); 1616 emitInst(Mips::ANDi, DestReg).addReg(TempReg[2]).addImm(0xFFFF); 1617 updateValueMap(II, DestReg); 1618 return true; 1619 } 1620 } else if (VT == MVT::i32) { 1621 if (Subtarget->hasMips32r2()) { 1622 unsigned TempReg = createResultReg(&Mips::GPR32RegClass); 1623 emitInst(Mips::WSBH, TempReg).addReg(SrcReg); 1624 emitInst(Mips::ROTR, DestReg).addReg(TempReg).addImm(16); 1625 updateValueMap(II, DestReg); 1626 return true; 1627 } else { 1628 unsigned TempReg[8]; 1629 for (int i = 0; i < 8; i++) { 1630 TempReg[i] = createResultReg(&Mips::GPR32RegClass); 1631 if (TempReg[i] == 0) 1632 return false; 1633 } 1634 1635 emitInst(Mips::SRL, TempReg[0]).addReg(SrcReg).addImm(8); 1636 emitInst(Mips::SRL, TempReg[1]).addReg(SrcReg).addImm(24); 1637 emitInst(Mips::ANDi, TempReg[2]).addReg(TempReg[0]).addImm(0xFF00); 1638 emitInst(Mips::OR, TempReg[3]).addReg(TempReg[1]).addReg(TempReg[2]); 1639 1640 emitInst(Mips::ANDi, TempReg[4]).addReg(SrcReg).addImm(0xFF00); 1641 emitInst(Mips::SLL, TempReg[5]).addReg(TempReg[4]).addImm(8); 1642 1643 emitInst(Mips::SLL, TempReg[6]).addReg(SrcReg).addImm(24); 1644 emitInst(Mips::OR, TempReg[7]).addReg(TempReg[3]).addReg(TempReg[5]); 1645 emitInst(Mips::OR, DestReg).addReg(TempReg[6]).addReg(TempReg[7]); 1646 updateValueMap(II, DestReg); 1647 return true; 1648 } 1649 } 1650 return false; 1651 } 1652 case Intrinsic::memcpy: 1653 case Intrinsic::memmove: { 1654 const auto *MTI = cast<MemTransferInst>(II); 1655 // Don't handle volatile. 1656 if (MTI->isVolatile()) 1657 return false; 1658 if (!MTI->getLength()->getType()->isIntegerTy(32)) 1659 return false; 1660 const char *IntrMemName = isa<MemCpyInst>(II) ? "memcpy" : "memmove"; 1661 return lowerCallTo(II, IntrMemName, II->getNumArgOperands() - 1); 1662 } 1663 case Intrinsic::memset: { 1664 const MemSetInst *MSI = cast<MemSetInst>(II); 1665 // Don't handle volatile. 1666 if (MSI->isVolatile()) 1667 return false; 1668 if (!MSI->getLength()->getType()->isIntegerTy(32)) 1669 return false; 1670 return lowerCallTo(II, "memset", II->getNumArgOperands() - 1); 1671 } 1672 } 1673 return false; 1674 } 1675 1676 bool MipsFastISel::selectRet(const Instruction *I) { 1677 const Function &F = *I->getParent()->getParent(); 1678 const ReturnInst *Ret = cast<ReturnInst>(I); 1679 1680 LLVM_DEBUG(dbgs() << "selectRet\n"); 1681 1682 if (!FuncInfo.CanLowerReturn) 1683 return false; 1684 1685 // Build a list of return value registers. 1686 SmallVector<unsigned, 4> RetRegs; 1687 1688 if (Ret->getNumOperands() > 0) { 1689 CallingConv::ID CC = F.getCallingConv(); 1690 1691 // Do not handle FastCC. 1692 if (CC == CallingConv::Fast) 1693 return false; 1694 1695 SmallVector<ISD::OutputArg, 4> Outs; 1696 GetReturnInfo(CC, F.getReturnType(), F.getAttributes(), Outs, TLI, DL); 1697 1698 // Analyze operands of the call, assigning locations to each operand. 1699 SmallVector<CCValAssign, 16> ValLocs; 1700 MipsCCState CCInfo(CC, F.isVarArg(), *FuncInfo.MF, ValLocs, 1701 I->getContext()); 1702 CCAssignFn *RetCC = RetCC_Mips; 1703 CCInfo.AnalyzeReturn(Outs, RetCC); 1704 1705 // Only handle a single return value for now. 1706 if (ValLocs.size() != 1) 1707 return false; 1708 1709 CCValAssign &VA = ValLocs[0]; 1710 const Value *RV = Ret->getOperand(0); 1711 1712 // Don't bother handling odd stuff for now. 1713 if ((VA.getLocInfo() != CCValAssign::Full) && 1714 (VA.getLocInfo() != CCValAssign::BCvt)) 1715 return false; 1716 1717 // Only handle register returns for now. 1718 if (!VA.isRegLoc()) 1719 return false; 1720 1721 unsigned Reg = getRegForValue(RV); 1722 if (Reg == 0) 1723 return false; 1724 1725 unsigned SrcReg = Reg + VA.getValNo(); 1726 unsigned DestReg = VA.getLocReg(); 1727 // Avoid a cross-class copy. This is very unlikely. 1728 if (!MRI.getRegClass(SrcReg)->contains(DestReg)) 1729 return false; 1730 1731 EVT RVEVT = TLI.getValueType(DL, RV->getType()); 1732 if (!RVEVT.isSimple()) 1733 return false; 1734 1735 if (RVEVT.isVector()) 1736 return false; 1737 1738 MVT RVVT = RVEVT.getSimpleVT(); 1739 if (RVVT == MVT::f128) 1740 return false; 1741 1742 // Do not handle FGR64 returns for now. 1743 if (RVVT == MVT::f64 && UnsupportedFPMode) { 1744 LLVM_DEBUG(dbgs() << ".. .. gave up (UnsupportedFPMode\n"); 1745 return false; 1746 } 1747 1748 MVT DestVT = VA.getValVT(); 1749 // Special handling for extended integers. 1750 if (RVVT != DestVT) { 1751 if (RVVT != MVT::i1 && RVVT != MVT::i8 && RVVT != MVT::i16) 1752 return false; 1753 1754 if (Outs[0].Flags.isZExt() || Outs[0].Flags.isSExt()) { 1755 bool IsZExt = Outs[0].Flags.isZExt(); 1756 SrcReg = emitIntExt(RVVT, SrcReg, DestVT, IsZExt); 1757 if (SrcReg == 0) 1758 return false; 1759 } 1760 } 1761 1762 // Make the copy. 1763 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1764 TII.get(TargetOpcode::COPY), DestReg).addReg(SrcReg); 1765 1766 // Add register to return instruction. 1767 RetRegs.push_back(VA.getLocReg()); 1768 } 1769 MachineInstrBuilder MIB = emitInst(Mips::RetRA); 1770 for (unsigned i = 0, e = RetRegs.size(); i != e; ++i) 1771 MIB.addReg(RetRegs[i], RegState::Implicit); 1772 return true; 1773 } 1774 1775 bool MipsFastISel::selectTrunc(const Instruction *I) { 1776 // The high bits for a type smaller than the register size are assumed to be 1777 // undefined. 1778 Value *Op = I->getOperand(0); 1779 1780 EVT SrcVT, DestVT; 1781 SrcVT = TLI.getValueType(DL, Op->getType(), true); 1782 DestVT = TLI.getValueType(DL, I->getType(), true); 1783 1784 if (SrcVT != MVT::i32 && SrcVT != MVT::i16 && SrcVT != MVT::i8) 1785 return false; 1786 if (DestVT != MVT::i16 && DestVT != MVT::i8 && DestVT != MVT::i1) 1787 return false; 1788 1789 unsigned SrcReg = getRegForValue(Op); 1790 if (!SrcReg) 1791 return false; 1792 1793 // Because the high bits are undefined, a truncate doesn't generate 1794 // any code. 1795 updateValueMap(I, SrcReg); 1796 return true; 1797 } 1798 1799 bool MipsFastISel::selectIntExt(const Instruction *I) { 1800 Type *DestTy = I->getType(); 1801 Value *Src = I->getOperand(0); 1802 Type *SrcTy = Src->getType(); 1803 1804 bool isZExt = isa<ZExtInst>(I); 1805 unsigned SrcReg = getRegForValue(Src); 1806 if (!SrcReg) 1807 return false; 1808 1809 EVT SrcEVT, DestEVT; 1810 SrcEVT = TLI.getValueType(DL, SrcTy, true); 1811 DestEVT = TLI.getValueType(DL, DestTy, true); 1812 if (!SrcEVT.isSimple()) 1813 return false; 1814 if (!DestEVT.isSimple()) 1815 return false; 1816 1817 MVT SrcVT = SrcEVT.getSimpleVT(); 1818 MVT DestVT = DestEVT.getSimpleVT(); 1819 unsigned ResultReg = createResultReg(&Mips::GPR32RegClass); 1820 1821 if (!emitIntExt(SrcVT, SrcReg, DestVT, ResultReg, isZExt)) 1822 return false; 1823 updateValueMap(I, ResultReg); 1824 return true; 1825 } 1826 1827 bool MipsFastISel::emitIntSExt32r1(MVT SrcVT, unsigned SrcReg, MVT DestVT, 1828 unsigned DestReg) { 1829 unsigned ShiftAmt; 1830 switch (SrcVT.SimpleTy) { 1831 default: 1832 return false; 1833 case MVT::i8: 1834 ShiftAmt = 24; 1835 break; 1836 case MVT::i16: 1837 ShiftAmt = 16; 1838 break; 1839 } 1840 unsigned TempReg = createResultReg(&Mips::GPR32RegClass); 1841 emitInst(Mips::SLL, TempReg).addReg(SrcReg).addImm(ShiftAmt); 1842 emitInst(Mips::SRA, DestReg).addReg(TempReg).addImm(ShiftAmt); 1843 return true; 1844 } 1845 1846 bool MipsFastISel::emitIntSExt32r2(MVT SrcVT, unsigned SrcReg, MVT DestVT, 1847 unsigned DestReg) { 1848 switch (SrcVT.SimpleTy) { 1849 default: 1850 return false; 1851 case MVT::i8: 1852 emitInst(Mips::SEB, DestReg).addReg(SrcReg); 1853 break; 1854 case MVT::i16: 1855 emitInst(Mips::SEH, DestReg).addReg(SrcReg); 1856 break; 1857 } 1858 return true; 1859 } 1860 1861 bool MipsFastISel::emitIntSExt(MVT SrcVT, unsigned SrcReg, MVT DestVT, 1862 unsigned DestReg) { 1863 if ((DestVT != MVT::i32) && (DestVT != MVT::i16)) 1864 return false; 1865 if (Subtarget->hasMips32r2()) 1866 return emitIntSExt32r2(SrcVT, SrcReg, DestVT, DestReg); 1867 return emitIntSExt32r1(SrcVT, SrcReg, DestVT, DestReg); 1868 } 1869 1870 bool MipsFastISel::emitIntZExt(MVT SrcVT, unsigned SrcReg, MVT DestVT, 1871 unsigned DestReg) { 1872 int64_t Imm; 1873 1874 switch (SrcVT.SimpleTy) { 1875 default: 1876 return false; 1877 case MVT::i1: 1878 Imm = 1; 1879 break; 1880 case MVT::i8: 1881 Imm = 0xff; 1882 break; 1883 case MVT::i16: 1884 Imm = 0xffff; 1885 break; 1886 } 1887 1888 emitInst(Mips::ANDi, DestReg).addReg(SrcReg).addImm(Imm); 1889 return true; 1890 } 1891 1892 bool MipsFastISel::emitIntExt(MVT SrcVT, unsigned SrcReg, MVT DestVT, 1893 unsigned DestReg, bool IsZExt) { 1894 // FastISel does not have plumbing to deal with extensions where the SrcVT or 1895 // DestVT are odd things, so test to make sure that they are both types we can 1896 // handle (i1/i8/i16/i32 for SrcVT and i8/i16/i32/i64 for DestVT), otherwise 1897 // bail out to SelectionDAG. 1898 if (((DestVT != MVT::i8) && (DestVT != MVT::i16) && (DestVT != MVT::i32)) || 1899 ((SrcVT != MVT::i1) && (SrcVT != MVT::i8) && (SrcVT != MVT::i16))) 1900 return false; 1901 if (IsZExt) 1902 return emitIntZExt(SrcVT, SrcReg, DestVT, DestReg); 1903 return emitIntSExt(SrcVT, SrcReg, DestVT, DestReg); 1904 } 1905 1906 unsigned MipsFastISel::emitIntExt(MVT SrcVT, unsigned SrcReg, MVT DestVT, 1907 bool isZExt) { 1908 unsigned DestReg = createResultReg(&Mips::GPR32RegClass); 1909 bool Success = emitIntExt(SrcVT, SrcReg, DestVT, DestReg, isZExt); 1910 return Success ? DestReg : 0; 1911 } 1912 1913 bool MipsFastISel::selectDivRem(const Instruction *I, unsigned ISDOpcode) { 1914 EVT DestEVT = TLI.getValueType(DL, I->getType(), true); 1915 if (!DestEVT.isSimple()) 1916 return false; 1917 1918 MVT DestVT = DestEVT.getSimpleVT(); 1919 if (DestVT != MVT::i32) 1920 return false; 1921 1922 unsigned DivOpc; 1923 switch (ISDOpcode) { 1924 default: 1925 return false; 1926 case ISD::SDIV: 1927 case ISD::SREM: 1928 DivOpc = Mips::SDIV; 1929 break; 1930 case ISD::UDIV: 1931 case ISD::UREM: 1932 DivOpc = Mips::UDIV; 1933 break; 1934 } 1935 1936 unsigned Src0Reg = getRegForValue(I->getOperand(0)); 1937 unsigned Src1Reg = getRegForValue(I->getOperand(1)); 1938 if (!Src0Reg || !Src1Reg) 1939 return false; 1940 1941 emitInst(DivOpc).addReg(Src0Reg).addReg(Src1Reg); 1942 emitInst(Mips::TEQ).addReg(Src1Reg).addReg(Mips::ZERO).addImm(7); 1943 1944 unsigned ResultReg = createResultReg(&Mips::GPR32RegClass); 1945 if (!ResultReg) 1946 return false; 1947 1948 unsigned MFOpc = (ISDOpcode == ISD::SREM || ISDOpcode == ISD::UREM) 1949 ? Mips::MFHI 1950 : Mips::MFLO; 1951 emitInst(MFOpc, ResultReg); 1952 1953 updateValueMap(I, ResultReg); 1954 return true; 1955 } 1956 1957 bool MipsFastISel::selectShift(const Instruction *I) { 1958 MVT RetVT; 1959 1960 if (!isTypeSupported(I->getType(), RetVT)) 1961 return false; 1962 1963 unsigned ResultReg = createResultReg(&Mips::GPR32RegClass); 1964 if (!ResultReg) 1965 return false; 1966 1967 unsigned Opcode = I->getOpcode(); 1968 const Value *Op0 = I->getOperand(0); 1969 unsigned Op0Reg = getRegForValue(Op0); 1970 if (!Op0Reg) 1971 return false; 1972 1973 // If AShr or LShr, then we need to make sure the operand0 is sign extended. 1974 if (Opcode == Instruction::AShr || Opcode == Instruction::LShr) { 1975 unsigned TempReg = createResultReg(&Mips::GPR32RegClass); 1976 if (!TempReg) 1977 return false; 1978 1979 MVT Op0MVT = TLI.getValueType(DL, Op0->getType(), true).getSimpleVT(); 1980 bool IsZExt = Opcode == Instruction::LShr; 1981 if (!emitIntExt(Op0MVT, Op0Reg, MVT::i32, TempReg, IsZExt)) 1982 return false; 1983 1984 Op0Reg = TempReg; 1985 } 1986 1987 if (const auto *C = dyn_cast<ConstantInt>(I->getOperand(1))) { 1988 uint64_t ShiftVal = C->getZExtValue(); 1989 1990 switch (Opcode) { 1991 default: 1992 llvm_unreachable("Unexpected instruction."); 1993 case Instruction::Shl: 1994 Opcode = Mips::SLL; 1995 break; 1996 case Instruction::AShr: 1997 Opcode = Mips::SRA; 1998 break; 1999 case Instruction::LShr: 2000 Opcode = Mips::SRL; 2001 break; 2002 } 2003 2004 emitInst(Opcode, ResultReg).addReg(Op0Reg).addImm(ShiftVal); 2005 updateValueMap(I, ResultReg); 2006 return true; 2007 } 2008 2009 unsigned Op1Reg = getRegForValue(I->getOperand(1)); 2010 if (!Op1Reg) 2011 return false; 2012 2013 switch (Opcode) { 2014 default: 2015 llvm_unreachable("Unexpected instruction."); 2016 case Instruction::Shl: 2017 Opcode = Mips::SLLV; 2018 break; 2019 case Instruction::AShr: 2020 Opcode = Mips::SRAV; 2021 break; 2022 case Instruction::LShr: 2023 Opcode = Mips::SRLV; 2024 break; 2025 } 2026 2027 emitInst(Opcode, ResultReg).addReg(Op0Reg).addReg(Op1Reg); 2028 updateValueMap(I, ResultReg); 2029 return true; 2030 } 2031 2032 bool MipsFastISel::fastSelectInstruction(const Instruction *I) { 2033 switch (I->getOpcode()) { 2034 default: 2035 break; 2036 case Instruction::Load: 2037 return selectLoad(I); 2038 case Instruction::Store: 2039 return selectStore(I); 2040 case Instruction::SDiv: 2041 if (!selectBinaryOp(I, ISD::SDIV)) 2042 return selectDivRem(I, ISD::SDIV); 2043 return true; 2044 case Instruction::UDiv: 2045 if (!selectBinaryOp(I, ISD::UDIV)) 2046 return selectDivRem(I, ISD::UDIV); 2047 return true; 2048 case Instruction::SRem: 2049 if (!selectBinaryOp(I, ISD::SREM)) 2050 return selectDivRem(I, ISD::SREM); 2051 return true; 2052 case Instruction::URem: 2053 if (!selectBinaryOp(I, ISD::UREM)) 2054 return selectDivRem(I, ISD::UREM); 2055 return true; 2056 case Instruction::Shl: 2057 case Instruction::LShr: 2058 case Instruction::AShr: 2059 return selectShift(I); 2060 case Instruction::And: 2061 case Instruction::Or: 2062 case Instruction::Xor: 2063 return selectLogicalOp(I); 2064 case Instruction::Br: 2065 return selectBranch(I); 2066 case Instruction::Ret: 2067 return selectRet(I); 2068 case Instruction::Trunc: 2069 return selectTrunc(I); 2070 case Instruction::ZExt: 2071 case Instruction::SExt: 2072 return selectIntExt(I); 2073 case Instruction::FPTrunc: 2074 return selectFPTrunc(I); 2075 case Instruction::FPExt: 2076 return selectFPExt(I); 2077 case Instruction::FPToSI: 2078 return selectFPToInt(I, /*isSigned*/ true); 2079 case Instruction::FPToUI: 2080 return selectFPToInt(I, /*isSigned*/ false); 2081 case Instruction::ICmp: 2082 case Instruction::FCmp: 2083 return selectCmp(I); 2084 case Instruction::Select: 2085 return selectSelect(I); 2086 } 2087 return false; 2088 } 2089 2090 unsigned MipsFastISel::getRegEnsuringSimpleIntegerWidening(const Value *V, 2091 bool IsUnsigned) { 2092 unsigned VReg = getRegForValue(V); 2093 if (VReg == 0) 2094 return 0; 2095 MVT VMVT = TLI.getValueType(DL, V->getType(), true).getSimpleVT(); 2096 2097 if (VMVT == MVT::i1) 2098 return 0; 2099 2100 if ((VMVT == MVT::i8) || (VMVT == MVT::i16)) { 2101 unsigned TempReg = createResultReg(&Mips::GPR32RegClass); 2102 if (!emitIntExt(VMVT, VReg, MVT::i32, TempReg, IsUnsigned)) 2103 return 0; 2104 VReg = TempReg; 2105 } 2106 return VReg; 2107 } 2108 2109 void MipsFastISel::simplifyAddress(Address &Addr) { 2110 if (!isInt<16>(Addr.getOffset())) { 2111 unsigned TempReg = 2112 materialize32BitInt(Addr.getOffset(), &Mips::GPR32RegClass); 2113 unsigned DestReg = createResultReg(&Mips::GPR32RegClass); 2114 emitInst(Mips::ADDu, DestReg).addReg(TempReg).addReg(Addr.getReg()); 2115 Addr.setReg(DestReg); 2116 Addr.setOffset(0); 2117 } 2118 } 2119 2120 unsigned MipsFastISel::fastEmitInst_rr(unsigned MachineInstOpcode, 2121 const TargetRegisterClass *RC, 2122 unsigned Op0, bool Op0IsKill, 2123 unsigned Op1, bool Op1IsKill) { 2124 // We treat the MUL instruction in a special way because it clobbers 2125 // the HI0 & LO0 registers. The TableGen definition of this instruction can 2126 // mark these registers only as implicitly defined. As a result, the 2127 // register allocator runs out of registers when this instruction is 2128 // followed by another instruction that defines the same registers too. 2129 // We can fix this by explicitly marking those registers as dead. 2130 if (MachineInstOpcode == Mips::MUL) { 2131 unsigned ResultReg = createResultReg(RC); 2132 const MCInstrDesc &II = TII.get(MachineInstOpcode); 2133 Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs()); 2134 Op1 = constrainOperandRegClass(II, Op1, II.getNumDefs() + 1); 2135 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg) 2136 .addReg(Op0, getKillRegState(Op0IsKill)) 2137 .addReg(Op1, getKillRegState(Op1IsKill)) 2138 .addReg(Mips::HI0, RegState::ImplicitDefine | RegState::Dead) 2139 .addReg(Mips::LO0, RegState::ImplicitDefine | RegState::Dead); 2140 return ResultReg; 2141 } 2142 2143 return FastISel::fastEmitInst_rr(MachineInstOpcode, RC, Op0, Op0IsKill, Op1, 2144 Op1IsKill); 2145 } 2146 2147 namespace llvm { 2148 2149 FastISel *Mips::createFastISel(FunctionLoweringInfo &funcInfo, 2150 const TargetLibraryInfo *libInfo) { 2151 return new MipsFastISel(funcInfo, libInfo); 2152 } 2153 2154 } // end namespace llvm 2155