1 //===- COFFObjectFile.cpp - COFF object file implementation ---------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file declares the COFFObjectFile class.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "llvm/ADT/ArrayRef.h"
15 #include "llvm/ADT/StringRef.h"
16 #include "llvm/ADT/Triple.h"
17 #include "llvm/ADT/iterator_range.h"
18 #include "llvm/BinaryFormat/COFF.h"
19 #include "llvm/Object/Binary.h"
20 #include "llvm/Object/COFF.h"
21 #include "llvm/Object/Error.h"
22 #include "llvm/Object/ObjectFile.h"
23 #include "llvm/Support/BinaryStreamReader.h"
24 #include "llvm/Support/Endian.h"
25 #include "llvm/Support/Error.h"
26 #include "llvm/Support/ErrorHandling.h"
27 #include "llvm/Support/MathExtras.h"
28 #include "llvm/Support/MemoryBuffer.h"
29 #include <algorithm>
30 #include <cassert>
31 #include <cstddef>
32 #include <cstdint>
33 #include <cstring>
34 #include <limits>
35 #include <memory>
36 #include <system_error>
37
38 using namespace llvm;
39 using namespace object;
40
41 using support::ulittle16_t;
42 using support::ulittle32_t;
43 using support::ulittle64_t;
44 using support::little16_t;
45
46 // Returns false if size is greater than the buffer size. And sets ec.
checkSize(MemoryBufferRef M,std::error_code & EC,uint64_t Size)47 static bool checkSize(MemoryBufferRef M, std::error_code &EC, uint64_t Size) {
48 if (M.getBufferSize() < Size) {
49 EC = object_error::unexpected_eof;
50 return false;
51 }
52 return true;
53 }
54
55 // Sets Obj unless any bytes in [addr, addr + size) fall outsize of m.
56 // Returns unexpected_eof if error.
57 template <typename T>
getObject(const T * & Obj,MemoryBufferRef M,const void * Ptr,const uint64_t Size=sizeof (T))58 static std::error_code getObject(const T *&Obj, MemoryBufferRef M,
59 const void *Ptr,
60 const uint64_t Size = sizeof(T)) {
61 uintptr_t Addr = uintptr_t(Ptr);
62 if (std::error_code EC = Binary::checkOffset(M, Addr, Size))
63 return EC;
64 Obj = reinterpret_cast<const T *>(Addr);
65 return std::error_code();
66 }
67
68 // Decode a string table entry in base 64 (//AAAAAA). Expects \arg Str without
69 // prefixed slashes.
decodeBase64StringEntry(StringRef Str,uint32_t & Result)70 static bool decodeBase64StringEntry(StringRef Str, uint32_t &Result) {
71 assert(Str.size() <= 6 && "String too long, possible overflow.");
72 if (Str.size() > 6)
73 return true;
74
75 uint64_t Value = 0;
76 while (!Str.empty()) {
77 unsigned CharVal;
78 if (Str[0] >= 'A' && Str[0] <= 'Z') // 0..25
79 CharVal = Str[0] - 'A';
80 else if (Str[0] >= 'a' && Str[0] <= 'z') // 26..51
81 CharVal = Str[0] - 'a' + 26;
82 else if (Str[0] >= '0' && Str[0] <= '9') // 52..61
83 CharVal = Str[0] - '0' + 52;
84 else if (Str[0] == '+') // 62
85 CharVal = 62;
86 else if (Str[0] == '/') // 63
87 CharVal = 63;
88 else
89 return true;
90
91 Value = (Value * 64) + CharVal;
92 Str = Str.substr(1);
93 }
94
95 if (Value > std::numeric_limits<uint32_t>::max())
96 return true;
97
98 Result = static_cast<uint32_t>(Value);
99 return false;
100 }
101
102 template <typename coff_symbol_type>
toSymb(DataRefImpl Ref) const103 const coff_symbol_type *COFFObjectFile::toSymb(DataRefImpl Ref) const {
104 const coff_symbol_type *Addr =
105 reinterpret_cast<const coff_symbol_type *>(Ref.p);
106
107 assert(!checkOffset(Data, uintptr_t(Addr), sizeof(*Addr)));
108 #ifndef NDEBUG
109 // Verify that the symbol points to a valid entry in the symbol table.
110 uintptr_t Offset = uintptr_t(Addr) - uintptr_t(base());
111
112 assert((Offset - getPointerToSymbolTable()) % sizeof(coff_symbol_type) == 0 &&
113 "Symbol did not point to the beginning of a symbol");
114 #endif
115
116 return Addr;
117 }
118
toSec(DataRefImpl Ref) const119 const coff_section *COFFObjectFile::toSec(DataRefImpl Ref) const {
120 const coff_section *Addr = reinterpret_cast<const coff_section*>(Ref.p);
121
122 #ifndef NDEBUG
123 // Verify that the section points to a valid entry in the section table.
124 if (Addr < SectionTable || Addr >= (SectionTable + getNumberOfSections()))
125 report_fatal_error("Section was outside of section table.");
126
127 uintptr_t Offset = uintptr_t(Addr) - uintptr_t(SectionTable);
128 assert(Offset % sizeof(coff_section) == 0 &&
129 "Section did not point to the beginning of a section");
130 #endif
131
132 return Addr;
133 }
134
moveSymbolNext(DataRefImpl & Ref) const135 void COFFObjectFile::moveSymbolNext(DataRefImpl &Ref) const {
136 auto End = reinterpret_cast<uintptr_t>(StringTable);
137 if (SymbolTable16) {
138 const coff_symbol16 *Symb = toSymb<coff_symbol16>(Ref);
139 Symb += 1 + Symb->NumberOfAuxSymbols;
140 Ref.p = std::min(reinterpret_cast<uintptr_t>(Symb), End);
141 } else if (SymbolTable32) {
142 const coff_symbol32 *Symb = toSymb<coff_symbol32>(Ref);
143 Symb += 1 + Symb->NumberOfAuxSymbols;
144 Ref.p = std::min(reinterpret_cast<uintptr_t>(Symb), End);
145 } else {
146 llvm_unreachable("no symbol table pointer!");
147 }
148 }
149
getSymbolName(DataRefImpl Ref) const150 Expected<StringRef> COFFObjectFile::getSymbolName(DataRefImpl Ref) const {
151 COFFSymbolRef Symb = getCOFFSymbol(Ref);
152 StringRef Result;
153 if (std::error_code EC = getSymbolName(Symb, Result))
154 return errorCodeToError(EC);
155 return Result;
156 }
157
getSymbolValueImpl(DataRefImpl Ref) const158 uint64_t COFFObjectFile::getSymbolValueImpl(DataRefImpl Ref) const {
159 return getCOFFSymbol(Ref).getValue();
160 }
161
getSymbolAlignment(DataRefImpl Ref) const162 uint32_t COFFObjectFile::getSymbolAlignment(DataRefImpl Ref) const {
163 // MSVC/link.exe seems to align symbols to the next-power-of-2
164 // up to 32 bytes.
165 COFFSymbolRef Symb = getCOFFSymbol(Ref);
166 return std::min(uint64_t(32), PowerOf2Ceil(Symb.getValue()));
167 }
168
getSymbolAddress(DataRefImpl Ref) const169 Expected<uint64_t> COFFObjectFile::getSymbolAddress(DataRefImpl Ref) const {
170 uint64_t Result = getSymbolValue(Ref);
171 COFFSymbolRef Symb = getCOFFSymbol(Ref);
172 int32_t SectionNumber = Symb.getSectionNumber();
173
174 if (Symb.isAnyUndefined() || Symb.isCommon() ||
175 COFF::isReservedSectionNumber(SectionNumber))
176 return Result;
177
178 const coff_section *Section = nullptr;
179 if (std::error_code EC = getSection(SectionNumber, Section))
180 return errorCodeToError(EC);
181 Result += Section->VirtualAddress;
182
183 // The section VirtualAddress does not include ImageBase, and we want to
184 // return virtual addresses.
185 Result += getImageBase();
186
187 return Result;
188 }
189
getSymbolType(DataRefImpl Ref) const190 Expected<SymbolRef::Type> COFFObjectFile::getSymbolType(DataRefImpl Ref) const {
191 COFFSymbolRef Symb = getCOFFSymbol(Ref);
192 int32_t SectionNumber = Symb.getSectionNumber();
193
194 if (Symb.getComplexType() == COFF::IMAGE_SYM_DTYPE_FUNCTION)
195 return SymbolRef::ST_Function;
196 if (Symb.isAnyUndefined())
197 return SymbolRef::ST_Unknown;
198 if (Symb.isCommon())
199 return SymbolRef::ST_Data;
200 if (Symb.isFileRecord())
201 return SymbolRef::ST_File;
202
203 // TODO: perhaps we need a new symbol type ST_Section.
204 if (SectionNumber == COFF::IMAGE_SYM_DEBUG || Symb.isSectionDefinition())
205 return SymbolRef::ST_Debug;
206
207 if (!COFF::isReservedSectionNumber(SectionNumber))
208 return SymbolRef::ST_Data;
209
210 return SymbolRef::ST_Other;
211 }
212
getSymbolFlags(DataRefImpl Ref) const213 uint32_t COFFObjectFile::getSymbolFlags(DataRefImpl Ref) const {
214 COFFSymbolRef Symb = getCOFFSymbol(Ref);
215 uint32_t Result = SymbolRef::SF_None;
216
217 if (Symb.isExternal() || Symb.isWeakExternal())
218 Result |= SymbolRef::SF_Global;
219
220 if (const coff_aux_weak_external *AWE = Symb.getWeakExternal()) {
221 Result |= SymbolRef::SF_Weak;
222 if (AWE->Characteristics != COFF::IMAGE_WEAK_EXTERN_SEARCH_ALIAS)
223 Result |= SymbolRef::SF_Undefined;
224 }
225
226 if (Symb.getSectionNumber() == COFF::IMAGE_SYM_ABSOLUTE)
227 Result |= SymbolRef::SF_Absolute;
228
229 if (Symb.isFileRecord())
230 Result |= SymbolRef::SF_FormatSpecific;
231
232 if (Symb.isSectionDefinition())
233 Result |= SymbolRef::SF_FormatSpecific;
234
235 if (Symb.isCommon())
236 Result |= SymbolRef::SF_Common;
237
238 if (Symb.isUndefined())
239 Result |= SymbolRef::SF_Undefined;
240
241 return Result;
242 }
243
getCommonSymbolSizeImpl(DataRefImpl Ref) const244 uint64_t COFFObjectFile::getCommonSymbolSizeImpl(DataRefImpl Ref) const {
245 COFFSymbolRef Symb = getCOFFSymbol(Ref);
246 return Symb.getValue();
247 }
248
249 Expected<section_iterator>
getSymbolSection(DataRefImpl Ref) const250 COFFObjectFile::getSymbolSection(DataRefImpl Ref) const {
251 COFFSymbolRef Symb = getCOFFSymbol(Ref);
252 if (COFF::isReservedSectionNumber(Symb.getSectionNumber()))
253 return section_end();
254 const coff_section *Sec = nullptr;
255 if (std::error_code EC = getSection(Symb.getSectionNumber(), Sec))
256 return errorCodeToError(EC);
257 DataRefImpl Ret;
258 Ret.p = reinterpret_cast<uintptr_t>(Sec);
259 return section_iterator(SectionRef(Ret, this));
260 }
261
getSymbolSectionID(SymbolRef Sym) const262 unsigned COFFObjectFile::getSymbolSectionID(SymbolRef Sym) const {
263 COFFSymbolRef Symb = getCOFFSymbol(Sym.getRawDataRefImpl());
264 return Symb.getSectionNumber();
265 }
266
moveSectionNext(DataRefImpl & Ref) const267 void COFFObjectFile::moveSectionNext(DataRefImpl &Ref) const {
268 const coff_section *Sec = toSec(Ref);
269 Sec += 1;
270 Ref.p = reinterpret_cast<uintptr_t>(Sec);
271 }
272
getSectionName(DataRefImpl Ref,StringRef & Result) const273 std::error_code COFFObjectFile::getSectionName(DataRefImpl Ref,
274 StringRef &Result) const {
275 const coff_section *Sec = toSec(Ref);
276 return getSectionName(Sec, Result);
277 }
278
getSectionAddress(DataRefImpl Ref) const279 uint64_t COFFObjectFile::getSectionAddress(DataRefImpl Ref) const {
280 const coff_section *Sec = toSec(Ref);
281 uint64_t Result = Sec->VirtualAddress;
282
283 // The section VirtualAddress does not include ImageBase, and we want to
284 // return virtual addresses.
285 Result += getImageBase();
286 return Result;
287 }
288
getSectionIndex(DataRefImpl Sec) const289 uint64_t COFFObjectFile::getSectionIndex(DataRefImpl Sec) const {
290 return toSec(Sec) - SectionTable;
291 }
292
getSectionSize(DataRefImpl Ref) const293 uint64_t COFFObjectFile::getSectionSize(DataRefImpl Ref) const {
294 return getSectionSize(toSec(Ref));
295 }
296
getSectionContents(DataRefImpl Ref,StringRef & Result) const297 std::error_code COFFObjectFile::getSectionContents(DataRefImpl Ref,
298 StringRef &Result) const {
299 const coff_section *Sec = toSec(Ref);
300 ArrayRef<uint8_t> Res;
301 std::error_code EC = getSectionContents(Sec, Res);
302 Result = StringRef(reinterpret_cast<const char*>(Res.data()), Res.size());
303 return EC;
304 }
305
getSectionAlignment(DataRefImpl Ref) const306 uint64_t COFFObjectFile::getSectionAlignment(DataRefImpl Ref) const {
307 const coff_section *Sec = toSec(Ref);
308 return Sec->getAlignment();
309 }
310
isSectionCompressed(DataRefImpl Sec) const311 bool COFFObjectFile::isSectionCompressed(DataRefImpl Sec) const {
312 return false;
313 }
314
isSectionText(DataRefImpl Ref) const315 bool COFFObjectFile::isSectionText(DataRefImpl Ref) const {
316 const coff_section *Sec = toSec(Ref);
317 return Sec->Characteristics & COFF::IMAGE_SCN_CNT_CODE;
318 }
319
isSectionData(DataRefImpl Ref) const320 bool COFFObjectFile::isSectionData(DataRefImpl Ref) const {
321 const coff_section *Sec = toSec(Ref);
322 return Sec->Characteristics & COFF::IMAGE_SCN_CNT_INITIALIZED_DATA;
323 }
324
isSectionBSS(DataRefImpl Ref) const325 bool COFFObjectFile::isSectionBSS(DataRefImpl Ref) const {
326 const coff_section *Sec = toSec(Ref);
327 const uint32_t BssFlags = COFF::IMAGE_SCN_CNT_UNINITIALIZED_DATA |
328 COFF::IMAGE_SCN_MEM_READ |
329 COFF::IMAGE_SCN_MEM_WRITE;
330 return (Sec->Characteristics & BssFlags) == BssFlags;
331 }
332
getSectionID(SectionRef Sec) const333 unsigned COFFObjectFile::getSectionID(SectionRef Sec) const {
334 uintptr_t Offset =
335 uintptr_t(Sec.getRawDataRefImpl().p) - uintptr_t(SectionTable);
336 assert((Offset % sizeof(coff_section)) == 0);
337 return (Offset / sizeof(coff_section)) + 1;
338 }
339
isSectionVirtual(DataRefImpl Ref) const340 bool COFFObjectFile::isSectionVirtual(DataRefImpl Ref) const {
341 const coff_section *Sec = toSec(Ref);
342 // In COFF, a virtual section won't have any in-file
343 // content, so the file pointer to the content will be zero.
344 return Sec->PointerToRawData == 0;
345 }
346
getNumberOfRelocations(const coff_section * Sec,MemoryBufferRef M,const uint8_t * base)347 static uint32_t getNumberOfRelocations(const coff_section *Sec,
348 MemoryBufferRef M, const uint8_t *base) {
349 // The field for the number of relocations in COFF section table is only
350 // 16-bit wide. If a section has more than 65535 relocations, 0xFFFF is set to
351 // NumberOfRelocations field, and the actual relocation count is stored in the
352 // VirtualAddress field in the first relocation entry.
353 if (Sec->hasExtendedRelocations()) {
354 const coff_relocation *FirstReloc;
355 if (getObject(FirstReloc, M, reinterpret_cast<const coff_relocation*>(
356 base + Sec->PointerToRelocations)))
357 return 0;
358 // -1 to exclude this first relocation entry.
359 return FirstReloc->VirtualAddress - 1;
360 }
361 return Sec->NumberOfRelocations;
362 }
363
364 static const coff_relocation *
getFirstReloc(const coff_section * Sec,MemoryBufferRef M,const uint8_t * Base)365 getFirstReloc(const coff_section *Sec, MemoryBufferRef M, const uint8_t *Base) {
366 uint64_t NumRelocs = getNumberOfRelocations(Sec, M, Base);
367 if (!NumRelocs)
368 return nullptr;
369 auto begin = reinterpret_cast<const coff_relocation *>(
370 Base + Sec->PointerToRelocations);
371 if (Sec->hasExtendedRelocations()) {
372 // Skip the first relocation entry repurposed to store the number of
373 // relocations.
374 begin++;
375 }
376 if (Binary::checkOffset(M, uintptr_t(begin),
377 sizeof(coff_relocation) * NumRelocs))
378 return nullptr;
379 return begin;
380 }
381
section_rel_begin(DataRefImpl Ref) const382 relocation_iterator COFFObjectFile::section_rel_begin(DataRefImpl Ref) const {
383 const coff_section *Sec = toSec(Ref);
384 const coff_relocation *begin = getFirstReloc(Sec, Data, base());
385 if (begin && Sec->VirtualAddress != 0)
386 report_fatal_error("Sections with relocations should have an address of 0");
387 DataRefImpl Ret;
388 Ret.p = reinterpret_cast<uintptr_t>(begin);
389 return relocation_iterator(RelocationRef(Ret, this));
390 }
391
section_rel_end(DataRefImpl Ref) const392 relocation_iterator COFFObjectFile::section_rel_end(DataRefImpl Ref) const {
393 const coff_section *Sec = toSec(Ref);
394 const coff_relocation *I = getFirstReloc(Sec, Data, base());
395 if (I)
396 I += getNumberOfRelocations(Sec, Data, base());
397 DataRefImpl Ret;
398 Ret.p = reinterpret_cast<uintptr_t>(I);
399 return relocation_iterator(RelocationRef(Ret, this));
400 }
401
402 // Initialize the pointer to the symbol table.
initSymbolTablePtr()403 std::error_code COFFObjectFile::initSymbolTablePtr() {
404 if (COFFHeader)
405 if (std::error_code EC = getObject(
406 SymbolTable16, Data, base() + getPointerToSymbolTable(),
407 (uint64_t)getNumberOfSymbols() * getSymbolTableEntrySize()))
408 return EC;
409
410 if (COFFBigObjHeader)
411 if (std::error_code EC = getObject(
412 SymbolTable32, Data, base() + getPointerToSymbolTable(),
413 (uint64_t)getNumberOfSymbols() * getSymbolTableEntrySize()))
414 return EC;
415
416 // Find string table. The first four byte of the string table contains the
417 // total size of the string table, including the size field itself. If the
418 // string table is empty, the value of the first four byte would be 4.
419 uint32_t StringTableOffset = getPointerToSymbolTable() +
420 getNumberOfSymbols() * getSymbolTableEntrySize();
421 const uint8_t *StringTableAddr = base() + StringTableOffset;
422 const ulittle32_t *StringTableSizePtr;
423 if (std::error_code EC = getObject(StringTableSizePtr, Data, StringTableAddr))
424 return EC;
425 StringTableSize = *StringTableSizePtr;
426 if (std::error_code EC =
427 getObject(StringTable, Data, StringTableAddr, StringTableSize))
428 return EC;
429
430 // Treat table sizes < 4 as empty because contrary to the PECOFF spec, some
431 // tools like cvtres write a size of 0 for an empty table instead of 4.
432 if (StringTableSize < 4)
433 StringTableSize = 4;
434
435 // Check that the string table is null terminated if has any in it.
436 if (StringTableSize > 4 && StringTable[StringTableSize - 1] != 0)
437 return object_error::parse_failed;
438 return std::error_code();
439 }
440
getImageBase() const441 uint64_t COFFObjectFile::getImageBase() const {
442 if (PE32Header)
443 return PE32Header->ImageBase;
444 else if (PE32PlusHeader)
445 return PE32PlusHeader->ImageBase;
446 // This actually comes up in practice.
447 return 0;
448 }
449
450 // Returns the file offset for the given VA.
getVaPtr(uint64_t Addr,uintptr_t & Res) const451 std::error_code COFFObjectFile::getVaPtr(uint64_t Addr, uintptr_t &Res) const {
452 uint64_t ImageBase = getImageBase();
453 uint64_t Rva = Addr - ImageBase;
454 assert(Rva <= UINT32_MAX);
455 return getRvaPtr((uint32_t)Rva, Res);
456 }
457
458 // Returns the file offset for the given RVA.
getRvaPtr(uint32_t Addr,uintptr_t & Res) const459 std::error_code COFFObjectFile::getRvaPtr(uint32_t Addr, uintptr_t &Res) const {
460 for (const SectionRef &S : sections()) {
461 const coff_section *Section = getCOFFSection(S);
462 uint32_t SectionStart = Section->VirtualAddress;
463 uint32_t SectionEnd = Section->VirtualAddress + Section->VirtualSize;
464 if (SectionStart <= Addr && Addr < SectionEnd) {
465 uint32_t Offset = Addr - SectionStart;
466 Res = uintptr_t(base()) + Section->PointerToRawData + Offset;
467 return std::error_code();
468 }
469 }
470 return object_error::parse_failed;
471 }
472
473 std::error_code
getRvaAndSizeAsBytes(uint32_t RVA,uint32_t Size,ArrayRef<uint8_t> & Contents) const474 COFFObjectFile::getRvaAndSizeAsBytes(uint32_t RVA, uint32_t Size,
475 ArrayRef<uint8_t> &Contents) const {
476 for (const SectionRef &S : sections()) {
477 const coff_section *Section = getCOFFSection(S);
478 uint32_t SectionStart = Section->VirtualAddress;
479 // Check if this RVA is within the section bounds. Be careful about integer
480 // overflow.
481 uint32_t OffsetIntoSection = RVA - SectionStart;
482 if (SectionStart <= RVA && OffsetIntoSection < Section->VirtualSize &&
483 Size <= Section->VirtualSize - OffsetIntoSection) {
484 uintptr_t Begin =
485 uintptr_t(base()) + Section->PointerToRawData + OffsetIntoSection;
486 Contents =
487 ArrayRef<uint8_t>(reinterpret_cast<const uint8_t *>(Begin), Size);
488 return std::error_code();
489 }
490 }
491 return object_error::parse_failed;
492 }
493
494 // Returns hint and name fields, assuming \p Rva is pointing to a Hint/Name
495 // table entry.
getHintName(uint32_t Rva,uint16_t & Hint,StringRef & Name) const496 std::error_code COFFObjectFile::getHintName(uint32_t Rva, uint16_t &Hint,
497 StringRef &Name) const {
498 uintptr_t IntPtr = 0;
499 if (std::error_code EC = getRvaPtr(Rva, IntPtr))
500 return EC;
501 const uint8_t *Ptr = reinterpret_cast<const uint8_t *>(IntPtr);
502 Hint = *reinterpret_cast<const ulittle16_t *>(Ptr);
503 Name = StringRef(reinterpret_cast<const char *>(Ptr + 2));
504 return std::error_code();
505 }
506
507 std::error_code
getDebugPDBInfo(const debug_directory * DebugDir,const codeview::DebugInfo * & PDBInfo,StringRef & PDBFileName) const508 COFFObjectFile::getDebugPDBInfo(const debug_directory *DebugDir,
509 const codeview::DebugInfo *&PDBInfo,
510 StringRef &PDBFileName) const {
511 ArrayRef<uint8_t> InfoBytes;
512 if (std::error_code EC = getRvaAndSizeAsBytes(
513 DebugDir->AddressOfRawData, DebugDir->SizeOfData, InfoBytes))
514 return EC;
515 if (InfoBytes.size() < sizeof(*PDBInfo) + 1)
516 return object_error::parse_failed;
517 PDBInfo = reinterpret_cast<const codeview::DebugInfo *>(InfoBytes.data());
518 InfoBytes = InfoBytes.drop_front(sizeof(*PDBInfo));
519 PDBFileName = StringRef(reinterpret_cast<const char *>(InfoBytes.data()),
520 InfoBytes.size());
521 // Truncate the name at the first null byte. Ignore any padding.
522 PDBFileName = PDBFileName.split('\0').first;
523 return std::error_code();
524 }
525
526 std::error_code
getDebugPDBInfo(const codeview::DebugInfo * & PDBInfo,StringRef & PDBFileName) const527 COFFObjectFile::getDebugPDBInfo(const codeview::DebugInfo *&PDBInfo,
528 StringRef &PDBFileName) const {
529 for (const debug_directory &D : debug_directories())
530 if (D.Type == COFF::IMAGE_DEBUG_TYPE_CODEVIEW)
531 return getDebugPDBInfo(&D, PDBInfo, PDBFileName);
532 // If we get here, there is no PDB info to return.
533 PDBInfo = nullptr;
534 PDBFileName = StringRef();
535 return std::error_code();
536 }
537
538 // Find the import table.
initImportTablePtr()539 std::error_code COFFObjectFile::initImportTablePtr() {
540 // First, we get the RVA of the import table. If the file lacks a pointer to
541 // the import table, do nothing.
542 const data_directory *DataEntry;
543 if (getDataDirectory(COFF::IMPORT_TABLE, DataEntry))
544 return std::error_code();
545
546 // Do nothing if the pointer to import table is NULL.
547 if (DataEntry->RelativeVirtualAddress == 0)
548 return std::error_code();
549
550 uint32_t ImportTableRva = DataEntry->RelativeVirtualAddress;
551
552 // Find the section that contains the RVA. This is needed because the RVA is
553 // the import table's memory address which is different from its file offset.
554 uintptr_t IntPtr = 0;
555 if (std::error_code EC = getRvaPtr(ImportTableRva, IntPtr))
556 return EC;
557 if (std::error_code EC = checkOffset(Data, IntPtr, DataEntry->Size))
558 return EC;
559 ImportDirectory = reinterpret_cast<
560 const coff_import_directory_table_entry *>(IntPtr);
561 return std::error_code();
562 }
563
564 // Initializes DelayImportDirectory and NumberOfDelayImportDirectory.
initDelayImportTablePtr()565 std::error_code COFFObjectFile::initDelayImportTablePtr() {
566 const data_directory *DataEntry;
567 if (getDataDirectory(COFF::DELAY_IMPORT_DESCRIPTOR, DataEntry))
568 return std::error_code();
569 if (DataEntry->RelativeVirtualAddress == 0)
570 return std::error_code();
571
572 uint32_t RVA = DataEntry->RelativeVirtualAddress;
573 NumberOfDelayImportDirectory = DataEntry->Size /
574 sizeof(delay_import_directory_table_entry) - 1;
575
576 uintptr_t IntPtr = 0;
577 if (std::error_code EC = getRvaPtr(RVA, IntPtr))
578 return EC;
579 DelayImportDirectory = reinterpret_cast<
580 const delay_import_directory_table_entry *>(IntPtr);
581 return std::error_code();
582 }
583
584 // Find the export table.
initExportTablePtr()585 std::error_code COFFObjectFile::initExportTablePtr() {
586 // First, we get the RVA of the export table. If the file lacks a pointer to
587 // the export table, do nothing.
588 const data_directory *DataEntry;
589 if (getDataDirectory(COFF::EXPORT_TABLE, DataEntry))
590 return std::error_code();
591
592 // Do nothing if the pointer to export table is NULL.
593 if (DataEntry->RelativeVirtualAddress == 0)
594 return std::error_code();
595
596 uint32_t ExportTableRva = DataEntry->RelativeVirtualAddress;
597 uintptr_t IntPtr = 0;
598 if (std::error_code EC = getRvaPtr(ExportTableRva, IntPtr))
599 return EC;
600 ExportDirectory =
601 reinterpret_cast<const export_directory_table_entry *>(IntPtr);
602 return std::error_code();
603 }
604
initBaseRelocPtr()605 std::error_code COFFObjectFile::initBaseRelocPtr() {
606 const data_directory *DataEntry;
607 if (getDataDirectory(COFF::BASE_RELOCATION_TABLE, DataEntry))
608 return std::error_code();
609 if (DataEntry->RelativeVirtualAddress == 0)
610 return std::error_code();
611
612 uintptr_t IntPtr = 0;
613 if (std::error_code EC = getRvaPtr(DataEntry->RelativeVirtualAddress, IntPtr))
614 return EC;
615 BaseRelocHeader = reinterpret_cast<const coff_base_reloc_block_header *>(
616 IntPtr);
617 BaseRelocEnd = reinterpret_cast<coff_base_reloc_block_header *>(
618 IntPtr + DataEntry->Size);
619 // FIXME: Verify the section containing BaseRelocHeader has at least
620 // DataEntry->Size bytes after DataEntry->RelativeVirtualAddress.
621 return std::error_code();
622 }
623
initDebugDirectoryPtr()624 std::error_code COFFObjectFile::initDebugDirectoryPtr() {
625 // Get the RVA of the debug directory. Do nothing if it does not exist.
626 const data_directory *DataEntry;
627 if (getDataDirectory(COFF::DEBUG_DIRECTORY, DataEntry))
628 return std::error_code();
629
630 // Do nothing if the RVA is NULL.
631 if (DataEntry->RelativeVirtualAddress == 0)
632 return std::error_code();
633
634 // Check that the size is a multiple of the entry size.
635 if (DataEntry->Size % sizeof(debug_directory) != 0)
636 return object_error::parse_failed;
637
638 uintptr_t IntPtr = 0;
639 if (std::error_code EC = getRvaPtr(DataEntry->RelativeVirtualAddress, IntPtr))
640 return EC;
641 DebugDirectoryBegin = reinterpret_cast<const debug_directory *>(IntPtr);
642 DebugDirectoryEnd = reinterpret_cast<const debug_directory *>(
643 IntPtr + DataEntry->Size);
644 // FIXME: Verify the section containing DebugDirectoryBegin has at least
645 // DataEntry->Size bytes after DataEntry->RelativeVirtualAddress.
646 return std::error_code();
647 }
648
initLoadConfigPtr()649 std::error_code COFFObjectFile::initLoadConfigPtr() {
650 // Get the RVA of the debug directory. Do nothing if it does not exist.
651 const data_directory *DataEntry;
652 if (getDataDirectory(COFF::LOAD_CONFIG_TABLE, DataEntry))
653 return std::error_code();
654
655 // Do nothing if the RVA is NULL.
656 if (DataEntry->RelativeVirtualAddress == 0)
657 return std::error_code();
658 uintptr_t IntPtr = 0;
659 if (std::error_code EC = getRvaPtr(DataEntry->RelativeVirtualAddress, IntPtr))
660 return EC;
661
662 LoadConfig = (const void *)IntPtr;
663 return std::error_code();
664 }
665
COFFObjectFile(MemoryBufferRef Object,std::error_code & EC)666 COFFObjectFile::COFFObjectFile(MemoryBufferRef Object, std::error_code &EC)
667 : ObjectFile(Binary::ID_COFF, Object), COFFHeader(nullptr),
668 COFFBigObjHeader(nullptr), PE32Header(nullptr), PE32PlusHeader(nullptr),
669 DataDirectory(nullptr), SectionTable(nullptr), SymbolTable16(nullptr),
670 SymbolTable32(nullptr), StringTable(nullptr), StringTableSize(0),
671 ImportDirectory(nullptr),
672 DelayImportDirectory(nullptr), NumberOfDelayImportDirectory(0),
673 ExportDirectory(nullptr), BaseRelocHeader(nullptr), BaseRelocEnd(nullptr),
674 DebugDirectoryBegin(nullptr), DebugDirectoryEnd(nullptr) {
675 // Check that we at least have enough room for a header.
676 if (!checkSize(Data, EC, sizeof(coff_file_header)))
677 return;
678
679 // The current location in the file where we are looking at.
680 uint64_t CurPtr = 0;
681
682 // PE header is optional and is present only in executables. If it exists,
683 // it is placed right after COFF header.
684 bool HasPEHeader = false;
685
686 // Check if this is a PE/COFF file.
687 if (checkSize(Data, EC, sizeof(dos_header) + sizeof(COFF::PEMagic))) {
688 // PE/COFF, seek through MS-DOS compatibility stub and 4-byte
689 // PE signature to find 'normal' COFF header.
690 const auto *DH = reinterpret_cast<const dos_header *>(base());
691 if (DH->Magic[0] == 'M' && DH->Magic[1] == 'Z') {
692 CurPtr = DH->AddressOfNewExeHeader;
693 // Check the PE magic bytes. ("PE\0\0")
694 if (memcmp(base() + CurPtr, COFF::PEMagic, sizeof(COFF::PEMagic)) != 0) {
695 EC = object_error::parse_failed;
696 return;
697 }
698 CurPtr += sizeof(COFF::PEMagic); // Skip the PE magic bytes.
699 HasPEHeader = true;
700 }
701 }
702
703 if ((EC = getObject(COFFHeader, Data, base() + CurPtr)))
704 return;
705
706 // It might be a bigobj file, let's check. Note that COFF bigobj and COFF
707 // import libraries share a common prefix but bigobj is more restrictive.
708 if (!HasPEHeader && COFFHeader->Machine == COFF::IMAGE_FILE_MACHINE_UNKNOWN &&
709 COFFHeader->NumberOfSections == uint16_t(0xffff) &&
710 checkSize(Data, EC, sizeof(coff_bigobj_file_header))) {
711 if ((EC = getObject(COFFBigObjHeader, Data, base() + CurPtr)))
712 return;
713
714 // Verify that we are dealing with bigobj.
715 if (COFFBigObjHeader->Version >= COFF::BigObjHeader::MinBigObjectVersion &&
716 std::memcmp(COFFBigObjHeader->UUID, COFF::BigObjMagic,
717 sizeof(COFF::BigObjMagic)) == 0) {
718 COFFHeader = nullptr;
719 CurPtr += sizeof(coff_bigobj_file_header);
720 } else {
721 // It's not a bigobj.
722 COFFBigObjHeader = nullptr;
723 }
724 }
725 if (COFFHeader) {
726 // The prior checkSize call may have failed. This isn't a hard error
727 // because we were just trying to sniff out bigobj.
728 EC = std::error_code();
729 CurPtr += sizeof(coff_file_header);
730
731 if (COFFHeader->isImportLibrary())
732 return;
733 }
734
735 if (HasPEHeader) {
736 const pe32_header *Header;
737 if ((EC = getObject(Header, Data, base() + CurPtr)))
738 return;
739
740 const uint8_t *DataDirAddr;
741 uint64_t DataDirSize;
742 if (Header->Magic == COFF::PE32Header::PE32) {
743 PE32Header = Header;
744 DataDirAddr = base() + CurPtr + sizeof(pe32_header);
745 DataDirSize = sizeof(data_directory) * PE32Header->NumberOfRvaAndSize;
746 } else if (Header->Magic == COFF::PE32Header::PE32_PLUS) {
747 PE32PlusHeader = reinterpret_cast<const pe32plus_header *>(Header);
748 DataDirAddr = base() + CurPtr + sizeof(pe32plus_header);
749 DataDirSize = sizeof(data_directory) * PE32PlusHeader->NumberOfRvaAndSize;
750 } else {
751 // It's neither PE32 nor PE32+.
752 EC = object_error::parse_failed;
753 return;
754 }
755 if ((EC = getObject(DataDirectory, Data, DataDirAddr, DataDirSize)))
756 return;
757 }
758
759 if (COFFHeader)
760 CurPtr += COFFHeader->SizeOfOptionalHeader;
761
762 if ((EC = getObject(SectionTable, Data, base() + CurPtr,
763 (uint64_t)getNumberOfSections() * sizeof(coff_section))))
764 return;
765
766 // Initialize the pointer to the symbol table.
767 if (getPointerToSymbolTable() != 0) {
768 if ((EC = initSymbolTablePtr())) {
769 SymbolTable16 = nullptr;
770 SymbolTable32 = nullptr;
771 StringTable = nullptr;
772 StringTableSize = 0;
773 }
774 } else {
775 // We had better not have any symbols if we don't have a symbol table.
776 if (getNumberOfSymbols() != 0) {
777 EC = object_error::parse_failed;
778 return;
779 }
780 }
781
782 // Initialize the pointer to the beginning of the import table.
783 if ((EC = initImportTablePtr()))
784 return;
785 if ((EC = initDelayImportTablePtr()))
786 return;
787
788 // Initialize the pointer to the export table.
789 if ((EC = initExportTablePtr()))
790 return;
791
792 // Initialize the pointer to the base relocation table.
793 if ((EC = initBaseRelocPtr()))
794 return;
795
796 // Initialize the pointer to the export table.
797 if ((EC = initDebugDirectoryPtr()))
798 return;
799
800 if ((EC = initLoadConfigPtr()))
801 return;
802
803 EC = std::error_code();
804 }
805
symbol_begin() const806 basic_symbol_iterator COFFObjectFile::symbol_begin() const {
807 DataRefImpl Ret;
808 Ret.p = getSymbolTable();
809 return basic_symbol_iterator(SymbolRef(Ret, this));
810 }
811
symbol_end() const812 basic_symbol_iterator COFFObjectFile::symbol_end() const {
813 // The symbol table ends where the string table begins.
814 DataRefImpl Ret;
815 Ret.p = reinterpret_cast<uintptr_t>(StringTable);
816 return basic_symbol_iterator(SymbolRef(Ret, this));
817 }
818
import_directory_begin() const819 import_directory_iterator COFFObjectFile::import_directory_begin() const {
820 if (!ImportDirectory)
821 return import_directory_end();
822 if (ImportDirectory->isNull())
823 return import_directory_end();
824 return import_directory_iterator(
825 ImportDirectoryEntryRef(ImportDirectory, 0, this));
826 }
827
import_directory_end() const828 import_directory_iterator COFFObjectFile::import_directory_end() const {
829 return import_directory_iterator(
830 ImportDirectoryEntryRef(nullptr, -1, this));
831 }
832
833 delay_import_directory_iterator
delay_import_directory_begin() const834 COFFObjectFile::delay_import_directory_begin() const {
835 return delay_import_directory_iterator(
836 DelayImportDirectoryEntryRef(DelayImportDirectory, 0, this));
837 }
838
839 delay_import_directory_iterator
delay_import_directory_end() const840 COFFObjectFile::delay_import_directory_end() const {
841 return delay_import_directory_iterator(
842 DelayImportDirectoryEntryRef(
843 DelayImportDirectory, NumberOfDelayImportDirectory, this));
844 }
845
export_directory_begin() const846 export_directory_iterator COFFObjectFile::export_directory_begin() const {
847 return export_directory_iterator(
848 ExportDirectoryEntryRef(ExportDirectory, 0, this));
849 }
850
export_directory_end() const851 export_directory_iterator COFFObjectFile::export_directory_end() const {
852 if (!ExportDirectory)
853 return export_directory_iterator(ExportDirectoryEntryRef(nullptr, 0, this));
854 ExportDirectoryEntryRef Ref(ExportDirectory,
855 ExportDirectory->AddressTableEntries, this);
856 return export_directory_iterator(Ref);
857 }
858
section_begin() const859 section_iterator COFFObjectFile::section_begin() const {
860 DataRefImpl Ret;
861 Ret.p = reinterpret_cast<uintptr_t>(SectionTable);
862 return section_iterator(SectionRef(Ret, this));
863 }
864
section_end() const865 section_iterator COFFObjectFile::section_end() const {
866 DataRefImpl Ret;
867 int NumSections =
868 COFFHeader && COFFHeader->isImportLibrary() ? 0 : getNumberOfSections();
869 Ret.p = reinterpret_cast<uintptr_t>(SectionTable + NumSections);
870 return section_iterator(SectionRef(Ret, this));
871 }
872
base_reloc_begin() const873 base_reloc_iterator COFFObjectFile::base_reloc_begin() const {
874 return base_reloc_iterator(BaseRelocRef(BaseRelocHeader, this));
875 }
876
base_reloc_end() const877 base_reloc_iterator COFFObjectFile::base_reloc_end() const {
878 return base_reloc_iterator(BaseRelocRef(BaseRelocEnd, this));
879 }
880
getBytesInAddress() const881 uint8_t COFFObjectFile::getBytesInAddress() const {
882 return getArch() == Triple::x86_64 || getArch() == Triple::aarch64 ? 8 : 4;
883 }
884
getFileFormatName() const885 StringRef COFFObjectFile::getFileFormatName() const {
886 switch(getMachine()) {
887 case COFF::IMAGE_FILE_MACHINE_I386:
888 return "COFF-i386";
889 case COFF::IMAGE_FILE_MACHINE_AMD64:
890 return "COFF-x86-64";
891 case COFF::IMAGE_FILE_MACHINE_ARMNT:
892 return "COFF-ARM";
893 case COFF::IMAGE_FILE_MACHINE_ARM64:
894 return "COFF-ARM64";
895 default:
896 return "COFF-<unknown arch>";
897 }
898 }
899
getArch() const900 Triple::ArchType COFFObjectFile::getArch() const {
901 switch (getMachine()) {
902 case COFF::IMAGE_FILE_MACHINE_I386:
903 return Triple::x86;
904 case COFF::IMAGE_FILE_MACHINE_AMD64:
905 return Triple::x86_64;
906 case COFF::IMAGE_FILE_MACHINE_ARMNT:
907 return Triple::thumb;
908 case COFF::IMAGE_FILE_MACHINE_ARM64:
909 return Triple::aarch64;
910 default:
911 return Triple::UnknownArch;
912 }
913 }
914
getStartAddress() const915 Expected<uint64_t> COFFObjectFile::getStartAddress() const {
916 if (PE32Header)
917 return PE32Header->AddressOfEntryPoint;
918 return 0;
919 }
920
921 iterator_range<import_directory_iterator>
import_directories() const922 COFFObjectFile::import_directories() const {
923 return make_range(import_directory_begin(), import_directory_end());
924 }
925
926 iterator_range<delay_import_directory_iterator>
delay_import_directories() const927 COFFObjectFile::delay_import_directories() const {
928 return make_range(delay_import_directory_begin(),
929 delay_import_directory_end());
930 }
931
932 iterator_range<export_directory_iterator>
export_directories() const933 COFFObjectFile::export_directories() const {
934 return make_range(export_directory_begin(), export_directory_end());
935 }
936
base_relocs() const937 iterator_range<base_reloc_iterator> COFFObjectFile::base_relocs() const {
938 return make_range(base_reloc_begin(), base_reloc_end());
939 }
940
941 std::error_code
getCOFFHeader(const coff_file_header * & Res) const942 COFFObjectFile::getCOFFHeader(const coff_file_header *&Res) const {
943 Res = COFFHeader;
944 return std::error_code();
945 }
946
947 std::error_code
getCOFFBigObjHeader(const coff_bigobj_file_header * & Res) const948 COFFObjectFile::getCOFFBigObjHeader(const coff_bigobj_file_header *&Res) const {
949 Res = COFFBigObjHeader;
950 return std::error_code();
951 }
952
getPE32Header(const pe32_header * & Res) const953 std::error_code COFFObjectFile::getPE32Header(const pe32_header *&Res) const {
954 Res = PE32Header;
955 return std::error_code();
956 }
957
958 std::error_code
getPE32PlusHeader(const pe32plus_header * & Res) const959 COFFObjectFile::getPE32PlusHeader(const pe32plus_header *&Res) const {
960 Res = PE32PlusHeader;
961 return std::error_code();
962 }
963
964 std::error_code
getDataDirectory(uint32_t Index,const data_directory * & Res) const965 COFFObjectFile::getDataDirectory(uint32_t Index,
966 const data_directory *&Res) const {
967 // Error if there's no data directory or the index is out of range.
968 if (!DataDirectory) {
969 Res = nullptr;
970 return object_error::parse_failed;
971 }
972 assert(PE32Header || PE32PlusHeader);
973 uint32_t NumEnt = PE32Header ? PE32Header->NumberOfRvaAndSize
974 : PE32PlusHeader->NumberOfRvaAndSize;
975 if (Index >= NumEnt) {
976 Res = nullptr;
977 return object_error::parse_failed;
978 }
979 Res = &DataDirectory[Index];
980 return std::error_code();
981 }
982
getSection(int32_t Index,const coff_section * & Result) const983 std::error_code COFFObjectFile::getSection(int32_t Index,
984 const coff_section *&Result) const {
985 Result = nullptr;
986 if (COFF::isReservedSectionNumber(Index))
987 return std::error_code();
988 if (static_cast<uint32_t>(Index) <= getNumberOfSections()) {
989 // We already verified the section table data, so no need to check again.
990 Result = SectionTable + (Index - 1);
991 return std::error_code();
992 }
993 return object_error::parse_failed;
994 }
995
getSection(StringRef SectionName,const coff_section * & Result) const996 std::error_code COFFObjectFile::getSection(StringRef SectionName,
997 const coff_section *&Result) const {
998 Result = nullptr;
999 StringRef SecName;
1000 for (const SectionRef &Section : sections()) {
1001 if (std::error_code E = Section.getName(SecName))
1002 return E;
1003 if (SecName == SectionName) {
1004 Result = getCOFFSection(Section);
1005 return std::error_code();
1006 }
1007 }
1008 return object_error::parse_failed;
1009 }
1010
getString(uint32_t Offset,StringRef & Result) const1011 std::error_code COFFObjectFile::getString(uint32_t Offset,
1012 StringRef &Result) const {
1013 if (StringTableSize <= 4)
1014 // Tried to get a string from an empty string table.
1015 return object_error::parse_failed;
1016 if (Offset >= StringTableSize)
1017 return object_error::unexpected_eof;
1018 Result = StringRef(StringTable + Offset);
1019 return std::error_code();
1020 }
1021
getSymbolName(COFFSymbolRef Symbol,StringRef & Res) const1022 std::error_code COFFObjectFile::getSymbolName(COFFSymbolRef Symbol,
1023 StringRef &Res) const {
1024 return getSymbolName(Symbol.getGeneric(), Res);
1025 }
1026
getSymbolName(const coff_symbol_generic * Symbol,StringRef & Res) const1027 std::error_code COFFObjectFile::getSymbolName(const coff_symbol_generic *Symbol,
1028 StringRef &Res) const {
1029 // Check for string table entry. First 4 bytes are 0.
1030 if (Symbol->Name.Offset.Zeroes == 0) {
1031 if (std::error_code EC = getString(Symbol->Name.Offset.Offset, Res))
1032 return EC;
1033 return std::error_code();
1034 }
1035
1036 if (Symbol->Name.ShortName[COFF::NameSize - 1] == 0)
1037 // Null terminated, let ::strlen figure out the length.
1038 Res = StringRef(Symbol->Name.ShortName);
1039 else
1040 // Not null terminated, use all 8 bytes.
1041 Res = StringRef(Symbol->Name.ShortName, COFF::NameSize);
1042 return std::error_code();
1043 }
1044
1045 ArrayRef<uint8_t>
getSymbolAuxData(COFFSymbolRef Symbol) const1046 COFFObjectFile::getSymbolAuxData(COFFSymbolRef Symbol) const {
1047 const uint8_t *Aux = nullptr;
1048
1049 size_t SymbolSize = getSymbolTableEntrySize();
1050 if (Symbol.getNumberOfAuxSymbols() > 0) {
1051 // AUX data comes immediately after the symbol in COFF
1052 Aux = reinterpret_cast<const uint8_t *>(Symbol.getRawPtr()) + SymbolSize;
1053 #ifndef NDEBUG
1054 // Verify that the Aux symbol points to a valid entry in the symbol table.
1055 uintptr_t Offset = uintptr_t(Aux) - uintptr_t(base());
1056 if (Offset < getPointerToSymbolTable() ||
1057 Offset >=
1058 getPointerToSymbolTable() + (getNumberOfSymbols() * SymbolSize))
1059 report_fatal_error("Aux Symbol data was outside of symbol table.");
1060
1061 assert((Offset - getPointerToSymbolTable()) % SymbolSize == 0 &&
1062 "Aux Symbol data did not point to the beginning of a symbol");
1063 #endif
1064 }
1065 return makeArrayRef(Aux, Symbol.getNumberOfAuxSymbols() * SymbolSize);
1066 }
1067
getSymbolIndex(COFFSymbolRef Symbol) const1068 uint32_t COFFObjectFile::getSymbolIndex(COFFSymbolRef Symbol) const {
1069 uintptr_t Offset =
1070 reinterpret_cast<uintptr_t>(Symbol.getRawPtr()) - getSymbolTable();
1071 assert(Offset % getSymbolTableEntrySize() == 0 &&
1072 "Symbol did not point to the beginning of a symbol");
1073 size_t Index = Offset / getSymbolTableEntrySize();
1074 assert(Index < getNumberOfSymbols());
1075 return Index;
1076 }
1077
getSectionName(const coff_section * Sec,StringRef & Res) const1078 std::error_code COFFObjectFile::getSectionName(const coff_section *Sec,
1079 StringRef &Res) const {
1080 StringRef Name;
1081 if (Sec->Name[COFF::NameSize - 1] == 0)
1082 // Null terminated, let ::strlen figure out the length.
1083 Name = Sec->Name;
1084 else
1085 // Not null terminated, use all 8 bytes.
1086 Name = StringRef(Sec->Name, COFF::NameSize);
1087
1088 // Check for string table entry. First byte is '/'.
1089 if (Name.startswith("/")) {
1090 uint32_t Offset;
1091 if (Name.startswith("//")) {
1092 if (decodeBase64StringEntry(Name.substr(2), Offset))
1093 return object_error::parse_failed;
1094 } else {
1095 if (Name.substr(1).getAsInteger(10, Offset))
1096 return object_error::parse_failed;
1097 }
1098 if (std::error_code EC = getString(Offset, Name))
1099 return EC;
1100 }
1101
1102 Res = Name;
1103 return std::error_code();
1104 }
1105
getSectionSize(const coff_section * Sec) const1106 uint64_t COFFObjectFile::getSectionSize(const coff_section *Sec) const {
1107 // SizeOfRawData and VirtualSize change what they represent depending on
1108 // whether or not we have an executable image.
1109 //
1110 // For object files, SizeOfRawData contains the size of section's data;
1111 // VirtualSize should be zero but isn't due to buggy COFF writers.
1112 //
1113 // For executables, SizeOfRawData *must* be a multiple of FileAlignment; the
1114 // actual section size is in VirtualSize. It is possible for VirtualSize to
1115 // be greater than SizeOfRawData; the contents past that point should be
1116 // considered to be zero.
1117 if (getDOSHeader())
1118 return std::min(Sec->VirtualSize, Sec->SizeOfRawData);
1119 return Sec->SizeOfRawData;
1120 }
1121
1122 std::error_code
getSectionContents(const coff_section * Sec,ArrayRef<uint8_t> & Res) const1123 COFFObjectFile::getSectionContents(const coff_section *Sec,
1124 ArrayRef<uint8_t> &Res) const {
1125 // In COFF, a virtual section won't have any in-file
1126 // content, so the file pointer to the content will be zero.
1127 if (Sec->PointerToRawData == 0)
1128 return std::error_code();
1129 // The only thing that we need to verify is that the contents is contained
1130 // within the file bounds. We don't need to make sure it doesn't cover other
1131 // data, as there's nothing that says that is not allowed.
1132 uintptr_t ConStart = uintptr_t(base()) + Sec->PointerToRawData;
1133 uint32_t SectionSize = getSectionSize(Sec);
1134 if (checkOffset(Data, ConStart, SectionSize))
1135 return object_error::parse_failed;
1136 Res = makeArrayRef(reinterpret_cast<const uint8_t *>(ConStart), SectionSize);
1137 return std::error_code();
1138 }
1139
toRel(DataRefImpl Rel) const1140 const coff_relocation *COFFObjectFile::toRel(DataRefImpl Rel) const {
1141 return reinterpret_cast<const coff_relocation*>(Rel.p);
1142 }
1143
moveRelocationNext(DataRefImpl & Rel) const1144 void COFFObjectFile::moveRelocationNext(DataRefImpl &Rel) const {
1145 Rel.p = reinterpret_cast<uintptr_t>(
1146 reinterpret_cast<const coff_relocation*>(Rel.p) + 1);
1147 }
1148
getRelocationOffset(DataRefImpl Rel) const1149 uint64_t COFFObjectFile::getRelocationOffset(DataRefImpl Rel) const {
1150 const coff_relocation *R = toRel(Rel);
1151 return R->VirtualAddress;
1152 }
1153
getRelocationSymbol(DataRefImpl Rel) const1154 symbol_iterator COFFObjectFile::getRelocationSymbol(DataRefImpl Rel) const {
1155 const coff_relocation *R = toRel(Rel);
1156 DataRefImpl Ref;
1157 if (R->SymbolTableIndex >= getNumberOfSymbols())
1158 return symbol_end();
1159 if (SymbolTable16)
1160 Ref.p = reinterpret_cast<uintptr_t>(SymbolTable16 + R->SymbolTableIndex);
1161 else if (SymbolTable32)
1162 Ref.p = reinterpret_cast<uintptr_t>(SymbolTable32 + R->SymbolTableIndex);
1163 else
1164 llvm_unreachable("no symbol table pointer!");
1165 return symbol_iterator(SymbolRef(Ref, this));
1166 }
1167
getRelocationType(DataRefImpl Rel) const1168 uint64_t COFFObjectFile::getRelocationType(DataRefImpl Rel) const {
1169 const coff_relocation* R = toRel(Rel);
1170 return R->Type;
1171 }
1172
1173 const coff_section *
getCOFFSection(const SectionRef & Section) const1174 COFFObjectFile::getCOFFSection(const SectionRef &Section) const {
1175 return toSec(Section.getRawDataRefImpl());
1176 }
1177
getCOFFSymbol(const DataRefImpl & Ref) const1178 COFFSymbolRef COFFObjectFile::getCOFFSymbol(const DataRefImpl &Ref) const {
1179 if (SymbolTable16)
1180 return toSymb<coff_symbol16>(Ref);
1181 if (SymbolTable32)
1182 return toSymb<coff_symbol32>(Ref);
1183 llvm_unreachable("no symbol table pointer!");
1184 }
1185
getCOFFSymbol(const SymbolRef & Symbol) const1186 COFFSymbolRef COFFObjectFile::getCOFFSymbol(const SymbolRef &Symbol) const {
1187 return getCOFFSymbol(Symbol.getRawDataRefImpl());
1188 }
1189
1190 const coff_relocation *
getCOFFRelocation(const RelocationRef & Reloc) const1191 COFFObjectFile::getCOFFRelocation(const RelocationRef &Reloc) const {
1192 return toRel(Reloc.getRawDataRefImpl());
1193 }
1194
1195 ArrayRef<coff_relocation>
getRelocations(const coff_section * Sec) const1196 COFFObjectFile::getRelocations(const coff_section *Sec) const {
1197 return {getFirstReloc(Sec, Data, base()),
1198 getNumberOfRelocations(Sec, Data, base())};
1199 }
1200
1201 #define LLVM_COFF_SWITCH_RELOC_TYPE_NAME(reloc_type) \
1202 case COFF::reloc_type: \
1203 return #reloc_type;
1204
getRelocationTypeName(uint16_t Type) const1205 StringRef COFFObjectFile::getRelocationTypeName(uint16_t Type) const {
1206 switch (getMachine()) {
1207 case COFF::IMAGE_FILE_MACHINE_AMD64:
1208 switch (Type) {
1209 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_ABSOLUTE);
1210 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_ADDR64);
1211 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_ADDR32);
1212 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_ADDR32NB);
1213 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32);
1214 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32_1);
1215 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32_2);
1216 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32_3);
1217 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32_4);
1218 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32_5);
1219 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_SECTION);
1220 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_SECREL);
1221 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_SECREL7);
1222 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_TOKEN);
1223 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_SREL32);
1224 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_PAIR);
1225 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_SSPAN32);
1226 default:
1227 return "Unknown";
1228 }
1229 break;
1230 case COFF::IMAGE_FILE_MACHINE_ARMNT:
1231 switch (Type) {
1232 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_ABSOLUTE);
1233 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_ADDR32);
1234 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_ADDR32NB);
1235 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BRANCH24);
1236 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BRANCH11);
1237 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_TOKEN);
1238 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BLX24);
1239 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BLX11);
1240 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_SECTION);
1241 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_SECREL);
1242 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_MOV32A);
1243 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_MOV32T);
1244 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BRANCH20T);
1245 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BRANCH24T);
1246 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BLX23T);
1247 default:
1248 return "Unknown";
1249 }
1250 break;
1251 case COFF::IMAGE_FILE_MACHINE_ARM64:
1252 switch (Type) {
1253 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_ABSOLUTE);
1254 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_ADDR32);
1255 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_ADDR32NB);
1256 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_BRANCH26);
1257 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_PAGEBASE_REL21);
1258 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_REL21);
1259 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_PAGEOFFSET_12A);
1260 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_PAGEOFFSET_12L);
1261 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_SECREL);
1262 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_SECREL_LOW12A);
1263 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_SECREL_HIGH12A);
1264 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_SECREL_LOW12L);
1265 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_TOKEN);
1266 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_SECTION);
1267 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_ADDR64);
1268 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_BRANCH19);
1269 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_BRANCH14);
1270 default:
1271 return "Unknown";
1272 }
1273 break;
1274 case COFF::IMAGE_FILE_MACHINE_I386:
1275 switch (Type) {
1276 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_ABSOLUTE);
1277 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_DIR16);
1278 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_REL16);
1279 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_DIR32);
1280 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_DIR32NB);
1281 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_SEG12);
1282 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_SECTION);
1283 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_SECREL);
1284 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_TOKEN);
1285 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_SECREL7);
1286 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_REL32);
1287 default:
1288 return "Unknown";
1289 }
1290 break;
1291 default:
1292 return "Unknown";
1293 }
1294 }
1295
1296 #undef LLVM_COFF_SWITCH_RELOC_TYPE_NAME
1297
getRelocationTypeName(DataRefImpl Rel,SmallVectorImpl<char> & Result) const1298 void COFFObjectFile::getRelocationTypeName(
1299 DataRefImpl Rel, SmallVectorImpl<char> &Result) const {
1300 const coff_relocation *Reloc = toRel(Rel);
1301 StringRef Res = getRelocationTypeName(Reloc->Type);
1302 Result.append(Res.begin(), Res.end());
1303 }
1304
isRelocatableObject() const1305 bool COFFObjectFile::isRelocatableObject() const {
1306 return !DataDirectory;
1307 }
1308
mapDebugSectionName(StringRef Name) const1309 StringRef COFFObjectFile::mapDebugSectionName(StringRef Name) const {
1310 return StringSwitch<StringRef>(Name)
1311 .Case("eh_fram", "eh_frame")
1312 .Default(Name);
1313 }
1314
1315 bool ImportDirectoryEntryRef::
operator ==(const ImportDirectoryEntryRef & Other) const1316 operator==(const ImportDirectoryEntryRef &Other) const {
1317 return ImportTable == Other.ImportTable && Index == Other.Index;
1318 }
1319
moveNext()1320 void ImportDirectoryEntryRef::moveNext() {
1321 ++Index;
1322 if (ImportTable[Index].isNull()) {
1323 Index = -1;
1324 ImportTable = nullptr;
1325 }
1326 }
1327
getImportTableEntry(const coff_import_directory_table_entry * & Result) const1328 std::error_code ImportDirectoryEntryRef::getImportTableEntry(
1329 const coff_import_directory_table_entry *&Result) const {
1330 return getObject(Result, OwningObject->Data, ImportTable + Index);
1331 }
1332
1333 static imported_symbol_iterator
makeImportedSymbolIterator(const COFFObjectFile * Object,uintptr_t Ptr,int Index)1334 makeImportedSymbolIterator(const COFFObjectFile *Object,
1335 uintptr_t Ptr, int Index) {
1336 if (Object->getBytesInAddress() == 4) {
1337 auto *P = reinterpret_cast<const import_lookup_table_entry32 *>(Ptr);
1338 return imported_symbol_iterator(ImportedSymbolRef(P, Index, Object));
1339 }
1340 auto *P = reinterpret_cast<const import_lookup_table_entry64 *>(Ptr);
1341 return imported_symbol_iterator(ImportedSymbolRef(P, Index, Object));
1342 }
1343
1344 static imported_symbol_iterator
importedSymbolBegin(uint32_t RVA,const COFFObjectFile * Object)1345 importedSymbolBegin(uint32_t RVA, const COFFObjectFile *Object) {
1346 uintptr_t IntPtr = 0;
1347 Object->getRvaPtr(RVA, IntPtr);
1348 return makeImportedSymbolIterator(Object, IntPtr, 0);
1349 }
1350
1351 static imported_symbol_iterator
importedSymbolEnd(uint32_t RVA,const COFFObjectFile * Object)1352 importedSymbolEnd(uint32_t RVA, const COFFObjectFile *Object) {
1353 uintptr_t IntPtr = 0;
1354 Object->getRvaPtr(RVA, IntPtr);
1355 // Forward the pointer to the last entry which is null.
1356 int Index = 0;
1357 if (Object->getBytesInAddress() == 4) {
1358 auto *Entry = reinterpret_cast<ulittle32_t *>(IntPtr);
1359 while (*Entry++)
1360 ++Index;
1361 } else {
1362 auto *Entry = reinterpret_cast<ulittle64_t *>(IntPtr);
1363 while (*Entry++)
1364 ++Index;
1365 }
1366 return makeImportedSymbolIterator(Object, IntPtr, Index);
1367 }
1368
1369 imported_symbol_iterator
imported_symbol_begin() const1370 ImportDirectoryEntryRef::imported_symbol_begin() const {
1371 return importedSymbolBegin(ImportTable[Index].ImportAddressTableRVA,
1372 OwningObject);
1373 }
1374
1375 imported_symbol_iterator
imported_symbol_end() const1376 ImportDirectoryEntryRef::imported_symbol_end() const {
1377 return importedSymbolEnd(ImportTable[Index].ImportAddressTableRVA,
1378 OwningObject);
1379 }
1380
1381 iterator_range<imported_symbol_iterator>
imported_symbols() const1382 ImportDirectoryEntryRef::imported_symbols() const {
1383 return make_range(imported_symbol_begin(), imported_symbol_end());
1384 }
1385
lookup_table_begin() const1386 imported_symbol_iterator ImportDirectoryEntryRef::lookup_table_begin() const {
1387 return importedSymbolBegin(ImportTable[Index].ImportLookupTableRVA,
1388 OwningObject);
1389 }
1390
lookup_table_end() const1391 imported_symbol_iterator ImportDirectoryEntryRef::lookup_table_end() const {
1392 return importedSymbolEnd(ImportTable[Index].ImportLookupTableRVA,
1393 OwningObject);
1394 }
1395
1396 iterator_range<imported_symbol_iterator>
lookup_table_symbols() const1397 ImportDirectoryEntryRef::lookup_table_symbols() const {
1398 return make_range(lookup_table_begin(), lookup_table_end());
1399 }
1400
getName(StringRef & Result) const1401 std::error_code ImportDirectoryEntryRef::getName(StringRef &Result) const {
1402 uintptr_t IntPtr = 0;
1403 if (std::error_code EC =
1404 OwningObject->getRvaPtr(ImportTable[Index].NameRVA, IntPtr))
1405 return EC;
1406 Result = StringRef(reinterpret_cast<const char *>(IntPtr));
1407 return std::error_code();
1408 }
1409
1410 std::error_code
getImportLookupTableRVA(uint32_t & Result) const1411 ImportDirectoryEntryRef::getImportLookupTableRVA(uint32_t &Result) const {
1412 Result = ImportTable[Index].ImportLookupTableRVA;
1413 return std::error_code();
1414 }
1415
1416 std::error_code
getImportAddressTableRVA(uint32_t & Result) const1417 ImportDirectoryEntryRef::getImportAddressTableRVA(uint32_t &Result) const {
1418 Result = ImportTable[Index].ImportAddressTableRVA;
1419 return std::error_code();
1420 }
1421
1422 bool DelayImportDirectoryEntryRef::
operator ==(const DelayImportDirectoryEntryRef & Other) const1423 operator==(const DelayImportDirectoryEntryRef &Other) const {
1424 return Table == Other.Table && Index == Other.Index;
1425 }
1426
moveNext()1427 void DelayImportDirectoryEntryRef::moveNext() {
1428 ++Index;
1429 }
1430
1431 imported_symbol_iterator
imported_symbol_begin() const1432 DelayImportDirectoryEntryRef::imported_symbol_begin() const {
1433 return importedSymbolBegin(Table[Index].DelayImportNameTable,
1434 OwningObject);
1435 }
1436
1437 imported_symbol_iterator
imported_symbol_end() const1438 DelayImportDirectoryEntryRef::imported_symbol_end() const {
1439 return importedSymbolEnd(Table[Index].DelayImportNameTable,
1440 OwningObject);
1441 }
1442
1443 iterator_range<imported_symbol_iterator>
imported_symbols() const1444 DelayImportDirectoryEntryRef::imported_symbols() const {
1445 return make_range(imported_symbol_begin(), imported_symbol_end());
1446 }
1447
getName(StringRef & Result) const1448 std::error_code DelayImportDirectoryEntryRef::getName(StringRef &Result) const {
1449 uintptr_t IntPtr = 0;
1450 if (std::error_code EC = OwningObject->getRvaPtr(Table[Index].Name, IntPtr))
1451 return EC;
1452 Result = StringRef(reinterpret_cast<const char *>(IntPtr));
1453 return std::error_code();
1454 }
1455
1456 std::error_code DelayImportDirectoryEntryRef::
getDelayImportTable(const delay_import_directory_table_entry * & Result) const1457 getDelayImportTable(const delay_import_directory_table_entry *&Result) const {
1458 Result = Table;
1459 return std::error_code();
1460 }
1461
1462 std::error_code DelayImportDirectoryEntryRef::
getImportAddress(int AddrIndex,uint64_t & Result) const1463 getImportAddress(int AddrIndex, uint64_t &Result) const {
1464 uint32_t RVA = Table[Index].DelayImportAddressTable +
1465 AddrIndex * (OwningObject->is64() ? 8 : 4);
1466 uintptr_t IntPtr = 0;
1467 if (std::error_code EC = OwningObject->getRvaPtr(RVA, IntPtr))
1468 return EC;
1469 if (OwningObject->is64())
1470 Result = *reinterpret_cast<const ulittle64_t *>(IntPtr);
1471 else
1472 Result = *reinterpret_cast<const ulittle32_t *>(IntPtr);
1473 return std::error_code();
1474 }
1475
1476 bool ExportDirectoryEntryRef::
operator ==(const ExportDirectoryEntryRef & Other) const1477 operator==(const ExportDirectoryEntryRef &Other) const {
1478 return ExportTable == Other.ExportTable && Index == Other.Index;
1479 }
1480
moveNext()1481 void ExportDirectoryEntryRef::moveNext() {
1482 ++Index;
1483 }
1484
1485 // Returns the name of the current export symbol. If the symbol is exported only
1486 // by ordinal, the empty string is set as a result.
getDllName(StringRef & Result) const1487 std::error_code ExportDirectoryEntryRef::getDllName(StringRef &Result) const {
1488 uintptr_t IntPtr = 0;
1489 if (std::error_code EC =
1490 OwningObject->getRvaPtr(ExportTable->NameRVA, IntPtr))
1491 return EC;
1492 Result = StringRef(reinterpret_cast<const char *>(IntPtr));
1493 return std::error_code();
1494 }
1495
1496 // Returns the starting ordinal number.
1497 std::error_code
getOrdinalBase(uint32_t & Result) const1498 ExportDirectoryEntryRef::getOrdinalBase(uint32_t &Result) const {
1499 Result = ExportTable->OrdinalBase;
1500 return std::error_code();
1501 }
1502
1503 // Returns the export ordinal of the current export symbol.
getOrdinal(uint32_t & Result) const1504 std::error_code ExportDirectoryEntryRef::getOrdinal(uint32_t &Result) const {
1505 Result = ExportTable->OrdinalBase + Index;
1506 return std::error_code();
1507 }
1508
1509 // Returns the address of the current export symbol.
getExportRVA(uint32_t & Result) const1510 std::error_code ExportDirectoryEntryRef::getExportRVA(uint32_t &Result) const {
1511 uintptr_t IntPtr = 0;
1512 if (std::error_code EC =
1513 OwningObject->getRvaPtr(ExportTable->ExportAddressTableRVA, IntPtr))
1514 return EC;
1515 const export_address_table_entry *entry =
1516 reinterpret_cast<const export_address_table_entry *>(IntPtr);
1517 Result = entry[Index].ExportRVA;
1518 return std::error_code();
1519 }
1520
1521 // Returns the name of the current export symbol. If the symbol is exported only
1522 // by ordinal, the empty string is set as a result.
1523 std::error_code
getSymbolName(StringRef & Result) const1524 ExportDirectoryEntryRef::getSymbolName(StringRef &Result) const {
1525 uintptr_t IntPtr = 0;
1526 if (std::error_code EC =
1527 OwningObject->getRvaPtr(ExportTable->OrdinalTableRVA, IntPtr))
1528 return EC;
1529 const ulittle16_t *Start = reinterpret_cast<const ulittle16_t *>(IntPtr);
1530
1531 uint32_t NumEntries = ExportTable->NumberOfNamePointers;
1532 int Offset = 0;
1533 for (const ulittle16_t *I = Start, *E = Start + NumEntries;
1534 I < E; ++I, ++Offset) {
1535 if (*I != Index)
1536 continue;
1537 if (std::error_code EC =
1538 OwningObject->getRvaPtr(ExportTable->NamePointerRVA, IntPtr))
1539 return EC;
1540 const ulittle32_t *NamePtr = reinterpret_cast<const ulittle32_t *>(IntPtr);
1541 if (std::error_code EC = OwningObject->getRvaPtr(NamePtr[Offset], IntPtr))
1542 return EC;
1543 Result = StringRef(reinterpret_cast<const char *>(IntPtr));
1544 return std::error_code();
1545 }
1546 Result = "";
1547 return std::error_code();
1548 }
1549
isForwarder(bool & Result) const1550 std::error_code ExportDirectoryEntryRef::isForwarder(bool &Result) const {
1551 const data_directory *DataEntry;
1552 if (auto EC = OwningObject->getDataDirectory(COFF::EXPORT_TABLE, DataEntry))
1553 return EC;
1554 uint32_t RVA;
1555 if (auto EC = getExportRVA(RVA))
1556 return EC;
1557 uint32_t Begin = DataEntry->RelativeVirtualAddress;
1558 uint32_t End = DataEntry->RelativeVirtualAddress + DataEntry->Size;
1559 Result = (Begin <= RVA && RVA < End);
1560 return std::error_code();
1561 }
1562
getForwardTo(StringRef & Result) const1563 std::error_code ExportDirectoryEntryRef::getForwardTo(StringRef &Result) const {
1564 uint32_t RVA;
1565 if (auto EC = getExportRVA(RVA))
1566 return EC;
1567 uintptr_t IntPtr = 0;
1568 if (auto EC = OwningObject->getRvaPtr(RVA, IntPtr))
1569 return EC;
1570 Result = StringRef(reinterpret_cast<const char *>(IntPtr));
1571 return std::error_code();
1572 }
1573
1574 bool ImportedSymbolRef::
operator ==(const ImportedSymbolRef & Other) const1575 operator==(const ImportedSymbolRef &Other) const {
1576 return Entry32 == Other.Entry32 && Entry64 == Other.Entry64
1577 && Index == Other.Index;
1578 }
1579
moveNext()1580 void ImportedSymbolRef::moveNext() {
1581 ++Index;
1582 }
1583
1584 std::error_code
getSymbolName(StringRef & Result) const1585 ImportedSymbolRef::getSymbolName(StringRef &Result) const {
1586 uint32_t RVA;
1587 if (Entry32) {
1588 // If a symbol is imported only by ordinal, it has no name.
1589 if (Entry32[Index].isOrdinal())
1590 return std::error_code();
1591 RVA = Entry32[Index].getHintNameRVA();
1592 } else {
1593 if (Entry64[Index].isOrdinal())
1594 return std::error_code();
1595 RVA = Entry64[Index].getHintNameRVA();
1596 }
1597 uintptr_t IntPtr = 0;
1598 if (std::error_code EC = OwningObject->getRvaPtr(RVA, IntPtr))
1599 return EC;
1600 // +2 because the first two bytes is hint.
1601 Result = StringRef(reinterpret_cast<const char *>(IntPtr + 2));
1602 return std::error_code();
1603 }
1604
isOrdinal(bool & Result) const1605 std::error_code ImportedSymbolRef::isOrdinal(bool &Result) const {
1606 if (Entry32)
1607 Result = Entry32[Index].isOrdinal();
1608 else
1609 Result = Entry64[Index].isOrdinal();
1610 return std::error_code();
1611 }
1612
getHintNameRVA(uint32_t & Result) const1613 std::error_code ImportedSymbolRef::getHintNameRVA(uint32_t &Result) const {
1614 if (Entry32)
1615 Result = Entry32[Index].getHintNameRVA();
1616 else
1617 Result = Entry64[Index].getHintNameRVA();
1618 return std::error_code();
1619 }
1620
getOrdinal(uint16_t & Result) const1621 std::error_code ImportedSymbolRef::getOrdinal(uint16_t &Result) const {
1622 uint32_t RVA;
1623 if (Entry32) {
1624 if (Entry32[Index].isOrdinal()) {
1625 Result = Entry32[Index].getOrdinal();
1626 return std::error_code();
1627 }
1628 RVA = Entry32[Index].getHintNameRVA();
1629 } else {
1630 if (Entry64[Index].isOrdinal()) {
1631 Result = Entry64[Index].getOrdinal();
1632 return std::error_code();
1633 }
1634 RVA = Entry64[Index].getHintNameRVA();
1635 }
1636 uintptr_t IntPtr = 0;
1637 if (std::error_code EC = OwningObject->getRvaPtr(RVA, IntPtr))
1638 return EC;
1639 Result = *reinterpret_cast<const ulittle16_t *>(IntPtr);
1640 return std::error_code();
1641 }
1642
1643 Expected<std::unique_ptr<COFFObjectFile>>
createCOFFObjectFile(MemoryBufferRef Object)1644 ObjectFile::createCOFFObjectFile(MemoryBufferRef Object) {
1645 std::error_code EC;
1646 std::unique_ptr<COFFObjectFile> Ret(new COFFObjectFile(Object, EC));
1647 if (EC)
1648 return errorCodeToError(EC);
1649 return std::move(Ret);
1650 }
1651
operator ==(const BaseRelocRef & Other) const1652 bool BaseRelocRef::operator==(const BaseRelocRef &Other) const {
1653 return Header == Other.Header && Index == Other.Index;
1654 }
1655
moveNext()1656 void BaseRelocRef::moveNext() {
1657 // Header->BlockSize is the size of the current block, including the
1658 // size of the header itself.
1659 uint32_t Size = sizeof(*Header) +
1660 sizeof(coff_base_reloc_block_entry) * (Index + 1);
1661 if (Size == Header->BlockSize) {
1662 // .reloc contains a list of base relocation blocks. Each block
1663 // consists of the header followed by entries. The header contains
1664 // how many entories will follow. When we reach the end of the
1665 // current block, proceed to the next block.
1666 Header = reinterpret_cast<const coff_base_reloc_block_header *>(
1667 reinterpret_cast<const uint8_t *>(Header) + Size);
1668 Index = 0;
1669 } else {
1670 ++Index;
1671 }
1672 }
1673
getType(uint8_t & Type) const1674 std::error_code BaseRelocRef::getType(uint8_t &Type) const {
1675 auto *Entry = reinterpret_cast<const coff_base_reloc_block_entry *>(Header + 1);
1676 Type = Entry[Index].getType();
1677 return std::error_code();
1678 }
1679
getRVA(uint32_t & Result) const1680 std::error_code BaseRelocRef::getRVA(uint32_t &Result) const {
1681 auto *Entry = reinterpret_cast<const coff_base_reloc_block_entry *>(Header + 1);
1682 Result = Header->PageRVA + Entry[Index].getOffset();
1683 return std::error_code();
1684 }
1685
1686 #define RETURN_IF_ERROR(E) \
1687 if (E) \
1688 return E;
1689
1690 Expected<ArrayRef<UTF16>>
getDirStringAtOffset(uint32_t Offset)1691 ResourceSectionRef::getDirStringAtOffset(uint32_t Offset) {
1692 BinaryStreamReader Reader = BinaryStreamReader(BBS);
1693 Reader.setOffset(Offset);
1694 uint16_t Length;
1695 RETURN_IF_ERROR(Reader.readInteger(Length));
1696 ArrayRef<UTF16> RawDirString;
1697 RETURN_IF_ERROR(Reader.readArray(RawDirString, Length));
1698 return RawDirString;
1699 }
1700
1701 Expected<ArrayRef<UTF16>>
getEntryNameString(const coff_resource_dir_entry & Entry)1702 ResourceSectionRef::getEntryNameString(const coff_resource_dir_entry &Entry) {
1703 return getDirStringAtOffset(Entry.Identifier.getNameOffset());
1704 }
1705
1706 Expected<const coff_resource_dir_table &>
getTableAtOffset(uint32_t Offset)1707 ResourceSectionRef::getTableAtOffset(uint32_t Offset) {
1708 const coff_resource_dir_table *Table = nullptr;
1709
1710 BinaryStreamReader Reader(BBS);
1711 Reader.setOffset(Offset);
1712 RETURN_IF_ERROR(Reader.readObject(Table));
1713 assert(Table != nullptr);
1714 return *Table;
1715 }
1716
1717 Expected<const coff_resource_dir_table &>
getEntrySubDir(const coff_resource_dir_entry & Entry)1718 ResourceSectionRef::getEntrySubDir(const coff_resource_dir_entry &Entry) {
1719 return getTableAtOffset(Entry.Offset.value());
1720 }
1721
getBaseTable()1722 Expected<const coff_resource_dir_table &> ResourceSectionRef::getBaseTable() {
1723 return getTableAtOffset(0);
1724 }
1725