1 //===- ARMConstantIslandPass.cpp - ARM constant islands -------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains a pass that splits the constant pool up into 'islands' 11 // which are scattered through-out the function. This is required due to the 12 // limited pc-relative displacements that ARM has. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "ARM.h" 17 #include "ARMBaseInstrInfo.h" 18 #include "ARMBasicBlockInfo.h" 19 #include "ARMMachineFunctionInfo.h" 20 #include "ARMSubtarget.h" 21 #include "MCTargetDesc/ARMBaseInfo.h" 22 #include "Thumb2InstrInfo.h" 23 #include "Utils/ARMBaseInfo.h" 24 #include "llvm/ADT/DenseMap.h" 25 #include "llvm/ADT/STLExtras.h" 26 #include "llvm/ADT/SmallSet.h" 27 #include "llvm/ADT/SmallVector.h" 28 #include "llvm/ADT/Statistic.h" 29 #include "llvm/ADT/StringRef.h" 30 #include "llvm/CodeGen/MachineBasicBlock.h" 31 #include "llvm/CodeGen/MachineConstantPool.h" 32 #include "llvm/CodeGen/MachineFunction.h" 33 #include "llvm/CodeGen/MachineFunctionPass.h" 34 #include "llvm/CodeGen/MachineInstr.h" 35 #include "llvm/CodeGen/MachineJumpTableInfo.h" 36 #include "llvm/CodeGen/MachineOperand.h" 37 #include "llvm/CodeGen/MachineRegisterInfo.h" 38 #include "llvm/Config/llvm-config.h" 39 #include "llvm/IR/DataLayout.h" 40 #include "llvm/IR/DebugLoc.h" 41 #include "llvm/MC/MCInstrDesc.h" 42 #include "llvm/Pass.h" 43 #include "llvm/Support/CommandLine.h" 44 #include "llvm/Support/Compiler.h" 45 #include "llvm/Support/Debug.h" 46 #include "llvm/Support/ErrorHandling.h" 47 #include "llvm/Support/Format.h" 48 #include "llvm/Support/MathExtras.h" 49 #include "llvm/Support/raw_ostream.h" 50 #include <algorithm> 51 #include <cassert> 52 #include <cstdint> 53 #include <iterator> 54 #include <utility> 55 #include <vector> 56 57 using namespace llvm; 58 59 #define DEBUG_TYPE "arm-cp-islands" 60 61 #define ARM_CP_ISLANDS_OPT_NAME \ 62 "ARM constant island placement and branch shortening pass" 63 STATISTIC(NumCPEs, "Number of constpool entries"); 64 STATISTIC(NumSplit, "Number of uncond branches inserted"); 65 STATISTIC(NumCBrFixed, "Number of cond branches fixed"); 66 STATISTIC(NumUBrFixed, "Number of uncond branches fixed"); 67 STATISTIC(NumTBs, "Number of table branches generated"); 68 STATISTIC(NumT2CPShrunk, "Number of Thumb2 constantpool instructions shrunk"); 69 STATISTIC(NumT2BrShrunk, "Number of Thumb2 immediate branches shrunk"); 70 STATISTIC(NumCBZ, "Number of CBZ / CBNZ formed"); 71 STATISTIC(NumJTMoved, "Number of jump table destination blocks moved"); 72 STATISTIC(NumJTInserted, "Number of jump table intermediate blocks inserted"); 73 74 static cl::opt<bool> 75 AdjustJumpTableBlocks("arm-adjust-jump-tables", cl::Hidden, cl::init(true), 76 cl::desc("Adjust basic block layout to better use TB[BH]")); 77 78 static cl::opt<unsigned> 79 CPMaxIteration("arm-constant-island-max-iteration", cl::Hidden, cl::init(30), 80 cl::desc("The max number of iteration for converge")); 81 82 static cl::opt<bool> SynthesizeThumb1TBB( 83 "arm-synthesize-thumb-1-tbb", cl::Hidden, cl::init(true), 84 cl::desc("Use compressed jump tables in Thumb-1 by synthesizing an " 85 "equivalent to the TBB/TBH instructions")); 86 87 namespace { 88 89 /// ARMConstantIslands - Due to limited PC-relative displacements, ARM 90 /// requires constant pool entries to be scattered among the instructions 91 /// inside a function. To do this, it completely ignores the normal LLVM 92 /// constant pool; instead, it places constants wherever it feels like with 93 /// special instructions. 94 /// 95 /// The terminology used in this pass includes: 96 /// Islands - Clumps of constants placed in the function. 97 /// Water - Potential places where an island could be formed. 98 /// CPE - A constant pool entry that has been placed somewhere, which 99 /// tracks a list of users. 100 class ARMConstantIslands : public MachineFunctionPass { 101 std::vector<BasicBlockInfo> BBInfo; 102 103 /// WaterList - A sorted list of basic blocks where islands could be placed 104 /// (i.e. blocks that don't fall through to the following block, due 105 /// to a return, unreachable, or unconditional branch). 106 std::vector<MachineBasicBlock*> WaterList; 107 108 /// NewWaterList - The subset of WaterList that was created since the 109 /// previous iteration by inserting unconditional branches. 110 SmallSet<MachineBasicBlock*, 4> NewWaterList; 111 112 using water_iterator = std::vector<MachineBasicBlock *>::iterator; 113 114 /// CPUser - One user of a constant pool, keeping the machine instruction 115 /// pointer, the constant pool being referenced, and the max displacement 116 /// allowed from the instruction to the CP. The HighWaterMark records the 117 /// highest basic block where a new CPEntry can be placed. To ensure this 118 /// pass terminates, the CP entries are initially placed at the end of the 119 /// function and then move monotonically to lower addresses. The 120 /// exception to this rule is when the current CP entry for a particular 121 /// CPUser is out of range, but there is another CP entry for the same 122 /// constant value in range. We want to use the existing in-range CP 123 /// entry, but if it later moves out of range, the search for new water 124 /// should resume where it left off. The HighWaterMark is used to record 125 /// that point. 126 struct CPUser { 127 MachineInstr *MI; 128 MachineInstr *CPEMI; 129 MachineBasicBlock *HighWaterMark; 130 unsigned MaxDisp; 131 bool NegOk; 132 bool IsSoImm; 133 bool KnownAlignment = false; 134 135 CPUser(MachineInstr *mi, MachineInstr *cpemi, unsigned maxdisp, 136 bool neg, bool soimm) 137 : MI(mi), CPEMI(cpemi), MaxDisp(maxdisp), NegOk(neg), IsSoImm(soimm) { 138 HighWaterMark = CPEMI->getParent(); 139 } 140 141 /// getMaxDisp - Returns the maximum displacement supported by MI. 142 /// Correct for unknown alignment. 143 /// Conservatively subtract 2 bytes to handle weird alignment effects. 144 unsigned getMaxDisp() const { 145 return (KnownAlignment ? MaxDisp : MaxDisp - 2) - 2; 146 } 147 }; 148 149 /// CPUsers - Keep track of all of the machine instructions that use various 150 /// constant pools and their max displacement. 151 std::vector<CPUser> CPUsers; 152 153 /// CPEntry - One per constant pool entry, keeping the machine instruction 154 /// pointer, the constpool index, and the number of CPUser's which 155 /// reference this entry. 156 struct CPEntry { 157 MachineInstr *CPEMI; 158 unsigned CPI; 159 unsigned RefCount; 160 161 CPEntry(MachineInstr *cpemi, unsigned cpi, unsigned rc = 0) 162 : CPEMI(cpemi), CPI(cpi), RefCount(rc) {} 163 }; 164 165 /// CPEntries - Keep track of all of the constant pool entry machine 166 /// instructions. For each original constpool index (i.e. those that existed 167 /// upon entry to this pass), it keeps a vector of entries. Original 168 /// elements are cloned as we go along; the clones are put in the vector of 169 /// the original element, but have distinct CPIs. 170 /// 171 /// The first half of CPEntries contains generic constants, the second half 172 /// contains jump tables. Use getCombinedIndex on a generic CPEMI to look up 173 /// which vector it will be in here. 174 std::vector<std::vector<CPEntry>> CPEntries; 175 176 /// Maps a JT index to the offset in CPEntries containing copies of that 177 /// table. The equivalent map for a CONSTPOOL_ENTRY is the identity. 178 DenseMap<int, int> JumpTableEntryIndices; 179 180 /// Maps a JT index to the LEA that actually uses the index to calculate its 181 /// base address. 182 DenseMap<int, int> JumpTableUserIndices; 183 184 /// ImmBranch - One per immediate branch, keeping the machine instruction 185 /// pointer, conditional or unconditional, the max displacement, 186 /// and (if isCond is true) the corresponding unconditional branch 187 /// opcode. 188 struct ImmBranch { 189 MachineInstr *MI; 190 unsigned MaxDisp : 31; 191 bool isCond : 1; 192 unsigned UncondBr; 193 194 ImmBranch(MachineInstr *mi, unsigned maxdisp, bool cond, unsigned ubr) 195 : MI(mi), MaxDisp(maxdisp), isCond(cond), UncondBr(ubr) {} 196 }; 197 198 /// ImmBranches - Keep track of all the immediate branch instructions. 199 std::vector<ImmBranch> ImmBranches; 200 201 /// PushPopMIs - Keep track of all the Thumb push / pop instructions. 202 SmallVector<MachineInstr*, 4> PushPopMIs; 203 204 /// T2JumpTables - Keep track of all the Thumb2 jumptable instructions. 205 SmallVector<MachineInstr*, 4> T2JumpTables; 206 207 /// HasFarJump - True if any far jump instruction has been emitted during 208 /// the branch fix up pass. 209 bool HasFarJump; 210 211 MachineFunction *MF; 212 MachineConstantPool *MCP; 213 const ARMBaseInstrInfo *TII; 214 const ARMSubtarget *STI; 215 ARMFunctionInfo *AFI; 216 bool isThumb; 217 bool isThumb1; 218 bool isThumb2; 219 bool isPositionIndependentOrROPI; 220 221 public: 222 static char ID; 223 224 ARMConstantIslands() : MachineFunctionPass(ID) {} 225 226 bool runOnMachineFunction(MachineFunction &MF) override; 227 228 MachineFunctionProperties getRequiredProperties() const override { 229 return MachineFunctionProperties().set( 230 MachineFunctionProperties::Property::NoVRegs); 231 } 232 233 StringRef getPassName() const override { 234 return ARM_CP_ISLANDS_OPT_NAME; 235 } 236 237 private: 238 void doInitialConstPlacement(std::vector<MachineInstr *> &CPEMIs); 239 void doInitialJumpTablePlacement(std::vector<MachineInstr *> &CPEMIs); 240 bool BBHasFallthrough(MachineBasicBlock *MBB); 241 CPEntry *findConstPoolEntry(unsigned CPI, const MachineInstr *CPEMI); 242 unsigned getCPELogAlign(const MachineInstr *CPEMI); 243 void scanFunctionJumpTables(); 244 void initializeFunctionInfo(const std::vector<MachineInstr*> &CPEMIs); 245 MachineBasicBlock *splitBlockBeforeInstr(MachineInstr *MI); 246 void updateForInsertedWaterBlock(MachineBasicBlock *NewBB); 247 void adjustBBOffsetsAfter(MachineBasicBlock *BB); 248 bool decrementCPEReferenceCount(unsigned CPI, MachineInstr* CPEMI); 249 unsigned getCombinedIndex(const MachineInstr *CPEMI); 250 int findInRangeCPEntry(CPUser& U, unsigned UserOffset); 251 bool findAvailableWater(CPUser&U, unsigned UserOffset, 252 water_iterator &WaterIter, bool CloserWater); 253 void createNewWater(unsigned CPUserIndex, unsigned UserOffset, 254 MachineBasicBlock *&NewMBB); 255 bool handleConstantPoolUser(unsigned CPUserIndex, bool CloserWater); 256 void removeDeadCPEMI(MachineInstr *CPEMI); 257 bool removeUnusedCPEntries(); 258 bool isCPEntryInRange(MachineInstr *MI, unsigned UserOffset, 259 MachineInstr *CPEMI, unsigned Disp, bool NegOk, 260 bool DoDump = false); 261 bool isWaterInRange(unsigned UserOffset, MachineBasicBlock *Water, 262 CPUser &U, unsigned &Growth); 263 bool isBBInRange(MachineInstr *MI, MachineBasicBlock *BB, unsigned Disp); 264 bool fixupImmediateBr(ImmBranch &Br); 265 bool fixupConditionalBr(ImmBranch &Br); 266 bool fixupUnconditionalBr(ImmBranch &Br); 267 bool undoLRSpillRestore(); 268 bool optimizeThumb2Instructions(); 269 bool optimizeThumb2Branches(); 270 bool reorderThumb2JumpTables(); 271 bool preserveBaseRegister(MachineInstr *JumpMI, MachineInstr *LEAMI, 272 unsigned &DeadSize, bool &CanDeleteLEA, 273 bool &BaseRegKill); 274 bool optimizeThumb2JumpTables(); 275 MachineBasicBlock *adjustJTTargetBlockForward(MachineBasicBlock *BB, 276 MachineBasicBlock *JTBB); 277 278 unsigned getOffsetOf(MachineInstr *MI) const; 279 unsigned getUserOffset(CPUser&) const; 280 void dumpBBs(); 281 void verify(); 282 283 bool isOffsetInRange(unsigned UserOffset, unsigned TrialOffset, 284 unsigned Disp, bool NegativeOK, bool IsSoImm = false); 285 bool isOffsetInRange(unsigned UserOffset, unsigned TrialOffset, 286 const CPUser &U) { 287 return isOffsetInRange(UserOffset, TrialOffset, 288 U.getMaxDisp(), U.NegOk, U.IsSoImm); 289 } 290 }; 291 292 } // end anonymous namespace 293 294 char ARMConstantIslands::ID = 0; 295 296 /// verify - check BBOffsets, BBSizes, alignment of islands 297 void ARMConstantIslands::verify() { 298 #ifndef NDEBUG 299 assert(std::is_sorted(MF->begin(), MF->end(), 300 [this](const MachineBasicBlock &LHS, 301 const MachineBasicBlock &RHS) { 302 return BBInfo[LHS.getNumber()].postOffset() < 303 BBInfo[RHS.getNumber()].postOffset(); 304 })); 305 LLVM_DEBUG(dbgs() << "Verifying " << CPUsers.size() << " CP users.\n"); 306 for (unsigned i = 0, e = CPUsers.size(); i != e; ++i) { 307 CPUser &U = CPUsers[i]; 308 unsigned UserOffset = getUserOffset(U); 309 // Verify offset using the real max displacement without the safety 310 // adjustment. 311 if (isCPEntryInRange(U.MI, UserOffset, U.CPEMI, U.getMaxDisp()+2, U.NegOk, 312 /* DoDump = */ true)) { 313 LLVM_DEBUG(dbgs() << "OK\n"); 314 continue; 315 } 316 LLVM_DEBUG(dbgs() << "Out of range.\n"); 317 dumpBBs(); 318 LLVM_DEBUG(MF->dump()); 319 llvm_unreachable("Constant pool entry out of range!"); 320 } 321 #endif 322 } 323 324 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 325 /// print block size and offset information - debugging 326 LLVM_DUMP_METHOD void ARMConstantIslands::dumpBBs() { 327 LLVM_DEBUG({ 328 for (unsigned J = 0, E = BBInfo.size(); J !=E; ++J) { 329 const BasicBlockInfo &BBI = BBInfo[J]; 330 dbgs() << format("%08x %bb.%u\t", BBI.Offset, J) 331 << " kb=" << unsigned(BBI.KnownBits) 332 << " ua=" << unsigned(BBI.Unalign) 333 << " pa=" << unsigned(BBI.PostAlign) 334 << format(" size=%#x\n", BBInfo[J].Size); 335 } 336 }); 337 } 338 #endif 339 340 bool ARMConstantIslands::runOnMachineFunction(MachineFunction &mf) { 341 MF = &mf; 342 MCP = mf.getConstantPool(); 343 344 LLVM_DEBUG(dbgs() << "***** ARMConstantIslands: " 345 << MCP->getConstants().size() << " CP entries, aligned to " 346 << MCP->getConstantPoolAlignment() << " bytes *****\n"); 347 348 STI = &static_cast<const ARMSubtarget &>(MF->getSubtarget()); 349 TII = STI->getInstrInfo(); 350 isPositionIndependentOrROPI = 351 STI->getTargetLowering()->isPositionIndependent() || STI->isROPI(); 352 AFI = MF->getInfo<ARMFunctionInfo>(); 353 354 isThumb = AFI->isThumbFunction(); 355 isThumb1 = AFI->isThumb1OnlyFunction(); 356 isThumb2 = AFI->isThumb2Function(); 357 358 HasFarJump = false; 359 bool GenerateTBB = isThumb2 || (isThumb1 && SynthesizeThumb1TBB); 360 361 // This pass invalidates liveness information when it splits basic blocks. 362 MF->getRegInfo().invalidateLiveness(); 363 364 // Renumber all of the machine basic blocks in the function, guaranteeing that 365 // the numbers agree with the position of the block in the function. 366 MF->RenumberBlocks(); 367 368 // Try to reorder and otherwise adjust the block layout to make good use 369 // of the TB[BH] instructions. 370 bool MadeChange = false; 371 if (GenerateTBB && AdjustJumpTableBlocks) { 372 scanFunctionJumpTables(); 373 MadeChange |= reorderThumb2JumpTables(); 374 // Data is out of date, so clear it. It'll be re-computed later. 375 T2JumpTables.clear(); 376 // Blocks may have shifted around. Keep the numbering up to date. 377 MF->RenumberBlocks(); 378 } 379 380 // Perform the initial placement of the constant pool entries. To start with, 381 // we put them all at the end of the function. 382 std::vector<MachineInstr*> CPEMIs; 383 if (!MCP->isEmpty()) 384 doInitialConstPlacement(CPEMIs); 385 386 if (MF->getJumpTableInfo()) 387 doInitialJumpTablePlacement(CPEMIs); 388 389 /// The next UID to take is the first unused one. 390 AFI->initPICLabelUId(CPEMIs.size()); 391 392 // Do the initial scan of the function, building up information about the 393 // sizes of each block, the location of all the water, and finding all of the 394 // constant pool users. 395 initializeFunctionInfo(CPEMIs); 396 CPEMIs.clear(); 397 LLVM_DEBUG(dumpBBs()); 398 399 // Functions with jump tables need an alignment of 4 because they use the ADR 400 // instruction, which aligns the PC to 4 bytes before adding an offset. 401 if (!T2JumpTables.empty()) 402 MF->ensureAlignment(2); 403 404 /// Remove dead constant pool entries. 405 MadeChange |= removeUnusedCPEntries(); 406 407 // Iteratively place constant pool entries and fix up branches until there 408 // is no change. 409 unsigned NoCPIters = 0, NoBRIters = 0; 410 while (true) { 411 LLVM_DEBUG(dbgs() << "Beginning CP iteration #" << NoCPIters << '\n'); 412 bool CPChange = false; 413 for (unsigned i = 0, e = CPUsers.size(); i != e; ++i) 414 // For most inputs, it converges in no more than 5 iterations. 415 // If it doesn't end in 10, the input may have huge BB or many CPEs. 416 // In this case, we will try different heuristics. 417 CPChange |= handleConstantPoolUser(i, NoCPIters >= CPMaxIteration / 2); 418 if (CPChange && ++NoCPIters > CPMaxIteration) 419 report_fatal_error("Constant Island pass failed to converge!"); 420 LLVM_DEBUG(dumpBBs()); 421 422 // Clear NewWaterList now. If we split a block for branches, it should 423 // appear as "new water" for the next iteration of constant pool placement. 424 NewWaterList.clear(); 425 426 LLVM_DEBUG(dbgs() << "Beginning BR iteration #" << NoBRIters << '\n'); 427 bool BRChange = false; 428 for (unsigned i = 0, e = ImmBranches.size(); i != e; ++i) 429 BRChange |= fixupImmediateBr(ImmBranches[i]); 430 if (BRChange && ++NoBRIters > 30) 431 report_fatal_error("Branch Fix Up pass failed to converge!"); 432 LLVM_DEBUG(dumpBBs()); 433 434 if (!CPChange && !BRChange) 435 break; 436 MadeChange = true; 437 } 438 439 // Shrink 32-bit Thumb2 load and store instructions. 440 if (isThumb2 && !STI->prefers32BitThumb()) 441 MadeChange |= optimizeThumb2Instructions(); 442 443 // Shrink 32-bit branch instructions. 444 if (isThumb && STI->hasV8MBaselineOps()) 445 MadeChange |= optimizeThumb2Branches(); 446 447 // Optimize jump tables using TBB / TBH. 448 if (GenerateTBB && !STI->genExecuteOnly()) 449 MadeChange |= optimizeThumb2JumpTables(); 450 451 // After a while, this might be made debug-only, but it is not expensive. 452 verify(); 453 454 // If LR has been forced spilled and no far jump (i.e. BL) has been issued, 455 // undo the spill / restore of LR if possible. 456 if (isThumb && !HasFarJump && AFI->isLRSpilledForFarJump()) 457 MadeChange |= undoLRSpillRestore(); 458 459 // Save the mapping between original and cloned constpool entries. 460 for (unsigned i = 0, e = CPEntries.size(); i != e; ++i) { 461 for (unsigned j = 0, je = CPEntries[i].size(); j != je; ++j) { 462 const CPEntry & CPE = CPEntries[i][j]; 463 if (CPE.CPEMI && CPE.CPEMI->getOperand(1).isCPI()) 464 AFI->recordCPEClone(i, CPE.CPI); 465 } 466 } 467 468 LLVM_DEBUG(dbgs() << '\n'; dumpBBs()); 469 470 BBInfo.clear(); 471 WaterList.clear(); 472 CPUsers.clear(); 473 CPEntries.clear(); 474 JumpTableEntryIndices.clear(); 475 JumpTableUserIndices.clear(); 476 ImmBranches.clear(); 477 PushPopMIs.clear(); 478 T2JumpTables.clear(); 479 480 return MadeChange; 481 } 482 483 /// Perform the initial placement of the regular constant pool entries. 484 /// To start with, we put them all at the end of the function. 485 void 486 ARMConstantIslands::doInitialConstPlacement(std::vector<MachineInstr*> &CPEMIs) { 487 // Create the basic block to hold the CPE's. 488 MachineBasicBlock *BB = MF->CreateMachineBasicBlock(); 489 MF->push_back(BB); 490 491 // MachineConstantPool measures alignment in bytes. We measure in log2(bytes). 492 unsigned MaxAlign = Log2_32(MCP->getConstantPoolAlignment()); 493 494 // Mark the basic block as required by the const-pool. 495 BB->setAlignment(MaxAlign); 496 497 // The function needs to be as aligned as the basic blocks. The linker may 498 // move functions around based on their alignment. 499 MF->ensureAlignment(BB->getAlignment()); 500 501 // Order the entries in BB by descending alignment. That ensures correct 502 // alignment of all entries as long as BB is sufficiently aligned. Keep 503 // track of the insertion point for each alignment. We are going to bucket 504 // sort the entries as they are created. 505 SmallVector<MachineBasicBlock::iterator, 8> InsPoint(MaxAlign + 1, BB->end()); 506 507 // Add all of the constants from the constant pool to the end block, use an 508 // identity mapping of CPI's to CPE's. 509 const std::vector<MachineConstantPoolEntry> &CPs = MCP->getConstants(); 510 511 const DataLayout &TD = MF->getDataLayout(); 512 for (unsigned i = 0, e = CPs.size(); i != e; ++i) { 513 unsigned Size = TD.getTypeAllocSize(CPs[i].getType()); 514 unsigned Align = CPs[i].getAlignment(); 515 assert(isPowerOf2_32(Align) && "Invalid alignment"); 516 // Verify that all constant pool entries are a multiple of their alignment. 517 // If not, we would have to pad them out so that instructions stay aligned. 518 assert((Size % Align) == 0 && "CP Entry not multiple of 4 bytes!"); 519 520 // Insert CONSTPOOL_ENTRY before entries with a smaller alignment. 521 unsigned LogAlign = Log2_32(Align); 522 MachineBasicBlock::iterator InsAt = InsPoint[LogAlign]; 523 MachineInstr *CPEMI = 524 BuildMI(*BB, InsAt, DebugLoc(), TII->get(ARM::CONSTPOOL_ENTRY)) 525 .addImm(i).addConstantPoolIndex(i).addImm(Size); 526 CPEMIs.push_back(CPEMI); 527 528 // Ensure that future entries with higher alignment get inserted before 529 // CPEMI. This is bucket sort with iterators. 530 for (unsigned a = LogAlign + 1; a <= MaxAlign; ++a) 531 if (InsPoint[a] == InsAt) 532 InsPoint[a] = CPEMI; 533 534 // Add a new CPEntry, but no corresponding CPUser yet. 535 CPEntries.emplace_back(1, CPEntry(CPEMI, i)); 536 ++NumCPEs; 537 LLVM_DEBUG(dbgs() << "Moved CPI#" << i << " to end of function, size = " 538 << Size << ", align = " << Align << '\n'); 539 } 540 LLVM_DEBUG(BB->dump()); 541 } 542 543 /// Do initial placement of the jump tables. Because Thumb2's TBB and TBH 544 /// instructions can be made more efficient if the jump table immediately 545 /// follows the instruction, it's best to place them immediately next to their 546 /// jumps to begin with. In almost all cases they'll never be moved from that 547 /// position. 548 void ARMConstantIslands::doInitialJumpTablePlacement( 549 std::vector<MachineInstr *> &CPEMIs) { 550 unsigned i = CPEntries.size(); 551 auto MJTI = MF->getJumpTableInfo(); 552 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); 553 554 MachineBasicBlock *LastCorrectlyNumberedBB = nullptr; 555 for (MachineBasicBlock &MBB : *MF) { 556 auto MI = MBB.getLastNonDebugInstr(); 557 if (MI == MBB.end()) 558 continue; 559 560 unsigned JTOpcode; 561 switch (MI->getOpcode()) { 562 default: 563 continue; 564 case ARM::BR_JTadd: 565 case ARM::BR_JTr: 566 case ARM::tBR_JTr: 567 case ARM::BR_JTm_i12: 568 case ARM::BR_JTm_rs: 569 JTOpcode = ARM::JUMPTABLE_ADDRS; 570 break; 571 case ARM::t2BR_JT: 572 JTOpcode = ARM::JUMPTABLE_INSTS; 573 break; 574 case ARM::tTBB_JT: 575 case ARM::t2TBB_JT: 576 JTOpcode = ARM::JUMPTABLE_TBB; 577 break; 578 case ARM::tTBH_JT: 579 case ARM::t2TBH_JT: 580 JTOpcode = ARM::JUMPTABLE_TBH; 581 break; 582 } 583 584 unsigned NumOps = MI->getDesc().getNumOperands(); 585 MachineOperand JTOp = 586 MI->getOperand(NumOps - (MI->isPredicable() ? 2 : 1)); 587 unsigned JTI = JTOp.getIndex(); 588 unsigned Size = JT[JTI].MBBs.size() * sizeof(uint32_t); 589 MachineBasicBlock *JumpTableBB = MF->CreateMachineBasicBlock(); 590 MF->insert(std::next(MachineFunction::iterator(MBB)), JumpTableBB); 591 MachineInstr *CPEMI = BuildMI(*JumpTableBB, JumpTableBB->begin(), 592 DebugLoc(), TII->get(JTOpcode)) 593 .addImm(i++) 594 .addJumpTableIndex(JTI) 595 .addImm(Size); 596 CPEMIs.push_back(CPEMI); 597 CPEntries.emplace_back(1, CPEntry(CPEMI, JTI)); 598 JumpTableEntryIndices.insert(std::make_pair(JTI, CPEntries.size() - 1)); 599 if (!LastCorrectlyNumberedBB) 600 LastCorrectlyNumberedBB = &MBB; 601 } 602 603 // If we did anything then we need to renumber the subsequent blocks. 604 if (LastCorrectlyNumberedBB) 605 MF->RenumberBlocks(LastCorrectlyNumberedBB); 606 } 607 608 /// BBHasFallthrough - Return true if the specified basic block can fallthrough 609 /// into the block immediately after it. 610 bool ARMConstantIslands::BBHasFallthrough(MachineBasicBlock *MBB) { 611 // Get the next machine basic block in the function. 612 MachineFunction::iterator MBBI = MBB->getIterator(); 613 // Can't fall off end of function. 614 if (std::next(MBBI) == MBB->getParent()->end()) 615 return false; 616 617 MachineBasicBlock *NextBB = &*std::next(MBBI); 618 if (!MBB->isSuccessor(NextBB)) 619 return false; 620 621 // Try to analyze the end of the block. A potential fallthrough may already 622 // have an unconditional branch for whatever reason. 623 MachineBasicBlock *TBB, *FBB; 624 SmallVector<MachineOperand, 4> Cond; 625 bool TooDifficult = TII->analyzeBranch(*MBB, TBB, FBB, Cond); 626 return TooDifficult || FBB == nullptr; 627 } 628 629 /// findConstPoolEntry - Given the constpool index and CONSTPOOL_ENTRY MI, 630 /// look up the corresponding CPEntry. 631 ARMConstantIslands::CPEntry * 632 ARMConstantIslands::findConstPoolEntry(unsigned CPI, 633 const MachineInstr *CPEMI) { 634 std::vector<CPEntry> &CPEs = CPEntries[CPI]; 635 // Number of entries per constpool index should be small, just do a 636 // linear search. 637 for (unsigned i = 0, e = CPEs.size(); i != e; ++i) { 638 if (CPEs[i].CPEMI == CPEMI) 639 return &CPEs[i]; 640 } 641 return nullptr; 642 } 643 644 /// getCPELogAlign - Returns the required alignment of the constant pool entry 645 /// represented by CPEMI. Alignment is measured in log2(bytes) units. 646 unsigned ARMConstantIslands::getCPELogAlign(const MachineInstr *CPEMI) { 647 switch (CPEMI->getOpcode()) { 648 case ARM::CONSTPOOL_ENTRY: 649 break; 650 case ARM::JUMPTABLE_TBB: 651 return isThumb1 ? 2 : 0; 652 case ARM::JUMPTABLE_TBH: 653 return isThumb1 ? 2 : 1; 654 case ARM::JUMPTABLE_INSTS: 655 return 1; 656 case ARM::JUMPTABLE_ADDRS: 657 return 2; 658 default: 659 llvm_unreachable("unknown constpool entry kind"); 660 } 661 662 unsigned CPI = getCombinedIndex(CPEMI); 663 assert(CPI < MCP->getConstants().size() && "Invalid constant pool index."); 664 unsigned Align = MCP->getConstants()[CPI].getAlignment(); 665 assert(isPowerOf2_32(Align) && "Invalid CPE alignment"); 666 return Log2_32(Align); 667 } 668 669 /// scanFunctionJumpTables - Do a scan of the function, building up 670 /// information about the sizes of each block and the locations of all 671 /// the jump tables. 672 void ARMConstantIslands::scanFunctionJumpTables() { 673 for (MachineBasicBlock &MBB : *MF) { 674 for (MachineInstr &I : MBB) 675 if (I.isBranch() && 676 (I.getOpcode() == ARM::t2BR_JT || I.getOpcode() == ARM::tBR_JTr)) 677 T2JumpTables.push_back(&I); 678 } 679 } 680 681 /// initializeFunctionInfo - Do the initial scan of the function, building up 682 /// information about the sizes of each block, the location of all the water, 683 /// and finding all of the constant pool users. 684 void ARMConstantIslands:: 685 initializeFunctionInfo(const std::vector<MachineInstr*> &CPEMIs) { 686 687 BBInfo = computeAllBlockSizes(MF); 688 689 // The known bits of the entry block offset are determined by the function 690 // alignment. 691 BBInfo.front().KnownBits = MF->getAlignment(); 692 693 // Compute block offsets and known bits. 694 adjustBBOffsetsAfter(&MF->front()); 695 696 // Now go back through the instructions and build up our data structures. 697 for (MachineBasicBlock &MBB : *MF) { 698 // If this block doesn't fall through into the next MBB, then this is 699 // 'water' that a constant pool island could be placed. 700 if (!BBHasFallthrough(&MBB)) 701 WaterList.push_back(&MBB); 702 703 for (MachineInstr &I : MBB) { 704 if (I.isDebugInstr()) 705 continue; 706 707 unsigned Opc = I.getOpcode(); 708 if (I.isBranch()) { 709 bool isCond = false; 710 unsigned Bits = 0; 711 unsigned Scale = 1; 712 int UOpc = Opc; 713 switch (Opc) { 714 default: 715 continue; // Ignore other JT branches 716 case ARM::t2BR_JT: 717 case ARM::tBR_JTr: 718 T2JumpTables.push_back(&I); 719 continue; // Does not get an entry in ImmBranches 720 case ARM::Bcc: 721 isCond = true; 722 UOpc = ARM::B; 723 LLVM_FALLTHROUGH; 724 case ARM::B: 725 Bits = 24; 726 Scale = 4; 727 break; 728 case ARM::tBcc: 729 isCond = true; 730 UOpc = ARM::tB; 731 Bits = 8; 732 Scale = 2; 733 break; 734 case ARM::tB: 735 Bits = 11; 736 Scale = 2; 737 break; 738 case ARM::t2Bcc: 739 isCond = true; 740 UOpc = ARM::t2B; 741 Bits = 20; 742 Scale = 2; 743 break; 744 case ARM::t2B: 745 Bits = 24; 746 Scale = 2; 747 break; 748 } 749 750 // Record this immediate branch. 751 unsigned MaxOffs = ((1 << (Bits-1))-1) * Scale; 752 ImmBranches.push_back(ImmBranch(&I, MaxOffs, isCond, UOpc)); 753 } 754 755 if (Opc == ARM::tPUSH || Opc == ARM::tPOP_RET) 756 PushPopMIs.push_back(&I); 757 758 if (Opc == ARM::CONSTPOOL_ENTRY || Opc == ARM::JUMPTABLE_ADDRS || 759 Opc == ARM::JUMPTABLE_INSTS || Opc == ARM::JUMPTABLE_TBB || 760 Opc == ARM::JUMPTABLE_TBH) 761 continue; 762 763 // Scan the instructions for constant pool operands. 764 for (unsigned op = 0, e = I.getNumOperands(); op != e; ++op) 765 if (I.getOperand(op).isCPI() || I.getOperand(op).isJTI()) { 766 // We found one. The addressing mode tells us the max displacement 767 // from the PC that this instruction permits. 768 769 // Basic size info comes from the TSFlags field. 770 unsigned Bits = 0; 771 unsigned Scale = 1; 772 bool NegOk = false; 773 bool IsSoImm = false; 774 775 switch (Opc) { 776 default: 777 llvm_unreachable("Unknown addressing mode for CP reference!"); 778 779 // Taking the address of a CP entry. 780 case ARM::LEApcrel: 781 case ARM::LEApcrelJT: 782 // This takes a SoImm, which is 8 bit immediate rotated. We'll 783 // pretend the maximum offset is 255 * 4. Since each instruction 784 // 4 byte wide, this is always correct. We'll check for other 785 // displacements that fits in a SoImm as well. 786 Bits = 8; 787 Scale = 4; 788 NegOk = true; 789 IsSoImm = true; 790 break; 791 case ARM::t2LEApcrel: 792 case ARM::t2LEApcrelJT: 793 Bits = 12; 794 NegOk = true; 795 break; 796 case ARM::tLEApcrel: 797 case ARM::tLEApcrelJT: 798 Bits = 8; 799 Scale = 4; 800 break; 801 802 case ARM::LDRBi12: 803 case ARM::LDRi12: 804 case ARM::LDRcp: 805 case ARM::t2LDRpci: 806 case ARM::t2LDRHpci: 807 case ARM::t2LDRBpci: 808 Bits = 12; // +-offset_12 809 NegOk = true; 810 break; 811 812 case ARM::tLDRpci: 813 Bits = 8; 814 Scale = 4; // +(offset_8*4) 815 break; 816 817 case ARM::VLDRD: 818 case ARM::VLDRS: 819 Bits = 8; 820 Scale = 4; // +-(offset_8*4) 821 NegOk = true; 822 break; 823 case ARM::VLDRH: 824 Bits = 8; 825 Scale = 2; // +-(offset_8*2) 826 NegOk = true; 827 break; 828 829 case ARM::tLDRHi: 830 Bits = 5; 831 Scale = 2; // +(offset_5*2) 832 break; 833 } 834 835 // Remember that this is a user of a CP entry. 836 unsigned CPI = I.getOperand(op).getIndex(); 837 if (I.getOperand(op).isJTI()) { 838 JumpTableUserIndices.insert(std::make_pair(CPI, CPUsers.size())); 839 CPI = JumpTableEntryIndices[CPI]; 840 } 841 842 MachineInstr *CPEMI = CPEMIs[CPI]; 843 unsigned MaxOffs = ((1 << Bits)-1) * Scale; 844 CPUsers.push_back(CPUser(&I, CPEMI, MaxOffs, NegOk, IsSoImm)); 845 846 // Increment corresponding CPEntry reference count. 847 CPEntry *CPE = findConstPoolEntry(CPI, CPEMI); 848 assert(CPE && "Cannot find a corresponding CPEntry!"); 849 CPE->RefCount++; 850 851 // Instructions can only use one CP entry, don't bother scanning the 852 // rest of the operands. 853 break; 854 } 855 } 856 } 857 } 858 859 /// getOffsetOf - Return the current offset of the specified machine instruction 860 /// from the start of the function. This offset changes as stuff is moved 861 /// around inside the function. 862 unsigned ARMConstantIslands::getOffsetOf(MachineInstr *MI) const { 863 MachineBasicBlock *MBB = MI->getParent(); 864 865 // The offset is composed of two things: the sum of the sizes of all MBB's 866 // before this instruction's block, and the offset from the start of the block 867 // it is in. 868 unsigned Offset = BBInfo[MBB->getNumber()].Offset; 869 870 // Sum instructions before MI in MBB. 871 for (MachineBasicBlock::iterator I = MBB->begin(); &*I != MI; ++I) { 872 assert(I != MBB->end() && "Didn't find MI in its own basic block?"); 873 Offset += TII->getInstSizeInBytes(*I); 874 } 875 return Offset; 876 } 877 878 /// CompareMBBNumbers - Little predicate function to sort the WaterList by MBB 879 /// ID. 880 static bool CompareMBBNumbers(const MachineBasicBlock *LHS, 881 const MachineBasicBlock *RHS) { 882 return LHS->getNumber() < RHS->getNumber(); 883 } 884 885 /// updateForInsertedWaterBlock - When a block is newly inserted into the 886 /// machine function, it upsets all of the block numbers. Renumber the blocks 887 /// and update the arrays that parallel this numbering. 888 void ARMConstantIslands::updateForInsertedWaterBlock(MachineBasicBlock *NewBB) { 889 // Renumber the MBB's to keep them consecutive. 890 NewBB->getParent()->RenumberBlocks(NewBB); 891 892 // Insert an entry into BBInfo to align it properly with the (newly 893 // renumbered) block numbers. 894 BBInfo.insert(BBInfo.begin() + NewBB->getNumber(), BasicBlockInfo()); 895 896 // Next, update WaterList. Specifically, we need to add NewMBB as having 897 // available water after it. 898 water_iterator IP = 899 std::lower_bound(WaterList.begin(), WaterList.end(), NewBB, 900 CompareMBBNumbers); 901 WaterList.insert(IP, NewBB); 902 } 903 904 /// Split the basic block containing MI into two blocks, which are joined by 905 /// an unconditional branch. Update data structures and renumber blocks to 906 /// account for this change and returns the newly created block. 907 MachineBasicBlock *ARMConstantIslands::splitBlockBeforeInstr(MachineInstr *MI) { 908 MachineBasicBlock *OrigBB = MI->getParent(); 909 910 // Create a new MBB for the code after the OrigBB. 911 MachineBasicBlock *NewBB = 912 MF->CreateMachineBasicBlock(OrigBB->getBasicBlock()); 913 MachineFunction::iterator MBBI = ++OrigBB->getIterator(); 914 MF->insert(MBBI, NewBB); 915 916 // Splice the instructions starting with MI over to NewBB. 917 NewBB->splice(NewBB->end(), OrigBB, MI, OrigBB->end()); 918 919 // Add an unconditional branch from OrigBB to NewBB. 920 // Note the new unconditional branch is not being recorded. 921 // There doesn't seem to be meaningful DebugInfo available; this doesn't 922 // correspond to anything in the source. 923 unsigned Opc = isThumb ? (isThumb2 ? ARM::t2B : ARM::tB) : ARM::B; 924 if (!isThumb) 925 BuildMI(OrigBB, DebugLoc(), TII->get(Opc)).addMBB(NewBB); 926 else 927 BuildMI(OrigBB, DebugLoc(), TII->get(Opc)) 928 .addMBB(NewBB) 929 .add(predOps(ARMCC::AL)); 930 ++NumSplit; 931 932 // Update the CFG. All succs of OrigBB are now succs of NewBB. 933 NewBB->transferSuccessors(OrigBB); 934 935 // OrigBB branches to NewBB. 936 OrigBB->addSuccessor(NewBB); 937 938 // Update internal data structures to account for the newly inserted MBB. 939 // This is almost the same as updateForInsertedWaterBlock, except that 940 // the Water goes after OrigBB, not NewBB. 941 MF->RenumberBlocks(NewBB); 942 943 // Insert an entry into BBInfo to align it properly with the (newly 944 // renumbered) block numbers. 945 BBInfo.insert(BBInfo.begin() + NewBB->getNumber(), BasicBlockInfo()); 946 947 // Next, update WaterList. Specifically, we need to add OrigMBB as having 948 // available water after it (but not if it's already there, which happens 949 // when splitting before a conditional branch that is followed by an 950 // unconditional branch - in that case we want to insert NewBB). 951 water_iterator IP = 952 std::lower_bound(WaterList.begin(), WaterList.end(), OrigBB, 953 CompareMBBNumbers); 954 MachineBasicBlock* WaterBB = *IP; 955 if (WaterBB == OrigBB) 956 WaterList.insert(std::next(IP), NewBB); 957 else 958 WaterList.insert(IP, OrigBB); 959 NewWaterList.insert(OrigBB); 960 961 // Figure out how large the OrigBB is. As the first half of the original 962 // block, it cannot contain a tablejump. The size includes 963 // the new jump we added. (It should be possible to do this without 964 // recounting everything, but it's very confusing, and this is rarely 965 // executed.) 966 computeBlockSize(MF, OrigBB, BBInfo[OrigBB->getNumber()]); 967 968 // Figure out how large the NewMBB is. As the second half of the original 969 // block, it may contain a tablejump. 970 computeBlockSize(MF, NewBB, BBInfo[NewBB->getNumber()]); 971 972 // All BBOffsets following these blocks must be modified. 973 adjustBBOffsetsAfter(OrigBB); 974 975 return NewBB; 976 } 977 978 /// getUserOffset - Compute the offset of U.MI as seen by the hardware 979 /// displacement computation. Update U.KnownAlignment to match its current 980 /// basic block location. 981 unsigned ARMConstantIslands::getUserOffset(CPUser &U) const { 982 unsigned UserOffset = getOffsetOf(U.MI); 983 const BasicBlockInfo &BBI = BBInfo[U.MI->getParent()->getNumber()]; 984 unsigned KnownBits = BBI.internalKnownBits(); 985 986 // The value read from PC is offset from the actual instruction address. 987 UserOffset += (isThumb ? 4 : 8); 988 989 // Because of inline assembly, we may not know the alignment (mod 4) of U.MI. 990 // Make sure U.getMaxDisp() returns a constrained range. 991 U.KnownAlignment = (KnownBits >= 2); 992 993 // On Thumb, offsets==2 mod 4 are rounded down by the hardware for 994 // purposes of the displacement computation; compensate for that here. 995 // For unknown alignments, getMaxDisp() constrains the range instead. 996 if (isThumb && U.KnownAlignment) 997 UserOffset &= ~3u; 998 999 return UserOffset; 1000 } 1001 1002 /// isOffsetInRange - Checks whether UserOffset (the location of a constant pool 1003 /// reference) is within MaxDisp of TrialOffset (a proposed location of a 1004 /// constant pool entry). 1005 /// UserOffset is computed by getUserOffset above to include PC adjustments. If 1006 /// the mod 4 alignment of UserOffset is not known, the uncertainty must be 1007 /// subtracted from MaxDisp instead. CPUser::getMaxDisp() does that. 1008 bool ARMConstantIslands::isOffsetInRange(unsigned UserOffset, 1009 unsigned TrialOffset, unsigned MaxDisp, 1010 bool NegativeOK, bool IsSoImm) { 1011 if (UserOffset <= TrialOffset) { 1012 // User before the Trial. 1013 if (TrialOffset - UserOffset <= MaxDisp) 1014 return true; 1015 // FIXME: Make use full range of soimm values. 1016 } else if (NegativeOK) { 1017 if (UserOffset - TrialOffset <= MaxDisp) 1018 return true; 1019 // FIXME: Make use full range of soimm values. 1020 } 1021 return false; 1022 } 1023 1024 /// isWaterInRange - Returns true if a CPE placed after the specified 1025 /// Water (a basic block) will be in range for the specific MI. 1026 /// 1027 /// Compute how much the function will grow by inserting a CPE after Water. 1028 bool ARMConstantIslands::isWaterInRange(unsigned UserOffset, 1029 MachineBasicBlock* Water, CPUser &U, 1030 unsigned &Growth) { 1031 unsigned CPELogAlign = getCPELogAlign(U.CPEMI); 1032 unsigned CPEOffset = BBInfo[Water->getNumber()].postOffset(CPELogAlign); 1033 unsigned NextBlockOffset, NextBlockAlignment; 1034 MachineFunction::const_iterator NextBlock = Water->getIterator(); 1035 if (++NextBlock == MF->end()) { 1036 NextBlockOffset = BBInfo[Water->getNumber()].postOffset(); 1037 NextBlockAlignment = 0; 1038 } else { 1039 NextBlockOffset = BBInfo[NextBlock->getNumber()].Offset; 1040 NextBlockAlignment = NextBlock->getAlignment(); 1041 } 1042 unsigned Size = U.CPEMI->getOperand(2).getImm(); 1043 unsigned CPEEnd = CPEOffset + Size; 1044 1045 // The CPE may be able to hide in the alignment padding before the next 1046 // block. It may also cause more padding to be required if it is more aligned 1047 // that the next block. 1048 if (CPEEnd > NextBlockOffset) { 1049 Growth = CPEEnd - NextBlockOffset; 1050 // Compute the padding that would go at the end of the CPE to align the next 1051 // block. 1052 Growth += OffsetToAlignment(CPEEnd, 1ULL << NextBlockAlignment); 1053 1054 // If the CPE is to be inserted before the instruction, that will raise 1055 // the offset of the instruction. Also account for unknown alignment padding 1056 // in blocks between CPE and the user. 1057 if (CPEOffset < UserOffset) 1058 UserOffset += Growth + UnknownPadding(MF->getAlignment(), CPELogAlign); 1059 } else 1060 // CPE fits in existing padding. 1061 Growth = 0; 1062 1063 return isOffsetInRange(UserOffset, CPEOffset, U); 1064 } 1065 1066 /// isCPEntryInRange - Returns true if the distance between specific MI and 1067 /// specific ConstPool entry instruction can fit in MI's displacement field. 1068 bool ARMConstantIslands::isCPEntryInRange(MachineInstr *MI, unsigned UserOffset, 1069 MachineInstr *CPEMI, unsigned MaxDisp, 1070 bool NegOk, bool DoDump) { 1071 unsigned CPEOffset = getOffsetOf(CPEMI); 1072 1073 if (DoDump) { 1074 LLVM_DEBUG({ 1075 unsigned Block = MI->getParent()->getNumber(); 1076 const BasicBlockInfo &BBI = BBInfo[Block]; 1077 dbgs() << "User of CPE#" << CPEMI->getOperand(0).getImm() 1078 << " max delta=" << MaxDisp 1079 << format(" insn address=%#x", UserOffset) << " in " 1080 << printMBBReference(*MI->getParent()) << ": " 1081 << format("%#x-%x\t", BBI.Offset, BBI.postOffset()) << *MI 1082 << format("CPE address=%#x offset=%+d: ", CPEOffset, 1083 int(CPEOffset - UserOffset)); 1084 }); 1085 } 1086 1087 return isOffsetInRange(UserOffset, CPEOffset, MaxDisp, NegOk); 1088 } 1089 1090 #ifndef NDEBUG 1091 /// BBIsJumpedOver - Return true of the specified basic block's only predecessor 1092 /// unconditionally branches to its only successor. 1093 static bool BBIsJumpedOver(MachineBasicBlock *MBB) { 1094 if (MBB->pred_size() != 1 || MBB->succ_size() != 1) 1095 return false; 1096 1097 MachineBasicBlock *Succ = *MBB->succ_begin(); 1098 MachineBasicBlock *Pred = *MBB->pred_begin(); 1099 MachineInstr *PredMI = &Pred->back(); 1100 if (PredMI->getOpcode() == ARM::B || PredMI->getOpcode() == ARM::tB 1101 || PredMI->getOpcode() == ARM::t2B) 1102 return PredMI->getOperand(0).getMBB() == Succ; 1103 return false; 1104 } 1105 #endif // NDEBUG 1106 1107 void ARMConstantIslands::adjustBBOffsetsAfter(MachineBasicBlock *BB) { 1108 unsigned BBNum = BB->getNumber(); 1109 for(unsigned i = BBNum + 1, e = MF->getNumBlockIDs(); i < e; ++i) { 1110 // Get the offset and known bits at the end of the layout predecessor. 1111 // Include the alignment of the current block. 1112 unsigned LogAlign = MF->getBlockNumbered(i)->getAlignment(); 1113 unsigned Offset = BBInfo[i - 1].postOffset(LogAlign); 1114 unsigned KnownBits = BBInfo[i - 1].postKnownBits(LogAlign); 1115 1116 // This is where block i begins. Stop if the offset is already correct, 1117 // and we have updated 2 blocks. This is the maximum number of blocks 1118 // changed before calling this function. 1119 if (i > BBNum + 2 && 1120 BBInfo[i].Offset == Offset && 1121 BBInfo[i].KnownBits == KnownBits) 1122 break; 1123 1124 BBInfo[i].Offset = Offset; 1125 BBInfo[i].KnownBits = KnownBits; 1126 } 1127 } 1128 1129 /// decrementCPEReferenceCount - find the constant pool entry with index CPI 1130 /// and instruction CPEMI, and decrement its refcount. If the refcount 1131 /// becomes 0 remove the entry and instruction. Returns true if we removed 1132 /// the entry, false if we didn't. 1133 bool ARMConstantIslands::decrementCPEReferenceCount(unsigned CPI, 1134 MachineInstr *CPEMI) { 1135 // Find the old entry. Eliminate it if it is no longer used. 1136 CPEntry *CPE = findConstPoolEntry(CPI, CPEMI); 1137 assert(CPE && "Unexpected!"); 1138 if (--CPE->RefCount == 0) { 1139 removeDeadCPEMI(CPEMI); 1140 CPE->CPEMI = nullptr; 1141 --NumCPEs; 1142 return true; 1143 } 1144 return false; 1145 } 1146 1147 unsigned ARMConstantIslands::getCombinedIndex(const MachineInstr *CPEMI) { 1148 if (CPEMI->getOperand(1).isCPI()) 1149 return CPEMI->getOperand(1).getIndex(); 1150 1151 return JumpTableEntryIndices[CPEMI->getOperand(1).getIndex()]; 1152 } 1153 1154 /// LookForCPEntryInRange - see if the currently referenced CPE is in range; 1155 /// if not, see if an in-range clone of the CPE is in range, and if so, 1156 /// change the data structures so the user references the clone. Returns: 1157 /// 0 = no existing entry found 1158 /// 1 = entry found, and there were no code insertions or deletions 1159 /// 2 = entry found, and there were code insertions or deletions 1160 int ARMConstantIslands::findInRangeCPEntry(CPUser& U, unsigned UserOffset) { 1161 MachineInstr *UserMI = U.MI; 1162 MachineInstr *CPEMI = U.CPEMI; 1163 1164 // Check to see if the CPE is already in-range. 1165 if (isCPEntryInRange(UserMI, UserOffset, CPEMI, U.getMaxDisp(), U.NegOk, 1166 true)) { 1167 LLVM_DEBUG(dbgs() << "In range\n"); 1168 return 1; 1169 } 1170 1171 // No. Look for previously created clones of the CPE that are in range. 1172 unsigned CPI = getCombinedIndex(CPEMI); 1173 std::vector<CPEntry> &CPEs = CPEntries[CPI]; 1174 for (unsigned i = 0, e = CPEs.size(); i != e; ++i) { 1175 // We already tried this one 1176 if (CPEs[i].CPEMI == CPEMI) 1177 continue; 1178 // Removing CPEs can leave empty entries, skip 1179 if (CPEs[i].CPEMI == nullptr) 1180 continue; 1181 if (isCPEntryInRange(UserMI, UserOffset, CPEs[i].CPEMI, U.getMaxDisp(), 1182 U.NegOk)) { 1183 LLVM_DEBUG(dbgs() << "Replacing CPE#" << CPI << " with CPE#" 1184 << CPEs[i].CPI << "\n"); 1185 // Point the CPUser node to the replacement 1186 U.CPEMI = CPEs[i].CPEMI; 1187 // Change the CPI in the instruction operand to refer to the clone. 1188 for (unsigned j = 0, e = UserMI->getNumOperands(); j != e; ++j) 1189 if (UserMI->getOperand(j).isCPI()) { 1190 UserMI->getOperand(j).setIndex(CPEs[i].CPI); 1191 break; 1192 } 1193 // Adjust the refcount of the clone... 1194 CPEs[i].RefCount++; 1195 // ...and the original. If we didn't remove the old entry, none of the 1196 // addresses changed, so we don't need another pass. 1197 return decrementCPEReferenceCount(CPI, CPEMI) ? 2 : 1; 1198 } 1199 } 1200 return 0; 1201 } 1202 1203 /// getUnconditionalBrDisp - Returns the maximum displacement that can fit in 1204 /// the specific unconditional branch instruction. 1205 static inline unsigned getUnconditionalBrDisp(int Opc) { 1206 switch (Opc) { 1207 case ARM::tB: 1208 return ((1<<10)-1)*2; 1209 case ARM::t2B: 1210 return ((1<<23)-1)*2; 1211 default: 1212 break; 1213 } 1214 1215 return ((1<<23)-1)*4; 1216 } 1217 1218 /// findAvailableWater - Look for an existing entry in the WaterList in which 1219 /// we can place the CPE referenced from U so it's within range of U's MI. 1220 /// Returns true if found, false if not. If it returns true, WaterIter 1221 /// is set to the WaterList entry. For Thumb, prefer water that will not 1222 /// introduce padding to water that will. To ensure that this pass 1223 /// terminates, the CPE location for a particular CPUser is only allowed to 1224 /// move to a lower address, so search backward from the end of the list and 1225 /// prefer the first water that is in range. 1226 bool ARMConstantIslands::findAvailableWater(CPUser &U, unsigned UserOffset, 1227 water_iterator &WaterIter, 1228 bool CloserWater) { 1229 if (WaterList.empty()) 1230 return false; 1231 1232 unsigned BestGrowth = ~0u; 1233 // The nearest water without splitting the UserBB is right after it. 1234 // If the distance is still large (we have a big BB), then we need to split it 1235 // if we don't converge after certain iterations. This helps the following 1236 // situation to converge: 1237 // BB0: 1238 // Big BB 1239 // BB1: 1240 // Constant Pool 1241 // When a CP access is out of range, BB0 may be used as water. However, 1242 // inserting islands between BB0 and BB1 makes other accesses out of range. 1243 MachineBasicBlock *UserBB = U.MI->getParent(); 1244 unsigned MinNoSplitDisp = 1245 BBInfo[UserBB->getNumber()].postOffset(getCPELogAlign(U.CPEMI)); 1246 if (CloserWater && MinNoSplitDisp > U.getMaxDisp() / 2) 1247 return false; 1248 for (water_iterator IP = std::prev(WaterList.end()), B = WaterList.begin();; 1249 --IP) { 1250 MachineBasicBlock* WaterBB = *IP; 1251 // Check if water is in range and is either at a lower address than the 1252 // current "high water mark" or a new water block that was created since 1253 // the previous iteration by inserting an unconditional branch. In the 1254 // latter case, we want to allow resetting the high water mark back to 1255 // this new water since we haven't seen it before. Inserting branches 1256 // should be relatively uncommon and when it does happen, we want to be 1257 // sure to take advantage of it for all the CPEs near that block, so that 1258 // we don't insert more branches than necessary. 1259 // When CloserWater is true, we try to find the lowest address after (or 1260 // equal to) user MI's BB no matter of padding growth. 1261 unsigned Growth; 1262 if (isWaterInRange(UserOffset, WaterBB, U, Growth) && 1263 (WaterBB->getNumber() < U.HighWaterMark->getNumber() || 1264 NewWaterList.count(WaterBB) || WaterBB == U.MI->getParent()) && 1265 Growth < BestGrowth) { 1266 // This is the least amount of required padding seen so far. 1267 BestGrowth = Growth; 1268 WaterIter = IP; 1269 LLVM_DEBUG(dbgs() << "Found water after " << printMBBReference(*WaterBB) 1270 << " Growth=" << Growth << '\n'); 1271 1272 if (CloserWater && WaterBB == U.MI->getParent()) 1273 return true; 1274 // Keep looking unless it is perfect and we're not looking for the lowest 1275 // possible address. 1276 if (!CloserWater && BestGrowth == 0) 1277 return true; 1278 } 1279 if (IP == B) 1280 break; 1281 } 1282 return BestGrowth != ~0u; 1283 } 1284 1285 /// createNewWater - No existing WaterList entry will work for 1286 /// CPUsers[CPUserIndex], so create a place to put the CPE. The end of the 1287 /// block is used if in range, and the conditional branch munged so control 1288 /// flow is correct. Otherwise the block is split to create a hole with an 1289 /// unconditional branch around it. In either case NewMBB is set to a 1290 /// block following which the new island can be inserted (the WaterList 1291 /// is not adjusted). 1292 void ARMConstantIslands::createNewWater(unsigned CPUserIndex, 1293 unsigned UserOffset, 1294 MachineBasicBlock *&NewMBB) { 1295 CPUser &U = CPUsers[CPUserIndex]; 1296 MachineInstr *UserMI = U.MI; 1297 MachineInstr *CPEMI = U.CPEMI; 1298 unsigned CPELogAlign = getCPELogAlign(CPEMI); 1299 MachineBasicBlock *UserMBB = UserMI->getParent(); 1300 const BasicBlockInfo &UserBBI = BBInfo[UserMBB->getNumber()]; 1301 1302 // If the block does not end in an unconditional branch already, and if the 1303 // end of the block is within range, make new water there. (The addition 1304 // below is for the unconditional branch we will be adding: 4 bytes on ARM + 1305 // Thumb2, 2 on Thumb1. 1306 if (BBHasFallthrough(UserMBB)) { 1307 // Size of branch to insert. 1308 unsigned Delta = isThumb1 ? 2 : 4; 1309 // Compute the offset where the CPE will begin. 1310 unsigned CPEOffset = UserBBI.postOffset(CPELogAlign) + Delta; 1311 1312 if (isOffsetInRange(UserOffset, CPEOffset, U)) { 1313 LLVM_DEBUG(dbgs() << "Split at end of " << printMBBReference(*UserMBB) 1314 << format(", expected CPE offset %#x\n", CPEOffset)); 1315 NewMBB = &*++UserMBB->getIterator(); 1316 // Add an unconditional branch from UserMBB to fallthrough block. Record 1317 // it for branch lengthening; this new branch will not get out of range, 1318 // but if the preceding conditional branch is out of range, the targets 1319 // will be exchanged, and the altered branch may be out of range, so the 1320 // machinery has to know about it. 1321 int UncondBr = isThumb ? ((isThumb2) ? ARM::t2B : ARM::tB) : ARM::B; 1322 if (!isThumb) 1323 BuildMI(UserMBB, DebugLoc(), TII->get(UncondBr)).addMBB(NewMBB); 1324 else 1325 BuildMI(UserMBB, DebugLoc(), TII->get(UncondBr)) 1326 .addMBB(NewMBB) 1327 .add(predOps(ARMCC::AL)); 1328 unsigned MaxDisp = getUnconditionalBrDisp(UncondBr); 1329 ImmBranches.push_back(ImmBranch(&UserMBB->back(), 1330 MaxDisp, false, UncondBr)); 1331 computeBlockSize(MF, UserMBB, BBInfo[UserMBB->getNumber()]); 1332 adjustBBOffsetsAfter(UserMBB); 1333 return; 1334 } 1335 } 1336 1337 // What a big block. Find a place within the block to split it. This is a 1338 // little tricky on Thumb1 since instructions are 2 bytes and constant pool 1339 // entries are 4 bytes: if instruction I references island CPE, and 1340 // instruction I+1 references CPE', it will not work well to put CPE as far 1341 // forward as possible, since then CPE' cannot immediately follow it (that 1342 // location is 2 bytes farther away from I+1 than CPE was from I) and we'd 1343 // need to create a new island. So, we make a first guess, then walk through 1344 // the instructions between the one currently being looked at and the 1345 // possible insertion point, and make sure any other instructions that 1346 // reference CPEs will be able to use the same island area; if not, we back 1347 // up the insertion point. 1348 1349 // Try to split the block so it's fully aligned. Compute the latest split 1350 // point where we can add a 4-byte branch instruction, and then align to 1351 // LogAlign which is the largest possible alignment in the function. 1352 unsigned LogAlign = MF->getAlignment(); 1353 assert(LogAlign >= CPELogAlign && "Over-aligned constant pool entry"); 1354 unsigned KnownBits = UserBBI.internalKnownBits(); 1355 unsigned UPad = UnknownPadding(LogAlign, KnownBits); 1356 unsigned BaseInsertOffset = UserOffset + U.getMaxDisp() - UPad; 1357 LLVM_DEBUG(dbgs() << format("Split in middle of big block before %#x", 1358 BaseInsertOffset)); 1359 1360 // The 4 in the following is for the unconditional branch we'll be inserting 1361 // (allows for long branch on Thumb1). Alignment of the island is handled 1362 // inside isOffsetInRange. 1363 BaseInsertOffset -= 4; 1364 1365 LLVM_DEBUG(dbgs() << format(", adjusted to %#x", BaseInsertOffset) 1366 << " la=" << LogAlign << " kb=" << KnownBits 1367 << " up=" << UPad << '\n'); 1368 1369 // This could point off the end of the block if we've already got constant 1370 // pool entries following this block; only the last one is in the water list. 1371 // Back past any possible branches (allow for a conditional and a maximally 1372 // long unconditional). 1373 if (BaseInsertOffset + 8 >= UserBBI.postOffset()) { 1374 // Ensure BaseInsertOffset is larger than the offset of the instruction 1375 // following UserMI so that the loop which searches for the split point 1376 // iterates at least once. 1377 BaseInsertOffset = 1378 std::max(UserBBI.postOffset() - UPad - 8, 1379 UserOffset + TII->getInstSizeInBytes(*UserMI) + 1); 1380 LLVM_DEBUG(dbgs() << format("Move inside block: %#x\n", BaseInsertOffset)); 1381 } 1382 unsigned EndInsertOffset = BaseInsertOffset + 4 + UPad + 1383 CPEMI->getOperand(2).getImm(); 1384 MachineBasicBlock::iterator MI = UserMI; 1385 ++MI; 1386 unsigned CPUIndex = CPUserIndex+1; 1387 unsigned NumCPUsers = CPUsers.size(); 1388 MachineInstr *LastIT = nullptr; 1389 for (unsigned Offset = UserOffset + TII->getInstSizeInBytes(*UserMI); 1390 Offset < BaseInsertOffset; 1391 Offset += TII->getInstSizeInBytes(*MI), MI = std::next(MI)) { 1392 assert(MI != UserMBB->end() && "Fell off end of block"); 1393 if (CPUIndex < NumCPUsers && CPUsers[CPUIndex].MI == &*MI) { 1394 CPUser &U = CPUsers[CPUIndex]; 1395 if (!isOffsetInRange(Offset, EndInsertOffset, U)) { 1396 // Shift intertion point by one unit of alignment so it is within reach. 1397 BaseInsertOffset -= 1u << LogAlign; 1398 EndInsertOffset -= 1u << LogAlign; 1399 } 1400 // This is overly conservative, as we don't account for CPEMIs being 1401 // reused within the block, but it doesn't matter much. Also assume CPEs 1402 // are added in order with alignment padding. We may eventually be able 1403 // to pack the aligned CPEs better. 1404 EndInsertOffset += U.CPEMI->getOperand(2).getImm(); 1405 CPUIndex++; 1406 } 1407 1408 // Remember the last IT instruction. 1409 if (MI->getOpcode() == ARM::t2IT) 1410 LastIT = &*MI; 1411 } 1412 1413 --MI; 1414 1415 // Avoid splitting an IT block. 1416 if (LastIT) { 1417 unsigned PredReg = 0; 1418 ARMCC::CondCodes CC = getITInstrPredicate(*MI, PredReg); 1419 if (CC != ARMCC::AL) 1420 MI = LastIT; 1421 } 1422 1423 // Avoid splitting a MOVW+MOVT pair with a relocation on Windows. 1424 // On Windows, this instruction pair is covered by one single 1425 // IMAGE_REL_ARM_MOV32T relocation which covers both instructions. If a 1426 // constant island is injected inbetween them, the relocation will clobber 1427 // the instruction and fail to update the MOVT instruction. 1428 // (These instructions are bundled up until right before the ConstantIslands 1429 // pass.) 1430 if (STI->isTargetWindows() && isThumb && MI->getOpcode() == ARM::t2MOVTi16 && 1431 (MI->getOperand(2).getTargetFlags() & ARMII::MO_OPTION_MASK) == 1432 ARMII::MO_HI16) { 1433 --MI; 1434 assert(MI->getOpcode() == ARM::t2MOVi16 && 1435 (MI->getOperand(1).getTargetFlags() & ARMII::MO_OPTION_MASK) == 1436 ARMII::MO_LO16); 1437 } 1438 1439 // We really must not split an IT block. 1440 LLVM_DEBUG(unsigned PredReg; assert( 1441 !isThumb || getITInstrPredicate(*MI, PredReg) == ARMCC::AL)); 1442 1443 NewMBB = splitBlockBeforeInstr(&*MI); 1444 } 1445 1446 /// handleConstantPoolUser - Analyze the specified user, checking to see if it 1447 /// is out-of-range. If so, pick up the constant pool value and move it some 1448 /// place in-range. Return true if we changed any addresses (thus must run 1449 /// another pass of branch lengthening), false otherwise. 1450 bool ARMConstantIslands::handleConstantPoolUser(unsigned CPUserIndex, 1451 bool CloserWater) { 1452 CPUser &U = CPUsers[CPUserIndex]; 1453 MachineInstr *UserMI = U.MI; 1454 MachineInstr *CPEMI = U.CPEMI; 1455 unsigned CPI = getCombinedIndex(CPEMI); 1456 unsigned Size = CPEMI->getOperand(2).getImm(); 1457 // Compute this only once, it's expensive. 1458 unsigned UserOffset = getUserOffset(U); 1459 1460 // See if the current entry is within range, or there is a clone of it 1461 // in range. 1462 int result = findInRangeCPEntry(U, UserOffset); 1463 if (result==1) return false; 1464 else if (result==2) return true; 1465 1466 // No existing clone of this CPE is within range. 1467 // We will be generating a new clone. Get a UID for it. 1468 unsigned ID = AFI->createPICLabelUId(); 1469 1470 // Look for water where we can place this CPE. 1471 MachineBasicBlock *NewIsland = MF->CreateMachineBasicBlock(); 1472 MachineBasicBlock *NewMBB; 1473 water_iterator IP; 1474 if (findAvailableWater(U, UserOffset, IP, CloserWater)) { 1475 LLVM_DEBUG(dbgs() << "Found water in range\n"); 1476 MachineBasicBlock *WaterBB = *IP; 1477 1478 // If the original WaterList entry was "new water" on this iteration, 1479 // propagate that to the new island. This is just keeping NewWaterList 1480 // updated to match the WaterList, which will be updated below. 1481 if (NewWaterList.erase(WaterBB)) 1482 NewWaterList.insert(NewIsland); 1483 1484 // The new CPE goes before the following block (NewMBB). 1485 NewMBB = &*++WaterBB->getIterator(); 1486 } else { 1487 // No water found. 1488 LLVM_DEBUG(dbgs() << "No water found\n"); 1489 createNewWater(CPUserIndex, UserOffset, NewMBB); 1490 1491 // splitBlockBeforeInstr adds to WaterList, which is important when it is 1492 // called while handling branches so that the water will be seen on the 1493 // next iteration for constant pools, but in this context, we don't want 1494 // it. Check for this so it will be removed from the WaterList. 1495 // Also remove any entry from NewWaterList. 1496 MachineBasicBlock *WaterBB = &*--NewMBB->getIterator(); 1497 IP = find(WaterList, WaterBB); 1498 if (IP != WaterList.end()) 1499 NewWaterList.erase(WaterBB); 1500 1501 // We are adding new water. Update NewWaterList. 1502 NewWaterList.insert(NewIsland); 1503 } 1504 // Always align the new block because CP entries can be smaller than 4 1505 // bytes. Be careful not to decrease the existing alignment, e.g. NewMBB may 1506 // be an already aligned constant pool block. 1507 const unsigned Align = isThumb ? 1 : 2; 1508 if (NewMBB->getAlignment() < Align) 1509 NewMBB->setAlignment(Align); 1510 1511 // Remove the original WaterList entry; we want subsequent insertions in 1512 // this vicinity to go after the one we're about to insert. This 1513 // considerably reduces the number of times we have to move the same CPE 1514 // more than once and is also important to ensure the algorithm terminates. 1515 if (IP != WaterList.end()) 1516 WaterList.erase(IP); 1517 1518 // Okay, we know we can put an island before NewMBB now, do it! 1519 MF->insert(NewMBB->getIterator(), NewIsland); 1520 1521 // Update internal data structures to account for the newly inserted MBB. 1522 updateForInsertedWaterBlock(NewIsland); 1523 1524 // Now that we have an island to add the CPE to, clone the original CPE and 1525 // add it to the island. 1526 U.HighWaterMark = NewIsland; 1527 U.CPEMI = BuildMI(NewIsland, DebugLoc(), CPEMI->getDesc()) 1528 .addImm(ID) 1529 .add(CPEMI->getOperand(1)) 1530 .addImm(Size); 1531 CPEntries[CPI].push_back(CPEntry(U.CPEMI, ID, 1)); 1532 ++NumCPEs; 1533 1534 // Decrement the old entry, and remove it if refcount becomes 0. 1535 decrementCPEReferenceCount(CPI, CPEMI); 1536 1537 // Mark the basic block as aligned as required by the const-pool entry. 1538 NewIsland->setAlignment(getCPELogAlign(U.CPEMI)); 1539 1540 // Increase the size of the island block to account for the new entry. 1541 BBInfo[NewIsland->getNumber()].Size += Size; 1542 adjustBBOffsetsAfter(&*--NewIsland->getIterator()); 1543 1544 // Finally, change the CPI in the instruction operand to be ID. 1545 for (unsigned i = 0, e = UserMI->getNumOperands(); i != e; ++i) 1546 if (UserMI->getOperand(i).isCPI()) { 1547 UserMI->getOperand(i).setIndex(ID); 1548 break; 1549 } 1550 1551 LLVM_DEBUG( 1552 dbgs() << " Moved CPE to #" << ID << " CPI=" << CPI 1553 << format(" offset=%#x\n", BBInfo[NewIsland->getNumber()].Offset)); 1554 1555 return true; 1556 } 1557 1558 /// removeDeadCPEMI - Remove a dead constant pool entry instruction. Update 1559 /// sizes and offsets of impacted basic blocks. 1560 void ARMConstantIslands::removeDeadCPEMI(MachineInstr *CPEMI) { 1561 MachineBasicBlock *CPEBB = CPEMI->getParent(); 1562 unsigned Size = CPEMI->getOperand(2).getImm(); 1563 CPEMI->eraseFromParent(); 1564 BBInfo[CPEBB->getNumber()].Size -= Size; 1565 // All succeeding offsets have the current size value added in, fix this. 1566 if (CPEBB->empty()) { 1567 BBInfo[CPEBB->getNumber()].Size = 0; 1568 1569 // This block no longer needs to be aligned. 1570 CPEBB->setAlignment(0); 1571 } else 1572 // Entries are sorted by descending alignment, so realign from the front. 1573 CPEBB->setAlignment(getCPELogAlign(&*CPEBB->begin())); 1574 1575 adjustBBOffsetsAfter(CPEBB); 1576 // An island has only one predecessor BB and one successor BB. Check if 1577 // this BB's predecessor jumps directly to this BB's successor. This 1578 // shouldn't happen currently. 1579 assert(!BBIsJumpedOver(CPEBB) && "How did this happen?"); 1580 // FIXME: remove the empty blocks after all the work is done? 1581 } 1582 1583 /// removeUnusedCPEntries - Remove constant pool entries whose refcounts 1584 /// are zero. 1585 bool ARMConstantIslands::removeUnusedCPEntries() { 1586 unsigned MadeChange = false; 1587 for (unsigned i = 0, e = CPEntries.size(); i != e; ++i) { 1588 std::vector<CPEntry> &CPEs = CPEntries[i]; 1589 for (unsigned j = 0, ee = CPEs.size(); j != ee; ++j) { 1590 if (CPEs[j].RefCount == 0 && CPEs[j].CPEMI) { 1591 removeDeadCPEMI(CPEs[j].CPEMI); 1592 CPEs[j].CPEMI = nullptr; 1593 MadeChange = true; 1594 } 1595 } 1596 } 1597 return MadeChange; 1598 } 1599 1600 /// isBBInRange - Returns true if the distance between specific MI and 1601 /// specific BB can fit in MI's displacement field. 1602 bool ARMConstantIslands::isBBInRange(MachineInstr *MI,MachineBasicBlock *DestBB, 1603 unsigned MaxDisp) { 1604 unsigned PCAdj = isThumb ? 4 : 8; 1605 unsigned BrOffset = getOffsetOf(MI) + PCAdj; 1606 unsigned DestOffset = BBInfo[DestBB->getNumber()].Offset; 1607 1608 LLVM_DEBUG(dbgs() << "Branch of destination " << printMBBReference(*DestBB) 1609 << " from " << printMBBReference(*MI->getParent()) 1610 << " max delta=" << MaxDisp << " from " << getOffsetOf(MI) 1611 << " to " << DestOffset << " offset " 1612 << int(DestOffset - BrOffset) << "\t" << *MI); 1613 1614 if (BrOffset <= DestOffset) { 1615 // Branch before the Dest. 1616 if (DestOffset-BrOffset <= MaxDisp) 1617 return true; 1618 } else { 1619 if (BrOffset-DestOffset <= MaxDisp) 1620 return true; 1621 } 1622 return false; 1623 } 1624 1625 /// fixupImmediateBr - Fix up an immediate branch whose destination is too far 1626 /// away to fit in its displacement field. 1627 bool ARMConstantIslands::fixupImmediateBr(ImmBranch &Br) { 1628 MachineInstr *MI = Br.MI; 1629 MachineBasicBlock *DestBB = MI->getOperand(0).getMBB(); 1630 1631 // Check to see if the DestBB is already in-range. 1632 if (isBBInRange(MI, DestBB, Br.MaxDisp)) 1633 return false; 1634 1635 if (!Br.isCond) 1636 return fixupUnconditionalBr(Br); 1637 return fixupConditionalBr(Br); 1638 } 1639 1640 /// fixupUnconditionalBr - Fix up an unconditional branch whose destination is 1641 /// too far away to fit in its displacement field. If the LR register has been 1642 /// spilled in the epilogue, then we can use BL to implement a far jump. 1643 /// Otherwise, add an intermediate branch instruction to a branch. 1644 bool 1645 ARMConstantIslands::fixupUnconditionalBr(ImmBranch &Br) { 1646 MachineInstr *MI = Br.MI; 1647 MachineBasicBlock *MBB = MI->getParent(); 1648 if (!isThumb1) 1649 llvm_unreachable("fixupUnconditionalBr is Thumb1 only!"); 1650 1651 // Use BL to implement far jump. 1652 Br.MaxDisp = (1 << 21) * 2; 1653 MI->setDesc(TII->get(ARM::tBfar)); 1654 BBInfo[MBB->getNumber()].Size += 2; 1655 adjustBBOffsetsAfter(MBB); 1656 HasFarJump = true; 1657 ++NumUBrFixed; 1658 1659 LLVM_DEBUG(dbgs() << " Changed B to long jump " << *MI); 1660 1661 return true; 1662 } 1663 1664 /// fixupConditionalBr - Fix up a conditional branch whose destination is too 1665 /// far away to fit in its displacement field. It is converted to an inverse 1666 /// conditional branch + an unconditional branch to the destination. 1667 bool 1668 ARMConstantIslands::fixupConditionalBr(ImmBranch &Br) { 1669 MachineInstr *MI = Br.MI; 1670 MachineBasicBlock *DestBB = MI->getOperand(0).getMBB(); 1671 1672 // Add an unconditional branch to the destination and invert the branch 1673 // condition to jump over it: 1674 // blt L1 1675 // => 1676 // bge L2 1677 // b L1 1678 // L2: 1679 ARMCC::CondCodes CC = (ARMCC::CondCodes)MI->getOperand(1).getImm(); 1680 CC = ARMCC::getOppositeCondition(CC); 1681 unsigned CCReg = MI->getOperand(2).getReg(); 1682 1683 // If the branch is at the end of its MBB and that has a fall-through block, 1684 // direct the updated conditional branch to the fall-through block. Otherwise, 1685 // split the MBB before the next instruction. 1686 MachineBasicBlock *MBB = MI->getParent(); 1687 MachineInstr *BMI = &MBB->back(); 1688 bool NeedSplit = (BMI != MI) || !BBHasFallthrough(MBB); 1689 1690 ++NumCBrFixed; 1691 if (BMI != MI) { 1692 if (std::next(MachineBasicBlock::iterator(MI)) == std::prev(MBB->end()) && 1693 BMI->getOpcode() == Br.UncondBr) { 1694 // Last MI in the BB is an unconditional branch. Can we simply invert the 1695 // condition and swap destinations: 1696 // beq L1 1697 // b L2 1698 // => 1699 // bne L2 1700 // b L1 1701 MachineBasicBlock *NewDest = BMI->getOperand(0).getMBB(); 1702 if (isBBInRange(MI, NewDest, Br.MaxDisp)) { 1703 LLVM_DEBUG( 1704 dbgs() << " Invert Bcc condition and swap its destination with " 1705 << *BMI); 1706 BMI->getOperand(0).setMBB(DestBB); 1707 MI->getOperand(0).setMBB(NewDest); 1708 MI->getOperand(1).setImm(CC); 1709 return true; 1710 } 1711 } 1712 } 1713 1714 if (NeedSplit) { 1715 splitBlockBeforeInstr(MI); 1716 // No need for the branch to the next block. We're adding an unconditional 1717 // branch to the destination. 1718 int delta = TII->getInstSizeInBytes(MBB->back()); 1719 BBInfo[MBB->getNumber()].Size -= delta; 1720 MBB->back().eraseFromParent(); 1721 1722 // The conditional successor will be swapped between the BBs after this, so 1723 // update CFG. 1724 MBB->addSuccessor(DestBB); 1725 std::next(MBB->getIterator())->removeSuccessor(DestBB); 1726 1727 // BBInfo[SplitBB].Offset is wrong temporarily, fixed below 1728 } 1729 MachineBasicBlock *NextBB = &*++MBB->getIterator(); 1730 1731 LLVM_DEBUG(dbgs() << " Insert B to " << printMBBReference(*DestBB) 1732 << " also invert condition and change dest. to " 1733 << printMBBReference(*NextBB) << "\n"); 1734 1735 // Insert a new conditional branch and a new unconditional branch. 1736 // Also update the ImmBranch as well as adding a new entry for the new branch. 1737 BuildMI(MBB, DebugLoc(), TII->get(MI->getOpcode())) 1738 .addMBB(NextBB).addImm(CC).addReg(CCReg); 1739 Br.MI = &MBB->back(); 1740 BBInfo[MBB->getNumber()].Size += TII->getInstSizeInBytes(MBB->back()); 1741 if (isThumb) 1742 BuildMI(MBB, DebugLoc(), TII->get(Br.UncondBr)) 1743 .addMBB(DestBB) 1744 .add(predOps(ARMCC::AL)); 1745 else 1746 BuildMI(MBB, DebugLoc(), TII->get(Br.UncondBr)).addMBB(DestBB); 1747 BBInfo[MBB->getNumber()].Size += TII->getInstSizeInBytes(MBB->back()); 1748 unsigned MaxDisp = getUnconditionalBrDisp(Br.UncondBr); 1749 ImmBranches.push_back(ImmBranch(&MBB->back(), MaxDisp, false, Br.UncondBr)); 1750 1751 // Remove the old conditional branch. It may or may not still be in MBB. 1752 BBInfo[MI->getParent()->getNumber()].Size -= TII->getInstSizeInBytes(*MI); 1753 MI->eraseFromParent(); 1754 adjustBBOffsetsAfter(MBB); 1755 return true; 1756 } 1757 1758 /// undoLRSpillRestore - Remove Thumb push / pop instructions that only spills 1759 /// LR / restores LR to pc. FIXME: This is done here because it's only possible 1760 /// to do this if tBfar is not used. 1761 bool ARMConstantIslands::undoLRSpillRestore() { 1762 bool MadeChange = false; 1763 for (unsigned i = 0, e = PushPopMIs.size(); i != e; ++i) { 1764 MachineInstr *MI = PushPopMIs[i]; 1765 // First two operands are predicates. 1766 if (MI->getOpcode() == ARM::tPOP_RET && 1767 MI->getOperand(2).getReg() == ARM::PC && 1768 MI->getNumExplicitOperands() == 3) { 1769 // Create the new insn and copy the predicate from the old. 1770 BuildMI(MI->getParent(), MI->getDebugLoc(), TII->get(ARM::tBX_RET)) 1771 .add(MI->getOperand(0)) 1772 .add(MI->getOperand(1)); 1773 MI->eraseFromParent(); 1774 MadeChange = true; 1775 } else if (MI->getOpcode() == ARM::tPUSH && 1776 MI->getOperand(2).getReg() == ARM::LR && 1777 MI->getNumExplicitOperands() == 3) { 1778 // Just remove the push. 1779 MI->eraseFromParent(); 1780 MadeChange = true; 1781 } 1782 } 1783 return MadeChange; 1784 } 1785 1786 bool ARMConstantIslands::optimizeThumb2Instructions() { 1787 bool MadeChange = false; 1788 1789 // Shrink ADR and LDR from constantpool. 1790 for (unsigned i = 0, e = CPUsers.size(); i != e; ++i) { 1791 CPUser &U = CPUsers[i]; 1792 unsigned Opcode = U.MI->getOpcode(); 1793 unsigned NewOpc = 0; 1794 unsigned Scale = 1; 1795 unsigned Bits = 0; 1796 switch (Opcode) { 1797 default: break; 1798 case ARM::t2LEApcrel: 1799 if (isARMLowRegister(U.MI->getOperand(0).getReg())) { 1800 NewOpc = ARM::tLEApcrel; 1801 Bits = 8; 1802 Scale = 4; 1803 } 1804 break; 1805 case ARM::t2LDRpci: 1806 if (isARMLowRegister(U.MI->getOperand(0).getReg())) { 1807 NewOpc = ARM::tLDRpci; 1808 Bits = 8; 1809 Scale = 4; 1810 } 1811 break; 1812 } 1813 1814 if (!NewOpc) 1815 continue; 1816 1817 unsigned UserOffset = getUserOffset(U); 1818 unsigned MaxOffs = ((1 << Bits) - 1) * Scale; 1819 1820 // Be conservative with inline asm. 1821 if (!U.KnownAlignment) 1822 MaxOffs -= 2; 1823 1824 // FIXME: Check if offset is multiple of scale if scale is not 4. 1825 if (isCPEntryInRange(U.MI, UserOffset, U.CPEMI, MaxOffs, false, true)) { 1826 LLVM_DEBUG(dbgs() << "Shrink: " << *U.MI); 1827 U.MI->setDesc(TII->get(NewOpc)); 1828 MachineBasicBlock *MBB = U.MI->getParent(); 1829 BBInfo[MBB->getNumber()].Size -= 2; 1830 adjustBBOffsetsAfter(MBB); 1831 ++NumT2CPShrunk; 1832 MadeChange = true; 1833 } 1834 } 1835 1836 return MadeChange; 1837 } 1838 1839 bool ARMConstantIslands::optimizeThumb2Branches() { 1840 bool MadeChange = false; 1841 1842 // The order in which branches appear in ImmBranches is approximately their 1843 // order within the function body. By visiting later branches first, we reduce 1844 // the distance between earlier forward branches and their targets, making it 1845 // more likely that the cbn?z optimization, which can only apply to forward 1846 // branches, will succeed. 1847 for (unsigned i = ImmBranches.size(); i != 0; --i) { 1848 ImmBranch &Br = ImmBranches[i-1]; 1849 unsigned Opcode = Br.MI->getOpcode(); 1850 unsigned NewOpc = 0; 1851 unsigned Scale = 1; 1852 unsigned Bits = 0; 1853 switch (Opcode) { 1854 default: break; 1855 case ARM::t2B: 1856 NewOpc = ARM::tB; 1857 Bits = 11; 1858 Scale = 2; 1859 break; 1860 case ARM::t2Bcc: 1861 NewOpc = ARM::tBcc; 1862 Bits = 8; 1863 Scale = 2; 1864 break; 1865 } 1866 if (NewOpc) { 1867 unsigned MaxOffs = ((1 << (Bits-1))-1) * Scale; 1868 MachineBasicBlock *DestBB = Br.MI->getOperand(0).getMBB(); 1869 if (isBBInRange(Br.MI, DestBB, MaxOffs)) { 1870 LLVM_DEBUG(dbgs() << "Shrink branch: " << *Br.MI); 1871 Br.MI->setDesc(TII->get(NewOpc)); 1872 MachineBasicBlock *MBB = Br.MI->getParent(); 1873 BBInfo[MBB->getNumber()].Size -= 2; 1874 adjustBBOffsetsAfter(MBB); 1875 ++NumT2BrShrunk; 1876 MadeChange = true; 1877 } 1878 } 1879 1880 Opcode = Br.MI->getOpcode(); 1881 if (Opcode != ARM::tBcc) 1882 continue; 1883 1884 // If the conditional branch doesn't kill CPSR, then CPSR can be liveout 1885 // so this transformation is not safe. 1886 if (!Br.MI->killsRegister(ARM::CPSR)) 1887 continue; 1888 1889 NewOpc = 0; 1890 unsigned PredReg = 0; 1891 ARMCC::CondCodes Pred = getInstrPredicate(*Br.MI, PredReg); 1892 if (Pred == ARMCC::EQ) 1893 NewOpc = ARM::tCBZ; 1894 else if (Pred == ARMCC::NE) 1895 NewOpc = ARM::tCBNZ; 1896 if (!NewOpc) 1897 continue; 1898 MachineBasicBlock *DestBB = Br.MI->getOperand(0).getMBB(); 1899 // Check if the distance is within 126. Subtract starting offset by 2 1900 // because the cmp will be eliminated. 1901 unsigned BrOffset = getOffsetOf(Br.MI) + 4 - 2; 1902 unsigned DestOffset = BBInfo[DestBB->getNumber()].Offset; 1903 if (BrOffset < DestOffset && (DestOffset - BrOffset) <= 126) { 1904 MachineBasicBlock::iterator CmpMI = Br.MI; 1905 if (CmpMI != Br.MI->getParent()->begin()) { 1906 --CmpMI; 1907 if (CmpMI->getOpcode() == ARM::tCMPi8) { 1908 unsigned Reg = CmpMI->getOperand(0).getReg(); 1909 Pred = getInstrPredicate(*CmpMI, PredReg); 1910 if (Pred == ARMCC::AL && 1911 CmpMI->getOperand(1).getImm() == 0 && 1912 isARMLowRegister(Reg)) { 1913 MachineBasicBlock *MBB = Br.MI->getParent(); 1914 LLVM_DEBUG(dbgs() << "Fold: " << *CmpMI << " and: " << *Br.MI); 1915 MachineInstr *NewBR = 1916 BuildMI(*MBB, CmpMI, Br.MI->getDebugLoc(), TII->get(NewOpc)) 1917 .addReg(Reg).addMBB(DestBB,Br.MI->getOperand(0).getTargetFlags()); 1918 CmpMI->eraseFromParent(); 1919 Br.MI->eraseFromParent(); 1920 Br.MI = NewBR; 1921 BBInfo[MBB->getNumber()].Size -= 2; 1922 adjustBBOffsetsAfter(MBB); 1923 ++NumCBZ; 1924 MadeChange = true; 1925 } 1926 } 1927 } 1928 } 1929 } 1930 1931 return MadeChange; 1932 } 1933 1934 static bool isSimpleIndexCalc(MachineInstr &I, unsigned EntryReg, 1935 unsigned BaseReg) { 1936 if (I.getOpcode() != ARM::t2ADDrs) 1937 return false; 1938 1939 if (I.getOperand(0).getReg() != EntryReg) 1940 return false; 1941 1942 if (I.getOperand(1).getReg() != BaseReg) 1943 return false; 1944 1945 // FIXME: what about CC and IdxReg? 1946 return true; 1947 } 1948 1949 /// While trying to form a TBB/TBH instruction, we may (if the table 1950 /// doesn't immediately follow the BR_JT) need access to the start of the 1951 /// jump-table. We know one instruction that produces such a register; this 1952 /// function works out whether that definition can be preserved to the BR_JT, 1953 /// possibly by removing an intervening addition (which is usually needed to 1954 /// calculate the actual entry to jump to). 1955 bool ARMConstantIslands::preserveBaseRegister(MachineInstr *JumpMI, 1956 MachineInstr *LEAMI, 1957 unsigned &DeadSize, 1958 bool &CanDeleteLEA, 1959 bool &BaseRegKill) { 1960 if (JumpMI->getParent() != LEAMI->getParent()) 1961 return false; 1962 1963 // Now we hope that we have at least these instructions in the basic block: 1964 // BaseReg = t2LEA ... 1965 // [...] 1966 // EntryReg = t2ADDrs BaseReg, ... 1967 // [...] 1968 // t2BR_JT EntryReg 1969 // 1970 // We have to be very conservative about what we recognise here though. The 1971 // main perturbing factors to watch out for are: 1972 // + Spills at any point in the chain: not direct problems but we would 1973 // expect a blocking Def of the spilled register so in practice what we 1974 // can do is limited. 1975 // + EntryReg == BaseReg: this is the one situation we should allow a Def 1976 // of BaseReg, but only if the t2ADDrs can be removed. 1977 // + Some instruction other than t2ADDrs computing the entry. Not seen in 1978 // the wild, but we should be careful. 1979 unsigned EntryReg = JumpMI->getOperand(0).getReg(); 1980 unsigned BaseReg = LEAMI->getOperand(0).getReg(); 1981 1982 CanDeleteLEA = true; 1983 BaseRegKill = false; 1984 MachineInstr *RemovableAdd = nullptr; 1985 MachineBasicBlock::iterator I(LEAMI); 1986 for (++I; &*I != JumpMI; ++I) { 1987 if (isSimpleIndexCalc(*I, EntryReg, BaseReg)) { 1988 RemovableAdd = &*I; 1989 break; 1990 } 1991 1992 for (unsigned K = 0, E = I->getNumOperands(); K != E; ++K) { 1993 const MachineOperand &MO = I->getOperand(K); 1994 if (!MO.isReg() || !MO.getReg()) 1995 continue; 1996 if (MO.isDef() && MO.getReg() == BaseReg) 1997 return false; 1998 if (MO.isUse() && MO.getReg() == BaseReg) { 1999 BaseRegKill = BaseRegKill || MO.isKill(); 2000 CanDeleteLEA = false; 2001 } 2002 } 2003 } 2004 2005 if (!RemovableAdd) 2006 return true; 2007 2008 // Check the add really is removable, and that nothing else in the block 2009 // clobbers BaseReg. 2010 for (++I; &*I != JumpMI; ++I) { 2011 for (unsigned K = 0, E = I->getNumOperands(); K != E; ++K) { 2012 const MachineOperand &MO = I->getOperand(K); 2013 if (!MO.isReg() || !MO.getReg()) 2014 continue; 2015 if (MO.isDef() && MO.getReg() == BaseReg) 2016 return false; 2017 if (MO.isUse() && MO.getReg() == EntryReg) 2018 RemovableAdd = nullptr; 2019 } 2020 } 2021 2022 if (RemovableAdd) { 2023 RemovableAdd->eraseFromParent(); 2024 DeadSize += isThumb2 ? 4 : 2; 2025 } else if (BaseReg == EntryReg) { 2026 // The add wasn't removable, but clobbered the base for the TBB. So we can't 2027 // preserve it. 2028 return false; 2029 } 2030 2031 // We reached the end of the block without seeing another definition of 2032 // BaseReg (except, possibly the t2ADDrs, which was removed). BaseReg can be 2033 // used in the TBB/TBH if necessary. 2034 return true; 2035 } 2036 2037 /// Returns whether CPEMI is the first instruction in the block 2038 /// immediately following JTMI (assumed to be a TBB or TBH terminator). If so, 2039 /// we can switch the first register to PC and usually remove the address 2040 /// calculation that preceded it. 2041 static bool jumpTableFollowsTB(MachineInstr *JTMI, MachineInstr *CPEMI) { 2042 MachineFunction::iterator MBB = JTMI->getParent()->getIterator(); 2043 MachineFunction *MF = MBB->getParent(); 2044 ++MBB; 2045 2046 return MBB != MF->end() && MBB->begin() != MBB->end() && 2047 &*MBB->begin() == CPEMI; 2048 } 2049 2050 static void RemoveDeadAddBetweenLEAAndJT(MachineInstr *LEAMI, 2051 MachineInstr *JumpMI, 2052 unsigned &DeadSize) { 2053 // Remove a dead add between the LEA and JT, which used to compute EntryReg, 2054 // but the JT now uses PC. Finds the last ADD (if any) that def's EntryReg 2055 // and is not clobbered / used. 2056 MachineInstr *RemovableAdd = nullptr; 2057 unsigned EntryReg = JumpMI->getOperand(0).getReg(); 2058 2059 // Find the last ADD to set EntryReg 2060 MachineBasicBlock::iterator I(LEAMI); 2061 for (++I; &*I != JumpMI; ++I) { 2062 if (I->getOpcode() == ARM::t2ADDrs && I->getOperand(0).getReg() == EntryReg) 2063 RemovableAdd = &*I; 2064 } 2065 2066 if (!RemovableAdd) 2067 return; 2068 2069 // Ensure EntryReg is not clobbered or used. 2070 MachineBasicBlock::iterator J(RemovableAdd); 2071 for (++J; &*J != JumpMI; ++J) { 2072 for (unsigned K = 0, E = J->getNumOperands(); K != E; ++K) { 2073 const MachineOperand &MO = J->getOperand(K); 2074 if (!MO.isReg() || !MO.getReg()) 2075 continue; 2076 if (MO.isDef() && MO.getReg() == EntryReg) 2077 return; 2078 if (MO.isUse() && MO.getReg() == EntryReg) 2079 return; 2080 } 2081 } 2082 2083 LLVM_DEBUG(dbgs() << "Removing Dead Add: " << *RemovableAdd); 2084 RemovableAdd->eraseFromParent(); 2085 DeadSize += 4; 2086 } 2087 2088 static bool registerDefinedBetween(unsigned Reg, 2089 MachineBasicBlock::iterator From, 2090 MachineBasicBlock::iterator To, 2091 const TargetRegisterInfo *TRI) { 2092 for (auto I = From; I != To; ++I) 2093 if (I->modifiesRegister(Reg, TRI)) 2094 return true; 2095 return false; 2096 } 2097 2098 /// optimizeThumb2JumpTables - Use tbb / tbh instructions to generate smaller 2099 /// jumptables when it's possible. 2100 bool ARMConstantIslands::optimizeThumb2JumpTables() { 2101 bool MadeChange = false; 2102 2103 // FIXME: After the tables are shrunk, can we get rid some of the 2104 // constantpool tables? 2105 MachineJumpTableInfo *MJTI = MF->getJumpTableInfo(); 2106 if (!MJTI) return false; 2107 2108 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); 2109 for (unsigned i = 0, e = T2JumpTables.size(); i != e; ++i) { 2110 MachineInstr *MI = T2JumpTables[i]; 2111 const MCInstrDesc &MCID = MI->getDesc(); 2112 unsigned NumOps = MCID.getNumOperands(); 2113 unsigned JTOpIdx = NumOps - (MI->isPredicable() ? 2 : 1); 2114 MachineOperand JTOP = MI->getOperand(JTOpIdx); 2115 unsigned JTI = JTOP.getIndex(); 2116 assert(JTI < JT.size()); 2117 2118 bool ByteOk = true; 2119 bool HalfWordOk = true; 2120 unsigned JTOffset = getOffsetOf(MI) + 4; 2121 const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs; 2122 for (unsigned j = 0, ee = JTBBs.size(); j != ee; ++j) { 2123 MachineBasicBlock *MBB = JTBBs[j]; 2124 unsigned DstOffset = BBInfo[MBB->getNumber()].Offset; 2125 // Negative offset is not ok. FIXME: We should change BB layout to make 2126 // sure all the branches are forward. 2127 if (ByteOk && (DstOffset - JTOffset) > ((1<<8)-1)*2) 2128 ByteOk = false; 2129 unsigned TBHLimit = ((1<<16)-1)*2; 2130 if (HalfWordOk && (DstOffset - JTOffset) > TBHLimit) 2131 HalfWordOk = false; 2132 if (!ByteOk && !HalfWordOk) 2133 break; 2134 } 2135 2136 if (!ByteOk && !HalfWordOk) 2137 continue; 2138 2139 CPUser &User = CPUsers[JumpTableUserIndices[JTI]]; 2140 MachineBasicBlock *MBB = MI->getParent(); 2141 if (!MI->getOperand(0).isKill()) // FIXME: needed now? 2142 continue; 2143 2144 unsigned DeadSize = 0; 2145 bool CanDeleteLEA = false; 2146 bool BaseRegKill = false; 2147 2148 unsigned IdxReg = ~0U; 2149 bool IdxRegKill = true; 2150 if (isThumb2) { 2151 IdxReg = MI->getOperand(1).getReg(); 2152 IdxRegKill = MI->getOperand(1).isKill(); 2153 2154 bool PreservedBaseReg = 2155 preserveBaseRegister(MI, User.MI, DeadSize, CanDeleteLEA, BaseRegKill); 2156 if (!jumpTableFollowsTB(MI, User.CPEMI) && !PreservedBaseReg) 2157 continue; 2158 } else { 2159 // We're in thumb-1 mode, so we must have something like: 2160 // %idx = tLSLri %idx, 2 2161 // %base = tLEApcrelJT 2162 // %t = tLDRr %base, %idx 2163 unsigned BaseReg = User.MI->getOperand(0).getReg(); 2164 2165 if (User.MI->getIterator() == User.MI->getParent()->begin()) 2166 continue; 2167 MachineInstr *Shift = User.MI->getPrevNode(); 2168 if (Shift->getOpcode() != ARM::tLSLri || 2169 Shift->getOperand(3).getImm() != 2 || 2170 !Shift->getOperand(2).isKill()) 2171 continue; 2172 IdxReg = Shift->getOperand(2).getReg(); 2173 unsigned ShiftedIdxReg = Shift->getOperand(0).getReg(); 2174 2175 // It's important that IdxReg is live until the actual TBB/TBH. Most of 2176 // the range is checked later, but the LEA might still clobber it and not 2177 // actually get removed. 2178 if (BaseReg == IdxReg && !jumpTableFollowsTB(MI, User.CPEMI)) 2179 continue; 2180 2181 MachineInstr *Load = User.MI->getNextNode(); 2182 if (Load->getOpcode() != ARM::tLDRr) 2183 continue; 2184 if (Load->getOperand(1).getReg() != BaseReg || 2185 Load->getOperand(2).getReg() != ShiftedIdxReg || 2186 !Load->getOperand(2).isKill()) 2187 continue; 2188 2189 // If we're in PIC mode, there should be another ADD following. 2190 auto *TRI = STI->getRegisterInfo(); 2191 2192 // %base cannot be redefined after the load as it will appear before 2193 // TBB/TBH like: 2194 // %base = 2195 // %base = 2196 // tBB %base, %idx 2197 if (registerDefinedBetween(BaseReg, Load->getNextNode(), MBB->end(), TRI)) 2198 continue; 2199 2200 if (isPositionIndependentOrROPI) { 2201 MachineInstr *Add = Load->getNextNode(); 2202 if (Add->getOpcode() != ARM::tADDrr || 2203 Add->getOperand(2).getReg() != BaseReg || 2204 Add->getOperand(3).getReg() != Load->getOperand(0).getReg() || 2205 !Add->getOperand(3).isKill()) 2206 continue; 2207 if (Add->getOperand(0).getReg() != MI->getOperand(0).getReg()) 2208 continue; 2209 if (registerDefinedBetween(IdxReg, Add->getNextNode(), MI, TRI)) 2210 // IdxReg gets redefined in the middle of the sequence. 2211 continue; 2212 Add->eraseFromParent(); 2213 DeadSize += 2; 2214 } else { 2215 if (Load->getOperand(0).getReg() != MI->getOperand(0).getReg()) 2216 continue; 2217 if (registerDefinedBetween(IdxReg, Load->getNextNode(), MI, TRI)) 2218 // IdxReg gets redefined in the middle of the sequence. 2219 continue; 2220 } 2221 2222 // Now safe to delete the load and lsl. The LEA will be removed later. 2223 CanDeleteLEA = true; 2224 Shift->eraseFromParent(); 2225 Load->eraseFromParent(); 2226 DeadSize += 4; 2227 } 2228 2229 LLVM_DEBUG(dbgs() << "Shrink JT: " << *MI); 2230 MachineInstr *CPEMI = User.CPEMI; 2231 unsigned Opc = ByteOk ? ARM::t2TBB_JT : ARM::t2TBH_JT; 2232 if (!isThumb2) 2233 Opc = ByteOk ? ARM::tTBB_JT : ARM::tTBH_JT; 2234 2235 MachineBasicBlock::iterator MI_JT = MI; 2236 MachineInstr *NewJTMI = 2237 BuildMI(*MBB, MI_JT, MI->getDebugLoc(), TII->get(Opc)) 2238 .addReg(User.MI->getOperand(0).getReg(), 2239 getKillRegState(BaseRegKill)) 2240 .addReg(IdxReg, getKillRegState(IdxRegKill)) 2241 .addJumpTableIndex(JTI, JTOP.getTargetFlags()) 2242 .addImm(CPEMI->getOperand(0).getImm()); 2243 LLVM_DEBUG(dbgs() << printMBBReference(*MBB) << ": " << *NewJTMI); 2244 2245 unsigned JTOpc = ByteOk ? ARM::JUMPTABLE_TBB : ARM::JUMPTABLE_TBH; 2246 CPEMI->setDesc(TII->get(JTOpc)); 2247 2248 if (jumpTableFollowsTB(MI, User.CPEMI)) { 2249 NewJTMI->getOperand(0).setReg(ARM::PC); 2250 NewJTMI->getOperand(0).setIsKill(false); 2251 2252 if (CanDeleteLEA) { 2253 if (isThumb2) 2254 RemoveDeadAddBetweenLEAAndJT(User.MI, MI, DeadSize); 2255 2256 User.MI->eraseFromParent(); 2257 DeadSize += isThumb2 ? 4 : 2; 2258 2259 // The LEA was eliminated, the TBB instruction becomes the only new user 2260 // of the jump table. 2261 User.MI = NewJTMI; 2262 User.MaxDisp = 4; 2263 User.NegOk = false; 2264 User.IsSoImm = false; 2265 User.KnownAlignment = false; 2266 } else { 2267 // The LEA couldn't be eliminated, so we must add another CPUser to 2268 // record the TBB or TBH use. 2269 int CPEntryIdx = JumpTableEntryIndices[JTI]; 2270 auto &CPEs = CPEntries[CPEntryIdx]; 2271 auto Entry = 2272 find_if(CPEs, [&](CPEntry &E) { return E.CPEMI == User.CPEMI; }); 2273 ++Entry->RefCount; 2274 CPUsers.emplace_back(CPUser(NewJTMI, User.CPEMI, 4, false, false)); 2275 } 2276 } 2277 2278 unsigned NewSize = TII->getInstSizeInBytes(*NewJTMI); 2279 unsigned OrigSize = TII->getInstSizeInBytes(*MI); 2280 MI->eraseFromParent(); 2281 2282 int Delta = OrigSize - NewSize + DeadSize; 2283 BBInfo[MBB->getNumber()].Size -= Delta; 2284 adjustBBOffsetsAfter(MBB); 2285 2286 ++NumTBs; 2287 MadeChange = true; 2288 } 2289 2290 return MadeChange; 2291 } 2292 2293 /// reorderThumb2JumpTables - Adjust the function's block layout to ensure that 2294 /// jump tables always branch forwards, since that's what tbb and tbh need. 2295 bool ARMConstantIslands::reorderThumb2JumpTables() { 2296 bool MadeChange = false; 2297 2298 MachineJumpTableInfo *MJTI = MF->getJumpTableInfo(); 2299 if (!MJTI) return false; 2300 2301 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); 2302 for (unsigned i = 0, e = T2JumpTables.size(); i != e; ++i) { 2303 MachineInstr *MI = T2JumpTables[i]; 2304 const MCInstrDesc &MCID = MI->getDesc(); 2305 unsigned NumOps = MCID.getNumOperands(); 2306 unsigned JTOpIdx = NumOps - (MI->isPredicable() ? 2 : 1); 2307 MachineOperand JTOP = MI->getOperand(JTOpIdx); 2308 unsigned JTI = JTOP.getIndex(); 2309 assert(JTI < JT.size()); 2310 2311 // We prefer if target blocks for the jump table come after the jump 2312 // instruction so we can use TB[BH]. Loop through the target blocks 2313 // and try to adjust them such that that's true. 2314 int JTNumber = MI->getParent()->getNumber(); 2315 const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs; 2316 for (unsigned j = 0, ee = JTBBs.size(); j != ee; ++j) { 2317 MachineBasicBlock *MBB = JTBBs[j]; 2318 int DTNumber = MBB->getNumber(); 2319 2320 if (DTNumber < JTNumber) { 2321 // The destination precedes the switch. Try to move the block forward 2322 // so we have a positive offset. 2323 MachineBasicBlock *NewBB = 2324 adjustJTTargetBlockForward(MBB, MI->getParent()); 2325 if (NewBB) 2326 MJTI->ReplaceMBBInJumpTable(JTI, JTBBs[j], NewBB); 2327 MadeChange = true; 2328 } 2329 } 2330 } 2331 2332 return MadeChange; 2333 } 2334 2335 MachineBasicBlock *ARMConstantIslands:: 2336 adjustJTTargetBlockForward(MachineBasicBlock *BB, MachineBasicBlock *JTBB) { 2337 // If the destination block is terminated by an unconditional branch, 2338 // try to move it; otherwise, create a new block following the jump 2339 // table that branches back to the actual target. This is a very simple 2340 // heuristic. FIXME: We can definitely improve it. 2341 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 2342 SmallVector<MachineOperand, 4> Cond; 2343 SmallVector<MachineOperand, 4> CondPrior; 2344 MachineFunction::iterator BBi = BB->getIterator(); 2345 MachineFunction::iterator OldPrior = std::prev(BBi); 2346 2347 // If the block terminator isn't analyzable, don't try to move the block 2348 bool B = TII->analyzeBranch(*BB, TBB, FBB, Cond); 2349 2350 // If the block ends in an unconditional branch, move it. The prior block 2351 // has to have an analyzable terminator for us to move this one. Be paranoid 2352 // and make sure we're not trying to move the entry block of the function. 2353 if (!B && Cond.empty() && BB != &MF->front() && 2354 !TII->analyzeBranch(*OldPrior, TBB, FBB, CondPrior)) { 2355 BB->moveAfter(JTBB); 2356 OldPrior->updateTerminator(); 2357 BB->updateTerminator(); 2358 // Update numbering to account for the block being moved. 2359 MF->RenumberBlocks(); 2360 ++NumJTMoved; 2361 return nullptr; 2362 } 2363 2364 // Create a new MBB for the code after the jump BB. 2365 MachineBasicBlock *NewBB = 2366 MF->CreateMachineBasicBlock(JTBB->getBasicBlock()); 2367 MachineFunction::iterator MBBI = ++JTBB->getIterator(); 2368 MF->insert(MBBI, NewBB); 2369 2370 // Add an unconditional branch from NewBB to BB. 2371 // There doesn't seem to be meaningful DebugInfo available; this doesn't 2372 // correspond directly to anything in the source. 2373 if (isThumb2) 2374 BuildMI(NewBB, DebugLoc(), TII->get(ARM::t2B)) 2375 .addMBB(BB) 2376 .add(predOps(ARMCC::AL)); 2377 else 2378 BuildMI(NewBB, DebugLoc(), TII->get(ARM::tB)) 2379 .addMBB(BB) 2380 .add(predOps(ARMCC::AL)); 2381 2382 // Update internal data structures to account for the newly inserted MBB. 2383 MF->RenumberBlocks(NewBB); 2384 2385 // Update the CFG. 2386 NewBB->addSuccessor(BB); 2387 JTBB->replaceSuccessor(BB, NewBB); 2388 2389 ++NumJTInserted; 2390 return NewBB; 2391 } 2392 2393 /// createARMConstantIslandPass - returns an instance of the constpool 2394 /// island pass. 2395 FunctionPass *llvm::createARMConstantIslandPass() { 2396 return new ARMConstantIslands(); 2397 } 2398 2399 INITIALIZE_PASS(ARMConstantIslands, "arm-cp-islands", ARM_CP_ISLANDS_OPT_NAME, 2400 false, false) 2401