1 //===- MipsFastISel.cpp - Mips FastISel implementation --------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 ///
10 /// \file
11 /// This file defines the MIPS-specific support for the FastISel class.
12 /// Some of the target-specific code is generated by tablegen in the file
13 /// MipsGenFastISel.inc, which is #included here.
14 ///
15 //===----------------------------------------------------------------------===//
16
17 #include "MCTargetDesc/MipsABIInfo.h"
18 #include "MCTargetDesc/MipsBaseInfo.h"
19 #include "MipsCCState.h"
20 #include "MipsISelLowering.h"
21 #include "MipsInstrInfo.h"
22 #include "MipsMachineFunction.h"
23 #include "MipsSubtarget.h"
24 #include "MipsTargetMachine.h"
25 #include "llvm/ADT/APInt.h"
26 #include "llvm/ADT/ArrayRef.h"
27 #include "llvm/ADT/DenseMap.h"
28 #include "llvm/ADT/SmallVector.h"
29 #include "llvm/Analysis/TargetLibraryInfo.h"
30 #include "llvm/CodeGen/CallingConvLower.h"
31 #include "llvm/CodeGen/FastISel.h"
32 #include "llvm/CodeGen/FunctionLoweringInfo.h"
33 #include "llvm/CodeGen/ISDOpcodes.h"
34 #include "llvm/CodeGen/MachineBasicBlock.h"
35 #include "llvm/CodeGen/MachineFrameInfo.h"
36 #include "llvm/CodeGen/MachineInstrBuilder.h"
37 #include "llvm/CodeGen/MachineMemOperand.h"
38 #include "llvm/CodeGen/MachineRegisterInfo.h"
39 #include "llvm/CodeGen/TargetInstrInfo.h"
40 #include "llvm/CodeGen/TargetLowering.h"
41 #include "llvm/CodeGen/ValueTypes.h"
42 #include "llvm/IR/Attributes.h"
43 #include "llvm/IR/CallingConv.h"
44 #include "llvm/IR/Constant.h"
45 #include "llvm/IR/Constants.h"
46 #include "llvm/IR/DataLayout.h"
47 #include "llvm/IR/Function.h"
48 #include "llvm/IR/GetElementPtrTypeIterator.h"
49 #include "llvm/IR/GlobalValue.h"
50 #include "llvm/IR/GlobalVariable.h"
51 #include "llvm/IR/InstrTypes.h"
52 #include "llvm/IR/Instruction.h"
53 #include "llvm/IR/Instructions.h"
54 #include "llvm/IR/IntrinsicInst.h"
55 #include "llvm/IR/Operator.h"
56 #include "llvm/IR/Type.h"
57 #include "llvm/IR/User.h"
58 #include "llvm/IR/Value.h"
59 #include "llvm/MC/MCContext.h"
60 #include "llvm/MC/MCInstrDesc.h"
61 #include "llvm/MC/MCRegisterInfo.h"
62 #include "llvm/MC/MCSymbol.h"
63 #include "llvm/Support/Casting.h"
64 #include "llvm/Support/Compiler.h"
65 #include "llvm/Support/Debug.h"
66 #include "llvm/Support/ErrorHandling.h"
67 #include "llvm/Support/MachineValueType.h"
68 #include "llvm/Support/MathExtras.h"
69 #include "llvm/Support/raw_ostream.h"
70 #include <algorithm>
71 #include <array>
72 #include <cassert>
73 #include <cstdint>
74
75 #define DEBUG_TYPE "mips-fastisel"
76
77 using namespace llvm;
78
79 extern cl::opt<bool> EmitJalrReloc;
80
81 namespace {
82
83 class MipsFastISel final : public FastISel {
84
85 // All possible address modes.
86 class Address {
87 public:
88 using BaseKind = enum { RegBase, FrameIndexBase };
89
90 private:
91 BaseKind Kind = RegBase;
92 union {
93 unsigned Reg;
94 int FI;
95 } Base;
96
97 int64_t Offset = 0;
98
99 const GlobalValue *GV = nullptr;
100
101 public:
102 // Innocuous defaults for our address.
Address()103 Address() { Base.Reg = 0; }
104
setKind(BaseKind K)105 void setKind(BaseKind K) { Kind = K; }
getKind() const106 BaseKind getKind() const { return Kind; }
isRegBase() const107 bool isRegBase() const { return Kind == RegBase; }
isFIBase() const108 bool isFIBase() const { return Kind == FrameIndexBase; }
109
setReg(unsigned Reg)110 void setReg(unsigned Reg) {
111 assert(isRegBase() && "Invalid base register access!");
112 Base.Reg = Reg;
113 }
114
getReg() const115 unsigned getReg() const {
116 assert(isRegBase() && "Invalid base register access!");
117 return Base.Reg;
118 }
119
setFI(unsigned FI)120 void setFI(unsigned FI) {
121 assert(isFIBase() && "Invalid base frame index access!");
122 Base.FI = FI;
123 }
124
getFI() const125 unsigned getFI() const {
126 assert(isFIBase() && "Invalid base frame index access!");
127 return Base.FI;
128 }
129
setOffset(int64_t Offset_)130 void setOffset(int64_t Offset_) { Offset = Offset_; }
getOffset() const131 int64_t getOffset() const { return Offset; }
setGlobalValue(const GlobalValue * G)132 void setGlobalValue(const GlobalValue *G) { GV = G; }
getGlobalValue()133 const GlobalValue *getGlobalValue() { return GV; }
134 };
135
136 /// Subtarget - Keep a pointer to the MipsSubtarget around so that we can
137 /// make the right decision when generating code for different targets.
138 const TargetMachine &TM;
139 const MipsSubtarget *Subtarget;
140 const TargetInstrInfo &TII;
141 const TargetLowering &TLI;
142 MipsFunctionInfo *MFI;
143
144 // Convenience variables to avoid some queries.
145 LLVMContext *Context;
146
147 bool fastLowerArguments() override;
148 bool fastLowerCall(CallLoweringInfo &CLI) override;
149 bool fastLowerIntrinsicCall(const IntrinsicInst *II) override;
150
151 bool UnsupportedFPMode; // To allow fast-isel to proceed and just not handle
152 // floating point but not reject doing fast-isel in other
153 // situations
154
155 private:
156 // Selection routines.
157 bool selectLogicalOp(const Instruction *I);
158 bool selectLoad(const Instruction *I);
159 bool selectStore(const Instruction *I);
160 bool selectBranch(const Instruction *I);
161 bool selectSelect(const Instruction *I);
162 bool selectCmp(const Instruction *I);
163 bool selectFPExt(const Instruction *I);
164 bool selectFPTrunc(const Instruction *I);
165 bool selectFPToInt(const Instruction *I, bool IsSigned);
166 bool selectRet(const Instruction *I);
167 bool selectTrunc(const Instruction *I);
168 bool selectIntExt(const Instruction *I);
169 bool selectShift(const Instruction *I);
170 bool selectDivRem(const Instruction *I, unsigned ISDOpcode);
171
172 // Utility helper routines.
173 bool isTypeLegal(Type *Ty, MVT &VT);
174 bool isTypeSupported(Type *Ty, MVT &VT);
175 bool isLoadTypeLegal(Type *Ty, MVT &VT);
176 bool computeAddress(const Value *Obj, Address &Addr);
177 bool computeCallAddress(const Value *V, Address &Addr);
178 void simplifyAddress(Address &Addr);
179
180 // Emit helper routines.
181 bool emitCmp(unsigned DestReg, const CmpInst *CI);
182 bool emitLoad(MVT VT, unsigned &ResultReg, Address &Addr,
183 unsigned Alignment = 0);
184 bool emitStore(MVT VT, unsigned SrcReg, Address Addr,
185 MachineMemOperand *MMO = nullptr);
186 bool emitStore(MVT VT, unsigned SrcReg, Address &Addr,
187 unsigned Alignment = 0);
188 unsigned emitIntExt(MVT SrcVT, unsigned SrcReg, MVT DestVT, bool isZExt);
189 bool emitIntExt(MVT SrcVT, unsigned SrcReg, MVT DestVT, unsigned DestReg,
190
191 bool IsZExt);
192 bool emitIntZExt(MVT SrcVT, unsigned SrcReg, MVT DestVT, unsigned DestReg);
193
194 bool emitIntSExt(MVT SrcVT, unsigned SrcReg, MVT DestVT, unsigned DestReg);
195 bool emitIntSExt32r1(MVT SrcVT, unsigned SrcReg, MVT DestVT,
196 unsigned DestReg);
197 bool emitIntSExt32r2(MVT SrcVT, unsigned SrcReg, MVT DestVT,
198 unsigned DestReg);
199
200 unsigned getRegEnsuringSimpleIntegerWidening(const Value *, bool IsUnsigned);
201
202 unsigned emitLogicalOp(unsigned ISDOpc, MVT RetVT, const Value *LHS,
203 const Value *RHS);
204
205 unsigned materializeFP(const ConstantFP *CFP, MVT VT);
206 unsigned materializeGV(const GlobalValue *GV, MVT VT);
207 unsigned materializeInt(const Constant *C, MVT VT);
208 unsigned materialize32BitInt(int64_t Imm, const TargetRegisterClass *RC);
209 unsigned materializeExternalCallSym(MCSymbol *Syn);
210
emitInst(unsigned Opc)211 MachineInstrBuilder emitInst(unsigned Opc) {
212 return BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc));
213 }
214
emitInst(unsigned Opc,unsigned DstReg)215 MachineInstrBuilder emitInst(unsigned Opc, unsigned DstReg) {
216 return BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc),
217 DstReg);
218 }
219
emitInstStore(unsigned Opc,unsigned SrcReg,unsigned MemReg,int64_t MemOffset)220 MachineInstrBuilder emitInstStore(unsigned Opc, unsigned SrcReg,
221 unsigned MemReg, int64_t MemOffset) {
222 return emitInst(Opc).addReg(SrcReg).addReg(MemReg).addImm(MemOffset);
223 }
224
emitInstLoad(unsigned Opc,unsigned DstReg,unsigned MemReg,int64_t MemOffset)225 MachineInstrBuilder emitInstLoad(unsigned Opc, unsigned DstReg,
226 unsigned MemReg, int64_t MemOffset) {
227 return emitInst(Opc, DstReg).addReg(MemReg).addImm(MemOffset);
228 }
229
230 unsigned fastEmitInst_rr(unsigned MachineInstOpcode,
231 const TargetRegisterClass *RC,
232 unsigned Op0, bool Op0IsKill,
233 unsigned Op1, bool Op1IsKill);
234
235 // for some reason, this default is not generated by tablegen
236 // so we explicitly generate it here.
fastEmitInst_riir(uint64_t inst,const TargetRegisterClass * RC,unsigned Op0,bool Op0IsKill,uint64_t imm1,uint64_t imm2,unsigned Op3,bool Op3IsKill)237 unsigned fastEmitInst_riir(uint64_t inst, const TargetRegisterClass *RC,
238 unsigned Op0, bool Op0IsKill, uint64_t imm1,
239 uint64_t imm2, unsigned Op3, bool Op3IsKill) {
240 return 0;
241 }
242
243 // Call handling routines.
244 private:
245 CCAssignFn *CCAssignFnForCall(CallingConv::ID CC) const;
246 bool processCallArgs(CallLoweringInfo &CLI, SmallVectorImpl<MVT> &ArgVTs,
247 unsigned &NumBytes);
248 bool finishCall(CallLoweringInfo &CLI, MVT RetVT, unsigned NumBytes);
249
getABI() const250 const MipsABIInfo &getABI() const {
251 return static_cast<const MipsTargetMachine &>(TM).getABI();
252 }
253
254 public:
255 // Backend specific FastISel code.
MipsFastISel(FunctionLoweringInfo & funcInfo,const TargetLibraryInfo * libInfo)256 explicit MipsFastISel(FunctionLoweringInfo &funcInfo,
257 const TargetLibraryInfo *libInfo)
258 : FastISel(funcInfo, libInfo), TM(funcInfo.MF->getTarget()),
259 Subtarget(&funcInfo.MF->getSubtarget<MipsSubtarget>()),
260 TII(*Subtarget->getInstrInfo()), TLI(*Subtarget->getTargetLowering()) {
261 MFI = funcInfo.MF->getInfo<MipsFunctionInfo>();
262 Context = &funcInfo.Fn->getContext();
263 UnsupportedFPMode = Subtarget->isFP64bit() || Subtarget->useSoftFloat();
264 }
265
266 unsigned fastMaterializeAlloca(const AllocaInst *AI) override;
267 unsigned fastMaterializeConstant(const Constant *C) override;
268 bool fastSelectInstruction(const Instruction *I) override;
269
270 #include "MipsGenFastISel.inc"
271 };
272
273 } // end anonymous namespace
274
275 static bool CC_Mips(unsigned ValNo, MVT ValVT, MVT LocVT,
276 CCValAssign::LocInfo LocInfo, ISD::ArgFlagsTy ArgFlags,
277 CCState &State) LLVM_ATTRIBUTE_UNUSED;
278
CC_MipsO32_FP32(unsigned ValNo,MVT ValVT,MVT LocVT,CCValAssign::LocInfo LocInfo,ISD::ArgFlagsTy ArgFlags,CCState & State)279 static bool CC_MipsO32_FP32(unsigned ValNo, MVT ValVT, MVT LocVT,
280 CCValAssign::LocInfo LocInfo,
281 ISD::ArgFlagsTy ArgFlags, CCState &State) {
282 llvm_unreachable("should not be called");
283 }
284
CC_MipsO32_FP64(unsigned ValNo,MVT ValVT,MVT LocVT,CCValAssign::LocInfo LocInfo,ISD::ArgFlagsTy ArgFlags,CCState & State)285 static bool CC_MipsO32_FP64(unsigned ValNo, MVT ValVT, MVT LocVT,
286 CCValAssign::LocInfo LocInfo,
287 ISD::ArgFlagsTy ArgFlags, CCState &State) {
288 llvm_unreachable("should not be called");
289 }
290
291 #include "MipsGenCallingConv.inc"
292
CCAssignFnForCall(CallingConv::ID CC) const293 CCAssignFn *MipsFastISel::CCAssignFnForCall(CallingConv::ID CC) const {
294 return CC_MipsO32;
295 }
296
emitLogicalOp(unsigned ISDOpc,MVT RetVT,const Value * LHS,const Value * RHS)297 unsigned MipsFastISel::emitLogicalOp(unsigned ISDOpc, MVT RetVT,
298 const Value *LHS, const Value *RHS) {
299 // Canonicalize immediates to the RHS first.
300 if (isa<ConstantInt>(LHS) && !isa<ConstantInt>(RHS))
301 std::swap(LHS, RHS);
302
303 unsigned Opc;
304 switch (ISDOpc) {
305 case ISD::AND:
306 Opc = Mips::AND;
307 break;
308 case ISD::OR:
309 Opc = Mips::OR;
310 break;
311 case ISD::XOR:
312 Opc = Mips::XOR;
313 break;
314 default:
315 llvm_unreachable("unexpected opcode");
316 }
317
318 unsigned LHSReg = getRegForValue(LHS);
319 if (!LHSReg)
320 return 0;
321
322 unsigned RHSReg;
323 if (const auto *C = dyn_cast<ConstantInt>(RHS))
324 RHSReg = materializeInt(C, MVT::i32);
325 else
326 RHSReg = getRegForValue(RHS);
327 if (!RHSReg)
328 return 0;
329
330 unsigned ResultReg = createResultReg(&Mips::GPR32RegClass);
331 if (!ResultReg)
332 return 0;
333
334 emitInst(Opc, ResultReg).addReg(LHSReg).addReg(RHSReg);
335 return ResultReg;
336 }
337
fastMaterializeAlloca(const AllocaInst * AI)338 unsigned MipsFastISel::fastMaterializeAlloca(const AllocaInst *AI) {
339 assert(TLI.getValueType(DL, AI->getType(), true) == MVT::i32 &&
340 "Alloca should always return a pointer.");
341
342 DenseMap<const AllocaInst *, int>::iterator SI =
343 FuncInfo.StaticAllocaMap.find(AI);
344
345 if (SI != FuncInfo.StaticAllocaMap.end()) {
346 unsigned ResultReg = createResultReg(&Mips::GPR32RegClass);
347 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Mips::LEA_ADDiu),
348 ResultReg)
349 .addFrameIndex(SI->second)
350 .addImm(0);
351 return ResultReg;
352 }
353
354 return 0;
355 }
356
materializeInt(const Constant * C,MVT VT)357 unsigned MipsFastISel::materializeInt(const Constant *C, MVT VT) {
358 if (VT != MVT::i32 && VT != MVT::i16 && VT != MVT::i8 && VT != MVT::i1)
359 return 0;
360 const TargetRegisterClass *RC = &Mips::GPR32RegClass;
361 const ConstantInt *CI = cast<ConstantInt>(C);
362 return materialize32BitInt(CI->getZExtValue(), RC);
363 }
364
materialize32BitInt(int64_t Imm,const TargetRegisterClass * RC)365 unsigned MipsFastISel::materialize32BitInt(int64_t Imm,
366 const TargetRegisterClass *RC) {
367 unsigned ResultReg = createResultReg(RC);
368
369 if (isInt<16>(Imm)) {
370 unsigned Opc = Mips::ADDiu;
371 emitInst(Opc, ResultReg).addReg(Mips::ZERO).addImm(Imm);
372 return ResultReg;
373 } else if (isUInt<16>(Imm)) {
374 emitInst(Mips::ORi, ResultReg).addReg(Mips::ZERO).addImm(Imm);
375 return ResultReg;
376 }
377 unsigned Lo = Imm & 0xFFFF;
378 unsigned Hi = (Imm >> 16) & 0xFFFF;
379 if (Lo) {
380 // Both Lo and Hi have nonzero bits.
381 unsigned TmpReg = createResultReg(RC);
382 emitInst(Mips::LUi, TmpReg).addImm(Hi);
383 emitInst(Mips::ORi, ResultReg).addReg(TmpReg).addImm(Lo);
384 } else {
385 emitInst(Mips::LUi, ResultReg).addImm(Hi);
386 }
387 return ResultReg;
388 }
389
materializeFP(const ConstantFP * CFP,MVT VT)390 unsigned MipsFastISel::materializeFP(const ConstantFP *CFP, MVT VT) {
391 if (UnsupportedFPMode)
392 return 0;
393 int64_t Imm = CFP->getValueAPF().bitcastToAPInt().getZExtValue();
394 if (VT == MVT::f32) {
395 const TargetRegisterClass *RC = &Mips::FGR32RegClass;
396 unsigned DestReg = createResultReg(RC);
397 unsigned TempReg = materialize32BitInt(Imm, &Mips::GPR32RegClass);
398 emitInst(Mips::MTC1, DestReg).addReg(TempReg);
399 return DestReg;
400 } else if (VT == MVT::f64) {
401 const TargetRegisterClass *RC = &Mips::AFGR64RegClass;
402 unsigned DestReg = createResultReg(RC);
403 unsigned TempReg1 = materialize32BitInt(Imm >> 32, &Mips::GPR32RegClass);
404 unsigned TempReg2 =
405 materialize32BitInt(Imm & 0xFFFFFFFF, &Mips::GPR32RegClass);
406 emitInst(Mips::BuildPairF64, DestReg).addReg(TempReg2).addReg(TempReg1);
407 return DestReg;
408 }
409 return 0;
410 }
411
materializeGV(const GlobalValue * GV,MVT VT)412 unsigned MipsFastISel::materializeGV(const GlobalValue *GV, MVT VT) {
413 // For now 32-bit only.
414 if (VT != MVT::i32)
415 return 0;
416 const TargetRegisterClass *RC = &Mips::GPR32RegClass;
417 unsigned DestReg = createResultReg(RC);
418 const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV);
419 bool IsThreadLocal = GVar && GVar->isThreadLocal();
420 // TLS not supported at this time.
421 if (IsThreadLocal)
422 return 0;
423 emitInst(Mips::LW, DestReg)
424 .addReg(MFI->getGlobalBaseReg())
425 .addGlobalAddress(GV, 0, MipsII::MO_GOT);
426 if ((GV->hasInternalLinkage() ||
427 (GV->hasLocalLinkage() && !isa<Function>(GV)))) {
428 unsigned TempReg = createResultReg(RC);
429 emitInst(Mips::ADDiu, TempReg)
430 .addReg(DestReg)
431 .addGlobalAddress(GV, 0, MipsII::MO_ABS_LO);
432 DestReg = TempReg;
433 }
434 return DestReg;
435 }
436
materializeExternalCallSym(MCSymbol * Sym)437 unsigned MipsFastISel::materializeExternalCallSym(MCSymbol *Sym) {
438 const TargetRegisterClass *RC = &Mips::GPR32RegClass;
439 unsigned DestReg = createResultReg(RC);
440 emitInst(Mips::LW, DestReg)
441 .addReg(MFI->getGlobalBaseReg())
442 .addSym(Sym, MipsII::MO_GOT);
443 return DestReg;
444 }
445
446 // Materialize a constant into a register, and return the register
447 // number (or zero if we failed to handle it).
fastMaterializeConstant(const Constant * C)448 unsigned MipsFastISel::fastMaterializeConstant(const Constant *C) {
449 EVT CEVT = TLI.getValueType(DL, C->getType(), true);
450
451 // Only handle simple types.
452 if (!CEVT.isSimple())
453 return 0;
454 MVT VT = CEVT.getSimpleVT();
455
456 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
457 return (UnsupportedFPMode) ? 0 : materializeFP(CFP, VT);
458 else if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
459 return materializeGV(GV, VT);
460 else if (isa<ConstantInt>(C))
461 return materializeInt(C, VT);
462
463 return 0;
464 }
465
computeAddress(const Value * Obj,Address & Addr)466 bool MipsFastISel::computeAddress(const Value *Obj, Address &Addr) {
467 const User *U = nullptr;
468 unsigned Opcode = Instruction::UserOp1;
469 if (const Instruction *I = dyn_cast<Instruction>(Obj)) {
470 // Don't walk into other basic blocks unless the object is an alloca from
471 // another block, otherwise it may not have a virtual register assigned.
472 if (FuncInfo.StaticAllocaMap.count(static_cast<const AllocaInst *>(Obj)) ||
473 FuncInfo.MBBMap[I->getParent()] == FuncInfo.MBB) {
474 Opcode = I->getOpcode();
475 U = I;
476 }
477 } else if (const ConstantExpr *C = dyn_cast<ConstantExpr>(Obj)) {
478 Opcode = C->getOpcode();
479 U = C;
480 }
481 switch (Opcode) {
482 default:
483 break;
484 case Instruction::BitCast:
485 // Look through bitcasts.
486 return computeAddress(U->getOperand(0), Addr);
487 case Instruction::GetElementPtr: {
488 Address SavedAddr = Addr;
489 int64_t TmpOffset = Addr.getOffset();
490 // Iterate through the GEP folding the constants into offsets where
491 // we can.
492 gep_type_iterator GTI = gep_type_begin(U);
493 for (User::const_op_iterator i = U->op_begin() + 1, e = U->op_end(); i != e;
494 ++i, ++GTI) {
495 const Value *Op = *i;
496 if (StructType *STy = GTI.getStructTypeOrNull()) {
497 const StructLayout *SL = DL.getStructLayout(STy);
498 unsigned Idx = cast<ConstantInt>(Op)->getZExtValue();
499 TmpOffset += SL->getElementOffset(Idx);
500 } else {
501 uint64_t S = DL.getTypeAllocSize(GTI.getIndexedType());
502 while (true) {
503 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Op)) {
504 // Constant-offset addressing.
505 TmpOffset += CI->getSExtValue() * S;
506 break;
507 }
508 if (canFoldAddIntoGEP(U, Op)) {
509 // A compatible add with a constant operand. Fold the constant.
510 ConstantInt *CI =
511 cast<ConstantInt>(cast<AddOperator>(Op)->getOperand(1));
512 TmpOffset += CI->getSExtValue() * S;
513 // Iterate on the other operand.
514 Op = cast<AddOperator>(Op)->getOperand(0);
515 continue;
516 }
517 // Unsupported
518 goto unsupported_gep;
519 }
520 }
521 }
522 // Try to grab the base operand now.
523 Addr.setOffset(TmpOffset);
524 if (computeAddress(U->getOperand(0), Addr))
525 return true;
526 // We failed, restore everything and try the other options.
527 Addr = SavedAddr;
528 unsupported_gep:
529 break;
530 }
531 case Instruction::Alloca: {
532 const AllocaInst *AI = cast<AllocaInst>(Obj);
533 DenseMap<const AllocaInst *, int>::iterator SI =
534 FuncInfo.StaticAllocaMap.find(AI);
535 if (SI != FuncInfo.StaticAllocaMap.end()) {
536 Addr.setKind(Address::FrameIndexBase);
537 Addr.setFI(SI->second);
538 return true;
539 }
540 break;
541 }
542 }
543 Addr.setReg(getRegForValue(Obj));
544 return Addr.getReg() != 0;
545 }
546
computeCallAddress(const Value * V,Address & Addr)547 bool MipsFastISel::computeCallAddress(const Value *V, Address &Addr) {
548 const User *U = nullptr;
549 unsigned Opcode = Instruction::UserOp1;
550
551 if (const auto *I = dyn_cast<Instruction>(V)) {
552 // Check if the value is defined in the same basic block. This information
553 // is crucial to know whether or not folding an operand is valid.
554 if (I->getParent() == FuncInfo.MBB->getBasicBlock()) {
555 Opcode = I->getOpcode();
556 U = I;
557 }
558 } else if (const auto *C = dyn_cast<ConstantExpr>(V)) {
559 Opcode = C->getOpcode();
560 U = C;
561 }
562
563 switch (Opcode) {
564 default:
565 break;
566 case Instruction::BitCast:
567 // Look past bitcasts if its operand is in the same BB.
568 return computeCallAddress(U->getOperand(0), Addr);
569 break;
570 case Instruction::IntToPtr:
571 // Look past no-op inttoptrs if its operand is in the same BB.
572 if (TLI.getValueType(DL, U->getOperand(0)->getType()) ==
573 TLI.getPointerTy(DL))
574 return computeCallAddress(U->getOperand(0), Addr);
575 break;
576 case Instruction::PtrToInt:
577 // Look past no-op ptrtoints if its operand is in the same BB.
578 if (TLI.getValueType(DL, U->getType()) == TLI.getPointerTy(DL))
579 return computeCallAddress(U->getOperand(0), Addr);
580 break;
581 }
582
583 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
584 Addr.setGlobalValue(GV);
585 return true;
586 }
587
588 // If all else fails, try to materialize the value in a register.
589 if (!Addr.getGlobalValue()) {
590 Addr.setReg(getRegForValue(V));
591 return Addr.getReg() != 0;
592 }
593
594 return false;
595 }
596
isTypeLegal(Type * Ty,MVT & VT)597 bool MipsFastISel::isTypeLegal(Type *Ty, MVT &VT) {
598 EVT evt = TLI.getValueType(DL, Ty, true);
599 // Only handle simple types.
600 if (evt == MVT::Other || !evt.isSimple())
601 return false;
602 VT = evt.getSimpleVT();
603
604 // Handle all legal types, i.e. a register that will directly hold this
605 // value.
606 return TLI.isTypeLegal(VT);
607 }
608
isTypeSupported(Type * Ty,MVT & VT)609 bool MipsFastISel::isTypeSupported(Type *Ty, MVT &VT) {
610 if (Ty->isVectorTy())
611 return false;
612
613 if (isTypeLegal(Ty, VT))
614 return true;
615
616 // If this is a type than can be sign or zero-extended to a basic operation
617 // go ahead and accept it now.
618 if (VT == MVT::i1 || VT == MVT::i8 || VT == MVT::i16)
619 return true;
620
621 return false;
622 }
623
isLoadTypeLegal(Type * Ty,MVT & VT)624 bool MipsFastISel::isLoadTypeLegal(Type *Ty, MVT &VT) {
625 if (isTypeLegal(Ty, VT))
626 return true;
627 // We will extend this in a later patch:
628 // If this is a type than can be sign or zero-extended to a basic operation
629 // go ahead and accept it now.
630 if (VT == MVT::i8 || VT == MVT::i16)
631 return true;
632 return false;
633 }
634
635 // Because of how EmitCmp is called with fast-isel, you can
636 // end up with redundant "andi" instructions after the sequences emitted below.
637 // We should try and solve this issue in the future.
638 //
emitCmp(unsigned ResultReg,const CmpInst * CI)639 bool MipsFastISel::emitCmp(unsigned ResultReg, const CmpInst *CI) {
640 const Value *Left = CI->getOperand(0), *Right = CI->getOperand(1);
641 bool IsUnsigned = CI->isUnsigned();
642 unsigned LeftReg = getRegEnsuringSimpleIntegerWidening(Left, IsUnsigned);
643 if (LeftReg == 0)
644 return false;
645 unsigned RightReg = getRegEnsuringSimpleIntegerWidening(Right, IsUnsigned);
646 if (RightReg == 0)
647 return false;
648 CmpInst::Predicate P = CI->getPredicate();
649
650 switch (P) {
651 default:
652 return false;
653 case CmpInst::ICMP_EQ: {
654 unsigned TempReg = createResultReg(&Mips::GPR32RegClass);
655 emitInst(Mips::XOR, TempReg).addReg(LeftReg).addReg(RightReg);
656 emitInst(Mips::SLTiu, ResultReg).addReg(TempReg).addImm(1);
657 break;
658 }
659 case CmpInst::ICMP_NE: {
660 unsigned TempReg = createResultReg(&Mips::GPR32RegClass);
661 emitInst(Mips::XOR, TempReg).addReg(LeftReg).addReg(RightReg);
662 emitInst(Mips::SLTu, ResultReg).addReg(Mips::ZERO).addReg(TempReg);
663 break;
664 }
665 case CmpInst::ICMP_UGT:
666 emitInst(Mips::SLTu, ResultReg).addReg(RightReg).addReg(LeftReg);
667 break;
668 case CmpInst::ICMP_ULT:
669 emitInst(Mips::SLTu, ResultReg).addReg(LeftReg).addReg(RightReg);
670 break;
671 case CmpInst::ICMP_UGE: {
672 unsigned TempReg = createResultReg(&Mips::GPR32RegClass);
673 emitInst(Mips::SLTu, TempReg).addReg(LeftReg).addReg(RightReg);
674 emitInst(Mips::XORi, ResultReg).addReg(TempReg).addImm(1);
675 break;
676 }
677 case CmpInst::ICMP_ULE: {
678 unsigned TempReg = createResultReg(&Mips::GPR32RegClass);
679 emitInst(Mips::SLTu, TempReg).addReg(RightReg).addReg(LeftReg);
680 emitInst(Mips::XORi, ResultReg).addReg(TempReg).addImm(1);
681 break;
682 }
683 case CmpInst::ICMP_SGT:
684 emitInst(Mips::SLT, ResultReg).addReg(RightReg).addReg(LeftReg);
685 break;
686 case CmpInst::ICMP_SLT:
687 emitInst(Mips::SLT, ResultReg).addReg(LeftReg).addReg(RightReg);
688 break;
689 case CmpInst::ICMP_SGE: {
690 unsigned TempReg = createResultReg(&Mips::GPR32RegClass);
691 emitInst(Mips::SLT, TempReg).addReg(LeftReg).addReg(RightReg);
692 emitInst(Mips::XORi, ResultReg).addReg(TempReg).addImm(1);
693 break;
694 }
695 case CmpInst::ICMP_SLE: {
696 unsigned TempReg = createResultReg(&Mips::GPR32RegClass);
697 emitInst(Mips::SLT, TempReg).addReg(RightReg).addReg(LeftReg);
698 emitInst(Mips::XORi, ResultReg).addReg(TempReg).addImm(1);
699 break;
700 }
701 case CmpInst::FCMP_OEQ:
702 case CmpInst::FCMP_UNE:
703 case CmpInst::FCMP_OLT:
704 case CmpInst::FCMP_OLE:
705 case CmpInst::FCMP_OGT:
706 case CmpInst::FCMP_OGE: {
707 if (UnsupportedFPMode)
708 return false;
709 bool IsFloat = Left->getType()->isFloatTy();
710 bool IsDouble = Left->getType()->isDoubleTy();
711 if (!IsFloat && !IsDouble)
712 return false;
713 unsigned Opc, CondMovOpc;
714 switch (P) {
715 case CmpInst::FCMP_OEQ:
716 Opc = IsFloat ? Mips::C_EQ_S : Mips::C_EQ_D32;
717 CondMovOpc = Mips::MOVT_I;
718 break;
719 case CmpInst::FCMP_UNE:
720 Opc = IsFloat ? Mips::C_EQ_S : Mips::C_EQ_D32;
721 CondMovOpc = Mips::MOVF_I;
722 break;
723 case CmpInst::FCMP_OLT:
724 Opc = IsFloat ? Mips::C_OLT_S : Mips::C_OLT_D32;
725 CondMovOpc = Mips::MOVT_I;
726 break;
727 case CmpInst::FCMP_OLE:
728 Opc = IsFloat ? Mips::C_OLE_S : Mips::C_OLE_D32;
729 CondMovOpc = Mips::MOVT_I;
730 break;
731 case CmpInst::FCMP_OGT:
732 Opc = IsFloat ? Mips::C_ULE_S : Mips::C_ULE_D32;
733 CondMovOpc = Mips::MOVF_I;
734 break;
735 case CmpInst::FCMP_OGE:
736 Opc = IsFloat ? Mips::C_ULT_S : Mips::C_ULT_D32;
737 CondMovOpc = Mips::MOVF_I;
738 break;
739 default:
740 llvm_unreachable("Only switching of a subset of CCs.");
741 }
742 unsigned RegWithZero = createResultReg(&Mips::GPR32RegClass);
743 unsigned RegWithOne = createResultReg(&Mips::GPR32RegClass);
744 emitInst(Mips::ADDiu, RegWithZero).addReg(Mips::ZERO).addImm(0);
745 emitInst(Mips::ADDiu, RegWithOne).addReg(Mips::ZERO).addImm(1);
746 emitInst(Opc).addReg(Mips::FCC0, RegState::Define).addReg(LeftReg)
747 .addReg(RightReg);
748 emitInst(CondMovOpc, ResultReg)
749 .addReg(RegWithOne)
750 .addReg(Mips::FCC0)
751 .addReg(RegWithZero);
752 break;
753 }
754 }
755 return true;
756 }
757
emitLoad(MVT VT,unsigned & ResultReg,Address & Addr,unsigned Alignment)758 bool MipsFastISel::emitLoad(MVT VT, unsigned &ResultReg, Address &Addr,
759 unsigned Alignment) {
760 //
761 // more cases will be handled here in following patches.
762 //
763 unsigned Opc;
764 switch (VT.SimpleTy) {
765 case MVT::i32:
766 ResultReg = createResultReg(&Mips::GPR32RegClass);
767 Opc = Mips::LW;
768 break;
769 case MVT::i16:
770 ResultReg = createResultReg(&Mips::GPR32RegClass);
771 Opc = Mips::LHu;
772 break;
773 case MVT::i8:
774 ResultReg = createResultReg(&Mips::GPR32RegClass);
775 Opc = Mips::LBu;
776 break;
777 case MVT::f32:
778 if (UnsupportedFPMode)
779 return false;
780 ResultReg = createResultReg(&Mips::FGR32RegClass);
781 Opc = Mips::LWC1;
782 break;
783 case MVT::f64:
784 if (UnsupportedFPMode)
785 return false;
786 ResultReg = createResultReg(&Mips::AFGR64RegClass);
787 Opc = Mips::LDC1;
788 break;
789 default:
790 return false;
791 }
792 if (Addr.isRegBase()) {
793 simplifyAddress(Addr);
794 emitInstLoad(Opc, ResultReg, Addr.getReg(), Addr.getOffset());
795 return true;
796 }
797 if (Addr.isFIBase()) {
798 unsigned FI = Addr.getFI();
799 unsigned Align = 4;
800 int64_t Offset = Addr.getOffset();
801 MachineFrameInfo &MFI = MF->getFrameInfo();
802 MachineMemOperand *MMO = MF->getMachineMemOperand(
803 MachinePointerInfo::getFixedStack(*MF, FI), MachineMemOperand::MOLoad,
804 MFI.getObjectSize(FI), Align);
805 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg)
806 .addFrameIndex(FI)
807 .addImm(Offset)
808 .addMemOperand(MMO);
809 return true;
810 }
811 return false;
812 }
813
emitStore(MVT VT,unsigned SrcReg,Address & Addr,unsigned Alignment)814 bool MipsFastISel::emitStore(MVT VT, unsigned SrcReg, Address &Addr,
815 unsigned Alignment) {
816 //
817 // more cases will be handled here in following patches.
818 //
819 unsigned Opc;
820 switch (VT.SimpleTy) {
821 case MVT::i8:
822 Opc = Mips::SB;
823 break;
824 case MVT::i16:
825 Opc = Mips::SH;
826 break;
827 case MVT::i32:
828 Opc = Mips::SW;
829 break;
830 case MVT::f32:
831 if (UnsupportedFPMode)
832 return false;
833 Opc = Mips::SWC1;
834 break;
835 case MVT::f64:
836 if (UnsupportedFPMode)
837 return false;
838 Opc = Mips::SDC1;
839 break;
840 default:
841 return false;
842 }
843 if (Addr.isRegBase()) {
844 simplifyAddress(Addr);
845 emitInstStore(Opc, SrcReg, Addr.getReg(), Addr.getOffset());
846 return true;
847 }
848 if (Addr.isFIBase()) {
849 unsigned FI = Addr.getFI();
850 unsigned Align = 4;
851 int64_t Offset = Addr.getOffset();
852 MachineFrameInfo &MFI = MF->getFrameInfo();
853 MachineMemOperand *MMO = MF->getMachineMemOperand(
854 MachinePointerInfo::getFixedStack(*MF, FI), MachineMemOperand::MOStore,
855 MFI.getObjectSize(FI), Align);
856 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc))
857 .addReg(SrcReg)
858 .addFrameIndex(FI)
859 .addImm(Offset)
860 .addMemOperand(MMO);
861 return true;
862 }
863 return false;
864 }
865
selectLogicalOp(const Instruction * I)866 bool MipsFastISel::selectLogicalOp(const Instruction *I) {
867 MVT VT;
868 if (!isTypeSupported(I->getType(), VT))
869 return false;
870
871 unsigned ResultReg;
872 switch (I->getOpcode()) {
873 default:
874 llvm_unreachable("Unexpected instruction.");
875 case Instruction::And:
876 ResultReg = emitLogicalOp(ISD::AND, VT, I->getOperand(0), I->getOperand(1));
877 break;
878 case Instruction::Or:
879 ResultReg = emitLogicalOp(ISD::OR, VT, I->getOperand(0), I->getOperand(1));
880 break;
881 case Instruction::Xor:
882 ResultReg = emitLogicalOp(ISD::XOR, VT, I->getOperand(0), I->getOperand(1));
883 break;
884 }
885
886 if (!ResultReg)
887 return false;
888
889 updateValueMap(I, ResultReg);
890 return true;
891 }
892
selectLoad(const Instruction * I)893 bool MipsFastISel::selectLoad(const Instruction *I) {
894 // Atomic loads need special handling.
895 if (cast<LoadInst>(I)->isAtomic())
896 return false;
897
898 // Verify we have a legal type before going any further.
899 MVT VT;
900 if (!isLoadTypeLegal(I->getType(), VT))
901 return false;
902
903 // See if we can handle this address.
904 Address Addr;
905 if (!computeAddress(I->getOperand(0), Addr))
906 return false;
907
908 unsigned ResultReg;
909 if (!emitLoad(VT, ResultReg, Addr, cast<LoadInst>(I)->getAlignment()))
910 return false;
911 updateValueMap(I, ResultReg);
912 return true;
913 }
914
selectStore(const Instruction * I)915 bool MipsFastISel::selectStore(const Instruction *I) {
916 Value *Op0 = I->getOperand(0);
917 unsigned SrcReg = 0;
918
919 // Atomic stores need special handling.
920 if (cast<StoreInst>(I)->isAtomic())
921 return false;
922
923 // Verify we have a legal type before going any further.
924 MVT VT;
925 if (!isLoadTypeLegal(I->getOperand(0)->getType(), VT))
926 return false;
927
928 // Get the value to be stored into a register.
929 SrcReg = getRegForValue(Op0);
930 if (SrcReg == 0)
931 return false;
932
933 // See if we can handle this address.
934 Address Addr;
935 if (!computeAddress(I->getOperand(1), Addr))
936 return false;
937
938 if (!emitStore(VT, SrcReg, Addr, cast<StoreInst>(I)->getAlignment()))
939 return false;
940 return true;
941 }
942
943 // This can cause a redundant sltiu to be generated.
944 // FIXME: try and eliminate this in a future patch.
selectBranch(const Instruction * I)945 bool MipsFastISel::selectBranch(const Instruction *I) {
946 const BranchInst *BI = cast<BranchInst>(I);
947 MachineBasicBlock *BrBB = FuncInfo.MBB;
948 //
949 // TBB is the basic block for the case where the comparison is true.
950 // FBB is the basic block for the case where the comparison is false.
951 // if (cond) goto TBB
952 // goto FBB
953 // TBB:
954 //
955 MachineBasicBlock *TBB = FuncInfo.MBBMap[BI->getSuccessor(0)];
956 MachineBasicBlock *FBB = FuncInfo.MBBMap[BI->getSuccessor(1)];
957
958 // Fold the common case of a conditional branch with a comparison
959 // in the same block.
960 unsigned ZExtCondReg = 0;
961 if (const CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition())) {
962 if (CI->hasOneUse() && CI->getParent() == I->getParent()) {
963 ZExtCondReg = createResultReg(&Mips::GPR32RegClass);
964 if (!emitCmp(ZExtCondReg, CI))
965 return false;
966 }
967 }
968
969 // For the general case, we need to mask with 1.
970 if (ZExtCondReg == 0) {
971 unsigned CondReg = getRegForValue(BI->getCondition());
972 if (CondReg == 0)
973 return false;
974
975 ZExtCondReg = emitIntExt(MVT::i1, CondReg, MVT::i32, true);
976 if (ZExtCondReg == 0)
977 return false;
978 }
979
980 BuildMI(*BrBB, FuncInfo.InsertPt, DbgLoc, TII.get(Mips::BGTZ))
981 .addReg(ZExtCondReg)
982 .addMBB(TBB);
983 finishCondBranch(BI->getParent(), TBB, FBB);
984 return true;
985 }
986
selectCmp(const Instruction * I)987 bool MipsFastISel::selectCmp(const Instruction *I) {
988 const CmpInst *CI = cast<CmpInst>(I);
989 unsigned ResultReg = createResultReg(&Mips::GPR32RegClass);
990 if (!emitCmp(ResultReg, CI))
991 return false;
992 updateValueMap(I, ResultReg);
993 return true;
994 }
995
996 // Attempt to fast-select a floating-point extend instruction.
selectFPExt(const Instruction * I)997 bool MipsFastISel::selectFPExt(const Instruction *I) {
998 if (UnsupportedFPMode)
999 return false;
1000 Value *Src = I->getOperand(0);
1001 EVT SrcVT = TLI.getValueType(DL, Src->getType(), true);
1002 EVT DestVT = TLI.getValueType(DL, I->getType(), true);
1003
1004 if (SrcVT != MVT::f32 || DestVT != MVT::f64)
1005 return false;
1006
1007 unsigned SrcReg =
1008 getRegForValue(Src); // this must be a 32bit floating point register class
1009 // maybe we should handle this differently
1010 if (!SrcReg)
1011 return false;
1012
1013 unsigned DestReg = createResultReg(&Mips::AFGR64RegClass);
1014 emitInst(Mips::CVT_D32_S, DestReg).addReg(SrcReg);
1015 updateValueMap(I, DestReg);
1016 return true;
1017 }
1018
selectSelect(const Instruction * I)1019 bool MipsFastISel::selectSelect(const Instruction *I) {
1020 assert(isa<SelectInst>(I) && "Expected a select instruction.");
1021
1022 LLVM_DEBUG(dbgs() << "selectSelect\n");
1023
1024 MVT VT;
1025 if (!isTypeSupported(I->getType(), VT) || UnsupportedFPMode) {
1026 LLVM_DEBUG(
1027 dbgs() << ".. .. gave up (!isTypeSupported || UnsupportedFPMode)\n");
1028 return false;
1029 }
1030
1031 unsigned CondMovOpc;
1032 const TargetRegisterClass *RC;
1033
1034 if (VT.isInteger() && !VT.isVector() && VT.getSizeInBits() <= 32) {
1035 CondMovOpc = Mips::MOVN_I_I;
1036 RC = &Mips::GPR32RegClass;
1037 } else if (VT == MVT::f32) {
1038 CondMovOpc = Mips::MOVN_I_S;
1039 RC = &Mips::FGR32RegClass;
1040 } else if (VT == MVT::f64) {
1041 CondMovOpc = Mips::MOVN_I_D32;
1042 RC = &Mips::AFGR64RegClass;
1043 } else
1044 return false;
1045
1046 const SelectInst *SI = cast<SelectInst>(I);
1047 const Value *Cond = SI->getCondition();
1048 unsigned Src1Reg = getRegForValue(SI->getTrueValue());
1049 unsigned Src2Reg = getRegForValue(SI->getFalseValue());
1050 unsigned CondReg = getRegForValue(Cond);
1051
1052 if (!Src1Reg || !Src2Reg || !CondReg)
1053 return false;
1054
1055 unsigned ZExtCondReg = createResultReg(&Mips::GPR32RegClass);
1056 if (!ZExtCondReg)
1057 return false;
1058
1059 if (!emitIntExt(MVT::i1, CondReg, MVT::i32, ZExtCondReg, true))
1060 return false;
1061
1062 unsigned ResultReg = createResultReg(RC);
1063 unsigned TempReg = createResultReg(RC);
1064
1065 if (!ResultReg || !TempReg)
1066 return false;
1067
1068 emitInst(TargetOpcode::COPY, TempReg).addReg(Src2Reg);
1069 emitInst(CondMovOpc, ResultReg)
1070 .addReg(Src1Reg).addReg(ZExtCondReg).addReg(TempReg);
1071 updateValueMap(I, ResultReg);
1072 return true;
1073 }
1074
1075 // Attempt to fast-select a floating-point truncate instruction.
selectFPTrunc(const Instruction * I)1076 bool MipsFastISel::selectFPTrunc(const Instruction *I) {
1077 if (UnsupportedFPMode)
1078 return false;
1079 Value *Src = I->getOperand(0);
1080 EVT SrcVT = TLI.getValueType(DL, Src->getType(), true);
1081 EVT DestVT = TLI.getValueType(DL, I->getType(), true);
1082
1083 if (SrcVT != MVT::f64 || DestVT != MVT::f32)
1084 return false;
1085
1086 unsigned SrcReg = getRegForValue(Src);
1087 if (!SrcReg)
1088 return false;
1089
1090 unsigned DestReg = createResultReg(&Mips::FGR32RegClass);
1091 if (!DestReg)
1092 return false;
1093
1094 emitInst(Mips::CVT_S_D32, DestReg).addReg(SrcReg);
1095 updateValueMap(I, DestReg);
1096 return true;
1097 }
1098
1099 // Attempt to fast-select a floating-point-to-integer conversion.
selectFPToInt(const Instruction * I,bool IsSigned)1100 bool MipsFastISel::selectFPToInt(const Instruction *I, bool IsSigned) {
1101 if (UnsupportedFPMode)
1102 return false;
1103 MVT DstVT, SrcVT;
1104 if (!IsSigned)
1105 return false; // We don't handle this case yet. There is no native
1106 // instruction for this but it can be synthesized.
1107 Type *DstTy = I->getType();
1108 if (!isTypeLegal(DstTy, DstVT))
1109 return false;
1110
1111 if (DstVT != MVT::i32)
1112 return false;
1113
1114 Value *Src = I->getOperand(0);
1115 Type *SrcTy = Src->getType();
1116 if (!isTypeLegal(SrcTy, SrcVT))
1117 return false;
1118
1119 if (SrcVT != MVT::f32 && SrcVT != MVT::f64)
1120 return false;
1121
1122 unsigned SrcReg = getRegForValue(Src);
1123 if (SrcReg == 0)
1124 return false;
1125
1126 // Determine the opcode for the conversion, which takes place
1127 // entirely within FPRs.
1128 unsigned DestReg = createResultReg(&Mips::GPR32RegClass);
1129 unsigned TempReg = createResultReg(&Mips::FGR32RegClass);
1130 unsigned Opc = (SrcVT == MVT::f32) ? Mips::TRUNC_W_S : Mips::TRUNC_W_D32;
1131
1132 // Generate the convert.
1133 emitInst(Opc, TempReg).addReg(SrcReg);
1134 emitInst(Mips::MFC1, DestReg).addReg(TempReg);
1135
1136 updateValueMap(I, DestReg);
1137 return true;
1138 }
1139
processCallArgs(CallLoweringInfo & CLI,SmallVectorImpl<MVT> & OutVTs,unsigned & NumBytes)1140 bool MipsFastISel::processCallArgs(CallLoweringInfo &CLI,
1141 SmallVectorImpl<MVT> &OutVTs,
1142 unsigned &NumBytes) {
1143 CallingConv::ID CC = CLI.CallConv;
1144 SmallVector<CCValAssign, 16> ArgLocs;
1145 CCState CCInfo(CC, false, *FuncInfo.MF, ArgLocs, *Context);
1146 CCInfo.AnalyzeCallOperands(OutVTs, CLI.OutFlags, CCAssignFnForCall(CC));
1147 // Get a count of how many bytes are to be pushed on the stack.
1148 NumBytes = CCInfo.getNextStackOffset();
1149 // This is the minimum argument area used for A0-A3.
1150 if (NumBytes < 16)
1151 NumBytes = 16;
1152
1153 emitInst(Mips::ADJCALLSTACKDOWN).addImm(16).addImm(0);
1154 // Process the args.
1155 MVT firstMVT;
1156 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1157 CCValAssign &VA = ArgLocs[i];
1158 const Value *ArgVal = CLI.OutVals[VA.getValNo()];
1159 MVT ArgVT = OutVTs[VA.getValNo()];
1160
1161 if (i == 0) {
1162 firstMVT = ArgVT;
1163 if (ArgVT == MVT::f32) {
1164 VA.convertToReg(Mips::F12);
1165 } else if (ArgVT == MVT::f64) {
1166 VA.convertToReg(Mips::D6);
1167 }
1168 } else if (i == 1) {
1169 if ((firstMVT == MVT::f32) || (firstMVT == MVT::f64)) {
1170 if (ArgVT == MVT::f32) {
1171 VA.convertToReg(Mips::F14);
1172 } else if (ArgVT == MVT::f64) {
1173 VA.convertToReg(Mips::D7);
1174 }
1175 }
1176 }
1177 if (((ArgVT == MVT::i32) || (ArgVT == MVT::f32) || (ArgVT == MVT::i16) ||
1178 (ArgVT == MVT::i8)) &&
1179 VA.isMemLoc()) {
1180 switch (VA.getLocMemOffset()) {
1181 case 0:
1182 VA.convertToReg(Mips::A0);
1183 break;
1184 case 4:
1185 VA.convertToReg(Mips::A1);
1186 break;
1187 case 8:
1188 VA.convertToReg(Mips::A2);
1189 break;
1190 case 12:
1191 VA.convertToReg(Mips::A3);
1192 break;
1193 default:
1194 break;
1195 }
1196 }
1197 unsigned ArgReg = getRegForValue(ArgVal);
1198 if (!ArgReg)
1199 return false;
1200
1201 // Handle arg promotion: SExt, ZExt, AExt.
1202 switch (VA.getLocInfo()) {
1203 case CCValAssign::Full:
1204 break;
1205 case CCValAssign::AExt:
1206 case CCValAssign::SExt: {
1207 MVT DestVT = VA.getLocVT();
1208 MVT SrcVT = ArgVT;
1209 ArgReg = emitIntExt(SrcVT, ArgReg, DestVT, /*isZExt=*/false);
1210 if (!ArgReg)
1211 return false;
1212 break;
1213 }
1214 case CCValAssign::ZExt: {
1215 MVT DestVT = VA.getLocVT();
1216 MVT SrcVT = ArgVT;
1217 ArgReg = emitIntExt(SrcVT, ArgReg, DestVT, /*isZExt=*/true);
1218 if (!ArgReg)
1219 return false;
1220 break;
1221 }
1222 default:
1223 llvm_unreachable("Unknown arg promotion!");
1224 }
1225
1226 // Now copy/store arg to correct locations.
1227 if (VA.isRegLoc() && !VA.needsCustom()) {
1228 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1229 TII.get(TargetOpcode::COPY), VA.getLocReg()).addReg(ArgReg);
1230 CLI.OutRegs.push_back(VA.getLocReg());
1231 } else if (VA.needsCustom()) {
1232 llvm_unreachable("Mips does not use custom args.");
1233 return false;
1234 } else {
1235 //
1236 // FIXME: This path will currently return false. It was copied
1237 // from the AArch64 port and should be essentially fine for Mips too.
1238 // The work to finish up this path will be done in a follow-on patch.
1239 //
1240 assert(VA.isMemLoc() && "Assuming store on stack.");
1241 // Don't emit stores for undef values.
1242 if (isa<UndefValue>(ArgVal))
1243 continue;
1244
1245 // Need to store on the stack.
1246 // FIXME: This alignment is incorrect but this path is disabled
1247 // for now (will return false). We need to determine the right alignment
1248 // based on the normal alignment for the underlying machine type.
1249 //
1250 unsigned ArgSize = alignTo(ArgVT.getSizeInBits(), 4);
1251
1252 unsigned BEAlign = 0;
1253 if (ArgSize < 8 && !Subtarget->isLittle())
1254 BEAlign = 8 - ArgSize;
1255
1256 Address Addr;
1257 Addr.setKind(Address::RegBase);
1258 Addr.setReg(Mips::SP);
1259 Addr.setOffset(VA.getLocMemOffset() + BEAlign);
1260
1261 unsigned Alignment = DL.getABITypeAlignment(ArgVal->getType());
1262 MachineMemOperand *MMO = FuncInfo.MF->getMachineMemOperand(
1263 MachinePointerInfo::getStack(*FuncInfo.MF, Addr.getOffset()),
1264 MachineMemOperand::MOStore, ArgVT.getStoreSize(), Alignment);
1265 (void)(MMO);
1266 // if (!emitStore(ArgVT, ArgReg, Addr, MMO))
1267 return false; // can't store on the stack yet.
1268 }
1269 }
1270
1271 return true;
1272 }
1273
finishCall(CallLoweringInfo & CLI,MVT RetVT,unsigned NumBytes)1274 bool MipsFastISel::finishCall(CallLoweringInfo &CLI, MVT RetVT,
1275 unsigned NumBytes) {
1276 CallingConv::ID CC = CLI.CallConv;
1277 emitInst(Mips::ADJCALLSTACKUP).addImm(16).addImm(0);
1278 if (RetVT != MVT::isVoid) {
1279 SmallVector<CCValAssign, 16> RVLocs;
1280 MipsCCState CCInfo(CC, false, *FuncInfo.MF, RVLocs, *Context);
1281
1282 CCInfo.AnalyzeCallResult(CLI.Ins, RetCC_Mips, CLI.RetTy,
1283 CLI.Symbol ? CLI.Symbol->getName().data()
1284 : nullptr);
1285
1286 // Only handle a single return value.
1287 if (RVLocs.size() != 1)
1288 return false;
1289 // Copy all of the result registers out of their specified physreg.
1290 MVT CopyVT = RVLocs[0].getValVT();
1291 // Special handling for extended integers.
1292 if (RetVT == MVT::i1 || RetVT == MVT::i8 || RetVT == MVT::i16)
1293 CopyVT = MVT::i32;
1294
1295 unsigned ResultReg = createResultReg(TLI.getRegClassFor(CopyVT));
1296 if (!ResultReg)
1297 return false;
1298 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1299 TII.get(TargetOpcode::COPY),
1300 ResultReg).addReg(RVLocs[0].getLocReg());
1301 CLI.InRegs.push_back(RVLocs[0].getLocReg());
1302
1303 CLI.ResultReg = ResultReg;
1304 CLI.NumResultRegs = 1;
1305 }
1306 return true;
1307 }
1308
fastLowerArguments()1309 bool MipsFastISel::fastLowerArguments() {
1310 LLVM_DEBUG(dbgs() << "fastLowerArguments\n");
1311
1312 if (!FuncInfo.CanLowerReturn) {
1313 LLVM_DEBUG(dbgs() << ".. gave up (!CanLowerReturn)\n");
1314 return false;
1315 }
1316
1317 const Function *F = FuncInfo.Fn;
1318 if (F->isVarArg()) {
1319 LLVM_DEBUG(dbgs() << ".. gave up (varargs)\n");
1320 return false;
1321 }
1322
1323 CallingConv::ID CC = F->getCallingConv();
1324 if (CC != CallingConv::C) {
1325 LLVM_DEBUG(dbgs() << ".. gave up (calling convention is not C)\n");
1326 return false;
1327 }
1328
1329 std::array<MCPhysReg, 4> GPR32ArgRegs = {{Mips::A0, Mips::A1, Mips::A2,
1330 Mips::A3}};
1331 std::array<MCPhysReg, 2> FGR32ArgRegs = {{Mips::F12, Mips::F14}};
1332 std::array<MCPhysReg, 2> AFGR64ArgRegs = {{Mips::D6, Mips::D7}};
1333 auto NextGPR32 = GPR32ArgRegs.begin();
1334 auto NextFGR32 = FGR32ArgRegs.begin();
1335 auto NextAFGR64 = AFGR64ArgRegs.begin();
1336
1337 struct AllocatedReg {
1338 const TargetRegisterClass *RC;
1339 unsigned Reg;
1340 AllocatedReg(const TargetRegisterClass *RC, unsigned Reg)
1341 : RC(RC), Reg(Reg) {}
1342 };
1343
1344 // Only handle simple cases. i.e. All arguments are directly mapped to
1345 // registers of the appropriate type.
1346 SmallVector<AllocatedReg, 4> Allocation;
1347 for (const auto &FormalArg : F->args()) {
1348 if (FormalArg.hasAttribute(Attribute::InReg) ||
1349 FormalArg.hasAttribute(Attribute::StructRet) ||
1350 FormalArg.hasAttribute(Attribute::ByVal)) {
1351 LLVM_DEBUG(dbgs() << ".. gave up (inreg, structret, byval)\n");
1352 return false;
1353 }
1354
1355 Type *ArgTy = FormalArg.getType();
1356 if (ArgTy->isStructTy() || ArgTy->isArrayTy() || ArgTy->isVectorTy()) {
1357 LLVM_DEBUG(dbgs() << ".. gave up (struct, array, or vector)\n");
1358 return false;
1359 }
1360
1361 EVT ArgVT = TLI.getValueType(DL, ArgTy);
1362 LLVM_DEBUG(dbgs() << ".. " << FormalArg.getArgNo() << ": "
1363 << ArgVT.getEVTString() << "\n");
1364 if (!ArgVT.isSimple()) {
1365 LLVM_DEBUG(dbgs() << ".. .. gave up (not a simple type)\n");
1366 return false;
1367 }
1368
1369 switch (ArgVT.getSimpleVT().SimpleTy) {
1370 case MVT::i1:
1371 case MVT::i8:
1372 case MVT::i16:
1373 if (!FormalArg.hasAttribute(Attribute::SExt) &&
1374 !FormalArg.hasAttribute(Attribute::ZExt)) {
1375 // It must be any extend, this shouldn't happen for clang-generated IR
1376 // so just fall back on SelectionDAG.
1377 LLVM_DEBUG(dbgs() << ".. .. gave up (i8/i16 arg is not extended)\n");
1378 return false;
1379 }
1380
1381 if (NextGPR32 == GPR32ArgRegs.end()) {
1382 LLVM_DEBUG(dbgs() << ".. .. gave up (ran out of GPR32 arguments)\n");
1383 return false;
1384 }
1385
1386 LLVM_DEBUG(dbgs() << ".. .. GPR32(" << *NextGPR32 << ")\n");
1387 Allocation.emplace_back(&Mips::GPR32RegClass, *NextGPR32++);
1388
1389 // Allocating any GPR32 prohibits further use of floating point arguments.
1390 NextFGR32 = FGR32ArgRegs.end();
1391 NextAFGR64 = AFGR64ArgRegs.end();
1392 break;
1393
1394 case MVT::i32:
1395 if (FormalArg.hasAttribute(Attribute::ZExt)) {
1396 // The O32 ABI does not permit a zero-extended i32.
1397 LLVM_DEBUG(dbgs() << ".. .. gave up (i32 arg is zero extended)\n");
1398 return false;
1399 }
1400
1401 if (NextGPR32 == GPR32ArgRegs.end()) {
1402 LLVM_DEBUG(dbgs() << ".. .. gave up (ran out of GPR32 arguments)\n");
1403 return false;
1404 }
1405
1406 LLVM_DEBUG(dbgs() << ".. .. GPR32(" << *NextGPR32 << ")\n");
1407 Allocation.emplace_back(&Mips::GPR32RegClass, *NextGPR32++);
1408
1409 // Allocating any GPR32 prohibits further use of floating point arguments.
1410 NextFGR32 = FGR32ArgRegs.end();
1411 NextAFGR64 = AFGR64ArgRegs.end();
1412 break;
1413
1414 case MVT::f32:
1415 if (UnsupportedFPMode) {
1416 LLVM_DEBUG(dbgs() << ".. .. gave up (UnsupportedFPMode)\n");
1417 return false;
1418 }
1419 if (NextFGR32 == FGR32ArgRegs.end()) {
1420 LLVM_DEBUG(dbgs() << ".. .. gave up (ran out of FGR32 arguments)\n");
1421 return false;
1422 }
1423 LLVM_DEBUG(dbgs() << ".. .. FGR32(" << *NextFGR32 << ")\n");
1424 Allocation.emplace_back(&Mips::FGR32RegClass, *NextFGR32++);
1425 // Allocating an FGR32 also allocates the super-register AFGR64, and
1426 // ABI rules require us to skip the corresponding GPR32.
1427 if (NextGPR32 != GPR32ArgRegs.end())
1428 NextGPR32++;
1429 if (NextAFGR64 != AFGR64ArgRegs.end())
1430 NextAFGR64++;
1431 break;
1432
1433 case MVT::f64:
1434 if (UnsupportedFPMode) {
1435 LLVM_DEBUG(dbgs() << ".. .. gave up (UnsupportedFPMode)\n");
1436 return false;
1437 }
1438 if (NextAFGR64 == AFGR64ArgRegs.end()) {
1439 LLVM_DEBUG(dbgs() << ".. .. gave up (ran out of AFGR64 arguments)\n");
1440 return false;
1441 }
1442 LLVM_DEBUG(dbgs() << ".. .. AFGR64(" << *NextAFGR64 << ")\n");
1443 Allocation.emplace_back(&Mips::AFGR64RegClass, *NextAFGR64++);
1444 // Allocating an FGR32 also allocates the super-register AFGR64, and
1445 // ABI rules require us to skip the corresponding GPR32 pair.
1446 if (NextGPR32 != GPR32ArgRegs.end())
1447 NextGPR32++;
1448 if (NextGPR32 != GPR32ArgRegs.end())
1449 NextGPR32++;
1450 if (NextFGR32 != FGR32ArgRegs.end())
1451 NextFGR32++;
1452 break;
1453
1454 default:
1455 LLVM_DEBUG(dbgs() << ".. .. gave up (unknown type)\n");
1456 return false;
1457 }
1458 }
1459
1460 for (const auto &FormalArg : F->args()) {
1461 unsigned ArgNo = FormalArg.getArgNo();
1462 unsigned SrcReg = Allocation[ArgNo].Reg;
1463 unsigned DstReg = FuncInfo.MF->addLiveIn(SrcReg, Allocation[ArgNo].RC);
1464 // FIXME: Unfortunately it's necessary to emit a copy from the livein copy.
1465 // Without this, EmitLiveInCopies may eliminate the livein if its only
1466 // use is a bitcast (which isn't turned into an instruction).
1467 unsigned ResultReg = createResultReg(Allocation[ArgNo].RC);
1468 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1469 TII.get(TargetOpcode::COPY), ResultReg)
1470 .addReg(DstReg, getKillRegState(true));
1471 updateValueMap(&FormalArg, ResultReg);
1472 }
1473
1474 // Calculate the size of the incoming arguments area.
1475 // We currently reject all the cases where this would be non-zero.
1476 unsigned IncomingArgSizeInBytes = 0;
1477
1478 // Account for the reserved argument area on ABI's that have one (O32).
1479 // It seems strange to do this on the caller side but it's necessary in
1480 // SelectionDAG's implementation.
1481 IncomingArgSizeInBytes = std::min(getABI().GetCalleeAllocdArgSizeInBytes(CC),
1482 IncomingArgSizeInBytes);
1483
1484 MF->getInfo<MipsFunctionInfo>()->setFormalArgInfo(IncomingArgSizeInBytes,
1485 false);
1486
1487 return true;
1488 }
1489
fastLowerCall(CallLoweringInfo & CLI)1490 bool MipsFastISel::fastLowerCall(CallLoweringInfo &CLI) {
1491 CallingConv::ID CC = CLI.CallConv;
1492 bool IsTailCall = CLI.IsTailCall;
1493 bool IsVarArg = CLI.IsVarArg;
1494 const Value *Callee = CLI.Callee;
1495 MCSymbol *Symbol = CLI.Symbol;
1496
1497 // Do not handle FastCC.
1498 if (CC == CallingConv::Fast)
1499 return false;
1500
1501 // Allow SelectionDAG isel to handle tail calls.
1502 if (IsTailCall)
1503 return false;
1504
1505 // Let SDISel handle vararg functions.
1506 if (IsVarArg)
1507 return false;
1508
1509 // FIXME: Only handle *simple* calls for now.
1510 MVT RetVT;
1511 if (CLI.RetTy->isVoidTy())
1512 RetVT = MVT::isVoid;
1513 else if (!isTypeSupported(CLI.RetTy, RetVT))
1514 return false;
1515
1516 for (auto Flag : CLI.OutFlags)
1517 if (Flag.isInReg() || Flag.isSRet() || Flag.isNest() || Flag.isByVal())
1518 return false;
1519
1520 // Set up the argument vectors.
1521 SmallVector<MVT, 16> OutVTs;
1522 OutVTs.reserve(CLI.OutVals.size());
1523
1524 for (auto *Val : CLI.OutVals) {
1525 MVT VT;
1526 if (!isTypeLegal(Val->getType(), VT) &&
1527 !(VT == MVT::i1 || VT == MVT::i8 || VT == MVT::i16))
1528 return false;
1529
1530 // We don't handle vector parameters yet.
1531 if (VT.isVector() || VT.getSizeInBits() > 64)
1532 return false;
1533
1534 OutVTs.push_back(VT);
1535 }
1536
1537 Address Addr;
1538 if (!computeCallAddress(Callee, Addr))
1539 return false;
1540
1541 // Handle the arguments now that we've gotten them.
1542 unsigned NumBytes;
1543 if (!processCallArgs(CLI, OutVTs, NumBytes))
1544 return false;
1545
1546 if (!Addr.getGlobalValue())
1547 return false;
1548
1549 // Issue the call.
1550 unsigned DestAddress;
1551 if (Symbol)
1552 DestAddress = materializeExternalCallSym(Symbol);
1553 else
1554 DestAddress = materializeGV(Addr.getGlobalValue(), MVT::i32);
1555 emitInst(TargetOpcode::COPY, Mips::T9).addReg(DestAddress);
1556 MachineInstrBuilder MIB =
1557 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Mips::JALR),
1558 Mips::RA).addReg(Mips::T9);
1559
1560 // Add implicit physical register uses to the call.
1561 for (auto Reg : CLI.OutRegs)
1562 MIB.addReg(Reg, RegState::Implicit);
1563
1564 // Add a register mask with the call-preserved registers.
1565 // Proper defs for return values will be added by setPhysRegsDeadExcept().
1566 MIB.addRegMask(TRI.getCallPreservedMask(*FuncInfo.MF, CC));
1567
1568 CLI.Call = MIB;
1569
1570 if (EmitJalrReloc && !Subtarget->inMips16Mode()) {
1571 // Attach callee address to the instruction, let asm printer emit
1572 // .reloc R_MIPS_JALR.
1573 if (Symbol)
1574 MIB.addSym(Symbol, MipsII::MO_JALR);
1575 else
1576 MIB.addSym(FuncInfo.MF->getContext().getOrCreateSymbol(
1577 Addr.getGlobalValue()->getName()), MipsII::MO_JALR);
1578 }
1579
1580 // Finish off the call including any return values.
1581 return finishCall(CLI, RetVT, NumBytes);
1582 }
1583
fastLowerIntrinsicCall(const IntrinsicInst * II)1584 bool MipsFastISel::fastLowerIntrinsicCall(const IntrinsicInst *II) {
1585 switch (II->getIntrinsicID()) {
1586 default:
1587 return false;
1588 case Intrinsic::bswap: {
1589 Type *RetTy = II->getCalledFunction()->getReturnType();
1590
1591 MVT VT;
1592 if (!isTypeSupported(RetTy, VT))
1593 return false;
1594
1595 unsigned SrcReg = getRegForValue(II->getOperand(0));
1596 if (SrcReg == 0)
1597 return false;
1598 unsigned DestReg = createResultReg(&Mips::GPR32RegClass);
1599 if (DestReg == 0)
1600 return false;
1601 if (VT == MVT::i16) {
1602 if (Subtarget->hasMips32r2()) {
1603 emitInst(Mips::WSBH, DestReg).addReg(SrcReg);
1604 updateValueMap(II, DestReg);
1605 return true;
1606 } else {
1607 unsigned TempReg[3];
1608 for (int i = 0; i < 3; i++) {
1609 TempReg[i] = createResultReg(&Mips::GPR32RegClass);
1610 if (TempReg[i] == 0)
1611 return false;
1612 }
1613 emitInst(Mips::SLL, TempReg[0]).addReg(SrcReg).addImm(8);
1614 emitInst(Mips::SRL, TempReg[1]).addReg(SrcReg).addImm(8);
1615 emitInst(Mips::OR, TempReg[2]).addReg(TempReg[0]).addReg(TempReg[1]);
1616 emitInst(Mips::ANDi, DestReg).addReg(TempReg[2]).addImm(0xFFFF);
1617 updateValueMap(II, DestReg);
1618 return true;
1619 }
1620 } else if (VT == MVT::i32) {
1621 if (Subtarget->hasMips32r2()) {
1622 unsigned TempReg = createResultReg(&Mips::GPR32RegClass);
1623 emitInst(Mips::WSBH, TempReg).addReg(SrcReg);
1624 emitInst(Mips::ROTR, DestReg).addReg(TempReg).addImm(16);
1625 updateValueMap(II, DestReg);
1626 return true;
1627 } else {
1628 unsigned TempReg[8];
1629 for (int i = 0; i < 8; i++) {
1630 TempReg[i] = createResultReg(&Mips::GPR32RegClass);
1631 if (TempReg[i] == 0)
1632 return false;
1633 }
1634
1635 emitInst(Mips::SRL, TempReg[0]).addReg(SrcReg).addImm(8);
1636 emitInst(Mips::SRL, TempReg[1]).addReg(SrcReg).addImm(24);
1637 emitInst(Mips::ANDi, TempReg[2]).addReg(TempReg[0]).addImm(0xFF00);
1638 emitInst(Mips::OR, TempReg[3]).addReg(TempReg[1]).addReg(TempReg[2]);
1639
1640 emitInst(Mips::ANDi, TempReg[4]).addReg(SrcReg).addImm(0xFF00);
1641 emitInst(Mips::SLL, TempReg[5]).addReg(TempReg[4]).addImm(8);
1642
1643 emitInst(Mips::SLL, TempReg[6]).addReg(SrcReg).addImm(24);
1644 emitInst(Mips::OR, TempReg[7]).addReg(TempReg[3]).addReg(TempReg[5]);
1645 emitInst(Mips::OR, DestReg).addReg(TempReg[6]).addReg(TempReg[7]);
1646 updateValueMap(II, DestReg);
1647 return true;
1648 }
1649 }
1650 return false;
1651 }
1652 case Intrinsic::memcpy:
1653 case Intrinsic::memmove: {
1654 const auto *MTI = cast<MemTransferInst>(II);
1655 // Don't handle volatile.
1656 if (MTI->isVolatile())
1657 return false;
1658 if (!MTI->getLength()->getType()->isIntegerTy(32))
1659 return false;
1660 const char *IntrMemName = isa<MemCpyInst>(II) ? "memcpy" : "memmove";
1661 return lowerCallTo(II, IntrMemName, II->getNumArgOperands() - 1);
1662 }
1663 case Intrinsic::memset: {
1664 const MemSetInst *MSI = cast<MemSetInst>(II);
1665 // Don't handle volatile.
1666 if (MSI->isVolatile())
1667 return false;
1668 if (!MSI->getLength()->getType()->isIntegerTy(32))
1669 return false;
1670 return lowerCallTo(II, "memset", II->getNumArgOperands() - 1);
1671 }
1672 }
1673 return false;
1674 }
1675
selectRet(const Instruction * I)1676 bool MipsFastISel::selectRet(const Instruction *I) {
1677 const Function &F = *I->getParent()->getParent();
1678 const ReturnInst *Ret = cast<ReturnInst>(I);
1679
1680 LLVM_DEBUG(dbgs() << "selectRet\n");
1681
1682 if (!FuncInfo.CanLowerReturn)
1683 return false;
1684
1685 // Build a list of return value registers.
1686 SmallVector<unsigned, 4> RetRegs;
1687
1688 if (Ret->getNumOperands() > 0) {
1689 CallingConv::ID CC = F.getCallingConv();
1690
1691 // Do not handle FastCC.
1692 if (CC == CallingConv::Fast)
1693 return false;
1694
1695 SmallVector<ISD::OutputArg, 4> Outs;
1696 GetReturnInfo(CC, F.getReturnType(), F.getAttributes(), Outs, TLI, DL);
1697
1698 // Analyze operands of the call, assigning locations to each operand.
1699 SmallVector<CCValAssign, 16> ValLocs;
1700 MipsCCState CCInfo(CC, F.isVarArg(), *FuncInfo.MF, ValLocs,
1701 I->getContext());
1702 CCAssignFn *RetCC = RetCC_Mips;
1703 CCInfo.AnalyzeReturn(Outs, RetCC);
1704
1705 // Only handle a single return value for now.
1706 if (ValLocs.size() != 1)
1707 return false;
1708
1709 CCValAssign &VA = ValLocs[0];
1710 const Value *RV = Ret->getOperand(0);
1711
1712 // Don't bother handling odd stuff for now.
1713 if ((VA.getLocInfo() != CCValAssign::Full) &&
1714 (VA.getLocInfo() != CCValAssign::BCvt))
1715 return false;
1716
1717 // Only handle register returns for now.
1718 if (!VA.isRegLoc())
1719 return false;
1720
1721 unsigned Reg = getRegForValue(RV);
1722 if (Reg == 0)
1723 return false;
1724
1725 unsigned SrcReg = Reg + VA.getValNo();
1726 unsigned DestReg = VA.getLocReg();
1727 // Avoid a cross-class copy. This is very unlikely.
1728 if (!MRI.getRegClass(SrcReg)->contains(DestReg))
1729 return false;
1730
1731 EVT RVEVT = TLI.getValueType(DL, RV->getType());
1732 if (!RVEVT.isSimple())
1733 return false;
1734
1735 if (RVEVT.isVector())
1736 return false;
1737
1738 MVT RVVT = RVEVT.getSimpleVT();
1739 if (RVVT == MVT::f128)
1740 return false;
1741
1742 // Do not handle FGR64 returns for now.
1743 if (RVVT == MVT::f64 && UnsupportedFPMode) {
1744 LLVM_DEBUG(dbgs() << ".. .. gave up (UnsupportedFPMode\n");
1745 return false;
1746 }
1747
1748 MVT DestVT = VA.getValVT();
1749 // Special handling for extended integers.
1750 if (RVVT != DestVT) {
1751 if (RVVT != MVT::i1 && RVVT != MVT::i8 && RVVT != MVT::i16)
1752 return false;
1753
1754 if (Outs[0].Flags.isZExt() || Outs[0].Flags.isSExt()) {
1755 bool IsZExt = Outs[0].Flags.isZExt();
1756 SrcReg = emitIntExt(RVVT, SrcReg, DestVT, IsZExt);
1757 if (SrcReg == 0)
1758 return false;
1759 }
1760 }
1761
1762 // Make the copy.
1763 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1764 TII.get(TargetOpcode::COPY), DestReg).addReg(SrcReg);
1765
1766 // Add register to return instruction.
1767 RetRegs.push_back(VA.getLocReg());
1768 }
1769 MachineInstrBuilder MIB = emitInst(Mips::RetRA);
1770 for (unsigned i = 0, e = RetRegs.size(); i != e; ++i)
1771 MIB.addReg(RetRegs[i], RegState::Implicit);
1772 return true;
1773 }
1774
selectTrunc(const Instruction * I)1775 bool MipsFastISel::selectTrunc(const Instruction *I) {
1776 // The high bits for a type smaller than the register size are assumed to be
1777 // undefined.
1778 Value *Op = I->getOperand(0);
1779
1780 EVT SrcVT, DestVT;
1781 SrcVT = TLI.getValueType(DL, Op->getType(), true);
1782 DestVT = TLI.getValueType(DL, I->getType(), true);
1783
1784 if (SrcVT != MVT::i32 && SrcVT != MVT::i16 && SrcVT != MVT::i8)
1785 return false;
1786 if (DestVT != MVT::i16 && DestVT != MVT::i8 && DestVT != MVT::i1)
1787 return false;
1788
1789 unsigned SrcReg = getRegForValue(Op);
1790 if (!SrcReg)
1791 return false;
1792
1793 // Because the high bits are undefined, a truncate doesn't generate
1794 // any code.
1795 updateValueMap(I, SrcReg);
1796 return true;
1797 }
1798
selectIntExt(const Instruction * I)1799 bool MipsFastISel::selectIntExt(const Instruction *I) {
1800 Type *DestTy = I->getType();
1801 Value *Src = I->getOperand(0);
1802 Type *SrcTy = Src->getType();
1803
1804 bool isZExt = isa<ZExtInst>(I);
1805 unsigned SrcReg = getRegForValue(Src);
1806 if (!SrcReg)
1807 return false;
1808
1809 EVT SrcEVT, DestEVT;
1810 SrcEVT = TLI.getValueType(DL, SrcTy, true);
1811 DestEVT = TLI.getValueType(DL, DestTy, true);
1812 if (!SrcEVT.isSimple())
1813 return false;
1814 if (!DestEVT.isSimple())
1815 return false;
1816
1817 MVT SrcVT = SrcEVT.getSimpleVT();
1818 MVT DestVT = DestEVT.getSimpleVT();
1819 unsigned ResultReg = createResultReg(&Mips::GPR32RegClass);
1820
1821 if (!emitIntExt(SrcVT, SrcReg, DestVT, ResultReg, isZExt))
1822 return false;
1823 updateValueMap(I, ResultReg);
1824 return true;
1825 }
1826
emitIntSExt32r1(MVT SrcVT,unsigned SrcReg,MVT DestVT,unsigned DestReg)1827 bool MipsFastISel::emitIntSExt32r1(MVT SrcVT, unsigned SrcReg, MVT DestVT,
1828 unsigned DestReg) {
1829 unsigned ShiftAmt;
1830 switch (SrcVT.SimpleTy) {
1831 default:
1832 return false;
1833 case MVT::i8:
1834 ShiftAmt = 24;
1835 break;
1836 case MVT::i16:
1837 ShiftAmt = 16;
1838 break;
1839 }
1840 unsigned TempReg = createResultReg(&Mips::GPR32RegClass);
1841 emitInst(Mips::SLL, TempReg).addReg(SrcReg).addImm(ShiftAmt);
1842 emitInst(Mips::SRA, DestReg).addReg(TempReg).addImm(ShiftAmt);
1843 return true;
1844 }
1845
emitIntSExt32r2(MVT SrcVT,unsigned SrcReg,MVT DestVT,unsigned DestReg)1846 bool MipsFastISel::emitIntSExt32r2(MVT SrcVT, unsigned SrcReg, MVT DestVT,
1847 unsigned DestReg) {
1848 switch (SrcVT.SimpleTy) {
1849 default:
1850 return false;
1851 case MVT::i8:
1852 emitInst(Mips::SEB, DestReg).addReg(SrcReg);
1853 break;
1854 case MVT::i16:
1855 emitInst(Mips::SEH, DestReg).addReg(SrcReg);
1856 break;
1857 }
1858 return true;
1859 }
1860
emitIntSExt(MVT SrcVT,unsigned SrcReg,MVT DestVT,unsigned DestReg)1861 bool MipsFastISel::emitIntSExt(MVT SrcVT, unsigned SrcReg, MVT DestVT,
1862 unsigned DestReg) {
1863 if ((DestVT != MVT::i32) && (DestVT != MVT::i16))
1864 return false;
1865 if (Subtarget->hasMips32r2())
1866 return emitIntSExt32r2(SrcVT, SrcReg, DestVT, DestReg);
1867 return emitIntSExt32r1(SrcVT, SrcReg, DestVT, DestReg);
1868 }
1869
emitIntZExt(MVT SrcVT,unsigned SrcReg,MVT DestVT,unsigned DestReg)1870 bool MipsFastISel::emitIntZExt(MVT SrcVT, unsigned SrcReg, MVT DestVT,
1871 unsigned DestReg) {
1872 int64_t Imm;
1873
1874 switch (SrcVT.SimpleTy) {
1875 default:
1876 return false;
1877 case MVT::i1:
1878 Imm = 1;
1879 break;
1880 case MVT::i8:
1881 Imm = 0xff;
1882 break;
1883 case MVT::i16:
1884 Imm = 0xffff;
1885 break;
1886 }
1887
1888 emitInst(Mips::ANDi, DestReg).addReg(SrcReg).addImm(Imm);
1889 return true;
1890 }
1891
emitIntExt(MVT SrcVT,unsigned SrcReg,MVT DestVT,unsigned DestReg,bool IsZExt)1892 bool MipsFastISel::emitIntExt(MVT SrcVT, unsigned SrcReg, MVT DestVT,
1893 unsigned DestReg, bool IsZExt) {
1894 // FastISel does not have plumbing to deal with extensions where the SrcVT or
1895 // DestVT are odd things, so test to make sure that they are both types we can
1896 // handle (i1/i8/i16/i32 for SrcVT and i8/i16/i32/i64 for DestVT), otherwise
1897 // bail out to SelectionDAG.
1898 if (((DestVT != MVT::i8) && (DestVT != MVT::i16) && (DestVT != MVT::i32)) ||
1899 ((SrcVT != MVT::i1) && (SrcVT != MVT::i8) && (SrcVT != MVT::i16)))
1900 return false;
1901 if (IsZExt)
1902 return emitIntZExt(SrcVT, SrcReg, DestVT, DestReg);
1903 return emitIntSExt(SrcVT, SrcReg, DestVT, DestReg);
1904 }
1905
emitIntExt(MVT SrcVT,unsigned SrcReg,MVT DestVT,bool isZExt)1906 unsigned MipsFastISel::emitIntExt(MVT SrcVT, unsigned SrcReg, MVT DestVT,
1907 bool isZExt) {
1908 unsigned DestReg = createResultReg(&Mips::GPR32RegClass);
1909 bool Success = emitIntExt(SrcVT, SrcReg, DestVT, DestReg, isZExt);
1910 return Success ? DestReg : 0;
1911 }
1912
selectDivRem(const Instruction * I,unsigned ISDOpcode)1913 bool MipsFastISel::selectDivRem(const Instruction *I, unsigned ISDOpcode) {
1914 EVT DestEVT = TLI.getValueType(DL, I->getType(), true);
1915 if (!DestEVT.isSimple())
1916 return false;
1917
1918 MVT DestVT = DestEVT.getSimpleVT();
1919 if (DestVT != MVT::i32)
1920 return false;
1921
1922 unsigned DivOpc;
1923 switch (ISDOpcode) {
1924 default:
1925 return false;
1926 case ISD::SDIV:
1927 case ISD::SREM:
1928 DivOpc = Mips::SDIV;
1929 break;
1930 case ISD::UDIV:
1931 case ISD::UREM:
1932 DivOpc = Mips::UDIV;
1933 break;
1934 }
1935
1936 unsigned Src0Reg = getRegForValue(I->getOperand(0));
1937 unsigned Src1Reg = getRegForValue(I->getOperand(1));
1938 if (!Src0Reg || !Src1Reg)
1939 return false;
1940
1941 emitInst(DivOpc).addReg(Src0Reg).addReg(Src1Reg);
1942 emitInst(Mips::TEQ).addReg(Src1Reg).addReg(Mips::ZERO).addImm(7);
1943
1944 unsigned ResultReg = createResultReg(&Mips::GPR32RegClass);
1945 if (!ResultReg)
1946 return false;
1947
1948 unsigned MFOpc = (ISDOpcode == ISD::SREM || ISDOpcode == ISD::UREM)
1949 ? Mips::MFHI
1950 : Mips::MFLO;
1951 emitInst(MFOpc, ResultReg);
1952
1953 updateValueMap(I, ResultReg);
1954 return true;
1955 }
1956
selectShift(const Instruction * I)1957 bool MipsFastISel::selectShift(const Instruction *I) {
1958 MVT RetVT;
1959
1960 if (!isTypeSupported(I->getType(), RetVT))
1961 return false;
1962
1963 unsigned ResultReg = createResultReg(&Mips::GPR32RegClass);
1964 if (!ResultReg)
1965 return false;
1966
1967 unsigned Opcode = I->getOpcode();
1968 const Value *Op0 = I->getOperand(0);
1969 unsigned Op0Reg = getRegForValue(Op0);
1970 if (!Op0Reg)
1971 return false;
1972
1973 // If AShr or LShr, then we need to make sure the operand0 is sign extended.
1974 if (Opcode == Instruction::AShr || Opcode == Instruction::LShr) {
1975 unsigned TempReg = createResultReg(&Mips::GPR32RegClass);
1976 if (!TempReg)
1977 return false;
1978
1979 MVT Op0MVT = TLI.getValueType(DL, Op0->getType(), true).getSimpleVT();
1980 bool IsZExt = Opcode == Instruction::LShr;
1981 if (!emitIntExt(Op0MVT, Op0Reg, MVT::i32, TempReg, IsZExt))
1982 return false;
1983
1984 Op0Reg = TempReg;
1985 }
1986
1987 if (const auto *C = dyn_cast<ConstantInt>(I->getOperand(1))) {
1988 uint64_t ShiftVal = C->getZExtValue();
1989
1990 switch (Opcode) {
1991 default:
1992 llvm_unreachable("Unexpected instruction.");
1993 case Instruction::Shl:
1994 Opcode = Mips::SLL;
1995 break;
1996 case Instruction::AShr:
1997 Opcode = Mips::SRA;
1998 break;
1999 case Instruction::LShr:
2000 Opcode = Mips::SRL;
2001 break;
2002 }
2003
2004 emitInst(Opcode, ResultReg).addReg(Op0Reg).addImm(ShiftVal);
2005 updateValueMap(I, ResultReg);
2006 return true;
2007 }
2008
2009 unsigned Op1Reg = getRegForValue(I->getOperand(1));
2010 if (!Op1Reg)
2011 return false;
2012
2013 switch (Opcode) {
2014 default:
2015 llvm_unreachable("Unexpected instruction.");
2016 case Instruction::Shl:
2017 Opcode = Mips::SLLV;
2018 break;
2019 case Instruction::AShr:
2020 Opcode = Mips::SRAV;
2021 break;
2022 case Instruction::LShr:
2023 Opcode = Mips::SRLV;
2024 break;
2025 }
2026
2027 emitInst(Opcode, ResultReg).addReg(Op0Reg).addReg(Op1Reg);
2028 updateValueMap(I, ResultReg);
2029 return true;
2030 }
2031
fastSelectInstruction(const Instruction * I)2032 bool MipsFastISel::fastSelectInstruction(const Instruction *I) {
2033 switch (I->getOpcode()) {
2034 default:
2035 break;
2036 case Instruction::Load:
2037 return selectLoad(I);
2038 case Instruction::Store:
2039 return selectStore(I);
2040 case Instruction::SDiv:
2041 if (!selectBinaryOp(I, ISD::SDIV))
2042 return selectDivRem(I, ISD::SDIV);
2043 return true;
2044 case Instruction::UDiv:
2045 if (!selectBinaryOp(I, ISD::UDIV))
2046 return selectDivRem(I, ISD::UDIV);
2047 return true;
2048 case Instruction::SRem:
2049 if (!selectBinaryOp(I, ISD::SREM))
2050 return selectDivRem(I, ISD::SREM);
2051 return true;
2052 case Instruction::URem:
2053 if (!selectBinaryOp(I, ISD::UREM))
2054 return selectDivRem(I, ISD::UREM);
2055 return true;
2056 case Instruction::Shl:
2057 case Instruction::LShr:
2058 case Instruction::AShr:
2059 return selectShift(I);
2060 case Instruction::And:
2061 case Instruction::Or:
2062 case Instruction::Xor:
2063 return selectLogicalOp(I);
2064 case Instruction::Br:
2065 return selectBranch(I);
2066 case Instruction::Ret:
2067 return selectRet(I);
2068 case Instruction::Trunc:
2069 return selectTrunc(I);
2070 case Instruction::ZExt:
2071 case Instruction::SExt:
2072 return selectIntExt(I);
2073 case Instruction::FPTrunc:
2074 return selectFPTrunc(I);
2075 case Instruction::FPExt:
2076 return selectFPExt(I);
2077 case Instruction::FPToSI:
2078 return selectFPToInt(I, /*isSigned*/ true);
2079 case Instruction::FPToUI:
2080 return selectFPToInt(I, /*isSigned*/ false);
2081 case Instruction::ICmp:
2082 case Instruction::FCmp:
2083 return selectCmp(I);
2084 case Instruction::Select:
2085 return selectSelect(I);
2086 }
2087 return false;
2088 }
2089
getRegEnsuringSimpleIntegerWidening(const Value * V,bool IsUnsigned)2090 unsigned MipsFastISel::getRegEnsuringSimpleIntegerWidening(const Value *V,
2091 bool IsUnsigned) {
2092 unsigned VReg = getRegForValue(V);
2093 if (VReg == 0)
2094 return 0;
2095 MVT VMVT = TLI.getValueType(DL, V->getType(), true).getSimpleVT();
2096
2097 if (VMVT == MVT::i1)
2098 return 0;
2099
2100 if ((VMVT == MVT::i8) || (VMVT == MVT::i16)) {
2101 unsigned TempReg = createResultReg(&Mips::GPR32RegClass);
2102 if (!emitIntExt(VMVT, VReg, MVT::i32, TempReg, IsUnsigned))
2103 return 0;
2104 VReg = TempReg;
2105 }
2106 return VReg;
2107 }
2108
simplifyAddress(Address & Addr)2109 void MipsFastISel::simplifyAddress(Address &Addr) {
2110 if (!isInt<16>(Addr.getOffset())) {
2111 unsigned TempReg =
2112 materialize32BitInt(Addr.getOffset(), &Mips::GPR32RegClass);
2113 unsigned DestReg = createResultReg(&Mips::GPR32RegClass);
2114 emitInst(Mips::ADDu, DestReg).addReg(TempReg).addReg(Addr.getReg());
2115 Addr.setReg(DestReg);
2116 Addr.setOffset(0);
2117 }
2118 }
2119
fastEmitInst_rr(unsigned MachineInstOpcode,const TargetRegisterClass * RC,unsigned Op0,bool Op0IsKill,unsigned Op1,bool Op1IsKill)2120 unsigned MipsFastISel::fastEmitInst_rr(unsigned MachineInstOpcode,
2121 const TargetRegisterClass *RC,
2122 unsigned Op0, bool Op0IsKill,
2123 unsigned Op1, bool Op1IsKill) {
2124 // We treat the MUL instruction in a special way because it clobbers
2125 // the HI0 & LO0 registers. The TableGen definition of this instruction can
2126 // mark these registers only as implicitly defined. As a result, the
2127 // register allocator runs out of registers when this instruction is
2128 // followed by another instruction that defines the same registers too.
2129 // We can fix this by explicitly marking those registers as dead.
2130 if (MachineInstOpcode == Mips::MUL) {
2131 unsigned ResultReg = createResultReg(RC);
2132 const MCInstrDesc &II = TII.get(MachineInstOpcode);
2133 Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs());
2134 Op1 = constrainOperandRegClass(II, Op1, II.getNumDefs() + 1);
2135 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
2136 .addReg(Op0, getKillRegState(Op0IsKill))
2137 .addReg(Op1, getKillRegState(Op1IsKill))
2138 .addReg(Mips::HI0, RegState::ImplicitDefine | RegState::Dead)
2139 .addReg(Mips::LO0, RegState::ImplicitDefine | RegState::Dead);
2140 return ResultReg;
2141 }
2142
2143 return FastISel::fastEmitInst_rr(MachineInstOpcode, RC, Op0, Op0IsKill, Op1,
2144 Op1IsKill);
2145 }
2146
2147 namespace llvm {
2148
createFastISel(FunctionLoweringInfo & funcInfo,const TargetLibraryInfo * libInfo)2149 FastISel *Mips::createFastISel(FunctionLoweringInfo &funcInfo,
2150 const TargetLibraryInfo *libInfo) {
2151 return new MipsFastISel(funcInfo, libInfo);
2152 }
2153
2154 } // end namespace llvm
2155