1 //===- ARMConstantIslandPass.cpp - ARM constant islands -------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains a pass that splits the constant pool up into 'islands'
11 // which are scattered through-out the function. This is required due to the
12 // limited pc-relative displacements that ARM has.
13 //
14 //===----------------------------------------------------------------------===//
15
16 #include "ARM.h"
17 #include "ARMBaseInstrInfo.h"
18 #include "ARMBasicBlockInfo.h"
19 #include "ARMMachineFunctionInfo.h"
20 #include "ARMSubtarget.h"
21 #include "MCTargetDesc/ARMBaseInfo.h"
22 #include "Thumb2InstrInfo.h"
23 #include "Utils/ARMBaseInfo.h"
24 #include "llvm/ADT/DenseMap.h"
25 #include "llvm/ADT/STLExtras.h"
26 #include "llvm/ADT/SmallSet.h"
27 #include "llvm/ADT/SmallVector.h"
28 #include "llvm/ADT/Statistic.h"
29 #include "llvm/ADT/StringRef.h"
30 #include "llvm/CodeGen/MachineBasicBlock.h"
31 #include "llvm/CodeGen/MachineConstantPool.h"
32 #include "llvm/CodeGen/MachineFunction.h"
33 #include "llvm/CodeGen/MachineFunctionPass.h"
34 #include "llvm/CodeGen/MachineInstr.h"
35 #include "llvm/CodeGen/MachineJumpTableInfo.h"
36 #include "llvm/CodeGen/MachineOperand.h"
37 #include "llvm/CodeGen/MachineRegisterInfo.h"
38 #include "llvm/Config/llvm-config.h"
39 #include "llvm/IR/DataLayout.h"
40 #include "llvm/IR/DebugLoc.h"
41 #include "llvm/MC/MCInstrDesc.h"
42 #include "llvm/Pass.h"
43 #include "llvm/Support/CommandLine.h"
44 #include "llvm/Support/Compiler.h"
45 #include "llvm/Support/Debug.h"
46 #include "llvm/Support/ErrorHandling.h"
47 #include "llvm/Support/Format.h"
48 #include "llvm/Support/MathExtras.h"
49 #include "llvm/Support/raw_ostream.h"
50 #include <algorithm>
51 #include <cassert>
52 #include <cstdint>
53 #include <iterator>
54 #include <utility>
55 #include <vector>
56
57 using namespace llvm;
58
59 #define DEBUG_TYPE "arm-cp-islands"
60
61 #define ARM_CP_ISLANDS_OPT_NAME \
62 "ARM constant island placement and branch shortening pass"
63 STATISTIC(NumCPEs, "Number of constpool entries");
64 STATISTIC(NumSplit, "Number of uncond branches inserted");
65 STATISTIC(NumCBrFixed, "Number of cond branches fixed");
66 STATISTIC(NumUBrFixed, "Number of uncond branches fixed");
67 STATISTIC(NumTBs, "Number of table branches generated");
68 STATISTIC(NumT2CPShrunk, "Number of Thumb2 constantpool instructions shrunk");
69 STATISTIC(NumT2BrShrunk, "Number of Thumb2 immediate branches shrunk");
70 STATISTIC(NumCBZ, "Number of CBZ / CBNZ formed");
71 STATISTIC(NumJTMoved, "Number of jump table destination blocks moved");
72 STATISTIC(NumJTInserted, "Number of jump table intermediate blocks inserted");
73
74 static cl::opt<bool>
75 AdjustJumpTableBlocks("arm-adjust-jump-tables", cl::Hidden, cl::init(true),
76 cl::desc("Adjust basic block layout to better use TB[BH]"));
77
78 static cl::opt<unsigned>
79 CPMaxIteration("arm-constant-island-max-iteration", cl::Hidden, cl::init(30),
80 cl::desc("The max number of iteration for converge"));
81
82 static cl::opt<bool> SynthesizeThumb1TBB(
83 "arm-synthesize-thumb-1-tbb", cl::Hidden, cl::init(true),
84 cl::desc("Use compressed jump tables in Thumb-1 by synthesizing an "
85 "equivalent to the TBB/TBH instructions"));
86
87 namespace {
88
89 /// ARMConstantIslands - Due to limited PC-relative displacements, ARM
90 /// requires constant pool entries to be scattered among the instructions
91 /// inside a function. To do this, it completely ignores the normal LLVM
92 /// constant pool; instead, it places constants wherever it feels like with
93 /// special instructions.
94 ///
95 /// The terminology used in this pass includes:
96 /// Islands - Clumps of constants placed in the function.
97 /// Water - Potential places where an island could be formed.
98 /// CPE - A constant pool entry that has been placed somewhere, which
99 /// tracks a list of users.
100 class ARMConstantIslands : public MachineFunctionPass {
101 std::vector<BasicBlockInfo> BBInfo;
102
103 /// WaterList - A sorted list of basic blocks where islands could be placed
104 /// (i.e. blocks that don't fall through to the following block, due
105 /// to a return, unreachable, or unconditional branch).
106 std::vector<MachineBasicBlock*> WaterList;
107
108 /// NewWaterList - The subset of WaterList that was created since the
109 /// previous iteration by inserting unconditional branches.
110 SmallSet<MachineBasicBlock*, 4> NewWaterList;
111
112 using water_iterator = std::vector<MachineBasicBlock *>::iterator;
113
114 /// CPUser - One user of a constant pool, keeping the machine instruction
115 /// pointer, the constant pool being referenced, and the max displacement
116 /// allowed from the instruction to the CP. The HighWaterMark records the
117 /// highest basic block where a new CPEntry can be placed. To ensure this
118 /// pass terminates, the CP entries are initially placed at the end of the
119 /// function and then move monotonically to lower addresses. The
120 /// exception to this rule is when the current CP entry for a particular
121 /// CPUser is out of range, but there is another CP entry for the same
122 /// constant value in range. We want to use the existing in-range CP
123 /// entry, but if it later moves out of range, the search for new water
124 /// should resume where it left off. The HighWaterMark is used to record
125 /// that point.
126 struct CPUser {
127 MachineInstr *MI;
128 MachineInstr *CPEMI;
129 MachineBasicBlock *HighWaterMark;
130 unsigned MaxDisp;
131 bool NegOk;
132 bool IsSoImm;
133 bool KnownAlignment = false;
134
CPUser__anond24086560111::ARMConstantIslands::CPUser135 CPUser(MachineInstr *mi, MachineInstr *cpemi, unsigned maxdisp,
136 bool neg, bool soimm)
137 : MI(mi), CPEMI(cpemi), MaxDisp(maxdisp), NegOk(neg), IsSoImm(soimm) {
138 HighWaterMark = CPEMI->getParent();
139 }
140
141 /// getMaxDisp - Returns the maximum displacement supported by MI.
142 /// Correct for unknown alignment.
143 /// Conservatively subtract 2 bytes to handle weird alignment effects.
getMaxDisp__anond24086560111::ARMConstantIslands::CPUser144 unsigned getMaxDisp() const {
145 return (KnownAlignment ? MaxDisp : MaxDisp - 2) - 2;
146 }
147 };
148
149 /// CPUsers - Keep track of all of the machine instructions that use various
150 /// constant pools and their max displacement.
151 std::vector<CPUser> CPUsers;
152
153 /// CPEntry - One per constant pool entry, keeping the machine instruction
154 /// pointer, the constpool index, and the number of CPUser's which
155 /// reference this entry.
156 struct CPEntry {
157 MachineInstr *CPEMI;
158 unsigned CPI;
159 unsigned RefCount;
160
CPEntry__anond24086560111::ARMConstantIslands::CPEntry161 CPEntry(MachineInstr *cpemi, unsigned cpi, unsigned rc = 0)
162 : CPEMI(cpemi), CPI(cpi), RefCount(rc) {}
163 };
164
165 /// CPEntries - Keep track of all of the constant pool entry machine
166 /// instructions. For each original constpool index (i.e. those that existed
167 /// upon entry to this pass), it keeps a vector of entries. Original
168 /// elements are cloned as we go along; the clones are put in the vector of
169 /// the original element, but have distinct CPIs.
170 ///
171 /// The first half of CPEntries contains generic constants, the second half
172 /// contains jump tables. Use getCombinedIndex on a generic CPEMI to look up
173 /// which vector it will be in here.
174 std::vector<std::vector<CPEntry>> CPEntries;
175
176 /// Maps a JT index to the offset in CPEntries containing copies of that
177 /// table. The equivalent map for a CONSTPOOL_ENTRY is the identity.
178 DenseMap<int, int> JumpTableEntryIndices;
179
180 /// Maps a JT index to the LEA that actually uses the index to calculate its
181 /// base address.
182 DenseMap<int, int> JumpTableUserIndices;
183
184 /// ImmBranch - One per immediate branch, keeping the machine instruction
185 /// pointer, conditional or unconditional, the max displacement,
186 /// and (if isCond is true) the corresponding unconditional branch
187 /// opcode.
188 struct ImmBranch {
189 MachineInstr *MI;
190 unsigned MaxDisp : 31;
191 bool isCond : 1;
192 unsigned UncondBr;
193
ImmBranch__anond24086560111::ARMConstantIslands::ImmBranch194 ImmBranch(MachineInstr *mi, unsigned maxdisp, bool cond, unsigned ubr)
195 : MI(mi), MaxDisp(maxdisp), isCond(cond), UncondBr(ubr) {}
196 };
197
198 /// ImmBranches - Keep track of all the immediate branch instructions.
199 std::vector<ImmBranch> ImmBranches;
200
201 /// PushPopMIs - Keep track of all the Thumb push / pop instructions.
202 SmallVector<MachineInstr*, 4> PushPopMIs;
203
204 /// T2JumpTables - Keep track of all the Thumb2 jumptable instructions.
205 SmallVector<MachineInstr*, 4> T2JumpTables;
206
207 /// HasFarJump - True if any far jump instruction has been emitted during
208 /// the branch fix up pass.
209 bool HasFarJump;
210
211 MachineFunction *MF;
212 MachineConstantPool *MCP;
213 const ARMBaseInstrInfo *TII;
214 const ARMSubtarget *STI;
215 ARMFunctionInfo *AFI;
216 bool isThumb;
217 bool isThumb1;
218 bool isThumb2;
219 bool isPositionIndependentOrROPI;
220
221 public:
222 static char ID;
223
ARMConstantIslands()224 ARMConstantIslands() : MachineFunctionPass(ID) {}
225
226 bool runOnMachineFunction(MachineFunction &MF) override;
227
getRequiredProperties() const228 MachineFunctionProperties getRequiredProperties() const override {
229 return MachineFunctionProperties().set(
230 MachineFunctionProperties::Property::NoVRegs);
231 }
232
getPassName() const233 StringRef getPassName() const override {
234 return ARM_CP_ISLANDS_OPT_NAME;
235 }
236
237 private:
238 void doInitialConstPlacement(std::vector<MachineInstr *> &CPEMIs);
239 void doInitialJumpTablePlacement(std::vector<MachineInstr *> &CPEMIs);
240 bool BBHasFallthrough(MachineBasicBlock *MBB);
241 CPEntry *findConstPoolEntry(unsigned CPI, const MachineInstr *CPEMI);
242 unsigned getCPELogAlign(const MachineInstr *CPEMI);
243 void scanFunctionJumpTables();
244 void initializeFunctionInfo(const std::vector<MachineInstr*> &CPEMIs);
245 MachineBasicBlock *splitBlockBeforeInstr(MachineInstr *MI);
246 void updateForInsertedWaterBlock(MachineBasicBlock *NewBB);
247 void adjustBBOffsetsAfter(MachineBasicBlock *BB);
248 bool decrementCPEReferenceCount(unsigned CPI, MachineInstr* CPEMI);
249 unsigned getCombinedIndex(const MachineInstr *CPEMI);
250 int findInRangeCPEntry(CPUser& U, unsigned UserOffset);
251 bool findAvailableWater(CPUser&U, unsigned UserOffset,
252 water_iterator &WaterIter, bool CloserWater);
253 void createNewWater(unsigned CPUserIndex, unsigned UserOffset,
254 MachineBasicBlock *&NewMBB);
255 bool handleConstantPoolUser(unsigned CPUserIndex, bool CloserWater);
256 void removeDeadCPEMI(MachineInstr *CPEMI);
257 bool removeUnusedCPEntries();
258 bool isCPEntryInRange(MachineInstr *MI, unsigned UserOffset,
259 MachineInstr *CPEMI, unsigned Disp, bool NegOk,
260 bool DoDump = false);
261 bool isWaterInRange(unsigned UserOffset, MachineBasicBlock *Water,
262 CPUser &U, unsigned &Growth);
263 bool isBBInRange(MachineInstr *MI, MachineBasicBlock *BB, unsigned Disp);
264 bool fixupImmediateBr(ImmBranch &Br);
265 bool fixupConditionalBr(ImmBranch &Br);
266 bool fixupUnconditionalBr(ImmBranch &Br);
267 bool undoLRSpillRestore();
268 bool optimizeThumb2Instructions();
269 bool optimizeThumb2Branches();
270 bool reorderThumb2JumpTables();
271 bool preserveBaseRegister(MachineInstr *JumpMI, MachineInstr *LEAMI,
272 unsigned &DeadSize, bool &CanDeleteLEA,
273 bool &BaseRegKill);
274 bool optimizeThumb2JumpTables();
275 MachineBasicBlock *adjustJTTargetBlockForward(MachineBasicBlock *BB,
276 MachineBasicBlock *JTBB);
277
278 unsigned getOffsetOf(MachineInstr *MI) const;
279 unsigned getUserOffset(CPUser&) const;
280 void dumpBBs();
281 void verify();
282
283 bool isOffsetInRange(unsigned UserOffset, unsigned TrialOffset,
284 unsigned Disp, bool NegativeOK, bool IsSoImm = false);
isOffsetInRange(unsigned UserOffset,unsigned TrialOffset,const CPUser & U)285 bool isOffsetInRange(unsigned UserOffset, unsigned TrialOffset,
286 const CPUser &U) {
287 return isOffsetInRange(UserOffset, TrialOffset,
288 U.getMaxDisp(), U.NegOk, U.IsSoImm);
289 }
290 };
291
292 } // end anonymous namespace
293
294 char ARMConstantIslands::ID = 0;
295
296 /// verify - check BBOffsets, BBSizes, alignment of islands
verify()297 void ARMConstantIslands::verify() {
298 #ifndef NDEBUG
299 assert(std::is_sorted(MF->begin(), MF->end(),
300 [this](const MachineBasicBlock &LHS,
301 const MachineBasicBlock &RHS) {
302 return BBInfo[LHS.getNumber()].postOffset() <
303 BBInfo[RHS.getNumber()].postOffset();
304 }));
305 LLVM_DEBUG(dbgs() << "Verifying " << CPUsers.size() << " CP users.\n");
306 for (unsigned i = 0, e = CPUsers.size(); i != e; ++i) {
307 CPUser &U = CPUsers[i];
308 unsigned UserOffset = getUserOffset(U);
309 // Verify offset using the real max displacement without the safety
310 // adjustment.
311 if (isCPEntryInRange(U.MI, UserOffset, U.CPEMI, U.getMaxDisp()+2, U.NegOk,
312 /* DoDump = */ true)) {
313 LLVM_DEBUG(dbgs() << "OK\n");
314 continue;
315 }
316 LLVM_DEBUG(dbgs() << "Out of range.\n");
317 dumpBBs();
318 LLVM_DEBUG(MF->dump());
319 llvm_unreachable("Constant pool entry out of range!");
320 }
321 #endif
322 }
323
324 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
325 /// print block size and offset information - debugging
dumpBBs()326 LLVM_DUMP_METHOD void ARMConstantIslands::dumpBBs() {
327 LLVM_DEBUG({
328 for (unsigned J = 0, E = BBInfo.size(); J !=E; ++J) {
329 const BasicBlockInfo &BBI = BBInfo[J];
330 dbgs() << format("%08x %bb.%u\t", BBI.Offset, J)
331 << " kb=" << unsigned(BBI.KnownBits)
332 << " ua=" << unsigned(BBI.Unalign)
333 << " pa=" << unsigned(BBI.PostAlign)
334 << format(" size=%#x\n", BBInfo[J].Size);
335 }
336 });
337 }
338 #endif
339
runOnMachineFunction(MachineFunction & mf)340 bool ARMConstantIslands::runOnMachineFunction(MachineFunction &mf) {
341 MF = &mf;
342 MCP = mf.getConstantPool();
343
344 LLVM_DEBUG(dbgs() << "***** ARMConstantIslands: "
345 << MCP->getConstants().size() << " CP entries, aligned to "
346 << MCP->getConstantPoolAlignment() << " bytes *****\n");
347
348 STI = &static_cast<const ARMSubtarget &>(MF->getSubtarget());
349 TII = STI->getInstrInfo();
350 isPositionIndependentOrROPI =
351 STI->getTargetLowering()->isPositionIndependent() || STI->isROPI();
352 AFI = MF->getInfo<ARMFunctionInfo>();
353
354 isThumb = AFI->isThumbFunction();
355 isThumb1 = AFI->isThumb1OnlyFunction();
356 isThumb2 = AFI->isThumb2Function();
357
358 HasFarJump = false;
359 bool GenerateTBB = isThumb2 || (isThumb1 && SynthesizeThumb1TBB);
360
361 // This pass invalidates liveness information when it splits basic blocks.
362 MF->getRegInfo().invalidateLiveness();
363
364 // Renumber all of the machine basic blocks in the function, guaranteeing that
365 // the numbers agree with the position of the block in the function.
366 MF->RenumberBlocks();
367
368 // Try to reorder and otherwise adjust the block layout to make good use
369 // of the TB[BH] instructions.
370 bool MadeChange = false;
371 if (GenerateTBB && AdjustJumpTableBlocks) {
372 scanFunctionJumpTables();
373 MadeChange |= reorderThumb2JumpTables();
374 // Data is out of date, so clear it. It'll be re-computed later.
375 T2JumpTables.clear();
376 // Blocks may have shifted around. Keep the numbering up to date.
377 MF->RenumberBlocks();
378 }
379
380 // Perform the initial placement of the constant pool entries. To start with,
381 // we put them all at the end of the function.
382 std::vector<MachineInstr*> CPEMIs;
383 if (!MCP->isEmpty())
384 doInitialConstPlacement(CPEMIs);
385
386 if (MF->getJumpTableInfo())
387 doInitialJumpTablePlacement(CPEMIs);
388
389 /// The next UID to take is the first unused one.
390 AFI->initPICLabelUId(CPEMIs.size());
391
392 // Do the initial scan of the function, building up information about the
393 // sizes of each block, the location of all the water, and finding all of the
394 // constant pool users.
395 initializeFunctionInfo(CPEMIs);
396 CPEMIs.clear();
397 LLVM_DEBUG(dumpBBs());
398
399 // Functions with jump tables need an alignment of 4 because they use the ADR
400 // instruction, which aligns the PC to 4 bytes before adding an offset.
401 if (!T2JumpTables.empty())
402 MF->ensureAlignment(2);
403
404 /// Remove dead constant pool entries.
405 MadeChange |= removeUnusedCPEntries();
406
407 // Iteratively place constant pool entries and fix up branches until there
408 // is no change.
409 unsigned NoCPIters = 0, NoBRIters = 0;
410 while (true) {
411 LLVM_DEBUG(dbgs() << "Beginning CP iteration #" << NoCPIters << '\n');
412 bool CPChange = false;
413 for (unsigned i = 0, e = CPUsers.size(); i != e; ++i)
414 // For most inputs, it converges in no more than 5 iterations.
415 // If it doesn't end in 10, the input may have huge BB or many CPEs.
416 // In this case, we will try different heuristics.
417 CPChange |= handleConstantPoolUser(i, NoCPIters >= CPMaxIteration / 2);
418 if (CPChange && ++NoCPIters > CPMaxIteration)
419 report_fatal_error("Constant Island pass failed to converge!");
420 LLVM_DEBUG(dumpBBs());
421
422 // Clear NewWaterList now. If we split a block for branches, it should
423 // appear as "new water" for the next iteration of constant pool placement.
424 NewWaterList.clear();
425
426 LLVM_DEBUG(dbgs() << "Beginning BR iteration #" << NoBRIters << '\n');
427 bool BRChange = false;
428 for (unsigned i = 0, e = ImmBranches.size(); i != e; ++i)
429 BRChange |= fixupImmediateBr(ImmBranches[i]);
430 if (BRChange && ++NoBRIters > 30)
431 report_fatal_error("Branch Fix Up pass failed to converge!");
432 LLVM_DEBUG(dumpBBs());
433
434 if (!CPChange && !BRChange)
435 break;
436 MadeChange = true;
437 }
438
439 // Shrink 32-bit Thumb2 load and store instructions.
440 if (isThumb2 && !STI->prefers32BitThumb())
441 MadeChange |= optimizeThumb2Instructions();
442
443 // Shrink 32-bit branch instructions.
444 if (isThumb && STI->hasV8MBaselineOps())
445 MadeChange |= optimizeThumb2Branches();
446
447 // Optimize jump tables using TBB / TBH.
448 if (GenerateTBB && !STI->genExecuteOnly())
449 MadeChange |= optimizeThumb2JumpTables();
450
451 // After a while, this might be made debug-only, but it is not expensive.
452 verify();
453
454 // If LR has been forced spilled and no far jump (i.e. BL) has been issued,
455 // undo the spill / restore of LR if possible.
456 if (isThumb && !HasFarJump && AFI->isLRSpilledForFarJump())
457 MadeChange |= undoLRSpillRestore();
458
459 // Save the mapping between original and cloned constpool entries.
460 for (unsigned i = 0, e = CPEntries.size(); i != e; ++i) {
461 for (unsigned j = 0, je = CPEntries[i].size(); j != je; ++j) {
462 const CPEntry & CPE = CPEntries[i][j];
463 if (CPE.CPEMI && CPE.CPEMI->getOperand(1).isCPI())
464 AFI->recordCPEClone(i, CPE.CPI);
465 }
466 }
467
468 LLVM_DEBUG(dbgs() << '\n'; dumpBBs());
469
470 BBInfo.clear();
471 WaterList.clear();
472 CPUsers.clear();
473 CPEntries.clear();
474 JumpTableEntryIndices.clear();
475 JumpTableUserIndices.clear();
476 ImmBranches.clear();
477 PushPopMIs.clear();
478 T2JumpTables.clear();
479
480 return MadeChange;
481 }
482
483 /// Perform the initial placement of the regular constant pool entries.
484 /// To start with, we put them all at the end of the function.
485 void
doInitialConstPlacement(std::vector<MachineInstr * > & CPEMIs)486 ARMConstantIslands::doInitialConstPlacement(std::vector<MachineInstr*> &CPEMIs) {
487 // Create the basic block to hold the CPE's.
488 MachineBasicBlock *BB = MF->CreateMachineBasicBlock();
489 MF->push_back(BB);
490
491 // MachineConstantPool measures alignment in bytes. We measure in log2(bytes).
492 unsigned MaxAlign = Log2_32(MCP->getConstantPoolAlignment());
493
494 // Mark the basic block as required by the const-pool.
495 BB->setAlignment(MaxAlign);
496
497 // The function needs to be as aligned as the basic blocks. The linker may
498 // move functions around based on their alignment.
499 MF->ensureAlignment(BB->getAlignment());
500
501 // Order the entries in BB by descending alignment. That ensures correct
502 // alignment of all entries as long as BB is sufficiently aligned. Keep
503 // track of the insertion point for each alignment. We are going to bucket
504 // sort the entries as they are created.
505 SmallVector<MachineBasicBlock::iterator, 8> InsPoint(MaxAlign + 1, BB->end());
506
507 // Add all of the constants from the constant pool to the end block, use an
508 // identity mapping of CPI's to CPE's.
509 const std::vector<MachineConstantPoolEntry> &CPs = MCP->getConstants();
510
511 const DataLayout &TD = MF->getDataLayout();
512 for (unsigned i = 0, e = CPs.size(); i != e; ++i) {
513 unsigned Size = TD.getTypeAllocSize(CPs[i].getType());
514 unsigned Align = CPs[i].getAlignment();
515 assert(isPowerOf2_32(Align) && "Invalid alignment");
516 // Verify that all constant pool entries are a multiple of their alignment.
517 // If not, we would have to pad them out so that instructions stay aligned.
518 assert((Size % Align) == 0 && "CP Entry not multiple of 4 bytes!");
519
520 // Insert CONSTPOOL_ENTRY before entries with a smaller alignment.
521 unsigned LogAlign = Log2_32(Align);
522 MachineBasicBlock::iterator InsAt = InsPoint[LogAlign];
523 MachineInstr *CPEMI =
524 BuildMI(*BB, InsAt, DebugLoc(), TII->get(ARM::CONSTPOOL_ENTRY))
525 .addImm(i).addConstantPoolIndex(i).addImm(Size);
526 CPEMIs.push_back(CPEMI);
527
528 // Ensure that future entries with higher alignment get inserted before
529 // CPEMI. This is bucket sort with iterators.
530 for (unsigned a = LogAlign + 1; a <= MaxAlign; ++a)
531 if (InsPoint[a] == InsAt)
532 InsPoint[a] = CPEMI;
533
534 // Add a new CPEntry, but no corresponding CPUser yet.
535 CPEntries.emplace_back(1, CPEntry(CPEMI, i));
536 ++NumCPEs;
537 LLVM_DEBUG(dbgs() << "Moved CPI#" << i << " to end of function, size = "
538 << Size << ", align = " << Align << '\n');
539 }
540 LLVM_DEBUG(BB->dump());
541 }
542
543 /// Do initial placement of the jump tables. Because Thumb2's TBB and TBH
544 /// instructions can be made more efficient if the jump table immediately
545 /// follows the instruction, it's best to place them immediately next to their
546 /// jumps to begin with. In almost all cases they'll never be moved from that
547 /// position.
doInitialJumpTablePlacement(std::vector<MachineInstr * > & CPEMIs)548 void ARMConstantIslands::doInitialJumpTablePlacement(
549 std::vector<MachineInstr *> &CPEMIs) {
550 unsigned i = CPEntries.size();
551 auto MJTI = MF->getJumpTableInfo();
552 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
553
554 MachineBasicBlock *LastCorrectlyNumberedBB = nullptr;
555 for (MachineBasicBlock &MBB : *MF) {
556 auto MI = MBB.getLastNonDebugInstr();
557 if (MI == MBB.end())
558 continue;
559
560 unsigned JTOpcode;
561 switch (MI->getOpcode()) {
562 default:
563 continue;
564 case ARM::BR_JTadd:
565 case ARM::BR_JTr:
566 case ARM::tBR_JTr:
567 case ARM::BR_JTm_i12:
568 case ARM::BR_JTm_rs:
569 JTOpcode = ARM::JUMPTABLE_ADDRS;
570 break;
571 case ARM::t2BR_JT:
572 JTOpcode = ARM::JUMPTABLE_INSTS;
573 break;
574 case ARM::tTBB_JT:
575 case ARM::t2TBB_JT:
576 JTOpcode = ARM::JUMPTABLE_TBB;
577 break;
578 case ARM::tTBH_JT:
579 case ARM::t2TBH_JT:
580 JTOpcode = ARM::JUMPTABLE_TBH;
581 break;
582 }
583
584 unsigned NumOps = MI->getDesc().getNumOperands();
585 MachineOperand JTOp =
586 MI->getOperand(NumOps - (MI->isPredicable() ? 2 : 1));
587 unsigned JTI = JTOp.getIndex();
588 unsigned Size = JT[JTI].MBBs.size() * sizeof(uint32_t);
589 MachineBasicBlock *JumpTableBB = MF->CreateMachineBasicBlock();
590 MF->insert(std::next(MachineFunction::iterator(MBB)), JumpTableBB);
591 MachineInstr *CPEMI = BuildMI(*JumpTableBB, JumpTableBB->begin(),
592 DebugLoc(), TII->get(JTOpcode))
593 .addImm(i++)
594 .addJumpTableIndex(JTI)
595 .addImm(Size);
596 CPEMIs.push_back(CPEMI);
597 CPEntries.emplace_back(1, CPEntry(CPEMI, JTI));
598 JumpTableEntryIndices.insert(std::make_pair(JTI, CPEntries.size() - 1));
599 if (!LastCorrectlyNumberedBB)
600 LastCorrectlyNumberedBB = &MBB;
601 }
602
603 // If we did anything then we need to renumber the subsequent blocks.
604 if (LastCorrectlyNumberedBB)
605 MF->RenumberBlocks(LastCorrectlyNumberedBB);
606 }
607
608 /// BBHasFallthrough - Return true if the specified basic block can fallthrough
609 /// into the block immediately after it.
BBHasFallthrough(MachineBasicBlock * MBB)610 bool ARMConstantIslands::BBHasFallthrough(MachineBasicBlock *MBB) {
611 // Get the next machine basic block in the function.
612 MachineFunction::iterator MBBI = MBB->getIterator();
613 // Can't fall off end of function.
614 if (std::next(MBBI) == MBB->getParent()->end())
615 return false;
616
617 MachineBasicBlock *NextBB = &*std::next(MBBI);
618 if (!MBB->isSuccessor(NextBB))
619 return false;
620
621 // Try to analyze the end of the block. A potential fallthrough may already
622 // have an unconditional branch for whatever reason.
623 MachineBasicBlock *TBB, *FBB;
624 SmallVector<MachineOperand, 4> Cond;
625 bool TooDifficult = TII->analyzeBranch(*MBB, TBB, FBB, Cond);
626 return TooDifficult || FBB == nullptr;
627 }
628
629 /// findConstPoolEntry - Given the constpool index and CONSTPOOL_ENTRY MI,
630 /// look up the corresponding CPEntry.
631 ARMConstantIslands::CPEntry *
findConstPoolEntry(unsigned CPI,const MachineInstr * CPEMI)632 ARMConstantIslands::findConstPoolEntry(unsigned CPI,
633 const MachineInstr *CPEMI) {
634 std::vector<CPEntry> &CPEs = CPEntries[CPI];
635 // Number of entries per constpool index should be small, just do a
636 // linear search.
637 for (unsigned i = 0, e = CPEs.size(); i != e; ++i) {
638 if (CPEs[i].CPEMI == CPEMI)
639 return &CPEs[i];
640 }
641 return nullptr;
642 }
643
644 /// getCPELogAlign - Returns the required alignment of the constant pool entry
645 /// represented by CPEMI. Alignment is measured in log2(bytes) units.
getCPELogAlign(const MachineInstr * CPEMI)646 unsigned ARMConstantIslands::getCPELogAlign(const MachineInstr *CPEMI) {
647 switch (CPEMI->getOpcode()) {
648 case ARM::CONSTPOOL_ENTRY:
649 break;
650 case ARM::JUMPTABLE_TBB:
651 return isThumb1 ? 2 : 0;
652 case ARM::JUMPTABLE_TBH:
653 return isThumb1 ? 2 : 1;
654 case ARM::JUMPTABLE_INSTS:
655 return 1;
656 case ARM::JUMPTABLE_ADDRS:
657 return 2;
658 default:
659 llvm_unreachable("unknown constpool entry kind");
660 }
661
662 unsigned CPI = getCombinedIndex(CPEMI);
663 assert(CPI < MCP->getConstants().size() && "Invalid constant pool index.");
664 unsigned Align = MCP->getConstants()[CPI].getAlignment();
665 assert(isPowerOf2_32(Align) && "Invalid CPE alignment");
666 return Log2_32(Align);
667 }
668
669 /// scanFunctionJumpTables - Do a scan of the function, building up
670 /// information about the sizes of each block and the locations of all
671 /// the jump tables.
scanFunctionJumpTables()672 void ARMConstantIslands::scanFunctionJumpTables() {
673 for (MachineBasicBlock &MBB : *MF) {
674 for (MachineInstr &I : MBB)
675 if (I.isBranch() &&
676 (I.getOpcode() == ARM::t2BR_JT || I.getOpcode() == ARM::tBR_JTr))
677 T2JumpTables.push_back(&I);
678 }
679 }
680
681 /// initializeFunctionInfo - Do the initial scan of the function, building up
682 /// information about the sizes of each block, the location of all the water,
683 /// and finding all of the constant pool users.
684 void ARMConstantIslands::
initializeFunctionInfo(const std::vector<MachineInstr * > & CPEMIs)685 initializeFunctionInfo(const std::vector<MachineInstr*> &CPEMIs) {
686
687 BBInfo = computeAllBlockSizes(MF);
688
689 // The known bits of the entry block offset are determined by the function
690 // alignment.
691 BBInfo.front().KnownBits = MF->getAlignment();
692
693 // Compute block offsets and known bits.
694 adjustBBOffsetsAfter(&MF->front());
695
696 // Now go back through the instructions and build up our data structures.
697 for (MachineBasicBlock &MBB : *MF) {
698 // If this block doesn't fall through into the next MBB, then this is
699 // 'water' that a constant pool island could be placed.
700 if (!BBHasFallthrough(&MBB))
701 WaterList.push_back(&MBB);
702
703 for (MachineInstr &I : MBB) {
704 if (I.isDebugInstr())
705 continue;
706
707 unsigned Opc = I.getOpcode();
708 if (I.isBranch()) {
709 bool isCond = false;
710 unsigned Bits = 0;
711 unsigned Scale = 1;
712 int UOpc = Opc;
713 switch (Opc) {
714 default:
715 continue; // Ignore other JT branches
716 case ARM::t2BR_JT:
717 case ARM::tBR_JTr:
718 T2JumpTables.push_back(&I);
719 continue; // Does not get an entry in ImmBranches
720 case ARM::Bcc:
721 isCond = true;
722 UOpc = ARM::B;
723 LLVM_FALLTHROUGH;
724 case ARM::B:
725 Bits = 24;
726 Scale = 4;
727 break;
728 case ARM::tBcc:
729 isCond = true;
730 UOpc = ARM::tB;
731 Bits = 8;
732 Scale = 2;
733 break;
734 case ARM::tB:
735 Bits = 11;
736 Scale = 2;
737 break;
738 case ARM::t2Bcc:
739 isCond = true;
740 UOpc = ARM::t2B;
741 Bits = 20;
742 Scale = 2;
743 break;
744 case ARM::t2B:
745 Bits = 24;
746 Scale = 2;
747 break;
748 }
749
750 // Record this immediate branch.
751 unsigned MaxOffs = ((1 << (Bits-1))-1) * Scale;
752 ImmBranches.push_back(ImmBranch(&I, MaxOffs, isCond, UOpc));
753 }
754
755 if (Opc == ARM::tPUSH || Opc == ARM::tPOP_RET)
756 PushPopMIs.push_back(&I);
757
758 if (Opc == ARM::CONSTPOOL_ENTRY || Opc == ARM::JUMPTABLE_ADDRS ||
759 Opc == ARM::JUMPTABLE_INSTS || Opc == ARM::JUMPTABLE_TBB ||
760 Opc == ARM::JUMPTABLE_TBH)
761 continue;
762
763 // Scan the instructions for constant pool operands.
764 for (unsigned op = 0, e = I.getNumOperands(); op != e; ++op)
765 if (I.getOperand(op).isCPI() || I.getOperand(op).isJTI()) {
766 // We found one. The addressing mode tells us the max displacement
767 // from the PC that this instruction permits.
768
769 // Basic size info comes from the TSFlags field.
770 unsigned Bits = 0;
771 unsigned Scale = 1;
772 bool NegOk = false;
773 bool IsSoImm = false;
774
775 switch (Opc) {
776 default:
777 llvm_unreachable("Unknown addressing mode for CP reference!");
778
779 // Taking the address of a CP entry.
780 case ARM::LEApcrel:
781 case ARM::LEApcrelJT:
782 // This takes a SoImm, which is 8 bit immediate rotated. We'll
783 // pretend the maximum offset is 255 * 4. Since each instruction
784 // 4 byte wide, this is always correct. We'll check for other
785 // displacements that fits in a SoImm as well.
786 Bits = 8;
787 Scale = 4;
788 NegOk = true;
789 IsSoImm = true;
790 break;
791 case ARM::t2LEApcrel:
792 case ARM::t2LEApcrelJT:
793 Bits = 12;
794 NegOk = true;
795 break;
796 case ARM::tLEApcrel:
797 case ARM::tLEApcrelJT:
798 Bits = 8;
799 Scale = 4;
800 break;
801
802 case ARM::LDRBi12:
803 case ARM::LDRi12:
804 case ARM::LDRcp:
805 case ARM::t2LDRpci:
806 case ARM::t2LDRHpci:
807 case ARM::t2LDRBpci:
808 Bits = 12; // +-offset_12
809 NegOk = true;
810 break;
811
812 case ARM::tLDRpci:
813 Bits = 8;
814 Scale = 4; // +(offset_8*4)
815 break;
816
817 case ARM::VLDRD:
818 case ARM::VLDRS:
819 Bits = 8;
820 Scale = 4; // +-(offset_8*4)
821 NegOk = true;
822 break;
823 case ARM::VLDRH:
824 Bits = 8;
825 Scale = 2; // +-(offset_8*2)
826 NegOk = true;
827 break;
828
829 case ARM::tLDRHi:
830 Bits = 5;
831 Scale = 2; // +(offset_5*2)
832 break;
833 }
834
835 // Remember that this is a user of a CP entry.
836 unsigned CPI = I.getOperand(op).getIndex();
837 if (I.getOperand(op).isJTI()) {
838 JumpTableUserIndices.insert(std::make_pair(CPI, CPUsers.size()));
839 CPI = JumpTableEntryIndices[CPI];
840 }
841
842 MachineInstr *CPEMI = CPEMIs[CPI];
843 unsigned MaxOffs = ((1 << Bits)-1) * Scale;
844 CPUsers.push_back(CPUser(&I, CPEMI, MaxOffs, NegOk, IsSoImm));
845
846 // Increment corresponding CPEntry reference count.
847 CPEntry *CPE = findConstPoolEntry(CPI, CPEMI);
848 assert(CPE && "Cannot find a corresponding CPEntry!");
849 CPE->RefCount++;
850
851 // Instructions can only use one CP entry, don't bother scanning the
852 // rest of the operands.
853 break;
854 }
855 }
856 }
857 }
858
859 /// getOffsetOf - Return the current offset of the specified machine instruction
860 /// from the start of the function. This offset changes as stuff is moved
861 /// around inside the function.
getOffsetOf(MachineInstr * MI) const862 unsigned ARMConstantIslands::getOffsetOf(MachineInstr *MI) const {
863 MachineBasicBlock *MBB = MI->getParent();
864
865 // The offset is composed of two things: the sum of the sizes of all MBB's
866 // before this instruction's block, and the offset from the start of the block
867 // it is in.
868 unsigned Offset = BBInfo[MBB->getNumber()].Offset;
869
870 // Sum instructions before MI in MBB.
871 for (MachineBasicBlock::iterator I = MBB->begin(); &*I != MI; ++I) {
872 assert(I != MBB->end() && "Didn't find MI in its own basic block?");
873 Offset += TII->getInstSizeInBytes(*I);
874 }
875 return Offset;
876 }
877
878 /// CompareMBBNumbers - Little predicate function to sort the WaterList by MBB
879 /// ID.
CompareMBBNumbers(const MachineBasicBlock * LHS,const MachineBasicBlock * RHS)880 static bool CompareMBBNumbers(const MachineBasicBlock *LHS,
881 const MachineBasicBlock *RHS) {
882 return LHS->getNumber() < RHS->getNumber();
883 }
884
885 /// updateForInsertedWaterBlock - When a block is newly inserted into the
886 /// machine function, it upsets all of the block numbers. Renumber the blocks
887 /// and update the arrays that parallel this numbering.
updateForInsertedWaterBlock(MachineBasicBlock * NewBB)888 void ARMConstantIslands::updateForInsertedWaterBlock(MachineBasicBlock *NewBB) {
889 // Renumber the MBB's to keep them consecutive.
890 NewBB->getParent()->RenumberBlocks(NewBB);
891
892 // Insert an entry into BBInfo to align it properly with the (newly
893 // renumbered) block numbers.
894 BBInfo.insert(BBInfo.begin() + NewBB->getNumber(), BasicBlockInfo());
895
896 // Next, update WaterList. Specifically, we need to add NewMBB as having
897 // available water after it.
898 water_iterator IP =
899 std::lower_bound(WaterList.begin(), WaterList.end(), NewBB,
900 CompareMBBNumbers);
901 WaterList.insert(IP, NewBB);
902 }
903
904 /// Split the basic block containing MI into two blocks, which are joined by
905 /// an unconditional branch. Update data structures and renumber blocks to
906 /// account for this change and returns the newly created block.
splitBlockBeforeInstr(MachineInstr * MI)907 MachineBasicBlock *ARMConstantIslands::splitBlockBeforeInstr(MachineInstr *MI) {
908 MachineBasicBlock *OrigBB = MI->getParent();
909
910 // Create a new MBB for the code after the OrigBB.
911 MachineBasicBlock *NewBB =
912 MF->CreateMachineBasicBlock(OrigBB->getBasicBlock());
913 MachineFunction::iterator MBBI = ++OrigBB->getIterator();
914 MF->insert(MBBI, NewBB);
915
916 // Splice the instructions starting with MI over to NewBB.
917 NewBB->splice(NewBB->end(), OrigBB, MI, OrigBB->end());
918
919 // Add an unconditional branch from OrigBB to NewBB.
920 // Note the new unconditional branch is not being recorded.
921 // There doesn't seem to be meaningful DebugInfo available; this doesn't
922 // correspond to anything in the source.
923 unsigned Opc = isThumb ? (isThumb2 ? ARM::t2B : ARM::tB) : ARM::B;
924 if (!isThumb)
925 BuildMI(OrigBB, DebugLoc(), TII->get(Opc)).addMBB(NewBB);
926 else
927 BuildMI(OrigBB, DebugLoc(), TII->get(Opc))
928 .addMBB(NewBB)
929 .add(predOps(ARMCC::AL));
930 ++NumSplit;
931
932 // Update the CFG. All succs of OrigBB are now succs of NewBB.
933 NewBB->transferSuccessors(OrigBB);
934
935 // OrigBB branches to NewBB.
936 OrigBB->addSuccessor(NewBB);
937
938 // Update internal data structures to account for the newly inserted MBB.
939 // This is almost the same as updateForInsertedWaterBlock, except that
940 // the Water goes after OrigBB, not NewBB.
941 MF->RenumberBlocks(NewBB);
942
943 // Insert an entry into BBInfo to align it properly with the (newly
944 // renumbered) block numbers.
945 BBInfo.insert(BBInfo.begin() + NewBB->getNumber(), BasicBlockInfo());
946
947 // Next, update WaterList. Specifically, we need to add OrigMBB as having
948 // available water after it (but not if it's already there, which happens
949 // when splitting before a conditional branch that is followed by an
950 // unconditional branch - in that case we want to insert NewBB).
951 water_iterator IP =
952 std::lower_bound(WaterList.begin(), WaterList.end(), OrigBB,
953 CompareMBBNumbers);
954 MachineBasicBlock* WaterBB = *IP;
955 if (WaterBB == OrigBB)
956 WaterList.insert(std::next(IP), NewBB);
957 else
958 WaterList.insert(IP, OrigBB);
959 NewWaterList.insert(OrigBB);
960
961 // Figure out how large the OrigBB is. As the first half of the original
962 // block, it cannot contain a tablejump. The size includes
963 // the new jump we added. (It should be possible to do this without
964 // recounting everything, but it's very confusing, and this is rarely
965 // executed.)
966 computeBlockSize(MF, OrigBB, BBInfo[OrigBB->getNumber()]);
967
968 // Figure out how large the NewMBB is. As the second half of the original
969 // block, it may contain a tablejump.
970 computeBlockSize(MF, NewBB, BBInfo[NewBB->getNumber()]);
971
972 // All BBOffsets following these blocks must be modified.
973 adjustBBOffsetsAfter(OrigBB);
974
975 return NewBB;
976 }
977
978 /// getUserOffset - Compute the offset of U.MI as seen by the hardware
979 /// displacement computation. Update U.KnownAlignment to match its current
980 /// basic block location.
getUserOffset(CPUser & U) const981 unsigned ARMConstantIslands::getUserOffset(CPUser &U) const {
982 unsigned UserOffset = getOffsetOf(U.MI);
983 const BasicBlockInfo &BBI = BBInfo[U.MI->getParent()->getNumber()];
984 unsigned KnownBits = BBI.internalKnownBits();
985
986 // The value read from PC is offset from the actual instruction address.
987 UserOffset += (isThumb ? 4 : 8);
988
989 // Because of inline assembly, we may not know the alignment (mod 4) of U.MI.
990 // Make sure U.getMaxDisp() returns a constrained range.
991 U.KnownAlignment = (KnownBits >= 2);
992
993 // On Thumb, offsets==2 mod 4 are rounded down by the hardware for
994 // purposes of the displacement computation; compensate for that here.
995 // For unknown alignments, getMaxDisp() constrains the range instead.
996 if (isThumb && U.KnownAlignment)
997 UserOffset &= ~3u;
998
999 return UserOffset;
1000 }
1001
1002 /// isOffsetInRange - Checks whether UserOffset (the location of a constant pool
1003 /// reference) is within MaxDisp of TrialOffset (a proposed location of a
1004 /// constant pool entry).
1005 /// UserOffset is computed by getUserOffset above to include PC adjustments. If
1006 /// the mod 4 alignment of UserOffset is not known, the uncertainty must be
1007 /// subtracted from MaxDisp instead. CPUser::getMaxDisp() does that.
isOffsetInRange(unsigned UserOffset,unsigned TrialOffset,unsigned MaxDisp,bool NegativeOK,bool IsSoImm)1008 bool ARMConstantIslands::isOffsetInRange(unsigned UserOffset,
1009 unsigned TrialOffset, unsigned MaxDisp,
1010 bool NegativeOK, bool IsSoImm) {
1011 if (UserOffset <= TrialOffset) {
1012 // User before the Trial.
1013 if (TrialOffset - UserOffset <= MaxDisp)
1014 return true;
1015 // FIXME: Make use full range of soimm values.
1016 } else if (NegativeOK) {
1017 if (UserOffset - TrialOffset <= MaxDisp)
1018 return true;
1019 // FIXME: Make use full range of soimm values.
1020 }
1021 return false;
1022 }
1023
1024 /// isWaterInRange - Returns true if a CPE placed after the specified
1025 /// Water (a basic block) will be in range for the specific MI.
1026 ///
1027 /// Compute how much the function will grow by inserting a CPE after Water.
isWaterInRange(unsigned UserOffset,MachineBasicBlock * Water,CPUser & U,unsigned & Growth)1028 bool ARMConstantIslands::isWaterInRange(unsigned UserOffset,
1029 MachineBasicBlock* Water, CPUser &U,
1030 unsigned &Growth) {
1031 unsigned CPELogAlign = getCPELogAlign(U.CPEMI);
1032 unsigned CPEOffset = BBInfo[Water->getNumber()].postOffset(CPELogAlign);
1033 unsigned NextBlockOffset, NextBlockAlignment;
1034 MachineFunction::const_iterator NextBlock = Water->getIterator();
1035 if (++NextBlock == MF->end()) {
1036 NextBlockOffset = BBInfo[Water->getNumber()].postOffset();
1037 NextBlockAlignment = 0;
1038 } else {
1039 NextBlockOffset = BBInfo[NextBlock->getNumber()].Offset;
1040 NextBlockAlignment = NextBlock->getAlignment();
1041 }
1042 unsigned Size = U.CPEMI->getOperand(2).getImm();
1043 unsigned CPEEnd = CPEOffset + Size;
1044
1045 // The CPE may be able to hide in the alignment padding before the next
1046 // block. It may also cause more padding to be required if it is more aligned
1047 // that the next block.
1048 if (CPEEnd > NextBlockOffset) {
1049 Growth = CPEEnd - NextBlockOffset;
1050 // Compute the padding that would go at the end of the CPE to align the next
1051 // block.
1052 Growth += OffsetToAlignment(CPEEnd, 1ULL << NextBlockAlignment);
1053
1054 // If the CPE is to be inserted before the instruction, that will raise
1055 // the offset of the instruction. Also account for unknown alignment padding
1056 // in blocks between CPE and the user.
1057 if (CPEOffset < UserOffset)
1058 UserOffset += Growth + UnknownPadding(MF->getAlignment(), CPELogAlign);
1059 } else
1060 // CPE fits in existing padding.
1061 Growth = 0;
1062
1063 return isOffsetInRange(UserOffset, CPEOffset, U);
1064 }
1065
1066 /// isCPEntryInRange - Returns true if the distance between specific MI and
1067 /// specific ConstPool entry instruction can fit in MI's displacement field.
isCPEntryInRange(MachineInstr * MI,unsigned UserOffset,MachineInstr * CPEMI,unsigned MaxDisp,bool NegOk,bool DoDump)1068 bool ARMConstantIslands::isCPEntryInRange(MachineInstr *MI, unsigned UserOffset,
1069 MachineInstr *CPEMI, unsigned MaxDisp,
1070 bool NegOk, bool DoDump) {
1071 unsigned CPEOffset = getOffsetOf(CPEMI);
1072
1073 if (DoDump) {
1074 LLVM_DEBUG({
1075 unsigned Block = MI->getParent()->getNumber();
1076 const BasicBlockInfo &BBI = BBInfo[Block];
1077 dbgs() << "User of CPE#" << CPEMI->getOperand(0).getImm()
1078 << " max delta=" << MaxDisp
1079 << format(" insn address=%#x", UserOffset) << " in "
1080 << printMBBReference(*MI->getParent()) << ": "
1081 << format("%#x-%x\t", BBI.Offset, BBI.postOffset()) << *MI
1082 << format("CPE address=%#x offset=%+d: ", CPEOffset,
1083 int(CPEOffset - UserOffset));
1084 });
1085 }
1086
1087 return isOffsetInRange(UserOffset, CPEOffset, MaxDisp, NegOk);
1088 }
1089
1090 #ifndef NDEBUG
1091 /// BBIsJumpedOver - Return true of the specified basic block's only predecessor
1092 /// unconditionally branches to its only successor.
BBIsJumpedOver(MachineBasicBlock * MBB)1093 static bool BBIsJumpedOver(MachineBasicBlock *MBB) {
1094 if (MBB->pred_size() != 1 || MBB->succ_size() != 1)
1095 return false;
1096
1097 MachineBasicBlock *Succ = *MBB->succ_begin();
1098 MachineBasicBlock *Pred = *MBB->pred_begin();
1099 MachineInstr *PredMI = &Pred->back();
1100 if (PredMI->getOpcode() == ARM::B || PredMI->getOpcode() == ARM::tB
1101 || PredMI->getOpcode() == ARM::t2B)
1102 return PredMI->getOperand(0).getMBB() == Succ;
1103 return false;
1104 }
1105 #endif // NDEBUG
1106
adjustBBOffsetsAfter(MachineBasicBlock * BB)1107 void ARMConstantIslands::adjustBBOffsetsAfter(MachineBasicBlock *BB) {
1108 unsigned BBNum = BB->getNumber();
1109 for(unsigned i = BBNum + 1, e = MF->getNumBlockIDs(); i < e; ++i) {
1110 // Get the offset and known bits at the end of the layout predecessor.
1111 // Include the alignment of the current block.
1112 unsigned LogAlign = MF->getBlockNumbered(i)->getAlignment();
1113 unsigned Offset = BBInfo[i - 1].postOffset(LogAlign);
1114 unsigned KnownBits = BBInfo[i - 1].postKnownBits(LogAlign);
1115
1116 // This is where block i begins. Stop if the offset is already correct,
1117 // and we have updated 2 blocks. This is the maximum number of blocks
1118 // changed before calling this function.
1119 if (i > BBNum + 2 &&
1120 BBInfo[i].Offset == Offset &&
1121 BBInfo[i].KnownBits == KnownBits)
1122 break;
1123
1124 BBInfo[i].Offset = Offset;
1125 BBInfo[i].KnownBits = KnownBits;
1126 }
1127 }
1128
1129 /// decrementCPEReferenceCount - find the constant pool entry with index CPI
1130 /// and instruction CPEMI, and decrement its refcount. If the refcount
1131 /// becomes 0 remove the entry and instruction. Returns true if we removed
1132 /// the entry, false if we didn't.
decrementCPEReferenceCount(unsigned CPI,MachineInstr * CPEMI)1133 bool ARMConstantIslands::decrementCPEReferenceCount(unsigned CPI,
1134 MachineInstr *CPEMI) {
1135 // Find the old entry. Eliminate it if it is no longer used.
1136 CPEntry *CPE = findConstPoolEntry(CPI, CPEMI);
1137 assert(CPE && "Unexpected!");
1138 if (--CPE->RefCount == 0) {
1139 removeDeadCPEMI(CPEMI);
1140 CPE->CPEMI = nullptr;
1141 --NumCPEs;
1142 return true;
1143 }
1144 return false;
1145 }
1146
getCombinedIndex(const MachineInstr * CPEMI)1147 unsigned ARMConstantIslands::getCombinedIndex(const MachineInstr *CPEMI) {
1148 if (CPEMI->getOperand(1).isCPI())
1149 return CPEMI->getOperand(1).getIndex();
1150
1151 return JumpTableEntryIndices[CPEMI->getOperand(1).getIndex()];
1152 }
1153
1154 /// LookForCPEntryInRange - see if the currently referenced CPE is in range;
1155 /// if not, see if an in-range clone of the CPE is in range, and if so,
1156 /// change the data structures so the user references the clone. Returns:
1157 /// 0 = no existing entry found
1158 /// 1 = entry found, and there were no code insertions or deletions
1159 /// 2 = entry found, and there were code insertions or deletions
findInRangeCPEntry(CPUser & U,unsigned UserOffset)1160 int ARMConstantIslands::findInRangeCPEntry(CPUser& U, unsigned UserOffset) {
1161 MachineInstr *UserMI = U.MI;
1162 MachineInstr *CPEMI = U.CPEMI;
1163
1164 // Check to see if the CPE is already in-range.
1165 if (isCPEntryInRange(UserMI, UserOffset, CPEMI, U.getMaxDisp(), U.NegOk,
1166 true)) {
1167 LLVM_DEBUG(dbgs() << "In range\n");
1168 return 1;
1169 }
1170
1171 // No. Look for previously created clones of the CPE that are in range.
1172 unsigned CPI = getCombinedIndex(CPEMI);
1173 std::vector<CPEntry> &CPEs = CPEntries[CPI];
1174 for (unsigned i = 0, e = CPEs.size(); i != e; ++i) {
1175 // We already tried this one
1176 if (CPEs[i].CPEMI == CPEMI)
1177 continue;
1178 // Removing CPEs can leave empty entries, skip
1179 if (CPEs[i].CPEMI == nullptr)
1180 continue;
1181 if (isCPEntryInRange(UserMI, UserOffset, CPEs[i].CPEMI, U.getMaxDisp(),
1182 U.NegOk)) {
1183 LLVM_DEBUG(dbgs() << "Replacing CPE#" << CPI << " with CPE#"
1184 << CPEs[i].CPI << "\n");
1185 // Point the CPUser node to the replacement
1186 U.CPEMI = CPEs[i].CPEMI;
1187 // Change the CPI in the instruction operand to refer to the clone.
1188 for (unsigned j = 0, e = UserMI->getNumOperands(); j != e; ++j)
1189 if (UserMI->getOperand(j).isCPI()) {
1190 UserMI->getOperand(j).setIndex(CPEs[i].CPI);
1191 break;
1192 }
1193 // Adjust the refcount of the clone...
1194 CPEs[i].RefCount++;
1195 // ...and the original. If we didn't remove the old entry, none of the
1196 // addresses changed, so we don't need another pass.
1197 return decrementCPEReferenceCount(CPI, CPEMI) ? 2 : 1;
1198 }
1199 }
1200 return 0;
1201 }
1202
1203 /// getUnconditionalBrDisp - Returns the maximum displacement that can fit in
1204 /// the specific unconditional branch instruction.
getUnconditionalBrDisp(int Opc)1205 static inline unsigned getUnconditionalBrDisp(int Opc) {
1206 switch (Opc) {
1207 case ARM::tB:
1208 return ((1<<10)-1)*2;
1209 case ARM::t2B:
1210 return ((1<<23)-1)*2;
1211 default:
1212 break;
1213 }
1214
1215 return ((1<<23)-1)*4;
1216 }
1217
1218 /// findAvailableWater - Look for an existing entry in the WaterList in which
1219 /// we can place the CPE referenced from U so it's within range of U's MI.
1220 /// Returns true if found, false if not. If it returns true, WaterIter
1221 /// is set to the WaterList entry. For Thumb, prefer water that will not
1222 /// introduce padding to water that will. To ensure that this pass
1223 /// terminates, the CPE location for a particular CPUser is only allowed to
1224 /// move to a lower address, so search backward from the end of the list and
1225 /// prefer the first water that is in range.
findAvailableWater(CPUser & U,unsigned UserOffset,water_iterator & WaterIter,bool CloserWater)1226 bool ARMConstantIslands::findAvailableWater(CPUser &U, unsigned UserOffset,
1227 water_iterator &WaterIter,
1228 bool CloserWater) {
1229 if (WaterList.empty())
1230 return false;
1231
1232 unsigned BestGrowth = ~0u;
1233 // The nearest water without splitting the UserBB is right after it.
1234 // If the distance is still large (we have a big BB), then we need to split it
1235 // if we don't converge after certain iterations. This helps the following
1236 // situation to converge:
1237 // BB0:
1238 // Big BB
1239 // BB1:
1240 // Constant Pool
1241 // When a CP access is out of range, BB0 may be used as water. However,
1242 // inserting islands between BB0 and BB1 makes other accesses out of range.
1243 MachineBasicBlock *UserBB = U.MI->getParent();
1244 unsigned MinNoSplitDisp =
1245 BBInfo[UserBB->getNumber()].postOffset(getCPELogAlign(U.CPEMI));
1246 if (CloserWater && MinNoSplitDisp > U.getMaxDisp() / 2)
1247 return false;
1248 for (water_iterator IP = std::prev(WaterList.end()), B = WaterList.begin();;
1249 --IP) {
1250 MachineBasicBlock* WaterBB = *IP;
1251 // Check if water is in range and is either at a lower address than the
1252 // current "high water mark" or a new water block that was created since
1253 // the previous iteration by inserting an unconditional branch. In the
1254 // latter case, we want to allow resetting the high water mark back to
1255 // this new water since we haven't seen it before. Inserting branches
1256 // should be relatively uncommon and when it does happen, we want to be
1257 // sure to take advantage of it for all the CPEs near that block, so that
1258 // we don't insert more branches than necessary.
1259 // When CloserWater is true, we try to find the lowest address after (or
1260 // equal to) user MI's BB no matter of padding growth.
1261 unsigned Growth;
1262 if (isWaterInRange(UserOffset, WaterBB, U, Growth) &&
1263 (WaterBB->getNumber() < U.HighWaterMark->getNumber() ||
1264 NewWaterList.count(WaterBB) || WaterBB == U.MI->getParent()) &&
1265 Growth < BestGrowth) {
1266 // This is the least amount of required padding seen so far.
1267 BestGrowth = Growth;
1268 WaterIter = IP;
1269 LLVM_DEBUG(dbgs() << "Found water after " << printMBBReference(*WaterBB)
1270 << " Growth=" << Growth << '\n');
1271
1272 if (CloserWater && WaterBB == U.MI->getParent())
1273 return true;
1274 // Keep looking unless it is perfect and we're not looking for the lowest
1275 // possible address.
1276 if (!CloserWater && BestGrowth == 0)
1277 return true;
1278 }
1279 if (IP == B)
1280 break;
1281 }
1282 return BestGrowth != ~0u;
1283 }
1284
1285 /// createNewWater - No existing WaterList entry will work for
1286 /// CPUsers[CPUserIndex], so create a place to put the CPE. The end of the
1287 /// block is used if in range, and the conditional branch munged so control
1288 /// flow is correct. Otherwise the block is split to create a hole with an
1289 /// unconditional branch around it. In either case NewMBB is set to a
1290 /// block following which the new island can be inserted (the WaterList
1291 /// is not adjusted).
createNewWater(unsigned CPUserIndex,unsigned UserOffset,MachineBasicBlock * & NewMBB)1292 void ARMConstantIslands::createNewWater(unsigned CPUserIndex,
1293 unsigned UserOffset,
1294 MachineBasicBlock *&NewMBB) {
1295 CPUser &U = CPUsers[CPUserIndex];
1296 MachineInstr *UserMI = U.MI;
1297 MachineInstr *CPEMI = U.CPEMI;
1298 unsigned CPELogAlign = getCPELogAlign(CPEMI);
1299 MachineBasicBlock *UserMBB = UserMI->getParent();
1300 const BasicBlockInfo &UserBBI = BBInfo[UserMBB->getNumber()];
1301
1302 // If the block does not end in an unconditional branch already, and if the
1303 // end of the block is within range, make new water there. (The addition
1304 // below is for the unconditional branch we will be adding: 4 bytes on ARM +
1305 // Thumb2, 2 on Thumb1.
1306 if (BBHasFallthrough(UserMBB)) {
1307 // Size of branch to insert.
1308 unsigned Delta = isThumb1 ? 2 : 4;
1309 // Compute the offset where the CPE will begin.
1310 unsigned CPEOffset = UserBBI.postOffset(CPELogAlign) + Delta;
1311
1312 if (isOffsetInRange(UserOffset, CPEOffset, U)) {
1313 LLVM_DEBUG(dbgs() << "Split at end of " << printMBBReference(*UserMBB)
1314 << format(", expected CPE offset %#x\n", CPEOffset));
1315 NewMBB = &*++UserMBB->getIterator();
1316 // Add an unconditional branch from UserMBB to fallthrough block. Record
1317 // it for branch lengthening; this new branch will not get out of range,
1318 // but if the preceding conditional branch is out of range, the targets
1319 // will be exchanged, and the altered branch may be out of range, so the
1320 // machinery has to know about it.
1321 int UncondBr = isThumb ? ((isThumb2) ? ARM::t2B : ARM::tB) : ARM::B;
1322 if (!isThumb)
1323 BuildMI(UserMBB, DebugLoc(), TII->get(UncondBr)).addMBB(NewMBB);
1324 else
1325 BuildMI(UserMBB, DebugLoc(), TII->get(UncondBr))
1326 .addMBB(NewMBB)
1327 .add(predOps(ARMCC::AL));
1328 unsigned MaxDisp = getUnconditionalBrDisp(UncondBr);
1329 ImmBranches.push_back(ImmBranch(&UserMBB->back(),
1330 MaxDisp, false, UncondBr));
1331 computeBlockSize(MF, UserMBB, BBInfo[UserMBB->getNumber()]);
1332 adjustBBOffsetsAfter(UserMBB);
1333 return;
1334 }
1335 }
1336
1337 // What a big block. Find a place within the block to split it. This is a
1338 // little tricky on Thumb1 since instructions are 2 bytes and constant pool
1339 // entries are 4 bytes: if instruction I references island CPE, and
1340 // instruction I+1 references CPE', it will not work well to put CPE as far
1341 // forward as possible, since then CPE' cannot immediately follow it (that
1342 // location is 2 bytes farther away from I+1 than CPE was from I) and we'd
1343 // need to create a new island. So, we make a first guess, then walk through
1344 // the instructions between the one currently being looked at and the
1345 // possible insertion point, and make sure any other instructions that
1346 // reference CPEs will be able to use the same island area; if not, we back
1347 // up the insertion point.
1348
1349 // Try to split the block so it's fully aligned. Compute the latest split
1350 // point where we can add a 4-byte branch instruction, and then align to
1351 // LogAlign which is the largest possible alignment in the function.
1352 unsigned LogAlign = MF->getAlignment();
1353 assert(LogAlign >= CPELogAlign && "Over-aligned constant pool entry");
1354 unsigned KnownBits = UserBBI.internalKnownBits();
1355 unsigned UPad = UnknownPadding(LogAlign, KnownBits);
1356 unsigned BaseInsertOffset = UserOffset + U.getMaxDisp() - UPad;
1357 LLVM_DEBUG(dbgs() << format("Split in middle of big block before %#x",
1358 BaseInsertOffset));
1359
1360 // The 4 in the following is for the unconditional branch we'll be inserting
1361 // (allows for long branch on Thumb1). Alignment of the island is handled
1362 // inside isOffsetInRange.
1363 BaseInsertOffset -= 4;
1364
1365 LLVM_DEBUG(dbgs() << format(", adjusted to %#x", BaseInsertOffset)
1366 << " la=" << LogAlign << " kb=" << KnownBits
1367 << " up=" << UPad << '\n');
1368
1369 // This could point off the end of the block if we've already got constant
1370 // pool entries following this block; only the last one is in the water list.
1371 // Back past any possible branches (allow for a conditional and a maximally
1372 // long unconditional).
1373 if (BaseInsertOffset + 8 >= UserBBI.postOffset()) {
1374 // Ensure BaseInsertOffset is larger than the offset of the instruction
1375 // following UserMI so that the loop which searches for the split point
1376 // iterates at least once.
1377 BaseInsertOffset =
1378 std::max(UserBBI.postOffset() - UPad - 8,
1379 UserOffset + TII->getInstSizeInBytes(*UserMI) + 1);
1380 LLVM_DEBUG(dbgs() << format("Move inside block: %#x\n", BaseInsertOffset));
1381 }
1382 unsigned EndInsertOffset = BaseInsertOffset + 4 + UPad +
1383 CPEMI->getOperand(2).getImm();
1384 MachineBasicBlock::iterator MI = UserMI;
1385 ++MI;
1386 unsigned CPUIndex = CPUserIndex+1;
1387 unsigned NumCPUsers = CPUsers.size();
1388 MachineInstr *LastIT = nullptr;
1389 for (unsigned Offset = UserOffset + TII->getInstSizeInBytes(*UserMI);
1390 Offset < BaseInsertOffset;
1391 Offset += TII->getInstSizeInBytes(*MI), MI = std::next(MI)) {
1392 assert(MI != UserMBB->end() && "Fell off end of block");
1393 if (CPUIndex < NumCPUsers && CPUsers[CPUIndex].MI == &*MI) {
1394 CPUser &U = CPUsers[CPUIndex];
1395 if (!isOffsetInRange(Offset, EndInsertOffset, U)) {
1396 // Shift intertion point by one unit of alignment so it is within reach.
1397 BaseInsertOffset -= 1u << LogAlign;
1398 EndInsertOffset -= 1u << LogAlign;
1399 }
1400 // This is overly conservative, as we don't account for CPEMIs being
1401 // reused within the block, but it doesn't matter much. Also assume CPEs
1402 // are added in order with alignment padding. We may eventually be able
1403 // to pack the aligned CPEs better.
1404 EndInsertOffset += U.CPEMI->getOperand(2).getImm();
1405 CPUIndex++;
1406 }
1407
1408 // Remember the last IT instruction.
1409 if (MI->getOpcode() == ARM::t2IT)
1410 LastIT = &*MI;
1411 }
1412
1413 --MI;
1414
1415 // Avoid splitting an IT block.
1416 if (LastIT) {
1417 unsigned PredReg = 0;
1418 ARMCC::CondCodes CC = getITInstrPredicate(*MI, PredReg);
1419 if (CC != ARMCC::AL)
1420 MI = LastIT;
1421 }
1422
1423 // Avoid splitting a MOVW+MOVT pair with a relocation on Windows.
1424 // On Windows, this instruction pair is covered by one single
1425 // IMAGE_REL_ARM_MOV32T relocation which covers both instructions. If a
1426 // constant island is injected inbetween them, the relocation will clobber
1427 // the instruction and fail to update the MOVT instruction.
1428 // (These instructions are bundled up until right before the ConstantIslands
1429 // pass.)
1430 if (STI->isTargetWindows() && isThumb && MI->getOpcode() == ARM::t2MOVTi16 &&
1431 (MI->getOperand(2).getTargetFlags() & ARMII::MO_OPTION_MASK) ==
1432 ARMII::MO_HI16) {
1433 --MI;
1434 assert(MI->getOpcode() == ARM::t2MOVi16 &&
1435 (MI->getOperand(1).getTargetFlags() & ARMII::MO_OPTION_MASK) ==
1436 ARMII::MO_LO16);
1437 }
1438
1439 // We really must not split an IT block.
1440 LLVM_DEBUG(unsigned PredReg; assert(
1441 !isThumb || getITInstrPredicate(*MI, PredReg) == ARMCC::AL));
1442
1443 NewMBB = splitBlockBeforeInstr(&*MI);
1444 }
1445
1446 /// handleConstantPoolUser - Analyze the specified user, checking to see if it
1447 /// is out-of-range. If so, pick up the constant pool value and move it some
1448 /// place in-range. Return true if we changed any addresses (thus must run
1449 /// another pass of branch lengthening), false otherwise.
handleConstantPoolUser(unsigned CPUserIndex,bool CloserWater)1450 bool ARMConstantIslands::handleConstantPoolUser(unsigned CPUserIndex,
1451 bool CloserWater) {
1452 CPUser &U = CPUsers[CPUserIndex];
1453 MachineInstr *UserMI = U.MI;
1454 MachineInstr *CPEMI = U.CPEMI;
1455 unsigned CPI = getCombinedIndex(CPEMI);
1456 unsigned Size = CPEMI->getOperand(2).getImm();
1457 // Compute this only once, it's expensive.
1458 unsigned UserOffset = getUserOffset(U);
1459
1460 // See if the current entry is within range, or there is a clone of it
1461 // in range.
1462 int result = findInRangeCPEntry(U, UserOffset);
1463 if (result==1) return false;
1464 else if (result==2) return true;
1465
1466 // No existing clone of this CPE is within range.
1467 // We will be generating a new clone. Get a UID for it.
1468 unsigned ID = AFI->createPICLabelUId();
1469
1470 // Look for water where we can place this CPE.
1471 MachineBasicBlock *NewIsland = MF->CreateMachineBasicBlock();
1472 MachineBasicBlock *NewMBB;
1473 water_iterator IP;
1474 if (findAvailableWater(U, UserOffset, IP, CloserWater)) {
1475 LLVM_DEBUG(dbgs() << "Found water in range\n");
1476 MachineBasicBlock *WaterBB = *IP;
1477
1478 // If the original WaterList entry was "new water" on this iteration,
1479 // propagate that to the new island. This is just keeping NewWaterList
1480 // updated to match the WaterList, which will be updated below.
1481 if (NewWaterList.erase(WaterBB))
1482 NewWaterList.insert(NewIsland);
1483
1484 // The new CPE goes before the following block (NewMBB).
1485 NewMBB = &*++WaterBB->getIterator();
1486 } else {
1487 // No water found.
1488 LLVM_DEBUG(dbgs() << "No water found\n");
1489 createNewWater(CPUserIndex, UserOffset, NewMBB);
1490
1491 // splitBlockBeforeInstr adds to WaterList, which is important when it is
1492 // called while handling branches so that the water will be seen on the
1493 // next iteration for constant pools, but in this context, we don't want
1494 // it. Check for this so it will be removed from the WaterList.
1495 // Also remove any entry from NewWaterList.
1496 MachineBasicBlock *WaterBB = &*--NewMBB->getIterator();
1497 IP = find(WaterList, WaterBB);
1498 if (IP != WaterList.end())
1499 NewWaterList.erase(WaterBB);
1500
1501 // We are adding new water. Update NewWaterList.
1502 NewWaterList.insert(NewIsland);
1503 }
1504 // Always align the new block because CP entries can be smaller than 4
1505 // bytes. Be careful not to decrease the existing alignment, e.g. NewMBB may
1506 // be an already aligned constant pool block.
1507 const unsigned Align = isThumb ? 1 : 2;
1508 if (NewMBB->getAlignment() < Align)
1509 NewMBB->setAlignment(Align);
1510
1511 // Remove the original WaterList entry; we want subsequent insertions in
1512 // this vicinity to go after the one we're about to insert. This
1513 // considerably reduces the number of times we have to move the same CPE
1514 // more than once and is also important to ensure the algorithm terminates.
1515 if (IP != WaterList.end())
1516 WaterList.erase(IP);
1517
1518 // Okay, we know we can put an island before NewMBB now, do it!
1519 MF->insert(NewMBB->getIterator(), NewIsland);
1520
1521 // Update internal data structures to account for the newly inserted MBB.
1522 updateForInsertedWaterBlock(NewIsland);
1523
1524 // Now that we have an island to add the CPE to, clone the original CPE and
1525 // add it to the island.
1526 U.HighWaterMark = NewIsland;
1527 U.CPEMI = BuildMI(NewIsland, DebugLoc(), CPEMI->getDesc())
1528 .addImm(ID)
1529 .add(CPEMI->getOperand(1))
1530 .addImm(Size);
1531 CPEntries[CPI].push_back(CPEntry(U.CPEMI, ID, 1));
1532 ++NumCPEs;
1533
1534 // Decrement the old entry, and remove it if refcount becomes 0.
1535 decrementCPEReferenceCount(CPI, CPEMI);
1536
1537 // Mark the basic block as aligned as required by the const-pool entry.
1538 NewIsland->setAlignment(getCPELogAlign(U.CPEMI));
1539
1540 // Increase the size of the island block to account for the new entry.
1541 BBInfo[NewIsland->getNumber()].Size += Size;
1542 adjustBBOffsetsAfter(&*--NewIsland->getIterator());
1543
1544 // Finally, change the CPI in the instruction operand to be ID.
1545 for (unsigned i = 0, e = UserMI->getNumOperands(); i != e; ++i)
1546 if (UserMI->getOperand(i).isCPI()) {
1547 UserMI->getOperand(i).setIndex(ID);
1548 break;
1549 }
1550
1551 LLVM_DEBUG(
1552 dbgs() << " Moved CPE to #" << ID << " CPI=" << CPI
1553 << format(" offset=%#x\n", BBInfo[NewIsland->getNumber()].Offset));
1554
1555 return true;
1556 }
1557
1558 /// removeDeadCPEMI - Remove a dead constant pool entry instruction. Update
1559 /// sizes and offsets of impacted basic blocks.
removeDeadCPEMI(MachineInstr * CPEMI)1560 void ARMConstantIslands::removeDeadCPEMI(MachineInstr *CPEMI) {
1561 MachineBasicBlock *CPEBB = CPEMI->getParent();
1562 unsigned Size = CPEMI->getOperand(2).getImm();
1563 CPEMI->eraseFromParent();
1564 BBInfo[CPEBB->getNumber()].Size -= Size;
1565 // All succeeding offsets have the current size value added in, fix this.
1566 if (CPEBB->empty()) {
1567 BBInfo[CPEBB->getNumber()].Size = 0;
1568
1569 // This block no longer needs to be aligned.
1570 CPEBB->setAlignment(0);
1571 } else
1572 // Entries are sorted by descending alignment, so realign from the front.
1573 CPEBB->setAlignment(getCPELogAlign(&*CPEBB->begin()));
1574
1575 adjustBBOffsetsAfter(CPEBB);
1576 // An island has only one predecessor BB and one successor BB. Check if
1577 // this BB's predecessor jumps directly to this BB's successor. This
1578 // shouldn't happen currently.
1579 assert(!BBIsJumpedOver(CPEBB) && "How did this happen?");
1580 // FIXME: remove the empty blocks after all the work is done?
1581 }
1582
1583 /// removeUnusedCPEntries - Remove constant pool entries whose refcounts
1584 /// are zero.
removeUnusedCPEntries()1585 bool ARMConstantIslands::removeUnusedCPEntries() {
1586 unsigned MadeChange = false;
1587 for (unsigned i = 0, e = CPEntries.size(); i != e; ++i) {
1588 std::vector<CPEntry> &CPEs = CPEntries[i];
1589 for (unsigned j = 0, ee = CPEs.size(); j != ee; ++j) {
1590 if (CPEs[j].RefCount == 0 && CPEs[j].CPEMI) {
1591 removeDeadCPEMI(CPEs[j].CPEMI);
1592 CPEs[j].CPEMI = nullptr;
1593 MadeChange = true;
1594 }
1595 }
1596 }
1597 return MadeChange;
1598 }
1599
1600 /// isBBInRange - Returns true if the distance between specific MI and
1601 /// specific BB can fit in MI's displacement field.
isBBInRange(MachineInstr * MI,MachineBasicBlock * DestBB,unsigned MaxDisp)1602 bool ARMConstantIslands::isBBInRange(MachineInstr *MI,MachineBasicBlock *DestBB,
1603 unsigned MaxDisp) {
1604 unsigned PCAdj = isThumb ? 4 : 8;
1605 unsigned BrOffset = getOffsetOf(MI) + PCAdj;
1606 unsigned DestOffset = BBInfo[DestBB->getNumber()].Offset;
1607
1608 LLVM_DEBUG(dbgs() << "Branch of destination " << printMBBReference(*DestBB)
1609 << " from " << printMBBReference(*MI->getParent())
1610 << " max delta=" << MaxDisp << " from " << getOffsetOf(MI)
1611 << " to " << DestOffset << " offset "
1612 << int(DestOffset - BrOffset) << "\t" << *MI);
1613
1614 if (BrOffset <= DestOffset) {
1615 // Branch before the Dest.
1616 if (DestOffset-BrOffset <= MaxDisp)
1617 return true;
1618 } else {
1619 if (BrOffset-DestOffset <= MaxDisp)
1620 return true;
1621 }
1622 return false;
1623 }
1624
1625 /// fixupImmediateBr - Fix up an immediate branch whose destination is too far
1626 /// away to fit in its displacement field.
fixupImmediateBr(ImmBranch & Br)1627 bool ARMConstantIslands::fixupImmediateBr(ImmBranch &Br) {
1628 MachineInstr *MI = Br.MI;
1629 MachineBasicBlock *DestBB = MI->getOperand(0).getMBB();
1630
1631 // Check to see if the DestBB is already in-range.
1632 if (isBBInRange(MI, DestBB, Br.MaxDisp))
1633 return false;
1634
1635 if (!Br.isCond)
1636 return fixupUnconditionalBr(Br);
1637 return fixupConditionalBr(Br);
1638 }
1639
1640 /// fixupUnconditionalBr - Fix up an unconditional branch whose destination is
1641 /// too far away to fit in its displacement field. If the LR register has been
1642 /// spilled in the epilogue, then we can use BL to implement a far jump.
1643 /// Otherwise, add an intermediate branch instruction to a branch.
1644 bool
fixupUnconditionalBr(ImmBranch & Br)1645 ARMConstantIslands::fixupUnconditionalBr(ImmBranch &Br) {
1646 MachineInstr *MI = Br.MI;
1647 MachineBasicBlock *MBB = MI->getParent();
1648 if (!isThumb1)
1649 llvm_unreachable("fixupUnconditionalBr is Thumb1 only!");
1650
1651 // Use BL to implement far jump.
1652 Br.MaxDisp = (1 << 21) * 2;
1653 MI->setDesc(TII->get(ARM::tBfar));
1654 BBInfo[MBB->getNumber()].Size += 2;
1655 adjustBBOffsetsAfter(MBB);
1656 HasFarJump = true;
1657 ++NumUBrFixed;
1658
1659 LLVM_DEBUG(dbgs() << " Changed B to long jump " << *MI);
1660
1661 return true;
1662 }
1663
1664 /// fixupConditionalBr - Fix up a conditional branch whose destination is too
1665 /// far away to fit in its displacement field. It is converted to an inverse
1666 /// conditional branch + an unconditional branch to the destination.
1667 bool
fixupConditionalBr(ImmBranch & Br)1668 ARMConstantIslands::fixupConditionalBr(ImmBranch &Br) {
1669 MachineInstr *MI = Br.MI;
1670 MachineBasicBlock *DestBB = MI->getOperand(0).getMBB();
1671
1672 // Add an unconditional branch to the destination and invert the branch
1673 // condition to jump over it:
1674 // blt L1
1675 // =>
1676 // bge L2
1677 // b L1
1678 // L2:
1679 ARMCC::CondCodes CC = (ARMCC::CondCodes)MI->getOperand(1).getImm();
1680 CC = ARMCC::getOppositeCondition(CC);
1681 unsigned CCReg = MI->getOperand(2).getReg();
1682
1683 // If the branch is at the end of its MBB and that has a fall-through block,
1684 // direct the updated conditional branch to the fall-through block. Otherwise,
1685 // split the MBB before the next instruction.
1686 MachineBasicBlock *MBB = MI->getParent();
1687 MachineInstr *BMI = &MBB->back();
1688 bool NeedSplit = (BMI != MI) || !BBHasFallthrough(MBB);
1689
1690 ++NumCBrFixed;
1691 if (BMI != MI) {
1692 if (std::next(MachineBasicBlock::iterator(MI)) == std::prev(MBB->end()) &&
1693 BMI->getOpcode() == Br.UncondBr) {
1694 // Last MI in the BB is an unconditional branch. Can we simply invert the
1695 // condition and swap destinations:
1696 // beq L1
1697 // b L2
1698 // =>
1699 // bne L2
1700 // b L1
1701 MachineBasicBlock *NewDest = BMI->getOperand(0).getMBB();
1702 if (isBBInRange(MI, NewDest, Br.MaxDisp)) {
1703 LLVM_DEBUG(
1704 dbgs() << " Invert Bcc condition and swap its destination with "
1705 << *BMI);
1706 BMI->getOperand(0).setMBB(DestBB);
1707 MI->getOperand(0).setMBB(NewDest);
1708 MI->getOperand(1).setImm(CC);
1709 return true;
1710 }
1711 }
1712 }
1713
1714 if (NeedSplit) {
1715 splitBlockBeforeInstr(MI);
1716 // No need for the branch to the next block. We're adding an unconditional
1717 // branch to the destination.
1718 int delta = TII->getInstSizeInBytes(MBB->back());
1719 BBInfo[MBB->getNumber()].Size -= delta;
1720 MBB->back().eraseFromParent();
1721
1722 // The conditional successor will be swapped between the BBs after this, so
1723 // update CFG.
1724 MBB->addSuccessor(DestBB);
1725 std::next(MBB->getIterator())->removeSuccessor(DestBB);
1726
1727 // BBInfo[SplitBB].Offset is wrong temporarily, fixed below
1728 }
1729 MachineBasicBlock *NextBB = &*++MBB->getIterator();
1730
1731 LLVM_DEBUG(dbgs() << " Insert B to " << printMBBReference(*DestBB)
1732 << " also invert condition and change dest. to "
1733 << printMBBReference(*NextBB) << "\n");
1734
1735 // Insert a new conditional branch and a new unconditional branch.
1736 // Also update the ImmBranch as well as adding a new entry for the new branch.
1737 BuildMI(MBB, DebugLoc(), TII->get(MI->getOpcode()))
1738 .addMBB(NextBB).addImm(CC).addReg(CCReg);
1739 Br.MI = &MBB->back();
1740 BBInfo[MBB->getNumber()].Size += TII->getInstSizeInBytes(MBB->back());
1741 if (isThumb)
1742 BuildMI(MBB, DebugLoc(), TII->get(Br.UncondBr))
1743 .addMBB(DestBB)
1744 .add(predOps(ARMCC::AL));
1745 else
1746 BuildMI(MBB, DebugLoc(), TII->get(Br.UncondBr)).addMBB(DestBB);
1747 BBInfo[MBB->getNumber()].Size += TII->getInstSizeInBytes(MBB->back());
1748 unsigned MaxDisp = getUnconditionalBrDisp(Br.UncondBr);
1749 ImmBranches.push_back(ImmBranch(&MBB->back(), MaxDisp, false, Br.UncondBr));
1750
1751 // Remove the old conditional branch. It may or may not still be in MBB.
1752 BBInfo[MI->getParent()->getNumber()].Size -= TII->getInstSizeInBytes(*MI);
1753 MI->eraseFromParent();
1754 adjustBBOffsetsAfter(MBB);
1755 return true;
1756 }
1757
1758 /// undoLRSpillRestore - Remove Thumb push / pop instructions that only spills
1759 /// LR / restores LR to pc. FIXME: This is done here because it's only possible
1760 /// to do this if tBfar is not used.
undoLRSpillRestore()1761 bool ARMConstantIslands::undoLRSpillRestore() {
1762 bool MadeChange = false;
1763 for (unsigned i = 0, e = PushPopMIs.size(); i != e; ++i) {
1764 MachineInstr *MI = PushPopMIs[i];
1765 // First two operands are predicates.
1766 if (MI->getOpcode() == ARM::tPOP_RET &&
1767 MI->getOperand(2).getReg() == ARM::PC &&
1768 MI->getNumExplicitOperands() == 3) {
1769 // Create the new insn and copy the predicate from the old.
1770 BuildMI(MI->getParent(), MI->getDebugLoc(), TII->get(ARM::tBX_RET))
1771 .add(MI->getOperand(0))
1772 .add(MI->getOperand(1));
1773 MI->eraseFromParent();
1774 MadeChange = true;
1775 } else if (MI->getOpcode() == ARM::tPUSH &&
1776 MI->getOperand(2).getReg() == ARM::LR &&
1777 MI->getNumExplicitOperands() == 3) {
1778 // Just remove the push.
1779 MI->eraseFromParent();
1780 MadeChange = true;
1781 }
1782 }
1783 return MadeChange;
1784 }
1785
optimizeThumb2Instructions()1786 bool ARMConstantIslands::optimizeThumb2Instructions() {
1787 bool MadeChange = false;
1788
1789 // Shrink ADR and LDR from constantpool.
1790 for (unsigned i = 0, e = CPUsers.size(); i != e; ++i) {
1791 CPUser &U = CPUsers[i];
1792 unsigned Opcode = U.MI->getOpcode();
1793 unsigned NewOpc = 0;
1794 unsigned Scale = 1;
1795 unsigned Bits = 0;
1796 switch (Opcode) {
1797 default: break;
1798 case ARM::t2LEApcrel:
1799 if (isARMLowRegister(U.MI->getOperand(0).getReg())) {
1800 NewOpc = ARM::tLEApcrel;
1801 Bits = 8;
1802 Scale = 4;
1803 }
1804 break;
1805 case ARM::t2LDRpci:
1806 if (isARMLowRegister(U.MI->getOperand(0).getReg())) {
1807 NewOpc = ARM::tLDRpci;
1808 Bits = 8;
1809 Scale = 4;
1810 }
1811 break;
1812 }
1813
1814 if (!NewOpc)
1815 continue;
1816
1817 unsigned UserOffset = getUserOffset(U);
1818 unsigned MaxOffs = ((1 << Bits) - 1) * Scale;
1819
1820 // Be conservative with inline asm.
1821 if (!U.KnownAlignment)
1822 MaxOffs -= 2;
1823
1824 // FIXME: Check if offset is multiple of scale if scale is not 4.
1825 if (isCPEntryInRange(U.MI, UserOffset, U.CPEMI, MaxOffs, false, true)) {
1826 LLVM_DEBUG(dbgs() << "Shrink: " << *U.MI);
1827 U.MI->setDesc(TII->get(NewOpc));
1828 MachineBasicBlock *MBB = U.MI->getParent();
1829 BBInfo[MBB->getNumber()].Size -= 2;
1830 adjustBBOffsetsAfter(MBB);
1831 ++NumT2CPShrunk;
1832 MadeChange = true;
1833 }
1834 }
1835
1836 return MadeChange;
1837 }
1838
optimizeThumb2Branches()1839 bool ARMConstantIslands::optimizeThumb2Branches() {
1840 bool MadeChange = false;
1841
1842 // The order in which branches appear in ImmBranches is approximately their
1843 // order within the function body. By visiting later branches first, we reduce
1844 // the distance between earlier forward branches and their targets, making it
1845 // more likely that the cbn?z optimization, which can only apply to forward
1846 // branches, will succeed.
1847 for (unsigned i = ImmBranches.size(); i != 0; --i) {
1848 ImmBranch &Br = ImmBranches[i-1];
1849 unsigned Opcode = Br.MI->getOpcode();
1850 unsigned NewOpc = 0;
1851 unsigned Scale = 1;
1852 unsigned Bits = 0;
1853 switch (Opcode) {
1854 default: break;
1855 case ARM::t2B:
1856 NewOpc = ARM::tB;
1857 Bits = 11;
1858 Scale = 2;
1859 break;
1860 case ARM::t2Bcc:
1861 NewOpc = ARM::tBcc;
1862 Bits = 8;
1863 Scale = 2;
1864 break;
1865 }
1866 if (NewOpc) {
1867 unsigned MaxOffs = ((1 << (Bits-1))-1) * Scale;
1868 MachineBasicBlock *DestBB = Br.MI->getOperand(0).getMBB();
1869 if (isBBInRange(Br.MI, DestBB, MaxOffs)) {
1870 LLVM_DEBUG(dbgs() << "Shrink branch: " << *Br.MI);
1871 Br.MI->setDesc(TII->get(NewOpc));
1872 MachineBasicBlock *MBB = Br.MI->getParent();
1873 BBInfo[MBB->getNumber()].Size -= 2;
1874 adjustBBOffsetsAfter(MBB);
1875 ++NumT2BrShrunk;
1876 MadeChange = true;
1877 }
1878 }
1879
1880 Opcode = Br.MI->getOpcode();
1881 if (Opcode != ARM::tBcc)
1882 continue;
1883
1884 // If the conditional branch doesn't kill CPSR, then CPSR can be liveout
1885 // so this transformation is not safe.
1886 if (!Br.MI->killsRegister(ARM::CPSR))
1887 continue;
1888
1889 NewOpc = 0;
1890 unsigned PredReg = 0;
1891 ARMCC::CondCodes Pred = getInstrPredicate(*Br.MI, PredReg);
1892 if (Pred == ARMCC::EQ)
1893 NewOpc = ARM::tCBZ;
1894 else if (Pred == ARMCC::NE)
1895 NewOpc = ARM::tCBNZ;
1896 if (!NewOpc)
1897 continue;
1898 MachineBasicBlock *DestBB = Br.MI->getOperand(0).getMBB();
1899 // Check if the distance is within 126. Subtract starting offset by 2
1900 // because the cmp will be eliminated.
1901 unsigned BrOffset = getOffsetOf(Br.MI) + 4 - 2;
1902 unsigned DestOffset = BBInfo[DestBB->getNumber()].Offset;
1903 if (BrOffset < DestOffset && (DestOffset - BrOffset) <= 126) {
1904 MachineBasicBlock::iterator CmpMI = Br.MI;
1905 if (CmpMI != Br.MI->getParent()->begin()) {
1906 --CmpMI;
1907 if (CmpMI->getOpcode() == ARM::tCMPi8) {
1908 unsigned Reg = CmpMI->getOperand(0).getReg();
1909 Pred = getInstrPredicate(*CmpMI, PredReg);
1910 if (Pred == ARMCC::AL &&
1911 CmpMI->getOperand(1).getImm() == 0 &&
1912 isARMLowRegister(Reg)) {
1913 MachineBasicBlock *MBB = Br.MI->getParent();
1914 LLVM_DEBUG(dbgs() << "Fold: " << *CmpMI << " and: " << *Br.MI);
1915 MachineInstr *NewBR =
1916 BuildMI(*MBB, CmpMI, Br.MI->getDebugLoc(), TII->get(NewOpc))
1917 .addReg(Reg).addMBB(DestBB,Br.MI->getOperand(0).getTargetFlags());
1918 CmpMI->eraseFromParent();
1919 Br.MI->eraseFromParent();
1920 Br.MI = NewBR;
1921 BBInfo[MBB->getNumber()].Size -= 2;
1922 adjustBBOffsetsAfter(MBB);
1923 ++NumCBZ;
1924 MadeChange = true;
1925 }
1926 }
1927 }
1928 }
1929 }
1930
1931 return MadeChange;
1932 }
1933
isSimpleIndexCalc(MachineInstr & I,unsigned EntryReg,unsigned BaseReg)1934 static bool isSimpleIndexCalc(MachineInstr &I, unsigned EntryReg,
1935 unsigned BaseReg) {
1936 if (I.getOpcode() != ARM::t2ADDrs)
1937 return false;
1938
1939 if (I.getOperand(0).getReg() != EntryReg)
1940 return false;
1941
1942 if (I.getOperand(1).getReg() != BaseReg)
1943 return false;
1944
1945 // FIXME: what about CC and IdxReg?
1946 return true;
1947 }
1948
1949 /// While trying to form a TBB/TBH instruction, we may (if the table
1950 /// doesn't immediately follow the BR_JT) need access to the start of the
1951 /// jump-table. We know one instruction that produces such a register; this
1952 /// function works out whether that definition can be preserved to the BR_JT,
1953 /// possibly by removing an intervening addition (which is usually needed to
1954 /// calculate the actual entry to jump to).
preserveBaseRegister(MachineInstr * JumpMI,MachineInstr * LEAMI,unsigned & DeadSize,bool & CanDeleteLEA,bool & BaseRegKill)1955 bool ARMConstantIslands::preserveBaseRegister(MachineInstr *JumpMI,
1956 MachineInstr *LEAMI,
1957 unsigned &DeadSize,
1958 bool &CanDeleteLEA,
1959 bool &BaseRegKill) {
1960 if (JumpMI->getParent() != LEAMI->getParent())
1961 return false;
1962
1963 // Now we hope that we have at least these instructions in the basic block:
1964 // BaseReg = t2LEA ...
1965 // [...]
1966 // EntryReg = t2ADDrs BaseReg, ...
1967 // [...]
1968 // t2BR_JT EntryReg
1969 //
1970 // We have to be very conservative about what we recognise here though. The
1971 // main perturbing factors to watch out for are:
1972 // + Spills at any point in the chain: not direct problems but we would
1973 // expect a blocking Def of the spilled register so in practice what we
1974 // can do is limited.
1975 // + EntryReg == BaseReg: this is the one situation we should allow a Def
1976 // of BaseReg, but only if the t2ADDrs can be removed.
1977 // + Some instruction other than t2ADDrs computing the entry. Not seen in
1978 // the wild, but we should be careful.
1979 unsigned EntryReg = JumpMI->getOperand(0).getReg();
1980 unsigned BaseReg = LEAMI->getOperand(0).getReg();
1981
1982 CanDeleteLEA = true;
1983 BaseRegKill = false;
1984 MachineInstr *RemovableAdd = nullptr;
1985 MachineBasicBlock::iterator I(LEAMI);
1986 for (++I; &*I != JumpMI; ++I) {
1987 if (isSimpleIndexCalc(*I, EntryReg, BaseReg)) {
1988 RemovableAdd = &*I;
1989 break;
1990 }
1991
1992 for (unsigned K = 0, E = I->getNumOperands(); K != E; ++K) {
1993 const MachineOperand &MO = I->getOperand(K);
1994 if (!MO.isReg() || !MO.getReg())
1995 continue;
1996 if (MO.isDef() && MO.getReg() == BaseReg)
1997 return false;
1998 if (MO.isUse() && MO.getReg() == BaseReg) {
1999 BaseRegKill = BaseRegKill || MO.isKill();
2000 CanDeleteLEA = false;
2001 }
2002 }
2003 }
2004
2005 if (!RemovableAdd)
2006 return true;
2007
2008 // Check the add really is removable, and that nothing else in the block
2009 // clobbers BaseReg.
2010 for (++I; &*I != JumpMI; ++I) {
2011 for (unsigned K = 0, E = I->getNumOperands(); K != E; ++K) {
2012 const MachineOperand &MO = I->getOperand(K);
2013 if (!MO.isReg() || !MO.getReg())
2014 continue;
2015 if (MO.isDef() && MO.getReg() == BaseReg)
2016 return false;
2017 if (MO.isUse() && MO.getReg() == EntryReg)
2018 RemovableAdd = nullptr;
2019 }
2020 }
2021
2022 if (RemovableAdd) {
2023 RemovableAdd->eraseFromParent();
2024 DeadSize += isThumb2 ? 4 : 2;
2025 } else if (BaseReg == EntryReg) {
2026 // The add wasn't removable, but clobbered the base for the TBB. So we can't
2027 // preserve it.
2028 return false;
2029 }
2030
2031 // We reached the end of the block without seeing another definition of
2032 // BaseReg (except, possibly the t2ADDrs, which was removed). BaseReg can be
2033 // used in the TBB/TBH if necessary.
2034 return true;
2035 }
2036
2037 /// Returns whether CPEMI is the first instruction in the block
2038 /// immediately following JTMI (assumed to be a TBB or TBH terminator). If so,
2039 /// we can switch the first register to PC and usually remove the address
2040 /// calculation that preceded it.
jumpTableFollowsTB(MachineInstr * JTMI,MachineInstr * CPEMI)2041 static bool jumpTableFollowsTB(MachineInstr *JTMI, MachineInstr *CPEMI) {
2042 MachineFunction::iterator MBB = JTMI->getParent()->getIterator();
2043 MachineFunction *MF = MBB->getParent();
2044 ++MBB;
2045
2046 return MBB != MF->end() && MBB->begin() != MBB->end() &&
2047 &*MBB->begin() == CPEMI;
2048 }
2049
RemoveDeadAddBetweenLEAAndJT(MachineInstr * LEAMI,MachineInstr * JumpMI,unsigned & DeadSize)2050 static void RemoveDeadAddBetweenLEAAndJT(MachineInstr *LEAMI,
2051 MachineInstr *JumpMI,
2052 unsigned &DeadSize) {
2053 // Remove a dead add between the LEA and JT, which used to compute EntryReg,
2054 // but the JT now uses PC. Finds the last ADD (if any) that def's EntryReg
2055 // and is not clobbered / used.
2056 MachineInstr *RemovableAdd = nullptr;
2057 unsigned EntryReg = JumpMI->getOperand(0).getReg();
2058
2059 // Find the last ADD to set EntryReg
2060 MachineBasicBlock::iterator I(LEAMI);
2061 for (++I; &*I != JumpMI; ++I) {
2062 if (I->getOpcode() == ARM::t2ADDrs && I->getOperand(0).getReg() == EntryReg)
2063 RemovableAdd = &*I;
2064 }
2065
2066 if (!RemovableAdd)
2067 return;
2068
2069 // Ensure EntryReg is not clobbered or used.
2070 MachineBasicBlock::iterator J(RemovableAdd);
2071 for (++J; &*J != JumpMI; ++J) {
2072 for (unsigned K = 0, E = J->getNumOperands(); K != E; ++K) {
2073 const MachineOperand &MO = J->getOperand(K);
2074 if (!MO.isReg() || !MO.getReg())
2075 continue;
2076 if (MO.isDef() && MO.getReg() == EntryReg)
2077 return;
2078 if (MO.isUse() && MO.getReg() == EntryReg)
2079 return;
2080 }
2081 }
2082
2083 LLVM_DEBUG(dbgs() << "Removing Dead Add: " << *RemovableAdd);
2084 RemovableAdd->eraseFromParent();
2085 DeadSize += 4;
2086 }
2087
registerDefinedBetween(unsigned Reg,MachineBasicBlock::iterator From,MachineBasicBlock::iterator To,const TargetRegisterInfo * TRI)2088 static bool registerDefinedBetween(unsigned Reg,
2089 MachineBasicBlock::iterator From,
2090 MachineBasicBlock::iterator To,
2091 const TargetRegisterInfo *TRI) {
2092 for (auto I = From; I != To; ++I)
2093 if (I->modifiesRegister(Reg, TRI))
2094 return true;
2095 return false;
2096 }
2097
2098 /// optimizeThumb2JumpTables - Use tbb / tbh instructions to generate smaller
2099 /// jumptables when it's possible.
optimizeThumb2JumpTables()2100 bool ARMConstantIslands::optimizeThumb2JumpTables() {
2101 bool MadeChange = false;
2102
2103 // FIXME: After the tables are shrunk, can we get rid some of the
2104 // constantpool tables?
2105 MachineJumpTableInfo *MJTI = MF->getJumpTableInfo();
2106 if (!MJTI) return false;
2107
2108 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
2109 for (unsigned i = 0, e = T2JumpTables.size(); i != e; ++i) {
2110 MachineInstr *MI = T2JumpTables[i];
2111 const MCInstrDesc &MCID = MI->getDesc();
2112 unsigned NumOps = MCID.getNumOperands();
2113 unsigned JTOpIdx = NumOps - (MI->isPredicable() ? 2 : 1);
2114 MachineOperand JTOP = MI->getOperand(JTOpIdx);
2115 unsigned JTI = JTOP.getIndex();
2116 assert(JTI < JT.size());
2117
2118 bool ByteOk = true;
2119 bool HalfWordOk = true;
2120 unsigned JTOffset = getOffsetOf(MI) + 4;
2121 const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs;
2122 for (unsigned j = 0, ee = JTBBs.size(); j != ee; ++j) {
2123 MachineBasicBlock *MBB = JTBBs[j];
2124 unsigned DstOffset = BBInfo[MBB->getNumber()].Offset;
2125 // Negative offset is not ok. FIXME: We should change BB layout to make
2126 // sure all the branches are forward.
2127 if (ByteOk && (DstOffset - JTOffset) > ((1<<8)-1)*2)
2128 ByteOk = false;
2129 unsigned TBHLimit = ((1<<16)-1)*2;
2130 if (HalfWordOk && (DstOffset - JTOffset) > TBHLimit)
2131 HalfWordOk = false;
2132 if (!ByteOk && !HalfWordOk)
2133 break;
2134 }
2135
2136 if (!ByteOk && !HalfWordOk)
2137 continue;
2138
2139 CPUser &User = CPUsers[JumpTableUserIndices[JTI]];
2140 MachineBasicBlock *MBB = MI->getParent();
2141 if (!MI->getOperand(0).isKill()) // FIXME: needed now?
2142 continue;
2143
2144 unsigned DeadSize = 0;
2145 bool CanDeleteLEA = false;
2146 bool BaseRegKill = false;
2147
2148 unsigned IdxReg = ~0U;
2149 bool IdxRegKill = true;
2150 if (isThumb2) {
2151 IdxReg = MI->getOperand(1).getReg();
2152 IdxRegKill = MI->getOperand(1).isKill();
2153
2154 bool PreservedBaseReg =
2155 preserveBaseRegister(MI, User.MI, DeadSize, CanDeleteLEA, BaseRegKill);
2156 if (!jumpTableFollowsTB(MI, User.CPEMI) && !PreservedBaseReg)
2157 continue;
2158 } else {
2159 // We're in thumb-1 mode, so we must have something like:
2160 // %idx = tLSLri %idx, 2
2161 // %base = tLEApcrelJT
2162 // %t = tLDRr %base, %idx
2163 unsigned BaseReg = User.MI->getOperand(0).getReg();
2164
2165 if (User.MI->getIterator() == User.MI->getParent()->begin())
2166 continue;
2167 MachineInstr *Shift = User.MI->getPrevNode();
2168 if (Shift->getOpcode() != ARM::tLSLri ||
2169 Shift->getOperand(3).getImm() != 2 ||
2170 !Shift->getOperand(2).isKill())
2171 continue;
2172 IdxReg = Shift->getOperand(2).getReg();
2173 unsigned ShiftedIdxReg = Shift->getOperand(0).getReg();
2174
2175 // It's important that IdxReg is live until the actual TBB/TBH. Most of
2176 // the range is checked later, but the LEA might still clobber it and not
2177 // actually get removed.
2178 if (BaseReg == IdxReg && !jumpTableFollowsTB(MI, User.CPEMI))
2179 continue;
2180
2181 MachineInstr *Load = User.MI->getNextNode();
2182 if (Load->getOpcode() != ARM::tLDRr)
2183 continue;
2184 if (Load->getOperand(1).getReg() != BaseReg ||
2185 Load->getOperand(2).getReg() != ShiftedIdxReg ||
2186 !Load->getOperand(2).isKill())
2187 continue;
2188
2189 // If we're in PIC mode, there should be another ADD following.
2190 auto *TRI = STI->getRegisterInfo();
2191
2192 // %base cannot be redefined after the load as it will appear before
2193 // TBB/TBH like:
2194 // %base =
2195 // %base =
2196 // tBB %base, %idx
2197 if (registerDefinedBetween(BaseReg, Load->getNextNode(), MBB->end(), TRI))
2198 continue;
2199
2200 if (isPositionIndependentOrROPI) {
2201 MachineInstr *Add = Load->getNextNode();
2202 if (Add->getOpcode() != ARM::tADDrr ||
2203 Add->getOperand(2).getReg() != BaseReg ||
2204 Add->getOperand(3).getReg() != Load->getOperand(0).getReg() ||
2205 !Add->getOperand(3).isKill())
2206 continue;
2207 if (Add->getOperand(0).getReg() != MI->getOperand(0).getReg())
2208 continue;
2209 if (registerDefinedBetween(IdxReg, Add->getNextNode(), MI, TRI))
2210 // IdxReg gets redefined in the middle of the sequence.
2211 continue;
2212 Add->eraseFromParent();
2213 DeadSize += 2;
2214 } else {
2215 if (Load->getOperand(0).getReg() != MI->getOperand(0).getReg())
2216 continue;
2217 if (registerDefinedBetween(IdxReg, Load->getNextNode(), MI, TRI))
2218 // IdxReg gets redefined in the middle of the sequence.
2219 continue;
2220 }
2221
2222 // Now safe to delete the load and lsl. The LEA will be removed later.
2223 CanDeleteLEA = true;
2224 Shift->eraseFromParent();
2225 Load->eraseFromParent();
2226 DeadSize += 4;
2227 }
2228
2229 LLVM_DEBUG(dbgs() << "Shrink JT: " << *MI);
2230 MachineInstr *CPEMI = User.CPEMI;
2231 unsigned Opc = ByteOk ? ARM::t2TBB_JT : ARM::t2TBH_JT;
2232 if (!isThumb2)
2233 Opc = ByteOk ? ARM::tTBB_JT : ARM::tTBH_JT;
2234
2235 MachineBasicBlock::iterator MI_JT = MI;
2236 MachineInstr *NewJTMI =
2237 BuildMI(*MBB, MI_JT, MI->getDebugLoc(), TII->get(Opc))
2238 .addReg(User.MI->getOperand(0).getReg(),
2239 getKillRegState(BaseRegKill))
2240 .addReg(IdxReg, getKillRegState(IdxRegKill))
2241 .addJumpTableIndex(JTI, JTOP.getTargetFlags())
2242 .addImm(CPEMI->getOperand(0).getImm());
2243 LLVM_DEBUG(dbgs() << printMBBReference(*MBB) << ": " << *NewJTMI);
2244
2245 unsigned JTOpc = ByteOk ? ARM::JUMPTABLE_TBB : ARM::JUMPTABLE_TBH;
2246 CPEMI->setDesc(TII->get(JTOpc));
2247
2248 if (jumpTableFollowsTB(MI, User.CPEMI)) {
2249 NewJTMI->getOperand(0).setReg(ARM::PC);
2250 NewJTMI->getOperand(0).setIsKill(false);
2251
2252 if (CanDeleteLEA) {
2253 if (isThumb2)
2254 RemoveDeadAddBetweenLEAAndJT(User.MI, MI, DeadSize);
2255
2256 User.MI->eraseFromParent();
2257 DeadSize += isThumb2 ? 4 : 2;
2258
2259 // The LEA was eliminated, the TBB instruction becomes the only new user
2260 // of the jump table.
2261 User.MI = NewJTMI;
2262 User.MaxDisp = 4;
2263 User.NegOk = false;
2264 User.IsSoImm = false;
2265 User.KnownAlignment = false;
2266 } else {
2267 // The LEA couldn't be eliminated, so we must add another CPUser to
2268 // record the TBB or TBH use.
2269 int CPEntryIdx = JumpTableEntryIndices[JTI];
2270 auto &CPEs = CPEntries[CPEntryIdx];
2271 auto Entry =
2272 find_if(CPEs, [&](CPEntry &E) { return E.CPEMI == User.CPEMI; });
2273 ++Entry->RefCount;
2274 CPUsers.emplace_back(CPUser(NewJTMI, User.CPEMI, 4, false, false));
2275 }
2276 }
2277
2278 unsigned NewSize = TII->getInstSizeInBytes(*NewJTMI);
2279 unsigned OrigSize = TII->getInstSizeInBytes(*MI);
2280 MI->eraseFromParent();
2281
2282 int Delta = OrigSize - NewSize + DeadSize;
2283 BBInfo[MBB->getNumber()].Size -= Delta;
2284 adjustBBOffsetsAfter(MBB);
2285
2286 ++NumTBs;
2287 MadeChange = true;
2288 }
2289
2290 return MadeChange;
2291 }
2292
2293 /// reorderThumb2JumpTables - Adjust the function's block layout to ensure that
2294 /// jump tables always branch forwards, since that's what tbb and tbh need.
reorderThumb2JumpTables()2295 bool ARMConstantIslands::reorderThumb2JumpTables() {
2296 bool MadeChange = false;
2297
2298 MachineJumpTableInfo *MJTI = MF->getJumpTableInfo();
2299 if (!MJTI) return false;
2300
2301 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
2302 for (unsigned i = 0, e = T2JumpTables.size(); i != e; ++i) {
2303 MachineInstr *MI = T2JumpTables[i];
2304 const MCInstrDesc &MCID = MI->getDesc();
2305 unsigned NumOps = MCID.getNumOperands();
2306 unsigned JTOpIdx = NumOps - (MI->isPredicable() ? 2 : 1);
2307 MachineOperand JTOP = MI->getOperand(JTOpIdx);
2308 unsigned JTI = JTOP.getIndex();
2309 assert(JTI < JT.size());
2310
2311 // We prefer if target blocks for the jump table come after the jump
2312 // instruction so we can use TB[BH]. Loop through the target blocks
2313 // and try to adjust them such that that's true.
2314 int JTNumber = MI->getParent()->getNumber();
2315 const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs;
2316 for (unsigned j = 0, ee = JTBBs.size(); j != ee; ++j) {
2317 MachineBasicBlock *MBB = JTBBs[j];
2318 int DTNumber = MBB->getNumber();
2319
2320 if (DTNumber < JTNumber) {
2321 // The destination precedes the switch. Try to move the block forward
2322 // so we have a positive offset.
2323 MachineBasicBlock *NewBB =
2324 adjustJTTargetBlockForward(MBB, MI->getParent());
2325 if (NewBB)
2326 MJTI->ReplaceMBBInJumpTable(JTI, JTBBs[j], NewBB);
2327 MadeChange = true;
2328 }
2329 }
2330 }
2331
2332 return MadeChange;
2333 }
2334
2335 MachineBasicBlock *ARMConstantIslands::
adjustJTTargetBlockForward(MachineBasicBlock * BB,MachineBasicBlock * JTBB)2336 adjustJTTargetBlockForward(MachineBasicBlock *BB, MachineBasicBlock *JTBB) {
2337 // If the destination block is terminated by an unconditional branch,
2338 // try to move it; otherwise, create a new block following the jump
2339 // table that branches back to the actual target. This is a very simple
2340 // heuristic. FIXME: We can definitely improve it.
2341 MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
2342 SmallVector<MachineOperand, 4> Cond;
2343 SmallVector<MachineOperand, 4> CondPrior;
2344 MachineFunction::iterator BBi = BB->getIterator();
2345 MachineFunction::iterator OldPrior = std::prev(BBi);
2346
2347 // If the block terminator isn't analyzable, don't try to move the block
2348 bool B = TII->analyzeBranch(*BB, TBB, FBB, Cond);
2349
2350 // If the block ends in an unconditional branch, move it. The prior block
2351 // has to have an analyzable terminator for us to move this one. Be paranoid
2352 // and make sure we're not trying to move the entry block of the function.
2353 if (!B && Cond.empty() && BB != &MF->front() &&
2354 !TII->analyzeBranch(*OldPrior, TBB, FBB, CondPrior)) {
2355 BB->moveAfter(JTBB);
2356 OldPrior->updateTerminator();
2357 BB->updateTerminator();
2358 // Update numbering to account for the block being moved.
2359 MF->RenumberBlocks();
2360 ++NumJTMoved;
2361 return nullptr;
2362 }
2363
2364 // Create a new MBB for the code after the jump BB.
2365 MachineBasicBlock *NewBB =
2366 MF->CreateMachineBasicBlock(JTBB->getBasicBlock());
2367 MachineFunction::iterator MBBI = ++JTBB->getIterator();
2368 MF->insert(MBBI, NewBB);
2369
2370 // Add an unconditional branch from NewBB to BB.
2371 // There doesn't seem to be meaningful DebugInfo available; this doesn't
2372 // correspond directly to anything in the source.
2373 if (isThumb2)
2374 BuildMI(NewBB, DebugLoc(), TII->get(ARM::t2B))
2375 .addMBB(BB)
2376 .add(predOps(ARMCC::AL));
2377 else
2378 BuildMI(NewBB, DebugLoc(), TII->get(ARM::tB))
2379 .addMBB(BB)
2380 .add(predOps(ARMCC::AL));
2381
2382 // Update internal data structures to account for the newly inserted MBB.
2383 MF->RenumberBlocks(NewBB);
2384
2385 // Update the CFG.
2386 NewBB->addSuccessor(BB);
2387 JTBB->replaceSuccessor(BB, NewBB);
2388
2389 ++NumJTInserted;
2390 return NewBB;
2391 }
2392
2393 /// createARMConstantIslandPass - returns an instance of the constpool
2394 /// island pass.
createARMConstantIslandPass()2395 FunctionPass *llvm::createARMConstantIslandPass() {
2396 return new ARMConstantIslands();
2397 }
2398
2399 INITIALIZE_PASS(ARMConstantIslands, "arm-cp-islands", ARM_CP_ISLANDS_OPT_NAME,
2400 false, false)
2401