1 //===-- ARMSubtarget.cpp - ARM Subtarget Information ----------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the ARM specific subclass of TargetSubtargetInfo. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "ARM.h" 15 16 #include "ARMCallLowering.h" 17 #include "ARMLegalizerInfo.h" 18 #include "ARMRegisterBankInfo.h" 19 #include "ARMSubtarget.h" 20 #include "ARMFrameLowering.h" 21 #include "ARMInstrInfo.h" 22 #include "ARMSubtarget.h" 23 #include "ARMTargetMachine.h" 24 #include "MCTargetDesc/ARMMCTargetDesc.h" 25 #include "Thumb1FrameLowering.h" 26 #include "Thumb1InstrInfo.h" 27 #include "Thumb2InstrInfo.h" 28 #include "llvm/ADT/StringRef.h" 29 #include "llvm/ADT/Triple.h" 30 #include "llvm/ADT/Twine.h" 31 #include "llvm/CodeGen/GlobalISel/InstructionSelect.h" 32 #include "llvm/CodeGen/MachineFunction.h" 33 #include "llvm/IR/Function.h" 34 #include "llvm/IR/GlobalValue.h" 35 #include "llvm/MC/MCAsmInfo.h" 36 #include "llvm/MC/MCTargetOptions.h" 37 #include "llvm/Support/CodeGen.h" 38 #include "llvm/Support/CommandLine.h" 39 #include "llvm/Support/TargetParser.h" 40 #include "llvm/Target/TargetOptions.h" 41 42 using namespace llvm; 43 44 #define DEBUG_TYPE "arm-subtarget" 45 46 #define GET_SUBTARGETINFO_TARGET_DESC 47 #define GET_SUBTARGETINFO_CTOR 48 #include "ARMGenSubtargetInfo.inc" 49 50 static cl::opt<bool> 51 UseFusedMulOps("arm-use-mulops", 52 cl::init(true), cl::Hidden); 53 54 enum ITMode { 55 DefaultIT, 56 RestrictedIT, 57 NoRestrictedIT 58 }; 59 60 static cl::opt<ITMode> 61 IT(cl::desc("IT block support"), cl::Hidden, cl::init(DefaultIT), 62 cl::ZeroOrMore, 63 cl::values(clEnumValN(DefaultIT, "arm-default-it", 64 "Generate IT block based on arch"), 65 clEnumValN(RestrictedIT, "arm-restrict-it", 66 "Disallow deprecated IT based on ARMv8"), 67 clEnumValN(NoRestrictedIT, "arm-no-restrict-it", 68 "Allow IT blocks based on ARMv7"))); 69 70 /// ForceFastISel - Use the fast-isel, even for subtargets where it is not 71 /// currently supported (for testing only). 72 static cl::opt<bool> 73 ForceFastISel("arm-force-fast-isel", 74 cl::init(false), cl::Hidden); 75 76 /// initializeSubtargetDependencies - Initializes using a CPU and feature string 77 /// so that we can use initializer lists for subtarget initialization. 78 ARMSubtarget &ARMSubtarget::initializeSubtargetDependencies(StringRef CPU, 79 StringRef FS) { 80 initializeEnvironment(); 81 initSubtargetFeatures(CPU, FS); 82 return *this; 83 } 84 85 ARMFrameLowering *ARMSubtarget::initializeFrameLowering(StringRef CPU, 86 StringRef FS) { 87 ARMSubtarget &STI = initializeSubtargetDependencies(CPU, FS); 88 if (STI.isThumb1Only()) 89 return (ARMFrameLowering *)new Thumb1FrameLowering(STI); 90 91 return new ARMFrameLowering(STI); 92 } 93 94 ARMSubtarget::ARMSubtarget(const Triple &TT, const std::string &CPU, 95 const std::string &FS, 96 const ARMBaseTargetMachine &TM, bool IsLittle) 97 : ARMGenSubtargetInfo(TT, CPU, FS), UseMulOps(UseFusedMulOps), 98 CPUString(CPU), IsLittle(IsLittle), TargetTriple(TT), Options(TM.Options), 99 TM(TM), FrameLowering(initializeFrameLowering(CPU, FS)), 100 // At this point initializeSubtargetDependencies has been called so 101 // we can query directly. 102 InstrInfo(isThumb1Only() 103 ? (ARMBaseInstrInfo *)new Thumb1InstrInfo(*this) 104 : !isThumb() 105 ? (ARMBaseInstrInfo *)new ARMInstrInfo(*this) 106 : (ARMBaseInstrInfo *)new Thumb2InstrInfo(*this)), 107 TLInfo(TM, *this) { 108 109 CallLoweringInfo.reset(new ARMCallLowering(*getTargetLowering())); 110 Legalizer.reset(new ARMLegalizerInfo(*this)); 111 112 auto *RBI = new ARMRegisterBankInfo(*getRegisterInfo()); 113 114 // FIXME: At this point, we can't rely on Subtarget having RBI. 115 // It's awkward to mix passing RBI and the Subtarget; should we pass 116 // TII/TRI as well? 117 InstSelector.reset(createARMInstructionSelector( 118 *static_cast<const ARMBaseTargetMachine *>(&TM), *this, *RBI)); 119 120 RegBankInfo.reset(RBI); 121 } 122 123 const CallLowering *ARMSubtarget::getCallLowering() const { 124 return CallLoweringInfo.get(); 125 } 126 127 const InstructionSelector *ARMSubtarget::getInstructionSelector() const { 128 return InstSelector.get(); 129 } 130 131 const LegalizerInfo *ARMSubtarget::getLegalizerInfo() const { 132 return Legalizer.get(); 133 } 134 135 const RegisterBankInfo *ARMSubtarget::getRegBankInfo() const { 136 return RegBankInfo.get(); 137 } 138 139 bool ARMSubtarget::isXRaySupported() const { 140 // We don't currently suppport Thumb, but Windows requires Thumb. 141 return hasV6Ops() && hasARMOps() && !isTargetWindows(); 142 } 143 144 void ARMSubtarget::initializeEnvironment() { 145 // MCAsmInfo isn't always present (e.g. in opt) so we can't initialize this 146 // directly from it, but we can try to make sure they're consistent when both 147 // available. 148 UseSjLjEH = (isTargetDarwin() && !isTargetWatchABI() && 149 Options.ExceptionModel == ExceptionHandling::None) || 150 Options.ExceptionModel == ExceptionHandling::SjLj; 151 assert((!TM.getMCAsmInfo() || 152 (TM.getMCAsmInfo()->getExceptionHandlingType() == 153 ExceptionHandling::SjLj) == UseSjLjEH) && 154 "inconsistent sjlj choice between CodeGen and MC"); 155 } 156 157 void ARMSubtarget::initSubtargetFeatures(StringRef CPU, StringRef FS) { 158 if (CPUString.empty()) { 159 CPUString = "generic"; 160 161 if (isTargetDarwin()) { 162 StringRef ArchName = TargetTriple.getArchName(); 163 ARM::ArchKind AK = ARM::parseArch(ArchName); 164 if (AK == ARM::ArchKind::ARMV7S) 165 // Default to the Swift CPU when targeting armv7s/thumbv7s. 166 CPUString = "swift"; 167 else if (AK == ARM::ArchKind::ARMV7K) 168 // Default to the Cortex-a7 CPU when targeting armv7k/thumbv7k. 169 // ARMv7k does not use SjLj exception handling. 170 CPUString = "cortex-a7"; 171 } 172 } 173 174 // Insert the architecture feature derived from the target triple into the 175 // feature string. This is important for setting features that are implied 176 // based on the architecture version. 177 std::string ArchFS = ARM_MC::ParseARMTriple(TargetTriple, CPUString); 178 if (!FS.empty()) { 179 if (!ArchFS.empty()) 180 ArchFS = (Twine(ArchFS) + "," + FS).str(); 181 else 182 ArchFS = FS; 183 } 184 ParseSubtargetFeatures(CPUString, ArchFS); 185 186 // FIXME: This used enable V6T2 support implicitly for Thumb2 mode. 187 // Assert this for now to make the change obvious. 188 assert(hasV6T2Ops() || !hasThumb2()); 189 190 // Execute only support requires movt support 191 if (genExecuteOnly()) { 192 NoMovt = false; 193 assert(hasV8MBaselineOps() && "Cannot generate execute-only code for this target"); 194 } 195 196 // Keep a pointer to static instruction cost data for the specified CPU. 197 SchedModel = getSchedModelForCPU(CPUString); 198 199 // Initialize scheduling itinerary for the specified CPU. 200 InstrItins = getInstrItineraryForCPU(CPUString); 201 202 // FIXME: this is invalid for WindowsCE 203 if (isTargetWindows()) 204 NoARM = true; 205 206 if (isAAPCS_ABI()) 207 stackAlignment = 8; 208 if (isTargetNaCl() || isAAPCS16_ABI()) 209 stackAlignment = 16; 210 211 // FIXME: Completely disable sibcall for Thumb1 since ThumbRegisterInfo:: 212 // emitEpilogue is not ready for them. Thumb tail calls also use t2B, as 213 // the Thumb1 16-bit unconditional branch doesn't have sufficient relocation 214 // support in the assembler and linker to be used. This would need to be 215 // fixed to fully support tail calls in Thumb1. 216 // 217 // For ARMv8-M, we /do/ implement tail calls. Doing this is tricky for v8-M 218 // baseline, since the LDM/POP instruction on Thumb doesn't take LR. This 219 // means if we need to reload LR, it takes extra instructions, which outweighs 220 // the value of the tail call; but here we don't know yet whether LR is going 221 // to be used. We take the optimistic approach of generating the tail call and 222 // perhaps taking a hit if we need to restore the LR. 223 224 // Thumb1 PIC calls to external symbols use BX, so they can be tail calls, 225 // but we need to make sure there are enough registers; the only valid 226 // registers are the 4 used for parameters. We don't currently do this 227 // case. 228 229 SupportsTailCall = !isThumb() || hasV8MBaselineOps(); 230 231 if (isTargetMachO() && isTargetIOS() && getTargetTriple().isOSVersionLT(5, 0)) 232 SupportsTailCall = false; 233 234 switch (IT) { 235 case DefaultIT: 236 RestrictIT = hasV8Ops(); 237 break; 238 case RestrictedIT: 239 RestrictIT = true; 240 break; 241 case NoRestrictedIT: 242 RestrictIT = false; 243 break; 244 } 245 246 // NEON f32 ops are non-IEEE 754 compliant. Darwin is ok with it by default. 247 const FeatureBitset &Bits = getFeatureBits(); 248 if ((Bits[ARM::ProcA5] || Bits[ARM::ProcA8]) && // Where this matters 249 (Options.UnsafeFPMath || isTargetDarwin())) 250 UseNEONForSinglePrecisionFP = true; 251 252 if (isRWPI()) 253 ReserveR9 = true; 254 255 // FIXME: Teach TableGen to deal with these instead of doing it manually here. 256 switch (ARMProcFamily) { 257 case Others: 258 case CortexA5: 259 break; 260 case CortexA7: 261 LdStMultipleTiming = DoubleIssue; 262 break; 263 case CortexA8: 264 LdStMultipleTiming = DoubleIssue; 265 break; 266 case CortexA9: 267 LdStMultipleTiming = DoubleIssueCheckUnalignedAccess; 268 PreISelOperandLatencyAdjustment = 1; 269 break; 270 case CortexA12: 271 break; 272 case CortexA15: 273 MaxInterleaveFactor = 2; 274 PreISelOperandLatencyAdjustment = 1; 275 PartialUpdateClearance = 12; 276 break; 277 case CortexA17: 278 case CortexA32: 279 case CortexA35: 280 case CortexA53: 281 case CortexA55: 282 case CortexA57: 283 case CortexA72: 284 case CortexA73: 285 case CortexA75: 286 case CortexR4: 287 case CortexR4F: 288 case CortexR5: 289 case CortexR7: 290 case CortexM3: 291 case CortexR52: 292 break; 293 case Exynos: 294 LdStMultipleTiming = SingleIssuePlusExtras; 295 MaxInterleaveFactor = 4; 296 if (!isThumb()) 297 PrefLoopAlignment = 3; 298 break; 299 case Kryo: 300 break; 301 case Krait: 302 PreISelOperandLatencyAdjustment = 1; 303 break; 304 case Swift: 305 MaxInterleaveFactor = 2; 306 LdStMultipleTiming = SingleIssuePlusExtras; 307 PreISelOperandLatencyAdjustment = 1; 308 PartialUpdateClearance = 12; 309 break; 310 } 311 } 312 313 bool ARMSubtarget::isTargetHardFloat() const { return TM.isTargetHardFloat(); } 314 315 bool ARMSubtarget::isAPCS_ABI() const { 316 assert(TM.TargetABI != ARMBaseTargetMachine::ARM_ABI_UNKNOWN); 317 return TM.TargetABI == ARMBaseTargetMachine::ARM_ABI_APCS; 318 } 319 bool ARMSubtarget::isAAPCS_ABI() const { 320 assert(TM.TargetABI != ARMBaseTargetMachine::ARM_ABI_UNKNOWN); 321 return TM.TargetABI == ARMBaseTargetMachine::ARM_ABI_AAPCS || 322 TM.TargetABI == ARMBaseTargetMachine::ARM_ABI_AAPCS16; 323 } 324 bool ARMSubtarget::isAAPCS16_ABI() const { 325 assert(TM.TargetABI != ARMBaseTargetMachine::ARM_ABI_UNKNOWN); 326 return TM.TargetABI == ARMBaseTargetMachine::ARM_ABI_AAPCS16; 327 } 328 329 bool ARMSubtarget::isROPI() const { 330 return TM.getRelocationModel() == Reloc::ROPI || 331 TM.getRelocationModel() == Reloc::ROPI_RWPI; 332 } 333 bool ARMSubtarget::isRWPI() const { 334 return TM.getRelocationModel() == Reloc::RWPI || 335 TM.getRelocationModel() == Reloc::ROPI_RWPI; 336 } 337 338 bool ARMSubtarget::isGVIndirectSymbol(const GlobalValue *GV) const { 339 if (!TM.shouldAssumeDSOLocal(*GV->getParent(), GV)) 340 return true; 341 342 // 32 bit macho has no relocation for a-b if a is undefined, even if b is in 343 // the section that is being relocated. This means we have to use o load even 344 // for GVs that are known to be local to the dso. 345 if (isTargetMachO() && TM.isPositionIndependent() && 346 (GV->isDeclarationForLinker() || GV->hasCommonLinkage())) 347 return true; 348 349 return false; 350 } 351 352 bool ARMSubtarget::isGVInGOT(const GlobalValue *GV) const { 353 return isTargetELF() && TM.isPositionIndependent() && 354 !TM.shouldAssumeDSOLocal(*GV->getParent(), GV); 355 } 356 357 unsigned ARMSubtarget::getMispredictionPenalty() const { 358 return SchedModel.MispredictPenalty; 359 } 360 361 bool ARMSubtarget::enableMachineScheduler() const { 362 // Enable the MachineScheduler before register allocation for subtargets 363 // with the use-misched feature. 364 return useMachineScheduler(); 365 } 366 367 // This overrides the PostRAScheduler bit in the SchedModel for any CPU. 368 bool ARMSubtarget::enablePostRAScheduler() const { 369 if (disablePostRAScheduler()) 370 return false; 371 // Don't reschedule potential IT blocks. 372 return !isThumb1Only(); 373 } 374 375 bool ARMSubtarget::enableAtomicExpand() const { return hasAnyDataBarrier(); } 376 377 bool ARMSubtarget::useStride4VFPs(const MachineFunction &MF) const { 378 // For general targets, the prologue can grow when VFPs are allocated with 379 // stride 4 (more vpush instructions). But WatchOS uses a compact unwind 380 // format which it's more important to get right. 381 return isTargetWatchABI() || 382 (useWideStrideVFP() && !MF.getFunction().optForMinSize()); 383 } 384 385 bool ARMSubtarget::useMovt(const MachineFunction &MF) const { 386 // NOTE Windows on ARM needs to use mov.w/mov.t pairs to materialise 32-bit 387 // immediates as it is inherently position independent, and may be out of 388 // range otherwise. 389 return !NoMovt && hasV8MBaselineOps() && 390 (isTargetWindows() || !MF.getFunction().optForMinSize() || genExecuteOnly()); 391 } 392 393 bool ARMSubtarget::useFastISel() const { 394 // Enable fast-isel for any target, for testing only. 395 if (ForceFastISel) 396 return true; 397 398 // Limit fast-isel to the targets that are or have been tested. 399 if (!hasV6Ops()) 400 return false; 401 402 // Thumb2 support on iOS; ARM support on iOS, Linux and NaCl. 403 return TM.Options.EnableFastISel && 404 ((isTargetMachO() && !isThumb1Only()) || 405 (isTargetLinux() && !isThumb()) || (isTargetNaCl() && !isThumb())); 406 } 407