1 //===-- Value.cpp - Implement the Value class -----------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the Value, ValueHandle, and User classes. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/IR/Value.h" 15 #include "LLVMContextImpl.h" 16 #include "llvm/ADT/DenseMap.h" 17 #include "llvm/ADT/SmallString.h" 18 #include "llvm/ADT/SetVector.h" 19 #include "llvm/IR/Constant.h" 20 #include "llvm/IR/Constants.h" 21 #include "llvm/IR/DataLayout.h" 22 #include "llvm/IR/DerivedTypes.h" 23 #include "llvm/IR/DerivedUser.h" 24 #include "llvm/IR/GetElementPtrTypeIterator.h" 25 #include "llvm/IR/InstrTypes.h" 26 #include "llvm/IR/Instructions.h" 27 #include "llvm/IR/IntrinsicInst.h" 28 #include "llvm/IR/Module.h" 29 #include "llvm/IR/Operator.h" 30 #include "llvm/IR/Statepoint.h" 31 #include "llvm/IR/ValueHandle.h" 32 #include "llvm/IR/ValueSymbolTable.h" 33 #include "llvm/Support/Debug.h" 34 #include "llvm/Support/ErrorHandling.h" 35 #include "llvm/Support/ManagedStatic.h" 36 #include "llvm/Support/raw_ostream.h" 37 #include <algorithm> 38 39 using namespace llvm; 40 41 static cl::opt<unsigned> NonGlobalValueMaxNameSize( 42 "non-global-value-max-name-size", cl::Hidden, cl::init(1024), 43 cl::desc("Maximum size for the name of non-global values.")); 44 45 //===----------------------------------------------------------------------===// 46 // Value Class 47 //===----------------------------------------------------------------------===// 48 static inline Type *checkType(Type *Ty) { 49 assert(Ty && "Value defined with a null type: Error!"); 50 return Ty; 51 } 52 53 Value::Value(Type *ty, unsigned scid) 54 : VTy(checkType(ty)), UseList(nullptr), SubclassID(scid), 55 HasValueHandle(0), SubclassOptionalData(0), SubclassData(0), 56 NumUserOperands(0), IsUsedByMD(false), HasName(false) { 57 static_assert(ConstantFirstVal == 0, "!(SubclassID < ConstantFirstVal)"); 58 // FIXME: Why isn't this in the subclass gunk?? 59 // Note, we cannot call isa<CallInst> before the CallInst has been 60 // constructed. 61 if (SubclassID == Instruction::Call || SubclassID == Instruction::Invoke) 62 assert((VTy->isFirstClassType() || VTy->isVoidTy() || VTy->isStructTy()) && 63 "invalid CallInst type!"); 64 else if (SubclassID != BasicBlockVal && 65 (/*SubclassID < ConstantFirstVal ||*/ SubclassID > ConstantLastVal)) 66 assert((VTy->isFirstClassType() || VTy->isVoidTy()) && 67 "Cannot create non-first-class values except for constants!"); 68 static_assert(sizeof(Value) == 2 * sizeof(void *) + 2 * sizeof(unsigned), 69 "Value too big"); 70 } 71 72 Value::~Value() { 73 // Notify all ValueHandles (if present) that this value is going away. 74 if (HasValueHandle) 75 ValueHandleBase::ValueIsDeleted(this); 76 if (isUsedByMetadata()) 77 ValueAsMetadata::handleDeletion(this); 78 79 #ifndef NDEBUG // Only in -g mode... 80 // Check to make sure that there are no uses of this value that are still 81 // around when the value is destroyed. If there are, then we have a dangling 82 // reference and something is wrong. This code is here to print out where 83 // the value is still being referenced. 84 // 85 if (!use_empty()) { 86 dbgs() << "While deleting: " << *VTy << " %" << getName() << "\n"; 87 for (auto *U : users()) 88 dbgs() << "Use still stuck around after Def is destroyed:" << *U << "\n"; 89 } 90 #endif 91 assert(use_empty() && "Uses remain when a value is destroyed!"); 92 93 // If this value is named, destroy the name. This should not be in a symtab 94 // at this point. 95 destroyValueName(); 96 } 97 98 void Value::deleteValue() { 99 switch (getValueID()) { 100 #define HANDLE_VALUE(Name) \ 101 case Value::Name##Val: \ 102 delete static_cast<Name *>(this); \ 103 break; 104 #define HANDLE_MEMORY_VALUE(Name) \ 105 case Value::Name##Val: \ 106 static_cast<DerivedUser *>(this)->DeleteValue( \ 107 static_cast<DerivedUser *>(this)); \ 108 break; 109 #define HANDLE_INSTRUCTION(Name) /* nothing */ 110 #include "llvm/IR/Value.def" 111 112 #define HANDLE_INST(N, OPC, CLASS) \ 113 case Value::InstructionVal + Instruction::OPC: \ 114 delete static_cast<CLASS *>(this); \ 115 break; 116 #define HANDLE_USER_INST(N, OPC, CLASS) 117 #include "llvm/IR/Instruction.def" 118 119 default: 120 llvm_unreachable("attempting to delete unknown value kind"); 121 } 122 } 123 124 void Value::destroyValueName() { 125 ValueName *Name = getValueName(); 126 if (Name) 127 Name->Destroy(); 128 setValueName(nullptr); 129 } 130 131 bool Value::hasNUses(unsigned N) const { 132 return hasNItems(use_begin(), use_end(), N); 133 } 134 135 bool Value::hasNUsesOrMore(unsigned N) const { 136 return hasNItemsOrMore(use_begin(), use_end(), N); 137 } 138 139 bool Value::isUsedInBasicBlock(const BasicBlock *BB) const { 140 // This can be computed either by scanning the instructions in BB, or by 141 // scanning the use list of this Value. Both lists can be very long, but 142 // usually one is quite short. 143 // 144 // Scan both lists simultaneously until one is exhausted. This limits the 145 // search to the shorter list. 146 BasicBlock::const_iterator BI = BB->begin(), BE = BB->end(); 147 const_user_iterator UI = user_begin(), UE = user_end(); 148 for (; BI != BE && UI != UE; ++BI, ++UI) { 149 // Scan basic block: Check if this Value is used by the instruction at BI. 150 if (is_contained(BI->operands(), this)) 151 return true; 152 // Scan use list: Check if the use at UI is in BB. 153 const auto *User = dyn_cast<Instruction>(*UI); 154 if (User && User->getParent() == BB) 155 return true; 156 } 157 return false; 158 } 159 160 unsigned Value::getNumUses() const { 161 return (unsigned)std::distance(use_begin(), use_end()); 162 } 163 164 static bool getSymTab(Value *V, ValueSymbolTable *&ST) { 165 ST = nullptr; 166 if (Instruction *I = dyn_cast<Instruction>(V)) { 167 if (BasicBlock *P = I->getParent()) 168 if (Function *PP = P->getParent()) 169 ST = PP->getValueSymbolTable(); 170 } else if (BasicBlock *BB = dyn_cast<BasicBlock>(V)) { 171 if (Function *P = BB->getParent()) 172 ST = P->getValueSymbolTable(); 173 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) { 174 if (Module *P = GV->getParent()) 175 ST = &P->getValueSymbolTable(); 176 } else if (Argument *A = dyn_cast<Argument>(V)) { 177 if (Function *P = A->getParent()) 178 ST = P->getValueSymbolTable(); 179 } else { 180 assert(isa<Constant>(V) && "Unknown value type!"); 181 return true; // no name is setable for this. 182 } 183 return false; 184 } 185 186 ValueName *Value::getValueName() const { 187 if (!HasName) return nullptr; 188 189 LLVMContext &Ctx = getContext(); 190 auto I = Ctx.pImpl->ValueNames.find(this); 191 assert(I != Ctx.pImpl->ValueNames.end() && 192 "No name entry found!"); 193 194 return I->second; 195 } 196 197 void Value::setValueName(ValueName *VN) { 198 LLVMContext &Ctx = getContext(); 199 200 assert(HasName == Ctx.pImpl->ValueNames.count(this) && 201 "HasName bit out of sync!"); 202 203 if (!VN) { 204 if (HasName) 205 Ctx.pImpl->ValueNames.erase(this); 206 HasName = false; 207 return; 208 } 209 210 HasName = true; 211 Ctx.pImpl->ValueNames[this] = VN; 212 } 213 214 StringRef Value::getName() const { 215 // Make sure the empty string is still a C string. For historical reasons, 216 // some clients want to call .data() on the result and expect it to be null 217 // terminated. 218 if (!hasName()) 219 return StringRef("", 0); 220 return getValueName()->getKey(); 221 } 222 223 void Value::setNameImpl(const Twine &NewName) { 224 // Fast-path: LLVMContext can be set to strip out non-GlobalValue names 225 if (getContext().shouldDiscardValueNames() && !isa<GlobalValue>(this)) 226 return; 227 228 // Fast path for common IRBuilder case of setName("") when there is no name. 229 if (NewName.isTriviallyEmpty() && !hasName()) 230 return; 231 232 SmallString<256> NameData; 233 StringRef NameRef = NewName.toStringRef(NameData); 234 assert(NameRef.find_first_of(0) == StringRef::npos && 235 "Null bytes are not allowed in names"); 236 237 // Name isn't changing? 238 if (getName() == NameRef) 239 return; 240 241 // Cap the size of non-GlobalValue names. 242 if (NameRef.size() > NonGlobalValueMaxNameSize && !isa<GlobalValue>(this)) 243 NameRef = 244 NameRef.substr(0, std::max(1u, (unsigned)NonGlobalValueMaxNameSize)); 245 246 assert(!getType()->isVoidTy() && "Cannot assign a name to void values!"); 247 248 // Get the symbol table to update for this object. 249 ValueSymbolTable *ST; 250 if (getSymTab(this, ST)) 251 return; // Cannot set a name on this value (e.g. constant). 252 253 if (!ST) { // No symbol table to update? Just do the change. 254 if (NameRef.empty()) { 255 // Free the name for this value. 256 destroyValueName(); 257 return; 258 } 259 260 // NOTE: Could optimize for the case the name is shrinking to not deallocate 261 // then reallocated. 262 destroyValueName(); 263 264 // Create the new name. 265 setValueName(ValueName::Create(NameRef)); 266 getValueName()->setValue(this); 267 return; 268 } 269 270 // NOTE: Could optimize for the case the name is shrinking to not deallocate 271 // then reallocated. 272 if (hasName()) { 273 // Remove old name. 274 ST->removeValueName(getValueName()); 275 destroyValueName(); 276 277 if (NameRef.empty()) 278 return; 279 } 280 281 // Name is changing to something new. 282 setValueName(ST->createValueName(NameRef, this)); 283 } 284 285 void Value::setName(const Twine &NewName) { 286 setNameImpl(NewName); 287 if (Function *F = dyn_cast<Function>(this)) 288 F->recalculateIntrinsicID(); 289 } 290 291 void Value::takeName(Value *V) { 292 ValueSymbolTable *ST = nullptr; 293 // If this value has a name, drop it. 294 if (hasName()) { 295 // Get the symtab this is in. 296 if (getSymTab(this, ST)) { 297 // We can't set a name on this value, but we need to clear V's name if 298 // it has one. 299 if (V->hasName()) V->setName(""); 300 return; // Cannot set a name on this value (e.g. constant). 301 } 302 303 // Remove old name. 304 if (ST) 305 ST->removeValueName(getValueName()); 306 destroyValueName(); 307 } 308 309 // Now we know that this has no name. 310 311 // If V has no name either, we're done. 312 if (!V->hasName()) return; 313 314 // Get this's symtab if we didn't before. 315 if (!ST) { 316 if (getSymTab(this, ST)) { 317 // Clear V's name. 318 V->setName(""); 319 return; // Cannot set a name on this value (e.g. constant). 320 } 321 } 322 323 // Get V's ST, this should always succed, because V has a name. 324 ValueSymbolTable *VST; 325 bool Failure = getSymTab(V, VST); 326 assert(!Failure && "V has a name, so it should have a ST!"); (void)Failure; 327 328 // If these values are both in the same symtab, we can do this very fast. 329 // This works even if both values have no symtab yet. 330 if (ST == VST) { 331 // Take the name! 332 setValueName(V->getValueName()); 333 V->setValueName(nullptr); 334 getValueName()->setValue(this); 335 return; 336 } 337 338 // Otherwise, things are slightly more complex. Remove V's name from VST and 339 // then reinsert it into ST. 340 341 if (VST) 342 VST->removeValueName(V->getValueName()); 343 setValueName(V->getValueName()); 344 V->setValueName(nullptr); 345 getValueName()->setValue(this); 346 347 if (ST) 348 ST->reinsertValue(this); 349 } 350 351 void Value::assertModuleIsMaterializedImpl() const { 352 #ifndef NDEBUG 353 const GlobalValue *GV = dyn_cast<GlobalValue>(this); 354 if (!GV) 355 return; 356 const Module *M = GV->getParent(); 357 if (!M) 358 return; 359 assert(M->isMaterialized()); 360 #endif 361 } 362 363 #ifndef NDEBUG 364 static bool contains(SmallPtrSetImpl<ConstantExpr *> &Cache, ConstantExpr *Expr, 365 Constant *C) { 366 if (!Cache.insert(Expr).second) 367 return false; 368 369 for (auto &O : Expr->operands()) { 370 if (O == C) 371 return true; 372 auto *CE = dyn_cast<ConstantExpr>(O); 373 if (!CE) 374 continue; 375 if (contains(Cache, CE, C)) 376 return true; 377 } 378 return false; 379 } 380 381 static bool contains(Value *Expr, Value *V) { 382 if (Expr == V) 383 return true; 384 385 auto *C = dyn_cast<Constant>(V); 386 if (!C) 387 return false; 388 389 auto *CE = dyn_cast<ConstantExpr>(Expr); 390 if (!CE) 391 return false; 392 393 SmallPtrSet<ConstantExpr *, 4> Cache; 394 return contains(Cache, CE, C); 395 } 396 #endif // NDEBUG 397 398 void Value::doRAUW(Value *New, ReplaceMetadataUses ReplaceMetaUses) { 399 assert(New && "Value::replaceAllUsesWith(<null>) is invalid!"); 400 assert(!contains(New, this) && 401 "this->replaceAllUsesWith(expr(this)) is NOT valid!"); 402 assert(New->getType() == getType() && 403 "replaceAllUses of value with new value of different type!"); 404 405 // Notify all ValueHandles (if present) that this value is going away. 406 if (HasValueHandle) 407 ValueHandleBase::ValueIsRAUWd(this, New); 408 if (ReplaceMetaUses == ReplaceMetadataUses::Yes && isUsedByMetadata()) 409 ValueAsMetadata::handleRAUW(this, New); 410 411 while (!materialized_use_empty()) { 412 Use &U = *UseList; 413 // Must handle Constants specially, we cannot call replaceUsesOfWith on a 414 // constant because they are uniqued. 415 if (auto *C = dyn_cast<Constant>(U.getUser())) { 416 if (!isa<GlobalValue>(C)) { 417 C->handleOperandChange(this, New); 418 continue; 419 } 420 } 421 422 U.set(New); 423 } 424 425 if (BasicBlock *BB = dyn_cast<BasicBlock>(this)) 426 BB->replaceSuccessorsPhiUsesWith(cast<BasicBlock>(New)); 427 } 428 429 void Value::replaceAllUsesWith(Value *New) { 430 doRAUW(New, ReplaceMetadataUses::Yes); 431 } 432 433 void Value::replaceNonMetadataUsesWith(Value *New) { 434 doRAUW(New, ReplaceMetadataUses::No); 435 } 436 437 // Like replaceAllUsesWith except it does not handle constants or basic blocks. 438 // This routine leaves uses within BB. 439 void Value::replaceUsesOutsideBlock(Value *New, BasicBlock *BB) { 440 assert(New && "Value::replaceUsesOutsideBlock(<null>, BB) is invalid!"); 441 assert(!contains(New, this) && 442 "this->replaceUsesOutsideBlock(expr(this), BB) is NOT valid!"); 443 assert(New->getType() == getType() && 444 "replaceUses of value with new value of different type!"); 445 assert(BB && "Basic block that may contain a use of 'New' must be defined\n"); 446 447 use_iterator UI = use_begin(), E = use_end(); 448 for (; UI != E;) { 449 Use &U = *UI; 450 ++UI; 451 auto *Usr = dyn_cast<Instruction>(U.getUser()); 452 if (Usr && Usr->getParent() == BB) 453 continue; 454 U.set(New); 455 } 456 } 457 458 namespace { 459 // Various metrics for how much to strip off of pointers. 460 enum PointerStripKind { 461 PSK_ZeroIndices, 462 PSK_ZeroIndicesAndAliases, 463 PSK_ZeroIndicesAndAliasesAndInvariantGroups, 464 PSK_InBoundsConstantIndices, 465 PSK_InBounds 466 }; 467 468 template <PointerStripKind StripKind> 469 static const Value *stripPointerCastsAndOffsets(const Value *V) { 470 if (!V->getType()->isPointerTy()) 471 return V; 472 473 // Even though we don't look through PHI nodes, we could be called on an 474 // instruction in an unreachable block, which may be on a cycle. 475 SmallPtrSet<const Value *, 4> Visited; 476 477 Visited.insert(V); 478 do { 479 if (auto *GEP = dyn_cast<GEPOperator>(V)) { 480 switch (StripKind) { 481 case PSK_ZeroIndicesAndAliases: 482 case PSK_ZeroIndicesAndAliasesAndInvariantGroups: 483 case PSK_ZeroIndices: 484 if (!GEP->hasAllZeroIndices()) 485 return V; 486 break; 487 case PSK_InBoundsConstantIndices: 488 if (!GEP->hasAllConstantIndices()) 489 return V; 490 LLVM_FALLTHROUGH; 491 case PSK_InBounds: 492 if (!GEP->isInBounds()) 493 return V; 494 break; 495 } 496 V = GEP->getPointerOperand(); 497 } else if (Operator::getOpcode(V) == Instruction::BitCast || 498 Operator::getOpcode(V) == Instruction::AddrSpaceCast) { 499 V = cast<Operator>(V)->getOperand(0); 500 } else if (auto *GA = dyn_cast<GlobalAlias>(V)) { 501 if (StripKind == PSK_ZeroIndices || GA->isInterposable()) 502 return V; 503 V = GA->getAliasee(); 504 } else { 505 if (const auto *Call = dyn_cast<CallBase>(V)) { 506 if (const Value *RV = Call->getReturnedArgOperand()) { 507 V = RV; 508 continue; 509 } 510 // The result of launder.invariant.group must alias it's argument, 511 // but it can't be marked with returned attribute, that's why it needs 512 // special case. 513 if (StripKind == PSK_ZeroIndicesAndAliasesAndInvariantGroups && 514 (Call->getIntrinsicID() == Intrinsic::launder_invariant_group || 515 Call->getIntrinsicID() == Intrinsic::strip_invariant_group)) { 516 V = Call->getArgOperand(0); 517 continue; 518 } 519 } 520 return V; 521 } 522 assert(V->getType()->isPointerTy() && "Unexpected operand type!"); 523 } while (Visited.insert(V).second); 524 525 return V; 526 } 527 } // end anonymous namespace 528 529 const Value *Value::stripPointerCasts() const { 530 return stripPointerCastsAndOffsets<PSK_ZeroIndicesAndAliases>(this); 531 } 532 533 const Value *Value::stripPointerCastsNoFollowAliases() const { 534 return stripPointerCastsAndOffsets<PSK_ZeroIndices>(this); 535 } 536 537 const Value *Value::stripInBoundsConstantOffsets() const { 538 return stripPointerCastsAndOffsets<PSK_InBoundsConstantIndices>(this); 539 } 540 541 const Value *Value::stripPointerCastsAndInvariantGroups() const { 542 return stripPointerCastsAndOffsets<PSK_ZeroIndicesAndAliasesAndInvariantGroups>( 543 this); 544 } 545 546 const Value * 547 Value::stripAndAccumulateInBoundsConstantOffsets(const DataLayout &DL, 548 APInt &Offset) const { 549 if (!getType()->isPointerTy()) 550 return this; 551 552 assert(Offset.getBitWidth() == DL.getIndexSizeInBits(cast<PointerType>( 553 getType())->getAddressSpace()) && 554 "The offset bit width does not match the DL specification."); 555 556 // Even though we don't look through PHI nodes, we could be called on an 557 // instruction in an unreachable block, which may be on a cycle. 558 SmallPtrSet<const Value *, 4> Visited; 559 Visited.insert(this); 560 const Value *V = this; 561 do { 562 if (auto *GEP = dyn_cast<GEPOperator>(V)) { 563 if (!GEP->isInBounds()) 564 return V; 565 APInt GEPOffset(Offset); 566 if (!GEP->accumulateConstantOffset(DL, GEPOffset)) 567 return V; 568 Offset = GEPOffset; 569 V = GEP->getPointerOperand(); 570 } else if (Operator::getOpcode(V) == Instruction::BitCast) { 571 V = cast<Operator>(V)->getOperand(0); 572 } else if (auto *GA = dyn_cast<GlobalAlias>(V)) { 573 V = GA->getAliasee(); 574 } else { 575 if (const auto *Call = dyn_cast<CallBase>(V)) 576 if (const Value *RV = Call->getReturnedArgOperand()) { 577 V = RV; 578 continue; 579 } 580 581 return V; 582 } 583 assert(V->getType()->isPointerTy() && "Unexpected operand type!"); 584 } while (Visited.insert(V).second); 585 586 return V; 587 } 588 589 const Value *Value::stripInBoundsOffsets() const { 590 return stripPointerCastsAndOffsets<PSK_InBounds>(this); 591 } 592 593 uint64_t Value::getPointerDereferenceableBytes(const DataLayout &DL, 594 bool &CanBeNull) const { 595 assert(getType()->isPointerTy() && "must be pointer"); 596 597 uint64_t DerefBytes = 0; 598 CanBeNull = false; 599 if (const Argument *A = dyn_cast<Argument>(this)) { 600 DerefBytes = A->getDereferenceableBytes(); 601 if (DerefBytes == 0 && (A->hasByValAttr() || A->hasStructRetAttr())) { 602 Type *PT = cast<PointerType>(A->getType())->getElementType(); 603 if (PT->isSized()) 604 DerefBytes = DL.getTypeStoreSize(PT); 605 } 606 if (DerefBytes == 0) { 607 DerefBytes = A->getDereferenceableOrNullBytes(); 608 CanBeNull = true; 609 } 610 } else if (const auto *Call = dyn_cast<CallBase>(this)) { 611 DerefBytes = Call->getDereferenceableBytes(AttributeList::ReturnIndex); 612 if (DerefBytes == 0) { 613 DerefBytes = 614 Call->getDereferenceableOrNullBytes(AttributeList::ReturnIndex); 615 CanBeNull = true; 616 } 617 } else if (const LoadInst *LI = dyn_cast<LoadInst>(this)) { 618 if (MDNode *MD = LI->getMetadata(LLVMContext::MD_dereferenceable)) { 619 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(0)); 620 DerefBytes = CI->getLimitedValue(); 621 } 622 if (DerefBytes == 0) { 623 if (MDNode *MD = 624 LI->getMetadata(LLVMContext::MD_dereferenceable_or_null)) { 625 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(0)); 626 DerefBytes = CI->getLimitedValue(); 627 } 628 CanBeNull = true; 629 } 630 } else if (auto *AI = dyn_cast<AllocaInst>(this)) { 631 if (!AI->isArrayAllocation()) { 632 DerefBytes = DL.getTypeStoreSize(AI->getAllocatedType()); 633 CanBeNull = false; 634 } 635 } else if (auto *GV = dyn_cast<GlobalVariable>(this)) { 636 if (GV->getValueType()->isSized() && !GV->hasExternalWeakLinkage()) { 637 // TODO: Don't outright reject hasExternalWeakLinkage but set the 638 // CanBeNull flag. 639 DerefBytes = DL.getTypeStoreSize(GV->getValueType()); 640 CanBeNull = false; 641 } 642 } 643 return DerefBytes; 644 } 645 646 unsigned Value::getPointerAlignment(const DataLayout &DL) const { 647 assert(getType()->isPointerTy() && "must be pointer"); 648 649 unsigned Align = 0; 650 if (auto *GO = dyn_cast<GlobalObject>(this)) { 651 // Don't make any assumptions about function pointer alignment. Some 652 // targets use the LSBs to store additional information. 653 if (isa<Function>(GO)) 654 return 0; 655 Align = GO->getAlignment(); 656 if (Align == 0) { 657 if (auto *GVar = dyn_cast<GlobalVariable>(GO)) { 658 Type *ObjectType = GVar->getValueType(); 659 if (ObjectType->isSized()) { 660 // If the object is defined in the current Module, we'll be giving 661 // it the preferred alignment. Otherwise, we have to assume that it 662 // may only have the minimum ABI alignment. 663 if (GVar->isStrongDefinitionForLinker()) 664 Align = DL.getPreferredAlignment(GVar); 665 else 666 Align = DL.getABITypeAlignment(ObjectType); 667 } 668 } 669 } 670 } else if (const Argument *A = dyn_cast<Argument>(this)) { 671 Align = A->getParamAlignment(); 672 673 if (!Align && A->hasStructRetAttr()) { 674 // An sret parameter has at least the ABI alignment of the return type. 675 Type *EltTy = cast<PointerType>(A->getType())->getElementType(); 676 if (EltTy->isSized()) 677 Align = DL.getABITypeAlignment(EltTy); 678 } 679 } else if (const AllocaInst *AI = dyn_cast<AllocaInst>(this)) { 680 Align = AI->getAlignment(); 681 if (Align == 0) { 682 Type *AllocatedType = AI->getAllocatedType(); 683 if (AllocatedType->isSized()) 684 Align = DL.getPrefTypeAlignment(AllocatedType); 685 } 686 } else if (const auto *Call = dyn_cast<CallBase>(this)) 687 Align = Call->getAttributes().getRetAlignment(); 688 else if (const LoadInst *LI = dyn_cast<LoadInst>(this)) 689 if (MDNode *MD = LI->getMetadata(LLVMContext::MD_align)) { 690 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(0)); 691 Align = CI->getLimitedValue(); 692 } 693 694 return Align; 695 } 696 697 const Value *Value::DoPHITranslation(const BasicBlock *CurBB, 698 const BasicBlock *PredBB) const { 699 auto *PN = dyn_cast<PHINode>(this); 700 if (PN && PN->getParent() == CurBB) 701 return PN->getIncomingValueForBlock(PredBB); 702 return this; 703 } 704 705 LLVMContext &Value::getContext() const { return VTy->getContext(); } 706 707 void Value::reverseUseList() { 708 if (!UseList || !UseList->Next) 709 // No need to reverse 0 or 1 uses. 710 return; 711 712 Use *Head = UseList; 713 Use *Current = UseList->Next; 714 Head->Next = nullptr; 715 while (Current) { 716 Use *Next = Current->Next; 717 Current->Next = Head; 718 Head->setPrev(&Current->Next); 719 Head = Current; 720 Current = Next; 721 } 722 UseList = Head; 723 Head->setPrev(&UseList); 724 } 725 726 bool Value::isSwiftError() const { 727 auto *Arg = dyn_cast<Argument>(this); 728 if (Arg) 729 return Arg->hasSwiftErrorAttr(); 730 auto *Alloca = dyn_cast<AllocaInst>(this); 731 if (!Alloca) 732 return false; 733 return Alloca->isSwiftError(); 734 } 735 736 //===----------------------------------------------------------------------===// 737 // ValueHandleBase Class 738 //===----------------------------------------------------------------------===// 739 740 void ValueHandleBase::AddToExistingUseList(ValueHandleBase **List) { 741 assert(List && "Handle list is null?"); 742 743 // Splice ourselves into the list. 744 Next = *List; 745 *List = this; 746 setPrevPtr(List); 747 if (Next) { 748 Next->setPrevPtr(&Next); 749 assert(getValPtr() == Next->getValPtr() && "Added to wrong list?"); 750 } 751 } 752 753 void ValueHandleBase::AddToExistingUseListAfter(ValueHandleBase *List) { 754 assert(List && "Must insert after existing node"); 755 756 Next = List->Next; 757 setPrevPtr(&List->Next); 758 List->Next = this; 759 if (Next) 760 Next->setPrevPtr(&Next); 761 } 762 763 void ValueHandleBase::AddToUseList() { 764 assert(getValPtr() && "Null pointer doesn't have a use list!"); 765 766 LLVMContextImpl *pImpl = getValPtr()->getContext().pImpl; 767 768 if (getValPtr()->HasValueHandle) { 769 // If this value already has a ValueHandle, then it must be in the 770 // ValueHandles map already. 771 ValueHandleBase *&Entry = pImpl->ValueHandles[getValPtr()]; 772 assert(Entry && "Value doesn't have any handles?"); 773 AddToExistingUseList(&Entry); 774 return; 775 } 776 777 // Ok, it doesn't have any handles yet, so we must insert it into the 778 // DenseMap. However, doing this insertion could cause the DenseMap to 779 // reallocate itself, which would invalidate all of the PrevP pointers that 780 // point into the old table. Handle this by checking for reallocation and 781 // updating the stale pointers only if needed. 782 DenseMap<Value*, ValueHandleBase*> &Handles = pImpl->ValueHandles; 783 const void *OldBucketPtr = Handles.getPointerIntoBucketsArray(); 784 785 ValueHandleBase *&Entry = Handles[getValPtr()]; 786 assert(!Entry && "Value really did already have handles?"); 787 AddToExistingUseList(&Entry); 788 getValPtr()->HasValueHandle = true; 789 790 // If reallocation didn't happen or if this was the first insertion, don't 791 // walk the table. 792 if (Handles.isPointerIntoBucketsArray(OldBucketPtr) || 793 Handles.size() == 1) { 794 return; 795 } 796 797 // Okay, reallocation did happen. Fix the Prev Pointers. 798 for (DenseMap<Value*, ValueHandleBase*>::iterator I = Handles.begin(), 799 E = Handles.end(); I != E; ++I) { 800 assert(I->second && I->first == I->second->getValPtr() && 801 "List invariant broken!"); 802 I->second->setPrevPtr(&I->second); 803 } 804 } 805 806 void ValueHandleBase::RemoveFromUseList() { 807 assert(getValPtr() && getValPtr()->HasValueHandle && 808 "Pointer doesn't have a use list!"); 809 810 // Unlink this from its use list. 811 ValueHandleBase **PrevPtr = getPrevPtr(); 812 assert(*PrevPtr == this && "List invariant broken"); 813 814 *PrevPtr = Next; 815 if (Next) { 816 assert(Next->getPrevPtr() == &Next && "List invariant broken"); 817 Next->setPrevPtr(PrevPtr); 818 return; 819 } 820 821 // If the Next pointer was null, then it is possible that this was the last 822 // ValueHandle watching VP. If so, delete its entry from the ValueHandles 823 // map. 824 LLVMContextImpl *pImpl = getValPtr()->getContext().pImpl; 825 DenseMap<Value*, ValueHandleBase*> &Handles = pImpl->ValueHandles; 826 if (Handles.isPointerIntoBucketsArray(PrevPtr)) { 827 Handles.erase(getValPtr()); 828 getValPtr()->HasValueHandle = false; 829 } 830 } 831 832 void ValueHandleBase::ValueIsDeleted(Value *V) { 833 assert(V->HasValueHandle && "Should only be called if ValueHandles present"); 834 835 // Get the linked list base, which is guaranteed to exist since the 836 // HasValueHandle flag is set. 837 LLVMContextImpl *pImpl = V->getContext().pImpl; 838 ValueHandleBase *Entry = pImpl->ValueHandles[V]; 839 assert(Entry && "Value bit set but no entries exist"); 840 841 // We use a local ValueHandleBase as an iterator so that ValueHandles can add 842 // and remove themselves from the list without breaking our iteration. This 843 // is not really an AssertingVH; we just have to give ValueHandleBase a kind. 844 // Note that we deliberately do not the support the case when dropping a value 845 // handle results in a new value handle being permanently added to the list 846 // (as might occur in theory for CallbackVH's): the new value handle will not 847 // be processed and the checking code will mete out righteous punishment if 848 // the handle is still present once we have finished processing all the other 849 // value handles (it is fine to momentarily add then remove a value handle). 850 for (ValueHandleBase Iterator(Assert, *Entry); Entry; Entry = Iterator.Next) { 851 Iterator.RemoveFromUseList(); 852 Iterator.AddToExistingUseListAfter(Entry); 853 assert(Entry->Next == &Iterator && "Loop invariant broken."); 854 855 switch (Entry->getKind()) { 856 case Assert: 857 break; 858 case Weak: 859 case WeakTracking: 860 // WeakTracking and Weak just go to null, which unlinks them 861 // from the list. 862 Entry->operator=(nullptr); 863 break; 864 case Callback: 865 // Forward to the subclass's implementation. 866 static_cast<CallbackVH*>(Entry)->deleted(); 867 break; 868 } 869 } 870 871 // All callbacks, weak references, and assertingVHs should be dropped by now. 872 if (V->HasValueHandle) { 873 #ifndef NDEBUG // Only in +Asserts mode... 874 dbgs() << "While deleting: " << *V->getType() << " %" << V->getName() 875 << "\n"; 876 if (pImpl->ValueHandles[V]->getKind() == Assert) 877 llvm_unreachable("An asserting value handle still pointed to this" 878 " value!"); 879 880 #endif 881 llvm_unreachable("All references to V were not removed?"); 882 } 883 } 884 885 void ValueHandleBase::ValueIsRAUWd(Value *Old, Value *New) { 886 assert(Old->HasValueHandle &&"Should only be called if ValueHandles present"); 887 assert(Old != New && "Changing value into itself!"); 888 assert(Old->getType() == New->getType() && 889 "replaceAllUses of value with new value of different type!"); 890 891 // Get the linked list base, which is guaranteed to exist since the 892 // HasValueHandle flag is set. 893 LLVMContextImpl *pImpl = Old->getContext().pImpl; 894 ValueHandleBase *Entry = pImpl->ValueHandles[Old]; 895 896 assert(Entry && "Value bit set but no entries exist"); 897 898 // We use a local ValueHandleBase as an iterator so that 899 // ValueHandles can add and remove themselves from the list without 900 // breaking our iteration. This is not really an AssertingVH; we 901 // just have to give ValueHandleBase some kind. 902 for (ValueHandleBase Iterator(Assert, *Entry); Entry; Entry = Iterator.Next) { 903 Iterator.RemoveFromUseList(); 904 Iterator.AddToExistingUseListAfter(Entry); 905 assert(Entry->Next == &Iterator && "Loop invariant broken."); 906 907 switch (Entry->getKind()) { 908 case Assert: 909 case Weak: 910 // Asserting and Weak handles do not follow RAUW implicitly. 911 break; 912 case WeakTracking: 913 // Weak goes to the new value, which will unlink it from Old's list. 914 Entry->operator=(New); 915 break; 916 case Callback: 917 // Forward to the subclass's implementation. 918 static_cast<CallbackVH*>(Entry)->allUsesReplacedWith(New); 919 break; 920 } 921 } 922 923 #ifndef NDEBUG 924 // If any new weak value handles were added while processing the 925 // list, then complain about it now. 926 if (Old->HasValueHandle) 927 for (Entry = pImpl->ValueHandles[Old]; Entry; Entry = Entry->Next) 928 switch (Entry->getKind()) { 929 case WeakTracking: 930 dbgs() << "After RAUW from " << *Old->getType() << " %" 931 << Old->getName() << " to " << *New->getType() << " %" 932 << New->getName() << "\n"; 933 llvm_unreachable( 934 "A weak tracking value handle still pointed to the old value!\n"); 935 default: 936 break; 937 } 938 #endif 939 } 940 941 // Pin the vtable to this file. 942 void CallbackVH::anchor() {} 943